jackkuo commited on
Commit
798c67b
·
verified ·
1 Parent(s): 82c76af

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9FRT4oBgHgl3EQfsTcg/content/tmp_files/2301.13623v1.pdf.txt +1097 -0
  2. -9FRT4oBgHgl3EQfsTcg/content/tmp_files/load_file.txt +0 -0
  3. .gitattributes +1 -0
  4. 3dE4T4oBgHgl3EQf0Q2d/content/tmp_files/2301.05281v1.pdf.txt +2214 -0
  5. 3dE4T4oBgHgl3EQf0Q2d/content/tmp_files/load_file.txt +0 -0
  6. 4NE1T4oBgHgl3EQfmASv/content/tmp_files/2301.03293v1.pdf.txt +957 -0
  7. 4NE1T4oBgHgl3EQfmASv/content/tmp_files/load_file.txt +0 -0
  8. 69E1T4oBgHgl3EQfTgNE/content/tmp_files/2301.03078v1.pdf.txt +822 -0
  9. 69E1T4oBgHgl3EQfTgNE/content/tmp_files/load_file.txt +0 -0
  10. 79E2T4oBgHgl3EQflQc0/content/2301.03986v1.pdf +3 -0
  11. 8tE0T4oBgHgl3EQffgDC/content/tmp_files/2301.02406v1.pdf.txt +947 -0
  12. 8tE0T4oBgHgl3EQffgDC/content/tmp_files/load_file.txt +0 -0
  13. CNE4T4oBgHgl3EQfeQ0p/content/tmp_files/2301.05097v1.pdf.txt +2600 -0
  14. CNE4T4oBgHgl3EQfeQ0p/content/tmp_files/load_file.txt +0 -0
  15. CtE1T4oBgHgl3EQfDwP-/content/tmp_files/2301.02883v1.pdf.txt +491 -0
  16. CtE1T4oBgHgl3EQfDwP-/content/tmp_files/load_file.txt +444 -0
  17. F9E2T4oBgHgl3EQf-Qn4/content/tmp_files/load_file.txt +0 -0
  18. FNAyT4oBgHgl3EQfrPlH/content/tmp_files/2301.00556v1.pdf.txt +1198 -0
  19. FNAyT4oBgHgl3EQfrPlH/content/tmp_files/load_file.txt +0 -0
  20. KNAyT4oBgHgl3EQfsfkS/content/tmp_files/2301.00576v1.pdf.txt +2400 -0
  21. KNAyT4oBgHgl3EQfsfkS/content/tmp_files/load_file.txt +0 -0
  22. LtFOT4oBgHgl3EQf0TSa/content/tmp_files/2301.12935v1.pdf.txt +1569 -0
  23. LtFOT4oBgHgl3EQf0TSa/content/tmp_files/load_file.txt +0 -0
  24. NNE0T4oBgHgl3EQf0QK5/content/tmp_files/2301.02684v1.pdf.txt +0 -0
  25. NNE0T4oBgHgl3EQf0QK5/content/tmp_files/load_file.txt +0 -0
  26. NtAyT4oBgHgl3EQfgviP/content/tmp_files/2301.00364v1.pdf.txt +0 -0
  27. NtAyT4oBgHgl3EQfgviP/content/tmp_files/load_file.txt +0 -0
  28. NtE0T4oBgHgl3EQfTQBT/content/tmp_files/2301.02233v1.pdf.txt +2256 -0
  29. NtE0T4oBgHgl3EQfTQBT/content/tmp_files/load_file.txt +0 -0
  30. Q9FJT4oBgHgl3EQf3C2V/content/tmp_files/2301.11659v1.pdf.txt +1894 -0
  31. Q9FJT4oBgHgl3EQf3C2V/content/tmp_files/load_file.txt +0 -0
  32. T9E2T4oBgHgl3EQfCga9/content/tmp_files/2301.03615v1.pdf.txt +0 -0
  33. T9E2T4oBgHgl3EQfCga9/content/tmp_files/load_file.txt +0 -0
  34. TdAzT4oBgHgl3EQf0v6x/content/tmp_files/2301.01789v1.pdf.txt +850 -0
  35. TdAzT4oBgHgl3EQf0v6x/content/tmp_files/load_file.txt +0 -0
  36. UdE_T4oBgHgl3EQfxBzD/content/tmp_files/2301.08310v1.pdf.txt +0 -0
  37. UdE_T4oBgHgl3EQfxBzD/content/tmp_files/load_file.txt +0 -0
  38. VNE_T4oBgHgl3EQfxhzT/content/tmp_files/2301.08313v1.pdf.txt +537 -0
  39. VNE_T4oBgHgl3EQfxhzT/content/tmp_files/load_file.txt +400 -0
  40. WdE_T4oBgHgl3EQfyhxs/content/tmp_files/2301.08318v1.pdf.txt +1758 -0
  41. WdE_T4oBgHgl3EQfyhxs/content/tmp_files/load_file.txt +0 -0
  42. WtFQT4oBgHgl3EQfcDb0/content/tmp_files/2301.13326v1.pdf.txt +0 -0
  43. WtFQT4oBgHgl3EQfcDb0/content/tmp_files/load_file.txt +0 -0
  44. _NAzT4oBgHgl3EQfS_tm/content/tmp_files/2301.01241v1.pdf.txt +1055 -0
  45. _NAzT4oBgHgl3EQfS_tm/content/tmp_files/load_file.txt +0 -0
  46. _dAzT4oBgHgl3EQfhPzZ/content/tmp_files/2301.01483v1.pdf.txt +640 -0
  47. _dAzT4oBgHgl3EQfhPzZ/content/tmp_files/load_file.txt +240 -0
  48. atAyT4oBgHgl3EQfv_nZ/content/tmp_files/2301.00642v1.pdf.txt +1820 -0
  49. atAyT4oBgHgl3EQfv_nZ/content/tmp_files/load_file.txt +0 -0
  50. b9E1T4oBgHgl3EQfdgQp/content/tmp_files/2301.03195v1.pdf.txt +1409 -0
-9FRT4oBgHgl3EQfsTcg/content/tmp_files/2301.13623v1.pdf.txt ADDED
@@ -0,0 +1,1097 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13623v1 [hep-th] 31 Jan 2023
2
+ Unimodular Gravity in Covariant Formalism
3
+ J. Klusoň† and B. Matouš†‡ 1
4
+ † Department of Theoretical Physics and Astrophysics, Faculty of Science,
5
+ Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
6
+ ‡ North-Bohemian Observatory and Planetarium in Teplice,
7
+ Koperníkova 3062, 415 01, Teplice, Czech Republic
8
+ Abstract
9
+ In this short note we study unimodular gravity in Weyl-De Donder
10
+ formalism. We find corresponding Hamiltonian and study consequence
11
+ of the unimodular constraint on the conjugate covariant momenta. We
12
+ also find covariant Hamiltonian for Henneaux-Teitelboim unimodular
13
+ action and study corresponding equations of motion.
14
+ 1
15
+ Introduction and Summary
16
+ Unimodular gravity was firstly introduced by A. Einstein in his paper [3]
17
+ published in 1916. In this work the unimodular constraint √−g = 1 was
18
+ used as gauge fixing condition of general diffeomorphism in order to sim-
19
+ plify calculations.
20
+ Then it was shown in [1, 2] that imposing this condi-
21
+ tion before the variation of Einstein-Hilbert action leads to the traceless
22
+ equations of motion.
23
+ As we review below these equations of motion are
24
+ classically equivalent to the general relativity equations of motion with cru-
25
+ cial difference that the cosmological constant appears as integration con-
26
+ stant rather than true cosmological constant.
27
+ This fact brings new hope
28
+ how to solve cosmological constant problem which was however questioned
29
+ in [4], 2 where it was argued that quantum corrections make the cosmo-
30
+ logical constant ultraviolet sensitive in unimodular gravity as well. On the
31
+ other hand it is important to stress that no definitive conclusions have been
32
+ reached yet regarding this problem and unimodular gravity is still very inten-
33
+ sively studied, for some works devoted to unimodular gravity, see for example
34
+ [7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 26].
35
+ 1Email addresses: J. Klusoň: klu@physics.muni.cz, B. Matouš: bmatous@mail.muni.cz
36
+ 2For review of unimodular gravity, see for example [5, 6].
37
+ 1
38
+
39
+ One of the most interesting aspects of unimodular gravity is the number
40
+ of physical degrees of freedom. Naively, unimodular constraint √−g = 1 re-
41
+ duces the number of independent components of metric to nine which could
42
+ suggest that the number of physical degrees of freedom is less than in general
43
+ relativity. On the other hand unimodular gravity is invariant under restricted
44
+ diffeomorphism. Taking these two aspects together we find that the num-
45
+ ber of local physical degrees of freedom is the same as in ordinary general
46
+ relativity. This fact was proved with the help of the Hamiltonian analysis
47
+ of unimodular gravity performed in [16, 17, 18, 19, 20, 21]. On the other
48
+ hand as was shown in these papers standard analysis of unimodular gravity
49
+ based on D + 1 splitting of target space-time is rather non-trivial and shown
50
+ complexity of the canonical analysis of systems with constraints.
51
+ Then one could ask the question how unimodular gravity could be de-
52
+ scribed in covariant canonical formalism that is known as Weyl-De Donder
53
+ theory [27, 28]. The key point of this formulation is that we treat all partial
54
+ derivatives as equivalent when we define conjugate momenta. For example,
55
+ if we have scalar field φ with Lagrangian density in D +1 dimensional space-
56
+ time equal to L = −1
57
+ 2ηab∂aφ∂bφ − V (φ), we define the conjugate momentum
58
+ as 3
59
+ πa = ∂L
60
+ ∂∂aφ = −ηab∂bφ .
61
+ Then covariant canonical Hamiltonian density is defined as
62
+ H = πa∂aφ − L = −1
63
+ 2πaηabπb + V (φ) .
64
+ Clearly such a form of Hamiltonian density preserves diffeomorphism invari-
65
+ ance of the theory. This approach is known as multisymplectic field theory,
66
+ see for example [29, 30, 31], for review, see [32] and for recent interesting
67
+ application of this formalism in string theory, see [33, 34].
68
+ It is clear that such covariant canonical formalism is especially suitable
69
+ for manifestly covariant theories as for example general relativity. In fact,
70
+ covariant canonical formalism of general relativity was found long time ago
71
+ by P. Hořava [35]. This analysis was recently generalized to the case of F(R)
72
+ gravity in [37] and further elaborated in [38].
73
+ In this paper we apply this formalism for unimodular theory of gravity in
74
+ D + 1 dimensions. This is non-trivial task due to the well known complex-
75
+ ity of canonical analysis of unimodular gravity in non-covariant formalism.
76
+ 3We define ηab = diag(−1, 1, . . ., 1), a, b = 0, 1, . . ., D.
77
+ 2
78
+
79
+ Further, it is also very interesting to study this system since it contains pri-
80
+ mary unimodular constraint and it is non-trivial task how to deal with such
81
+ systems in covariant canonical formalism. In more details, we include this
82
+ primary constraint to the action with corresponding Lagrange multiplier.
83
+ Then we derive corresponding equations of motion. Using these equations
84
+ of motion we find that the unimodular constraint implies another constraint
85
+ on the canonical conjugate momenta. Then we show that this constraint is
86
+ equivalent to the vanishing of the trace of the Christoffel symbols which is
87
+ characteristic property of unimodular theory of gravity [10]. This is nice and
88
+ non-trivial result. On the other hand the Lagrange multiplier corresponding
89
+ to the primary constraint cannot be determined as in non-covariant canon-
90
+ ical formalism by imposing condition of the preservation of the secondary
91
+ constraint due to the fact that the equations of motion for conjugate mo-
92
+ menta are in the form of the divergence of these momenta. For that reason
93
+ we determine this constraint in the same way as in the Lagrangian formalism
94
+ when we calculate the trace of the equations of motion. As a result we obtain
95
+ equations of motion that are traceless and that do not depend on the cos-
96
+ mological constant which is in agreement with the Lagrangian formulation
97
+ of unimodular gravity.
98
+ As the second step in our analysis we find covariant canonical formula-
99
+ tion of Henneaux-Teitelboim formulation of unimodular gravity [16]. In this
100
+ case we again identify covariant Hamiltonian together with set of primary
101
+ constraints. Then we consider canonical form of the action and determine
102
+ corresponding equations of motion. Solving these equations of motion we
103
+ find that Lagrange multiplier is integration constant. In this case we repro-
104
+ duce results well known from Lagrangian analysis. However we mean that
105
+ this is nice and interesting application of the covariant canonical analysis to
106
+ the constraint systems.
107
+ Let us outline our results and suggest possible extension of this work. We
108
+ found covariant Hamiltonian formalism for unimodular gravity. First of all
109
+ we determined covariant Hamiltonian for general relativity action in D + 1
110
+ dimensions where we again introduced variable f ab = √−ggab. At this place
111
+ we would like to stress an importance of this result since it was not apri-
112
+ ori known whether f ab is suitable for formulation of gravity in space-time of
113
+ dimension different from 4. Then we imposed unimodular constraint using
114
+ Lagrange multiplier method and then we studied corresponding equations
115
+ of motion. We found that the consistency of the theory demands that the
116
+ trace of conjugate momenta is zero. Then we showed that this is character-
117
+ 3
118
+
119
+ istic property of unimodular gravity when we pass to Lagrangian formalism.
120
+ Final we found covariant Hamiltonian for Henneaux-Teltelboim formulation
121
+ of unimodular gravity. We identified primary constraints of the theory and
122
+ then we studied equations of motion that follow from canonical form of the
123
+ action. We showed that they precisely reproduce Lagrangian equations of
124
+ motion that is nice consistency check of the covariant canonical formalism.
125
+ We mean that the analysis presented in this paper suggests that covariant
126
+ Hamiltonian formalism is very close to Lagrangian formalism and in some
127
+ situations the covariant Hamiltonian formalism is more suitable than La-
128
+ grangian one, as for example study of thermodynamics properties of horizon
129
+ [36].
130
+ It is also clear that there are more systems that could be analysed with
131
+ the help of covariant canonical formalism. One possibility is to study Weyl
132
+ invariant gravity in this formalism. Another possibility would be to perform
133
+ analysis of theories of gravity with higher derivatives where the classical
134
+ canonical analysis is very complicated, see for example [40].
135
+ We hope to
136
+ return to these problems in future.
137
+ This paper is organized as follows.
138
+ In the next section (2) we review
139
+ properties of unimodular gravity.Then in section (3) we proceed to the co-
140
+ variant canonical formulation of this theory. Finally in section (4) we perform
141
+ covariant canonical formulation of Henneaux-Teltelboim unimodular gravity.
142
+ 2
143
+ Brief Review of Unimodular Gravity
144
+ In this section we review basic facts about unimodular gravity. For recent
145
+ very nice and more detailed review, see for example [5, 6].
146
+ Unimodular
147
+ gravity is theory with the constraint √−g = 1. Clearly such a condition
148
+ has a consequence on allowed differomorphism transformation. In fact, let
149
+ us consider general transformation of coordinates
150
+ x′a = xa + ξa(x)
151
+ (1)
152
+ that implies inverse relation
153
+ xa = x′a − ξa(x) ≈ x′a − ξa(x′) + O(ξ2) ,
154
+ (2)
155
+ where a, b, c = 0, 1, . . . , D. Under these transformation the metric gab trans-
156
+ form as
157
+ g′
158
+ ab(x) = gab(x) − ∂cgab(x)ξc(x) − gac(x)∂bξc(x) − ∂aξc(x)gcb(x)
159
+ (3)
160
+ 4
161
+
162
+ that implies following variation of metric
163
+ δgab(x) = g′
164
+ ab(x) − gab(x) = −gac∂bxc − ∂aξcgcb − ∂cgabξc
165
+ so that the variation of the square root of the determinant of metric is equal
166
+ to
167
+ δ
168
+
169
+ − det g = −(2∂aξa − ∂cgabgbaξc)
170
+
171
+ − det g .
172
+ (4)
173
+ In case of unimodular gravity this variation should vanish and hence we
174
+ obtain following condition on ξa in the form
175
+ ∇aξa = ∂aξa + 1
176
+ 2gac∂dgcaξd = 0 .
177
+ (5)
178
+ The most straightforward way how to find an action for unimodular gravity is
179
+ to consider standard Einstein-Hilbert action with an unimodular constraint
180
+ added
181
+ S =
182
+ 1
183
+ 16π
184
+
185
+ dD+1x[√−g(R − 2¯Λ) + Λ(√−g − 1)] + Smatt ,
186
+ (6)
187
+ where Λ is Lagrange multiplier whose variation ensures unimodular condition
188
+ and where ¯Λ is constant.
189
+ Performing variation of the action (6) with respect to gab we obtain fol-
190
+ lowing equations of motion
191
+ 1
192
+ 16π(Rab − 1
193
+ 2gab(R − 2¯Λ + Λ)) = Tab ,
194
+ (7)
195
+ where Tab is matter stress energy tensor defined as
196
+ Tab = −
197
+ 1
198
+ √−g
199
+ δSmatt
200
+ δgab
201
+ .
202
+ (8)
203
+ The crucial point is that Λ is Lagrange multiplier that should be determined
204
+ as a consequence of the equations of motion. To do this we perform the trace
205
+ of the equation (7) to express Λ as
206
+ Λ = (1 − D)
207
+ 1 + D R −
208
+ 32π
209
+ D + 1T + 2¯Λ ,
210
+ T ≡ gabTab .
211
+ (9)
212
+ 5
213
+
214
+ Inserting this result into (7) we obtain
215
+ Rab −
216
+ 1
217
+ D + 1gabR = 16π(Tab −
218
+ 1
219
+ D + 1gabT) .
220
+ (10)
221
+ These equations of motion are trace-free and also most importantly they do
222
+ not contain any information about cosmological constant ¯Λ.
223
+ It is important to stress that even equations of motion of general relativ-
224
+ ity without unimodular constraint imposed split into 9 trace-free equations
225
+ of motion and one additional one.
226
+ To see this consider general relativity
227
+ equations of motion
228
+ Rab − 1
229
+ 2gab(R − 2¯Λ) = 16πTab .
230
+ (11)
231
+ Taking the trace of this equation we can express R as
232
+ R =
233
+ 2
234
+ 1 − D(16πT − (D + 1)¯Λ) .
235
+ (12)
236
+ Note that with the help of this equation we can rewrite (11) into trace-free
237
+ form
238
+ Rab −
239
+ 1
240
+ D + 1Rgab = 16π(Tab −
241
+ 1
242
+ D + 1Tgab) .
243
+ (13)
244
+ However we should again stress that (12) determines R as function of trace of
245
+ matter stress energy tensor and true cosmological constant term in Einstein-
246
+ Hilbert action while in case of unimodular gravity we express Λ-which is
247
+ Lagrange multiplier and not constant, as function of R, T and ¯Λ, as follows
248
+ from equation (9).
249
+ In order to check equivalence between unimodular gravity and ordinary
250
+ general relativity we should be able to reproduce equation (12) in case of
251
+ unimodular gravity as well. We can do this by following procedure. Consider
252
+ equations of motion (10) and rewrite them into the form
253
+ Rab − 1
254
+ 2gabR = 16π(Tab −
255
+ 1
256
+ D + 1gabT) +
257
+ 1 − D
258
+ 2(D + 1)Rgab .
259
+ (14)
260
+ Now we apply covariant derivative on both sides of the equations above
261
+ and using the fact that the covariant derivative of Einstein tensor Gab =
262
+ Rab − 1
263
+ 2gabR is zero we get
264
+ 1
265
+ D + 1∇b(16πT − 1 − D
266
+ 2
267
+ R) = 16π∇aTab .
268
+ (15)
269
+ 6
270
+
271
+ If we consider ordinary form of matter we obtain that divergence of stress
272
+ energy tensor is zero as a consequence of matter equations of motion. Then
273
+ the right side of the equation above is zero and the left side can be easily
274
+ integrated with the result
275
+ R =
276
+ 2
277
+ 1 − D(16πT + Ω) ,
278
+ (16)
279
+ where Ω now appears as true integration constant rather than the cosmolog-
280
+ ical constant that was imposed in the theory by hand. In other words (16)
281
+ is the last equation of motion of unimodular gravity and we fully recovered
282
+ equivalence with general relativity however keeping in mind that we should
283
+ still have to impose the condition √−g = 1 in the course of calculations.
284
+ Having performed basic review of unimodular gravity we proceed in the
285
+ next section to its formulation in the covariant Hamiltonian formalism.
286
+ 3
287
+ Covariant Hamiltonian Formalism For D + 1
288
+ dimensional Unimodular Gravity
289
+ In this section we find covariant Hamiltonian formalism for unimodular grav-
290
+ ity in D + 1 formalism.
291
+ As usual in the covariant formalism we split the Einstein-Hilbert action
292
+ into bulk and boundary terms. Since this procedure is well known, see for
293
+ example [35, 36] and also recent generalization to the case of F(R) gravity
294
+ [37] we write immediately final result
295
+ L = Lbulk + Lsurf ,
296
+ Lbulk =
297
+ 1
298
+ 16π
299
+ √−g[Γh
300
+ dkΓk
301
+ ghggd − Γf
302
+ fkΓk
303
+ ghggh] +
304
+ + 1
305
+ 16π
306
+ ¯Λ√−g +
307
+ 1
308
+ 16πλ(√−g − 1) ≡
309
+ ≡ Lquad +
310
+ 1
311
+ 16π
312
+ ¯Λ√−g +
313
+ 1
314
+ 16πλ(√−g − 1) ,
315
+ Lsurf =
316
+ 1
317
+ 16π∂j[√−g(gikΓj
318
+ ik − gijΓk
319
+ ik)] ,
320
+ (17)
321
+ where Γa
322
+ bc are Christoffel symbols
323
+ Γa
324
+ bc = 1
325
+ 2gad(∂bgdc + ∂cgdb − ∂cgab) ,
326
+ (18)
327
+ 7
328
+
329
+ and where ¯Λ is cosmological constant. Note that the presence of the term
330
+ with Lagrange multiplier allows us to treat all components of metric as in-
331
+ dependent.
332
+ Now we are ready to proceed to the covariant Hamiltonian formulation
333
+ of this theory. The main idea of this formalism is to treat all derivatives
334
+ of dynamical variables on the equal footing [27, 29, 35] which is sharp con-
335
+ trast with the standard canonical formalism where the time coordinate has
336
+ exceptional meaning. This is very attractive idea especially in the context
337
+ of generally covariant theories since sometimes it is very difficult to perform
338
+ D + 1 splitting of targe-space time and corresponding dynamical fields. In
339
+ case of covariant canonical formalism of gravity we define conjugate momenta
340
+ Mcmn to gmn in the following way
341
+ Mcmn = ∂Lbulk
342
+ ∂∂cgmn
343
+ .
344
+ (19)
345
+ Note that the momenta are defined by bulk part of the Lagrangian density
346
+ only as follows from the fact that equations of motion are derived by variation
347
+ of the action when we fix metric and its derivative on the boundary, for careful
348
+ discussion see [36].
349
+ Then from (17) we obtain
350
+ Mcmn =
351
+ 1
352
+ 32π
353
+ √−g[gmkΓc
354
+ kdgdn + gnkΓc
355
+ kdgdm −
356
+ −gmnΓc
357
+ ghggh − Γf
358
+ fk(gkmgcn + gkngcm) + gmngckΓf
359
+ fk]
360
+ (20)
361
+ using
362
+ δΓk
363
+ gh
364
+ δ∂cgmn
365
+ = 1
366
+ 4(gksδc
367
+ g(δm
368
+ s δn
369
+ h + δn
370
+ s δm
371
+ h ) +
372
+ +gksδc
373
+ h(δm
374
+ s δn
375
+ g + δn
376
+ s δm
377
+ g ) − gksδc
378
+ s(δm
379
+ g δn
380
+ h + δn
381
+ g δm
382
+ h ))
383
+ (21)
384
+ Then we could formulate covariant Hamiltonian formalism using canonical
385
+ variales gab and Mcab. However it turns out that the situation is much simpler
386
+ when we introduce an alternative set of variables [35, 36] that are defined as
387
+ f ab = √−ggab .
388
+ (22)
389
+ 8
390
+
391
+ Then it is easy to see that the conjugate momenta are defined by chain rule
392
+ Nc
393
+ ab = ∂Lquad
394
+ ∂∂cf ab =
395
+ ∂Lquad
396
+ ∂(∂dgmn)
397
+ ∂(∂dgmn)
398
+ ∂(∂cfab) .
399
+ (23)
400
+ From (22) we see that f ab and gmn are related by point transformations so
401
+ that
402
+ ∂dgmn = ∂gmn
403
+ ∂f ab ∂df ab .
404
+ (24)
405
+ Then we have
406
+ ∂(∂dgmn)
407
+ ∂(∂cf ab) = ∂gmn
408
+ ∂f ab δc
409
+ d
410
+ (25)
411
+ and finally
412
+ Nc
413
+ ab =
414
+ ∂Lquad
415
+ ∂(∂cgmn)(−gmkBkl
416
+ abgln) ,
417
+ (26)
418
+ where
419
+ Bkl
420
+ ab = δgkl
421
+ δf ab = (−f)−
422
+ 1
423
+ D−1
424
+ �1
425
+ 2(δk
426
+ aδl
427
+ b + δl
428
+ aδk
429
+ b ) −
430
+ 1
431
+ D − 1f klfab
432
+
433
+ ,
434
+ (27)
435
+ where we used the fact that
436
+ − det f ≡ −f = (−g)
437
+ D+1
438
+ 2 (−g)−1
439
+ (28)
440
+ and consequently
441
+ √−g = (−f)
442
+ 1
443
+ D−1 ,
444
+ gab = (−f)−
445
+ 1
446
+ D−1f ab .
447
+ (29)
448
+ Then using previous form of Mcmn we obtain
449
+ Nc
450
+ ab =
451
+ ∂Lquad
452
+ ∂(∂cgmn)(−gmkBkl
453
+ abgln) =
454
+ = − 1
455
+ 32π[2Γc
456
+ ab − Γf
457
+ faδc
458
+ b − Γf
459
+ fbδc
460
+ a] .
461
+ (30)
462
+ 9
463
+
464
+ Note that this relation does not depend on the number of space-time di-
465
+ mensions. Then in order to find corresponding Hamiltonian we should find
466
+ inverse relation between Γa
467
+ bc and Na
468
+ bc. Let us presume that it has the form
469
+ Γc
470
+ ab = ANc
471
+ ab + B(Nd
472
+ daδc
473
+ b + Nd
474
+ bdδc
475
+ a) .
476
+ (31)
477
+ Inserting (30) into (31) we obtain
478
+ Nc
479
+ ab = − 1
480
+ 32π(2ANc
481
+ ab + 2B(Nd
482
+ daδc
483
+ b + Nd
484
+ bdδc
485
+ a) −
486
+ −(A + B(D + 2))Nf
487
+ faδc
488
+ b − (A + B(D + 2))Nf
489
+ fbδc
490
+ a)
491
+ (32)
492
+ using Γf
493
+ fa = (A + B(D + 2))Nf
494
+ fa. Comparing left and right side we obtain
495
+ that A and B are equal to
496
+ A = −16π ,
497
+ B = −A
498
+ D .
499
+ (33)
500
+ Then it is easy to find kinetic term of covariant Hamiltonian for D + 1
501
+ dimensional unimodular gravity in the form
502
+ Hkin = ∂cf abNc
503
+ ab − Lquad = 16π
504
+
505
+ Nb
506
+ cdf daNc
507
+ ab − 1
508
+ DNr
509
+ raf abNs
510
+ sb
511
+
512
+ ,
513
+ (34)
514
+ where we used the fact that
515
+ ∂cf ab = ∂c
516
+ √−ggab + √−g∂cgab = Γd
517
+ dcf ab − Γa
518
+ cdf db − Γb
519
+ dcf da
520
+ (35)
521
+ together with the condition ∇cgab = 0 that implies
522
+ ∂c
523
+ √−g = Γd
524
+ dc
525
+ √−g ,
526
+ ∂cgab = −(Γa
527
+ cdgdb + Γb
528
+ cdgda) .
529
+ (36)
530
+ The final form of the covariant Hamiltonian for unimodular gravity con-
531
+ tains terms with the unimodular constraint and true cosmological constant
532
+ ¯Λ. Then the phase-space form of the action has the form
533
+ S =
534
+
535
+ dD+1x(Nc
536
+ ab∂cfab−Hkin− 1
537
+ 16π(−f)
538
+ 1
539
+ D−1 ¯Λ− 1
540
+ 16πλ((−f)
541
+ 1
542
+ D−1 −1)) , (37)
543
+ 10
544
+
545
+ where λ is Lagrange multiplier corresponding to unimodular constraint. From
546
+ the action above we determine corresponding equations of motion by per-
547
+ forming variation with respect to f ab, Nc
548
+ ab and λ
549
+ δS =
550
+
551
+ dD+1x(δNc
552
+ ab∂cfab + Nc
553
+ ab∂cδfab −
554
+ −δHkin
555
+ δNc
556
+ ab
557
+ δNc
558
+ ab − δHkin
559
+ δf ab δf ab −
560
+
561
+ 1
562
+ 16π(D − 1)(λ + ¯Λ)(−f)
563
+ 1
564
+ D−1δf abfab − δλ((−f)
565
+ 1
566
+ D−1 − 1)) = 0
567
+ (38)
568
+ that implies following equations of motion
569
+ ∂cf ab = δH
570
+ δNc
571
+ ab
572
+ ,
573
+ (−f)
574
+ 1
575
+ D−1 − 1 = 0 ,
576
+ −∂cNc
577
+ ab = δH
578
+ δf ab +
579
+ λ
580
+ 16π(D − 1)(−f)
581
+ 1
582
+ D−1fab +
583
+ ¯Λ
584
+ 16π(D − 1)(−f)
585
+ 1
586
+ D−1fab ,
587
+ (39)
588
+ or explicitly
589
+ ∂cf ab = 16π[Na
590
+ cdf db + Nb
591
+ cdf da − 1
592
+ D(f bdNs
593
+ sdδa
594
+ c + f adNs
595
+ sdδb
596
+ c)] ,
597
+ −∂cNc
598
+ ab = 16π
599
+ 2 (Nd
600
+ caNc
601
+ bd + Nd
602
+ cbNc
603
+ ad) −
604
+ −16π
605
+ D Nr
606
+ raNs
607
+ sb +
608
+ λ
609
+ 16π(D − 1)(−f)
610
+ 1
611
+ D−1fab +
612
+ ¯Λ
613
+ 16π(D − 1)(−f)
614
+ 1
615
+ D−1fab ,
616
+ (−f)
617
+ 1
618
+ D−1 − 1 = 0 .
619
+ (40)
620
+ Taking the trace of the second equation we can determine λ as
621
+ λ = 16π(D − 1)
622
+ (D + 1)
623
+ (−∂cNc
624
+ abf ab − 16πNd
625
+ caf abNc
626
+ bd + 16π
627
+ D Nr
628
+ raf abNs
629
+ sb) − ¯Λ ,
630
+ (41)
631
+ where we have took into account the equation on the fourth line in (40).
632
+ 11
633
+
634
+ Then the equations of motion for Nc
635
+ ab have the form
636
+ −∂cNc
637
+ ab = 16π
638
+ 2 (Nd
639
+ caNc
640
+ bd + Nd
641
+ cbNc
642
+ ad) − 16π
643
+ D Nr
644
+ raNs
645
+ sb +
646
+ +
647
+ 1
648
+ (D + 1)(−∂jNj
649
+ ikf ik − 16πNd
650
+ cif ikNc
651
+ kd + 16π
652
+ D Nr
653
+ rif ikNs
654
+ sk)fab .
655
+ (42)
656
+ Clearly this equation is traceless and all dependence on the cosmological
657
+ constant ¯Λ disappears which is an essence of unimodular gravity.
658
+ On the other hand one let us try to calculate the trace of the first equation
659
+ that gives
660
+ ∂cf abfab = 16π[Na
661
+ cdf db + Nb
662
+ cdf da − 1
663
+ D(f bdNs
664
+ sdδa
665
+ c + f adNs
666
+ sdδb
667
+ c)]fba
668
+ (43)
669
+ that can be simplified into the form
670
+ ∂cf = 32π[D − 1
671
+ D
672
+ ]Ns
673
+ sc .
674
+ Now taking into account unimodular constraint we immediately get the con-
675
+ dition
676
+ Ns
677
+ sc = 0
678
+ (44)
679
+ that can be interpreted as secondary constraint.
680
+ On the other hand the
681
+ condition (44) seems to be too strong so that we should discuss it in more
682
+ details.
683
+ We begin with the recapitulation that unimodular gravity in the covariant
684
+ Hamiltonian formalism is described by canonical conjugate variables f ab, Nc
685
+ ab
686
+ that are restricted by unimodular condition together with (44). In order to
687
+ find proper interpretation of the constraint (44) it is instructive to derive
688
+ general relativity variables from f ab, Nc
689
+ ab. As the first step let us consider lin-
690
+ ear combination of Nc
691
+ ab that we denote as Γc
692
+ ab and which is given by following
693
+ prescription
694
+ Γc
695
+ ab = −16πNc
696
+ ab + 16π
697
+ D (Nd
698
+ daδc
699
+ b + Nd
700
+ bdδc
701
+ a) .
702
+ (45)
703
+ This can be always done and we should again stress that Γc
704
+ ab is not related
705
+ to f ab at all. Clearly Γc
706
+ ab = Γc
707
+ ba. Then we define covariant derivative where
708
+ Γc
709
+ ab are coefficients of connection. Let us further define gab and its inverse gab
710
+ in the following way
711
+ gab = f ab(−f)
712
+ 1
713
+ 1−D ,
714
+ gab = fab(−f)
715
+ 1
716
+ D−1 .
717
+ (46)
718
+ 12
719
+
720
+ Let us then define covariant derivative of gab as
721
+ ∇cgab = ∂cgab + Γa
722
+ cdgdb + Γb
723
+ cdgda ,
724
+ (47)
725
+ that, using (45), takes the form
726
+ ∇cgab = (−f)
727
+ 1
728
+ 1−D ×
729
+ ×[∂cf ab − 16πNa
730
+ cdf db − 16πNb
731
+ cdf da + 16π
732
+ D f bdNr
733
+ drδa
734
+ c + 16π
735
+ D Nr
736
+ drf daδb
737
+ c] = 0 ,
738
+ (48)
739
+ where we used the first equation in (40) that also implies ∂cf mnfmn =
740
+ 32π D−1
741
+ D Ns
742
+ sc.
743
+ Now thanks to the equation ∇cgab = 0 we can express Γa
744
+ bc
745
+ in the form of Christoffel symbols
746
+ Γa
747
+ bc = 1
748
+ 2gad(∂bgdc + ∂cgdb − ∂dgbc) .
749
+ (49)
750
+ On the other hand let us return to the relation between Γa
751
+ bc and Na
752
+ bc that
753
+ takes the form
754
+ Γf
755
+ fa = −32π
756
+ D Nf
757
+ fa
758
+ (50)
759
+ so that condition that Ns
760
+ sa = 0 implies
761
+ Γs
762
+ sa = 0 .
763
+ (51)
764
+ On the other hand from (49) we obtain
765
+ Γf
766
+ fc = 1
767
+ 2gfd∂cgdf = ∂c det g = 0
768
+ (52)
769
+ so that condition Ns
770
+ sc = 0 is equivalent to unimodular condition. It is im-
771
+ portant to stress that the fact that unimodular constraint implies Γs
772
+ sa = 0
773
+ has not been appreciated too much with exception of recent interesting pa-
774
+ per [10] where it was stressed that the equivalence between general relativity
775
+ and unimodular gravity is non-trivial. Rather, it was argued there that the
776
+ natural geometry for unimodular relativity is equiprojective geometry [39].
777
+ We also see that the condition Ns
778
+ sa = 0 emerges naturally in the covariant
779
+ canonical formalism of unimodular gravity.
780
+ 13
781
+
782
+ 4
783
+ Covariant Form of Unimodular Gravity
784
+ In this section we perform covariant canonical formalism for Henneaux-
785
+ Teitelboim formulation of unimodular gravity that has the form
786
+ S =
787
+ 1
788
+ 16π
789
+
790
+ dD+1x√−g[R + λ(√−g − ∂aτ a)] ,
791
+ (53)
792
+ where τ a is vector density and λ is Lagrange multiplier. Now the equations
793
+ of motion for λ implies
794
+ √−g − ∂aτ a = 0
795
+ (54)
796
+ while equation of motion for τ a leads to
797
+ ∂aλ = 0 .
798
+ (55)
799
+ It is clear that the covariant Hamiltonian formulation of this theory is al-
800
+ most the same as in previous case with difference that there is momentum
801
+ conjugate to τ a. Writting ∂aτ a = ∂bτ aδb
802
+ a we obtain momentum conjugate to
803
+ τ a to be equal to
804
+ pb
805
+ a =
806
+ δL
807
+ δ∂bτ a = − 1
808
+ 16πλδb
809
+ a
810
+ (56)
811
+ however this can be interpreted as primary constraints of the theory
812
+ Gb
813
+ a ≡ pb
814
+ a +
815
+ 1
816
+ 16πλδb
817
+ a .
818
+ (57)
819
+ In fact, the bare Hamiltonian is defined as
820
+ HB = pb
821
+ a∂bτ a + ∂cf abNc
822
+ ab − L =
823
+ = 16π[Nb
824
+ cdf daNc
825
+ ab − 1
826
+ DNr
827
+ raf abNs
828
+ sb] −
829
+ 1
830
+ 16πλ(−f)
831
+ 1
832
+ D−1
833
+ (58)
834
+ and we see that the dependence on momenta pν
835
+ µ is missing. For that reason
836
+ we should consider Hamiltonian with primary constraints included
837
+ HT = 16π[Nb
838
+ cdf daNc
839
+ ab − 1
840
+ DNr
841
+ raf abNs
842
+ sb] −
843
+ 1
844
+ 16πλ(−f)
845
+ 1
846
+ D−1 + Γa
847
+ b(pb
848
+ a +
849
+ 1
850
+ 16πλδb
851
+ a)
852
+ (59)
853
+ 14
854
+
855
+ and consider corresponding equations of motion that arise from the variation
856
+ of the canonical form of the action
857
+ S =
858
+
859
+ dD+1x(∂cf abNc
860
+ ab + pa
861
+ b∂aτ b − 16π[Nb
862
+ cdf daNc
863
+ ab − 1
864
+ DNr
865
+ raf abNs
866
+ sb] +
867
+ + 1
868
+ 16πλ(−f)
869
+ 1
870
+ D−1 + Γa
871
+ b(pb
872
+ a +
873
+ 1
874
+ 16πλδb
875
+ a))
876
+ (60)
877
+ so that the equations of motion have the form
878
+ ∂cf ab = 16π[Na
879
+ cdf db + Nb
880
+ cdf da − 1
881
+ D(f bdNs
882
+ sdδa
883
+ c + f adNs
884
+ sdδb
885
+ c)] ,
886
+ −∂cNc
887
+ ab = 16π
888
+ 2 (Nd
889
+ caNc
890
+ bd + Nd
891
+ cbNc
892
+ ad) − 16π
893
+ D Nr
894
+ raNs
895
+ sb +
896
+ λ
897
+ (D − 1)(−f)
898
+ 1
899
+ D−1fab ,
900
+ (−f)
901
+ 1
902
+ D−1 + Γa
903
+ a = 0 ,
904
+ ∂bτ a + Γa
905
+ b = 0 ,
906
+ ∂apa
907
+ b = 0 ,
908
+ pb
909
+ a +
910
+ 1
911
+ 16πλδb
912
+ a = 0 .
913
+ (61)
914
+ If we combine the first and the second equation on the third line we find
915
+ (−f)
916
+ 1
917
+ D−1 = ∂aτ a
918
+ (62)
919
+ that has exactly the same form as equation (54). We further perform partial
920
+ derivative of the fourth equation on the third line and we obtain
921
+ ∂bpb
922
+ a = − 1
923
+ 16π∂aλ
924
+ (63)
925
+ that using the third equation on the same line implies that
926
+ ∂aλ = 0 .
927
+ (64)
928
+ This equation also shows that λ is constant and it can be interpreted as
929
+ integration constant. Then it can be argued in the same way as in the pre-
930
+ vious section that the equations (61) are equivalent to the Lagrangian equa-
931
+ tions of Henneaux-Teitelboim gravity. In other words, covariant Hamiltonian
932
+ description of Henneaux-Teiltelboim gravity is equivalent to corresponding
933
+ Lagrangian description which is nice consistency check.
934
+ Acknowledgement:
935
+ The work of JK is supported by the grant “Dualitites and higher order
936
+ derivatives” (GA23-06498S) from the Czech Science Foundation (GACR).
937
+ 15
938
+
939
+ References
940
+ [1] W. Buchmuller and N. Dragon, “Einstein Gravity From Restricted Coor-
941
+ dinate Invariance,” Phys. Lett. B 207 (1988), 292-294 doi:10.1016/0370-
942
+ 2693(88)90577-1
943
+ [2] W. Buchmuller and N. Dragon, “Gauge Fixing and the Cosmologi-
944
+ cal Constant,” Phys. Lett. B 223 (1989), 313-317 doi:10.1016/0370-
945
+ 2693(89)91608-0
946
+ [3] A. Einstein, “The Foundation of the General Theory of Relativity,” An-
947
+ nalen Phys. 49 (1916) no.7, 769-822 doi:10.1002/andp.19163540702
948
+ [4] A. Padilla and I. D. Saltas, “A note on classical and quantum unimodular
949
+ gravity,” Eur. Phys. J. C 75 (2015) no.11, 561 doi:10.1140/epjc/s10052-
950
+ 015-3767-0 [arXiv:1409.3573 [gr-qc]].
951
+ [5] P. Jiroušek, “Unimodular approaches to the cosmological constant prob-
952
+ lem,” [arXiv:2301.01662 [gr-qc]].
953
+ [6] R. Carballo-Rubio, L. J. Garay and G. García-Moreno, “Unimodular
954
+ gravity vs general relativity: a status report,” Class. Quant. Grav. 39
955
+ (2022) no.24, 243001 doi:10.1088/1361-6382/aca386 [arXiv:2207.08499
956
+ [gr-qc]].
957
+ [7] E. Álvarez and E. Velasco-Aja, “A Primer on Unimodular Gravity,”
958
+ [arXiv:2301.07641 [gr-qc]].
959
+ [8] L. J. Garay and G. García-Moreno, “Embedding Unimodular Gravity in
960
+ String Theory,” [arXiv:2301.03503 [hep-th]].
961
+ [9] A. Kehagias, H. Partouche and N. Toumbas, “A unimodular-like string
962
+ effective description,” [arXiv:2212.14659 [hep-th]].
963
+ [10] S.
964
+ C.
965
+ Tiwari,
966
+ “New
967
+ Approach
968
+ to
969
+ Unimodular
970
+ Relativity,”
971
+ [arXiv:2212.13137 [physics.gen-ph]].
972
+ [11] Y. Bonder, J. E. Herrera and A. M. Rubiol,
973
+ “Energy nonconser-
974
+ vation and relativistic trajectories: Unimodular gravity and beyond,”
975
+ [arXiv:2211.06532 [gr-qc]].
976
+ [12] A. M. R. Almeida, J. C. Fabris, M. H. Daouda, R. Kerner, H. Velten and
977
+ W. S. Hipólito-Ricaldi, “Brans–Dicke Unimodular Gravity,” Universe 8
978
+ (2022) no.8, 429 doi:10.3390/universe8080429 [arXiv:2207.13195 [gr-qc]].
979
+ 16
980
+
981
+ [13] T. Kugo, R. Nakayama and N. Ohta, “Covariant BRST quantization
982
+ of unimodular gravity. II. Formulation with a vector antighost,” Phys.
983
+ Rev. D 105 (2022) no.10, 106006 doi:10.1103/PhysRevD.105.106006
984
+ [arXiv:2202.10740 [hep-th]].
985
+ [14] T. Kugo,
986
+ R. Nakayama and N. Ohta,
987
+ “Covariant BRST quan-
988
+ tization
989
+ of
990
+ unimodular
991
+ gravity:
992
+ Formulation
993
+ with
994
+ antisymmet-
995
+ ric
996
+ tensor
997
+ ghosts,”
998
+ Phys.
999
+ Rev.
1000
+ D
1001
+ 105
1002
+ (2022)
1003
+ no.8,
1004
+ 086006
1005
+ doi:10.1103/PhysRevD.105.086006 [arXiv:2202.03626 [hep-th]].
1006
+ [15] A. Alonso-Serrano and M. Liška, “Thermodynamics of spacetime and
1007
+ unimodular gravity,”
1008
+ Int. J. Geom. Meth. Mod. Phys. 19 (2022)
1009
+ no.Supp01, 2230002 doi:10.1142/S0219887822300021 [arXiv:2112.06301
1010
+ [gr-qc]].
1011
+ [16] M. Henneaux and C. Teitelboim, “The Cosmological Constant and Gen-
1012
+ eral Covariance,” Phys. Lett. B 222 (1989), 195-199 doi:10.1016/0370-
1013
+ 2693(89)91251-3
1014
+ [17] S. Yamashita, “Hamiltonian analysis of unimodular gravity and its quan-
1015
+ tization in the connection representation,” Phys. Rev. D 101 (2020) no.8,
1016
+ 086007 doi:10.1103/PhysRevD.101.086007 [arXiv:2003.05083 [gr-qc]].
1017
+ [18] A. O. Barvinsky, N. Kolganov, A. Kurov and D. Nesterov, “Dynamics
1018
+ of the generalized unimodular gravity theory,” Phys. Rev. D 100 (2019)
1019
+ no.2, 023542 doi:10.1103/PhysRevD.100.023542 [arXiv:1903.09897 [hep-
1020
+ th]].
1021
+ [19] R. Bufalo and M. Oksanen, “Canonical structure and extra mode of
1022
+ generalized unimodular gravity,” Phys. Rev. D 97 (2018) no.4, 044014
1023
+ doi:10.1103/PhysRevD.97.044014 [arXiv:1712.09535 [hep-th]].
1024
+ [20] R. Bufalo, M. Oksanen and A. Tureanu, “How unimodular grav-
1025
+ ity theories differ from general relativity at quantum level,”
1026
+ Eur.
1027
+ Phys. J. C 75 (2015) no.10, 477 doi:10.1140/epjc/s10052-015-3683-3
1028
+ [arXiv:1505.04978 [hep-th]].
1029
+ [21] J. Kluson, “Canonical Analysis of Unimodular Gravity,” Phys. Rev. D 91
1030
+ (2015) no.6, 064058 doi:10.1103/PhysRevD.91.064058 [arXiv:1409.8014
1031
+ [hep-th]].
1032
+ [22] C. Gao, R. H. Brandenberger, Y. Cai and P. Chen, “Cosmological Pertur-
1033
+ bations in Unimodular Gravity,” JCAP 09 (2014), 021 doi:10.1088/1475-
1034
+ 7516/2014/09/021 [arXiv:1405.1644 [gr-qc]].
1035
+ 17
1036
+
1037
+ [23] P. Jain, A. Jaiswal, P. Karmakar, G. Kashyap and N. K. Singh, “Cos-
1038
+ mological implications of unimodular gravity,” JCAP 11 (2012), 003
1039
+ doi:10.1088/1475-7516/2012/11/003 [arXiv:1109.0169 [astro-ph.CO]].
1040
+ [24] L. Smolin, “The Quantization of unimodular gravity and the cos-
1041
+ mological constant problems,”
1042
+ Phys.
1043
+ Rev. D 80 (2009),
1044
+ 084003
1045
+ doi:10.1103/PhysRevD.80.084003 [arXiv:0904.4841 [hep-th]].
1046
+ [25] M. Shaposhnikov and D. Zenhausern, “Scale invariance, unimodu-
1047
+ lar gravity and dark energy,” Phys. Lett. B 671 (2009), 187-192
1048
+ doi:10.1016/j.physletb.2008.11.054 [arXiv:0809.3395 [hep-th]].
1049
+ [26] D. R. Finkelstein, A. A. Galiautdinov and J. E. Baugh, “Unimodular
1050
+ relativity and cosmological constant,” J. Math. Phys. 42 (2001), 340-346
1051
+ doi:10.1063/1.1328077 [arXiv:gr-qc/0009099 [gr-qc]].
1052
+ [27] Th. De Donder, "Théorie Invariantive Du Calcul des Variations",
1053
+ (Gaulthier-Villars and Cie., Paris, 1930)
1054
+ [28] H. Weyl, "Geodesic Fields in the Calculus of Variation for Multiple In-
1055
+ tegrals" Annals of Mathematics, 36 , p.607
1056
+ [29] J. Struckmeier and A. Redelbach, “Covariant Hamiltonian field theory,”
1057
+ Int. J. Mod. Phys. E 17 (2008), 435-491 doi:10.1142/S0218301308009458
1058
+ [arXiv:0811.0508 [math-ph]].
1059
+ [30] I. V. Kanatchikov, “Canonical structure of classical field theory in
1060
+ the polymomentum phase space,” Rept. Math. Phys. 41 (1998), 49-90
1061
+ doi:10.1016/S0034-4877(98)80182-1 [arXiv:hep-th/9709229 [hep-th]].
1062
+ [31] M. Forger, C. Paufler and H. Roemer, “The Poisson bracket for Poisson
1063
+ forms in multisymplectic field theory,” Rev. Math. Phys. 15 (2003), 705-
1064
+ 744 doi:10.1142/S0129055X03001734 [arXiv:math-ph/0202043 [math-
1065
+ ph]].
1066
+ [32] H. Kastrup, “Canonical Theories of Dynamical Systems in Physics,”
1067
+ Phys. Rept. 101 (1983), 1 doi:10.1016/0370-1573(83)90037-6
1068
+ [33] U. Lindström, “Covariant Hamiltonians, sigma models and supersym-
1069
+ metry,” [arXiv:2004.01073 [hep-th]].
1070
+ [34] J. Kluson, “Note About Covariant Hamiltonian Formalism for Strings,
1071
+ p-Branes and Unstable Dp-Branes,” [arXiv:2004.14654 [hep-th]].
1072
+ [35] P. Horava,
1073
+ "On a covariant Hamilton-Jacobi framework for the
1074
+ Einstein-Maxwell theory,” Class. Quant. Grav. 8 (1991), 2069-2084
1075
+ doi:10.1088/0264-9381/8/11/016
1076
+ 18
1077
+
1078
+ [36] K. Parattu, B. R. Majhi and T. Padmanabhan, “Structure of the
1079
+ gravitational action and its relation with horizon thermodynamics and
1080
+ emergent gravity paradigm,” Phys. Rev. D 87 (2013) no.12, 124011
1081
+ doi:10.1103/PhysRevD.87.124011 [arXiv:1303.1535 [gr-qc]].
1082
+ [37] J. Kluson and B. Matous, "Covariant Hamiltonian formalism for F(R)-
1083
+ gravity,” Gen. Rel. Grav. 53 (2021) no.11, 100 doi:10.1007/s10714-021-
1084
+ 02868-2 [arXiv:2008.00659 [gr-qc]].
1085
+ [38] J. Kluson and B. Matous, “Einstein and Jordan-Frame Covariant
1086
+ Hamiltonians for F(R) Gravity and Their Canonical Relationships,”
1087
+ [arXiv:2209.14560 [gr-qc]].
1088
+ [39] T.Y. Thomas, "On the projective and equi-projective geometries of
1089
+ paths" Proc.Nat.Acad.Sci. 11 (1925) 199
1090
+ [40] J. Klusoň,
1091
+ M. Oksanen and A. Tureanu,
1092
+ “Hamiltonian analysis
1093
+ of curvature-squared gravity with or without conformal invariance,”
1094
+ Phys. Rev. D 89 (2014) no.6, 064043 doi:10.1103/PhysRevD.89.064043
1095
+ [arXiv:1311.4141 [hep-th]].
1096
+ 19
1097
+
-9FRT4oBgHgl3EQfsTcg/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -254,3 +254,4 @@ hNE4T4oBgHgl3EQfrQ2w/content/2301.05207v1.pdf filter=lfs diff=lfs merge=lfs -tex
254
  DdAzT4oBgHgl3EQfif0c/content/2301.01499v1.pdf filter=lfs diff=lfs merge=lfs -text
255
  k9FIT4oBgHgl3EQfriuF/content/2301.11332v1.pdf filter=lfs diff=lfs merge=lfs -text
256
  KdAyT4oBgHgl3EQff_ia/content/2301.00351v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
254
  DdAzT4oBgHgl3EQfif0c/content/2301.01499v1.pdf filter=lfs diff=lfs merge=lfs -text
255
  k9FIT4oBgHgl3EQfriuF/content/2301.11332v1.pdf filter=lfs diff=lfs merge=lfs -text
256
  KdAyT4oBgHgl3EQff_ia/content/2301.00351v1.pdf filter=lfs diff=lfs merge=lfs -text
257
+ 79E2T4oBgHgl3EQflQc0/content/2301.03986v1.pdf filter=lfs diff=lfs merge=lfs -text
3dE4T4oBgHgl3EQf0Q2d/content/tmp_files/2301.05281v1.pdf.txt ADDED
@@ -0,0 +1,2214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DesignCon 2006
2
+ Time Domain Verification of
3
+ Differential Transmission Line
4
+ Modeling Methods
5
+ Jonathan D. Coker, Mayo Clinic
6
+ Dr. Erik S. Daniel, Mayo Clinic
7
+ Dr. Barry K. Gilbert, Mayo Clinic
8
+ gilbert.barry@mayo.edu 507-284-4056
9
+
10
+ Abstract
11
+ The advantages and limitations of time-domain pseudo-random binary sequence (PRBS)
12
+ excitation methods for system identification of individual modes within a multi-
13
+ conductor transmission system are discussed. We develop the modifications necessary
14
+ to standard frequency-domain transmission-line models to match time-domain
15
+ experimental data from several types of transmission systems. We show a variety of
16
+ experimental results showing very good to excellent agreement with our model’s
17
+ predictions, up to approximately 10 GHz.
18
+
19
+
20
+
21
+
22
+ Author Biographies
23
+
24
+ Jon Coker is a Principal Project Engineer of the Special Purpose Processor Development
25
+ Group at the Mayo Clinic. Mr. Coker graduated from Wheaton College with a Bachelor
26
+ of Arts degree in 1982 and from the University of Minnesota with a Bachelor of Science
27
+ degree in electrical engineering in 1984. He is currently pursuing a Ph.D. degree at the
28
+ University of Minnesota.
29
+
30
+
31
+ Erik Daniel received the B. A. degree in physics and mathematics from Rice University,
32
+ Houston, TX, in 1992. He received the Ph.D. degree in solid state physics from the
33
+ California Institute of Technology, Pasadena, CA, in 1997, with thesis research focusing
34
+ on simulation, fabrication, and characterization of quantum effect semiconductor devices.
35
+ He currently is a Staff Scientist in the Department of Physiology and Biomedical
36
+ engineering, Mayo Clinic, Rochester, MN, and the Deputy Director of the Special-
37
+ Purpose Processor Development Group.
38
+
39
+
40
+ Barry Gilbert received the B.S. degree in electrical engineering from Purdue University,
41
+ West Lafayette, IN, in 1965 and the Ph.D. degree in physiology and biophysics (with
42
+ minors in electrical engineering and applied mathematics) from the University of
43
+ Minnesota in 1972. He is currently a Staff Scientist in the Department of Physiology and
44
+ Biomedical engineering, Mayo Clinic, Rochester, MN, and the Director of the Special
45
+ Purpose Processor Development Group.
46
+
47
+
48
+
49
+
50
+
51
+
52
+ Introduction
53
+
54
+ High-speed digital back-plane communication channels have long since given up their
55
+ “digital design” status and have come to resemble (architecturally) previously-existing,
56
+ complex analog communication systems. Equalization, error correction, modulation
57
+ codes, or advanced detection schemes are now commonly proposed and implemented for
58
+ serializer-deserializer (SERDES) channels (see [10], for example). To achieve the
59
+ maximum benefit of these methods, we require increasingly accurate system
60
+ identification of the transmission system. At the same time, we find that traditionally
61
+ excellent transmission-line models begin to diverge from experiment as bandwidths begin
62
+ to extend into the GHz and tens of GHz range [13]. Thus reliable methods for system
63
+ identification and model verification for candidate transmission systems supporting such
64
+ channel implementations are of increasing and fundamental importance.
65
+
66
+ Several methods exist for accurate system identification of linear systems. Analysis
67
+ using network analyzers (including vector network analyzers) is a highly-developed
68
+ technology using frequency-domain measurements. Advanced time-domain methods
69
+ have more recently come on the scene employing TDR and TDT measurements of a step
70
+ excitation [7-9].
71
+
72
+ In this paper, we present a technique to predict and experimentally verify transmission
73
+ line models purely in the time domain using the method of pseudorandom sequences.
74
+ Our technique is an extension of a method developed for system identification commonly
75
+ used in magnetic recording data channels and testers [3,6]. We shall focus on the
76
+ description of transmission lines which are suitable for a high-speed serial-
77
+ communication link. We shall compare expected and experimental results from printed
78
+ circuit board (PCB) transmission lines and to results from cables. While we shall not
79
+ argue that the proposed method is experimentally superior to established time-domain
80
+ techniques for linear systems, we shall discuss the unique nonlinear-system-
81
+ identification capabilities of a PRBS waveform. In addition, we shall show a fast
82
+ algorithm which is simple enough to consider implementing in modern SERDES
83
+ hardware, thus allowing a wide range of inexpensive and highly capable built-in self-test
84
+ and board diagnostic capabilities.
85
+
86
+ We shall describe our specific model of a transmission line. This section is intended to
87
+ outline the assumptions and limitations of the model. We also present our alternative
88
+ extensions to the standard telegrapher’s model, which we found necessary to adequately
89
+ describe experiment in some cases.
90
+
91
+ Transmission Line Modeling
92
+ In this section, we briefly review a classical transmission-line model, and discuss the
93
+ parameters which we use in the model.
94
+ Telegrapher’s Model in the Time Domain
95
+
96
+ The basic telegrapher's model for transmission lines is fully worked out in several texts
97
+ [1,2]. The standard solution gives the voltage transfer function for a wave traveling in
98
+ the positive z direction as
99
+
100
+ (
101
+ )
102
+ ( )
103
+ z
104
+ H
105
+ e γ ω
106
+ ω
107
+
108
+ Δ
109
+ =
110
+
111
+ (1.1)
112
+ where ω is the radial frequency, z
113
+ Δ is the distance down the line, and the complex
114
+ propagation constant ( )
115
+ γ ω is:
116
+
117
+
118
+ ( )
119
+ (
120
+ )(
121
+ )
122
+ (
123
+ )(
124
+ )
125
+ R
126
+ j L G
127
+ j C
128
+ R sL G
129
+ sC
130
+ γ ω
131
+ ω
132
+ ω
133
+ =
134
+ +
135
+ +
136
+ =
137
+ +
138
+ +
139
+
140
+ (1.2)
141
+
142
+ If the Fourier transform of an input waveform ( )
143
+ x t is
144
+ ( )
145
+ X ω , then the Fourier transform of
146
+ the waveform at the output of the transmission line, ( )
147
+ y t , is
148
+
149
+
150
+ ( )
151
+ ( )
152
+ ( )
153
+ Y
154
+ H
155
+ X
156
+ ω
157
+ ω
158
+ ω
159
+ =
160
+
161
+ (1.3)
162
+
163
+ and the time-domain version of the output waveform is
164
+
165
+
166
+ 1
167
+ ( )
168
+ {
169
+ ( )
170
+ ( )}
171
+ y t
172
+ H
173
+ X
174
+ ω
175
+ ω
176
+
177
+ = F
178
+
179
+ (1.4)
180
+
181
+ Cm
182
+ L
183
+ C
184
+ C
185
+ R
186
+ G
187
+ C
188
+ G
189
+ C
190
+ L + L
191
+ m
192
+ R
193
+ L + L
194
+ m
195
+ Cm
196
+ G
197
+ L
198
+ L
199
+ to
200
+ Infinity
201
+ to
202
+ Infinity
203
+ G
204
+ L
205
+ R
206
+ R
207
+ L
208
+ L
209
+ R
210
+ R
211
+ Gm
212
+ C
213
+ C
214
+ Cm
215
+ G
216
+ G
217
+ Gm
218
+ C
219
+ C
220
+ Cm
221
+ G
222
+ G
223
+ Gm
224
+ Lm
225
+ Lm
226
+ L
227
+ C
228
+ C
229
+ Lm
230
+ (x1 (t) + x
231
+ 2(t))
232
+ GENERAL EQUIVALENT CIRCUIT FOR
233
+ SYMMETRIC SIGNAL CONDUCTORS
234
+ EVEN-MODE EQUIVALENT CIRCUIT
235
+ ( Lines Toggling in Same Direction )
236
+ R
237
+ G + 2G
238
+ m
239
+ G + 2G
240
+ m
241
+ C + 2C
242
+ m
243
+ C + 2C
244
+ m
245
+ L - L
246
+ m
247
+ R
248
+ L - L
249
+ m
250
+ to
251
+ Infinity
252
+ (x1 (t) - x
253
+ 2(t))
254
+ x1 (t)
255
+ x2 (t)
256
+ ODD-MODE EQUIVALENT CIRCUIT
257
+ ( Lines Toggling in Opposite Directions )
258
+ 1
259
+ 2
260
+
261
+ Figure 1: Simplified Odd Mode and Even Mode Equivalent Circuits for a Symmetric Two-Signal-
262
+ Conductor Generalized Transmission Line (18500).
263
+
264
+ In Figure 1, we show the standard, generalized equivalent circuit of a symmetric two-
265
+ signal-conductor transmission line, and reduced-complexity, single-ended equivalent
266
+ circuits for each transmission mode. Note that the simplified equivalent circuits allow
267
+
268
+ direct application of the RLGC model, using the correctly-transformed versions of the
269
+ RLGC parameters appropriate for the transmission mode.
270
+
271
+ Variation of RLGC Parameters with Frequency
272
+
273
+ Having set the stage for the time-domain application of a generic RLGC model, we now
274
+ focus on the specific forms of each component used our RLGC model. The following
275
+ section specifies the formulas used in our basic RLGC model (which are fairly standard)
276
+ and identifies modifications we thought necessary to adequately explain observed
277
+ laboratory behavior (which are not always standard).
278
+
279
+ Series Impedance Variation with Frequency
280
+ In the case of simple, homogeneous signal conductors, we use the classical result for the
281
+ series impedance based on surface impedance concepts, which we repeat here:
282
+
283
+
284
+ (
285
+ )
286
+ AC
287
+ R
288
+ sL
289
+ R
290
+ s
291
+ L s
292
+ +
293
+ =
294
+ + ∞
295
+ (1.5)
296
+
297
+ where L∞ may be interpreted as the inductance of the system when all currents flow
298
+ uniformly on the surface of the signal conductors (that is, at moderately high frequency)
299
+ and
300
+ AC
301
+ R
302
+ is a constant which we approximate as
303
+
304
+ 2
305
+ AC
306
+ R
307
+ S
308
+ η
309
+ μ
310
+ σ
311
+ =
312
+
313
+ (1.6)
314
+
315
+ where
316
+ and
317
+ μ
318
+ σ are the permeability and conductivity of the signal conductor, and S is the
319
+ length of the effective perimeter of the signal conductor through which the surface
320
+ currents flow. The geometry-dependent constant η represents a factor determining the
321
+ increase in resistive losses due to currents in the return paths. In a thin stripline
322
+ configuration, one might expect the value of η to be in the neighborhood of
323
+ 2
324
+ η =
325
+ because the widths of the expected return paths are about the same as the
326
+ circumference of the signal conductor. In a coaxial cable, one might expect η to be less
327
+ than 2, because the return paths in the outer shield are significantly wider than the
328
+ circumference of the signal conductor. In practice, any of the parameters of equation
329
+ (1.6), including
330
+ AC
331
+ R
332
+ itself, may be varied in equation (1.5) to match laboratory data.
333
+
334
+ However, there exists a common transmission system which does not fit equation (1.5)
335
+ well. The Gore EyeOpener ™ cable, for example, uses signal conductors constructed
336
+ from a heterogeneous combination of metal layers to achieve self-equalizing properties.
337
+ We now derive an approximation to the surface impedance for a thick bulk material,
338
+ covered by a relatively thin layer of another conductor, to address this case. General
339
+ field solutions to this type of problem were generated by Wait [5], which we here apply
340
+ to transmission lines.
341
+
342
+
343
+ We presume a planar, infinitely-thick conductor of bulk conductivity
344
+ 2
345
+ σ underneath a
346
+ thin layer of thickness
347
+ 1τ and conductivity
348
+ 1
349
+ σ . As in the classical case, the electric field
350
+ will decay throughout the finite thickness
351
+ 1τ to the value
352
+
353
+ 1
354
+ 1
355
+ 1
356
+ 1
357
+ 0
358
+ ( ) |
359
+ z
360
+ y
361
+ j
362
+ y
363
+ E
364
+ E e
365
+ τ
366
+ τ
367
+ δ
368
+ =
369
+ +
370
+
371
+ =
372
+
373
+ (1.7)
374
+
375
+ where
376
+ 1δ is the skin depth in the outer conductor. At the interface between the two
377
+ different conductors, the electric field will have a new behavior given by the boundary
378
+ condition requirements of Maxwell’s equations. The appropriate constraint is that of
379
+ continuous tangential electric field across the interface. Therefore, at the interface, the
380
+ electric field begins a new exponential behavior in the bulk material with new depth
381
+ constant
382
+ 2
383
+ δ :
384
+
385
+
386
+ 1
387
+ 1
388
+ 1
389
+ 2
390
+ 1
391
+ 1
392
+ (
393
+ )
394
+ 0
395
+ ( )
396
+ j
397
+ j y
398
+ z
399
+ E
400
+ y
401
+ E e
402
+ e
403
+ τ
404
+ τ
405
+ δ
406
+ δ
407
+ +
408
+ +
409
+
410
+
411
+
412
+ =
413
+
414
+ (1.8)
415
+
416
+ Working out the integral for the total current under a width S, the resulting surface
417
+ impedance is:
418
+
419
+
420
+ 1
421
+ 1
422
+ 1
423
+ 1
424
+ 1
425
+ 1
426
+ 1
427
+ 2
428
+ 1 1
429
+ 1
430
+ 2
431
+ 1
432
+ 2
433
+ 1
434
+ 1
435
+ {
436
+ }{
437
+ (
438
+ 1)
439
+ 1}
440
+ {
441
+ }{
442
+ (
443
+ 1)
444
+ 1}
445
+ j
446
+ z
447
+ s
448
+ AC
449
+ j
450
+ Z
451
+ e
452
+ S
453
+ R
454
+ s
455
+ e
456
+ τ
457
+ δ
458
+ μ
459
+ σ
460
+ η
461
+ σ
462
+ σ δ
463
+ σ
464
+ σ
465
+ σ
466
+ +
467
+
468
+
469
+
470
+
471
+ +
472
+ =
473
+
474
+ +
475
+ =
476
+
477
+ +
478
+
479
+ (1.9)
480
+
481
+ Equation (1.9) adds a new factor to the classical surface impedance. The factor is a
482
+ function of the outer-conductor thickness
483
+ 1τ and the ratio of the conductivities of the two
484
+ materials. In general, we see that the resistive and reactive portions of the surface
485
+ impedance are no longer equal when the conductor is composite. In our physical
486
+ approximation, we take the conductor width S to be the effective length of the perimeter
487
+ of the signal conductor. The overall series impedance is then:
488
+
489
+
490
+ 1
491
+ 1
492
+ 1
493
+ 1
494
+ 2
495
+ 1
496
+ 2
497
+ 1
498
+ {
499
+ }{
500
+ (
501
+ 1)
502
+ 1}
503
+ s
504
+ AC
505
+ R
506
+ sL
507
+ R
508
+ s
509
+ e
510
+ sL
511
+ μ
512
+ ητ
513
+ σ
514
+ σ
515
+ σ
516
+
517
+
518
+
519
+ +
520
+ =
521
+
522
+ +
523
+ +
524
+
525
+ (1.10)
526
+
527
+ Equation (1.9) is valid when the permeability of the all conductors is that of free space.
528
+ When the bulk conductor is magnetic, the conductivity of the bulk conductor
529
+ 2
530
+ σ can be
531
+ replaced by an effective conductivity
532
+
533
+
534
+ 2
535
+ 2'
536
+ R
537
+ σ
538
+ σ
539
+ μ
540
+ =
541
+
542
+ (1.11)
543
+
544
+
545
+ where
546
+ R
547
+ μ is the relative permeability of the bulk conductor.
548
+
549
+
550
+ Shunt Conductance Variation with Frequency
551
+ Traditionally, the dielectric losses are characterized by a shunt conductance G per unit
552
+ length:
553
+
554
+ 1
555
+ tan
556
+ tan
557
+ G
558
+ C
559
+ sC
560
+ j
561
+ ω
562
+ δ
563
+ δ
564
+ =
565
+ =
566
+
567
+ (1.12)
568
+ The “loss tangent”, tanδ , is commonly specified by dielectric manufacturers to be in the
569
+ 0.01 to 0.001 range. Typically, users are left to presume that the loss tangent is
570
+ independent of frequency. In such a case, the total shunt admittance can be written as
571
+
572
+
573
+ tan
574
+ (1
575
+ tan )
576
+ G
577
+ Cs
578
+ G
579
+ Cs
580
+ j
581
+ Cs
582
+ ω
583
+ δ
584
+ δ
585
+ +
586
+ =
587
+ +
588
+ =
589
+
590
+
591
+ (1.13)
592
+
593
+ We shall see that this form can give good agreement with laboratory data at frequencies
594
+ in the few-GHz range (and when dielectric losses are relatively small compared to the
595
+ series resistance). At higher frequencies (perhaps in the 10 GHz range) the model’s
596
+ main deficiency becomes apparent: the form of equation (1.13) cannot be physically
597
+ reasonable. It is well known that this form of dielectric loss is not a physically consistent
598
+ possibility [14]. In the present case, it is relatively straightforward to see why this is so.
599
+ If we take the series impedance to be lossless, that is,
600
+ 0
601
+ AC
602
+ R
603
+ =
604
+ , then using equations
605
+ (1.13), (1.5), (1.2), and (1.1), the transform of the impulse response of the transmission
606
+ line can be written as:
607
+
608
+
609
+ (1
610
+ tan
611
+ )
612
+ ( ( ))
613
+ j
614
+ LC
615
+ j
616
+ z
617
+ h t
618
+ e
619
+ e
620
+ ω
621
+ δ
622
+ γ
623
+
624
+
625
+ − Δ
626
+ =
627
+ =
628
+ F
629
+
630
+ (1.14)
631
+
632
+ Equation (1.14) has a closed-form inverse transform, which is:
633
+
634
+
635
+ 2
636
+ 2
637
+ ( )
638
+ [(
639
+ )
640
+ ]
641
+ h t
642
+ t
643
+ α
644
+ π
645
+ τ
646
+ α
647
+ =
648
+
649
+ +
650
+
651
+ (1.15)
652
+
653
+ where the parameters are given as
654
+
655
+ Re{ 1
656
+ tan }
657
+ Im{ 1
658
+ tan }
659
+ z LC
660
+ j
661
+ z LC
662
+ j
663
+ τ
664
+ δ
665
+ α
666
+ δ
667
+ = Δ
668
+
669
+ = Δ
670
+
671
+
672
+ (1.16)
673
+ Therefore, the impulse response of a transmission line with dielectric possessing constant
674
+ loss tangent is a delayed Lorentzian pulse. The Lorentzian form gives experimentally
675
+ plausible insights, such as: the amplitude of the pulse is inversely proportional to the
676
+ length of the transmission line, with proportionality constant simply related to the loss
677
+ tangent. However, we can observe that the impulse response extends back infinitely in
678
+ time even though its impulse excitation occurred at the time origin. The model predicts
679
+ non-causal behavior and is therefore not plausible as a physical model. We have found
680
+ that this feature of the constant-loss-tangent model is often the root cause of the failure to
681
+ match our experimental data at high frequency.
682
+
683
+
684
+ Other forms for the variation of the loss tangent with frequency must be applied in these
685
+ cases. In Figure 2 we highlight the difference in expected pulse shape between the
686
+ constant-loss-tangent model and that of a loss tangent varying linearly with frequency.
687
+ The response in the linear-loss-tangent case is derived numerically using equation (1.4)
688
+ because the problem does not have a closed-form solution. We will show later that the
689
+ linear-variation version can exhibit good fit to experimental data at frequencies in excess
690
+ of 10 GHz (which is our only justification for using it).
691
+
692
+ 0.8
693
+ 0.9
694
+ 1.0
695
+ 1.1
696
+ 1.2
697
+ 1.3
698
+ -0.1
699
+ 0.0
700
+ 0.1
701
+ 0.2
702
+ 0.3
703
+ 0.4
704
+ 0.5
705
+ 0.6
706
+ Constant Loss Tangent
707
+ Linear Loss Tangent
708
+ Modeled Pulse Response, Volts
709
+ Time, ns
710
+ Constant Loss Tangent
711
+ Response is Lorentzian
712
+ 1
713
+ 1 + Dt2
714
+ Linear Loss Tangent Response Identically Zero Outside These Limits
715
+
716
+ Figure 2: Comparison of Modeled Time Responses of a Transmission Line with No Series Loss but
717
+ Finite Dielectric Loss Due to Two Loss Models, Showing Causality Failure of Constant Loss Tangent
718
+ Assumptions. (20573)
719
+
720
+ Time-Domain Laboratory Techniques
721
+
722
+ Transmission lines (and other linear circuits) are often characterized by s-parameter
723
+ analysis using a vector network analyzer (VNA). The methodology for calibration, de-
724
+ embedding, and interpretation of VNA results is a highly-developed specialty, which
725
+ (when properly applied) will fully characterize the transmission line over a wide
726
+ bandwidth.
727
+
728
+ For this work, we have elected to use a time-domain method, for the following reasons.
729
+ First, most VNAs have two ports and do not simply support differential-mode excitation.
730
+
731
+ Second, in many applications, the primary information needed is the classical transfer-
732
+ function of the transmission line system (i.e., the information present in
733
+ 21
734
+ s in the
735
+ absence of reflections). The complexities in testing, calibration, de-embedding, and
736
+ interpretation for the other s-parameters may not be strictly necessary in some
737
+ applications. Third, a full-fledged experimental characterization of systems utilizing
738
+ transmission lines is often not limited to pure system-identification techniques, but also
739
+ may include direct measurements of higher-level system performance quantities (such as
740
+ error rate or eye diagrams). In some applications it is beneficial to integrate as many
741
+ measurement schemes as feasible into an experimental setup that is as simple (and
742
+ inexpensive) as possible, so long as the resulting measurements are “good enough” for
743
+ the application.
744
+
745
+ Finally, there may exist nonlinearities in the transmission system which will introduce
746
+ interpretation errors in the s-parameter analysis without warning. These nonlinearities
747
+ are not likely to be in the transmission lines and interconnect (which are linear to an
748
+ excellent approximation) but may exist, for example, in the driver circuitry of a buffer
749
+ amplifier. Most (if not all) nonlinearities cannot be characterized by the magnitude and
750
+ phase of single-sinusoid reception; however, there exist waveforms which do broaden the
751
+ scope of complete nonlinear characterization. We shall see that a PRBS is one such
752
+ waveform.
753
+
754
+ In the following section, we describe a method which addresses all four of these points.
755
+ Naturally, the described method will have its own disadvantages, which are generally
756
+ related to experimental approximations which do not exist (or are unnecessary) in a
757
+ VNA-type of analysis.
758
+
759
+ Pseudorandom Sequence Excitation Method
760
+
761
+ We describe a time-domain system identification method in this section. We follow the
762
+ scheme developed in [3,6]. A performance analyzer (‘bit error rate tester’) is used to
763
+ generate a 127-bit pseudo-random binary sequence (PRBS). The analyzer has true and
764
+ complement outputs, which are used to drive the differential transmission line. A digital
765
+ oscilloscope is used to sample the differential signal at the end of the transmission line.
766
+ The scope is triggered by the performance-analyzer synch-out pulse, which fires once
767
+ every PRBS period. This pulse provides a consistent time datum which is independent of
768
+ the transmission-line length. A typical experimental setup (shown for a cable) is as
769
+ shown in Figure 3.
770
+
771
+ The upper panel in Figure 4 shows an example of the raw waveform as sampled at the
772
+ end of a transmission line. Because the raw waveform is too complicated to interpret
773
+ easily by eye, the waveform can be processed to generate a discrete-time pulse response.
774
+
775
+ 15 Meter Cable Assembly Eye Diagram Test
776
+ Board With Cable Assembly Under Test
777
+
778
+ Figure 3: Test Setup for Measuring Error Rate, Eye Diagrams, and System Transfer Functions in the
779
+ Time Domain. (18045)
780
+ 0
781
+ 10
782
+ 20
783
+ 30
784
+ 40
785
+ 50
786
+ 0
787
+ .5
788
+ 1
789
+ Extracted Pulse Response
790
+ Time from Signal Source Trigger Datum, nsec
791
+ -1
792
+ 0
793
+ 1
794
+ Measured Voltage
795
+
796
+ Figure 4: Example of a Measured PRBS Waveform and Its Extracted Pulse Response. (18322)
797
+
798
+ The response (which we shall call extracted pulse response in keeping with the literature
799
+ [3,6]), is numerically generated using a two-step process. First, the raw waveform is re-
800
+ sampled to take care of experimental frequency errors between the PRBS generator and
801
+ the oscilloscope, and to provide an appropriate sampling rate for subsequent analysis.
802
+ Second, the re-sampled waveform is mathematically deconvolved with a theoretically
803
+ perfect version of the same PRBS. We shall return to describe a very efficient method
804
+ for this deconvolution.
805
+
806
+ The extracted pulse response is analogous to the impulse response in continuous time
807
+ systems. In this case, the extracted response is the expected response of the transmission
808
+ line (and measurement system and signal drivers) if the PRBS driver had output a simple
809
+ base-to-peak digital pulse instead of the PRBS.
810
+
811
+ The lower panel in Figure 4 shows the extracted response for the given raw waveform.
812
+ While both waveforms contain exactly the same information, it is clear that the extracted
813
+ pulse is a short primary response, with some small echoes of interesting shape and
814
+ location on the time axis. In Figure 5, the extracted pulse response for two different, but
815
+ short, PCB transmission lines is shown. All connectors, test cables, and test conditions
816
+ are nominally identical, except for the length of the transmission line.
817
+ 5
818
+ 0.0
819
+ 0.2
820
+ 0.4
821
+ 0.6
822
+ 0.8
823
+ 6
824
+ 7
825
+ 8
826
+ 10
827
+ 11
828
+ 12
829
+ 13
830
+ 14
831
+ 15
832
+ 5
833
+ 0.0
834
+ 0.2
835
+ 0.4
836
+ 0.6
837
+ 0.8
838
+ 1.0
839
+ 6
840
+ 7
841
+ 8
842
+ 9
843
+ 10
844
+ Time from Signal Source Trigger Datum, nsec
845
+ Extracted Pulse Response
846
+ ( 6 Inch Line ), Volts
847
+ Extracted Pulse Response
848
+ ( 1.5 Inch Line ), Volts
849
+ 11
850
+ 12
851
+ 13
852
+ 14
853
+ 15
854
+ Nonlinear
855
+ Echo
856
+ Main Pulse
857
+ First
858
+ Reflection
859
+ Second
860
+ Reflection
861
+
862
+ Figure 5: Extracted Pulse Responses from Two Lengths of Otherwise Identical Lines (1.5” and 6”)
863
+ (18323)
864
+
865
+
866
+ In the upper panel of Figure 5, we zoom in on the interesting sections of the extracted
867
+ pulse response, for a 1.5 inch PCB line. As might be expected from the significant
868
+ impedance mismatches, the signal appears to reflect back and forth between the
869
+ impedance discontinuities before settling down. At 2.5 Gbits/second excitation, the
870
+ pulse response is nominally 400 picoseconds wide, and the first forward-moving
871
+ reflection should begin to arrive about a half nanosecond after the onset of the main
872
+ pulse; the second forward-moving reflection arrives a half nanosecond after that, and so
873
+ forth. Thus we should not expect to see separation between the main pulse and its
874
+ subsequent, exponentially decaying reflections.
875
+
876
+ In the lower panel of Figure 5, we see the effects of quadrupling the transmission-line
877
+ length. The now well-resolved reflections occur at approximately 2 nanosecond
878
+ intervals (as expected). The main pulse is resolved, and is proportional in magnitude to
879
+ what the pulse would have been down 6 inches of this transmission line without the
880
+ reflections due to impedance mismatches, but including any pulse modification due
881
+ directly to impedance mismatches. (The interface of two perfect transmission lines of
882
+ real, but different, impedance at all frequencies will modify the main pulse in amplitude,
883
+ only).
884
+
885
+ The main pulse and reflections may also be resolved by increasing the excitation
886
+ frequency of the PRBS on a given line (instead of changing line lengths, as above).
887
+ This technique may be limited by the rise time of the drivers, the time span of the impulse
888
+ response of the transmission lines under test, and the analog bandwidth of the sampling
889
+ oscilloscope.
890
+
891
+ These observations suggest a type of de-embedding technique which is very simple,
892
+ though approximate. We assume that the combination of the transmission line length,
893
+ the resolution of the channel response, and the frequency of the PRBS is such that the
894
+ main pulse is resolvable from reflections or other imperfections. We then claim, to the
895
+ extent these assumptions are true, that the resolvable main pulse may be written as
896
+
897
+
898
+
899
+
900
+ 1
901
+ 1
902
+ 0
903
+ 1
904
+ 1
905
+ 0
906
+ 1
907
+ ( )
908
+ {
909
+ ( )
910
+ ( )
911
+ ( )
912
+ ( )...
913
+ ( ,
914
+ )}
915
+ {
916
+ ( )
917
+ ( )
918
+ ( ,
919
+ )}
920
+ driver
921
+ launches
922
+ scope
923
+ tline
924
+ T
925
+ tline
926
+ x t
927
+ F
928
+ X
929
+ H
930
+ H
931
+ H
932
+ H
933
+ z
934
+ F
935
+ X
936
+ H
937
+ H
938
+ z
939
+ ω
940
+ ω
941
+ ω
942
+ ω
943
+ ω
944
+ ω
945
+ ω
946
+ ω
947
+
948
+
949
+
950
+ Δ
951
+
952
+ Δ
953
+ (1.17)
954
+
955
+ where
956
+ 0( )
957
+ X ω is the Fourier transform of an ideal PRBS sequence,
958
+ 1z
959
+ Δ
960
+ is the length of
961
+ transmission line, and the total transfer function
962
+ ( )
963
+ T
964
+ H
965
+ ω is the composite linear response
966
+ of all non-ideal elements in a practical test. Note that the interpretation of
967
+ 1( )
968
+ x t is not
969
+ exactly that of the time response related to the s-parameter
970
+ 21
971
+ s ; it is only equivalent to s-
972
+ parameter analysis when there are no reflections. In principle, and with sufficient
973
+ cleverness, we could also resolve each reflection in the measured waveforms to
974
+ independently and fully analyze the entire characteristic described by
975
+ 21
976
+ s . However, we
977
+
978
+ shall not develop those techniques in this report; instead, we shall focus only on resolving
979
+ the response that would have occurred without reflections.
980
+
981
+ If we now consider a transmission line of length
982
+ 2
983
+ 1
984
+ z
985
+ z
986
+ Δ
987
+ > Δ
988
+ , then its response can be
989
+ written as
990
+
991
+ 1
992
+ 2
993
+ 0
994
+ 2
995
+ 1
996
+ 0
997
+ 1
998
+ 2
999
+ 1
1000
+ ( )
1001
+ {
1002
+ ( )
1003
+ ( )
1004
+ ( ,
1005
+ )}
1006
+ {
1007
+ ( )
1008
+ ( )
1009
+ ( ,
1010
+ )}
1011
+ T
1012
+ tline
1013
+ tline
1014
+ x t
1015
+ X
1016
+ H
1017
+ H
1018
+ z
1019
+ X
1020
+ X
1021
+ H
1022
+ z
1023
+ z
1024
+ ω
1025
+ ω
1026
+ ω
1027
+ ω
1028
+ ω
1029
+ ω
1030
+
1031
+
1032
+ =
1033
+ Δ
1034
+ =
1035
+ Δ
1036
+ − Δ
1037
+ F
1038
+ F
1039
+
1040
+ (1.18)
1041
+
1042
+ where the second line follows from the separability of the transmission line transfer
1043
+ function (equation (1.1)) into component factors, that is,
1044
+
1045
+
1046
+ 2
1047
+ 1
1048
+ 2
1049
+ 1
1050
+ 2
1051
+ 1
1052
+ 2
1053
+ 1
1054
+ (
1055
+ )
1056
+ (
1057
+ )(
1058
+ )
1059
+ (
1060
+ )(
1061
+ )
1062
+ (
1063
+ )(
1064
+ )
1065
+ 2
1066
+ 1
1067
+ 2
1068
+ 1
1069
+ ( ,
1070
+ )
1071
+ ( ,
1072
+ )
1073
+ ( ,
1074
+ )
1075
+ z
1076
+ z
1077
+ z
1078
+ z
1079
+ z
1080
+ z
1081
+ z
1082
+ z
1083
+ tline
1084
+ tline
1085
+ tline
1086
+ H
1087
+ z
1088
+ e
1089
+ e
1090
+ e
1091
+ e
1092
+ H
1093
+ z H
1094
+ z
1095
+ z
1096
+ γ
1097
+ γ ω
1098
+ γ ω
1099
+ γ ω
1100
+ ω
1101
+ ω
1102
+ ω
1103
+
1104
+ Δ
1105
+
1106
+ Δ +Δ
1107
+ −Δ
1108
+
1109
+ Δ
1110
+ −Δ
1111
+
1112
+ Δ
1113
+ −Δ
1114
+ Δ
1115
+ =
1116
+ =
1117
+ =
1118
+ =
1119
+ Δ
1120
+ Δ
1121
+ − Δ
1122
+
1123
+ (1.19)
1124
+
1125
+ Despite its mathematical look, the suggested modeling technique is exceedingly simple:
1126
+
1127
+ 1. Measure
1128
+ 1( )
1129
+ x t of a relatively short line and find its extracted pulse response.
1130
+ 2. Calculate the expected response of a longer transmission line of length
1131
+ 2z
1132
+ Δ
1133
+ by
1134
+ applying equation (1.4) for a transmission line of length
1135
+ 2
1136
+ 1
1137
+ z
1138
+ z
1139
+ Δ
1140
+ − Δ .
1141
+ 3. Compare the output of step 2 to an actual measurement of the extracted pulse
1142
+ response of a transmission line of length
1143
+ 2z
1144
+ Δ
1145
+ . Focus on the (by assumption,
1146
+ resolvable) main pulse only; ignoring all other interesting blips.
1147
+
1148
+ We have argued that this technique will give an expected waveform, and an actual
1149
+ waveform, to measure the goodness-of-fit of the RLGC model; furthermore this
1150
+ comparison de-embeds all systematic linear effects in the test, to the extent that the main
1151
+ pulse is resolvable in time from all reflections or other phenomenon.
1152
+
1153
+ The “resolvability” criterion gives this technique its simplicity, but is its major source of
1154
+ interpretation uncertainty when compared to more accurate experimental methods (such
1155
+ as, a VNA). A typical “eyeball” comparison is good to perhaps 30-40 dB (a few percent
1156
+ in voltage). In many applications (such as, the identification of eye diagrams), the
1157
+ “eyeball” criterion is, nearly by definition, good enough. However, the engineer must
1158
+ judge what kind of accuracy is required for a particular application.
1159
+
1160
+ We have argued that the proposed technique effectively de-embeds effects which can be
1161
+ described by a linear transfer function. We now briefly digress to discuss the effects of
1162
+ stochastic jitter in the trigger waveform and oscilloscope timings. These effects are not
1163
+ present in frequency-domain measurement techniques, and therefore deserve further
1164
+ discussion.
1165
+
1166
+ In general the analysis of the all jitter effects on the waveform captured by the
1167
+ oscilloscope is very difficult, but the following simplifications allow some insight into
1168
+
1169
+ the problem. If the jitter is small enough that the waveform is well approximated by its
1170
+ first-order Taylor’s series, that is:
1171
+
1172
+
1173
+ (
1174
+ )
1175
+ ( )
1176
+ '( )
1177
+ x t
1178
+ x t
1179
+ x t
1180
+ τ
1181
+ τ
1182
+ + Δ
1183
+
1184
+ + Δ
1185
+
1186
+ (1.20)
1187
+
1188
+ and all jitter phenomenon are lumped into a single effective jitter at the scope sampler
1189
+ (relative to the signal ( )
1190
+ x t ), with jitter variance
1191
+ 2
1192
+ σ , then the signal can be thought of in
1193
+ two components. There exists a stochastic portion (whose spectrum is continuous even
1194
+ if ( )
1195
+ x t is periodic) whose power is linearly related to
1196
+ 2
1197
+ σ and the average square of the
1198
+ derivative of ( )
1199
+ x t . This power comes at the expense of the high frequencies in the
1200
+ deterministic portion of the identified waveform (that is, its averaged sequence value as
1201
+ sampled on the scope). It can be shown that the jitter produces a stochastic filter whose
1202
+ average transfer characteristic is
1203
+
1204
+
1205
+ 2
1206
+ 2
1207
+ ( )
1208
+ jitt
1209
+ H
1210
+ e σ ω
1211
+ ω
1212
+
1213
+ =
1214
+ %
1215
+
1216
+ (1.21)
1217
+
1218
+ if the jitter is Gaussian. Therefore, if
1219
+ 2 /
1220
+ f
1221
+ π σ
1222
+ <<
1223
+ , the jitter effects should be negligible
1224
+ in the sampled waveform ( )
1225
+ x t . If the standard deviation of the jitter is in the few pS
1226
+ range, then frequencies below about 10 GHz are affected by less than 1 percent.
1227
+
1228
+ In a sense,
1229
+ ( )
1230
+ jitt
1231
+ H
1232
+ ω
1233
+ %
1234
+ can be thought of as one of components of the total deterministic
1235
+ transfer function
1236
+ ( )
1237
+ T
1238
+ H
1239
+ ω , but only if the various realizations of
1240
+ ( )
1241
+ jitt
1242
+ H
1243
+ ω
1244
+ %
1245
+ are averaged
1246
+ sufficiently to converge to the average transfer function. This convergence might
1247
+ happen, for instance, when the waveform reported from the scope is the average of a
1248
+ large number of sample sequences. In such a case, this portion of the transfer function
1249
+ cancels out in our method (as do the deterministic transfer functions). However, this is
1250
+ dangerous ground, and the experimenter should take care to ensure that the stochastic
1251
+ conditions of the tests are identical when exploiting this effect. For example, if trigger
1252
+ jitter is significant, the realization of
1253
+ ( )
1254
+ jitt
1255
+ H
1256
+ ω
1257
+ %
1258
+ for a waveform derived by “averaging”
1259
+ only one sample waveform is in general quite different from the realization of
1260
+ ( )
1261
+ jitt
1262
+ H
1263
+ ω
1264
+ %
1265
+
1266
+ when many averages are taken. (The frequency response will look better, in general,
1267
+ with only a few averages than it does with long averages).
1268
+
1269
+ Numerical Methods
1270
+
1271
+ In the preceding section, we developed the concept of the extracted pulse response,
1272
+ which is the circular deconvolution of the measured PRBS sequence with an ideal version
1273
+ of the same sequence. A good, standard method for deconvolution is to take the Fourier
1274
+ transform of both waveforms, perform a complex division, and then take the inverse
1275
+ Fourier transform.
1276
+
1277
+
1278
+ In the present case, the number of points in the transform is
1279
+ 2
1280
+ 1
1281
+ N
1282
+ n =
1283
+ − , which is very
1284
+ often a prime number, and is never highly composite. In such cases, the best fast
1285
+ algorithms for discrete Fourier transforms (DFTs) are relatively useless. In most such
1286
+ cases, the deconvolution will require about
1287
+ 2
1288
+ n complex multiplication operations and
1289
+ about n complex divisions.
1290
+
1291
+ We now show a special deconvolution method which takes optimal advantage of the fact
1292
+ that measured waveform is a filtered version of a PRBS. This method requires about
1293
+ 2
1294
+ n
1295
+ real additions, zero multiplications, zero divisions, and zero complex operations of any
1296
+ sort.
1297
+
1298
+ We develop the algorithm in the following way. If the sampled digital-pulse response of
1299
+ the transmission line system is denoted by [ ]
1300
+ (
1301
+ )
1302
+ h n
1303
+ h nT
1304
+ =
1305
+ , with n an integer and T the bit
1306
+ period of the sequence, then the expected sampled measured output is giving by the
1307
+ circular convolution of the PRBS and the pulse response:
1308
+
1309
+
1310
+ [ ]
1311
+ [
1312
+ ] [ ]
1313
+ k
1314
+ y n
1315
+ h k
1316
+ n p k
1317
+ =
1318
+
1319
+
1320
+
1321
+ (1.22)
1322
+ where [ ]
1323
+ { 1,1}
1324
+ p n ∈ −
1325
+ represents the PRBS and k ranges over the length L of the PRBS,
1326
+ which is always of the form
1327
+ 2
1328
+ 1
1329
+ N
1330
+ L =
1331
+ − . We shall also call [ ]
1332
+ h n the extracted pulse
1333
+ response, after we have back-calculated it from measured data. Because this is a circular
1334
+ convolution, the sequences y, p, and h are assumed to be periodic in L; therefore the
1335
+ indices can always be taken modulo L.
1336
+
1337
+ We now assume that the mathematical convolution was actually completed in the
1338
+ physical world by playing the ideal PRBS through a linear system, and we are able to
1339
+ measure the analog waveform ( )
1340
+ y t directly. We then resample this waveform to obtain
1341
+ the measured version of [ ]
1342
+ y n . By inspiration, we can generate a new function from [ ]
1343
+ y n
1344
+ and note how else it can be expressed:
1345
+
1346
+
1347
+ 1
1348
+ [ ]
1349
+ [ ] [
1350
+ ]
1351
+ 1
1352
+ 1
1353
+ [
1354
+ ] [ ] [
1355
+ ]
1356
+ 1
1357
+ [ ]
1358
+ l
1359
+ l
1360
+ k
1361
+ x
1362
+ Z n
1363
+ y n p n
1364
+ l
1365
+ L
1366
+ h k
1367
+ n p k p n
1368
+ l
1369
+ L
1370
+ h n
1371
+ μ
1372
+ =
1373
+
1374
+ +
1375
+ =
1376
+
1377
+
1378
+ +
1379
+ =
1380
+ +
1381
+
1382
+ ∑∑
1383
+
1384
+ (1.23)
1385
+
1386
+ where
1387
+ x
1388
+ μ is the mean of the pulse response [ ]
1389
+ x n . The last line of equation (1.23) is
1390
+ general only when the excitation is a PRBS, and is derived using the properties of a
1391
+ PRBS [4]. Therefore we can recover, within a small DC shift, the extracted pulse
1392
+ response [ ]
1393
+ h n from the measured sequence [ ]
1394
+ y n by a simple transformation using
1395
+ 2
1396
+ (
1397
+ 1)
1398
+ L L
1399
+ L
1400
+
1401
+
1402
+ additions and L trivial multiplications by 1
1403
+ ± . Depending on the
1404
+ application, the division by L+1 may or may not be necessary; if it is necessary,
1405
+ implementers should note that the divisor is always exactly a power of two. With a little
1406
+
1407
+ more complexity in the algorithm it is possible to reconstruct exactly the DC conditions
1408
+ to get a new function
1409
+ '[ ]
1410
+ [ ]
1411
+ Z n
1412
+ h n
1413
+
1414
+ , but in our case we have simply ignored the small DC
1415
+ offset as it makes little practical difference in our analysis.
1416
+
1417
+ We have developed this algorithm in a general way when we are interested in analyzing
1418
+ or plotting waveforms with more than one point per PRBS bit. In such a case, we can
1419
+ decimate a waveform representing M points per bit into M waveforms representing
1420
+ [ ]
1421
+ m
1422
+ y
1423
+ n , that is, the sampled version of ((
1424
+ /
1425
+ ) )
1426
+ y n
1427
+ m M T
1428
+ +
1429
+ . We can determine the extracted
1430
+ pulse response for each sub-channel,
1431
+ [ ]
1432
+ m
1433
+ h
1434
+ n , using equation (1.23) and
1435
+ [ ]
1436
+ m
1437
+ y
1438
+ n as input.
1439
+ The resultant response
1440
+ [ ]
1441
+ m
1442
+ h n is the sampled version of the analog waveform
1443
+ ((
1444
+ /
1445
+ ) )
1446
+ h n
1447
+ m M T
1448
+ +
1449
+ . Therefore, we can reconstruct the M-point-per-bit version of the
1450
+ response by re-interleaving the results of each
1451
+ [ ]
1452
+ m
1453
+ h
1454
+ n . Note that the calculations of
1455
+ [ ]
1456
+ m
1457
+ h n
1458
+ are only dependent on values of y in its own interleave; whereas in general this property
1459
+ is not true of DFT-type deconvolutions. This property is another advantage of this type
1460
+ of specialized deconvolution.
1461
+
1462
+ Therefore, we have shown a very efficient method for deconvolution when PRBS
1463
+ excitation is used. Clearly, for offline analysis using relatively small L, there is little
1464
+ practical difference between a few microseconds and a several milliseconds of
1465
+ computation time. Even so, these differences can become quite significant for large
1466
+ enough L even for offline analysis because L grows exponentially with each PRBS order
1467
+ N. Perhaps more significantly, the algorithm in equation (1.23) is simple enough to
1468
+ realistically be implemented at-speed in hardware. For example, the algorithm
1469
+ implementation is simply a single accumulator if we are willing to calculate one
1470
+ ( )
1471
+ Z n at a
1472
+ time in an operation.
1473
+
1474
+ Nonlinear Analysis with PRBS Excitation
1475
+
1476
+ Up to this point, we have not described anything of particular value in using a PRBS as
1477
+ the excitation waveform over other types of waveforms (other than its alternative utility
1478
+ as a convenient bit-error-rate test pattern). Indeed, a TDT-type step waveform gives the
1479
+ same information as does an extracted pulse response for a linear system. We now
1480
+ digress to explain an interesting and useful feature of this type of PRBS-deconvolution
1481
+ analysis, which allows native nonlinear Volterra analysis of the waveforms.
1482
+
1483
+ In each of the extracted pulse waveforms discussed thus far (shown in Figure 4 and
1484
+ Figure 6), a strange blip appears to arrive at the oscilloscope 2.5 nanoseconds before the
1485
+ main pulse. This blip always shows up in exactly the same place (relative to the main
1486
+ pulse), independent of the transmission-line length or type, or even whether there is a
1487
+ transmission line under test at all. If the bit excitation frequency is changed, then the
1488
+ time spacing between the blip and the main pulse also changes. However, if the time
1489
+ spacing is normalized to bit time units, now this number now remains constant,
1490
+ independent of excitation frequency. Therefore, we have discovered an apparently
1491
+ physical delay effect which seems to know something about the bit times. No signal
1492
+
1493
+ phenomenon of any kind shows up at these locations when a simple TDR pulse is used as
1494
+ excitation.
1495
+
1496
+ The reason for this type of behavior was resolved in the 1980s [3]. The phenomenon
1497
+ came to be understood in the following way. If a system is linear, then the
1498
+ deconvolution operation, described above, always gives the same results for the extracted
1499
+ pulse response no matter what the underlying data pattern is. If a system is somewhat
1500
+ nonlinear, then in the general case, the deconvolution operation will contain garbage
1501
+ which will appear as a “noise” everywhere on the extracted pulse response. However,
1502
+ if the data pattern is a PRBS, then for many types of nonlinearities, the disturbances due
1503
+ to such nonlinearities destructively interfere almost everywhere after the deconvolution
1504
+ operation. The nonlinearities tend to constructively interfere at specific locations on the
1505
+ extracted pulse response, and with specific shapes and magnitude, all of which vary
1506
+ depending on the nature and severity of the nonlinearity. This phenomenon is now used
1507
+ universally in magnetic recording to identify various impairments of the magnetic
1508
+ system.
1509
+
1510
+ In our case, the blip phenomenon is due to circuit-driver nonlinearity somewhere in the
1511
+ test system. Analysis shows that this imperfection (if so it may be called) is due to a
1512
+ non-linearity in the driver circuit in the performance analyzer. Close examination of the
1513
+ output differential pulses show an asymmetry in the rise times (as compared to the fall
1514
+ times) of the output driver. As a result, a positive-going pulse looks noticeably different
1515
+ than the opposite of a negative-going pulse. This difference is by definition a nonlinear
1516
+ effect.
1517
+
1518
+ It has been shown that the PRBS phenomenon is related to the Volterra-series nonlinear-
1519
+ system identification technique for discrete-time systems [4]. This property is another
1520
+ example of the apparently endless set of practical and useful features of a PRBS.
1521
+
1522
+ To an excellent approximation, the transmissions lines are natively linear, and (in
1523
+ principle) the choice of excitation waveform is immaterial. However, circuit drivers,
1524
+ receivers, digital-to-analog converters, equalizers, analog-to-digital converters, and other
1525
+ elements of a complex analog communication system, are not natively linear. In such a
1526
+ case, analysis using linear assumptions, under conditions of PRBS excitation yields (for
1527
+ no additional work), nonlinear system analysis capability.
1528
+
1529
+ Comparison to Theory
1530
+ We now present experimental PRBS results gathered from several different types of
1531
+ transmission lines, and compare the results to expectations from our RLGC model. We
1532
+ found that a constant loss tangent assumption was adequate at lower frequencies (~2.5
1533
+ Gbits/second excitation) but completely inadequate at 40 Gbits/sec excitation. We
1534
+ concluded that the series losses were modeled adequately by the standard form at all
1535
+ frequencies tested, except for any frequency using a bilayer-conductor transmission
1536
+ system.
1537
+
1538
+ 2.5 Gbits/second Excitation Results
1539
+
1540
+
1541
+ We applied the preceding techniques to a PCB transmission line. We designed and
1542
+ procured a passive printed circuit board (PCB) using GETEK ™ dielectric materials.
1543
+ This board was fabricated to verify the accuracy of the RLGC model described above.
1544
+
1545
+ Manual RLGC-model fitting procedures produced model results which compared quite
1546
+ favorably to the experimentally-measured results at 2.5 Gbits/second. These results are
1547
+ compared, for four different lengths of the transmission line, in Figure 6. All model
1548
+ parameters are frozen at the given values (except, of course, for the transmission-line
1549
+ length) for all model results on this graph. We used a 6-inch version of the lines as the
1550
+ de-embedding reference. The important model parameters for the GETEK materials are:
1551
+
1552
+
1553
+ 378 nH/m,
1554
+ 117 pF/m, tan
1555
+ 0.011,
1556
+ 5.45 7,
1557
+ /
1558
+ 5 mils.
1559
+ L
1560
+ C
1561
+ E
1562
+ S
1563
+ δ
1564
+ σ
1565
+ η
1566
+ ∞ =
1567
+ =
1568
+ =
1569
+ =
1570
+ =
1571
+
1572
+ (1.24)
1573
+
1574
+ We tested several lengths of 100 Ohm Skewclear Infiniband 12X cable from
1575
+ Amphenol/SpectraStrip ™. We merely used the advertised (nominal) odd-mode
1576
+ impedance and velocity numbers to calculate the odd-mode reactive parameters.
1577
+
1578
+ The model parameters for the SKEWCLEAR cable are:
1579
+
1580
+
1581
+ 377 nH/m,
1582
+ 37.7 pF/m, tan
1583
+ 0.0001,
1584
+ 6.0 7,
1585
+ /
1586
+ 17mils.
1587
+ L
1588
+ C
1589
+ E
1590
+ S
1591
+ δ
1592
+ σ
1593
+ η
1594
+ ∞ =
1595
+ =
1596
+ =
1597
+ =
1598
+ =
1599
+ (1.25)
1600
+
1601
+
1602
+
1603
+ 10
1604
+ 12
1605
+ 14
1606
+ 0.0
1607
+ 0.2
1608
+ 0.4
1609
+ 0.6
1610
+ 0.8
1611
+ 12
1612
+ 14
1613
+ 16
1614
+ 0.0
1615
+ 0.2
1616
+ 0.4
1617
+ 0.6
1618
+ 0.8
1619
+ 14
1620
+ 16
1621
+ 18
1622
+ 0.0
1623
+ 0.2
1624
+ 0.4
1625
+ 0.6
1626
+ 0.8
1627
+ 1.0
1628
+ 18
1629
+ 20
1630
+ 22
1631
+ 0.0
1632
+ 0.2
1633
+ 0.4
1634
+ 0.6
1635
+ 0.8
1636
+ 1.0
1637
+ Time from Signal Source Trigger Datum, nsec
1638
+ Time from Signal Source Trigger Datum, nsec
1639
+ Amplitude of Pulse Response,
1640
+ Volts
1641
+ Amplitude of Pulse Response,
1642
+ Volts
1643
+ Measured 12 inch Trace
1644
+ Modeled 12 inch Trace
1645
+ Measured 36 inch Trace
1646
+ Modeled 36 inch Trace
1647
+ Measured 24 inch Trace
1648
+ Modeled 24 inch Trace
1649
+ Measured 60 inch Trace
1650
+ Modeled 60 inch Trace
1651
+
1652
+ Figure 6: Experimental Comparison of GETEK PCB to RLGC Model in Odd Mode with Parameters
1653
+ 378 nH/m,
1654
+ 117 pF/m, tan
1655
+ 0.011,
1656
+ 5.45 7,
1657
+ /
1658
+ 5 mils.
1659
+ L
1660
+ C
1661
+ E
1662
+ S
1663
+ δ
1664
+ σ
1665
+ η
1666
+ ∞ =
1667
+ =
1668
+ =
1669
+ =
1670
+ =
1671
+ (18334)
1672
+
1673
+ Figure 7 shows the modeled and actual pulse responses for several lengths of cable. In
1674
+ this case, the cable connectors were clearly a significant factor in the test system response
1675
+ as is seen by the ringing in the response tail. However, the de-embedding method The
1676
+ reference measurement (shown in the first panel of Figure 7, used as input to the
1677
+ numerical model, was taken from a relatively short, 1 meter cable.
1678
+
1679
+
1680
+ 12
1681
+ 0.0
1682
+ 0.2
1683
+ 0.4
1684
+ 0.6
1685
+ 0.8
1686
+ 1.0
1687
+ 14
1688
+ 16
1689
+ 18
1690
+ 0
1691
+ 0.0
1692
+ 0.2
1693
+ 0.4
1694
+ 0.6
1695
+ 0.8
1696
+ 1.0
1697
+ 2
1698
+ 4
1699
+ Time from Signal Source Trigger Datum, nsec
1700
+ Time from Signal Source Trigger Datum, nsec
1701
+ Amplitude of Pulse Response,
1702
+ Volts
1703
+ Amplitude of Pulse Response,
1704
+ Volts
1705
+ 6
1706
+ 0.0
1707
+ 0.2
1708
+ 0.4
1709
+ 0.6
1710
+ 0.8
1711
+ 1.0
1712
+ 22
1713
+ 24
1714
+ 26
1715
+ 0.0
1716
+ 0.2
1717
+ 0.4
1718
+ 0.6
1719
+ 0.8
1720
+ 1.0
1721
+ 30
1722
+ 32
1723
+ 34
1724
+ Measured 10 meter Cable
1725
+ Modeled 10 meter Cable
1726
+ Measured 15 meter Cable
1727
+ Modeled 15 meter Cable
1728
+ Measured 5 meter Cable
1729
+ Modeled 5 meter Cable
1730
+ Measured-Data
1731
+ Reference Waveform
1732
+ From 1 meter Cable +
1733
+ Connectors
1734
+
1735
+ Figure 7: Experimental Comparison of SkewClear Cable to RLGC Model using Parameters
1736
+ 377 nH/m,
1737
+ 37.7 pF/m, tan
1738
+ 0.0001,
1739
+ 6.0 7,
1740
+ /
1741
+ 17mils.
1742
+ L
1743
+ C
1744
+ E
1745
+ S
1746
+ δ
1747
+ σ
1748
+ η
1749
+ ∞ =
1750
+ =
1751
+ =
1752
+ =
1753
+ =
1754
+ (18324)
1755
+ We also analyzed a Gore EyeOpener Plus cable (26 AWG), which was optimized by
1756
+ Gore for operation at 2.5 Gbits/second. The experimental data was not fitted well with
1757
+ the traditional model for surface impedance. We assumed that the cable was built with
1758
+ stratified signal conductors and were able to fit the data much better using equation (1.10)
1759
+ for the surface impedance. The fitted parameters for EyeOpener cable are:
1760
+
1761
+
1762
+ 1
1763
+ 2
1764
+ 1
1765
+ 387 nH/m,
1766
+ 37.7 pF/m, tan
1767
+ 0.0004,
1768
+ 6 7,
1769
+ 1 7,
1770
+ 0.115 mil,
1771
+ /
1772
+ 21 mils.
1773
+ L
1774
+ C
1775
+ E
1776
+ E
1777
+ S
1778
+ δ
1779
+ σ
1780
+ σ
1781
+ τ
1782
+ η
1783
+ ∞ =
1784
+ =
1785
+ =
1786
+ =
1787
+ =
1788
+ =
1789
+ =
1790
+
1791
+ (1.26)
1792
+
1793
+ The effective conductivity of the core conductor is so low, for a metal, that the material is
1794
+ likely to be magnetic. The effective conductivity of the bulk material is “reduced” by a
1795
+ factor equal to the relative permeability of the material in our model.
1796
+
1797
+ Figure 8 shows the modeled and actual pulse responses for two lengths of the Gore
1798
+ EyeOpener Plus cable. The reference measurement, used as numerical model input, was
1799
+ taken from a relatively short, 1 meter cable. Because little or no geometry or
1800
+ composition information was available for the cables, we do not claim that the fit
1801
+ physical parameters truly reflect the physical cable characteristics. We do claim that this
1802
+
1803
+ combination of parameters adequately describes the differential behavior of the cables
1804
+ over a significant range of cable lengths.
1805
+
1806
+ 0
1807
+ 1
1808
+ 2
1809
+ 3
1810
+ 4
1811
+ 5
1812
+ 0.0
1813
+ 0.2
1814
+ 0.4
1815
+ 0.6
1816
+ 0.8
1817
+ 1.0
1818
+ Time from Signal Source Trigger Datum, nsec
1819
+ 32
1820
+ 33
1821
+ 34
1822
+ 35
1823
+ 36
1824
+ 37
1825
+ 0.0
1826
+ 0.2
1827
+ 0.4
1828
+ 0.6
1829
+ 0.8
1830
+ 1.0
1831
+ Amplitude of Pulse Response, Volts
1832
+ Measured 5 meter cable
1833
+ Modeled 5 meter cable
1834
+ Measured 10 meter cable
1835
+ Modeled 10 meter cable
1836
+
1837
+ Figure 8: Experimental Comparison of EyeOpener Cable to RLGC Model using Parameters
1838
+ 1
1839
+ 2
1840
+ 1
1841
+ 387 nH/m,
1842
+ 37.7 pF/m, tan
1843
+ 0.0004,
1844
+ 6 7,
1845
+ 1 6,
1846
+ 0.115 mil,
1847
+ /
1848
+ 21 mils.
1849
+ L
1850
+ C
1851
+ E
1852
+ E
1853
+ S
1854
+ δ
1855
+ σ
1856
+ σ
1857
+ τ
1858
+ η
1859
+ ∞ =
1860
+ =
1861
+ =
1862
+ =
1863
+ =
1864
+ =
1865
+ =
1866
+
1867
+ (18446)
1868
+
1869
+ We conclude that the RLGC model, with appropriate extensions when necessary,
1870
+ accurately describes a variety of cable transmission lines and PCB lines at 2.5
1871
+ Gbits/second excitation.
1872
+
1873
+ 40 Gbits/second Excitation
1874
+
1875
+ We shall now present the time-domain analysis with data taken at 40 Gbits/second
1876
+ excitation. While (in principle) an infinitely-sharp rise time at 2.5 Gbits/second will also
1877
+ excite very high frequencies which will then be identified with by our method even at
1878
+ low excitation frequency, it’s also true that equipment made to produce 40 Gbits/second
1879
+ data will have significantly smaller rise times and that of equipment made to generate a
1880
+ PRBS at lower frequencies. Using such equipment is therefore experimentally better if
1881
+ high frequencies are to be accurately modeled by this method.
1882
+
1883
+ In Figure 9, we show comparisons for model versus actual pulse responses for various
1884
+ lengths of a PCB trace made using Nelco 1300 ™ material. In this case we found much
1885
+
1886
+ improved experimental fit using a linear loss tangent model. The graphs show quite a bit
1887
+ of attenuation for this type of transmission line at these frequencies (which is not at all
1888
+ surprising as this material is not intended for use up at these frequencies over any
1889
+ reasonable length of trace). We find the fit of these curves to be fairly good, but clearly
1890
+ there exist differences between expected and actual traces which do not exist in the 2.5
1891
+ Gbit/second data. The frequency content of these waveforms is only significant up to
1892
+ approximately 10 GHz of bandwidth, so we do not claim to have a model which matches
1893
+ data above this bandwidth.
1894
+
1895
+ Model parameters for the 40 Gbits/second Nelco 1300 PCB traces are:
1896
+
1897
+
1898
+ 327 nH/m,
1899
+ 125 pF/m, /
1900
+ 5.75 mils, tan =2E-13 , =5E7 S/m
1901
+ L
1902
+ C
1903
+ S η
1904
+ δ
1905
+ ω σ
1906
+ ∞ =
1907
+ =
1908
+ =
1909
+ (1.27)
1910
+
1911
+ Note that this model uses a loss tangent which is proportional to frequency.
1912
+
1913
+ Measured Reference (3" Trace)
1914
+ 20" Trace
1915
+ 34" Trace
1916
+ 42" Trace
1917
+ Measured
1918
+ Modeled
1919
+ Measured
1920
+ Modeled
1921
+ Measured
1922
+ Modeled
1923
+ 2.4
1924
+ 0.0
1925
+ 0.1
1926
+ 0.2
1927
+ 0.3
1928
+ 2.5
1929
+ 2.6
1930
+ 2.7
1931
+ Time, ns
1932
+ Pulse Response, Volts
1933
+ 2.8
1934
+ 2.9
1935
+ 3.0
1936
+ 1.1
1937
+ 0.0
1938
+ 0.1
1939
+ 0.2
1940
+ 0.3
1941
+ 1.2
1942
+ 1.3
1943
+ 1.4
1944
+ Time, ns
1945
+ Pulse Response, Volts
1946
+ 1.5
1947
+ 1.6
1948
+ 1.7
1949
+ 2.0
1950
+ 0.0
1951
+ 0.1
1952
+ 0.2
1953
+ 0.3
1954
+ 2.1
1955
+ 2.2
1956
+ 2.3
1957
+ Time, ns
1958
+ Pulse Response, Volts
1959
+ 2.4
1960
+ 2.5
1961
+ 2.6
1962
+ 2.4
1963
+ 0.0
1964
+ 0.1
1965
+ 0.2
1966
+ 0.3
1967
+ 2.5
1968
+ 2.6
1969
+ 2.7
1970
+ Time, ns
1971
+ Pulse Response, Volts
1972
+ 2.8
1973
+ 2.9
1974
+ 3.0
1975
+
1976
+ Figure 9: Experimental Comparison of Nelco 1300 PCB to RLGC Model at 40 Gbits/s using
1977
+ Parameters
1978
+ 327 nH/m,
1979
+ 125 pF/m, /
1980
+ 5.75 mils, tan =2E-13 , =5E7 S/m
1981
+ L
1982
+ C
1983
+ S η
1984
+ δ
1985
+ ω σ
1986
+ ∞ =
1987
+ =
1988
+ =
1989
+ (20568)
1990
+ Finally, in Figure 10 we show the results from data taken at 40 Gbits/second from an
1991
+ advanced version of the SkewClear cable. This version is designed for higher
1992
+ frequencies and includes a modified ground conductor.
1993
+
1994
+
1995
+
1996
+ The model parameters for the upgraded SkewClear cable are:
1997
+
1998
+
1999
+ 451 nH/m,
2000
+ 40 pF/m, /
2001
+ 20 mils, tan =1E-13 ,
2002
+ =5E7 S/m
2003
+ L
2004
+ C
2005
+ S η
2006
+ δ
2007
+ ω σ
2008
+ ∞ =
2009
+ =
2010
+ =
2011
+ (1.28)
2012
+
2013
+ Note that again the loss tangent model is linear in frequency.
2014
+ 0.9
2015
+ 1.0
2016
+ 1.1
2017
+ 1.2
2018
+ 1.3
2019
+ 1.4
2020
+ 1.5
2021
+ 0.0
2022
+ 0.1
2023
+ 0.2
2024
+ 0.3
2025
+ 0.4
2026
+ 0.5
2027
+ 0.6
2028
+ 0.7
2029
+ Pulse Response, Volts
2030
+ Time, ns
2031
+ 2.5
2032
+ 2.6
2033
+ 2.7
2034
+ 2.8
2035
+ 2.9
2036
+ 3.0
2037
+ 3.1
2038
+ 0.0
2039
+ 0.1
2040
+ 0.2
2041
+ 0.3
2042
+ 0.4
2043
+ Pulse Response, Volts
2044
+ Time, ns
2045
+ Measured
2046
+ Modeled
2047
+ 1 Meter Reference,
2048
+ Differentially Excited and Received
2049
+ 1 Meter Reference,
2050
+ Singly Excited, Differentially Received
2051
+ 5 Meter Cable,
2052
+ Differentially Excited and Received
2053
+ 5 Meter Cable,
2054
+ Singly Excited, Differentially Received
2055
+ 0.9
2056
+ 1.0
2057
+ 1.1
2058
+ 1.2
2059
+ 1.3
2060
+ 1.4
2061
+ 1.5
2062
+ 0.0
2063
+ 0.1
2064
+ 0.2
2065
+ 0.3
2066
+ 0.4
2067
+ 0.5
2068
+ 0.6
2069
+ 0.7
2070
+ Pulse Response, Volts
2071
+ Time, ns
2072
+ 2.5
2073
+ 2.6
2074
+ 2.7
2075
+ 2.8
2076
+ 2.9
2077
+ 3.0
2078
+ 3.1
2079
+ 0.0
2080
+ 0.1
2081
+ 0.2
2082
+ 0.3
2083
+ 0.4
2084
+ Pulse Response, Volts
2085
+ Time, ns
2086
+ Measured
2087
+ Modeled
2088
+ Mismatch Indicates
2089
+ Even Mode Leakage
2090
+
2091
+ Figure 10: Experimental Comparison of Upgraded SkewClear Cable to RLGC model at 40Gb/s
2092
+ under Single Ended and Differential Excitation Conditions using Model Parameters
2093
+ 451 nH/m,
2094
+ 40 pF/m, /
2095
+ 20 mils, tan =1E-13 ,
2096
+ =5E7 S/m
2097
+ L
2098
+ C
2099
+ S η
2100
+ δ
2101
+ ω σ
2102
+ ∞ =
2103
+ =
2104
+ =
2105
+ (20571)
2106
+ In this case, the fit is nearly as excellent as for the 2.5 GHz case, even though the
2107
+ significant frequencies in this waveform extend up to approximately 20 GHz. The usual
2108
+ model comparison (in the upper right graph) shows excellent fit except for the area
2109
+ around 100 pS before the main pulse, which shows a relatively small blip of apparently
2110
+ unknown origin.
2111
+
2112
+ We shall take this opportunity to show the types of conclusions one may draw from
2113
+ investigations using time domain techniques. We have shown similar data on the lower
2114
+ portion of the figure except in this case the excitation is provided only on one side of the
2115
+ differential cable, with the other input terminated. Theoretically, or ideally, this
2116
+ condition should produce exactly half the differential signal at the output terminals (and
2117
+ indeed this is very well approximated for the 1 meter reference signals). However, the
2118
+ singly-excited model comparison is rather weak, though (evidently) the errors apparently
2119
+ nearly cancel when the system is both differentially excited and differentially received
2120
+ (the upper right case). The simplest explanation for this behavior is a mode leakage
2121
+ between even and odd modes down the length of the line; and indeed, we have shown by
2122
+
2123
+ similar methods that the even mode signal has a slightly higher velocity than does the odd
2124
+ mode, such that the even mode shows up about 100 pS before the odd mode at a distance
2125
+ of 5 meters.
2126
+
2127
+ Conclusions
2128
+ We have developed a time-domain method for experimental verification of an RLGC
2129
+ model, and showed adequate experimental fit over a wide variety of transmission line
2130
+ types up to approximately 10 GHz in bandwidth. We found that, depending on the
2131
+ frequency and transmission line type, specific extensions were required to adequately
2132
+ explain laboratory behavior. We found that modifications to both the dielectric (shunt)
2133
+ loss model and the resistive (series) loss models were necessary to adequately cover all
2134
+ cases.
2135
+
2136
+ We have shown that, despite a fairly substantial list of assumptions, a PRBS time-domain
2137
+ method can be used in a de-embedding fashion to remove many experimental
2138
+ impediments. Indeed, the PRBS technique can be used to easily identify and quantify
2139
+ nonlinear effects.
2140
+
2141
+ We proposed an extremely efficient method for implementing the PRBS identification
2142
+ process, which can either speed up offline computation when the waveform is large, or,
2143
+ can be used in hardware to directly implement the method in real-time so long as an
2144
+ appropriately complex ADC is available.
2145
+
2146
+ We note that the proposed technique is similar to (in fact, it is a simplification of) a
2147
+ generalized TDT method, possessing a similar set of advantages and disadvantages when
2148
+ compared to frequency-domain methods. For the price of software processing and a real
2149
+ time scope, this method can be used to turn a bit-error-rate test system into a reasonable
2150
+ system identification station.
2151
+
2152
+ While we have shown laboratory data indicating the utility of this measurement method
2153
+ using high-quality lab equipment, we believe that this type of analysis will become most
2154
+ attractive in self-test applications in product hardware. As the analog-to-digital
2155
+ converters (ADCs) in a SERDES migrate from traditional 1-bit comparators to those
2156
+ required to support advanced signaling and detection schemes, we expect that methods
2157
+ such as those described in this paper will be used to advance the operational and
2158
+ diagnostic capabilities of the overall system, as they have in other systems [12].
2159
+ Acknowledgements
2160
+
2161
+ The authors would like to thank Eric Hanlon and Devon Post for providing test boards
2162
+ and cables for this activity; Jason Prairie for his data-taking expertise; Patrick Zabinski
2163
+ for many instructive and seminal conversations; and Steve Richardson, Elaine Doherty,
2164
+ and Deanna Jensen for generating the graphics for this report.
2165
+
2166
+ References
2167
+
2168
+
2169
+ [1] Richard E. Matick. Transmission Lines for Digital and Communication Networks.
2170
+ IEEE Press, 1999.
2171
+
2172
+ [2] Simon Rano, John R. Whinnery, and Theodore Van Duzer. Fields and Waves in
2173
+ Communication Electronics. John Wiley and Sons, second edition, 1984.
2174
+
2175
+ [3] Dean Palmer, Jon Coker, Michael Meyer, and Pablo Ziperovich. Overwrite in thin
2176
+ media measured by the method of pseudorandom sequences. IEEE Transactions on
2177
+ Magnetics, 24(6), November 1988.
2178
+
2179
+ [4] Reto Hermann. Volterra Modeling of digital magnetic saturation recording channels.
2180
+ IEEE Transactions on Magnetics, September 1990.
2181
+
2182
+ [5] James R. Wait. Electromagnetic Waves in Stratified Media. IEEE Press, 1995.
2183
+
2184
+ [6] Dean Palmer, Pablo Ziperovich, Roger Wood, and Thomas Howell. Identification of
2185
+ nonlinear write effects using pseudorandom sequences. IEEE Transactions on
2186
+ Magnetics, volume 24, November 1988.
2187
+
2188
+ [7] D.A Smolyansky and S.D Corey. Computing self and mutual capacitance and
2189
+ inductance using even and odd TDR measurements. Electrical Performance of Electronic
2190
+ Packaging, 2002.
2191
+
2192
+ [8] Cherry Wakayama and Jeff Loyer. Correlation between VNA and TDR/TDT
2193
+ extracted s-parameters up to 20 GHz. TDA Systems customer note.
2194
+
2195
+ [9] James R. Andrews. Time domain spectrum analysis and s-parameter vector network
2196
+ analysis. Picosecond Labs app note AN-16A, November 2004.
2197
+
2198
+ [10] Martin Schmatz et al. A 22 Gbit/s PAM-4 receiver in 90 nm CMOS-SOI
2199
+ technology. Symposium on VLSI Circuits, 2005.
2200
+
2201
+ [11] Fidanboylu, K.M.; Riad, S.M. and A. Elshabini-Riad. An enhanced time-domain
2202
+ approach for dielectric characterization using stripeline geometry. IEEE Transactions on
2203
+ Instrumentation and Measurement, Volume 41, Issue 1, Feb. 1992
2204
+
2205
+ [12] United States Patent 5392295. Error measurement circuit. February 21, 1995.
2206
+
2207
+ [13] Engin, A.E.; Mathis, W.; John, W.; Sommer, G.; and Reichl, H. Time-domain
2208
+ modeling of lossy substrates with constant loss tangent. Proceeding of the 8th IEEE
2209
+ Workshop on Signal Propagation on Interconnects, May 2004.
2210
+
2211
+ [14] Coperich Branch, K.M et al. Physically consistent transmission line models for high-
2212
+ speed interconnects in lossy dielectrics. Advanced Packaging, IEEE Transactions on
2213
+ Volume 25, Issue 2, May 2002 Page(s):129 - 135
2214
+
3dE4T4oBgHgl3EQf0Q2d/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4NE1T4oBgHgl3EQfmASv/content/tmp_files/2301.03293v1.pdf.txt ADDED
@@ -0,0 +1,957 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Distributed Multirobot Control for
2
+ Non-Cooperative Herding
3
+ Nishant Mohanty∗, Jaskaran Grover∗, Changliu Liu, Katia Sycara
4
+ The Robotics Institute, Carnegie Mellon University, Pittsburgh, USA
5
+ {nishantm,jaskarag,cliu6,sycara}@andrew.cmu.edu
6
+ Abstract. In this paper, we consider the problem of protecting a high-
7
+ value area from being breached by sheep agents by crafting motions for
8
+ dog robots. We use control barrier functions to pose constraints on the
9
+ dogs’ velocities that induce repulsions in the sheep relative to the high-
10
+ value area. This paper extends the results developed in our prior work
11
+ on the same topic in three ways. Firstly, we implement and validate our
12
+ previously developed centralized herding algorithm on many robots. We
13
+ show herding of up to five sheep agents using three dog robots. Secondly,
14
+ as an extension to the centralized approach, we develop two distributed
15
+ herding algorithms, one favoring feasibility while the other favoring opti-
16
+ mality. In the first algorithm, we allocate a unique sheep to a unique dog,
17
+ making that dog responsible for herding its allocated sheep away from the
18
+ protected zone. We provide feasibility proof for this approach, along with
19
+ numerical simulations. In the second algorithm, we develop an iterative
20
+ distributed reformulation of the centralized algorithm, which inherits the
21
+ optimality (i.e. budget efficiency) from the centralized approach. Lastly,
22
+ we conduct real-world experiments of these distributed algorithms and
23
+ demonstrate herding of up to five sheep agents using five dog robots.
24
+ Videos of these results are available at https://bit.ly/3bZq0dB.
25
+ Keywords: Herding, Barrier Functions, Quadratic Programming
26
+ 1
27
+ Introduction
28
+ Recent developments in robotics and sensing have created significant interest
29
+ among researchers to deploy multiple robots to operate cooperatively towards
30
+ achieving a common goal. Many works have developed techniques to tackle real-
31
+ world problems using multi-robot systems (MRS), like conducting surveys or
32
+ automating warehouses [1,2], [3]. The major developments in MRS for enabling
33
+ multiple robots to behave cooperatively have been based on interactions within
34
+ a single team, i.e., a robot interacts with other robots in its group to achieve a
35
+ given objective [4,5]. The main features of these types of algorithms are a) local
36
+ ∗ These authors contributed equally to this work.
37
+ This research is supported by AFOSR FA9550-18-1-0097 and AFRL/AFOSR
38
+ FA9550-18-1-0251
39
+ arXiv:2301.03293v1 [cs.RO] 9 Jan 2023
40
+
41
+ 2
42
+ Nishant Mohanty∗, Jaskaran Grover∗, Changliu Liu, Katia Sycara
43
+ interaction, b) collision-free motion within the group, and c) achieving collective
44
+ behavior using local interaction [6].
45
+ In literature, there are studies on MRS that involve interaction between mul-
46
+ tiple groups of agents. Here, along with the local interaction with group members,
47
+ the individuals also interact with an external agent from another group. An ex-
48
+ ample of this is a scenario where a group of adversarial robots has a goal of their
49
+ own that might damage a given high-value unit. Here, a group of defenders must
50
+ interact with the adversarial robots to ensure the safety of the unit. [7,8]. In this
51
+ paper, we propose a provably correct controller for the group of defenders (“dog
52
+ robots”) to prevent an adversarial group (the “sheep robots”) from breaching a
53
+ protected zone. This is challenging because dog robots do not control the sheep
54
+ robots directly; rather have to rely on the interaction dynamics between the dogs
55
+ and sheep to influence the sheep’s behavior.
56
+ In our prior work [9], we developed a centralized algorithm to solve this
57
+ problem using control barrier functions. In this work, a) we provide more ex-
58
+ perimental validation of the centralized algorithm, b) propose two distributed
59
+ algorithms, and c) provide simulations and experiments to validate these algo-
60
+ rithms. Our formulation computes the velocity of each dog locally to prevent
61
+ sheep from breaching the protected zone(s). In the first distributed algorithm,
62
+ we allocate each sheep to a unique dog and pose a constraint on that dog’s
63
+ velocity to herd its allocated sheep away from the protected zone. We provide
64
+ proof of feasibility of this approach, thus showing that whenever the number
65
+ of sheep and dogs are equal, the herding problem is well-posed. Our previously
66
+ proposed centralized algorithm lacked this feasibility guarantee. However, it did
67
+ not necessitate equal numbers of dogs and sheep; in fact, in many experiments,
68
+ fewer dogs than sheep were sufficient to herd all the sheep away. This obser-
69
+ vation led us to develop the second algorithm. In this algorithm, we construct
70
+ an iterative distributed approach that asymptotically attains the same veloci-
71
+ ties as computed by the centralized approach, thereby attaining the same total
72
+ optimality (measured in terms of the total movement the dogs exhibit) as the
73
+ centralized approach and obviating the need to have equal numbers of dogs and
74
+ sheep. We build on the dual-decomposition algorithms proposed in [10,11] for de-
75
+ veloping this distributed algorithm. Both of our proposed distributed algorithms
76
+ are compositional in nature i.e., we can protect multiple zones by including more
77
+ constraints, as shown in figure 1(c). To highlight the performance of our formu-
78
+ lation, we provide results from numerical simulations showing the success of our
79
+ approach for multiple dogs against multiple sheep. Finally, we demonstrate our
80
+ algorithm on real robots and show multiple dog robots successfully preventing
81
+ the breaching of protected zones against multiple sheep robots.
82
+ The outline of this paper is as follows: in section 2, we give a brief review of
83
+ the prior work in this area. In section 3, we provide a mathematical formulation
84
+ of the problem statement. In section 4, we show how to use control barrier
85
+ functions to pose constraints on dog velocities. Section 5 provides simulations
86
+ accepted in IEEE Conference on Decision and Control 2022
87
+
88
+ Distributed Herding
89
+ 3
90
+ and experimental results to demonstrate the proposed approach. Finally, we
91
+ summarize our work in section 6 along with our directions for future work.
92
+ 2
93
+ Prior Work
94
+ The framework of multi-group interaction within MRS has many applications
95
+ beyond the adversarial problem statements. The shepherding problem is an ex-
96
+ ample of such a category. In [12,13], the authors have proposed methods to
97
+ enable multiple shepherd agents to influence a flock of sheep by modeling the
98
+ interaction as repulsion forces. The Robot Sheepdog Project [14,15] conducted
99
+ a real-world demonstration of a shepherding algorithm where a group of mobile
100
+ ground robots cooperatively herded a flock of ducks to a given goal location.
101
+ In the literature, there are several works on non-cooperative shepherding as
102
+ an example of a multi-group interaction type problem. The works like [13], [16],
103
+ [17], [18], [19], [20]. deal with a problem where the sheep robots do not exhibit
104
+ adversarial behavior. They do not have any goals of their own. However, they
105
+ experience a repulsive force from the dog robots, which is exploited to produce
106
+ the desired behavior in the sheep robots. For example, collecting all the sheep
107
+ at some location and then driving them to a target goal.
108
+ Differently from prior work, our sheep may or may not be adversarial. We call
109
+ them adversarial if their goal lies inside the protected zone and non-adversarial
110
+ otherwise. Our safe control synthesis approach remains the same regardless. The
111
+ dog robots observe and generate their control commands considering the cohesion
112
+ between the sheep robots, the attraction to their goal location, and the repulsion
113
+ experienced by them from the dog robots. And as we use control barrier functions
114
+ to generate the constraints on the velocity of the dog robots, it only requires the
115
+ dynamics of the sheep to be represented as a symbolic function. Thus allowing
116
+ for the sheep to experience any kind of attractive or repulsive forces.
117
+ 3
118
+ Problem Formulation
119
+ Consider a scenario with n sheep agents flocking towards a common goal loca-
120
+ tion. One commonly assumed model for flocking is the Reynolds-Boids dynamics
121
+ [21] that considers inter-sheep cohesive forces, inter-sheep repulsive forces, and
122
+ attraction to a common goal. In the presence of dog agents, each sheep’s dy-
123
+ namics would include repulsive forces from each dog robot. While en route to
124
+ their goal, the sheep, having no knowledge about high-value regions in workspace
125
+ (protected zones), pose a risk of breaching them. Thus, our problem is to orches-
126
+ trate the motions of dog robots by capitalizing on the repulsions that the sheep
127
+ experience from the dogs to prevent this breaching. Next, we pose this problem
128
+ in formal terms.
129
+ Consider the protected zone P ⊂ R2 as a disc centered at xP with radius
130
+ Rp, i.e., P := {x ∈ R2| ∥x − xP ∥ ≤ Rp}. We denote the flock of sheep as S and
131
+ the position of the ith sheep as xSi ∈ R2. The collective positions of all sheep
132
+ is denoted as xall
133
+ S := (xS1, xS2, ..., xSm). Similarly, we denote the set of all dogs
134
+
135
+ 4
136
+ Nishant Mohanty∗, Jaskaran Grover∗, Changliu Liu, Katia Sycara
137
+ using D. The position of the kth dog is xDk ∈ R2 and the positions of all dogs
138
+ collectively is xall
139
+ D := (xD1, xD2, ..., xDn). Each sheep follows single integrator
140
+ dynamics ˙xSi := f i(xS1, ..., xSn, xD1, ..., xDn), given by
141
+ ˙xSi = uSi = kS
142
+
143
+ j∈S\i
144
+
145
+ 1 −
146
+ R3
147
+ S
148
+ ∥xSj − xSi∥3
149
+
150
+ (xSj − xSi)
151
+
152
+ ��
153
+
154
+ inter-sheep cohesion and repulsion
155
+ +
156
+ kG (xG − xSi)
157
+
158
+ ��
159
+
160
+ attraction to goal
161
+ + kD
162
+
163
+ l∈D
164
+ xSi − xDl
165
+ ∥xSi − xDl∥3
166
+
167
+ ��
168
+
169
+ repulsion from dogs
170
+ (1)
171
+ Here, RS is a safety margin that each sheep tends to maintain with every other
172
+ sheep, xG is the sheep’s desired goal and kS, kG and kD are proportional gains
173
+ corresponding to the attractive and repulsive forces. We model each dog as a
174
+ velocity controlled robot with the following dynamics:
175
+ ˙xDk = uDk ∀k ∈ {1, 2, · · · , n}
176
+ (2)
177
+ Before posing the problem, we state some assumptions on the dogs’ knowledge:
178
+ Assumption 1. The dog robots have knowledge about the sheep’s dynamics i.e.
179
+ (1) and can measure the sheep’s positions accurately.
180
+ Assumption 2. Each dog robot can measure the velocities of other dog robots
181
+ (by using numerical differentiation, for example).
182
+ Problem 1. Assuming that the initial positions of the sheep xSi(0) /∈ P ∀i ∈
183
+ S, the dog robots’ problem is to synthesize controls {uD1, · · · , uDn} such that
184
+ xSi(t) /∈ P ∀t ≥ 0 ∀i ∈ S.
185
+ 4
186
+ Controller Design
187
+ In this section, we show two approaches to solve Problem 1, building on our
188
+ previously proposed centralized algorithm [9]. Define a safety index h(·) : R2 −→
189
+ R that quantifies the distance of Si from P:
190
+ h(xSi) = ∥xSi − xP ∥2 − (r + Rp)2
191
+ (3)
192
+ Here r is a safety buffer distance. Thus, we require h(xSi(t)) ≥ 0 ∀t ≥ 0. We
193
+ define x = (xall
194
+ S , xall
195
+ D ) as the aggregated state of all sheep and all dogs. To
196
+ ensure, h(xSi(t)) ≥ 0 ∀t ≥ 0, we treat h(·) as a control barrier function require
197
+ its derivative to satisfy
198
+ ˙h(x) + p1h(xSi) ≥ 0.
199
+ (4)
200
+
201
+ Distributed Herding
202
+ 5
203
+ Here p1 is a design parameter and is chosen based to satisfy
204
+ p1 > 0
205
+ and
206
+ p1 > −
207
+ ˙h(x(0))
208
+ h(xSi(0)).
209
+ (5)
210
+ The first condition on p1 requires that the pole is real and negative. The second
211
+ depends on the initial positions x(0) of all the sheep and dogs relative to the
212
+ protected zone. Note that the constraint in (4) does not contain any dog velocity
213
+ terms, which is what we require to control each dog. Therefore, we define the
214
+ LHS of (4) as another control barrier function v(x) : R4n −→ R:
215
+ v = ˙h + p1h,
216
+ (6)
217
+ and require its derivative to satisfy the constraint: ˙v(x) + p2v(x) ≥ 0. Here p2
218
+ is another design parameter which must satisfy
219
+ p2 > 0
220
+ and
221
+ p2 > −
222
+ ¨h(x(0)) + p1 ˙h(x(0))
223
+ ˙h(x(0)) + p1h(xSi(0))
224
+ (7)
225
+ Using (3), (6) and the constraint on the derivative, we get
226
+ ¨h(x) + α˙h(x) + βh(xSi) ≥ 0
227
+ (8)
228
+ where α := p1 + p2 and β := p1p2. The derivatives of h(·) are:
229
+ ˙h(x) = 2(xSi − xP )T ˙xSi = 2(xSi − xP )T f i(x)
230
+ (9)
231
+ ¨h(x) = 2f T
232
+ i f i + 2(xSi − xP )T
233
+ � �
234
+ j∈S
235
+ JS
236
+ jif i +
237
+
238
+ l∈D
239
+ JD
240
+ li uDl
241
+
242
+ (10)
243
+ where the jacobians are defined as JS
244
+ ji := ∇xSj f i(x) and JD
245
+ li := ∇xDl f i(x)
246
+ Note that (10) contains the velocity terms of all dogs. In [9], we leveraged this
247
+ observation to obtain a linear constraint on the velocity of all dogs collectively
248
+ for preventing sheep Si from breaching P:
249
+ AH
250
+ i uall
251
+ D ≤ bH
252
+ i ,
253
+ where
254
+ (11)
255
+ AH
256
+ i := (xP − xSi)T �
257
+ JD
258
+ 1i, JD
259
+ 2i, · · · , JD
260
+ ni
261
+
262
+ bH
263
+ i := f T
264
+ i f i + (xSi − xP )T �
265
+ j∈S
266
+ JS
267
+ jif j + α(xSi − xP )T f i + β h
268
+ 2
269
+ A centralized algorithm was developed that collectively computes the velocities
270
+ of all dogs using the following QP
271
+ uall
272
+ D = arg min
273
+ uall
274
+ D
275
+ ∥uall
276
+ D ∥2
277
+ subject to
278
+ AH
279
+ i uall
280
+ D ≤ bH
281
+ i ∀i ∈ S.
282
+ (12)
283
+ Building on this centralized approach, in this paper, we develop two distributed
284
+ approaches wherein we allow each dog to compute its velocity locally such that
285
+ the computed velocities will make the dog herd the sheep away from P.
286
+
287
+ 6
288
+ Nishant Mohanty∗, Jaskaran Grover∗, Changliu Liu, Katia Sycara
289
+ 4.1
290
+ Approach 1: One dog to one sheep allocation based approach
291
+ In this approach, we assume that we have an equal number of dogs and sheep. By
292
+ exploiting this equality, we assign a unique sheep Si for i ∈ {1, · · · , n} to a unique
293
+ dog Dk for k ∈ {1, · · · , n} and make Dk responsible for herding Si away from
294
+ P. In other words, Dk computes a velocity uDk that repels Si from P thereby
295
+ ensuring that xSi(t) /∈ P ∀t ≥ 0. The premise is that owing to the equality,
296
+ each sheep will end up being herded by a unique dog, therefore, no sheep will
297
+ breach the protected zone . Now while this strategy necessitates having an equal
298
+ number of dogs and sheep, the benefit of this approach stems from the feasibility
299
+ guarantee (that we prove shortly), which the centralized approach lacks. Simple
300
+ algebraic manipulation of constraint (11) yields a constraint on the velocity of
301
+ Dk as follows
302
+ AH
303
+ i uDk ≤ bH
304
+ i ,
305
+ where
306
+ (13)
307
+ AH
308
+ i := (xP − xSi)T JD
309
+ ki
310
+ bH
311
+ i := f T
312
+ i f i + (xSi − xP )T ��
313
+ j∈S
314
+ JS
315
+ jif j + αf i + β h
316
+ 2 +
317
+
318
+ l∈D\k
319
+ JD
320
+ li uDl
321
+
322
+ Here AH
323
+ i ∈ R1×2 and bH
324
+ i ∈ R. The term uDl in the expression of bH
325
+ i is computed
326
+ by using numerical differentiation of the positions xDl. We pose a QP to obtain
327
+ the min-norm velocity for Dk as follows
328
+ u∗
329
+ Dk = arg min
330
+ uDk
331
+ ∥uDk∥2
332
+ subject to
333
+ AH
334
+ i uDk ≤ bH
335
+ i
336
+ (14)
337
+ The obtained velocity u∗
338
+ Dk guarantees that the protected zone P will not be
339
+ breached by sheep Si by ensuring that h(xSi(t)) ≥ 0 ∀t ≥ 0. Since each dog
340
+ in D is in-charge of herding exactly one sheep in S, feasibility of (13) ∀k ∈ D
341
+ would ensure no sheep breaches P. Next, we show the conditions under which
342
+ (14) remains feasible but first state some assumptions.
343
+ Assumption 3. We make the following assumptions on the distances between
344
+ pairs of agents:
345
+ 1. There exists a lower bound and upper bound on the distance between any pair
346
+ of sheep, i.e, LS ⩽
347
+ ��xSi − xSj
348
+ �� ⩽ MS, ∀i, j ∈ S and i ̸= j.
349
+ 2. There exists a lower bound on the distance between every sheep and dog, i.e.,
350
+ ∥xSi − xDk∥ ≥ LD ∀i ∈ S and k ∈ D.
351
+ 3. There exists a upper bound on the distance between each sheep and its goal
352
+ i.e., ∥xSi − xG∥ ⩽ MG and between the sheep and the center of the protected
353
+ zone i.e., ∥xSi − xP ∥ ⩽ MP .
354
+ Note that although Si is assigned to Dk, the position of the remaining dogs
355
+ {1, · · · , n}\k and the remaining sheep {1, · · · , n}\i do influence Dk’s constraint pa-
356
+ rameters (AH
357
+ i , bH
358
+ i ), and in turn, its computed velocity u∗
359
+ Dk.
360
+
361
+ Distributed Herding
362
+ 7
363
+ Theorem 1. In a scenario with ‘n’ dogs and ‘n’ sheep, with each dog assigned
364
+ a unique sheep, the herding constraint (13) for a given dog is always feasible,
365
+ provided assumptions 3 are met.
366
+ Proof. See appendix (section 7).
367
+ 4.2
368
+ Approach 2: Iterative distributed reformulation of (12)
369
+ The distributed formulation proposed in (14) comes with a feasibility guarantee
370
+ ensuring that all sheep will be herded away from P. While vital, this comes at
371
+ the cost of requiring as many dog robots as the number of sheep agents. This
372
+ is because, in a way, this equality ensures that controlling the sheep from the
373
+ perspective of dog robots is not an underactuated problem. Be that as it may,
374
+ in our simulations and experiments involving the centralized approach with an
375
+ equal number of dogs and sheep, we frequently observed that not all dog robots
376
+ needed to move to repel the sheep away from P i.e., equality may have been an
377
+ overkill. Thus, in terms of budget efficiency, at least empirically, the centralized
378
+ approach outweighs the distributed approach.
379
+ This raises the question, can we convert the centralized algorithm of (12) into
380
+ a distributed version that inherits the budget efficiency (optimality) promised by
381
+ (12)? Indeed, we found out that [10,11] propose algorithms to convert constrained-
382
+ coupled convex optimization problems (such as (12)) into distributed counter-
383
+ parts. They combine techniques called dual decomposition and proximal min-
384
+ imization and develop iterative distributed schemes which consist of local op-
385
+ timization problems. The solutions to these optimization problems asymptoti-
386
+ cally converge to the solution of centralized optimization under mild convexity
387
+ assumptions and connectivity properties of the communication network. In our
388
+ case, this network refers to the communication between dog robots. Below, we
389
+ present the distributed dual sub-gradient method of [10,11] adapted to the costs
390
+ and constraints of (12). This algorithm calculates an estimate of dog Dk’s ve-
391
+ locity ˆuDk which, given large enough iterations Kmax, matches with the kth
392
+ velocity component in the optimal velocities u∗all
393
+ D
394
+ returned by (12). Ak ∈ RnS×2
395
+ refers to those columns of AH that correspond to uDk in uall
396
+ D .
397
+ Algorithm 1 Distributed Dual Subgradient for (12) (based on sec. 3.4.2 in [11])
398
+ Initialize Lagrange Multiplier: µ0
399
+ k = 0 ∈ RnS
400
+ Evolution: t = 1, 2, · · · , Kmax
401
+ Gather Multipliers µt
402
+ r from Dr ∀r ∈ {1, · · · , nD}\k
403
+ Average Multipliers: vt+1
404
+ k
405
+ =
406
+ 1
407
+ nD
408
+
409
+ r∈{1,··· ,nD}\k µt
410
+ r
411
+ Local Solution: ut+1
412
+ Dk = arg min
413
+ u
414
+ ∥u∥2 + (vt+1
415
+ k
416
+ )T (Aku −
417
+ 1
418
+ nD bH) = − 1
419
+ 2AT
420
+ k vt+1
421
+ k
422
+ Update Multiplier: µt+1
423
+ k
424
+ =
425
+
426
+ vt+1
427
+ k
428
+ + γt
429
+
430
+ Akut+1
431
+ Dk −
432
+ 1
433
+ nD b
434
+ ��
435
+ +
436
+ Return Average: ˆuDk = (1/Kmax) �Kmax
437
+ t=1
438
+ ut
439
+ Dk
440
+
441
+ 8
442
+ Nishant Mohanty∗, Jaskaran Grover∗, Changliu Liu, Katia Sycara
443
+ 5
444
+ Results
445
+ In this section, we provide simulation and real-world experimental results demon-
446
+ strating our proposed distributed algorithms.
447
+ 5.1
448
+ Simulation Results
449
+ We first validate the first distributed algorithm and the feasibility proof given
450
+ in 4.1. For this, we model the sheep with the Reynolds-Boids dynamics (1) with
451
+ gains kS = 0.5, kG = 1 and kD = 0.1. The dogs use (14) to compute their
452
+ velocities, where hyperparameters α and β are computed following (5) and (7).
453
+ We chose a circular protected zone of radius Rp = 0.6m and center xP at origin.
454
+ The sheep are initialized outside of the protected zone, and their goal location xG
455
+ is chosen such that their nominal trajectory would make them breach the zone,
456
+ thus necessitating intervention from dogs. The positions of dogs are initialized
457
+ randomly within a certain range of the protected zone. In figures 1(a) and 1(b),
458
+ we show two examples involving a) two dog robots vs. two sheep robots and b)
459
+ three dog robots vs. three sheep robots. To demonstrate the compositionality of
460
+ our approach, we consider two protected zones in figure 1(c) where we have four
461
+ dogs defending both zones from four sheep. In all these simulations, none of the
462
+ sheep breach any zone, thus demonstrating the correctness of our approach. In
463
+ the interest of space, we skip the simulation results for the algorithm in 4.2 but
464
+ do provide experimental results.
465
+ (a) Two dogs v. two sheep. (b) Three dogs v. three sheep (c) Four dogs v. four sheep.
466
+ Fig. 1: Preventing the breaching of the protected zone using our proposed dis-
467
+ tributed algorithm in section 4.1. Here dogs are shown in blue and sheep in red.
468
+ The green disc represents the protected zone. The nominal task of the sheep is
469
+ to go straight towards goal xG. However, since this would result in infiltration
470
+ of the protected zone, the dog intervenes using the control algorithm presented
471
+ in (14). In Fig. 1(c), we defend two protected zones from four sheep.
472
+
473
+ 1.5
474
+ 1
475
+ 0.5
476
+ 0
477
+ -0.5
478
+ -1
479
+ -1.5
480
+ 1
481
+ 01.5
482
+ 1
483
+ 0.5
484
+ 0
485
+ -0.5
486
+ 1
487
+ -1.5
488
+ 1
489
+ 01.5
490
+ 1
491
+ 0.5
492
+ 0
493
+ -0.5
494
+ 1
495
+ -1.5
496
+ 0
497
+ -1Distributed Herding
498
+ 9
499
+ 5.2
500
+ Robot Experiments
501
+ In this section, we show the results obtained by performing robot experiments
502
+ by implementing the distributed algorithms of section 4.1 and section 4.2. Ad-
503
+ ditionally, we also present more experimental results for our prior centralized
504
+ algorithm from [9] (because at the time, we did not have as many robots). We
505
+ conduct these experiments in our lab’s multi-robot arena, which consists of a
506
+ 14ft × 7ft platform with multiple Khepera IV robots and eight Vicon cameras
507
+ for motion tracking. Although Khepera robots have unicycle dynamics, [9] con-
508
+ sists of a technique to convert the single-integrator dynamics (assumed for dogs
509
+ and sheep) to linear and angular velocity commands for the robots.
510
+ First of all, to build upon our previous work, we show additional experiments
511
+ using centralized velocity computation of the dog robots (12). Figure 2 shows a
512
+ case with 2 dog and 4 sheep robots. The dog robots have a green tail, and the
513
+ sheep robots have an orange tail. The tails are pointing in the opposite direction
514
+ of the robot’s heading angle. The protected zone is the green-colored circular re-
515
+ gion. This figure shows the performance in the case of an underactuated system,
516
+ i.e, there are more sheep against less number of dogs. Another example is shown
517
+ in figure 3 where 3 dogs successfully prevent breaching against 5 sheep robots.
518
+ Following that, multiple experiments were conducted using the distributed
519
+ algorithm presented in section 4.1, which requires equal numbers of dogs and
520
+ sheep. Figure 4 shows 4 dog robots against 4 sheep robots scenario. Here we
521
+ take two protected zones and show that the dogs can protect both of them. This
522
+ highlights the compositional nature of our proposed algorithm. We conducted
523
+ experiments with 5 dog robots and 5 sheep robots, as shown in Figure 5. Here we
524
+ can see some dog robots did not require to move as the assigned sheep were being
525
+ prevented from entering the protected zone due to the configuration of the flock
526
+ itself. Finally, we test our distributed algorithm presented in section 4.2. Figure 6
527
+ shows a case where 2 dogs prevent the breaching of protected zone against three
528
+ dogs. This highlights that our distributed approach can handle under-actuated
529
+ scenarios. Figure 7 and figure 2 can be compared to see both centralized and
530
+ distributed algorithm handling a similar scenario of 2 dogs against 4 sheep.
531
+ 6
532
+ Conclusions
533
+ In this paper, we developed a novel optimization-based distributed control tech-
534
+ niques to enable multiple dog robots to prevent the breaching of protected zones
535
+ by sheep agents. We provided proof of feasibility of the controller when n dog
536
+ robots face an equal number of sheep robots. Additionally, we developed another
537
+ distributed algorithm that iteratively computes a solution that agrees with the
538
+ solution returned by the centralized problem without requiring equal number of
539
+ dogs and sheep. We experimentally validated both distributed algorithms in ad-
540
+ dition to validating our previously developed centralized control. We show that
541
+ multiple dog robots can prevent breaching of protected zone in both simulation
542
+ and real-world experiments. In future work, we aim for the dog robots to learn
543
+ the dynamics of the sheep robots online while preventing them from breaching.
544
+
545
+ 10
546
+ Nishant Mohanty∗, Jaskaran Grover∗, Changliu Liu, Katia Sycara
547
+ (a) t = 0s
548
+ (b) t = 5s
549
+ (c) t = 12s
550
+ (d) t = 30s
551
+ Fig. 2: Experiments for Centralized Control: Two dogs defending the pro-
552
+ tected zone from four sheep using centralized control algorithm (12) from our
553
+ prior work [9]. Video at https://bit.ly/3OTAnOu.
554
+ (a) t = 0s
555
+ (b) t = 5s
556
+ (c) t = 30s
557
+ (d) t = 50s
558
+ Fig. 3: Experiment for Centralized Control: Three dogs (green-tailed
559
+ robots) defending a protected zone from five sheep (orange-tailed robots) us-
560
+ ing centralized control (12) from our prior work [9]. Video at https://youtu.be/
561
+ 2 Xuxnd9jZw.
562
+
563
+ leepGoaleepGoalleepGoaleepGoaleepGoaleepooaeepGoaieep GoalDistributed Herding
564
+ 11
565
+ (a) t = 0s
566
+ (b) t = 6s
567
+ (c) t = 12s
568
+ (d) t = 20s
569
+ Fig. 4: Experiment for the distributed algorithm in section 4.1 : Four
570
+ dogs (green-tailed robots) defending two protected zone from four sheep (orange-
571
+ tailed robots). The goal position xG (red disc) is in extreme left that would
572
+ encourage sheep to breach both zones. However, our proposed algorithm moves
573
+ the dogs so that none of the zones get breached. Video at https://bit.ly/3yo9ziC.
574
+ (a) t = 0s
575
+ (b) t = 12s
576
+ (c) t = 25s
577
+ (d) t = 40s
578
+ Fig. 5: Experiment for the distributed algorithm in section 4.1) : Five
579
+ dogs (green-tailed robots) defending the protected zone from five sheep (orange-
580
+ tailed robots). The sheep’s goal (red disc) is in the center of the protected zone.
581
+ Eventually, in this scenario a deadlock occurs where all sheep come to a stop
582
+ outside the protected zone. Video at https://bit.ly/3o51Cu1.
583
+
584
+ leenGnaeereepGoal12
585
+ Nishant Mohanty∗, Jaskaran Grover∗, Changliu Liu, Katia Sycara
586
+ (a) t = 0s
587
+ (b) t = 4s
588
+ (c) t = 15s
589
+ (d) t = 30s
590
+ Fig. 6: Experiment for distributed algorithm in section 4.2) : Two dogs
591
+ (green-tailed robots) defending the protected zone from three sheep (orange-
592
+ tailed robots). The goal position xG (red disc) is at the center of the zone. Video
593
+ at https://youtu.be/IbCjkR1ye0c.
594
+ (a) t = 0s
595
+ (b) t = 4s
596
+ (c) t = 15s
597
+ (d) t = 30s
598
+ Fig. 7: Experiment for distributed algorithm in section 4.2) : Two dogs
599
+ (green-tailed robots) defending the protected zone from four sheep (orange-tailed
600
+ robots). This case is similar to the one shown in fig. 2. Video at https://youtu.
601
+ be/51FoHZWFYC4.
602
+
603
+ leepGoalheepGoalheepGoalheepGoalheepGoalheepGoalheepGoalDistributed Herding
604
+ 13
605
+ 7
606
+ Appendix: Proof of feasibility for Approach 1
607
+ Theorem 1. In a scenario with ‘n’ dogs and ‘n’ sheep, with each dog assigned
608
+ a unique sheep, the herding constraint (13) for a given dog is always feasible,
609
+ provided assumptions 3 are met.
610
+ Proof. Our strategy to guarantee feasibility of constraint (13) relies on ruling
611
+ out situations in which it is infeasible. (13) can become infeasible
612
+ – either when AH
613
+ i = 0 and bH
614
+ i < 0 (possibility 1)
615
+ – or when bH
616
+ i = −∞ (possibility 2).
617
+ To determine the conditions in which possibility 1 occurs, we calculate the de-
618
+ terminant of JD
619
+ ki as
620
+ det(JD
621
+ ki) =
622
+ −2k2
623
+ D
624
+ ∥xDk − xSi∥3
625
+ The determinant det(JD
626
+ ki) is non-zero as long as the distance between dog Dk and
627
+ sheep Si is finite. Therefore, JD
628
+ ki will have no null space, implying that AH
629
+ i ̸= 0
630
+ ∀xSi ∈ R2, xDk ∈ R2. This rules out possibility 1 for infeasibility. To rule out
631
+ possibility 2, we need to check for condition when bH
632
+ i −→ −∞. Given bH
633
+ i in (13),
634
+ we find its worst case lower bound. Here f T
635
+ i f i ≥ 0 and as we assume that at
636
+ the current time step, the sheep is outside P, this ensures β h
637
+ 2 ≥ 0. By removing
638
+ these terms, the lower bound of bH
639
+ i
640
+ can be given as
641
+ bH
642
+ i ≥
643
+
644
+ j∈S\i
645
+ (xSi − xP )T JS
646
+ jif j + (xSi − xP )T JS
647
+ iif i +
648
+
649
+ l∈D\k
650
+ (xSi − xP )T JD
651
+ li uDl
652
+ + α(xSi − xP )T f i
653
+ (1)
654
+ Using the triangle inequality on the RHS and Cauchy-Schwarz inequality on
655
+ individual terms, we get
656
+ bH
657
+ i ≥
658
+
659
+ j∈S\i
660
+
661
+ −σmax
662
+
663
+ JS
664
+ ji
665
+
666
+ ∥xSi − xP ∥ ∥f j∥
667
+
668
+ − σmax
669
+
670
+ JS
671
+ ii
672
+
673
+ ∥xSi − xP ∥ ∥f i∥
674
+ (2)
675
+ +
676
+
677
+ l∈D\k
678
+
679
+ −σmax
680
+
681
+ JD
682
+ li
683
+
684
+ ∥xSi − xP ∥ ∥uDl∥
685
+
686
+ − α∥xSi − xP ∥∥f i∥
687
+ where σmax is the largest singular value of a matrix. Further, using the fact that
688
+ the largest singular value of a matrix (σmax) is upper bounded by its Frobenius
689
+ norm (σF ), we obtain
690
+ bH
691
+ i ≥
692
+
693
+ j∈S\i
694
+
695
+ −σF
696
+
697
+ JS
698
+ ji
699
+
700
+ ∥xSi − xP ∥ ∥f j∥
701
+
702
+ − σF
703
+
704
+ JS
705
+ ii
706
+
707
+ ∥xSi − xP ∥ ∥f i∥
708
+ (3)
709
+
710
+ l∈D\k
711
+
712
+ −σF
713
+
714
+ JD
715
+ ki
716
+
717
+ ∥xSi − xP ∥ ∥uDl∥
718
+
719
+ − α∥xSi − xP ∥∥f i∥
720
+ Now to compute this lower bound we make use of assumption 3. We use the
721
+ dynamics in (1) to compute JS
722
+ ii and obtain the upper bound on σF
723
+
724
+ JS
725
+ ii
726
+
727
+ and use
728
+ the bounds on distances from assumption 3 to get following upper bound:
729
+
730
+ 14
731
+ Nishant Mohanty∗, Jaskaran Grover∗, Changliu Liu, Katia Sycara
732
+ σF
733
+
734
+ JS
735
+ ii
736
+
737
+
738
+
739
+ j∈S\i
740
+ kS
741
+
742
+
743
+ 2 + (3 +
744
+
745
+ 2)R3
746
+ ∥xSi − xSj∥3
747
+
748
+ +
749
+
750
+ 2kG +
751
+
752
+ l∈D\k
753
+
754
+ 3 +
755
+
756
+ 2
757
+
758
+ kD
759
+ ∥xSi − xDl∥3
760
+ ⩽ (n − 1)
761
+
762
+
763
+ 2kS + (3 +
764
+
765
+ 2)kSR3
766
+ L3
767
+ S
768
+
769
+ +
770
+
771
+ 2kG + n
772
+ ��
773
+ 3 +
774
+
775
+ 2
776
+
777
+ kD
778
+ L3
779
+ D
780
+
781
+ := λM
782
+ We omit the proof of this computation in the interest of space. Similarly, using
783
+ the dynamics in (1), we compute an expression for JS
784
+ ji and obtain an upper
785
+ bound on σF
786
+
787
+ JS
788
+ ji
789
+
790
+ as follows:
791
+ σF
792
+
793
+ JS
794
+ ji
795
+
796
+
797
+
798
+ 2kS + (3 +
799
+
800
+ 2)kSR3
801
+ ∥xS1 − xSj∥3 ⩽
802
+
803
+ 2kS + (3 +
804
+
805
+ 2)kSR3
806
+ L3
807
+ S
808
+ := λS
809
+ Likewise, an upper bound of σF
810
+
811
+ JS
812
+ li
813
+
814
+ , is given by
815
+ σF
816
+
817
+ JS
818
+ li
819
+
820
+ ⩽ (3 +
821
+
822
+ 2)kSR3
823
+ ∥xS1 − xDl∥3 ⩽ (3 +
824
+
825
+ 2)kSR3
826
+ L3
827
+ D
828
+ := λD
829
+ Lastly, we use obtain an upper bound on the dynamics of each sheep f i as:
830
+ ∥f i∥ ⩽
831
+
832
+ j∈S\i
833
+ kS
834
+
835
+ ∥xSi − xSj∥ +
836
+ R3
837
+ ∥xSi − xSj∥2
838
+
839
+ + kG∥xG − xSi∥
840
+ +
841
+
842
+ l∈D
843
+ kD
844
+ ∥xSi − xDl∥
845
+ ∥xSi − xDl∥3
846
+ (4)
847
+ Now we need to compute the maximum possible value of the RHS to get the
848
+ upper bound of the sheep dynamics. The first term has a local minima at ∥xSi −
849
+ xSj∥ = (2)1/3R. Therefore the maximum value can occur at either the lower
850
+ bound or upper bound of ∥xSi − xSj∥. Thus the maximum value of the first
851
+ term can be given as Fmax := max(kSLS + kS R3
852
+ L2
853
+ S , kSMS + kS R3
854
+ M 2
855
+ S ). Second term
856
+ is maximum when ∥xG − xSi∥ = MG. The last term is maximum when distance
857
+ of the sheep to the dogs are minimum, ∥xSi −xDk∥ = LD. Using these the upper
858
+ bound on the sheep dynamics is computed as:
859
+ ∥f i∥ ⩽ (n − 1)Fmax + kGMG + nkD
860
+ � 1
861
+ L2
862
+ D
863
+
864
+ Assuming that the velocity of the dog robots have an upper bound, and by
865
+ taking the upper bound on the dynamics of all the sheep to be equal, the lower
866
+ bound on bH
867
+ i
868
+ from 3 is (taking γ = −(α + λM + (n − 1)λS)Mp)
869
+ bH
870
+ i ⩾ γ
871
+
872
+ (n − 1)Fmax + kGMG + nkD
873
+ L2
874
+ D
875
+
876
+ − (n − 1)λDMP ∥uD∥max
877
+ This shows that bH
878
+ i has a finite lower bound, thus ruling out possibility 2. Thus,
879
+ the herding constraint (13) for a one dog to repel one sheep from the protected
880
+ zone is always feasible. Since each sheep in S is allocated to one unique dog in
881
+ D, extension of this feasibility result to all sheep ensures that none of them will
882
+ breach the protected zone.
883
+
884
+ Distributed Herding
885
+ 15
886
+ References
887
+ 1. R. D’Andrea, “Guest editorial: A revolution in the warehouse: A retrospective on
888
+ kiva systems and the grand challenges ahead,” IEEE Transactions on Automation
889
+ Science and Engineering, vol. 9, no. 4, pp. 638–639, 2012.
890
+ 2. R. D’Andrea and G. E. Dullerud, “Distributed control design for spatially inter-
891
+ connected systems,” IEEE Transactions on automatic control, vol. 48, no. 9, pp.
892
+ 1478–1495, 2003.
893
+ 3. W. Kazmi, M. Bisgaard, F. Garcia-Ruiz, K. D. Hansen, and A. la Cour-Harbo,
894
+ “Adaptive surveying and early treatment of crops with a team of autonomous
895
+ vehicles,” in Proceedings of the 5th European Conference on Mobile Robots ECMR
896
+ 2011, 2011, pp. 253–258.
897
+ 4. M. Ji and M. Egerstedt, “Distributed coordination control of multiagent systems
898
+ while preserving connectedness,” IEEE Transactions on Robotics, vol. 23, no. 4,
899
+ pp. 693–703, 2007.
900
+ 5. J. Lin, A. S. Morse, and B. D. Anderson, “The multi-agent rendezvous problem-
901
+ the asynchronous case,” in 2004 43rd IEEE Conference on Decision and Control
902
+ (CDC)(IEEE Cat. No. 04CH37601), vol. 2.
903
+ IEEE, 2004, pp. 1926–1931.
904
+ 6. C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in
905
+ Proceedings of the 14th annual conference on Computer graphics and interactive
906
+ techniques, 1987, pp. 25–34.
907
+ 7. C. Walton, I. Kaminer, Q. Gong, A. Clark, T. Tsatsanifos et al., “Defense against
908
+ adversarial swarms with parameter uncertainty,” arXiv preprint arXiv:2108.04205,
909
+ 2021.
910
+ 8. T. Tsatsanifos, A. H. Clark, C. Walton, I. Kaminer, and Q. Gong, “Model-
911
+ ing and control of large-scale adversarial swarm engagements,” arXiv preprint
912
+ arXiv:2108.02311, 2021.
913
+ 9. J. Grover, N. Mohanty, W. Luo, C. Liu, and K. Sycara, “Noncooperative herd-
914
+ ing with control barrier functions: Theory and experiments,” arXiv preprint
915
+ arXiv:2204.10945, 2022.
916
+ 10. A. Falsone, K. Margellos, S. Garatti, and M. Prandini, “Dual decomposition
917
+ for multi-agent distributed optimization with coupling constraints,” Automatica,
918
+ vol. 84, pp. 149–158, 2017.
919
+ 11. G. Notarstefano, I. Notarnicola, A. Camisa et al., “Distributed optimization for
920
+ smart cyber-physical networks,” Foundations and Trends® in Systems and Con-
921
+ trol, vol. 7, no. 3, pp. 253–383, 2019.
922
+ 12. J.-M. Lien, O. B. Bayazit, R. T. Sowell, S. Rodriguez, and N. M. Amato, “Shep-
923
+ herding behaviors,” in IEEE International Conference on Robotics and Automa-
924
+ tion, 2004. Proceedings. ICRA’04. 2004, vol. 4.
925
+ IEEE, 2004, pp. 4159–4164.
926
+ 13. A. Pierson and M. Schwager, “Controlling noncooperative herds with robotic
927
+ herders,” IEEE Transactions on Robotics, vol. 34, no. 2, pp. 517–525, 2017.
928
+ 14. R. Vaughan, N. Sumpter, J. Henderson, A. Frost, and S. Cameron, “Robot con-
929
+ trol of animal flocks,” in Proceedings of the 1998 IEEE International Symposium
930
+ on Intelligent Control (ISIC) held jointly with IEEE International Symposium on
931
+ Computational Intelligence in Robotics and Automation (CIRA) Intell.
932
+ IEEE,
933
+ 1998, pp. 277–282.
934
+ 15. ——, “Experiments in automatic flock control,” Robotics and autonomous systems,
935
+ vol. 31, no. 1-2, pp. 109–117, 2000.
936
+ 16. A. Pierson and M. Schwager, “Bio-inspired non-cooperative multi-robot herding,”
937
+ in 2015 IEEE International Conference on Robotics and Automation (ICRA).
938
+ IEEE, 2015, pp. 1843–1849.
939
+
940
+ 16
941
+ Nishant Mohanty∗, Jaskaran Grover∗, Changliu Liu, Katia Sycara
942
+ 17. R. A. Licitra, Z. I. Bell, E. A. Doucette, and W. E. Dixon, “Single agent indirect
943
+ herding of multiple targets: A switched adaptive control approach,” IEEE Control
944
+ Systems Letters, vol. 2, no. 1, pp. 127–132, 2017.
945
+ 18. R. A. Licitra, Z. D. Hutcheson, E. A. Doucette, and W. E. Dixon, “Single agent
946
+ herding of n-agents: A switched systems approach,” IFAC-PapersOnLine, vol. 50,
947
+ no. 1, pp. 14 374–14 379, 2017.
948
+ 19. E. Sebasti´an and E. Montijano, “Multi-robot implicit control of herds,” in 2021
949
+ IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021,
950
+ pp. 1601–1607.
951
+ 20. M. Bacon and N. Olgac, “Swarm herding using a region holding sliding mode
952
+ controller,” Journal of Vibration and Control, vol. 18, no. 7, pp. 1056–1066, 2012.
953
+ 21. C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” ser.
954
+ SIGGRAPH ’87.
955
+ New York, NY, USA: Association for Computing Machinery,
956
+ 1987, p. 25–34.
957
+
4NE1T4oBgHgl3EQfmASv/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
69E1T4oBgHgl3EQfTgNE/content/tmp_files/2301.03078v1.pdf.txt ADDED
@@ -0,0 +1,822 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Structural tuning magnetism and topology in a magnetic
2
+ topological insulator
3
+ Christopher Eckberg,1, 2, 3, 4, ∗ Gang Qiu,4, ∗ Tao Qu,4 Sohee Kwon,5 Yuhang
4
+ Liu,5 Lixuan Tai,4 David Graf,6 Su Kong Chong,4 Peng Zhang,4 Kin L.
5
+ Wong,4 Roger K. Lake,5 Mahesh R. Neupane,2, 5, 7 and Kang L. Wang4, †
6
+ 1Fibertek Inc., Herndon, Virginia 20171, USA
7
+ 2DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, USA
8
+ 3DEVCOM Army Research Laboratory,
9
+ Playa Vista, California 90094, USA
10
+ 4Department of Electrical and Computer Engineering,
11
+ University of California, Los Angeles, California 90095, USA
12
+ 5Department of Electrical and Computer Engineering,
13
+ University of California, Riverside, CA, 92521, US
14
+ 6National High Magnetic Field Laboratory,
15
+ Florida State University, Tallahassee, Florida, 32310, USA.
16
+ 7Materials Science and Engineering Program,
17
+ University of California, Riverside, CA, 92521, US
18
+ (Dated: January 10, 2023)
19
+ ∗ These two authors contributed equally
20
+ † wangkl@ucla.edu
21
+ 1
22
+ arXiv:2301.03078v1 [cond-mat.mes-hall] 8 Jan 2023
23
+
24
+ To date, the most widely-studied quantum anomalous Hall insulator (QAHI)
25
+ platform is achieved by dilute doping of magnetic ions into thin films of the al-
26
+ loyed tetradymite topological insulator (TI) (Bi1−xSbx)2Te3 (BST) [1–4]. In these
27
+ films, long-range magnetic ordering of the transition metal substituants opens
28
+ an exchange gap ∆ in the topological surface states, stabilizing spin-polarized,
29
+ dissipationless edge channels with a nonzero Chern number C. The long-range
30
+ ordering of the spatially separated magnetic ions is itself mediated by electronic
31
+ states in the host TI, leading to a sophisticated feedback between magnetic and
32
+ electronic properties. Here we present a study of the electronic and magnetic
33
+ response of a BST-based QAHI system to structural tuning via hydrostatic pres-
34
+ sure. We identify a systematic closure of the topological gap under compressive
35
+ strain accompanied by a simultaneous enhancement in the magnetic ordering
36
+ strength. Combining these experimental results with first-principle calculations
37
+ we identify structural deformation as a strong tuning parameter to traverse a
38
+ rich topological phase space and modify magnetism in the magnetically doped
39
+ BST system.
40
+ Time-reversal invariant Z2 TIs feature gapless edge and surface states protected by time-
41
+ reversal symmetry. Due to this time-reversal symmetry requirement, electronic band struc-
42
+ tures of Z2 TIs respond strongly to magnetic perturbation [5–7]. This relationship is notably
43
+ exemplified in the realization of the quantum anomalous Hall effect in magnetic TI systems.
44
+ In QAHIs, long-range magnetic order gaps the otherwise mass-less topological surface state.
45
+ When the chemical potential is positioned within the exchange gap, the 2D density of states
46
+ vanishes, and a chiral edge state represents the lone channel for electrical transport. The
47
+ resulting phase is characterized by a combination of long-range magnetic order, quantized
48
+ Hall conductivity, and vanishing longitudinal resistance; all of which persist in the ab-
49
+ sence of an applied magnetic field. The promise of technologically significant phenomena in
50
+ QAHI materials including dissipationless, non-reciprocal electrical transport [8, 9], quantized
51
+ magneto-electric dynamics [10, 11], and exotic quasiparticle excitations [12, 13] to name a
52
+ few, has stimulated a tremendous research effort in QAHI systems and magnetic topological
53
+ matter in general.
54
+ Though recent discoveries have notably expanded the landscape of known QAHI hosts
55
+ [14–16], the most mature and widely studied QAHI platform is the Cr substituted
56
+ 2
57
+
58
+ (Bi1−x−ySbxCry)2Te3 (CBST) system grown using molecular beam epitaxy (MBE). Due to
59
+ the greatly reduced spin-orbit coupling strength of Cr compared with the Bi/Sb atoms it
60
+ substitutes, in quantized CBST the concentration of magnetic dopants must be left rela-
61
+ tively dilute lest they promote a topological phase transition to a trivial insulating state
62
+ [6, 17]. The dilute magnetism and disordered, dual-doped crystal structure of CBST im-
63
+ bues an unfortunate fragility onto the quantum anomalous Hall effect in CBST at elevated
64
+ temperatures [18–21]. This fragility of the quantum anomalous Hall state presents a major
65
+ hurdle limiting the technical applicability of these compounds. Operational temperatures
66
+ may be improved to a degree by varying dopant concentrations and profiles [22, 23]. How-
67
+ ever, in practice chemical optimization of these materials is a delicate and imperfect process,
68
+ as chemical composition simultaneously impacts the positioning of the chemical potential,
69
+ electronic band structure, disorder profile, and magnetic ordering strength. A cleaner tuning
70
+ parameter to more directly engineer CBST band structures is therefore essential to improve
71
+ CBST QAHI operating temperatures.
72
+ Here we report the magnetic and electronic evolution of CBST in response to a continuous
73
+ deformation of the crystal lattice via hydrostatic pressure. Pressure dependent experiments
74
+ were performed on gated Hall bar devices at pressures up to 1.6 GPa and temperatures
75
+ as low as 20 mK. Our experiments demonstrate the electronic and magnetic properties
76
+ of CBST to be highly responsive to strain, with lattice compression both suppressing the
77
+ QAHI phase and enhancing the magnetic order. First-principle calculations confirm these
78
+ effects emerge from a structural driven evolution of the CBST band structure, and indicate
79
+ a rich topological phase space may be addressed through the application of even larger
80
+ pressures. Together, these experimental and theoretical results demonstrate crystal strain
81
+ as an effective tuning parameter to selectively modify the low energy electronic structure
82
+ in BST based magnetic topological matter, establishing structural engineering as a viable
83
+ pathway to control critical material properties in the future.
84
+ Experiments are conducted on 6 quintuple layer (QL) thick MBE grown CBST films with
85
+ a magnetic Curie temperature TC of roughly 20 K. Data are presented for three different
86
+ photolithographically defined Hall bar devices, labelled P1, P2, and P3. Samples P2 and
87
+ P3 were fabricated simultaneously from the same wafer in field-effect transistor geometries,
88
+ where an approximately 20 nm thick HfOx layer serves as the gate dielectric. These two
89
+ devices display virtually identical behaviors over a wide range of temperature and magnetic
90
+ 3
91
+
92
+ field [24], and, in the following, their properties will frequently be compared directly. P1
93
+ meanwhile was fabricated from a separate wafer. The impact of pressure on the topological
94
+ transport signatures and magnetism of these devices was studied using a piston cell equipped
95
+ for electrical transport experiments. During experiment, P1 was measured in a dilution
96
+ refrigerator while P2 and P3 were primarily studied in a 3He sorption cryostat.
97
+ Taken
98
+ together, data gathered on these different devices span nearly three decades in temperature
99
+ ranging in regime from kbT << ∆ to kbT ≈ TC.
100
+ We begin by presenting the ambient pressure properties of device P2 (Fig. 1). At TC,
101
+ the systems develops a magnetization when subjected to a small external field.
102
+ When
103
+ cooled to lower temperatures, this magnetic order manifests a rapidly increasing anomalous
104
+ Hall signal, and at temperatures well below TC ρxx begins to rapidly decrease as seen in
105
+ Fig. 1 (a). At dilution refrigerator conditions, ρxx approaches zero while ρyx approaches the
106
+ quantized value of h/e2 ≈ 25.8 kΩ. Field dependent hysteresis loops in a dilution refrigerator
107
+ environment are presented in Fig. 1 (b). In these data, transitions between ρyx plateaus
108
+ accompany the switching of the magnetic order in the system between the down and up
109
+ states and mark a topological transition between C = 1 and C = −1. The ρxx peaks and ρyx
110
+ zero crossings observed in the magnetic hysteresis loops occur at the magnetic coercive field
111
+ µ0Hc and correspond with an Mz = 0 condition (Fig. 1 (b)).
112
+ Figure 1 (c) demonstrates the gate response of device P2 at a temperature of T = 500 mK.
113
+ At this relatively elevated temperature thermal excitations into dissipative states precludes
114
+ the high quality quantization observed in the dilution cooled regime. Nevertheless, a clear
115
+ ρxx (ρyx) minimum (maximum) is observed at an optimized gate voltage of roughly −1.5 V;
116
+ indicative of the incipient QAHI phase. The magnetic coercive field µ0Hc, a rough avatar
117
+ for the magnetic ordering strength, is also measured as a function of the gate voltage. We
118
+ observe an enhanced magnetic order when the system is driven away from the charge neutral
119
+ point. Such an enhancement in magnetism with the addition of carriers into the system has
120
+ been previously reported, and is commonly attributed to itinerant carrier mediated RKKY
121
+ interactions strengthening the coupling between Cr-ions [25–27]. In a narrow range near V c
122
+ g ,
123
+ however, µ0Hc exhibits very little if any response to the changing gate voltage (gray regime
124
+ in Fig. 1 (c)). In this region the carrier concentration is minimized, and the Cr-Cr magnetic
125
+ coupling is sustained by the van Vleck mechanism [5, 28, 29].
126
+ Following ambient pressure characterization, QAHI devices were loaded into a piston
127
+ 4
128
+
129
+ pressure cell (Fig. 2(a)) and studied at hydrostatic pressures up to 1.6 GPa (Fig. 2 (b)).
130
+ Comparison to the related Sb2Te3 system suggests a nearly isotropic compression of roughly
131
+ 1% may be expected in our CBST films at the maximal pressure [30, 31], though clamping
132
+ by the more rigid GaAs substrate may slightly mute the lattice compression experienced by
133
+ our thin film devices [31, 32]. Despite the modest compression that may be anticipated in
134
+ these experiments, our QAHI devices are nevertheless quite responsive to lattice tuning in
135
+ the range of pressure studied. Figure 2 presents a summary of basic transport data collected
136
+ at 1.5 K, indicating that the system trends away from quantized transport with shrinking
137
+ unit cell size. This is evidenced by an increase in ρxx and concomitant reduction in ρyx
138
+ seen in both gate voltage traces (Fig. 2 (c), 2 (d)) and field hysteresis loops (Fig. 2 (e), 2
139
+ (f)). Despite the trend away from quantized transport, a ρyx (ρxx) maxima (minima) is still
140
+ seen near V c
141
+ g at all pressures. That the gate cannot recover the same degree of transport
142
+ quantization at all pressures suggests the flow away from idealized QAHI behavior is due to
143
+ a pressure driven modification of the electronic band structure rather than a rigid shift of the
144
+ chemical potential, as the latter scenario could possibly be compensated for by sweeping out
145
+ carriers using the gate. In fact, the observation of a consistent V c
146
+ g at all pressures suggests
147
+ any shifting of the Fermi energy within the pressure range explored is minimal.
148
+ Comparison of the temperature and voltage dependent ρxx and ρyx at pressures of 0,
149
+ 0.7, and 1.6 GPa are shown as two-dimensional color plots in Figs. 3 (a-f), providing a
150
+ qualitative visualization of a closing topological gap with increasing pressure. By fitting the
151
+ temperature dependent ρxx at Vg = 0 V and µ0H = 2 T to an Arrhenius model (Fig. 3 g) the
152
+ value of this gap is quantified at all pressures. The pressure dependence of the topological
153
+ gap is summarized in Fig. 3 (i), indicating the gap remains intact, but decreases in a linear
154
+ fashion by almost exactly a factor of 2 from 1.2 K to 0.6 K over the pressure range explored.
155
+ Extrapolating the linear trend to zero suggests a critical pressure PC of approximately 3.3
156
+ GPa, at which point we anticipate a topological phase transition away from the QAHI
157
+ state to occur. To demonstrate that the QAHI phase does persist to the highest pressures
158
+ measured in this study, in Fig. 3 (h) we present data collected on another device, sample P1,
159
+ at a temperature of 20 mK and pressure of 1.6 GPa. At these conditions, we still observe
160
+ conductivity values within 3% of the quantized expectation of e2/h, confirming that 1.6 GPa
161
+ is insufficient to drive these samples out of the QAHI ground state.
162
+ Intriguingly, while the transport gap closes in pressurized QAHI samples, we observe
163
+ 5
164
+
165
+ a pressure driven enhancement in the magnetic order as demonstrated by an increasing
166
+ coercive field. This enhancement is visible in Fig. 4, where the field dependent ρxx hysteresis
167
+ loops collected from device P1 at a temperature of 20 mK are presented. The ρxx peaks
168
+ are clearly pushed to higher fields with increasing pressure, reflecting the growth in µ0Hc
169
+ from a value of 133 mT at 0.1 GPa to a notably larger 144 mT at 1.6 GPa. At the 20
170
+ mK temperature where these data are collected kbT << ∆. Consequently, the strength of
171
+ magnetic interactions dependent upon itinerant charge carriers are vanishingly weak and
172
+ this enhanced magnetic order is presumably sustained through the van Vleck mechanism.
173
+ In addition to the magnetic enhancement observed at 20 mK, an increasing coercive field
174
+ under pressure is also observed in devices P2/P3 between 280 mK and 15 K, demonstrating
175
+ this effect to be consistent between samples and persistent over a wide temperature range
176
+ [24]. Gate-dependent data collected in P2/P3 demonstrate the magnetic enhancement can
177
+ be maximized by gate-tuning towards the valence band; indicating that pressure likely also
178
+ enhances the hole-mediated RKKY interaction in a manner consistent with previous reports
179
+ in more traditional dilute magnetic semiconductors [33].
180
+ The strengthened magnetic ordering indicates that it is unlikely that the pressure driven
181
+ reduction in the transport gap is a consequence of a reduced exchange field at the Dirac sur-
182
+ face states. Alternative sources that may account for the suppressed gap include increasing
183
+ surface hybridization or occupation of delocalized, dissipative states. To understand what
184
+ effects are dominant in our system, we perform first principle band structure calculations
185
+ for a 6 QL thick slab of CBST host compound Sb2Te3. As Bi primarily functions as a
186
+ counter-dopant in CBST [34], and Cr d-electrons do not contribute to the density of states
187
+ at the Fermi energy [5], Sb2Te3 calculations capture the principal details of the CBST band
188
+ structure [29] while notably excluding the material magnetism and resulting exchange gap.
189
+ Thus, in the presented calculations, trends in the surface hybridization are observed directly
190
+ and are not obfuscated by magnetic gapping of the surface band structure. Following pre-
191
+ vious example [30, 35], pressure is simulated by isotropically compressing the boundaries
192
+ of the computational unit and allowing all interior atoms to relax to their lowest energy
193
+ configuration.
194
+ Band structure calculations were performed in 1% strain increments between 0% and 4%.
195
+ Calculations at 0% and -4% compressive strains are presented in Fig. 5 (a-d). Consistent
196
+ with previous reports, we find that increasing pressure widens the direct, bulk band gap at
197
+ 6
198
+
199
+ Γ, while simultaneously raising the energy of the valence band valley Evb between Γ and M
200
+ [30]. At the computational thickness of 6 QL, we observe a small hybridization gap m in the
201
+ surface bands even in the zero-compression limit (Fig. 5 (e)). This feature is amplified as
202
+ the unit cell size is decreased, indicating increasingly pronounced hybridization between top
203
+ and bottom surfaces of the TI under pressure. Finally, using the calculated band structures,
204
+ we extract the van Vleck susceptibility χV V according to the relationship:
205
+ χV V = 1
206
+ N
207
+
208
+ k
209
+
210
+ Enk<µ<Emk
211
+ 4µ0µ2
212
+ B
213
+ ⟨nk| ˆSz |mk⟩ ⟨mk| ˆSz |nk⟩
214
+ Emk − Enk
215
+ (1)
216
+ Here µ0 is the vacuum permeability, µB is the Bohr magneton, ˆSz is the spin operator.
217
+ n, |nk⟩, and Enk represent the band index, wave function and eigenvalue of nth band in
218
+ valence bands at momentum k, while m, |mk⟩ and Emk correspond to conduction band
219
+ states. Based upon these calculations we observe a clear though modest enhancement in
220
+ χV V with increasing pressure (Fig. 5 (f)). This enhancement emanates primarily from states
221
+ near Γ, suggesting it is born from increasing mixing between the inverted Sb p−
222
+ 1z and Te p−
223
+ 2z
224
+ states in the compressed lattice.
225
+ The above observations have significant implications to the QAH state. The pressure
226
+ driven enhancement in m biases the system towards a trivial insulator phase, with the
227
+ electronic phase transition occurring once the magnitude of m grows larger than that of
228
+ the exchange gap ∆ex. Meanwhile, once the energy of the valence band valley exceeds the
229
+ Fermi energy (i.e. Evb > 0) delocalized states in the valence band will populate down to
230
+ lowest temperatures and the system will behave as a metal. In the case when Evb > 0 and
231
+ ∆ex > m carrier conduction in the chiral channels will relax internally through the dissipative
232
+ valence band states, precluding transport quantization. The calculated evolutions of m, χV V ,
233
+ and Evb with increasing pressure (Fig. 5 (e-g)) therefore imply a coalescence of metallic,
234
+ insulating, and QAHI electronic ground states in the pressure tuned CBST system. Based
235
+ upon these calculated band structures and the known evolutions of the hybridization gap,
236
+ bulk state quantum confinement, and exchange energy with decreasing CBST thickness
237
+ [18, 29, 36], we present a proposed topological phase diagram in layer thickness and pressure
238
+ dependent parameter space in Fig. 5(h). These phase boundaries could be further adjusted
239
+ by tuning along other axes such as external magnetic field [18, 29] or applied gate voltage.
240
+ We will also note that the QAHI/insulator phase boundary presented here assumes that
241
+ the hybridization gap is more responsive to pressure than the exchange gap, an assumption
242
+ 7
243
+
244
+ supported by the relatively weak pressure effect on χvv (Fig. 5 (f)) compared with m (Fig. 5
245
+ (e)). It is possible, however, that the exchange gap may feature its own pressure dependence,
246
+ altering the trajectory of the ∆ex = m boundary.
247
+ Having discussed the calculated pressure dependent band structure for this system, we
248
+ now consider how these calculations comport with the experimentally determined results.
249
+ Notably, our band structure calculations unambiguously indicate a trend away from the
250
+ QAHI state in compressed tetradymite TIs, consistent with the experimental reality. While
251
+ the calculations indicate that the electronic state beyond Pc may be either trivially insulat-
252
+ ing or metallic depending upon the details of the material, in our samples we believe the
253
+ topological phase transition occurring at Pc to be towards the metallic regime. We come to
254
+ this conclusion through the observations of reduced ρxx at temperatures above TC, as well
255
+ as reductions in the ρxx peaks at µ0Hc with increasing pressure; both of which suggest an
256
+ increasing density of states near the Fermi energy. Meanwhile, the enhanced χvv observed in
257
+ calculation captures the increasing magnetic ordering strength observed in our pressurized
258
+ QAHI films.
259
+ To conclude, these results establish lattice deformation as an effective, clean tuning pa-
260
+ rameter for modifying the electronic and magnetic properties of alloyed QAHI materials.
261
+ Though a significant material response is observed in the pressure range explored in this
262
+ study, we believe increasing pressure may evoke even more dramatic electronic and mag-
263
+ netic responses. Crucially, Pc is well below the 9+ GPa threshold at which a structural
264
+ phase transition from rhombehedral to monoclinic crystallographic point groups has been
265
+ previously reported in tetradymite TI systems [30, 37, 38], indicating future experiments
266
+ may explore a significantly larger pressure range without concern of interference from ad-
267
+ ditional structural phases. Finally, on the basis of these results, we propose that tensile
268
+ strain, as opposed to its compressive counterpart studied here, may present an exciting
269
+ tuning parameter to explore in future efforts to enhance QAHI behavior.
270
+ 8
271
+
272
+ I.
273
+ METHODS
274
+ A.
275
+ Material Growth
276
+ All CBST films were grown in an ultra-high vacuum, Perkin-Elmer molecular beam epi-
277
+ taxy (MBE) system. Epi-ready semi-insulating GaAs (111)B substrates were used for the
278
+ growth. Before growth, the substrates were loaded into the MBE chamber and pre-annealed
279
+ at the temperature of 630 °C in a Te-rich environment in order to desorb the oxide on the
280
+ surface. During growth, the substrate was kept at 190 °C. High-purity Bi, Sb, Cr and Te
281
+ sources were evaporated simultaneously from standard Knudsen cells. The growth process
282
+ was monitored by the reflection high-energy electron diffraction (RHEED) in-situ, and the
283
+ digital RHEED images were captured using a KSA400 system built by K-space Associates,
284
+ Inc.
285
+ Sharp and streaky lines in the RHEED pattern indicate good epitaxial crystalline
286
+ quality.
287
+ B.
288
+ High pressure experiments
289
+ Pressure was applied using a standard piston pressure-cell. To fit within the active area
290
+ of the pressure cell, single devices were cut from pre-patterned wafers to dimensions of less
291
+ than 3.0 mm, and were fixed to a fiber optic using epoxy to orient the sample within the
292
+ pressure cell. Thin platinum wires were attached by hand to the contact pads of the device
293
+ under test with silver paint. A small ruby chip was fixed to the tip of the fiber optic, which
294
+ was used to calibrate the pressure at room temperature and again at low temperature. A
295
+ PTFE cup was filled with Daphne 7575 oil and fixed in place over the sample platform so
296
+ that the device was surrounded by the hydrostatic fluid. Once assembled, the cell was placed
297
+ in a hydraulic press where a piston fed through a hole in the threaded top screw of the cell
298
+ was used to add pressure. When the appropriate pressure was reached, the top screw was
299
+ clamped, locking in the pressure.
300
+ Transport measurements were collected using a low-frequency (< 10 Hz) lockin technique
301
+ with ac excitations of 10 nA. Gate swept data display a small hysteresis based upon the
302
+ gate history. To compensate for this effect and ensure consistency all data presented were
303
+ taken during sweeps from +3.25 to −5 V.
304
+ Cryogenic sample environments for ambient pressure experiments were maintained us-
305
+ 9
306
+
307
+ ing a Quantum Design Physical Property Measurement System equipped with a dilution
308
+ refrigerator insert. High pressure measurements were conducted in high magnetic field cells
309
+ SCM-1 and SCM-2 at the National High Magnetic Field Laboratory in Tallahassee. SCM-1
310
+ is equipped with a dilution refrigerator cryogenic environment while SCM-2 was operated
311
+ with pure 3He cooled using a sorption pump. Both SCM-1 and SCM-2 are equipped with
312
+ 18 T superconducting magnets. To compensate for the remnant field of the superconduct-
313
+ ing magnet, the field dependent data were calibrated using a Hall sensor. Additionally, to
314
+ account for the magnetoresistance of the SCM-2 thermometers, the temperatures used in
315
+ Figs. 3 and 4 were calibrated using the strong temperature dependence of the QAHI mate-
316
+ rial itself. For details of the field and temperature calibration processes please refer to the
317
+ Supplemental Information [24].
318
+ C.
319
+ First principle calculations
320
+ We perform first-principles calculations as implemented in the Vienna Ab Initio Simu-
321
+ lation Package (VASP) [39].The Perdew, Burke, Ernzerhof (PBE) form of the generalized
322
+ gradient approximation is used as the exchange-correlation functional [40]. The computa-
323
+ tional cell employed is constructed from six QL Sb2Te3 slabs stacked with a 40 ˚A thick
324
+ vacuum region. We apply an energy cutoff of 500 eV and a 8x8x1 Γ-centered k-grid to
325
+ optimize cell structure and atomic positions. The optimized lattice constant of the slab is
326
+ a = b = 4.3307 ˚A and c = 31.09 ˚A. Tri-axial compressive strains between -4.0% and 0.0%
327
+ are applied by shrinking the perimeter of the Sb2Te3 slab. At each strain, atomic positions
328
+ inside the unit cell are allowed to relax in all directions. Spin-orbit coupling is included
329
+ during the charge density relaxation for electronic band structures.
330
+ Based upon the band structure, van Vleck susceptibilities were calculated according to
331
+ Eq. 2 [5].
332
+ χV V = 1
333
+ N
334
+
335
+ k
336
+
337
+ Enk<µ<Emk
338
+ 4µ0µ2
339
+ B
340
+ ⟨nk| ˆSz |mk⟩ ⟨mk| ˆSz |nk⟩
341
+ Emk − Enk
342
+ (2)
343
+ where, as described in the main text, µ0 is the vacuum permeability, µB is the Bohr magne-
344
+ ton, ˆSz is the spin operator. n, |nk⟩, and Enk represent the band index, wave function and
345
+ eigenvalue of nth band in valence bands at momentum k, while m, |mk⟩ and Emk correspond
346
+ to conduction band states. The susceptibility averages over k points in the first Brillouin
347
+ 10
348
+
349
+ zone, where N is the number of k points. We focus on the k symmetric lines (K − Γ − M)
350
+ around the Dirac point which make the susceptibility calculation feasible.
351
+ The wave functions |nk⟩ is a spinor, with both spin up and spin down components due
352
+ to spin-orbit coupling, as shown in Eq. 3.
353
+ |nk⟩ =
354
+
355
+ �ψ↑
356
+ nk(r)
357
+ ψ↓
358
+ nk(r)
359
+
360
+
361
+ (3)
362
+ Here ψ↑
363
+ nk(r) and ψ↓
364
+ nk(r) are spin up and down components of a real space wave function.
365
+ The real space wave functions are found through summing over plane-wave vectors G and
366
+ their associated plane-wave coefficients. The wavefunctions are read from WAVECAR files,
367
+ produced by VASP [41], with a cut-off plane-wave energy of 500 eV.
368
+ II.
369
+ ACKNOWLEDGMENTS
370
+ C.E. is an employee of Fibertek, Inc. and performs in support of Contract No.W15P7T19D0038,
371
+ Delivery Order W911-QX-20-F-0023. The views expressed are those of the authors and do
372
+ not reflect the official policy or position of the Department of Defense or the US government.
373
+ The identification of any commercial product or tradename does not imply endorsement or
374
+ recommendation by Fibertek Inc. This work was supported by the NSF under Grants No.
375
+ 1936383 and No. 2040737, the U.S. Army Research Office MURI program under Grants No.
376
+ W911NF-20-2-0166 and No. W911NF-16-1-0472. A portion of this work was performed at
377
+ the National High Magnetic Field Laboratory, which is supported by the National Science
378
+ Foundation Cooperative Agreement No.
379
+ DMR-1644779 and the State of Florida.
380
+ This
381
+ work was supported in part by the DEVCOM Army Research Laboratory (ARL) Research
382
+ Associateship Program (RAP) Cooperative Agreement(CA) W911NF-16-2-0008. This work
383
+ used the Extreme Science and Engineering Discovery Environment (XSEDE) [42], which
384
+ is supported by National Science Foundation Grant No. ACI-1548562 and allocation ID
385
+ TG-DMR130081.
386
+ 11
387
+
388
+ III.
389
+ AUTHOR CONTRIBUTIONS
390
+ C.E., G.Q., L.T., and K.L.W. conceived of and designed the experiments. QAHI materials
391
+ were grown by P.Z. and L.T.. Devices were fabricated by G.Q., S.K.C., and K.W.. Pressure
392
+ dependent transport measurements were performed by C.E., G.Q., and D.G.. First principle
393
+ calculations were performed by S.K., Y.L., and M.N., and T.Q. calculated the van Vleck
394
+ susceptibilities. C.E., G.Q., and K.L.W. wrote the manuscript with contributions from all
395
+ authors.
396
+ IV.
397
+ DATA AVAILABILITY
398
+ The data represented in the figures are available with the online version of this paper.
399
+ All other data that supports the plots within this paper and other findings of this study are
400
+ available from the corresponding author upon reasonable request.
401
+ V.
402
+ COMPETING INTERESTS
403
+ The authors declare no competing interests.
404
+ [1] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L.
405
+ Wang, et al., Science 340, 167 (2013).
406
+ [2] X. Kou, S.-T. Guo, Y. Fan, L. Pan, M. Lang, Y. Jiang, Q. Shao, T. Nie, K. Murata, J. Tang,
407
+ et al., Physical Review Letters 113, 137201 (2014).
408
+ [3] C.-Z. Chang, W. Zhao, D. Y. Kim, H. Zhang, B. A. Assaf, D. Heiman, S.-C. Zhang, C. Liu,
409
+ M. H. Chan, and J. S. Moodera, Nature Materials 14, 473 (2015).
410
+ [4] J. Checkelsky, R. Yoshimi, A. Tsukazaki, K. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki,
411
+ and Y. Tokura, Nature Physics 10, 731 (2014).
412
+ [5] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Science 329, 61 (2010).
413
+ [6] J. Zhang, C.-Z. Chang, P. Tang, Z. Zhang, X. Feng, K. Li, L.-l. Wang, X. Chen, C. Liu,
414
+ W. Duan, et al., Science 339, 1582 (2013).
415
+ 12
416
+
417
+ [7] C.-X. Liu, S.-C. Zhang, and X.-L. Qi, Annual Review of Condensed Matter Physics 7, 301
418
+ (2016).
419
+ [8] K. Yasuda, T. Morimoto, R. Yoshimi, M. Mogi, A. Tsukazaki, M. Kawamura, K. S. Takahashi,
420
+ M. Kawasaki, N. Nagaosa, and Y. Tokura, Nature Nanotechnology 15, 831 (2020).
421
+ [9] A. C. Mahoney, J. I. Colless, L. Peeters, S. J. Pauka, E. J. Fox, X. Kou, L. Pan, K. L. Wang,
422
+ D. Goldhaber-Gordon, and D. J. Reilly, Nature Communications 8, 1836 (2017).
423
+ [10] A. M. Essin, J. E. Moore, and D. Vanderbilt, Physical Review Letters 102, 146805 (2009).
424
+ [11] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Physical Review B 78, 195424 (2008).
425
+ [12] Y. Zeng, C. Lei, G. Chaudhary, and A. H. MacDonald, Physical Review B 97, 081102 (2018).
426
+ [13] J. Wang, Q. Zhou, B. Lian, and S.-C. Zhang, Physical Review B 92, 064520 (2015).
427
+ [14] Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and Y. Zhang, Science 367,
428
+ 895 (2020).
429
+ [15] C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu, J. Zhang, and Y. Wang, Nature
430
+ Materials 19, 522 (2020).
431
+ [16] M. Serlin, C. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents,
432
+ and A. Young, Science 367, 900 (2020).
433
+ [17] C.-Z. Chang, P. Tang, Y.-L. Wang, X. Feng, K. Li, Z. Zhang, Y. Wang, L.-L. Wang, X. Chen,
434
+ C. Liu, et al., Physical Review Letters 112, 056801 (2014).
435
+ [18] L. Pan, X. Liu, Q. L. He, A. Stern, G. Yin, X. Che, Q. Shao, P. Zhang, P. Deng, C.-Y. Yang,
436
+ et al., Science Advances 6, eaaz3595 (2020).
437
+ [19] W. Li, M. Claassen, C.-Z. Chang, B. Moritz, T. Jia, C. Zhang, S. Rebec, J. Lee, M. Hashimoto,
438
+ D.-H. Lu, et al., Scientific Reports 6, 32732 (2016).
439
+ [20] I. Lee, C. K. Kim, J. Lee, S. J. Billinge, R. Zhong, J. A. Schneeloch, T. Liu, T. Valla, J. M.
440
+ Tranquada, G. Gu, et al., Proceedings of the National Academy of Sciences 112, 1316 (2015).
441
+ [21] Y. Tokura, K. Yasuda, and A. Tsukazaki, Nature Reviews Physics 1, 126 (2019).
442
+ [22] M. Mogi, R. Yoshimi, A. Tsukazaki, K. Yasuda, Y. Kozuka, K. Takahashi, M. Kawasaki, and
443
+ Y. Tokura, Applied Physics Letters 107, 182401 (2015).
444
+ [23] Y. Ou, C. Liu, G. Jiang, Y. Feng, D. Zhao, W. Wu, X.-X. Wang, W. Li, C. Song, L.-L. Wang,
445
+ et al., Advanced Materials 30, 1703062 (2018).
446
+ [24] Please refer to the Supplemental Information for further details.
447
+ 13
448
+
449
+ [25] Z. Zhang, X. Feng, M. Guo, K. Li, J. Zhang, Y. Ou, Y. Feng, L. Wang, X. Chen, K. He, et al.,
450
+ Nature Communications 5, 4915 (2014).
451
+ [26] X. Kou, Y. Fan, M. Lang, P. Upadhyaya, and K. L. Wang, Solid State Communications 215,
452
+ 34 (2015).
453
+ [27] X. Kou, M. Lang, Y. Fan, Y. Jiang, T. Nie, J. Zhang, W. Jiang, Y. Wang, Y. Yao, L. He,
454
+ et al., ACS Nano 7, 9205 (2013).
455
+ [28] M. Li, C.-Z. Chang, L. Wu, J. Tao, W. Zhao, M. H. Chan, J. S. Moodera, J. Li, and Y. Zhu,
456
+ Physical Review Letters 114, 146802 (2015).
457
+ [29] Y. Ji, Z. Liu, P. Zhang, L. Li, S. Qi, P. Chen, Y. Zhang, Q. Yao, Z. Liu, K. L. Wang, et al.,
458
+ ACS Nano 16, 1134 (2022).
459
+ [30] J. Zhu, J. Zhang, P. Kong, S. Zhang, X. Yu, J. Zhu, Q. Liu, X. Li, R. Yu, R. Ahuja, et al.,
460
+ Scientific Reports 3, 2016 (2013).
461
+ [31] S. Souza, C. Poffo, D. Trichˆes, J. De Lima, T. Grandi, A. Polian, and M. Gauthier, Physica
462
+ B: Condensed Matter 407, 3781 (2012).
463
+ [32] Y. Al-Douri, H. Abid, and H. Aourag, Materials Chemistry and Physics 87, 14 (2004).
464
+ [33] M. Csontos, G. Mihaly, B. Janko, T. Wojtowicz, X. Liu, and J. Furdyna, Nature Materials
465
+ 4, 447 (2005).
466
+ [34] J. Zhang, C.-Z. Chang, Z. Zhang, J. Wen, X. Feng, K. Li, M. Liu, K. He, L. Wang, X. Chen,
467
+ et al., Nature Communications 2, 574 (2011).
468
+ [35] J. Zhang, S. Zhang, H. Weng, W. Zhang, L. Yang, Q. Liu, S. Feng, X. Wang, R. Yu, L. Cao,
469
+ et al., Proceedings of the National Academy of Sciences 108, 24 (2011).
470
+ [36] X. Feng, Y. Feng, J. Wang, Y. Ou, Z. Hao, C. Liu, Z. Zhang, L. Zhang, C. Lin, J. Liao, et al.,
471
+ Advanced Materials 28, 6386 (2016).
472
+ [37] R. Vilaplana, D. Santamar´ıa-P´erez, O. Gomis, F. J. Manj´on, J. Gonz´alez, A. Segura,
473
+ A. Mu˜noz, P. Rodr´ıguez-Hern´andez, E. P´erez-Gonz´alez, V. Mar´ın-Borr´as, V. Mu˜noz Sanjose,
474
+ C. Drasar, and V. Kucek, Physical Review B 84, 184110 (2011).
475
+ [38] K. Kirshenbaum, P. Syers, A. Hope, N. Butch, J. Jeffries, S. Weir, J. Hamlin, M. Maple,
476
+ Y. Vohra, and J. Paglione, Physical Review Letters 111, 087001 (2013).
477
+ [39] G. Kresse and J. Furthm¨uller, Physical Review B 54, 11169 (1996).
478
+ [40] J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters 77, 3865 (1996).
479
+ 14
480
+
481
+ [41] R. M. Feenstra, N. Srivastava, Q. Gao, M. Widom, B. Diaconescu, T. Ohta, G. Kellogg,
482
+ J. Robinson, and I. Vlassiouk, Physical Review B 87, 041406 (2013).
483
+ [42] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lath-
484
+ rop, D. Lifka, G. D. Peterson, et al., Computing in Science & Engineering 16, 62 (2014).
485
+ 15
486
+
487
+ 0.1
488
+ 1
489
+ 10
490
+ 0
491
+ 10
492
+ 20
493
+ 30
494
+
495
+ T (K)
496
+ � (kΩ)
497
+ TC
498
+ (a)
499
+ � xx
500
+ � yx
501
+ 0
502
+ 10
503
+ 20
504
+ 30
505
+ M (emu/cc)
506
+ -0.5
507
+ 0.0
508
+ 0.5
509
+ -1.0
510
+ -0.5
511
+ 0.0
512
+ 0.5
513
+ 1.0
514
+ 1.5
515
+ 1 mT
516
+ � xx
517
+ � (h/e
518
+ 2)
519
+ � 0H (T)
520
+ � yx
521
+ 50 mK
522
+ (b)
523
+ -5
524
+ 0
525
+ 3
526
+ 135
527
+ 140
528
+ 145
529
+ � 0Hc (mT)
530
+ Vg
531
+ � xx
532
+ � yx
533
+ (c)
534
+ 500 mK
535
+ 0.0
536
+ 0.5
537
+ 1.0
538
+ � (h/e
539
+ 2)
540
+ FIG. 1.
541
+ Summary of magnetic and electrical properties in a QAHI. (a) Temperature
542
+ dependent ρxx (red) and ρyx (black) are presented for a QAHI device P2. Temperature dependent
543
+ sample magnetization acquired using a piece of unpatterned film is included for comparison (blue).
544
+ All data was collected at a magnetic field of 1 mT. Curie temperature denoted in the figure is
545
+ determined by Arrott analysis [24]. (b) Field dependent ρxx
546
+ and ρyx
547
+ data collected at 50mK
548
+ demonstrating well-quantized transport behavior. (c) Gate dependent ρxx (red), ρyx (black), and
549
+ magnetic coercive field µ0Hc (blue) at a temperature of 500 mK are displayed. In these data, µ0Hc
550
+ was determined by the location of the zero crossing points of the Hall bar’s two ρyx channels. The
551
+ error bars, meanwhile, represent the standard deviation of the four separate transitions measured
552
+ (i.e. up-down and down-up transitions in each channel). Grey shading denotes the center of the
553
+ emerging topological gap.
554
+ 16
555
+
556
+ H
557
+ 𝜀zz
558
+ 𝜀xx
559
+ 𝜀yy
560
+ Cr
561
+ Te
562
+ Bi/Sb
563
+ (a)
564
+ (b)
565
+ 12
566
+ 14
567
+ 16
568
+ 18
569
+ 2 T
570
+ 𝜌xx (kΩ)
571
+ (c)
572
+ 1.5 K
573
+ -5.0
574
+ -2.5
575
+ 0.0
576
+ 2.5
577
+ 10
578
+ 15
579
+ 20
580
+ 0 GPa
581
+ 0.3 GPa
582
+ 0.7 GPa
583
+ 1.2 GPa
584
+ 1.6 GPa
585
+ (d)
586
+ 𝜌yx (kΩ)
587
+ Vg
588
+ 15
589
+ 20
590
+ 25
591
+ (e)
592
+ 𝜌xx (kΩ)
593
+ 1.5 K
594
+ 0 V
595
+ Increasing P
596
+ -0.5
597
+ 0.0
598
+ 0.5
599
+ 1.0
600
+ -20
601
+ -10
602
+ 0
603
+ 10
604
+ 20
605
+ (f)
606
+ 𝜌yx (kΩ)
607
+ μ0H (T)
608
+ Increasing P
609
+ FIG. 2. Pressure dependent ρxx and ρyx in a QAHI device. (a) Schematic of pressure
610
+ dependent experiment, depicting the geometry of the pressure cell used and the orientation of the
611
+ sample plane and the external magnetic field. (b) Cartooned depiction of hydrostatic pressure effect
612
+ on CBST unit cell, emphasizing the roughly isotropic compression anticipated in these experiments.
613
+ (c,d) Gate dependent measurements of ρxx (c) and ρyx (d) collected at 1.5 K and 2 T. (e,f) Field
614
+ dependent ρxx (e) and ρyx (f) collected at 1.5 K and a Vg of 0 V. For data presented in panels
615
+ (c-f), 0 GPa data were collected on device P3 while all data at non-zero pressure were collected
616
+ from sample P2.
617
+ 17
618
+
619
+ 0 GPa
620
+ 0.33 GPa
621
+ 0.7 GPa
622
+ 1.2 GPa
623
+ 1.6 GPa
624
+ 0.5
625
+ 1.0
626
+ 1.5
627
+ (a)
628
+ (c)
629
+ (b)
630
+ T (K)
631
+ P = 0 GPa
632
+ 0.7 GPa
633
+ 1.6 GPa
634
+ � yx (h/e
635
+ 2)
636
+ 0.00
637
+ 0.25
638
+ 0.50
639
+ 0.75
640
+ -5
641
+ 0
642
+ 3
643
+ 0.5
644
+ 1.0
645
+ 1.5
646
+ (d)
647
+
648
+
649
+ Vg
650
+ T (K)
651
+ -5
652
+ 0
653
+ 3
654
+ (f)
655
+ Vg
656
+ 0.50
657
+ 0.75
658
+ 1.0
659
+ � xx (h/e
660
+ 2)
661
+ -5
662
+ 0
663
+ 3
664
+ (e)
665
+ Vg
666
+ 1
667
+ 2
668
+ 3
669
+ 0.2
670
+ 0.4
671
+ 0.6
672
+ (g)
673
+
674
+
675
+ � xx (h/e
676
+ 2)
677
+ 1/T (1/K)
678
+ -0.5
679
+ 0.0
680
+ 0.5
681
+ -1
682
+ 0
683
+ 1
684
+ (h)
685
+ � xx
686
+ � xy
687
+ 1.6 GPa
688
+
689
+
690
+ � ��(e
691
+ 2/h)
692
+ � 0H (T)
693
+ 20 mK
694
+ 0
695
+ 2
696
+ 4
697
+ 0.0
698
+ 0.5
699
+ 1.0
700
+ (i)
701
+
702
+ ∆ (K)
703
+ P (GPa)
704
+ PC
705
+ FIG. 3. Evolution of topological gap with increasing pressure. (a-f) Temperature and gate
706
+ dependent ρxx and ρyx are presented at a constant field of µ0H = 2 T, and pressures of 0 GPa
707
+ (a,d), 0.7 GPa (b,e), and 1.6 GPa (c,f). Contour lines are included at values of 0.125, 0.25, 0.5,
708
+ and 0.558 h/e2 in ρxx color plots, and at values of 0.5, 0.75, 0.9, and 0.95 in ρyx. (g) Logarithm of
709
+ longitudinal resistance values presented versus 1/T. The linearity of the curves when presented in
710
+ this fashion confirm thermally activated transport behavior of the form ρxx(T) ∝ exp(−∆/2kBT).
711
+ (h) Magnetic hysteresis loop of sample P1 collected at a pressure of 1.6 GPa and temperature of
712
+ 20 mK confirming the persistence of high quality quantization at dilution temperatures and high
713
+ pressures. (i) Pressure dependence of topological gap determined by temperature dependencies
714
+ presented in (g). Linear extrapolation to zero predicts a critical pressure Pc of approximately 3.3
715
+ GPa.
716
+ 18
717
+
718
+ -500
719
+ 0
720
+ 500
721
+ 0
722
+ 1
723
+
724
+ 50
725
+ 100
726
+ 150
727
+ 200
728
+ 250
729
+ 0.0
730
+ 0.5
731
+ 1.0
732
+ 1.5
733
+ 1.6 GPa
734
+ 0.9 GPa
735
+ 0.1 GPa
736
+ � xx (h/e
737
+ 2)
738
+ � 0H (mT)
739
+ 20 mK
740
+ FIG. 4. Evolution of magnetism under hydrostatic pressure. Pressure dependent evolution
741
+ of ρxx hysteresis loops are shown for sample P1 at 20 mK and pressures of 0.1, 0.9, and 1.6 GPa.
742
+ The inset displays the full magnetic hysteresis loops, while the main figure is zoomed to the region
743
+ near µ0Hc shaded in blue in the inset.
744
+ 19
745
+
746
+ Insulator
747
+ QAHI
748
+ Metal
749
+ E = E
750
+ vb
751
+ F
752
+ ex
753
+ 𝛥 = m
754
+ -0.5
755
+ 0.0
756
+ 0.5
757
+ E-ECNP (eV)
758
+ (a)
759
+ 𝜀 = 0 % (P = 0 GPa)
760
+ K
761
+ 𝛤
762
+ M
763
+ -100
764
+ -50
765
+ 0
766
+ 50
767
+ 100
768
+ E-ECNP (meV)
769
+ (c)
770
+ 𝜀 = -4 % (P = 6.8 GPa)
771
+ (b)
772
+ K
773
+ 𝛤
774
+ M
775
+ m
776
+ (d)
777
+ Evb
778
+ 0
779
+ 2
780
+ 4
781
+ 6
782
+ -50
783
+ 0
784
+ 50
785
+ 100
786
+ Evb (meV)
787
+ P (GPa)
788
+ (g)
789
+ (h)
790
+ 10
791
+ 20
792
+ 30 0
793
+ 1
794
+ 2
795
+ 3
796
+ 4
797
+ 𝜀 (%)
798
+ (e)
799
+ m (meV)
800
+ 3.5
801
+ 4.0
802
+ (f)
803
+ 𝜒VV (10
804
+ -10m
805
+ 3/mol)
806
+ t
807
+ P
808
+ FIG. 5. Electronic evolution with hydrostatic pressure. (a-d) Calculated electronic band
809
+ structure of a 6 QL thick Sb2Te3 slab with isotropic lattice compressions of 0% (a) and -4%. To
810
+ simplify their comparison, the calculated band structures are shifted vertically so that the center
811
+ of the surface band gap (ECNP ) rather than the calculated EF is positioned at zero energy. (b).
812
+ Zoomed band structures near EF and Γ are shown in (c) (0%) and (d) (4%), highlighting the
813
+ pressure dependencies of the hybridization gap m and the energy of the valence band valley Evb.
814
+ The locations of the zoomed regions are marked in (a) and (b) by boxes. (e-g) Pressure dependence
815
+ of m (e), χV V (f), and Evb (g) are presented with dashed lines as a guide for the eye. (h) Proposed
816
+ zero-temperature topological phase diagram for the CBST system as a function of pressure P and
817
+ film thickness t. Cartooned band structures representative of the electronic ground state are shown
818
+ in the four distinct regions in this topological phase space. In these simplified cartoons, the red
819
+ and blue lines represent the spin split surface bands, while the bulk valence band is presented in
820
+ black.
821
+ 20
822
+
69E1T4oBgHgl3EQfTgNE/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
79E2T4oBgHgl3EQflQc0/content/2301.03986v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db715e88437b67548bf5fe6828dc1a2c1053868168aef74e9ea134b1044a74f1
3
+ size 317183
8tE0T4oBgHgl3EQffgDC/content/tmp_files/2301.02406v1.pdf.txt ADDED
@@ -0,0 +1,947 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Prepared for submission to JCAP
2
+ Constraining primordial
3
+ non-Gaussianity by combining
4
+ next-generation galaxy and 21 cm
5
+ intensity mapping surveys
6
+ Sheean Jolicoeur1, Roy Maartens1,2,3, Simthembile Dlamini1
7
+ 1Department of Physics & Astronomy, University of the Western Cape, Cape Town 7535,
8
+ South Africa
9
+ 2Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX,
10
+ United Kingdom
11
+ 3National Institute for Theoretical & Computational Sciences (NITheCS), Cape Town 7535,
12
+ South Africa
13
+ Abstract. Surveys of the matter distribution contain ‘fossil’ information on possible non-
14
+ Gaussianity that is generated in the primordial Universe. This primordial signal survives
15
+ only on the largest scales where cosmic variance is strongest. By combining different surveys
16
+ in a multi-tracer approach, we can suppress the cosmic variance and significantly improve
17
+ the precision on the level of primordial non-Gaussianity. We consider a combination of an
18
+ optical galaxy survey, like the recently initiated DESI survey, together with a new and very
19
+ different type of survey, a 21 cm intensity mapping survey, like the upcoming SKAO survey. A
20
+ Fisher forecast of the precision on the local primordial non-Gaussianity parameter fNL, shows
21
+ that this multi-tracer combination, together with non-overlap single-tracer information, can
22
+ deliver precision comparable to that from the CMB. Taking account of the largest systematic,
23
+ i.e. foreground contamination in intensity mapping, we find that σ(fNL) ∼ 3.
24
+ arXiv:2301.02406v1 [astro-ph.CO] 6 Jan 2023
25
+
26
+ Contents
27
+ 1
28
+ Introduction
29
+ 1
30
+ 2
31
+ Multi-tracer power spectra
32
+ 2
33
+ 3
34
+ Modelling the surveys
35
+ 3
36
+ 3.1
37
+ Noise
38
+ 5
39
+ 3.2
40
+ Intensity mapping beam and foregrounds
41
+ 6
42
+ 4
43
+ Fisher forecast
44
+ 7
45
+ 5
46
+ Conclusion
47
+ 9
48
+ 1
49
+ Introduction
50
+ Constraining the local primordial non-Gaussianity (PNG) parameter fNL presents an impor-
51
+ tant challenge for next-generation large-scale structure surveys. Local-type PNG affects the
52
+ power spectrum of dark matter tracers by inducing a scale-dependent correction to the tracer
53
+ bias [1, 2]. This correction is strongly suppressed on small to medium scales, but on very
54
+ large scales, it is ∝ fNL(H2
55
+ 0/k2). This means that ultra-large survey volumes are required for
56
+ high-precision constraints.
57
+ The Planck survey of the cosmic microwave background (CMB) gives the current state-
58
+ of-the-art constraint σ(fNL) = 5.1 from the bispectrum [3]. Future CMB surveys will lead
59
+ to an improvement on the Planck precision, but not by much and not sufficient to access
60
+ σ(fNL) ≲ 1. This level of precision would enable us to rule out many single-field and multi-
61
+ field inflationary scenarios [4–6]. The hope is that this goal can be achieved by using the
62
+ extra modes in 3-dimensional surveys of the large-scale structure (see e.g. [7–12]). However,
63
+ extracting fNL from these surveys faces formidable difficulties:
64
+ • Observational systematics on very large scales [13–19]. For our simplified Fisher anal-
65
+ ysis, we neglect these systematics, except for the foreground contamination of 21 cm
66
+ intensity mapping (see below).
67
+ • Astrophysical complications entailed in the modelling of tracer clustering, in particular,
68
+ the uncertainties in modelling the scale-dependent bias [20, 21]. We use a simplified
69
+ model since a full treatment requires simulations, beyond the scope of this paper.
70
+ • A theoretical systematic arising from the neglect of lensing magnification and other
71
+ relativistic lightcone effects on the power spectrum, which can bias the best-fit fNL
72
+ [22–35]. Although the bias on best-fit can be large, the error σ(fNL) is not significantly
73
+ affected and we therefore omit these lightcone effects.
74
+ • Cosmic (or sample) variance that dominates ultra-large scale measurements. We deal
75
+ with this problem via a multi-tracer approach – which also helps to mitigate uncorrelated
76
+ systematics.
77
+ – 1 –
78
+
79
+ Recent constraints on fNL have used the BOSS galaxy [36] and eBOSS quasar [37]
80
+ samples, with the tightest constraint to date of σ(fNL) = 21 from eBOSS [38]. The much
81
+ larger volumes of upcoming surveys should facilitate significant improvement on this precision.
82
+ But if we rely on individual surveys using the power spectrum of single tracers, it turns out
83
+ that σ(fNL) ≲ 1 is not achievable – even if we neglect systematics and complexities in scale-
84
+ dependent bias [11]. The fundamental problem is cosmic variance.
85
+ A way to evade cosmic variance is the multi-tracer technique [39–48]. Forecasts indicate
86
+ that multi-tracing next-generation surveys can surpass the CMB precision, and in some cases
87
+ can achieve σ(fNL) ≲ 1 [47–60]. The performance of the multi-tracer improves when the
88
+ difference in tracer properties, especially the Gaussian clustering biases, is significant. It also
89
+ helps to suppress uncorrelated systematics.
90
+ In this paper, our aim is not to identify survey combinations that can achieve σ(fNL) ≲ 1
91
+ – for this purpose, one typically requires the very high number densities of photometric sur-
92
+ veys [47, 51]. Instead, our aim is to investigate the improvements over single-tracer constraints
93
+ when using a new type of spectroscopic large-scale structure survey – neutral hydrogen (HI)
94
+ intensity mapping of the 21 cm emission line – in combination with spectroscopic galaxy sur-
95
+ veys. Such a pair of spectroscopic samples has very different clustering biases and systematics,
96
+ which accentuates the advantages of a multi-tracer analysis.
97
+ We use a simple Fisher forecast on mock surveys, which are based on next-generation
98
+ surveys that are starting to observe or close to starting. The two surveys we have in mind
99
+ are: the Dark Energy Spectroscopic Instrument (DESI), with the Bright Galaxy Sample
100
+ (BGS) and Emission Line Galaxy (ELG) samples [61, 62], and the Square Kilometre Array
101
+ Observatory (SKAO), with intensity mapping surveys in Bands 1 and 2 [56, 63]. Galaxy
102
+ number count surveys are well established, but a cosmological HI intensity mapping survey
103
+ has not yet been implemented.
104
+ However, pilot surveys on the SKAO precursor telescope
105
+ MeerKAT have already been used to:
106
+ (a) measure the cross-power between MeerKAT and WiggleZ galaxy surveys [64], and
107
+ (b) start developing a pipeline for the planned SKAO surveys [65, 66].
108
+ We combine pairs of these surveys at low and high redshifts, using the Fisher single-
109
+ tracer constraints in the non-overlap volume and the multi-tracer constraints in the overlap
110
+ volume. The results show a reasonable improvement for the low-redshift pair, and a significant
111
+ improvement for the high-redshift pair, compared to the standard single-tracer forecasts for
112
+ σ(fNL).
113
+ The combination of all low- and high-redshift surveys improve on Planck, with
114
+ σ(fNL) ∼ 3. This constraint is based on avoiding foreground contamination of HI intensity
115
+ mapping on very large scales. Foreground contamination of HI intensity mapping has a strong
116
+ effect on the precision: if we neglect this foreground contamination, we find that σ(fNL) ∼ 1.
117
+ 2
118
+ Multi-tracer power spectra
119
+ At first order in perturbations, the density (or temperature) contrast of a tracer A is related
120
+ to the matter density contrast δ by
121
+ ∆A(z, k) =
122
+
123
+ bA(z) + f(z)µ2�
124
+ δ(z, k) ,
125
+ (2.1)
126
+ where bA is the (Gaussian) clustering bias, µ = ˆk · n is the projection along the line-of-sight
127
+ direction n, and f is the linear growth rate. We assume bA has a known redshift evolution
128
+ βA, following [67], so that
129
+ bA(z) = bA0 βA(z) ,
130
+ (2.2)
131
+ – 2 –
132
+
133
+ where the amplitude bA0 is a free parameter.
134
+ We highlight the point that a multi-tracer
135
+ approach reduces the impact of this assumption on σ(fNL) [35].
136
+ The Fourier power spectra at tree-level are given by
137
+
138
+ ∆A(z, k)∆B(z, k′)
139
+
140
+ = (2π)3PAB(z, k)δD(k + k′) ,
141
+ (2.3)
142
+ where the linear matter power spectrum (computed using CLASS [68]) is
143
+ PAB =
144
+
145
+ bA + fµ2��
146
+ bB + fµ2�
147
+ P.
148
+ (2.4)
149
+ In the presence of local PNG, the bias acquires a scale-dependent correction:
150
+ ˆbA(z, k) = bA(z) + bAφ(z)
151
+ fNL
152
+ M(z, k) ,
153
+ M(z, k) =
154
+ 2
155
+ 3Ωm0H2
156
+ 0
157
+ D(z)
158
+ gin
159
+ T(k) k2 .
160
+ (2.5)
161
+ Here T(k) is the matter transfer function (normalized to 1 on very large scales), D is the
162
+ growth factor (normalized to 1 today) and gin is the initial growth suppression function,
163
+ defined deep in the matter era. For ΛCDM
164
+ gin = 3
165
+ 5
166
+
167
+ 1 + z
168
+
169
+ D
170
+
171
+ 1 + 2f
172
+ 3Ωm
173
+
174
+ .
175
+ (2.6)
176
+ The non-Gaussian bias factor bAφ is halo-dependent and should be determined with the
177
+ aid of simulations [20, 69, 70]. A simplified model reduces it to
178
+ bAφ(z) = 2δc
179
+
180
+ bA(z) − pA
181
+
182
+ ,
183
+ (2.7)
184
+ where the critical collapse density is given by δc = 1.686 and pA are halo-dependent constants.
185
+ In the simplest (universal) halo model, pA = 1 for all tracers A.
186
+ But this model is not
187
+ consistent with simulations [20, 69, 70]. An improved (but still over-simplified) model allows
188
+ the constant pA to vary with tracer. For galaxies chosen by stellar mass, simulations indicate
189
+ that the rough approximation [69]
190
+ pg ≈ 0.55 ,
191
+ (2.8)
192
+ is an improvement, and we use this for the DESI-like samples. For HI intensity mapping, we
193
+ use the approximation [70]
194
+ pH ≈ 1.25 .
195
+ (2.9)
196
+ The fNL terms in the power spectra are of order H2
197
+ 0/k2 on ultra-large scales, k ≲ keq,
198
+ where T ≈ 1. Local PNG therefore dominates the power on ultra-large scales – but these
199
+ are also the scales where cosmic variance is largest. We deal with the cosmic variance via a
200
+ multi-tracer analysis, which includes the information from all auto- and cross-power spectra
201
+ of the two (or more) tracers (see section 4).
202
+ 3
203
+ Modelling the surveys
204
+ We consider two mock spectroscopic surveys:
205
+ A = g: galaxy survey, similar to DESI surveys [61, 62];
206
+ A = H: 21 cm HI intensity mapping (IM) survey, similar to SKAO surveys [56, 63, 71].
207
+ In both cases, we have a low- and a high-redshift survey. The sky and redshift coverage
208
+ of the individual and overlapping surveys are given in Table 1.
209
+ – 3 –
210
+
211
+ Table 1. Sky area and redshift range of surveys.
212
+ Survey
213
+ Sample
214
+ Ωsky
215
+ ttot
216
+ redshift
217
+
218
+ 103 deg2�
219
+
220
+ 103 hr
221
+
222
+ range
223
+ g (DESI-like)
224
+ BGS
225
+ 14
226
+ -
227
+ 0.00–0.50
228
+ ELG
229
+ 14
230
+ -
231
+ 0.60–1.70
232
+ H (SKAO-like)
233
+ Band 2
234
+ 20
235
+ 10
236
+ 0.10–0.58
237
+ Band 1
238
+ 20
239
+ 10
240
+ 0.35–3.05
241
+ g × H (low z)
242
+ BGS × Band 2
243
+ 10
244
+ 5
245
+ 0.10–0.50
246
+ g × H (high z)
247
+ ELG × Band 1
248
+ 10
249
+ 5
250
+ 0.60–1.70
251
+ 0
252
+ 1
253
+ 2
254
+ 3
255
+ z
256
+ 10−4
257
+ 10−3
258
+ 10−2
259
+ ng [ h3 Mpc
260
+ 3]
261
+ BGS
262
+ ELG
263
+ HI
264
+ 0.1
265
+ 0.2
266
+ 0.3
267
+ 0.4
268
+ 0.5
269
+ ¯TH [ mK]
270
+ Figure 1. Background comoving galaxy number densities (red, left-hand y-axis) and HI IM temper-
271
+ ature (blue, right-hand y-axis).
272
+ The one-parameter model (2.2) for the Gaussian clustering bias of the galaxy surveys
273
+ follows [29]
274
+ bg(z) =
275
+ bg0
276
+ D(z) .
277
+ (3.1)
278
+ Fiducial values are bg0 = 1.34 for the Bright Galaxy Sample (BGS) and bg0 = 0.84 for the
279
+ Emission Line Galaxy (ELG) sample. For the HI IM surveys we use a fit based on [72, 73]:
280
+ bH(z) = bH0
281
+
282
+ 1 + 0.823 z − 0.0546 z2�
283
+ with fiducial value bH0 = 0.842 .
284
+ (3.2)
285
+ The background comoving number density ¯ng for the BGS and ELG samples is modelled fol-
286
+ lowing [29], which leads to the smoothed curves shown in Figure 1. For HI IM, the background
287
+ brightness temperature is modelled via the fit given in [65, 74]:
288
+ ¯TH(z) = 0.0559 + 0.2324 z − 0.0241 z2 mK ,
289
+ (3.3)
290
+ which is also shown in Figure 1.
291
+ – 4 –
292
+
293
+ 3.1
294
+ Noise
295
+ In galaxy surveys, the shot noise (assumed to be Poissonian) is
296
+ P shot
297
+ gg
298
+ (z) =
299
+ 1
300
+ ¯ng(z) .
301
+ (3.4)
302
+ Then the total signal that we measure for the galaxy auto-power spectrum is
303
+ ˜Pgg(z, k, µ) = Pgg(z, k, µ) + P shot
304
+ gg
305
+ (z) ,
306
+ (3.5)
307
+ where Pgg is given by (2.4).
308
+ In IM surveys, there is shot noise, but also thermal (or instrumental) noise. The Poisso-
309
+ nian shot noise (see [75] for non-Poissonian corrections) is derived in a halo-model framework
310
+ and given by [72, 76],
311
+ P shot
312
+ HH (z) =
313
+ 1
314
+ ¯nH(z) =
315
+ 1
316
+ ¯ρ 2
317
+ H(z)
318
+
319
+ dM Nh(M, z) M2
320
+ H(M, z) ,
321
+ (3.6)
322
+ where ¯nH is the effective average comoving number density of HI, ¯ρH is the average comoving
323
+ HI density, Nh is the halo mass function (average comoving halo number density per mass)
324
+ and MH is the average HI mass in a halo of mass M. However, on the linear scales that we
325
+ consider, the shot noise is much smaller than the thermal noise and can be safely neglected
326
+ [72, 76].
327
+ The thermal noise in HI IM depends on the sky temperature in the radio band, the survey
328
+ specifications and the array configuration (single-dish or interferometer). For the single-dish
329
+ mode of SKAO-like surveys, the thermal noise power spectrum is [77–79]:
330
+ P therm
331
+ HH
332
+ (z) =
333
+ Ωsky
334
+ 2ν21ttot
335
+ (1 + z)r(z)2
336
+ H(z)
337
+ �Tsys(z)
338
+ ¯TH(z)
339
+ �2
340
+ 1
341
+ Nd
342
+ ,
343
+ (3.7)
344
+ where ν21 = 1420 MHz is the rest-frame frequency of the 21 cm emission, ttot is the total
345
+ observing time, and the number of dishes is Nd = 197 (with dish diameter Dd = 15 m). The
346
+ system temperature is modelled as [80]:
347
+ Tsys(z) = Td(z) + Tsky(z) = Td(z) + 2.7 + 25
348
+ �400 MHz
349
+ ν21
350
+ (1 + z)
351
+ �2.75
352
+ K,
353
+ (3.8)
354
+ where Td is the dish receiver temperature (see [71]). The total signal is then
355
+ ˜PHH(z, k, µ) = PHH(z, k, µ) + P shot
356
+ HH (z) + P therm
357
+ HH
358
+ (z) ≈ PHH(z, k, µ) + P therm
359
+ HH
360
+ (z) .
361
+ (3.9)
362
+ The noise for all surveys is shown in Figure 2.
363
+ In the case of the cross-power spectrum PgH, cross-shot noise arises if the halos that
364
+ host galaxies and HI overlap. Following the arguments given in [71, 81], we assume that the
365
+ cross-shot noise may be neglected. The total cross-power signal is then
366
+ ˜PgH = PgH with P shot
367
+ gH
368
+ ≈ 0 .
369
+ (3.10)
370
+ – 5 –
371
+
372
+ 0.0
373
+ 0.5
374
+ 1.0
375
+ 1.5
376
+ z
377
+ 102
378
+ 103
379
+ 104
380
+ P shot
381
+ gg
382
+ [h−3 Mpc3]
383
+ BGS
384
+ ELG
385
+ 1
386
+ 2
387
+ 3
388
+ z
389
+ 101
390
+ 102
391
+ 103
392
+ P therm
393
+ HH
394
+ [h−3 Mpc3]
395
+ Band 2
396
+ Band 1
397
+ Figure 2.
398
+ Shot noise for galaxy surveys (left) and thermal noise for IM surveys (right).
399
+ 3.2
400
+ Intensity mapping beam and foregrounds
401
+ HI IM surveys like the SKAO surveys have poor angular resolution, which results in power loss
402
+ on small transverse scales, i.e. for large k⊥ = (1 − µ2)1/2k. This effect is typically modelled
403
+ by a Gaussian beam factor [77]:
404
+ Db(z, k, µ) = exp
405
+
406
+ −(1 − µ2)k2r(z)2θb(z)2
407
+ 16 ln 2
408
+
409
+ with
410
+ θb(z) = 1.22 λ21(1 + z)
411
+ Dd
412
+ .
413
+ (3.11)
414
+ HI IM surveys are also contaminated by foregrounds that are much larger than the HI
415
+ signal. Since these foregrounds are spectrally smooth, they can be separated from the non-
416
+ smooth signal on small to medium scales. However, on very large radial scales, i.e. for small
417
+ k∥ = µk, the signal becomes smoother and therefore the separation fails. A comprehensive
418
+ treatment includes simulations of foreground cleaning of the HI signal (e.g. [15, 18]). For a
419
+ simplified Fisher forecast we can instead use a foreground avoidance approach, by excising
420
+ the regions of Fourier space where the foregrounds are significant. This means removing large
421
+ radial scales, which can be modelled via an exponential suppression factor [73, 82]:
422
+ Dfg(k, µ) = 1 − exp
423
+
424
+
425
+ �µk
426
+ kfg
427
+ �2�
428
+ .
429
+ (3.12)
430
+ We choose a typically used value:
431
+ kfg = 0.01 h Mpc−1 .
432
+ (3.13)
433
+ Figure 3 illustrates the consequences of foreground avoidance for the monopoles of the HI
434
+ power spectra, PAH,0. It is clear that large-scale (small k) power in PAH,0 is lost and that the
435
+ effect of local PNG on these large scales is suppressed by foreground avoidance. Note that
436
+ fNL reduces the HI power on very large scales at z = 0.3, since bH < 1.25, which leads to
437
+ bHφ < 0 in (2.7). Also note that the beam effect on PAH,0, which tends to suppress small scale
438
+ (large k) modes, is negligible at the low redshift, but becomes apparent at higher redshift.
439
+ In summary, the effects of the radio telescope beam and radio foreground avoidance lead
440
+ to the following modifications of the power spectra PAH:
441
+ PHH(z, k, µ) → Dfg(k, µ) Db(z, k, µ)2 PHH(z, k, µ) ,
442
+ (3.14)
443
+ PgH(z, k, µ) → Dfg(k, µ) Db(z, k, µ) PgH(z, k, µ) .
444
+ (3.15)
445
+ – 6 –
446
+
447
+ 10−3
448
+ 10−2
449
+ 10−1
450
+ k [h Mpc−1]
451
+ 101
452
+ 102
453
+ 103
454
+ 104
455
+ PAB, 0 [h−3 Mpc3]
456
+ k = 0.01
457
+ BGS
458
+ Band 2
459
+ BGS × Band 2
460
+ fNL = 0
461
+ fNL = 10
462
+ 10−3
463
+ 10−2
464
+ 10−1
465
+ k [h Mpc−1]
466
+ 101
467
+ 102
468
+ 103
469
+ 104
470
+ PAB, 0 [h−3 Mpc3]
471
+ k = 0.01
472
+ ELG
473
+ Band 1
474
+ ELG × Band 1
475
+ fNL = 0
476
+ fNL = 10
477
+ Figure 3. The monopole power spectra at z = 0.3 (left) and z = 1.0 (right).
478
+ 4
479
+ Fisher forecast
480
+ For a multi-tracer combination of two dark matter tracers g and H, the data vector of power
481
+ spectra is
482
+ P =
483
+
484
+ Pgg , PgH , PHH
485
+
486
+ .
487
+ (4.1)
488
+ We exclude the noise from the data vector, since the noise is independent of the cosmolog-
489
+ ical and nuisance parameters. (The noise appears in the covariance, as given below.) The
490
+ standard cosmological parameters are measured on medium to small scales and are effectively
491
+ independent of the ultra-large scale parameter fNL. Fixing their values could bias the best-fit
492
+ value of fNL but is unlikely to have any significant impact on σ(fNL). We include in the Fisher
493
+ analysis the cosmological parameters that directly affect the large-scale amplitude (σ8,0) and
494
+ shape (ns) of the power spectrum.
495
+ We therefore consider the following cosmological and
496
+ nuisance parameters:
497
+ ϑα =
498
+
499
+ σ8,0, ns, fNL; bg0, bH0
500
+
501
+ .
502
+ (4.2)
503
+ Here we assume that the degeneracies between bA and σ8,0, and between ¯TH and σ8,0, have
504
+ been broken by other surveys that focus on medium to small scales.
505
+ The covariance for the multi-tracer power spectra is given by [83, 84]:
506
+ Cov(P , P ) =
507
+ k3
508
+ f
509
+ 4πk2∆k
510
+ 2
511
+ ∆µ
512
+
513
+
514
+
515
+
516
+
517
+
518
+
519
+ ˜P 2
520
+ gg
521
+ ˜Pgg ˜PgH
522
+ ˜P 2
523
+ gH
524
+ ˜Pgg ˜PgH
525
+ 1
526
+ 2
527
+ � ˜Pgg ˜PHH + ˜P 2
528
+ gH
529
+
530
+ ˜PHH ˜PgH
531
+ ˜P 2
532
+ gH
533
+ ˜PHH ˜PgH
534
+ ˜P 2
535
+ HH
536
+
537
+
538
+
539
+
540
+
541
+
542
+
543
+ .
544
+ (4.3)
545
+ Here ∆k and ∆µ are the bin-widths for k and µ and kf is the fundamental mode, corresponding
546
+ to the longest wavelength, which is determined by the comoving survey volume of the redshift
547
+ bin centred at z:
548
+ V (z) = Ωsky
549
+ 3
550
+
551
+ r
552
+
553
+ z + ∆z
554
+ 2
555
+ �3
556
+ − r
557
+
558
+ z − ∆z
559
+ 2
560
+ �3�
561
+ =
562
+ � 2π
563
+ kf(z)
564
+ �3
565
+ .
566
+ (4.4)
567
+ – 7 –
568
+
569
+ Then the multi-tracer Fisher matrix in a redshift bin is
570
+ F P
571
+ αβ =
572
+ +1
573
+
574
+ µ=−1
575
+ kmax
576
+
577
+ k=kmin
578
+ ∂α P · Cov(P , P )−1 · ∂β P T ,
579
+ (4.5)
580
+ where ∂α = ∂ / ∂ϑα. We choose the bin-widths and kmin following [85–87]:
581
+ ∆µ = 0.04 ,
582
+ ∆k = kf ,
583
+ kmin = kf .
584
+ (4.6)
585
+ The smallest scale (largest k) is chosen to ensure that linear perturbations remain accurate,
586
+ since we do not require information from nonlinear scales:
587
+ kmax = 0.08(1 + z)2/(2+ns) h Mpc−1 .
588
+ (4.7)
589
+ The galaxy and HI IM surveys do not have the same sky area and redshift ranges
590
+ (see Table 1).
591
+ The overlap redshift ranges are obvious; for the sky areas, we assume a
592
+ nominal overlap area of 10,000 deg2. The multi-tracer applies in the overlap redshift range
593
+ and overlap sky area. However, we can add the independent Fisher matrices obtained in the
594
+ non-overlapping regions of the two individual surveys to the multi-tracer Fisher matrix in the
595
+ overlapping region [71]. In detail, the non-overlap region is
596
+ • the non-overlap sky area of each survey, across the full redshift range of each survey;
597
+ • the overlap sky area, across the non-overlap parts of the redshift ranges of each survey.
598
+ Then the full Fisher matrix (denoted by g ⊗ H) is
599
+ F g⊗H
600
+ αβ
601
+ = F P
602
+ αβ(overlap) + F g
603
+ αβ(non-overlap) + F H
604
+ αβ(non-overlap).
605
+ (4.8)
606
+ Figure 4 shows the 1σ error contours computed from this Fisher matrix after marginalising
607
+ over the bias parameters in (4.2). We use the fiducial values σ8,0 = 0.8102, ns = 0.9665 and
608
+ fNL = 0, keeping other cosmological parameters fixed to their Planck 2018 best-fit values [88].
609
+ Table 2 lists the marginalised σ(fNL) constraints, including the improvements (in parentheses)
610
+ that follow when we ignore the HI IM foregrounds, i.e. when kfg = 0.
611
+ – 8 –
612
+
613
+ 0.80
614
+ 0.83
615
+ σ8, 0
616
+ −40
617
+ 0
618
+ 40
619
+ fNL
620
+ 0.96
621
+ 0.98
622
+ ns
623
+ σ8, 0 = 0.8102
624
+ 0.96
625
+ 0.98
626
+ ns
627
+ ns = 0.9665
628
+ −20
629
+ 20
630
+ fNL
631
+ fNL = 0.0
632
+ BGS
633
+ Band 2
634
+ BGS ⊗ Band 2
635
+ 0.806
636
+ 0.814
637
+ σ8, 0
638
+ −5
639
+ 0
640
+ 5
641
+ fNL
642
+ 0.962
643
+ 0.966
644
+ 0.970
645
+ ns
646
+ σ8, 0 = 0.8102
647
+ 0.963
648
+ 0.970
649
+ ns
650
+ ns = 0.9665
651
+ −5
652
+ 0
653
+ 5
654
+ fNL
655
+ fNL = 0.0
656
+ ELG
657
+ Band 1
658
+ ELG ⊗ Band 1
659
+ Figure 4. 1σ contours, including foreground avoidance in HI intensity mapping and marginalising
660
+ over bias parameters.
661
+ Table 2. Cumulative marginalised error σ(fNL) for: the single-tracer surveys; the low-z and high-z
662
+ multi-tracer pairs – including single-tracer information from the non-overlap volumes as in (4.8); and
663
+ the sum of the multi-tracer pairs.
664
+ Values in parenthesis correspond to ignoring foregrounds, i.e., with kfg = 0.
665
+ Survey
666
+ σ(fNL)
667
+ BGS
668
+ 20.8
669
+ ELG
670
+ 3.5
671
+ Band 2
672
+ 96.3 (57.7)
673
+ Band 1
674
+ 4.3
675
+ (1.3)
676
+ BGS ⊗ Band 2
677
+ 9.2
678
+ (2.3)
679
+ ELG ⊗ Band 1
680
+ 3.2
681
+ (1.3)
682
+ BGS ⊗ Band 2 + ELG ⊗ Band 1
683
+ 2.9
684
+ (1.1)
685
+ 5
686
+ Conclusion
687
+ We applied a simplified Fisher forecast analysis in order to gain insights into the improvements
688
+ on σ(fNL) from a new multi-tracer combination of large-scale structure surveys that will
689
+ be made possible by the upcoming HI intensity mapping surveys with the SKAO. For the
690
+ spectroscopic galaxy samples, we used mock surveys based on DESI. This allowed for multi-
691
+ tracer pairs at low and high redshifts, in order to see the level of improved precision from the
692
+ higher volume at high redshifts.
693
+ We included all available Fisher information from these mock surveys, using the multi-
694
+ tracer Fisher matrix on the overlap volume (sky area and redshift range) and the single-tracer
695
+ Fisher matrices on the non-overlap volumes, as in (4.8). Our results for σ(fNL) are summarised
696
+ – 9 –
697
+
698
+ in Table 2, which gives the single-tracer results for the 4 samples, the full multi-tracer results
699
+ from (4.8) for the low- and high-redshift pairs, and finally the results from the Fisher sum of
700
+ these pairs. The impact of foreground avoidance can be seen from the results (in parenthesis)
701
+ when foregrounds are ignored, corresponding to kfg = 0 in (3.12).
702
+ Figure 4 shows the 1σ contours for the 3 cosmological parameters (σ8, 0, ns, fNL),
703
+ marginalising over the 2 bias nuisance parameters (bg0, bH0).
704
+ As expected, the foreground avoidance severely degrades the constraining power of the
705
+ HI intensity surveys. Without foregrounds, the high-redshift Band 1 survey would perform
706
+ as well as the multi-tracer combination with the ELG survey: σ(fNL) = 1.3. The reduced
707
+ precision on fNL for single-tracer HI intensity constraints is consistent with the findings of [15],
708
+ where foreground cleaning is simulated. However, using the multi-tracer with a spectroscopic
709
+ galaxy survey helps to reduce the effect of foregrounds on σ(fNL), as shown by Table 2.
710
+ The multi-tracer analysis is also expected to mitigate other systematics in the galaxy and
711
+ HI intensity samples. For example, HI intensity mapping is also affected by radio frequency
712
+ interference, receiver noise, calibration errors and polarisation leakage. Incorporating these
713
+ and the galaxy systematics requires extensive simulations, beyond the scope of our paper.
714
+ – 10 –
715
+
716
+ Acknowledgements
717
+ We thank Dionysis Karagiannis for very helpful comments. We are supported by the South
718
+ African Radio Astronomy Observatory (SARAO) and the National Research Foundation
719
+ (Grant No. 75415).
720
+ References
721
+ [1] S. Matarrese and L. Verde, The effect of primordial non-Gaussianity on halo bias, Astrophys.
722
+ J. Lett. 677 (2008) L77–L80, [arXiv:0801.4826].
723
+ [2] N. Dalal, O. Dore, D. Huterer, and A. Shirokov, The imprints of primordial non-gaussianities
724
+ on large-scale structure: scale dependent bias and abundance of virialized objects, Phys. Rev.
725
+ D77 (2008) 123514, [arXiv:0710.4560].
726
+ [3] Planck Collaboration, Y. Akrami et al., Planck 2018 results. IX. Constraints on primordial
727
+ non-Gaussianity, Astron. Astrophys. 641 (2020) A9, [arXiv:1905.05697].
728
+ [4] M. Alvarez et al., Testing Inflation with Large Scale Structure: Connecting Hopes with Reality,
729
+ arXiv:1412.4671.
730
+ [5] R. de Putter, J. Gleyzes, and O. Doré, Next non-Gaussianity frontier: What can a
731
+ measurement with σ(fNL)≲1 tell us about multifield inflation?, Phys. Rev. D 95 (2017), no. 12
732
+ 123507, [arXiv:1612.05248].
733
+ [6] P. D. Meerburg et al., Primordial Non-Gaussianity, arXiv:1903.04409.
734
+ [7] T. Giannantonio, C. Porciani, J. Carron, A. Amara, and A. Pillepich, Constraining primordial
735
+ non-Gaussianity with future galaxy surveys, Mon. Not. Roy. Astron. Soc. 422 (2012)
736
+ 2854–2877, [arXiv:1109.0958].
737
+ [8] S. Camera, M. G. Santos, P. G. Ferreira, and L. Ferramacho, Cosmology on Ultra-Large Scales
738
+ with HI Intensity Mapping: Limits on Primordial non-Gaussianity, Phys. Rev. Lett. 111 (2013)
739
+ 171302, [arXiv:1305.6928].
740
+ [9] A. Font-Ribera, P. McDonald, N. Mostek, B. A. Reid, H.-J. Seo, and A. Slosar, DESI and
741
+ other dark energy experiments in the era of neutrino mass measurements, JCAP 05 (2014) 023,
742
+ [arXiv:1308.4164].
743
+ [10] S. Camera, M. G. Santos, and R. Maartens, Probing primordial non-Gaussianity with SKA
744
+ galaxy redshift surveys: a fully relativistic analysis, Mon. Not. Roy. Astron. Soc. 448 (2015),
745
+ no. 2 1035–1043, [arXiv:1409.8286].
746
+ [11] D. Alonso, P. Bull, P. G. Ferreira, R. Maartens, and M. Santos, Ultra large-scale cosmology in
747
+ next-generation experiments with single tracers, Astrophys. J. 814 (2015), no. 2 145,
748
+ [arXiv:1505.07596].
749
+ [12] A. Raccanelli, F. Montanari, D. Bertacca, O. Doré, and R. Durrer, Cosmological Measurements
750
+ with General Relativistic Galaxy Correlations, JCAP 05 (2016) 009, [arXiv:1505.06179].
751
+ [13] B. Leistedt, H. V. Peiris, and N. Roth, Constraints on Primordial Non-Gaussianity from 800
752
+ 000 Photometric Quasars, Phys. Rev. Lett. 113 (2014), no. 22 221301, [arXiv:1405.4315].
753
+ [14] J. Fonseca and M. Liguori, Measuring ultralarge scale effects in the presence of 21 cm intensity
754
+ mapping foregrounds, Mon. Not. Roy. Astron. Soc. 504 (2021), no. 1 267–279,
755
+ [arXiv:2011.11510].
756
+ [15] S. Cunnington, S. Camera, and A. Pourtsidou, The degeneracy between primordial
757
+ non-Gaussianity and foregrounds in 21 cm intensity mapping experiments, Mon. Not. Roy.
758
+ Astron. Soc. 499 (2020), no. 3 4054–4067, [arXiv:2007.12126].
759
+ – 11 –
760
+
761
+ [16] M. Rezaie et al., Primordial non-Gaussianity from the completed SDSS-IV extended Baryon
762
+ Oscillation Spectroscopic Survey – I: Catalogue preparation and systematic mitigation, Mon.
763
+ Not. Roy. Astron. Soc. 506 (2021), no. 3 3439–3454, [arXiv:2106.13724].
764
+ [17] R. H. Liu and P. C. Breysse, Coupling parsec and gigaparsec scales: Primordial
765
+ non-Gaussianity with multitracer intensity mapping, Phys. Rev. D 103 (2021), no. 6 063520,
766
+ [arXiv:2002.10483].
767
+ [18] M. Spinelli, I. P. Carucci, S. Cunnington, S. E. Harper, M. O. Irfan, J. Fonseca, A. Pourtsidou,
768
+ and L. Wolz, SKAO HI intensity mapping: blind foreground subtraction challenge, Mon. Not.
769
+ Roy. Astron. Soc. 509 (2021), no. 2 2048–2074, [arXiv:2107.10814].
770
+ [19] W. Riquelme et al., Primordial non-Gaussianity with Angular correlation function: Integral
771
+ constraint and validation for DES, arXiv:2209.07187.
772
+ [20] A. Barreira, Can we actually constrain fNL using the scale-dependent bias effect? An
773
+ illustration of the impact of galaxy bias uncertainties using the BOSS DR12 galaxy power
774
+ spectrum, JCAP 11 (2022) 013, [arXiv:2205.05673].
775
+ [21] T. Lazeyras, A. Barreira, F. Schmidt, and V. Desjacques, Assembly bias in the local PNG halo
776
+ bias and its implication for fNL constraints, arXiv:2209.07251.
777
+ [22] T. Namikawa, T. Okamura, and A. Taruya, Magnification effect on the detection of primordial
778
+ non-Gaussianity from photometric surveys, Phys. Rev. D 83 (2011) 123514,
779
+ [arXiv:1103.1118].
780
+ [23] M. Bruni, R. Crittenden, K. Koyama, R. Maartens, C. Pitrou, and D. Wands, Disentangling
781
+ non-Gaussianity, bias and GR effects in the galaxy distribution, Phys. Rev. D 85 (2012)
782
+ 041301, [arXiv:1106.3999].
783
+ [24] D. Jeong, F. Schmidt, and C. M. Hirata, Large-scale clustering of galaxies in general relativity,
784
+ Phys. Rev. D85 (2012) 023504, [arXiv:1107.5427].
785
+ [25] S. Camera, R. Maartens, and M. G. Santos, Einstein’s legacy in galaxy surveys, Mon. Not. Roy.
786
+ Astron. Soc. 451 (2015), no. 1 L80–L84, [arXiv:1412.4781].
787
+ [26] A. Kehagias, A. M. Dizgah, J. Norena, H. Perrier, and A. Riotto, A Consistency Relation for
788
+ the Observed Galaxy Bispectrum and the Local non-Gaussianity from Relativistic Corrections,
789
+ JCAP 1508 (2015), no. 08 018, [arXiv:1503.04467].
790
+ [27] C. S. Lorenz, D. Alonso, and P. G. Ferreira, Impact of relativistic effects on cosmological
791
+ parameter estimation, Phys. Rev. D 97 (2018), no. 2 023537, [arXiv:1710.02477].
792
+ [28] D. Contreras, M. C. Johnson, and J. B. Mertens, Towards detection of relativistic effects in
793
+ galaxy number counts using kSZ Tomography, JCAP 10 (2019) 024, [arXiv:1904.10033].
794
+ [29] G. Jelic-Cizmek, F. Lepori, C. Bonvin, and R. Durrer, On the importance of lensing for galaxy
795
+ clustering in photometric and spectroscopic surveys, JCAP 04 (2021) 055, [arXiv:2004.12981].
796
+ [30] J. L. Bernal, N. Bellomo, A. Raccanelli, and L. Verde, Beware of commonly used
797
+ approximations. Part II. Estimating systematic biases in the best-fit parameters, JCAP 10
798
+ (2020) 017, [arXiv:2005.09666].
799
+ [31] M. S. Wang, F. Beutler, and D. Bacon, Impact of Relativistic Effects on the Primordial
800
+ Non-Gaussianity Signature in the Large-Scale Clustering of Quasars, Mon. Not. Roy. Astron.
801
+ Soc. 499 (2020), no. 2 2598–2607, [arXiv:2007.01802].
802
+ [32] R. Maartens, S. Jolicoeur, O. Umeh, E. M. De Weerd, and C. Clarkson, Local primordial
803
+ non-Gaussianity in the relativistic galaxy bispectrum, JCAP 04 (2021) 013,
804
+ [arXiv:2011.13660].
805
+ [33] E. Castorina and E. di Dio, The observed galaxy power spectrum in General Relativity, JCAP
806
+ 01 (2022), no. 01 061, [arXiv:2106.08857].
807
+ – 12 –
808
+
809
+ [34] M. Martinelli, R. Dalal, F. Majidi, Y. Akrami, S. Camera, and E. Sellentin, Ultralarge-scale
810
+ approximations and galaxy clustering: Debiasing constraints on cosmological parameters, Mon.
811
+ Not. Roy. Astron. Soc. 510 (2022), no. 2 1964–1977, [arXiv:2106.15604].
812
+ [35] J.-A. Viljoen, J. Fonseca, and R. Maartens, Multi-wavelength spectroscopic probes: biases from
813
+ neglecting light-cone effects, JCAP 12 (2021), no. 12 004, [arXiv:2108.05746].
814
+ [36] G. Cabass, M. M. Ivanov, O. H. E. Philcox, M. Simonović, and M. Zaldarriaga, Constraints on
815
+ multifield inflation from the BOSS galaxy survey, Phys. Rev. D 106 (2022), no. 4 043506,
816
+ [arXiv:2204.01781].
817
+ [37] E. Castorina et al., Redshift-weighted constraints on primordial non-Gaussianity from the
818
+ clustering of the eBOSS DR14 quasars in Fourier space, JCAP 09 (2019) 010,
819
+ [arXiv:1904.08859].
820
+ [38] E.-M. Mueller et al., The clustering of galaxies in the completed SDSS-IV extended Baryon
821
+ Oscillation Spectroscopic Survey: Primordial non-Gaussianity in Fourier Space,
822
+ arXiv:2106.13725.
823
+ [39] U. Seljak, Extracting primordial non-gaussianity without cosmic variance, Phys. Rev. Lett. 102
824
+ (2009) 021302, [arXiv:0807.1770].
825
+ [40] P. McDonald and U. Seljak, How to measure redshift-space distortions without sample variance,
826
+ JCAP 10 (2009) 007, [arXiv:0810.0323].
827
+ [41] G. M. Bernstein and Y.-C. Cai, Cosmology without cosmic variance, Mon. Not. Roy. Astron.
828
+ Soc. 416 (2011) 3009, [arXiv:1104.3862].
829
+ [42] N. Hamaus, U. Seljak, and V. Desjacques, Optimal Constraints on Local Primordial
830
+ Non-Gaussianity from the Two-Point Statistics of Large-Scale Structure, Phys. Rev. D 84
831
+ (2011) 083509, [arXiv:1104.2321].
832
+ [43] L. R. Abramo and K. E. Leonard, Why multi-tracer surveys beat cosmic variance, Mon. Not.
833
+ Roy. Astron. Soc. 432 (2013) 318, [arXiv:1302.5444].
834
+ [44] L. R. Abramo, L. F. Secco, and A. Loureiro, Fourier analysis of multitracer cosmological
835
+ surveys, Mon. Not. Roy. Astron. Soc. 455 (2016), no. 4 3871–3889, [arXiv:1505.04106].
836
+ [45] A. Witzemann, D. Alonso, J. Fonseca, and M. G. Santos, Simulated multitracer analyses with
837
+ HI intensity mapping, Mon. Not. Roy. Astron. Soc. 485 (2019), no. 4 5519–5531,
838
+ [arXiv:1808.03093].
839
+ [46] L. R. Abramo, J. a. V. Dinarte Ferri, I. L. Tashiro, and A. Loureiro, Fisher matrix for the
840
+ angular power spectrum of multi-tracer galaxy surveys, JCAP 08 (2022) 073,
841
+ [arXiv:2204.05057].
842
+ [47] D. Alonso and P. G. Ferreira, Constraining ultralarge-scale cosmology with multiple tracers in
843
+ optical and radio surveys, Phys. Rev. D 92 (2015), no. 6 063525, [arXiv:1507.03550].
844
+ [48] J. Fonseca, S. Camera, M. Santos, and R. Maartens, Hunting down horizon-scale effects with
845
+ multi-wavelength surveys, Astrophys. J. 812 (2015), no. 2 L22, [arXiv:1507.04605].
846
+ [49] L. D. Ferramacho, M. G. Santos, M. J. Jarvis, and S. Camera, Radio galaxy populations and
847
+ the multitracer technique: pushing the limits on primordial non-Gaussianity, Mon. Not. Roy.
848
+ Astron. Soc. 442 (2014), no. 3 2511–2518, [arXiv:1402.2290].
849
+ [50] D. Yamauchi, K. Takahashi, and M. Oguri, Constraining primordial non-Gaussianity via a
850
+ multitracer technique with surveys by Euclid and the Square Kilometre Array, Phys. Rev. D 90
851
+ (2014), no. 8 083520, [arXiv:1407.5453].
852
+ [51] R. de Putter and O. Doré, Designing an Inflation Galaxy Survey: how to measure σ(fNL) ∼ 1
853
+ using scale-dependent galaxy bias, Phys. Rev. D 95 (2017), no. 12 123513, [arXiv:1412.3854].
854
+ – 13 –
855
+
856
+ [52] J. Fonseca, R. Maartens, and M. G. Santos, Probing the primordial Universe with MeerKAT
857
+ and DES, Mon. Not. Roy. Astron. Soc. 466 (2017), no. 3 2780–2786, [arXiv:1611.01322].
858
+ [53] M. Schmittfull and U. Seljak, Parameter constraints from cross-correlation of CMB lensing
859
+ with galaxy clustering, Phys. Rev. D 97 (2018), no. 12 123540, [arXiv:1710.09465].
860
+ [54] M. Münchmeyer, M. S. Madhavacheril, S. Ferraro, M. C. Johnson, and K. M. Smith,
861
+ Constraining local non-Gaussianities with kinetic Sunyaev-Zeldovich tomography, Phys. Rev. D
862
+ 100 (2019), no. 8 083508, [arXiv:1810.13424].
863
+ [55] J. Fonseca, R. Maartens, and M. G. Santos, Synergies between intensity maps of hydrogen lines,
864
+ Mon. Not. Roy. Astron. Soc. 479 (2018), no. 3 3490–3497, [arXiv:1803.07077].
865
+ [56] SKA Collaboration, D. J. Bacon et al., Cosmology with Phase 1 of the Square Kilometre
866
+ Array: Red Book 2018: Technical specifications and performance forecasts, Publ. Astron. Soc.
867
+ Austral. 37 (2020) e007, [arXiv:1811.02743].
868
+ [57] Z. Gomes, S. Camera, M. J. Jarvis, C. Hale, and J. Fonseca, Non-Gaussianity constraints using
869
+ future radio continuum surveys and the multitracer technique, Mon. Not. Roy. Astron. Soc. 492
870
+ (2020), no. 1 1513–1522, [arXiv:1912.08362].
871
+ [58] M. Ballardini, W. L. Matthewson, and R. Maartens, Constraining primordial non-Gaussianity
872
+ using two galaxy surveys and CMB lensing, Mon. Not. Roy. Astron. Soc. 489 (2019), no. 2
873
+ 1950–1956, [arXiv:1906.04730].
874
+ [59] J. R. Bermejo-Climent, M. Ballardini, F. Finelli, D. Paoletti, R. Maartens, J. A. Rubiño
875
+ Martín, and L. Valenziano, Cosmological parameter forecasts by a joint 2D tomographic
876
+ approach to CMB and galaxy clustering, Phys. Rev. D 103 (2021), no. 10 103502,
877
+ [arXiv:2106.05267].
878
+ [60] J.-A. Viljoen, J. Fonseca, and R. Maartens, Multi-wavelength spectroscopic probes: prospects for
879
+ primordial non-Gaussianity and relativistic effects, JCAP 11 (2021) 010, [arXiv:2107.14057].
880
+ [61] DESI Collaboration, A. Aghamousa et al., The DESI Experiment Part I: Science,Targeting,
881
+ and Survey Design, arXiv:1611.00036.
882
+ [62] S. Yahia-Cherif, A. Blanchard, S. Camera, S. Casas, S. Ilić, K. Markovic, A. Pourtsidou,
883
+ Z. Sakr, D. Sapone, and I. Tutusaus, Validating the Fisher approach for stage IV spectroscopic
884
+ surveys, Astron. Astrophys. 649 (2021) A52, [arXiv:2007.01812].
885
+ [63] M. Berti, M. Spinelli, and M. Viel, Multipole expansion for 21cm Intensity Mapping power
886
+ spectrum: forecasted cosmological parameters estimation for the SKA Observatory,
887
+ arXiv:2209.07595.
888
+ [64] S. Cunnington et al., HI intensity mapping with MeerKAT: power spectrum detection in
889
+ cross-correlation with WiggleZ galaxies, arXiv:2206.01579.
890
+ [65] MeerKLASS Collaboration, M. G. Santos et al., MeerKLASS: MeerKAT Large Area Synoptic
891
+ Survey, in MeerKAT Science: On the Pathway to the SKA, 9, 2017. arXiv:1709.06099.
892
+ [66] J. Wang et al., HI intensity mapping with MeerKAT: calibration pipeline for multidish
893
+ autocorrelation observations, Mon. Not. Roy. Astron. Soc. 505 (2021), no. 3 3698–3721,
894
+ [arXiv:2011.13789].
895
+ [67] N. Agarwal, V. Desjacques, D. Jeong, and F. Schmidt, Information content in the redshift-space
896
+ galaxy power spectrum and bispectrum, JCAP 03 (2021) 021, [arXiv:2007.04340].
897
+ [68] D. Blas, J. Lesgourgues, and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS)
898
+ II: Approximation schemes, JCAP 1107 (2011) 034, [arXiv:1104.2933].
899
+ [69] A. Barreira, G. Cabass, F. Schmidt, A. Pillepich, and D. Nelson, Galaxy bias and primordial
900
+ non-Gaussianity: insights from galaxy formation simulations with IllustrisTNG, JCAP 12
901
+ (2020) 013, [arXiv:2006.09368].
902
+ – 14 –
903
+
904
+ [70] A. Barreira, The local PNG bias of neutral Hydrogen, HI, JCAP 04 (2022), no. 04 057,
905
+ [arXiv:2112.03253].
906
+ [71] J.-A. Viljoen, J. Fonseca, and R. Maartens, Constraining the growth rate by combining multiple
907
+ future surveys, JCAP 09 (2020) 054, [arXiv:2007.04656].
908
+ [72] F. Villaescusa-Navarro et al., Ingredients for 21 cm Intensity Mapping, Astrophys. J. 866
909
+ (2018), no. 2 135, [arXiv:1804.09180].
910
+ [73] S. Cunnington, Detecting the power spectrum turnover with HI intensity mapping, Mon. Not.
911
+ Roy. Astron. Soc. 512 (2022), no. 2 2408–2425, [arXiv:2202.13828].
912
+ [74] J. Fonseca, J.-A. Viljoen, and R. Maartens, Constraints on the growth rate using the observed
913
+ galaxy power spectrum, JCAP 1912 (2019), no. 12 028, [arXiv:1907.02975].
914
+ [75] O. Umeh, R. Maartens, H. Padmanabhan, and S. Camera, The effect of finite halo size on the
915
+ clustering of neutral hydrogen, arXiv:2102.06116.
916
+ [76] E. Castorina and F. Villaescusa-Navarro, On the spatial distribution of neutral hydrogen in the
917
+ Universe: bias and shot-noise of the HI power spectrum, Mon. Not. Roy. Astron. Soc. 471
918
+ (2017), no. 2 1788–1796, [arXiv:1609.05157].
919
+ [77] P. Bull, P. G. Ferreira, P. Patel, and M. G. Santos, Late-time cosmology with 21cm intensity
920
+ mapping experiments, Astrophys. J. 803 (2015), no. 1 21, [arXiv:1405.1452].
921
+ [78] D. Alonso, P. G. Ferreira, M. J. Jarvis, and K. Moodley, Calibrating photometric redshifts with
922
+ intensity mapping observations, Phys. Rev. D 96 (2017), no. 4 043515, [arXiv:1704.01941].
923
+ [79] S. Jolicoeur, R. Maartens, E. M. De Weerd, O. Umeh, C. Clarkson, and S. Camera, Detecting
924
+ the relativistic bispectrum in 21cm intensity maps, JCAP 06 (2021) 039, [arXiv:2009.06197].
925
+ [80] Cosmic Visions 21 cm Collaboration, R. Ansari et al., Inflation and Early Dark Energy with
926
+ a Stage II Hydrogen Intensity Mapping experiment, arXiv:1810.09572.
927
+ [81] S. Casas, I. P. Carucci, V. Pettorino, S. Camera, and M. Martinelli, Constraining gravity with
928
+ synergies between radio and optical cosmological surveys, arXiv:2210.05705.
929
+ [82] J. L. Bernal, P. C. Breysse, H. Gil-Marin, and E. D. Kovetz, User’s guide to extracting
930
+ cosmological information from line-intensity maps, Phys. Rev. D 100 (2019), no. 12 123522,
931
+ [arXiv:1907.10067].
932
+ [83] A. Barreira, On the impact of galaxy bias uncertainties on primordial non-Gaussianity
933
+ constraints, JCAP 12 (2020) 031, [arXiv:2009.06622].
934
+ [84] D. Karagiannis, R. Maartens, J. Fonseca, S. Camera, and C. Clarkson, Multi-tracer power
935
+ spectra and bispectra I: Formalism, arXiv:2301.nnnnn.
936
+ [85] D. Karagiannis, A. Lazanu, M. Liguori, A. Raccanelli, N. Bartolo, and L. Verde, Constraining
937
+ primordial non-Gaussianity with bispectrum and power spectrum from upcoming optical and
938
+ radio surveys, Mon. Not. Roy. Astron. Soc. 478 (2018), no. 1 1341–1376, [arXiv:1801.09280].
939
+ [86] V. Yankelevich and C. Porciani, Cosmological information in the redshift-space bispectrum,
940
+ Mon. Not. Roy. Astron. Soc. 483 (2019), no. 2 2078–2099, [arXiv:1807.07076].
941
+ [87] R. Maartens, S. Jolicoeur, O. Umeh, E. M. De Weerd, C. Clarkson, and S. Camera, Detecting
942
+ the relativistic galaxy bispectrum, JCAP 03 (2020), no. 03 065, [arXiv:1911.02398].
943
+ [88] Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters,
944
+ Astron. Astrophys. 641 (2020) A6, [arXiv:1807.06209]. [Erratum: Astron.Astrophys. 652, C4
945
+ (2021)].
946
+ – 15 –
947
+
8tE0T4oBgHgl3EQffgDC/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CNE4T4oBgHgl3EQfeQ0p/content/tmp_files/2301.05097v1.pdf.txt ADDED
@@ -0,0 +1,2600 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Study of JavaScript Static Analysis Tools for
2
+ Vulnerability Detection in Node.js Packages
3
+ Tiago Brito∗, Mafalda Ferreira, Miguel Monteiro, Pedro Lopes, Miguel Barros, José Fragoso Santos, Nuno Santos
4
+ {∗tiago.de.oliveira.brito, mafalda.baptista, miguel.figueiredo.monteiro, pedro.daniel.l, miguel.v.barros, jose.fragoso, nuno.m.santos}@tecnico.ulisboa.pt
5
+ INESC-ID / IST, Universidade de Lisboa, Portugal
6
+ Abstract—With the emergence of the Node.js ecosystem,
7
+ JavaScript has become a widely-used programming language
8
+ for implementing server-side web applications. In this paper, we
9
+ present the first empirical study of static code analysis tools for
10
+ detecting vulnerabilities in Node.js code. To conduct a comprehen-
11
+ sive tool evaluation, we created the largest known curated dataset
12
+ of Node.js code vulnerabilities. We characterized and annotated
13
+ a set of 957 vulnerabilities by analyzing information contained in
14
+ npm advisory reports. We tested nine different tools and found
15
+ that many important vulnerabilities appearing in the OWASP
16
+ Top-10 are not detected by any tool. The three best performing
17
+ tools combined only detect up to 57.6% of all vulnerabilities in
18
+ the dataset, but at a very low precision of 0.11%. Our curated
19
+ dataset offers a new benchmark to help characterize existing
20
+ Node.js code vulnerabilities and foster the development of better
21
+ vulnerability detection tools for Node.js code.
22
+ I. INTRODUCTION
23
+ JavaScript has become one of the most popular programming
24
+ languages for implementing server-side web applications.
25
+ A driving factor in this trend has been the emergence of
26
+ Node.js [1]. Node.js is a cross-platform, back-end runtime
27
+ environment that executes JavaScript code. Essentially, it can
28
+ be used as a web container, housing JavaScript code that
29
+ handles HTTP requests. Pivoted around Node.js, there is also
30
+ an ecosystem of third-party packages managed by the Node
31
+ Package Manager (npm). Currently, npm stores thousands of
32
+ packages that web developers can readily import into their
33
+ code, either for writing web applications or other packages.
34
+ The widespread adoption of Node.js makes the development
35
+ of effective JavaScript vulnerability scanners a pressing matter.
36
+ For one, the JavaScript [2] language features various constructs
37
+ that display subtle behaviors. When employed by inexperienced
38
+ code developers, these constructs may all too easily lead to
39
+ the introduction of vulnerabilities. In addition, the manual
40
+ detection of code vulnerabilities is complicated by the intricate
41
+ npm inter-package dependency system. In some cases, correct
42
+ packages may become the source of security bugs as a result
43
+ of ill-use by other packages. In others, buggy packages may
44
+ end up propagating vulnerabilities up in the dependency chain
45
+ to correct packages [3]. This combination of factors opens
46
+ up the path for serious security breaches in web applications.
47
+ By exploiting security bugs, an attacker may be able to take
48
+ over the entire server and/or affect many users through SQL
49
+ injection, remote code execution, and other attacks [4, 5].
50
+ An effective technique to prevent security vulnerabilities
51
+ from creeping into production code is to integrate security
52
+ analysis tools as part of Continuous Integration/Continuous
53
+ Deployment (CI/CD) pipelines. Using automatic vulnerability
54
+ detection tools, developers can seamlessly receive prompt
55
+ feedback about potentially existing security flaws in their code.
56
+ This enables them to apply the necessary fixes at an early code
57
+ development stage, thus helping them to improve the reliability
58
+ of their software. In the same vein, JavaScript developers can
59
+ benefit from code analysis tools that allow them to detect and
60
+ fix security flaws inside npm packages. Ideally, such tools
61
+ should have high detection quality (i.e., low false-positive rate),
62
+ and high coverage (i.e., low false-negative rate).
63
+ Motivated by this need, we set out to evaluate the effec-
64
+ tiveness of existing JavaScript vulnerability detection tools at
65
+ analyzing Node.js packages. We found a large body of work
66
+ on client-side JavaScript security [6, 7, 8], and some recent
67
+ work in the study of vulnerabilities in npm packages [4, 5].
68
+ However, no prior work has focused on evaluating tools that
69
+ analyze server-side JavaScript code vulnerabilities, let alone
70
+ on studying their effectiveness at finding security flaws in npm
71
+ packages. As it turns out, performing this task is rather involved,
72
+ given the absence of a gold standard for classifying such tools,
73
+ and the lack of a comprehensive vulnerability dataset that can
74
+ be used for benchmarking purposes.
75
+ In this paper, we present the first empirical study aimed at
76
+ evaluating existing JavaScript vulnerability detection tools on
77
+ Node.js packages. We focus exclusively on fully automatic,
78
+ static code analysis tools that can be used in CI/CD pipelines.
79
+ This excludes tools [4, 9, 10] that expect additional inputs, such
80
+ as test suites, or tools that perform simple checks on known
81
+ vulnerable dependencies [11, 12]. In total, we screened 40
82
+ analysis tools for JavaScript and selected nine that can detect
83
+ vulnerabilities at continuous integration time: NodeJsScan [13],
84
+ CodeQL [14], ODGen [15], Graudit [16], InsiderSec [17],
85
+ ESLint SSC [18], Microsoft’s DevSkim [19], Mosca [20] and
86
+ Drek [21]. We executed them against a curated dataset created
87
+ by us containing npm packages with annotated vulnerabilities,
88
+ mainly: path traversal, cross-site scripting, insecure transfer
89
+ using HTTP, resource exhaustion/denial-of-service, prototype
90
+ pollution, OS command injection, code injection, and improper
91
+ input validation. Then, we checked whether these tools can
92
+ correctly identify these vulnerabilities.
93
+ Given that there is no curated dataset of Node.js vulnerabili-
94
+ ties, our first step was to develop our own. Building this dataset
95
+ was in itself a challenging endeavor because we needed to
96
+ 1
97
+ arXiv:2301.05097v1 [cs.CR] 12 Jan 2023
98
+
99
+ identify real vulnerabilities in a large dataset of npm packages.
100
+ Our starting point was the npm system itself. The npm system
101
+ runs a vulnerability report service that results in the generation
102
+ of the so-called advisory reports. These consist of textual
103
+ descriptions of security vulnerabilities identified inside specific
104
+ packages. These are real security vulnerabilities collectively
105
+ identified by the Node.js developer community. Reports may
106
+ also include an advice to upgrade the package to a fixed version.
107
+ As such, advisory reports provide a reliable source for building
108
+ our dataset. Unfortunately, these reports are not represented
109
+ in a format that allows for automatic processing. Moreover,
110
+ some of them may contain errors and therefore cannot be used
111
+ unless a thorough analysis and verification are performed.
112
+ To overcome these difficulties, we manually analyzed 1359
113
+ advisory reports covering an equal number of vulnerable npm
114
+ package versions. These advisories represent 74% of all the
115
+ vulnerabilities officially reported inside benign npm package
116
+ versions until June 2021. In this process, we identified several
117
+ anomalies in the advisory reports. We have then generated a
118
+ curated dataset covering 957 of these advisories extended with
119
+ annotations that specify the precise location of the reported
120
+ code vulnerabilities. We found that the location of a large
121
+ fraction of existing vulnerabilities can be fully expressed
122
+ through source-sink pair annotations. Our dataset can help
123
+ the research community to i) characterize the vulnerabilities
124
+ already detected within the npm ecosystem, and ii) benchmark
125
+ vulnerability detection tools. Our dataset is publicly available1.
126
+ We tested the pre-selected tools against our dataset and found
127
+ they perform rather poorly, missing many vulnerabilities (low
128
+ true positive rate/recall) and showing a high false positive rate
129
+ (low precision). On average, they were able to correctly identify
130
+ only 15.1% of the total number of vulnerabilities in our dataset.
131
+ The combination of the three best-performing tools detects
132
+ 57.6% of all vulnerabilities, albeit with only 0.11% precision.
133
+ The best performing tools, ESLint SSC and CodeQL, manage
134
+ to detect 41.5% and 31.3% across all types of vulnerabilities
135
+ and reach their peaks when it comes to identifying prototype
136
+ pollution (79.2% for CWE-471 and 86.1% for CWE-1321) and
137
+ path traversal (71.2%) vulnerabilities, respectively. Of the 957
138
+ known vulnerabilities in the dataset, 324 (33.8%) were not
139
+ detected by any of the selected tools. Some of the causes are
140
+ tied to fundamental limitations of state-of-the-art code analysis
141
+ techniques when it comes to analyzing server-side, JavaScript
142
+ code vulnerabilities in the npm ecosystem. Addressing these
143
+ limitations is an interesting research direction for future work.
144
+ In summary, our paper makes four contributions: (i) a
145
+ curated dataset with 957 real-world vulnerabilities in npm
146
+ package versions, which will be fundamental to evaluate
147
+ future advancements in static analysis tools for detection of
148
+ vulnerabilities in Node.js applications, (ii) a survey of existing
149
+ vulnerability detection tools for JavaScript / Node.js code, (iii)
150
+ a quantitative assessment of the vulnerability detection toolset
151
+ against our curated dataset, and (iv) a study of the main causes
152
+ 1https://github.com/VulcaN-Study/Supplementary-Material
153
+ 2016
154
+ 2017
155
+ 2018
156
+ 2019
157
+ 2020
158
+ 2021
159
+ 2022
160
+ 0
161
+ 1000
162
+ 2000
163
+ Severity
164
+ Low
165
+ Moderate
166
+ High
167
+ Critical
168
+ Figure 1: Evolution of published advisories over time.
169
+ of missing important vulnerabilities in npm packages, which
170
+ opens up several research avenues in this field.
171
+ II. STUDY DESIGN
172
+ A. Background
173
+ Node.js features a package manager system named Node
174
+ Package Manager (npm), which currently stores thousands
175
+ of third-party packages. Presently, it is difficult to guarantee
176
+ the absence of security vulnerabilities in packages uploaded
177
+ to npm because there is no systematic code triage in place.
178
+ Consequently, the npm community mainly relies on third-
179
+ party vulnerability reports to identify the potentially vulnerable
180
+ packages that have already been included in the ecosystem.
181
+ The npm system alerts JavaScript developers whenever
182
+ they use a package version reported as vulnerable. These
183
+ vulnerability alerts are called npm advisories, as their purpose
184
+ is to advise developers to update the vulnerable dependencies
185
+ to either a fixed package version or to select another package
186
+ entirely. When someone identifies a potential vulnerability
187
+ in an npm package, they produce a vulnerability report and
188
+ submit it to the npm security team, which checks the report,
189
+ notifies package maintainers, and publishes the advisory, either
190
+ when the package maintainers release a fix or if they remain
191
+ unresponsive for longer than 45 days [22]. Typically, an
192
+ advisory report includes: package name, affected versions,
193
+ description of the vulnerability, effects and references, commits,
194
+ and/or code examples that help trigger the vulnerability. This
195
+ information is then made available to developers in the advisory
196
+ page (see example page for advisory 315 in [23]). Figure 1
197
+ displays the evolution of the number of published advisories
198
+ since npm’s inception until October 11th 2022, broken down
199
+ according to their severity level. This number has steadily
200
+ grown at nearly 40 advisories per month; about 70% cover
201
+ vulnerabilities considered to pose risks of high/critical severity.
202
+ B. Research Questions and Scope
203
+ In this work, we investigate four main research questions:
204
+ RQ1. How to obtain an annotated dataset of vulnerabilities
205
+ in server-side JavaScript code? To evaluate JavaScript vul-
206
+ nerability detection tools, we require an annotated vulnerability
207
+ dataset to compare the output of a given tool against ground
208
+ truth data. The npm repository provides an excellent source for
209
+ retrieving both (i) an extensive collection of vulnerable Node.js
210
+ applications (i.e., vulnerable npm package versions), and (ii)
211
+ information about real-world vulnerabilities (documented by
212
+ the advisory database). Unfortunately, this information cannot
213
+ 2
214
+
215
+ be used as-is from existing advisories. First, advisories often
216
+ lack relevant information about the reported vulnerability (e.g.,
217
+ the exact code location of the vulnerability within the package).
218
+ Second, in many cases, most of the explanations regarding
219
+ the reported vulnerability are given in external references,
220
+ where information tends to be inconsistent and unstructured.
221
+ Third, some advisories may be incorrect in places (e.g., the
222
+ classification of the vulnerability type), which may lead to the
223
+ mischaracterization of existing JavaScript vulnerabilities. These
224
+ obstacles preclude an automated advisory analysis approach.
225
+ RQ2. What is the state-of-the-art of existing security-orien-
226
+ ted static analysis tools for Node.js code? We are interested
227
+ in assessing which static vulnerability detection tools are
228
+ available. We need to distinguish between a broader set of
229
+ code analysis tools which can serve many different purposes
230
+ (e.g., detecting programming malpractices) from those that
231
+ are specifically oriented toward the detection of vulnerabilities.
232
+ Furthermore, we aim to analyze which code analysis techniques
233
+ are employed by these tools. This will help us to better assess
234
+ the strengths and weaknesses of each technique when evaluating
235
+ each tool.
236
+ RQ3. How effective are available detection tools in uncov-
237
+ ering vulnerabilities in JavaScript code? We are interested
238
+ in empirically determining and characterizing how precise the
239
+ publicly available vulnerability detection tools are at identifying
240
+ vulnerabilities in known vulnerable JavaScript code.
241
+ RQ4. What are the main reasons for missing the detection
242
+ of vulnerabilities? We aim to understand the key limitations
243
+ of existing static vulnerability detection tools that explain their
244
+ failure to detect known vulnerabilities in JavaScript code.
245
+ The research questions above have a twofold goal: (i)
246
+ characterize vulnerabilities in npm packages in the wild, and
247
+ (ii) evaluate the effectiveness of existing static JavaScript vul-
248
+ nerability detection tools. To better set the reader’s expectations
249
+ about our study, we further clarify these subgoals and discuss
250
+ other relevant directions we left outside the scope of this work.
251
+ Firstly, our study is narrowed toward the characterization
252
+ of vulnerabilities reported inside npm packages. As such,
253
+ our results cannot be extrapolated to characterize the typical
254
+ programming flaws introduced by JavaScript developers during
255
+ the code development stage; nor is this our goal. Developers
256
+ may use vulnerability detection tools in their continuous
257
+ integration frameworks that may capture some vulnerabilities
258
+ before the code is deployed to npm. This means that some
259
+ security flaws may have been fixed prior to deploying the code
260
+ into production. Also note that, given that we only analyze
261
+ formerly identified vulnerabilities, our curated dataset may
262
+ not be representative of all existing JavaScript vulnerabilities
263
+ lingering inside npm packages; this is also not our purpose. In
264
+ contrast, we intend that our curated dataset contains a large
265
+ set of confirmed real-world vulnerabilities that can be used for
266
+ assessing existing (and future) vulnerability detection tools.
267
+ Secondly, we focus exclusively on fully automatic vulnerabil-
268
+ ity analysis tools that can be easily integrated into existing code
269
+ Internet
270
+ npm
271
+ website & registry
272
+ Advisory
273
+ Collection
274
+ Engine
275
+ Dockerfiles
276
+ Tool
277
+ Configs
278
+ 1)
279
+ Tool
280
+ Execution
281
+ Engine
282
+ 2)
283
+ 3)
284
+ Analyst
285
+ 4)
286
+ 5)
287
+ 6)
288
+ Tool
289
+ Outputs
290
+ Package
291
+ Code
292
+ Advisory
293
+ Metadata
294
+ VulcaN
295
+ Reviews
296
+ API
297
+ Analysis
298
+ Engine
299
+ VulcaN
300
+ Figure 2: VulcaN architecture.
301
+ review pipelines. This excludes the only three existing dynamic
302
+ analysis tools for detecting vulnerabilities in Node.js code:
303
+ SyNode [4], NodeSec[9] and Affogato [10]. These tools require
304
+ a set of unit tests covering all security sensitive behaviors of
305
+ the package to be analysed. Such test suites must be manually
306
+ written as the automatic generation of high-coverage test suits
307
+ for Node.js applications is still an open problem. Nevertheless,
308
+ our curated dataset can still be used as a benchmark for
309
+ evaluating the effectiveness of these excluded tools.
310
+ C. Study Methodology
311
+ Our approach to answering the questions above is to perform
312
+ an empirical study consisting of the following three tasks:
313
+ Task 1. Manual analysis of advisory reports and building
314
+ the annotated dataset: We manually analyzed all advisories,
315
+ filling in the missing information, namely by identifying the
316
+ code location that triggers the vulnerability. This information
317
+ is part of our curated dataset used in the following tasks.
318
+ Task 2. Selection and execution of code analysis tools for
319
+ vulnerability detection in JavaScript code: We searched both
320
+ the literature and the web for code analysis tools that can be
321
+ used for vulnerability detection. We executed all of the selected
322
+ tools on all the vulnerable packages in our curated dataset.
323
+ Task 3. Evaluation of tool output according to the ground
324
+ truth extracted from the annotated dataset: We automati-
325
+ cally compare a tool’s result with the corresponding dataset
326
+ annotations, considering the verbosity levels of each tool.
327
+ To support our methodology, we developed VulcaN, a
328
+ testbed for analyzing vulnerability detection tools for Node.js
329
+ packages. VulcaN is an execution and analysis framework to
330
+ collect vulnerable versions of npm packages, run vulnerability
331
+ detection tools over all collected packages, and help security
332
+ analysts perform the vulnerability analysis. Currently, VulcaN
333
+ supports nine tools (see Section IV) and has these main features:
334
+ • an interface to download the latest published advisories;
335
+ • a Docker-based extension for adding more analysis tools;
336
+ • an interface for accessing both the metadata and the output
337
+ of the analysis tools for each advisory;
338
+ 3
339
+
340
+ • an interface for annotating each advisory with a review
341
+ file, which contains the code location of the vulnerability
342
+ and the classification of the results of the analysis tools;
343
+ • an interface for automatically comparing the output of
344
+ the tools with the corresponding review in our curated
345
+ dataset, this includes a parser for the ouput of each tool;
346
+ • a web API exposing the curated dataset and the classifi-
347
+ cation of the analysis tools.
348
+ Figure 2 shows the architecture of VulcaN and how each
349
+ component is used in the context of our empirical study.
350
+ First, the Advisory Collection Engine crawls the npm advisory
351
+ website [24] and collects the available metadata about all
352
+ published advisories saving it in a MongoDB database (1).
353
+ The latest vulnerable version for each advisory, referenced
354
+ in the collected metadata, is then downloaded via the npm
355
+ registry. Second, the Tool Execution Engine builds a docker
356
+ image for each tool, according to the specified Dockerfile, and
357
+ runs the respective container for all downloaded packages,
358
+ storing the output of each tool locally (2). Third, the advisory
359
+ metadata, code, and tool outputs are fed to the Analysis
360
+ Engine, which generates an environment for advisory report
361
+ analysis (3). The analyst accesses the environment (4) and
362
+ produces a review file comprising an accurate description
363
+ of the vulnerable code location, which is then submitted to
364
+ the framework (5). Finally, the Analysis Engine processes
365
+ the submitted information, automatically compares the tools’
366
+ outputs with the analyst reviews (dataset) using a dedicated
367
+ parser for each tool, and exposes it through a web API (6).
368
+ III. DATASET OF VULNERABILITIES (RQ1)
369
+ In this section, we address RQ1, explaining how we created
370
+ our curated dataset of JavaScript code vulnerabilities.
371
+ A. Selection and Validation of Reports
372
+ To create our dataset, we collected a snapshot of the existing
373
+ npm advisories until the end of June 2021. Then, through
374
+ manual analysis, we excluded some advisories and fixed
375
+ inconsistencies in the remaining ones (see Table I). Out of
376
+ the 1828 advisories from the original snapshot, we excluded
377
+ 469, keeping 1359 for further analysis. Next, we present our
378
+ exclusion criteria and discuss the detected inconsistencies.
379
+ Excluded advisories. As of June 30th 2021, there were 1828
380
+ advisories published in npm. Of these 1828 advisories, 416 are
381
+ categorized by npm as Embedded Malicious Code (CWE-506):
382
+ these are packages designed with malicious intent, named very
383
+ similarly to real legitimate packages so as to deceive developers
384
+ into installing them. These packages are not relevant for our
385
+ study, which focuses only on unintentional vulnerabilities.
386
+ From the remaining 1412 advisories, we excluded 31 for
387
+ lacking available code. Lastly, out of the resulting 1381
388
+ vulnerable package versions, 22 were excluded for not including
389
+ JavaScript code; instead, they had pre-transpiled variants such
390
+ as CoffeeScript [25] and TypeScript [26], which prevented us
391
+ from analyzing their source code directly. Consequently, in the
392
+ end, VulcaN successfully collected 1359 advisories and their
393
+ corresponding package versions for further manual analysis.
394
+ Exclusions & Inconsistencies
395
+ # of Advisories
396
+ Malware Packages
397
+ 416
398
+ Missing Package Code
399
+ 31
400
+ Missing JavaScript Code
401
+ 22
402
+ Incorrect Vulnerable Version
403
+ 42
404
+ Missing External References
405
+ 291
406
+ Imprecise CWE
407
+ 101
408
+ Lack of Analysis Information
409
+ 402
410
+ Table I: Number of advisories excluded or inconsistent.
411
+ Detected inconsistencies. During the manual analysis, we
412
+ noticed several inconsistencies in the collected advisories. Most
413
+ notably, only a small minority of advisories comes with the ex-
414
+ act code locations that trigger their corresponding vulnerability.
415
+ Furthermore, some advisories provide an incorrect vulnerable
416
+ package version, i.e., the advisory metadata points to a package
417
+ version that does not contain the described vulnerability. When
418
+ the advisory does not come with additional external references,
419
+ which is the case for 21% of the analyzed advisories, correcting
420
+ the incorrect vulnerable package version anomaly can be
421
+ quite challenging, as the advisory metadata alone is generally
422
+ insufficient for pinpointing the correct package version. Another
423
+ detected anomaly is the imprecise classification of vulnerability
424
+ type/category. Most of the times this imprecision is subjective,
425
+ as a Common Weakness Enumeration (CWE) [27] class can
426
+ be a subcategory (child) of another more general CWE. This is
427
+ particularly common for Path Traversals (CWE-22) and Code
428
+ Injections (CWE-94), to which more precise classes can be
429
+ attributed; in particular, CWE-23 (Relative Path Traversal) and
430
+ CWE-24 (another specific Path Traversal variant) to CWE-22
431
+ and CWE-95 (Eval Injection) to CWE-94. Some vulnerabilities
432
+ are simply miscategorised; for instance, sometimes Code
433
+ Injection (CWE-94) vulnerabilities are categorized as Cross-
434
+ Site Scripting (CWE-79). During the analysis, we detected 63
435
+ cases of vulnerability miscategorization (different CWE) and 21
436
+ cases of incorrect vulnerable package version referenced in the
437
+ advisory. The remaining cases lack the CWE categorization.
438
+ B. Analysis of Reported Vulnerabilities
439
+ We analyzed the vulnerabilities in the selected 1359 npm
440
+ advisories. Our goal was to characterize the vulnerability
441
+ landscape of the npm package ecosystem by studying the dis-
442
+ tribution of existing vulnerabilities according to their category
443
+ and assess the potential security risks posed by the affected
444
+ packages. From the 1359 advisories manually analyzed, we
445
+ managed to verify the vulnerability for 957 advisories: these
446
+ are the ones included in our dataset and characterized in this
447
+ study. The remaining advisories (402) did not include sufficient
448
+ information to successfully verify the vulnerability.
449
+ Figure 3 displays the cumulative distribution function (CDF)
450
+ of the number of vulnerabilities of our dataset ranked by their
451
+ CWE category. This distribution is heavily skewed toward a
452
+ relatively small number of CWE categories, i.e., a large fraction
453
+ of vulnerabilities pertains to a restricted set of categories. In
454
+ particular, the top-10 CWEs cover 665 advisories, i.e., 69% of
455
+ the total number of verified vulnerabilities.
456
+ 4
457
+
458
+ 0
459
+ 25
460
+ 50
461
+ 75
462
+ 100
463
+ Number of CWE categories (ordered by occurrence)
464
+ 200
465
+ 400
466
+ 600
467
+ 800
468
+ Number of advisories
469
+ 665 (69%)
470
+ 957 (100%)
471
+ Top 10 CWE
472
+ All Reviewed Advisories
473
+ Figure 3: CDF of # of reviewed advisories ranked by CWE.
474
+ To estimate the potential security risks of such vulnerabilities,
475
+ we mapped each of the top-10 CWE categories to the latest
476
+ OWASP ranking (from 2021). OWASP is an organization that
477
+ works to raise awareness about web security and ultimately
478
+ improve it. The OWASP Top 10 [28] list is a popular document
479
+ representing a broad consensus about the most critical security
480
+ risks to web applications. Updated every few years, this
481
+ document describes risks, such as injection attacks, broken
482
+ authentication, and known vulnerable dependencies. As shown
483
+ in Table II, most vulnerability types can be mapped to a top-10
484
+ web security risk. This means that npm packages have well-
485
+ known risks that security professionals are familiar with. Most
486
+ notably, 9 out of 10 CWE categories (i.e., 576 advisories) ap-
487
+ pear in the top-3 OWASP list. This translates to approximately
488
+ 60% of the total number of analyzed vulnerabilities in our
489
+ dataset (957). In other words, many reported vulnerabilities
490
+ can introduce serious security flaws in web applications.
491
+ C. Our Curated Dataset
492
+ Based on the selected advisories, we created a curated dataset
493
+ aimed at providing a baseline for assessing the effectiveness
494
+ of vulnerability detection tools. It comprises: (i) the code for
495
+ the vulnerable version of the npm package indicated in the
496
+ advisory, and (ii) a corresponding review file. This file contains
497
+ ground truth information that allows us to validate the output
498
+ of a given tool when analyzing that specific package version.
499
+ Review example: Listing 1 shows the created review file for
500
+ advisory 315 [23]. This advisory reports the presence of a code
501
+ injection vulnerability in package summit-0.1.22. A review is
502
+ a JSON object that contains several fields that describe: i)
503
+ the advisory identifier (id), ii) the vulnerability type as per
504
+ the CWE taxonomy (cwe), iii) the affected package version
505
+ (package_link), and iv) the vulnerability location expressed
506
+ as a source/sink pair. A source/sink is specified as a JSON
507
+ object with fields denoting: the file name (file); the line
508
+ number (lineno); and the corresponding line of code (code).
509
+ Vulnerability location: The location fields are used to deter-
510
+ mine if the output of a given vulnerability detection tool is
511
+ correct. Besides using (one or multiple) source/sink pairs to
512
+ locate a vulnerability, we can also employ (one or multiple)
513
+ block patterns, which indicate contiguous code regions in
514
+ which the flaw exists. This form of representation is necessary
515
+ for vulnerability types that cannot be expressed as source/sink
516
+ #
517
+ CWE
518
+ Security Risk
519
+ # Occurrences
520
+ 1
521
+ CWE-22
522
+ 1. Broken Access Control
523
+ 146
524
+ 2
525
+ CWE-79
526
+ 3. Injection
527
+ 99
528
+ 3
529
+ CWE-400
530
+ -
531
+ 89
532
+ 4
533
+ CWE-78
534
+ 3. Injection
535
+ 75
536
+ 5
537
+ CWE-818
538
+ 2. Cryptographic Failures
539
+ 75
540
+ 6
541
+ CWE-471
542
+ 3. Injection
543
+ 48
544
+ 7
545
+ CWE-20
546
+ 3. Injection
547
+ 41
548
+ 8
549
+ CWE-1321
550
+ 3. Injection
551
+ 36
552
+ 9
553
+ CWE-94
554
+ 3. Injection
555
+ 33
556
+ 10
557
+ CWE-77
558
+ 3. Injection
559
+ 23
560
+ Table II: Possible mapping of most occurring vulnerabilities in dataset
561
+ with OWASP Top 10 Web Security Risks (2021) [29]: Path Traversal
562
+ (CWE-22), Cross-site Scripting (CWE-79), Resource Exhaustion
563
+ (CWE-400), Insufficient Transport Layer Protection (CWE-818), OS
564
+ Command Injection (CWE-78), Modification of Assumed-Immutable
565
+ Data (CWE-471), Improper Input Validation (CWE-20), Improperly
566
+ Controlled Modification of Object Prototype Attributes (CWE-1321),
567
+ Code Injection (CWE-94), and Improper Neutralization of Special
568
+ Elements used in a Command (CWE-77).
569
+ {
570
+ "advisory": { "id": 315, "cwe": "CWE-94" },
571
+ "package_link": "registry.npmjs.org/summit/-/summit-0.1.22.tgz",
572
+ "vulnerability": [
573
+ {
574
+ "source": {
575
+ "file": "lib/drivers/search/pouch.js",
576
+ "lineno": 4,
577
+ "code": "return function search (opts) {"
578
+ },
579
+ "sink": {
580
+ "file": "lib/drivers/search/pouch.js",
581
+ "lineno": 20,
582
+ "code": "eval(opts.filter);"
583
+ }
584
+ }
585
+ ]
586
+ }
587
+ Listing 1: Example of VulcaN review file for advisory 315.
588
+ pairs, e.g., usage of HTTP instead of HTTPS which allows
589
+ for MITM attacks (CWE-818). Interestingly, we found that,
590
+ in most cases (78%), the exact location of a vulnerability is
591
+ very clear, e.g., a call to eval in a code injection. These cases
592
+ can be represented by source/sink pairs, while the remaining
593
+ cases (22%) can be represented using code blocks that cover all
594
+ vulnerability-relevant code. Although the block size depends
595
+ on the vulnerability, in our dataset the average block size is six
596
+ lines-of-code. Moreover, since the review files can be processed
597
+ automatically, we believe that our curated dataset will be useful
598
+ for benchmarking purposes beyond the scope of our work.
599
+ Methodology: Vulnerability locations were identified manually.
600
+ To account for their possible mislabeling, each advisory was
601
+ analyzed by two authors at separate times and their results cross-
602
+ checked. Two authors performing cross-validation disagreed in
603
+ 84 reviews (8.8% of 957 reviews). Most inconsistencies were
604
+ differences in source/sink pairs. These cases were resolved by
605
+ selecting the correct source/sink pair or specifying a superset of
606
+ source/sink pairs. In rare cases, one author failed to locate the
607
+ vulnerability. These cases were handled by jointly reviewing
608
+ the location identified by the other author.
609
+ 5
610
+
611
+ Included Tools
612
+ Only Package
613
+ Source Code (C0)
614
+ Not Available
615
+ or Proprietary (C1)
616
+ Not Scriptable
617
+ Interface (C2)
618
+ Not Security
619
+ Oriented (C3)
620
+ Other Exclusionary
621
+ Reasons
622
+ NodeJsScan [13] 3
623
+ CodeQL [14] 3
624
+ ODGen [15] 3
625
+ Graudit [16] 3
626
+ InsiderSec [17] 3
627
+ ESLint SSC [18] 3
628
+ MS DevSkim [19] 3
629
+ Mosca [20] 3
630
+ Drek [21] 3
631
+ SyNode [4]
632
+ NodeSec [9]
633
+ Affogato [10]
634
+ Beyond Security [30]
635
+ Checkmarx [31]
636
+ Fortify [32]
637
+ Veracode [33]
638
+ Kiuwan [34]
639
+ CodeSonar [35]
640
+ Thunderscan [36]
641
+ WhiteHat [37]
642
+ JsPrime [38] 3
643
+ Codeburner [39] 3
644
+ SonarQube [40] 3
645
+ CodeWarrior [41] 3
646
+ WALA [42]
647
+ PMD [43]
648
+ Aether [44]
649
+ Coala [45]
650
+ JsHint [46] 3
651
+ EsComplex [47]
652
+ Coverty Scan [48]
653
+ DeepScan [49]
654
+ AppInspector [50] 3
655
+ TAJS [51]
656
+ SAFE [52]
657
+ ESLint SP [53] 3
658
+ Mozilla ScanJs [54] 3
659
+ SemGrep [55]
660
+ JAW [56] 3
661
+ Joern [57, 58] 3
662
+ Table III: Tools included in / excluded from this study. Excluded for reasons beyond C0, C1, C2, & C3: ESLint Security Plugin and Mozilla
663
+ ScanJs use ESLint rules subsumed by ESLint SSC’s; SemGrep requires specially-crafted rules for security purposes and is the backbone of
664
+ NodeJsScan; JAW only implements rules for detecting client-side CSRF; Joern supports JavaScript inspection, but does not support default
665
+ rules for detection. Some tools excluded due to C1 were tested using free trials, but failed to comply with additional criteria.
666
+ Dataset size: From the 1359 analyzed advisories, we were
667
+ able to manually verify 957 review files (70%) at the time of
668
+ this paper submission. For each review file we confirmed the
669
+ exact location of the reported vulnerability. For this reason, we
670
+ are confident to include these reviews in our curated dataset.
671
+ IV. VULNERABILITY DETECTION TOOLS (RQ2)
672
+ We now focus on RQ2, explaining how we selected the
673
+ tools considered in our study. We specify our eligibility criteria,
674
+ survey the existing tools that satisfy them, and classify these
675
+ tools according to the detection technique that they employ.
676
+ A. Tool Selection Criteria and Selection Process
677
+ We focus specifically on fully automatic tools for analysis
678
+ of npm packages. In particular, to select a given tool, it must:
679
+ C0. Depend only on the package source code: The tool
680
+ requires only the source code of the package to analyze. This
681
+ excludes tools that require a test suite to guide the analysis.
682
+ C1. Be available and transparent: The tool is publicly
683
+ available and implements a technique that is non-proprietary.
684
+ Its source code does not need to be open as long as the tool’s
685
+ code analysis techniques can be clearly characterized, e.g.,
686
+ through available documentation, rule set, and usage examples.
687
+ C2. Have a scriptable interface: The tool must support a
688
+ command-line interface (CLI), or similar interaction, allowing
689
+ it to be executed and its output analyzed via a script. This
690
+ facilitates the scalability and automation of the analysis.
691
+ C3. Be security-oriented: The tool must identify vulnerabil-
692
+ ities or security bad practices in JavaScript. This excludes
693
+ tools that only construct artifacts, such as control-flow graphs,
694
+ produce warnings about coding styles and conventions, or
695
+ produce statistical information about the code, such as code
696
+ metrics, that might be irrelevant from a security standpoint.
697
+ Based on the above criteria, we ended up selecting nine tools
698
+ for our testing purposes. We started by examining the academic
699
+ literature [4, 9, 10, 15, 56, 57] and searching the Internet,
700
+ including OWASP lists [59, 60], repository collections [61,
701
+ 62, 63] and other websites [64, 65, 66], for suitable tools
702
+ for vulnerability detection in server-side JavaScript code. Most
703
+ tools we screened were developed by the industry and the open-
704
+ source community. In total, we first collected 40 JavaScript
705
+ analysis tools. This full list is presented in Table III.
706
+ After inspecting all 40 analysis tools, we found that we
707
+ needed to manually test 19 tools, which are annotated with
708
+ the symbol 3 in Table III. These 19 tools were tested against
709
+ the Damn Vulnerable Node Application (DVNA) [67], a web
710
+ application written in JavaScript that was purposely built with
711
+ a range of vulnerabilities matching the OWASP Top 10 Web
712
+ Security Risks. After executing each of the 19 tools against
713
+ the vulnerable application, we excluded those that do not allow
714
+ the analysis to be automated via a script and also those that
715
+ fail to show security-oriented results.
716
+ Out of the remaining 19 tools, we selected 14 tools that are
717
+ available, transparent, can be automated, and show security-
718
+ oriented results. Out of these 14 tools, we also excluded ESLint
719
+ Security Plugin, Mozilla ScanJs, SemGrep, JAW, and Joern
720
+ as explained in the caption of Table III. Consequently, we
721
+ ended up with 9 distinct candidates that represent proper fully
722
+ automatic vulnerability detection tools for Node.js applications.
723
+ B. Detection Techniques
724
+ By manually analyzing the source code of the nine selected
725
+ tools, we characterized them according to the employed tech-
726
+ nique for finding vulnerabilities. It is important to understand
727
+ how these techniques work as they can have a significant
728
+ impact on the effectiveness of the tools. We categorize these
729
+ techniques using three classes: graph-based analysis, syntax-
730
+ based analysis and keyword-based analysis. Table IV maps
731
+ every selected tool to its corresponding detection technique.
732
+ Graph-based analysis tools work by first constructing a graph-
733
+ based model of the program to be analyzed. Such models
734
+ usually coalesce into a single graph-like data structure various
735
+ types of statically computed program artefacts, including:
736
+ abstract syntax trees, control-flow graphs, and dependency
737
+ graphs. The obtained data structure can be then inspected
738
+ using queries written in domain-specific languages (DSL)
739
+ especially designed for specifying vulnerable code patterns.
740
+ For instance, typical queries aim at identifying code-flow paths
741
+ through which user-controllable inputs can reach dangerous
742
+ 6
743
+
744
+ Technique
745
+ Tool
746
+ Version
747
+ Graph-based
748
+ Analysis
749
+ CodeQL
750
+ 2.2.6
751
+ ODGen
752
+
753
+ Syntax-based
754
+ Analysis
755
+ NodeJsScan
756
+ 0.2.8
757
+ ESLint SSC
758
+ **
759
+ Keyword-based
760
+ Analysis
761
+ Graudit
762
+ 2.8
763
+ InsiderSec
764
+ 2.0.5
765
+ MS DevSkim
766
+ 0.4.109
767
+ Mosca
768
+ 0.8
769
+ Drek
770
+ 1.0.3
771
+ Table IV: Vulnerability detection technique employed by each tool.
772
+ **ESLint SSC was used with eslint@7.32.0.
773
+ sinks. CodeQL is one of such tools that models source code as
774
+ database records. These records can be queried using SQL-like
775
+ statements that are specified in the form of rules/queries.
776
+ Syntax-based analysis tools employ a technique that searches
777
+ the code to be analyzed for insecure syntax-aware patterns.
778
+ Patterns can express simple control-flow conditions, e.g., calling
779
+ a function with a particular variable. In contrast to graph-based
780
+ analysis, this technique operates directly on source code and
781
+ does not typically cater for more intricate dependency analysis
782
+ or for matching patterns across multiple files. NodeJsScan is
783
+ an example of such tools. It is used in GitLab’s CI/CD [68].
784
+ Keyword-based analysis tools employ a code analysis tech-
785
+ nique that searches the code to be analyzed for strings
786
+ associated with potentially insecure code. This search is
787
+ typically performed through the use of regular expressions.
788
+ Note that keyword-based analysis does not model the AST
789
+ of the program to analyze. Consequently, it is considerably
790
+ less expressive than graph- and syntax-based analysis, as it
791
+ cannot reason about fine-grained control-flow interactions, often
792
+ operating on a single line of code at a time.
793
+ C. How Different Detection Techniques Work
794
+ To better understand how the aforementioned vulnerability
795
+ detection techniques work, we examine, as an example, the
796
+ advisory 315 of our dataset. According to the information
797
+ available in the advisory page [23], this example consists
798
+ of a code injection vulnerability (CWE-94), which allows a
799
+ malicious user to run arbitrary code on the targeted execution
800
+ platform. In this type of attack the adversary is only limited by
801
+ the expressiveness of the injected language. JavaScript code
802
+ injections at the server can have more significant impact than
803
+ those at the client-side, given that Node.js has fewer security
804
+ barriers (e.g., no sandbox), and a larger and privileged API
805
+ facilitating access to critical system resources (e.g., file system).
806
+ The vulnerable code snippet of the advisory 315 is given
807
+ in Listing 2. In this example, the variable opts is bound to a
808
+ user-controlled object with the properties filter and collection,
809
+ which can be trivially tainted with a maliciously crafted
810
+ input to produce valid JavaScript code that reaches the eval
811
+ function. One can leverage this vulnerability to execute arbitrary
812
+ JavaScript code, including OS-level commands by using a
813
+ payload like the one given in Listing 3.
814
+ Using graph-based analysis: Both CodeQL and ODGen adopt
815
+ graph-based analysis. Listing 4 shows an example of a CodeQL
816
+ 1
817
+ function search (opts) {
818
+ 2
819
+ if (!opts.filter && opts.collection) {
820
+ 3
821
+ if (typeof opts.collection === 'string') {
822
+ 4
823
+ opts.filter =
824
+ "function filter (doc) { return doc.type === '" +
825
+ opts.collection + "'}";
826
+ �→
827
+ �→
828
+ 5
829
+ } else { ... }
830
+ 6
831
+ eval(opts.filter);
832
+ 7
833
+ opts.filter = filter;
834
+ 8
835
+ }
836
+ 9
837
+ }
838
+ Listing 2: Code injection vulnerability (npm advisory 315).
839
+ 1
840
+ opts.collection = `'};
841
+ 2
842
+ const exec = require("child_process").exec;
843
+ 3
844
+ exec("cat /etc/passwd", (err, stdout, stderr) => {
845
+ 4
846
+ console.log(stdout); }); var a={ hello: 'world`;
847
+ 5
848
+ search(opts)
849
+ Listing 3: Exploit for code injection (npm advisory 315).
850
+ rule designed to detect calls to the eval function using user-
851
+ controlled inputs. In order to create this CodeQL rule, one
852
+ starts by specifying the appropriate configuration, that is, a
853
+ code description of the targeted sources and sinks. In this
854
+ case, we are interested in code flows from remote flow sources,
855
+ described by the predicate isSource (lines 3 to 5), to the eval
856
+ sink, described by the predicate isSink (lines 6 to 8). Then
857
+ the main query (lines 11 to 13) states that, using the specified
858
+ configuration (EvalTaint cfg), CodeQL should find code paths
859
+ from the specified source to the specified sink. The output of
860
+ this query is a string with a description of the source-sink pairs
861
+ that match the query. This particular rule is a simplified version
862
+ of one of the CodeQL rules [69] executed inside VulcaN.
863
+ In general, graph-based analysis works well for taint-tracking,
864
+ but it requires every source and sink to be explicitly encoded
865
+ into rules. These sources and sinks change over time as
866
+ languages evolve and new popular third-party packages are
867
+ created. This is why the community has started to work on
868
+ automatically generating such taint-tracking specifications [71].
869
+ Using syntax-based analysis: NodeJsScan helps us showcase
870
+ syntax-based analysis. Listing 5 lists an excerpt of the Node-
871
+ JsScan rule that detects potentially vulnerable uses of eval. To
872
+ be applied, this rule must match two related patterns. First, eval
873
+ must occur inside a function receiving two or more arguments
874
+ (line 2). Then, eval must be called with a parameter computed
875
+ using one of the given arguments (line 4). NodeJsScan includes
876
+ analogous rules for other vulnerability types [73].
877
+ Similarly to the previous technique (graph-based), syntax-
878
+ based analysis also suffers from the source-sink specification
879
+ limitation. Additionally, there are some other limitations
880
+ specific to syntax-based analysis. For example, it may lead
881
+ to a high number of false positives, as it is not expressive
882
+ enough to capture the dependencies of the variables occurring
883
+ in the patterns; e.g., it will detect all calls to eval regardless
884
+ of whether or not their given input can be controlled by
885
+ the user. Furthermore, it commonly leads to rule overfitting,
886
+ resulting in over-specific rules that match known examples
887
+ of vulnerabilities, but are not general enough to capture other
888
+ instances of the same vulnerability. In Listing 5, the eval call is
889
+ 7
890
+
891
+ 1
892
+ class EvalTaint extends TaintTracking::Configuration {
893
+ 2
894
+ EvalTaint() { this = "EvalTaint" }
895
+ 3
896
+ override predicate isSource(Node node) {
897
+ 4
898
+ node instanceof RemoteFlowSource
899
+ 5
900
+ }
901
+ 6
902
+ override predicate isSink(Node node) {
903
+ 7
904
+ node = globalVarRef("eval").getACall().getArgument(0)
905
+ 8
906
+ }
907
+ 9
908
+ }
909
+ 10
910
+ 11
911
+ from EvalTaint cfg, Node source, Node sink
912
+ 12
913
+ where cfg.hasFlow(source, sink)
914
+ 13
915
+ select sink, "Eval with user input from \$@.", source
916
+ Listing 4: CodeQL rule for eval taint-tracking [70].
917
+ 1
918
+ patterns:
919
+ 2
920
+ - pattern-inside: function $FUNC($REQ, $RES, ...) {...}
921
+ 3
922
+ - pattern-either:
923
+ 4
924
+ - pattern: eval(..., <... $REQ.$QUERY ...>, ...)
925
+ Listing 5: NodeJsScan rule for eval detection [72].
926
+ only detected when it occurs inside the body of a specific type
927
+ of function declaration. Besides ignoring eval calls at the top
928
+ level, this pattern also ignores calls to eval which occur inside
929
+ the body of JavaScript functions declared using alternative
930
+ syntactic constructs (e.g. function constructor and lambdas).
931
+ Using keyword-based analysis: The tool we use to illustrate
932
+ keyword-based analysis is Graudit. The following is an excerpt
933
+ of a Graudit rule that detects the use of eval:
934
+ eval[[:space:]]*\(
935
+ Here, we see a regular expression pattern that simply detects
936
+ any call to the eval function. This technique suffers from several
937
+ limitations such as the source-sink specification problem and
938
+ a high number of false positives. Graudit includes many other
939
+ rules for dangerous sinks in Node.js applications [74].
940
+ V. EFFECTIVENESS OF THE TOOLS (RQ3)
941
+ In this section, we focus on our third research question
942
+ (RQ3). To perform a quantitative and qualitative assessment
943
+ of the selected tools, we begin by specifying the evaluation
944
+ metrics and methodology we used to rank the tools. Then
945
+ we present our findings, relying on the result of running the
946
+ selected tools across all 957 advisories of our curated dataset.
947
+ A. Evaluation Methodology
948
+ Tool evaluation metrics: To evaluate the selected tools, we use
949
+ two main metrics: true positive rate (TPR) and precision (P).
950
+ The TPR represents the proportion of the total vulnerabilities
951
+ that are correctly detected by a given tool, i.e. the true positives
952
+ (TP): TPR=TP/|vulnerabilities|. The TPR is useful to assess the
953
+ raw detection rate of a tool without considering the influence
954
+ of false positives (FP), i.e., its results that do not match
955
+ the reported advisory. Precision represents the proportion of
956
+ correctly classified positive cases: P=TP/(TP+FP). This metric
957
+ is useful to assess if a tool produces too many false positives
958
+ that can unnecessarily consume analysts’ resources.
959
+ Tool classification score: To compute the evaluation metrics
960
+ for a given tool, we need to analyze the output that it generates
961
+ <report_mosca>
962
+ <Path>/src/lib/drivers/search/pouch.js</Path>
963
+ <Title>Possible code injection</Title>
964
+ <Description>
965
+ Command injection is an attack in which the goal is
966
+ execution of arbitrary commands on the host
967
+ operating system via a vulnerable application.
968
+ �→
969
+ �→
970
+ </Description>
971
+ <Level>High</Level>
972
+ <Match>eval\s?\(|setTimeout|setInterval</Match>
973
+ <Result>Line: 20 - eval(opts.filter);</Result>
974
+ </report_mosca>
975
+ Listing 6: Snippet of Mosca output classified with Score A.
976
+ /src/lib/drivers/search/pouch.js-19- }
977
+ /src/lib/drivers/search/pouch.js:20: eval(opts.filter);
978
+ /src/lib/drivers/search/pouch.js-21- opts.filter = filter;
979
+ Listing 7: Snippet of Graudit output classified with Score B.
980
+ when applied to analyzing a specific vulnerability. Given that
981
+ each tool outputs the vulnerability analysis results in its own
982
+ specific, unstandardized format, we characterize a tool’s output
983
+ according to a common discrete classification score:
984
+ • Score A: The tool correctly detects and classifies the
985
+ vulnerability reported in the advisory (true positive).
986
+ • Score B: The tool shows a warning for the vulnerable
987
+ code, but does not explicitly classify the finding as a
988
+ vulnerability (true positive).
989
+ • Score C: The tool only shows results that do not match
990
+ the vulnerability in the advisory report (false positives).
991
+ • Score D: The tool produces no output (false negative).
992
+ We split the TP results according to two distinct classes: A
993
+ means an explicit vulnerability notification, and B a security
994
+ warning notification. The tools ranked with score A provide a
995
+ richer output to the user and, thus, more information about the
996
+ detected vulnerability. As an example, consider the output of
997
+ two tested tools, Mosca and Graudit, with regards to advisory
998
+ 315 shown in Listings 6 and 7, respectively. Although both
999
+ outputs flag the vulnerable eval call reported by the review file
1000
+ of Listing 1, Mosca’s output clearly identifies a possible code
1001
+ injection, provides a description, a severity level, and the line
1002
+ of code containing the vulnerability. On the other hand, Graudit
1003
+ only shows the vulnerable line of code without explaining how
1004
+ or why it flags that particular snippet. For this reason, the
1005
+ output of Mosca is classified with Score A while the output of
1006
+ Graudit is classified with Score B.
1007
+ This discrete classification is also important to account for
1008
+ tools that might flag for the vulnerability at a place that is only
1009
+ close to it (textually, or on the AST). Considering this, we
1010
+ require that tools must clearly identify the vulnerable statement
1011
+ for some vulnerabilities, e.g., code injections and others that
1012
+ can typically be pinpointed to a single statement, while for
1013
+ other vulnerability types multiple lines-of-code are acceptable.
1014
+ Two authors performed a cross-check of all tools’ outputs to
1015
+ guarantee fairness of the tool classification in these cases.
1016
+ B. Analysis Performance
1017
+ We gauge analysis performance by measuring tools’ execu-
1018
+ tion time for all 957 advisories on a machine with an Intel
1019
+ 8
1020
+
1021
+ Tool
1022
+ Min
1023
+ Max
1024
+ Mean
1025
+ St. Dev.
1026
+ Q-90
1027
+ Total
1028
+ ODGen
1029
+ 1.236
1030
+ 3653.043
1031
+ 148.757
1032
+ 385.629
1033
+ 370.969
1034
+ 110823.8
1035
+ CodeQL
1036
+ 1.712
1037
+ 736.546
1038
+ 119.570
1039
+ 98.755
1040
+ 177.550
1041
+ 28696.8
1042
+ NodeJsScan
1043
+ 20.023
1044
+ 984.453
1045
+ 99.562
1046
+ 121.246
1047
+ 230.216
1048
+ 23795.4
1049
+ ESLint SSC
1050
+ 0.592
1051
+ 3556.665
1052
+ 29.871
1053
+ 237.799
1054
+ 25.465
1055
+ 7139.1
1056
+ Graudit
1057
+ 0.042
1058
+ 14.632
1059
+ 0.550
1060
+ 1.624
1061
+ 0.704
1062
+ 131.3
1063
+ InsiderSec
1064
+ 0.000
1065
+ 243.000
1066
+ 5.749
1067
+ 25.186
1068
+ 7.000
1069
+ 1374.0
1070
+ MS DevSkim
1071
+ 0.276
1072
+ 186.338
1073
+ 6.393
1074
+ 23.262
1075
+ 8.044
1076
+ 1527.9
1077
+ Drek
1078
+ 0.300
1079
+ 6.649
1080
+ 1.022
1081
+ 0.865
1082
+ 1.949
1083
+ 244.3
1084
+ Mosca
1085
+ 0.005
1086
+ 245.498
1087
+ 7.408
1088
+ 25.166
1089
+ 12.216
1090
+ 1770.5
1091
+ Table V: Summary statistics of the analysis times (in seconds) taken
1092
+ by the tested tools across all 957 reviewed advisories.
1093
+ ODGen
1094
+ CodeQL
1095
+ NodeJsScan
1096
+ ESLint SSC
1097
+ Graudit
1098
+ InsiderSec
1099
+ MS DevSkim
1100
+ Drek
1101
+ Mosca
1102
+ 0
1103
+ 20
1104
+ 40
1105
+ 60
1106
+ 80
1107
+ 100
1108
+ Percentage of Advisories
1109
+ 146
1110
+ 286
1111
+ 98
1112
+ 103
1113
+ 75
1114
+ 294
1115
+ 212
1116
+ 288
1117
+ 231
1118
+ 324
1119
+ 414
1120
+ 513
1121
+ 158
1122
+ 376
1123
+ 210
1124
+ 456
1125
+ 515 426
1126
+ 530
1127
+ 146 225
1128
+ 791
1129
+ 500
1130
+ 732
1131
+ 475
1132
+ A
1133
+ B
1134
+ C
1135
+ D
1136
+ Figure 4: Score distribution for each tool.
1137
+ Xeon E3-1220 v3 @ 3.10GHz processor and 32GB of memory.
1138
+ Table V shows several statistics of the execution times taken
1139
+ by each tool to analyze our dataset. When compared to all other
1140
+ tools, ODGen, CodeQL, NodeJsScan and ESLint SSC require
1141
+ considerably more time. To analyze all 957 packages, ODGen
1142
+ took over 30 hours (110k seconds), CodeQL took nearly 8
1143
+ hours (27k seconds), NodeJsScan took nearly 7 hours (24k
1144
+ seconds), while ESLint SSC took nearly 2 hours (7k seconds).
1145
+ All other tools are considerably more efficient, taking at most
1146
+ 30 minutes to analyze all packages.
1147
+ The mean execution time of ODGen, CodeQL and Node-
1148
+ JsScan is 148.8, 119.6 and 99.6 seconds, respectively. ODGen,
1149
+ CodeQL and NodeJsScan tools are slower because their detec-
1150
+ tion techniques involve modeling statically computed structures.
1151
+ These operations are more complex than performing keyword-
1152
+ based matching searches (see Section IV-B). Depending on
1153
+ the size of the package and on the CI/CD pipeline restrictions,
1154
+ these tools may end up being exceedingly slow.
1155
+ C. Results Across the Entire Dataset
1156
+ Figure 4 displays the score distribution for each tool across
1157
+ our entire dataset, and Table VI shows the evaluation metrics
1158
+ for each tool. Globally, the tested tools perform rather poorly.
1159
+ We can draw the following main observations:
1160
+ 1. Some tools have very low TPR: Counting A and B
1161
+ scores as successful detections, we see that InsiderSec, Drek
1162
+ and Mosca only detect 7 (0.7%), 15 (1.6%) and 25 (2.6%)
1163
+ vulnerabilities, respectively. Hence, these tools fail to detect
1164
+ most vulnerabilities of the dataset.
1165
+ 2. The tools with best TPR have very low precision: The
1166
+ tools that have higher TPR are: ODGen, Graudit, ESLint SSC,
1167
+ Graph
1168
+ Syntax
1169
+ Keyword
1170
+ 0
1171
+ 25
1172
+ 50
1173
+ 75
1174
+ 100
1175
+ Percentage of Advisories
1176
+ 320
1177
+ 196
1178
+ 104
1179
+ 226
1180
+ 197
1181
+ 356
1182
+ 443
1183
+ 516
1184
+ 262
1185
+ 92
1186
+ 140
1187
+ A
1188
+ B
1189
+ C
1190
+ D
1191
+ Figure 5: Score distribution for each detection technique.
1192
+ and CodeQL. Unfortunately, Graudit and ESLint SSC also
1193
+ have a considerable number of false positives, which tends to
1194
+ erode the confidence of application developers in vulnerability
1195
+ detection tools. Graudit detects 219 vulnerabilities (22.9%),
1196
+ but it also reports over 109k FPs, giving it an overall precision
1197
+ of just 0.2%. A higher number of FPs is expected from a
1198
+ keyword-based tool like Graudit, as many of its string signatures
1199
+ often match non-vulnerable code snippets. ESLint SSC has
1200
+ the highest TPR (41.5%). However, it is also the tool with the
1201
+ highest number of reported FPs (over 389k) and, consequently,
1202
+ the lowest precision (0.1%). This is because ESLint SSC
1203
+ includes many rules from different ESLint plugins, some of
1204
+ which are simple matches (akin to keyword-based analysis)
1205
+ with greedy behaviour, leading to a higher number of FPs.
1206
+ 3. Graph-based analysis has the best detection capability:
1207
+ Figure 5 shows the scores according to a particular detection
1208
+ technique. These results show that graph-based analysis reports
1209
+ a significantly larger number of results with score A (explicit
1210
+ vulnerability notifications). Syntax and keyword-based analysis
1211
+ look fairly similar, with reasonable detection rates, but also a
1212
+ high number of reports containing only false positive results.
1213
+ When considering the results of both tools in this category,
1214
+ i.e., ODGen and CodeQL, they strike a better balance between
1215
+ true positives and precision. CodeQL detects 300 vulnerabilities
1216
+ (31.3%) and has a significantly higher precision (7.8%), when
1217
+ compared to most other tools, while ODGen detects 154
1218
+ vulnerabilities (16.1%). This number is significantly lower
1219
+ than CodeQL’s, but it represents a much higher precision
1220
+ (23.8%) than any other tool tested. Although both these
1221
+ tools do not have the highest TPR, most of their detected
1222
+ vulnerabilities were classified with the A score, meaning that
1223
+ the reported information is richer and more meaningful to the
1224
+ user. Consequently, CodeQL and ODGen are the most balanced
1225
+ tools, achieving a reasonable detection rate (TPR) and less
1226
+ FPs, when compared to other tools with similar TPR. We also
1227
+ note that both these tools have the potential for being further
1228
+ improved by extending them with additional rules.
1229
+ 4. Combining multiple tools increases TPR, but also lowers
1230
+ the overall precision: The combination of the two best tools
1231
+ (CodeQL and ESLint SSC) detects 508 vulnerabilities (53.1%),
1232
+ albeit with only 0.12% precision. If we add the third best
1233
+ tool (Graudit), we detect more vulnerabilities (551/57.6%), but
1234
+ the precision further decreases to 0.11%. Finally, combining
1235
+ 9
1236
+
1237
+ Scope
1238
+ ODGen
1239
+ CodeQL
1240
+ NodeJsScan
1241
+ ESLint SSC
1242
+ Graudit
1243
+ InsiderSec
1244
+ MS DevSkim
1245
+ Drek
1246
+ Mosca
1247
+ TP (%) FP (P%) TP (%) FP (P%) TP (%) FP (P%) TP (%) FP (P%) TP (%) FP (P%) TP (%) FP (P%) TP (%) FP (P%) TP (%) FP (P%) TP (%) FP (P%)
1248
+ CWE-22
1249
+ 70
1250
+ 136
1251
+ 104
1252
+ 416
1253
+ 56
1254
+ 257
1255
+ 110
1256
+ 25467
1257
+ 122
1258
+ 3101
1259
+ 2
1260
+ 401
1261
+ 0
1262
+ 368
1263
+ 0
1264
+ 1057
1265
+ 0
1266
+ 241
1267
+ (47.9)
1268
+ (34.0)
1269
+ (71.2)
1270
+ (20.0)
1271
+ (38.4)
1272
+ (17.9)
1273
+ (75.3)
1274
+ (0.4)
1275
+ (83.6)
1276
+ (3.8)
1277
+ (1.4)
1278
+ (0.5)
1279
+ (0.0)
1280
+ (0.0)
1281
+ (0.0)
1282
+ (0.0)
1283
+ (0.0)
1284
+ (0.0)
1285
+ CWE-79
1286
+ 1
1287
+ 33
1288
+ 26
1289
+ 843
1290
+ 6
1291
+ 924
1292
+ 29
1293
+ 123477
1294
+ 11
1295
+ 23634
1296
+ 0
1297
+ 28
1298
+ 0
1299
+ 3990
1300
+ 0
1301
+ 6353
1302
+ 1
1303
+ 1664
1304
+ (1.0)
1305
+ (2.9)
1306
+ (26.3)
1307
+ (3.0)
1308
+ (6.1)
1309
+ (0.6)
1310
+ (29.3)
1311
+ (0.0)
1312
+ (11.1)
1313
+ (0.0)
1314
+ (0.0)
1315
+ (0.0)
1316
+ (0.0)
1317
+ (0.0)
1318
+ (0.0)
1319
+ (0.0)
1320
+ (1.0)
1321
+ (0.1)
1322
+ CWE-400
1323
+ 4
1324
+ 40
1325
+ 13
1326
+ 212
1327
+ 2
1328
+ 374
1329
+ 39
1330
+ 21936
1331
+ 4
1332
+ 2795
1333
+ 0
1334
+ 22
1335
+ 0
1336
+ 1026
1337
+ 0
1338
+ 74
1339
+ 1
1340
+ 271
1341
+ (4.5)
1342
+ (9.1)
1343
+ (14.6)
1344
+ (5.8)
1345
+ (2.2)
1346
+ (0.5)
1347
+ (43.8)
1348
+ (0.2)
1349
+ (4.5)
1350
+ (0.1)
1351
+ (0.0)
1352
+ (0.0)
1353
+ (0.0)
1354
+ (0.0)
1355
+ (0.0)
1356
+ (0.0)
1357
+ (1.1)
1358
+ (0.4)
1359
+ CWE-78
1360
+ 22
1361
+ 40
1362
+ 43
1363
+ 416
1364
+ 2
1365
+ 121
1366
+ 29
1367
+ 7405
1368
+ 4
1369
+ 1567
1370
+ 0
1371
+ 15
1372
+ 0
1373
+ 269
1374
+ 3
1375
+ 380
1376
+ 3
1377
+ 190
1378
+ (29.3)
1379
+ (35.5)
1380
+ (57.3)
1381
+ (9.4)
1382
+ (2.7)
1383
+ (1.6)
1384
+ (38.7)
1385
+ (0.4)
1386
+ (5.3)
1387
+ (0.3)
1388
+ (0.0)
1389
+ (0.0)
1390
+ (0.0)
1391
+ (0.0)
1392
+ (4.0)
1393
+ (0.8)
1394
+ (4.0)
1395
+ (1.6)
1396
+ CWE-818
1397
+ 0
1398
+ 11
1399
+ 16
1400
+ 57
1401
+ 0
1402
+ 97
1403
+ 1
1404
+ 6990
1405
+ 3
1406
+ 1431
1407
+ 1
1408
+ 8
1409
+ 64
1410
+ 1093
1411
+ 0
1412
+ 393
1413
+ 0
1414
+ 150
1415
+ (0.0)
1416
+ (0.0)
1417
+ (21.3)
1418
+ (21.9)
1419
+ (0.0)
1420
+ (0.0)
1421
+ (1.3)
1422
+ (0.0)
1423
+ (4.0)
1424
+ (0.2)
1425
+ (1.3)
1426
+ (11.1)
1427
+ (85.3)
1428
+ (5.5)
1429
+ (0.0)
1430
+ (0.0)
1431
+ (0.0)
1432
+ (0.0)
1433
+ CWE-471
1434
+ 11
1435
+ 19
1436
+ 13
1437
+ 54
1438
+ 0
1439
+ 295
1440
+ 38
1441
+ 7466
1442
+ 0
1443
+ 2632
1444
+ 0
1445
+ 0
1446
+ 0
1447
+ 249
1448
+ 0
1449
+ 220
1450
+ 0
1451
+ 438
1452
+ (22.9)
1453
+ (36.7)
1454
+ (27.1)
1455
+ (19.4)
1456
+ (0.0)
1457
+ (0.0)
1458
+ (79.2)
1459
+ (0.5)
1460
+ (0.0)
1461
+ (0.0)
1462
+ (0.0)
1463
+ (0.0)
1464
+ (0.0)
1465
+ (0.0)
1466
+ (0.0)
1467
+ (0.0)
1468
+ (0.0)
1469
+ (0.0)
1470
+ CWE-20
1471
+ 5
1472
+ 19
1473
+ 4
1474
+ 25
1475
+ 0
1476
+ 116
1477
+ 19
1478
+ 7947
1479
+ 4
1480
+ 911
1481
+ 0
1482
+ 13
1483
+ 0
1484
+ 181
1485
+ 1
1486
+ 26
1487
+ 2
1488
+ 294
1489
+ (12.2)
1490
+ (20.8)
1491
+ (9.8)
1492
+ (13.8)
1493
+ (0.0)
1494
+ (0.0)
1495
+ (46.3)
1496
+ (0.2)
1497
+ (9.8)
1498
+ (0.4)
1499
+ (0.0)
1500
+ (0.0)
1501
+ (0.0)
1502
+ (0.0)
1503
+ (2.4)
1504
+ (3.7)
1505
+ (4.9)
1506
+ (0.7)
1507
+ CWE-1321
1508
+ 3
1509
+ 12
1510
+ 5
1511
+ 78
1512
+ 0
1513
+ 92
1514
+ 31
1515
+ 18130
1516
+ 0
1517
+ 4468
1518
+ 0
1519
+ 9
1520
+ 0
1521
+ 0
1522
+ 0
1523
+ 301
1524
+ 0
1525
+ 465
1526
+ (8.3)
1527
+ (20.0)
1528
+ (13.9)
1529
+ (6.0)
1530
+ (0.0)
1531
+ (0.0)
1532
+ (86.1)
1533
+ (0.2)
1534
+ (0.0)
1535
+ (0.0)
1536
+ (0.0)
1537
+ (0.0)
1538
+ (0.0)
1539
+ (0.0)
1540
+ (0.0)
1541
+ (0.0)
1542
+ (0.0)
1543
+ (0.0)
1544
+ CWE-94
1545
+ 4
1546
+ 18
1547
+ 5
1548
+ 79
1549
+ 2
1550
+ 159
1551
+ 16
1552
+ 17930
1553
+ 10
1554
+ 7159
1555
+ 1
1556
+ 23
1557
+ 0
1558
+ 358
1559
+ 8
1560
+ 858
1561
+ 8
1562
+ 199
1563
+ (12.1)
1564
+ (18.2)
1565
+ (15.2)
1566
+ (6.0)
1567
+ (6.1)
1568
+ (1.2)
1569
+ (48.5)
1570
+ (0.1)
1571
+ (30.3)
1572
+ (0.1)
1573
+ (3.0)
1574
+ (4.2)
1575
+ (0.0)
1576
+ (0.0)
1577
+ (24.2)
1578
+ (0.9)
1579
+ (24.2)
1580
+ (3.9)
1581
+ CWE-77
1582
+ 8
1583
+ 11
1584
+ 11
1585
+ 90
1586
+ 1
1587
+ 32
1588
+ 9
1589
+ 5390
1590
+ 0
1591
+ 892
1592
+ 0
1593
+ 1
1594
+ 0
1595
+ 1
1596
+ 0
1597
+ 52
1598
+ 0
1599
+ 97
1600
+ (34.8)
1601
+ (42.1)
1602
+ (47.8)
1603
+ (10.9)
1604
+ (4.3)
1605
+ (3.0)
1606
+ (39.1)
1607
+ (0.2)
1608
+ (0.0)
1609
+ (0.0)
1610
+ (0.0)
1611
+ (0.0)
1612
+ (0.0)
1613
+ (0.0)
1614
+ (0.0)
1615
+ (0.0)
1616
+ (0.0)
1617
+ (0.0)
1618
+ Other CWE
1619
+ 26
1620
+ 154
1621
+ 60
1622
+ 1283
1623
+ 34
1624
+ 2548
1625
+ 76
1626
+ 147552
1627
+ 61
1628
+ 60895
1629
+ 3
1630
+ 104
1631
+ 17
1632
+ 7930
1633
+ 3
1634
+ 9159
1635
+ 10
1636
+ 2868
1637
+ (8.9)
1638
+ (14.4)
1639
+ (20.5)
1640
+ (4.5)
1641
+ (11.6)
1642
+ (1.3)
1643
+ (26.0)
1644
+ (0.1)
1645
+ (20.9)
1646
+ (0.1)
1647
+ (1.0)
1648
+ (2.8)
1649
+ (5.8)
1650
+ (0.2)
1651
+ (1.0)
1652
+ (0.0)
1653
+ (3.4)
1654
+ (0.3)
1655
+ Dataset
1656
+ 154
1657
+ 493
1658
+ 300
1659
+ 3553
1660
+ 103
1661
+ 5015
1662
+ 397
1663
+ 389690
1664
+ 219
1665
+ 109485
1666
+ 7
1667
+ 624
1668
+ 81
1669
+ 15465
1670
+ 15
1671
+ 18873
1672
+ 25
1673
+ 6877
1674
+ (16.1)
1675
+ (23.8)
1676
+ (31.3)
1677
+ (7.8)
1678
+ (10.8)
1679
+ (2.0)
1680
+ (41.5)
1681
+ (0.1)
1682
+ (22.9)
1683
+ (0.2)
1684
+ (0.7)
1685
+ (1.1)
1686
+ (8.5)
1687
+ (0.5)
1688
+ (1.6)
1689
+ (0.1)
1690
+ (2.6)
1691
+ (0.4)
1692
+ Table VI: TP, TPR (%), FP and Precision (P%) for each tool by CWE. TPR highlights: green (TPR ≥ 50%) or yellow (50% > TPR ≥
1693
+ 15%). When TPR is highlighted we also highlight the FP and P columns: yellow (50% > P ≥ 15%), light red (15% > P ≥ 2.5%) and dark
1694
+ red (P < 2.5%). The CWEs are: Path Traversal (CWE-22), Cross-site Scripting (CWE-79), Resource Exhaustion (CWE-400), Insufficient
1695
+ Transport Layer Protection (CWE-818), OS Command Injection (CWE-78), Modification of Assumed-Immutable Data (CWE-471), Improper
1696
+ Input Validation (CWE-20), Code Injection (CWE-94), Improper Neutralization of Special Elements used in a Command (CWE-77), and
1697
+ Improperly Controlled Modification of Object Prototype Attributes (CWE-1321).
1698
+ both graph-based tools, CodeQL and ODGen, allows for the
1699
+ detection of 339 vulnerabilities (35.4%) with a precision of
1700
+ 7.7%. This shows that combining the best tools can increase
1701
+ the TPR, but at the cost of also increasing the number FPs,
1702
+ which limits the advantage of such an approach.
1703
+ D. Results Across Specific Vulnerability Types
1704
+ We now assess the performance of the tools when focusing
1705
+ on particular types of vulnerabilities. We concentrate on two
1706
+ main aspects: i) studying the types of vulnerabilities that the
1707
+ tools detect more frequently, and ii) analyzing which types of
1708
+ vulnerabilities can be detected simultaneously by several tools.
1709
+ 1. Most frequently detected vulnerability types: From the
1710
+ analysis of Table VI, we highlight seven CWEs that are detected
1711
+ most often regardless of the used tool: CWE-22, CWE-471,
1712
+ CWE-78, CWE-79, CWE-94, CWE-77, and CWE-1321. These
1713
+ are colored in yellow and green in Table VI.
1714
+ CWE-22 (path traversal) is the only type clearly detected by
1715
+ all four best performing tools (ODGen, ESLint SSC, Graudit,
1716
+ and CodeQL). This is because path traversal can be found
1717
+ statically by searching for well-known dangerous sinks in
1718
+ the Node.js API, e.g., the functions readFile, writeFile and
1719
+ createReadStream. The difference in precision between these
1720
+ four tools lies in that ESLint SSC and Graudit simply match
1721
+ these function calls, while ODGen and CodeQL report only
1722
+ cases where the path is tainted by user input.
1723
+ CWE-78 and CWE-77 (OS command injection), CWE-79
1724
+ (cross-site scripting) and CWE-94 (code injection) correspond
1725
+ to classic injection vulnerabilities. Detecting these vulnerabil-
1726
+ ities depends on the sets of sinks considered by each tool.
1727
+ CodeQL detects more OS command injections, while ESLint
1728
+ SSC detects more code injections because each have more
1729
+ extensive rulesets for those particular vulnerabilities. Both
1730
+ tools detect about the same number of XSS vulnerabilities.
1731
+ Both CWE-471 (Modification of Assumed-Immutable Data)
1732
+ and CWE-1321 (Improperly Controlled Modification of Object
1733
+ Prototype Attributes) are umbrella CWEs for several prototype
1734
+ tampering and prototype pollution vulnerabilities, for which
1735
+ both CodeQL and ESLint SSC have various rules. We expected
1736
+ ODGen to perform better at detecting prototype pollution vul-
1737
+ nerabilities (CWE-471), as this is one of its central goals [15].
1738
+ Although ODGen’s results for this vulnerability (22.9%) fall
1739
+ short of those by CodeQL (27.1%) and ESLint SSC (79.2%),
1740
+ ODGen does achieve a much higher precision (36.7%) than
1741
+ CodeQL (19.4%) and, especially, ESLint SSC (0.5%).
1742
+ 2. Vulnerability types detected by the three best performing
1743
+ tools: Figure 6 shows the intersections of TPs for the top-10
1744
+ CWEs. We can see a substantial intersection for CWE-22,
1745
+ where all three tools detect the same 85 vulnerabilities. This
1746
+ happens because path traversals are easy to find statically
1747
+ using a limited set of known dangerous sinks from the Node.js
1748
+ API, which all tools share. For CWE-79, both CodeQL and
1749
+ ESLint SSC detect about the same number of vulnerabilities,
1750
+ but only about half intersect with each other. This is due to
1751
+ differences in the rules regarding XSS sources and sinks. CWE-
1752
+ 471 shows a significant intersection, but ESLint SSC detects
1753
+ several vulnerabilities that CodeQL misses. This is because
1754
+ ESLint SSC’s rules have a wider range of sinks. Other CWEs
1755
+ have less intersections because their rulesets differ. For example,
1756
+ CodeQL is the only tool with specific rules to detect resource
1757
+ downloads over HTTP, hence the results for CWE-818.
1758
+ 10
1759
+
1760
+ 2
1761
+ 4
1762
+ 4
1763
+ 7
1764
+ 13
1765
+ 17
1766
+ 85
1767
+ CWE-22
1768
+ 12
1769
+ 13
1770
+ 11
1771
+ 6
1772
+ 0
1773
+ 2
1774
+ 3
1775
+ CWE-79
1776
+ 2
1777
+ 26
1778
+ 9
1779
+ 2
1780
+ 0 1
1781
+ 1
1782
+ CWE-400
1783
+ 24
1784
+ 7
1785
+ 18
1786
+ 3
1787
+ 1
1788
+ CWE-78
1789
+ 14
1790
+ 1
1791
+ 1 2
1792
+ CWE-818
1793
+ 2
1794
+ 26
1795
+ 11
1796
+ CWE-471
1797
+ 2
1798
+ 12
1799
+ 1
1800
+ 1 3
1801
+ CWE-20
1802
+ 26
1803
+ 5
1804
+ CWE-1321
1805
+ 3
1806
+ 7
1807
+ 0
1808
+ 2
1809
+ 0
1810
+ 7
1811
+ 1
1812
+ CWE-94
1813
+ 5
1814
+ 4
1815
+ 2
1816
+ CWE-77
1817
+ CodeQL
1818
+ ESLint SSC
1819
+ Graudit
1820
+ Figure 6: Intersections of TPs of the 3 best tools for top-10 CWEs.
1821
+ 5
1822
+ 10
1823
+ 15
1824
+ 20
1825
+ Precision (%)
1826
+ 0
1827
+ 200
1828
+ 400
1829
+ 600
1830
+ # Lines of Code (LOC)
1831
+ CWE-22
1832
+ CWE-78
1833
+ CWE-77
1834
+ CWE-471
1835
+ CWE-79
1836
+ CWE-818
1837
+ CWE-94
1838
+ CWE-400
1839
+ CWE-1321
1840
+ CWE-20
1841
+ Figure 7: Correlation between Query LOC and Precision.
1842
+ E. Results as a Function of Queries and Ruleset
1843
+ To study the relationship between ruleset/queries and vulner-
1844
+ ability detection results, we take CodeQL as an example and
1845
+ show, in Figure 7, how the precision of this tool compares with
1846
+ the number of lines of code of the specific queries CodeQL uses
1847
+ to detect the vulnerabilities in the Top-10 CWE categories in
1848
+ the dataset. Although this cannot be taken as a general rule, we
1849
+ can see that, in most cases, the precision is higher for smaller
1850
+ queries. Taking into account each CWE, simpler vulnerabilities,
1851
+ like CWE-22, can be detected using smaller queries with higher
1852
+ precision, while more complex vulnerabilities to detect, like
1853
+ CWE-1312, are harder to detect even when using larger (more
1854
+ complex) queries.
1855
+ It is then clear that vulnerability detection results can be
1856
+ influenced by the ruleset/queries executed by the tool. Using a
1857
+ small (specific) ruleset may improve the precision in detecting
1858
+ a specific vulnerability. However, in the context of a CI/CD
1859
+ pipeline, application developers do not know beforehand which
1860
+ specific ruleset to select to detect the (unknown) vulnerability.
1861
+ Consequently, it is reasonable to apply the most comprehensive
1862
+ ruleset available for the tool. This is the approach we used in
1863
+ this paper. For every tool, we selected the most comprehensive
1864
+ and complete ruleset, by either combining rules into a single
1865
+ tool execution or executing the tool multiple times using a
1866
+ different rule for every execution and combining the results. We
1867
+ also used the rules available off-the-shelf instead of developing
1868
+ or customizing rules. This allows us to reflect how developers
1869
+ will use these tools as most of them are not technically versed
1870
+ to improve the ruleset specified by the tool developers.
1871
+ VI. REASONS FOR MISSED DETECTION (RQ4)
1872
+ In RQ4, we study why existing tools fail to detect certain
1873
+ vulnerabilities. Table VII shows the number of undetected
1874
+ CWE
1875
+ CWE Description
1876
+ OWASP
1877
+ Undetected
1878
+ %
1879
+ CWE-79
1880
+ Cross-site Scripting
1881
+ 50 / 99
1882
+ 50.5%
1883
+ CWE-400
1884
+ Resource Exhaustion
1885
+ -
1886
+ 44 / 89
1887
+ 49.4%
1888
+ CWE-78
1889
+ OS Command Injection
1890
+ 20 / 75
1891
+ 26.7%
1892
+ CWE-20
1893
+ Improper Input Validation
1894
+ 16 / 41
1895
+ 39.0%
1896
+ CWE-22
1897
+ Path Traversal
1898
+ 12 / 146
1899
+ 8.2%
1900
+ CWE-94
1901
+ Code Injection
1902
+ 10 / 33
1903
+ 30.3%
1904
+ CWE-818
1905
+ Insecure Transport Layer
1906
+ 10 / 75
1907
+ 13.3%
1908
+ CWE-287
1909
+ Improper Authentication
1910
+ 9 / 9
1911
+ 100.0%
1912
+ CWE-471
1913
+ MAID
1914
+ 8 / 48
1915
+ 16.7%
1916
+ CWE-200
1917
+ Information Exposure
1918
+ 8 / 14
1919
+ 57.1%
1920
+ Others
1921
+ -
1922
+ -
1923
+ 137 / 286
1924
+ 47.9%
1925
+ Total
1926
+ -
1927
+ -
1928
+ 324 / 957
1929
+ 33.9%
1930
+ Table VII: Number of vulnerabilities undetected by any tool.
1931
+ Limitation
1932
+ Advisory
1933
+ CWE
1934
+ Vulnerability
1935
+ L1
1936
+ 63
1937
+ CWE-730
1938
+ CVE-2015-9241
1939
+ 567
1940
+ CWE-287
1941
+ CVE-2017-11429
1942
+ L2
1943
+ 165
1944
+ CWE-818
1945
+ CVE-2016-10583
1946
+ 305
1947
+ CWE-22
1948
+ CVE-2016-1000249
1949
+ L3
1950
+ 26
1951
+ CWE-287
1952
+ CVE-2014-10067
1953
+ 92
1954
+ CWE-200
1955
+ CVE-2016-10533
1956
+ L4
1957
+ 113
1958
+ CWE-89
1959
+ CVE-2016-10554
1960
+ 43
1961
+ CWE-79
1962
+ CVE-2014-9772
1963
+ L5
1964
+ 1469
1965
+ CWE-471
1966
+ CVE-2017-1000048
1967
+ 313
1968
+ CWE-502
1969
+ CVE-2017-5954
1970
+ Table VIII: Examples of undetected vulnerabilities by cause (Lx).
1971
+ vulnerabilities grouped by CWE and their mapping to OWASP
1972
+ Top 10 Web Security Risks (2021) [29]. Of the 957 known
1973
+ vulnerabilities in the dataset, 324 vulnerabilities (33.9%) were
1974
+ not detected by any of the selected tools. To understand the
1975
+ underlying reasons, we have manually analyzed a sample
1976
+ of undetected vulnerabilities. So far, we have identified the
1977
+ following five main tool limitations. In Table VIII, we map
1978
+ these limitations with some vulnerability categories (CWE) and
1979
+ provide specific examples of undetected vulnerabilities (CVE).
1980
+ L1. Cross-package vulnerabilities: The selected tools come
1981
+ with pre-defined sets of manually written rules, typically
1982
+ focusing solely on popular APIs. We noticed that some
1983
+ undetected vulnerabilities exist in code that invokes functions of
1984
+ third-party packages that map directly to known dangerous code,
1985
+ e.g., wrappers to OS-level commands. These vulnerabilities
1986
+ could have been found by testing all package dependencies
1987
+ (can be thousands of other packages [3]), or by using a more
1988
+ complete set of rules and queries (covering additional sources
1989
+ and sinks). However, the manual maintenance of such lists
1990
+ of sources and sinks is impractical as the Node.js ecosystem
1991
+ expands. Existing work [71] tries to automatically extract taint
1992
+ specifications (sources and sinks) from JavaScript libraries,
1993
+ which partially solves the issue of incomplete rules, but requires
1994
+ the constant dynamic testing of every new npm package.
1995
+ For instance, Listing 8 shows a code snippet of a command
1996
+ injection vulnerability for advisory 1440. This problem exists
1997
+ because user-controlled data reaches an exec sink inside the
1998
+ third-party package comandante, a package meant to ease the
1999
+ execution of OS-level commands. The tools fail to recognize
2000
+ this vulnerability because the usual command injection sinks
2001
+ are not directly present in the analyzed code, but are instead
2002
+ inside a third-party dependency that is not modelled by the
2003
+ 11
2004
+
2005
+ 1
2006
+ // Snippet of ./gnuplot.js:
2007
+ 2
2008
+ var run = require('comandante');
2009
+ 3
2010
+ 4
2011
+ module.exports = function () {
2012
+ 5
2013
+ var plot = run('gnuplot', []);
2014
+ 6
2015
+ plot.print = function (data, options) {
2016
+ 7
2017
+ plot.write(data);
2018
+ 8
2019
+ // (...)
2020
+ 9
2021
+ };
2022
+ 10
2023
+ // (...)
2024
+ 11
2025
+ }
2026
+ Listing 8: Command Injection (advisory 1440) - NPM and Github
2027
+ Advisories [75, 76].
2028
+ {
2029
+ "scripts": {
2030
+ "preinstall":
2031
+ """wget http://s.qdcdn.com/17mon/17monipdb.zip &&
2032
+ unzip -p 17monipdb.zip 17monipdb.dat > 17monipdb.dat"""
2033
+ }
2034
+ }
2035
+ Listing 9: Insecure Transport Layer in package.json of ipip-coffee
2036
+ package (advisory 279) - CVE-2016-10673.
2037
+ vulnerability detection rules of each tool, i.e., they failed to
2038
+ include the write function as a potential dangerous sink.
2039
+ L2. Limited analysis scope: In addition to JavaScript code
2040
+ files, Node.js projects depend on several other components,
2041
+ such as configuration files, front-end template code, testing
2042
+ frameworks, etc. However, by analyzing only the JavaScript
2043
+ code in isolation, certain vulnerabilities can be missed. As an
2044
+ example, npm packages contain a package.json file which may
2045
+ include bootstrap scripts. In several analyzed packages, these
2046
+ scripts are used to download resources over HTTP. As it turns
2047
+ out, using HTTP allows for man-in-the-middle attacks, where
2048
+ resources are replaced by malicious payloads. While some
2049
+ tools can detect insecure downloads if they are performed by
2050
+ the main JavaScript code (e.g., by searching for HTTP URLs),
2051
+ they cannot detect downloads issued from package.json.
2052
+ Listing 9 shows a snippet of the package.json file for the ipip-
2053
+ coffee package, in which an external resource is downloaded
2054
+ over HTTP. This allows for man-in-the-middle attacks that
2055
+ might compromise the server. In this particular example, this
2056
+ vulnerability can only be detected if the package.json file is
2057
+ also considered when performing the vulnerability analysis.
2058
+ L3. Lack of contextual knowledge: Packages may expose
2059
+ sensitive information, e.g., by logging plaintext passwords to a
2060
+ file. These vulnerabilities are application-specific and require
2061
+ contextual knowledge of which data is sensitive. The analyzed
2062
+ tools, however, are not designed to gain contextual knowl-
2063
+ edge and thus miss vulnerabilities that depend upon it, e.g.,
2064
+ application-specific leaks. To help detect such vulnerabilities,
2065
+ a possible approach is to annotate application inputs, objects,
2066
+ or data flows with sensitivity levels, and check which system
2067
+ resources handle the annotated features during the execution.
2068
+ Listing 10 shows an example of a Credential Exposure
2069
+ vulnerability, in which plaintext passwords are logged to the
2070
+ console. The code snippet itself seems benign until one becomes
2071
+ aware that the key variable holds security-critical information.
2072
+ 1
2073
+ // Snippet of ./lib/odbc.js:
2074
+ 2
2075
+ if(exports.debug) {
2076
+ 3
2077
+ console.log("""%s odbc.js : pool[%s] :
2078
+ 4
2079
+ pool.close() - processing pools %s - connections: %s""",
2080
+ 5
2081
+ getElapsedTime(), self.index, key, connections.length);
2082
+ 6
2083
+ }
2084
+ Listing 10: Credential Exposure (advisory 1185) - SNYK-JS-IBMDB-
2085
+ 459762 [77].
2086
+ 1
2087
+ // Snippet of ./protect/lib/rules/xss.js
2088
+ 2
2089
+ const xssSimple = new
2090
+ RegExp('((%3C)|<)((%2F)|/)*[a-z0-9%]+((%3E)|>)', 'i')
2091
+ �→
2092
+ 3
2093
+ const xssImgSrc = new RegExp('((%3C)|<)((%69)|i|(%49))((%6D)
2094
+ 4
2095
+ |m|(%4D))((%67)|g|(%47))[^\n]+((%3E)|>)', 'i')
2096
+ 5
2097
+ 6
2098
+ function isXss(value) {
2099
+ 7
2100
+ return xssSimple.test(value) || xssImgSrc.test(value)
2101
+ 8
2102
+ }
2103
+ 9
2104
+ // Example attack payload:
2105
+ 10
2106
+ // <input type="image" src onerror="alert('XSS')">
2107
+ Listing 11: XSS (advisory 1116) - CVE-2018-1000160.
2108
+ This contextual knowledge is needed to detect the vulnerability
2109
+ but is difficult to extract using automated tools.
2110
+ L4. Incorrect sanitization: Application developers often use
2111
+ regular expressions to detect malicious inputs. However, regular
2112
+ expressions are complex, and developers usually do not test
2113
+ them thoroughly, allowing sanitization bypasses to occur.
2114
+ Sanitization errors are often hard to detect statically, as they
2115
+ require dynamically testing each regular expression ensuring
2116
+ that they generate semantically valid inputs that can both bypass
2117
+ the validation and effectively trigger the vulnerability.
2118
+ For instance, Listing 11 shows a code fragment containing
2119
+ two regular expressions that aim to prevent potential XSS
2120
+ vulnerabilities. However, these regular expressions are not
2121
+ entirely correct as there still exist some specially crafted inputs,
2122
+ such as the one shown in the comment of Listing 11, that can
2123
+ bypass this validation and launch an XSS attack.
2124
+ L5. Inability to cope with JavaScript dynamicity: Specific
2125
+ features of JavaScript can lead to vulnerabilities that are hard
2126
+ to detect by static analysis tools. For example, object-based
2127
+ inheritance, extensible objects, and dynamic typing are key
2128
+ features of JavaScript, which can lead to prototype pollution,
2129
+ authentication bypass, and business logic vulnerabilities.
2130
+ Listing 12 shows a type of Prototype Pollution vulnerability
2131
+ present in the qs package, which is a querystring parsing library
2132
+ that allows developers to create objects within query strings.
2133
+ For example, the string ’foo[bar]=baz’ is converted to the
2134
+ object {foo:{bar:’baz’}}. Usually, this package protects
2135
+ against attacks that try to overwrite the existing prototype
2136
+ properties of an object. However, in this vulnerable version,
2137
+ the protection can be circumvented by prefixing the name of
2138
+ the parameter with character [ or ], as shown in the proof-
2139
+ of-concept exploit code shown in Listing 12. Consequently,
2140
+ calling toString() on the object will throw an exception. This
2141
+ can subvert the application logic, potentially allowing attackers
2142
+ to work around security controls, modify data, and make the
2143
+ application unstable. The selected tools miss this example
2144
+ because they fail to model how objects change depending on
2145
+ the instructions applied to them, specially the object prototype.
2146
+ 12
2147
+
2148
+ 1
2149
+ // Snippet of ./lib/parse.js:
2150
+ 2
2151
+ module.exports = function (str, opts) {
2152
+ 3
2153
+ var options = opts || {};
2154
+ 4
2155
+ var tempObj = typeof str === 'string' ? parseValues(str,
2156
+ options) : str;
2157
+ �→
2158
+ 5
2159
+ var obj = options.plainObjects ? Object.create(null) : {};
2160
+ 6
2161
+ 7
2162
+ var keys = Object.keys(tempObj);
2163
+ 8
2164
+ for (var i = 0; i < keys.length; ++i) {
2165
+ 9
2166
+ var key = keys[i];
2167
+ 10
2168
+ var newObj = parseKeys(key, tempObj[key], options);
2169
+ 11
2170
+ obj = Utils.merge(obj, newObj, options);
2171
+ 12
2172
+ }
2173
+ 13
2174
+ return Utils.compact(obj);
2175
+ 14
2176
+ };
2177
+ 15
2178
+ // Proof-of-Concept exploit code:
2179
+ 16
2180
+ qs.parse("]=toString", { allowPrototypes: false })
2181
+ // {toString = true} <== prototype overwritten
2182
+ �→
2183
+ Listing 12: Prototype Override (advisory 1469) - CVE-2017-1000048.
2184
+ From these limitations, we can extract actionable insights on
2185
+ the applicability of static code analysis tools for vulnerability
2186
+ detection in Node.js code. On one hand, these tools can
2187
+ potentially overcome limitations L1 and L2 by both employing
2188
+ improved strategies for maintaining taint specifications, and by
2189
+ considering all the appropriate analysis scopes for Node.js
2190
+ code. On the other hand, every static analysis tool will
2191
+ struggle to overcome limitations L3, L4, and L5, because
2192
+ they fail to capture behavioral and contextual information that
2193
+ is only available at runtime when the package is executed
2194
+ with appropriate, and application-specific, test inputs. To this
2195
+ end, it seems that the approaches employed by current static
2196
+ vulnerability detection tools can mainly be used successfully to
2197
+ detect classic injection-style vulnerabilities even if all the tools
2198
+ tested in this paper cannot do so with reasonable precision.
2199
+ VII. THREATS TO VALIDITY
2200
+ 1. Even though our dataset is composed of real known-
2201
+ vulnerable npm packages, there may be an implicit bias towards
2202
+ vulnerabilities that are easier to analyze and more common
2203
+ across different programming languages (i.e., not specific to
2204
+ JavaScript code). Thus, since our curated dataset may not be
2205
+ fully representative of all vulnerabilities in Node.js applications,
2206
+ a tool that can detect all the vulnerabilities of our dataset may
2207
+ still miss other unreported ones.
2208
+ 2. We may have missed some relevant tool, failed to evaluate
2209
+ an analyzer that excels above all tested tools in our study,
2210
+ or overlooked third-party detection rules that produce better
2211
+ results. To reduce this risk, we will promote the reproducibility
2212
+ of our evaluation by providing both the source code of VulcaN
2213
+ and our curated dataset.
2214
+ 3. Both the labeling of vulnerable packages and identification of
2215
+ their vulnerable code snippets were performed manually. Given
2216
+ the challenges of manual code inspection, these annotations
2217
+ could be mislabeled. To mitigate this risk, all vulnerabilities
2218
+ were analysed by at least two authors at separate times and
2219
+ we will make our dataset available for public scrutiny.
2220
+ 4. A potential concern is whether our study is susceptible
2221
+ to survivor bias. For instance, assuming hypothetically that
2222
+ all the packages that we analyze had already been analyzed
2223
+ using CodeQL during the code development phase, and that
2224
+ the vulnerabilities reported by CodeQL had been accordingly
2225
+ fixed by the developer prior to package release on npm, then
2226
+ the number of vulnerabilities effectively detected by CodeQL
2227
+ could be higher than those reported in our study. This would
2228
+ misleadingly suggest that the quality of CodeQL is worse than
2229
+ what it is in reality. Note, however, that such a comprehensive
2230
+ characterization of each tool is beyond the scope of this work.
2231
+ In our study, we concentrate on evaluating tools’ ability to
2232
+ detect, not all possible vulnerabilities, but only those that have
2233
+ been officially reported in npm packages already in production.
2234
+ VIII. RELATED WORK
2235
+ The literature covers many tools for detecting vulnerabilities
2236
+ in Web applications, including static [78, 79, 80], dynamic [81,
2237
+ 82], and hybrid analysis tools [83, 84, 85, 86], often combining
2238
+ different types of program analysis techniques, such as fuzzing
2239
+ (e.g. [81, 82]), control-flow and data-flow analysis (e.g. [57, 79,
2240
+ 83, 85]), and symbolic execution (e.g. [80, 84, 86]). The great
2241
+ majority of these tools is, however, aimed at PHP-based Web
2242
+ applications, with considerably fewer tools targeting JavaScript
2243
+ applications. Most of the existing tools for JavaScript are aimed
2244
+ at client-side JavaScript code and its specific vulnerabilities: for
2245
+ instance, DOM-based XSS [87, 88], unrestricted inclusion of
2246
+ third-party cross-origin scripts [89], and potentially malicious
2247
+ flows via client-side persistent storage [8].
2248
+ Graph-based vulnerability scanners: State-of-the-art static
2249
+ vulnerability analysis techniques often work by first computing
2250
+ a static model describing the dynamic behaviour of the
2251
+ application to be analyzed. Most notably, code property graphs
2252
+ (CPGs) [57] were proposed as a compact representation
2253
+ of an application’s behaviour. With CPGs, one can encode
2254
+ specific vulnerability types as simple graph traversals, which
2255
+ can, in turn, be expressed using graph query languages and
2256
+ then executed on top of off-the-shelf graph databases (e.g.
2257
+ Neo4J [90]). Code property graphs have successfully been
2258
+ applied to find SQL injection, XSS, and CSRF vulnerabilities
2259
+ in PHP applications [79, 85]. Furthermore, they are at the
2260
+ core of CodeQL [14]. For JavaScript, code property graphs
2261
+ were employed by JAW [56] and ODGen [15], for client-side
2262
+ and server-side JavaScript respectively. In our work, we have
2263
+ extensively evaluated CodeQL and ODGen as representative
2264
+ state-of-the-art, graph-based vulnerability scanners.
2265
+ Vulnerability studies & analyzers for Node.js applications:
2266
+ Unlike client-side JavaScript applications, which run in the
2267
+ browser, Node.js application code is not sandboxed. Recent
2268
+ empirical studies [3, 91] have shown that, contrary to popular
2269
+ belief, npm applications are often poorly maintained and
2270
+ tested, with a significant percentage (up to 40%) of all
2271
+ packages depending on code with at least one publicly known
2272
+ vulnerability. Furthermore, after reviewing more than 200K
2273
+ npm applications, Staicu et al. [4] concludes that 20% of the
2274
+ analyzed applications either directly or indirectly make use
2275
+ of an injection API. Despite this security-critical situation,
2276
+ there is only a small number of research tools for detecting
2277
+ vulnerabilities in Node.js applications and their underlying
2278
+ 13
2279
+
2280
+ infrastructure, most of which based on dynamic code analysis.
2281
+ For instance, Synode [4] aims to prevent injection attacks
2282
+ in Node.js applications, and NodeSec [9] aims to detect
2283
+ vulnerabilities in Node.js applications. The authors of [5]
2284
+ and [92] design specific dynamic analysis for finding regular
2285
+ expression denial of service (ReDoS) vulnerabilities. The
2286
+ authors of [93] also apply dynamic analysis and symbolic
2287
+ execution to detect attacks that leverage hidden properties in
2288
+ client- and server-side JavaScript. There are also academic
2289
+ works that employ static analysis techniques for detecting
2290
+ vulnerabilities in Node.js, but most focus on detecting prototype
2291
+ pollution vulnerabilities [94, 95]. ODGen [15] is the only purely
2292
+ static code analysis tool developed by the academia that aims
2293
+ to detect several types of vulnerabilities in Node.js.
2294
+ Empirical studies of vulnerability analyzers: Several em-
2295
+ pirical studies aim at characterizing the efficacy of existing
2296
+ white-box vulnerability detection tools (e.g. [88, 96, 97]).
2297
+ Durieux et al. [96] evaluated 9 automated analysis tools for
2298
+ Ethereum Smart Contracts. The authors created a curated
2299
+ dataset consisting of 69 annotated vulnerable smart contracts, as
2300
+ well as a raw dataset consisting of 47,518 smart contracts. They
2301
+ report that only 42% of the vulnerabilities on the annotated
2302
+ dataset were detected, with the highest ranking tool having an
2303
+ accuracy of 21%. Melicher et al. [88] evaluated 3 automated
2304
+ static analysis tools for detecting DOM-based XSS in client-
2305
+ side JavaScript code (Esflow [98], ScanJS [54], and Burp
2306
+ Suite Pro [99]). They created a dataset with 3219 confirmed
2307
+ vulnerabilities. However, many security flaws in server-side
2308
+ code for Node.js do not exist on the client-side (e.g., SQL
2309
+ injections), and vice-versa. As such, the dataset from [88] is
2310
+ not representative enough of server-side vulnerabilities. Finally,
2311
+ Nunes et al. [97] evaluate five free static analysis tools for
2312
+ detecting SQL injection and XSS vulnerabilities in PHP web
2313
+ applications using a dataset comprising 134 WordPress plugins.
2314
+ In contrast to the studies referenced above, our paper presents
2315
+ the first empirical study targeting fully automated vulnerability
2316
+ detection tools for npm packages. Our study comes with a
2317
+ comprehensive manually-annotated dataset based on confirmed
2318
+ real-world vulnerabilities.
2319
+ IX. CONCLUSIONS
2320
+ This paper presented an empirical study of static analysis
2321
+ tools for detecting vulnerabilities in Node.js packages. To
2322
+ conduct this study, we built VulcaN, an automated analysis
2323
+ framework, using which we created the largest known curated
2324
+ dataset of Node.js packages with well-characterized security
2325
+ vulnerabilities. Currently, our curated dataset includes 745
2326
+ reviews that accurately identify the exact location of known
2327
+ vulnerabilities inside affected npm packages. We found that
2328
+ the nine evaluated tools fail to detect many vulnerabilities and
2329
+ exhibit high false positive rates. Additionally, we show that
2330
+ many important vulnerabilities appearing in the OWASP Top-
2331
+ 10 are not detected by any evaluated tool or even when using
2332
+ the combination of all tools.
2333
+ We believe that our curated dataset will substantially con-
2334
+ tribute to enabling future research on automatic vulnerability
2335
+ detection tools for server-side JavaScript applications. To this
2336
+ end, we have made this dataset publicly available.
2337
+ REFERENCES
2338
+ [1] “Node.js,” https://nodejs.org.
2339
+ [2] “Ecma script standard,” http://www.ecma-international.
2340
+ org/ecma-262/11.0/index.html.
2341
+ [3] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel,
2342
+ “Small world with high risks: A study of security threats
2343
+ in the npm ecosystem,” in Proc. of USENIX Security,
2344
+ 2019.
2345
+ [4] C.-A. Staicu, M. Pradel, and B. Livshits, “Synode:
2346
+ Understanding and automatically preventing injection
2347
+ attacks on node.js.” in Proc. of NDSS, 2018.
2348
+ [5] C.-A. Staicu and M. Pradel, “Freezing the web: A study
2349
+ of redos vulnerabilities in javascript-based web servers,”
2350
+ in Proc. of USENIX, 2018.
2351
+ [6] B. Stock, M. Johns, M. Steffens, and M. Backes, “How
2352
+ the web tangled itself: Uncovering the history of client-
2353
+ side web (in) security,” in Proc. of USENIX Security,
2354
+ 2017.
2355
+ [7] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson,
2356
+ C. Wilson, and E. Kirda, “Thou shalt not depend on
2357
+ me: Analysing the use of outdated javascript libraries on
2358
+ the web,” 2017.
2359
+ [8] M. Steffens, C. Rossow, M. Johns, and B. Stock, “Don’t
2360
+ trust the locals: Investigating the prevalence of persistent
2361
+ client-side cross-site scripting in the wild.” in Proc. of
2362
+ NDSS, 2019.
2363
+ [9] L. Gong, “Dynamic analysis for javascript code,” Ph.D.
2364
+ dissertation, University of California, Berkeley, 2018.
2365
+ [10] F. Gauthier, B. Hassanshahi, and A. Jordan, “Affogato:
2366
+ Runtime detection of injection attacks for node.js,” in
2367
+ Proc. of ISSTA Workshops, 2018.
2368
+ [11] “Npm audit,” https://docs.npmjs.com/cli/v7/commands/
2369
+ npm-audit.
2370
+ [12] “Snyk,” https://snyk.io/.
2371
+ [13] “Nodejsscan,” https://github.com/ajinabraham/njsscan.
2372
+ [14] “Codeql,” https://github.com/github/codeql.
2373
+ [15] S. Li, M. Kang, J. Hou, and Y. Cao, “Mining node.js
2374
+ vulnerabilities via object dependence graph and query,”
2375
+ in Proc. of USENIX Security, 2022.
2376
+ [16] “Graudit,” https://github.com/wireghoul/graudit.
2377
+ [17] “Insidersec,” https://github.com/insidersec/insider.
2378
+ [18] “Eslint security scanner configs,” https://github.com/
2379
+ Greenwolf/eslint-security-scanner-configs.
2380
+ [19] “Ms devskim,” https://github.com/microsoft/DevSkim.
2381
+ [20] “Mosca,” https://github.com/CoolerVoid/Mosca.
2382
+ [21] “Drek,” https://github.com/chrisallenlane/drek.
2383
+ [22] “Advisory report procedure,” https://docs.npmjs.com/
2384
+ reporting-a-vulnerability-in-an-npm-package.
2385
+ [23] “Advisory 315,” https://www.npmjs.com/advisories/315.
2386
+ [24] “Npm advisories,” https://www.npmjs.com/advisories.
2387
+ [25] J. Ashkenas, http://coffeescript.org/, 2015.
2388
+ [26] Microsoft, “TypeScript language specification Version
2389
+ 1.8,” Microsoft, Tech. Rep., 2016.
2390
+ 14
2391
+
2392
+ [27] “Common weakness enumeration,” https://cwe.mitre.org/.
2393
+ [28] “Owasp top 10 web security risks,” https://owasp.org/
2394
+ www-project-top-ten.
2395
+ [29] Mitre, “Cwe to owasp top 10 (2021) mapping,” https:
2396
+ //cwe.mitre.org/data/definitions/1344.html, 2021.
2397
+ [30] “Beyond
2398
+ security
2399
+ sast,”
2400
+ https://beyondsecurity.com/
2401
+ solutions/besource.html.
2402
+ [31] “Checkmarx sast,” https://www.checkmarx.com/products/
2403
+ static-application-security-testing.
2404
+ [32] “Fortify
2405
+ sast,”
2406
+ https://www.microfocus.com/en-us/
2407
+ products/static-code-analysis-sast/overview.
2408
+ [33] “Veracode
2409
+ sast,”
2410
+ https://www.veracode.com/products/
2411
+ binary-static-analysis-sast.
2412
+ [34] “Kiuwan
2413
+ sast,”
2414
+ https://www.kiuwan.com/
2415
+ code-security-sast.
2416
+ [35] “Codesonar,”
2417
+ https://www.grammatech.com/products/
2418
+ source-code-analysis.
2419
+ [36] “Thunderscan,”
2420
+ https://www.defensecode.com/
2421
+ thunderscan-sast.
2422
+ [37] “Whitehat sast,” https://www.whitehatsec.com/platform/
2423
+ static-application-security-testing.
2424
+ [38] “Jsprime,” https://github.com/dpnishant/jsprime.
2425
+ [39] “Codeburner,” https://github.com/groupon/codeburner.
2426
+ [40] “Sonarqube,” https://github.com/SonarSource/sonarqube.
2427
+ [41] “Codewarrior,”
2428
+ https://github.com/CoolerVoid/
2429
+ codewarrior.
2430
+ [42] “Wala,” http://wala.sourceforge.net/wiki/index.php/Main_
2431
+ Page.
2432
+ [43] “Pmd,” https://github.com/pmd/pmd.
2433
+ [44] “Aether,” http://aetherjs.com.
2434
+ [45] “Coala,” https://github.com/coala/coala.
2435
+ [46] “Jshint,” https://github.com/jshint/jshint.
2436
+ [47] “Escomplex,” https://github.com/jared-stilwell/escomplex.
2437
+ [48] “Coverty scan,” https://scan.coverity.com.
2438
+ [49] “Deepscan,” https://deepscan.io.
2439
+ [50] “Applicationinspector,”
2440
+ https://github.com/microsoft/
2441
+ ApplicationInspector.
2442
+ [51] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis
2443
+ for javascript,” in International Static Analysis Symposium.
2444
+ Springer, 2009, pp. 238–255.
2445
+ [52] H. Lee, S. Won, J. Jin, J. Cho, and S. Ryu, “Safe: Formal
2446
+ specification and implementation of a scalable analysis
2447
+ framework for ecmascript,” in International Workshop
2448
+ on Foundations of Object-Oriented Languages (FOOL),
2449
+ vol. 10.
2450
+ Citeseer, 2012.
2451
+ [53] “Eslint security plugin,” https://github.com/nodesecurity/
2452
+ eslint-plugin-security.
2453
+ [54] “Mozilla scanjs,” https://github.com/mozilla/scanjs.
2454
+ [55] “Semgrep,” https://semgrep.dev.
2455
+ [56] S. Khodayari and G. Pellegrino, “JAW: Studying client-
2456
+ side CSRF with hybrid property graphs and declarative
2457
+ traversals,” in Proc. of USENIX Security, 2021.
2458
+ [57] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling
2459
+ and discovering vulnerabilities with code property graphs,”
2460
+ in Proc. of IEEE S&P, 2014.
2461
+ [58] “Joern,” https://github.com/joernio/joern.
2462
+ [59] “Owasp vulnerability scanning tools’ list,” https://owasp.
2463
+ org/www-community/Vulnerability_Scanning_Tools.
2464
+ [60] “Owasp
2465
+ free
2466
+ application
2467
+ security
2468
+ tools’
2469
+ list,”
2470
+ https://owasp.org/www-community/Free_for_Open_
2471
+ Source_Application_Security_Tools.
2472
+ [61] “Repository
2473
+ dseguy/awesome-static-analysis,”
2474
+ https://
2475
+ github.com/dseguy/awesome-static-analysis.
2476
+ [62] “Repository creinartz/awesome-static-analysis,” https://
2477
+ github.com/creinartz/awesome-static-analysis.
2478
+ [63] “Repository codefactor-io/awesome-static-analysis,” https:
2479
+ //github.com/codefactor-io/awesome-static-analysis.
2480
+ [64] O.
2481
+ Harris,
2482
+ https://www.softwaresecured.com/
2483
+ top-sast-tools-for-developers/.
2484
+ [65] M.
2485
+ Weerasinghe,
2486
+ https://medium.com/@manjula.aw/
2487
+ nodejs-security-tools-de0d0c937ec0.
2488
+ [66] softwaretestinghelp.com, https://www.softwaretestinghelp.
2489
+ com/tools/top-40-static-code-analysis-tools/.
2490
+ [67] “Damn vulnerable node application,” https://github.com/
2491
+ appsecco/dvna.
2492
+ [68] “Gitlab’s
2493
+ ci/cd,”
2494
+ https://docs.gitlab.com/ee/user/
2495
+ application_security/sast/index.html.
2496
+ [69] “Codeql javascript rule repository,” https://github.com/
2497
+ github/codeql/tree/main/javascript.
2498
+ [70] “Codeql
2499
+ eval
2500
+ taint
2501
+ example,”
2502
+ https://github.com/
2503
+ github/codeql/blob/main/javascript/ql/examples/queries/
2504
+ dataflow/EvalTaint/EvalTaint.ql.
2505
+ [71] C.-A. Staicu, M. T. Torp, M. Schäfer, A. Møller, and
2506
+ M. Pradel, “Extracting taint specifications for javascript
2507
+ libraries,” in Proc. of ICSE, 2020.
2508
+ [72] “Nodejsscan eval semgrep rule,” https://github.com/
2509
+ ajinabraham/njsscan/blob/master/njsscan/rules/semantic_
2510
+ grep/eval/eval_node.yaml.
2511
+ [73] “Nodejsscan
2512
+ rule
2513
+ repository,”
2514
+ https://github.com/
2515
+ ajinabraham/njsscan/blob/master/njsscan/rules/semantic_
2516
+ grep.
2517
+ [74] “Graudit rule repository,” https://github.com/wireghoul/
2518
+ graudit/tree/master/signatures.
2519
+ [75] “Advisory
2520
+ 1440,”
2521
+ https://www.npmjs.com/advisories/
2522
+ 1440.
2523
+ [76] “Ghsa-cfwc-xjfp-44jg,”
2524
+ https://github.com/advisories/
2525
+ GHSA-cfwc-xjfp-44jg.
2526
+ [77] “Snyk-js-ibmdb-459762,”
2527
+ https://snyk.io/vuln/
2528
+ SNYK-JS-IBMDB-459762.
2529
+ [78] J. Dahse and T. Holz, “Static detection of second-order
2530
+ vulnerabilities in web applications,” in Proc. of USENIX
2531
+ Security, 2014.
2532
+ [79] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and
2533
+ F. Yamaguchi, “Efficient and flexible discovery of php
2534
+ application vulnerabilities,” in Proc. of IEEE EuroS&P,
2535
+ 2017.
2536
+ [80] A. Alhuzali, B. Eshete, R. Gjomemo, and V. Venkatakr-
2537
+ ishnan, “Chainsaw: Chained automated workflow-based
2538
+ exploit generation,” in Proc. of ACM CCS, 2016.
2539
+ [81] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst,
2540
+ “Automatic creation of sql injection and cross-site scripting
2541
+ attacks,” in Proc. of ICSE, 2009.
2542
+ 15
2543
+
2544
+ [82] S. Mcallister, E. Kirda, and C. Kruegel, “Leveraging user
2545
+ interactions for in-depth testing of web applications,” in
2546
+ Proc. of RAID, 2008.
2547
+ [83] D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vi-
2548
+ gna, “Multi-module vulnerability analysis of web-based
2549
+ applications,” in Proc. of ACM CCS, 2007.
2550
+ [84] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna,
2551
+ “Toward automated detection of logic vulnerabilities in
2552
+ web applications,” in Proc. of USENIX Security, 2010.
2553
+ [85] G. Pellegrino, M. Johns, S. Koch, M. Backes, and
2554
+ C. Rossow, “Deemon: Detecting csrf with dynamic
2555
+ analysis and property graphs,” in Proc. of ACM CCS,
2556
+ 2017.
2557
+ [86] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrish-
2558
+ nan, “Navex: Precise and scalable exploit generation for
2559
+ dynamic web applications,” in Proc. of USENIX Security,
2560
+ 2018.
2561
+ [87] S. Lekies, B. Stock, and M. Johns, “25 million flows
2562
+ later: Large-scale detection of dom-based xss,” in Proc.
2563
+ of ACM CCS, 2013.
2564
+ [88] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia,
2565
+ “Riding out domsday: Towards detecting and preventing
2566
+ dom cross-site scripting,” in Proc. of NDSS, 2018.
2567
+ [89] M. Musch, M. Steffens, S. Roth, B. Stock, and M. Johns,
2568
+ “Scriptprotect: Mitigating unsafe third-party javascript
2569
+ practices,” in Proc. of ACM Asia CCS, 2019.
2570
+ [90] Neo4j, https://neo4j.com.
2571
+ [91] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and
2572
+ E. Shihab, “Why do developers use trivial packages? an
2573
+ empirical case study on npm,” in Proc. of ACM ESEC/FSE,
2574
+ 2017.
2575
+ [92] J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee, “The
2576
+ impact of regular expression denial of service (redos) in
2577
+ practice: An empirical study at the ecosystem scale,” in
2578
+ Proc. of ACM ESEC/FSE, 2018.
2579
+ [93] F. Xiao, J. Huang, Y. Xiong, G. Yang, H. Hu, G. Gu, and
2580
+ W. Lee, “Abusing hidden properties to attack the node.
2581
+ js ecosystem,” in Proc. of USENIX Security, 2021.
2582
+ [94] S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting node.
2583
+ js prototype pollution vulnerabilities via object lookup
2584
+ analysis,” in Proc. of ACM ESEC/FSE, 2021.
2585
+ [95] H. Y. Kim, J. H. Kim, H. K. Oh, B. J. Lee, S. W. Mun,
2586
+ J. H. Shin, and K. Kim, “Dapp: automatic detection and
2587
+ analysis of prototype pollution vulnerability in node. js
2588
+ modules,” International Journal of Information Security,
2589
+ vol. 21, no. 1, pp. 1–23, 2022.
2590
+ [96] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz,
2591
+ “Empirical review of automated analysis tools on 47,587
2592
+ ethereum smart contracts,” in Proc. of ICSE, 2020.
2593
+ [97] P. Nunes, I. Medeiros, J. Fonseca, N. Neves, M. Correia,
2594
+ and M. Vieira, “An empirical study on combining diverse
2595
+ static analysis tools for web security vulnerabilities based
2596
+ on development scenarios,” Computing, vol. 101, 2019.
2597
+ [98] “Esflow,” https://www.npmjs.com/package/esflow.
2598
+ [99] P. W. Security, https://portswigger.net/burp.
2599
+ 16
2600
+
CNE4T4oBgHgl3EQfeQ0p/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CtE1T4oBgHgl3EQfDwP-/content/tmp_files/2301.02883v1.pdf.txt ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02883v1 [hep-ph] 7 Jan 2023
2
+ One-Loop Electron Mass and QED Trace Anomaly
3
+ Michael I. Eides∗
4
+ Department of Physics and Astronomy,
5
+ University of Kentucky, Lexington, KY 40506, USA
6
+ Abstract
7
+ Electron mass is considered as a matrix element of the energy-momentum trace in the rest frame.
8
+ The one-loop diagrams for this matrix element are different from the textbook diagrams for the
9
+ electron mass renormalization. We clarify connection between the two sets of diagrams and explain
10
+ analytically and diagrammatically why the results of both calculations coincide.
11
+ ∗ Email address:meides@g.uky.edu
12
+ Typeset by REVTEX
13
+ 1
14
+
15
+ I.
16
+ INTRODUCTION
17
+ Hadron energy-momentum tensor (EMT), its matrix elements, anomalous trace, form
18
+ factors and multipole expansion is now a vibrant field of research. EMT form factors describe
19
+ interaction of particles with weak external gravitational field [1, 2]. For a long time there
20
+ was no way to measure form factors of hadron EMT, but the situation changed when it was
21
+ realized that they are connected to the generalized parton distribution functions which can
22
+ be measured in deeply virtual Compton scattering and other hard exclusive reactions, see,
23
+ e.g., [3–8].
24
+ Due to nonperturbative nature of the low-energy QCD theoretical studies of hadron grav-
25
+ itational form factors and other hadron EMT properties use general gauge theory principles,
26
+ lattice QCD, QCD inspired low-energy models and model theories which admit quantitative
27
+ analysis, see e.g., [9–16] and numerous other papers.
28
+ A new insight into the EMT properties could arise from consideration of EMT in theories
29
+ which allow perturbative treatment. While perturbative approach is clearly impossible in
30
+ QCD, one can consider a simpler gauge theory, namely QED, and hope to acquire some
31
+ experience which would be useful for the hadronic world. One-loop QED contributions to
32
+ the EMT form factors, matrix elements and trace were calculated for a free electron and
33
+ electron in the Coulomb field in a number of old and recent papers [17–28].
34
+ One-loop electron mass renormalization in the mass-shell renormalization scheme is a
35
+ textbook problem discussed in every introductory quantum field theory textbook, see, e.g.,
36
+ [29]. Consideration of EMT suggests another perspective on this classical problem. One can
37
+ calculate electron mass as a matrix element of the EMT trace. The diagrams describing this
38
+ matrix element do not coincide with the well known diagrams for the one-loop corrections
39
+ to the electron mass. We will calculate electron mass with the help of both sets of different
40
+ contributions and explain why they produce coinciding results.
41
+ II.
42
+ MATRIX ELEMENTS OF EMT AND MASS OF PARTICLES
43
+ General formulae for EMT T µν(x) follow from its definition as a conserved two-index
44
+ symmetric tensor. Due to translational invariance
45
+ 2
46
+
47
+ ⟨p′|T µν(x)|p⟩ = ei(p′−p)·x⟨p′|T µν(0)|p⟩,
48
+ (1)
49
+ where |p⟩ is a particle eigenstate with momentum p and states here are normalized rela-
50
+ tivistically, ⟨p′|p⟩ = 2Ep(2π)3δ(3)(p − p′).
51
+ The Hamiltonian is a three-dimensional integral, H =
52
+
53
+ d3xT 00(x), and on the one hand
54
+
55
+ d3x⟨p′|T 00(x)|p⟩ = 2E2
56
+ p(2π)3δ(3)(p − p′),
57
+ (2)
58
+ and on the other hand (see Eq. (1))
59
+
60
+ d3x⟨p′|T 00(x)|p⟩ = (2π)3δ(3)(p − p′)⟨p′|T 00(0)|p⟩.
61
+ (3)
62
+ Hence,
63
+ ⟨p|T 00(0)|p⟩ = 2E2
64
+ p,
65
+ (4)
66
+ and due to Lorentz invariance
67
+ ⟨p|T µν(0)|p⟩ = 2pµpν,
68
+ ⟨p|T µ
69
+ µ(0)|p⟩ = 2m2.
70
+ (5)
71
+ In the rest frame and with the nonrelativistic normalization of states ⟨p′|p⟩ = (2π)3δ(3)(p −
72
+ p′)
73
+ ⟨0|T µ
74
+ µ(0)|0⟩ = m,
75
+ ⟨0|T 00(0)|0⟩ = m.
76
+ (6)
77
+ These relations hold both elementary particles and for bound states, and are obviously valid
78
+ in any relativistic field theory. Below we will consider the first of these equations for an
79
+ electron in QED.
80
+ Symmetric EMT tensor is conserved in a translationally invariant relativistic field theory
81
+ and it is not renormalized as any conserved operator T µν
82
+ 0
83
+ = [T µν]R. It is well known that
84
+ EMT trace in gauge theories acquires an anomalous contribution [30–32] and has the form
85
+ T µ
86
+ 0 µ = (1 + γm(e0)) ¯ψ0m0ψ0 + β(e0)
87
+ 2e0
88
+ F 2
89
+ 0 = (1 + γm(e))[ ¯ψmψ]R + β(e)
90
+ 2e [F 2]R,
91
+ (7)
92
+ where β(e)/2e = α/6π, γm(e) = 3α/2π.
93
+ The left hand side in Eq. (7) is renorminvariant and then the sum of the operators on
94
+ the right hand side (RHS) is also renorminvariant. There are subtleties with separation of
95
+ 3
96
+
97
+ the terms on the right hand side in a sum of renorminvariant operators beyond one loop,
98
+ see [15, 33–38].
99
+ We are going to consider matrix element of the anomalous trace in Eq. (7) for an electron
100
+ at rest in the one-loop approximation. We will be working in the renormalized perturbation
101
+ theory and use the mass-shell renormalization scheme. Then, according to Eq. (6), this
102
+ matrix element should be equal to the physical electron mass m and describe one-loop mass
103
+ renormalization. At the same time the diagrams which contribute to this matrix element do
104
+ not coincide with the well known mass renormalization diagrams. Our goal is to clarify from
105
+ the diagrammatic and analytic perspectives, why two different diagrammatic descriptions
106
+ lead to the identical results1.
107
+ III.
108
+ ONE-LOOP MASS RENORMALIZATION AND EMT ANOMALOUS TRACE
109
+ FOR A FREE ELECTRON
110
+ Let us recall one-loop electron mass renormalization in the mass-shell scheme with dimen-
111
+ sional regularization. We collected the well known relevant formulae in the Appendix. In
112
+ the mass-shell renormalization scheme the counterterm δm(2) kills the ultraviolet divergence
113
+ in the regularized but not renormalized self-energy diagram Σ(p) and preserves the physical
114
+ mass at m
115
+ =
116
+ m
117
+ +
118
+
119
+ m
120
+ δm
121
+ i
122
+ Σ(m)
123
+ FIG. 1. One-loop mass renormalization.
124
+ m = m + Σ(m) − δm(2),
125
+ (8)
126
+ where δm(2) = Σ(m). This expression is illustrated in Fig. 1. The factor i before the self-
127
+ energy diagram in Fig. 1 is included in the standard diagrammatic definition of Σ(p), see
128
+ e.g., [29].
129
+ 1 One-loop matrix element of the EMT trace in the electron state was calculated in the mass-shell renor-
130
+ malization scheme with the momentum cutoff in [23], but the relationship between two sets of diagrams
131
+ was not addressed there.
132
+ 4
133
+
134
+ Next we turn to the matrix element of the EMT trace in Eq. (6) for the electron. The
135
+ leading contribution to the matrix element of the term (β(e0)/2e0)F 2
136
+ 0 in Eq. (7) is of order
137
+ α2 and we ignore it. It is sufficient to calculate the one-loop matrix element
138
+ T = ⟨0|m0(1 + γm) ¯ψ0ψ0|0⟩.
139
+ (9)
140
+ In the one-loop approximation
141
+ T = ⟨0|(1 + γm)m0 ¯ψ0ψ0|0⟩ ≈ ⟨0|(1 + γm)(m − δm(2)) ¯ψ0ψ0|0⟩
142
+ (10)
143
+ = m + mδZ2 − δm(2) + mγm + Γm(m)
144
+ where Γm(m) is the one-loop diagram for the scalar vertex m ¯ψψ, see Fig. 2.
145
+ mδZ2
146
+ Γm(m)
147
+ δm(2)
148
+
149
+ T =
150
+ +
151
+ +
152
+ m
153
+ +
154
+ γmm
155
+ FIG. 2. One-loop matrix element of the EMT trace.
156
+ All terms on the RHS in Eq. (10) and in Fig. 2, except Γm(m), are known from the one-loop
157
+ mass-shell renormalization scheme (see Eq. (A7) and Eq. (A8)) and only Γm(m) requires
158
+ calculation. After an easy one-loop calculation we obtain
159
+ Γm(m) = α
160
+ 4πm
161
+ �8
162
+ ǫ − 4γ + 2 ln λ2
163
+ m2 + 4 ln µ2
164
+ m2 + 2 + 4 ln(4π)
165
+
166
+ .
167
+ (11)
168
+ Next we use Γm(m), the renormalization constants in Eq. (A7) and Eq. (A8), and γm =
169
+ 3α/2π to calculate the sum in Eq. (10)
170
+ T = m + mδZ2 − δm + mγm + Γm(m) = m.
171
+ (12)
172
+ Thus we confirmed that the matrix element T of the anomalous EMT trace in the one-loop
173
+ approximation is equal the physical electron mass, as it should be. Comparing Eq. (8) and
174
+ Eq. (12) (and the respective Figs. 1 and 2) we see that
175
+ Σ(m) = Γm(m) + mδZ2 + γmm.
176
+ (13)
177
+ 5
178
+
179
+ At this stage it is unclear why the different sets of diagrams in Fig. 1 and Fig. 2 produce
180
+ coinciding results. To figure out a deeper reason why this happens we expand the unrenor-
181
+ malized electron self-energy Σ(/p) in the Taylor series near the physical mass
182
+ Σ(/p) = Σ(/p = m) + (/p − m)Σ′(/p = m) + O((/p − m)2)
183
+ (14)
184
+ = δm(2) + (/p − m)δZ2 + O((/p − m)2).
185
+ Differentiating with respect to m we obtain at /p = m
186
+ mdΣ(/p)
187
+ dm
188
+ |/p=m = mdΣ(/p = m)
189
+ dm
190
+ − mΣ′(/p = m).
191
+ (15)
192
+ Notice that (see Fig. 3)
193
+ mdΣ(p)
194
+ dm
195
+ = Γm(p),
196
+ (16)
197
+ i
198
+ Γm(p)
199
+ Σ(p)
200
+ m d
201
+ dm
202
+
203
+
204
+ =
205
+ FIG. 3. Logarithmic mass derivative of Σ(p).
206
+ which holds due to the identity
207
+ m d
208
+ dm
209
+
210
+ 1
211
+ /p − m
212
+
213
+ =
214
+ 1
215
+ /p − mm
216
+ 1
217
+ /p − m.
218
+ (17)
219
+ Then Eq. (15) can be written in the form
220
+ Γm(m) + mδZ2 = mdΣ(/p = m)
221
+ dm
222
+ ,
223
+ (18)
224
+ and Eq. (13) turns into (δm(2) = Σ(/p = m))
225
+ Σ(m) = mdΣ(/p = m)
226
+ dm
227
+ + γmm ≡ md(δm(2))
228
+ dm
229
+ + γmm.
230
+ (19)
231
+ We calculate the derivative on the RHS using the explicit expression for δm(2) in Eq. (A7)
232
+ and obtain (see Fig. 4)
233
+ 6
234
+
235
+ md(δm(2))
236
+ dm
237
+ = δm(2) − µdδm(2)
238
+
239
+ = δm(2) − γmm,
240
+ (20)
241
+ where at the last step we used the definition of the electron mass anomalous dimension.
242
+ i
243
+ Σ(m)
244
+ Σ(m)
245
+ m d
246
+ dm
247
+
248
+
249
+ =
250
+
251
+ γmm
252
+ i
253
+ FIG. 4. Logarithmic mass derivative of Σ(m).
254
+ Thus we proved by direct calculation that Eq. (19) holds and the expressions in Eq. (8)
255
+ and Eq. (12) (and the respective sets of diagrams in Fig. 1 and Fig. 2) coincide.
256
+ IV.
257
+ CONCLUSIONS
258
+ We have shown that the standard mass renormalization in Fig. 1 and the sum of the
259
+ diagrams for the matrix element of the EMT trace in Fig. 2 coincide. This happens due
260
+ to two important relationships. First, the one-loop diagram for a scalar vertex is equal to
261
+ the logarithmic derivative of the self-energy diagram, see Eq. (16) and Fig. 3. Second, the
262
+ mass renormalization counterterm (self-energy at /p = m) is equal to its own logarithmic
263
+ derivative plus the product of mass and its anomalous dimension, see Eq. (19) and Fig. 4.
264
+ The calculations above are made in the one-loop approximation, but we expect that they
265
+ can be generalized to any number of loops. Really, connection between an arbitrary diagram
266
+ and its logarithmic derivative with respect to the fermion mass, and the connection between
267
+ such derivative and the fermion mass anomalous dimension do not depend on the number
268
+ of loops, and these are the only essentail steps in the derivation above.
269
+ Appendix A: Standard one-loop electron mass renormalization
270
+ Some well known results are collected below.
271
+ We use dimensional regularization and
272
+ mass-shell renormalization. The QED Lagrangian in this scheme is
273
+ L0 = −1
274
+ 4F 2
275
+ 0 + ¯ψ0(i/∂ − m0)ψ0 − e0 ¯ψ0 /A0ψ0 = L + δL,
276
+ (A1)
277
+ 7
278
+
279
+ where
280
+ L = −1
281
+ 4F 2 + ¯ψ(i/∂ − m)ψ − µ
282
+ ǫ
283
+ 2e ¯ψ /Aψ,
284
+ (A2)
285
+ δL = −1
286
+ 4δZ3F 2 + ¯ψ(iδZ2/∂ − δm)ψ − µ
287
+ ǫ
288
+ 2eδZ1 ¯ψ /Aψ,
289
+ (A3)
290
+ L + δL = −1
291
+ 4Z3F 2 + iZ2 ¯ψ/∂ψ − mZm ¯ψψ − eZ1µ
292
+ ǫ
293
+ 2 ¯ψ /Aψ,
294
+ (A4)
295
+ and
296
+ Z1 = 1 + δZ1,
297
+ Z2 = 1 + δZ2,
298
+ Z3 = 1 + δZ3,
299
+ mZm = m(1 + δZm) = m + δm.
300
+ (A5)
301
+ We define δm = m−m0 = m−mZmZ−1
302
+ 2 . In the one-loop approximation δm = m−m0 =
303
+ m − mZmZ−1
304
+ 2
305
+ ≈ −mδZm + mδZ2 = −δm + mδZ2.
306
+ The renormalized one-loop self-energy Σr(p) is
307
+ Σr(p) = α
308
+
309
+ � 1
310
+ 0
311
+ dx
312
+
313
+ (2m − x/p)
314
+ �2
315
+ ǫ − γ + ln(4π) + ln
316
+ µ2
317
+ −x(1 − x)p2 + xλ2 + (1 − x)m2
318
+
319
+ − (m − x/p)
320
+
321
+ − (/pδZ2 − δm)|/p→m
322
+ ≈ Σ(m) + (/p − m)Σ′(/p = m) − (/p − m)δZ2 + (δm − mδZ2)
323
+ = 3α
324
+ 4π m
325
+ �2
326
+ ǫ − γ + ln(4π) + ln µ2
327
+ m2 + 4
328
+ 3
329
+
330
+ − (/p − m) α
331
+
332
+ �2
333
+ ǫ − γ + ln(4π) + ln µ2
334
+ m2 + 2 ln λ2
335
+ m2 + 4
336
+
337
+ − (/p − m)δZ2 + (δm − mδZ2),
338
+ (A6)
339
+ where Σ(p) is the dimensionally regularized self-energy, µ is the auxiliary dimensional reg-
340
+ ularization mass, λ is the IR photon mass and ǫ = 4 − d.
341
+ The one-loop counterterms are
342
+ δm(2) ≡ mδZ2 − δm = Σ(m) = 3α
343
+ 4πm
344
+ �2
345
+ ǫ − γ + ln(4π) + ln µ2
346
+ m2 + 4
347
+ 3
348
+
349
+ ,
350
+ (A7)
351
+ δZ2 = Σ′(/p = m) = − α
352
+
353
+ �2
354
+ ǫ − γ + ln(4π) + ln µ2
355
+ m2 + 2 ln λ2
356
+ m2 + 4
357
+
358
+ .
359
+ (A8)
360
+ 8
361
+
362
+ ACKNOWLEDGMENTS
363
+ This work was supported by the NSF grant PHY- 2011161.
364
+ [1] I. Y. Kobzarev and L. B. Okun, “Gravitational interaction of fermions,” Zh. Eksp. Teor. Fiz.
365
+ 43, 1904-1909 (1962).
366
+ [2] H. Pagels, Energy-Momentum Structure Form Factors of Particles, Phys. Rev. 144, 1250-1260
367
+ (1966) doi:10.1103/PhysRev.144.1250.
368
+ [3] X. D. Ji, Gauge-Invariant Decomposition of Nucleon Spin, Phys. Rev. Lett. 78, 610-613 (1997)
369
+ doi:10.1103/PhysRevLett.78.610 [arXiv:hep-ph/9603249 [hep-ph]].
370
+ [4] X. D. Ji,
371
+ Deeply virtual Compton scattering,
372
+ Phys. Rev. D 55,
373
+ 7114-7125 (1997)
374
+ doi:10.1103/PhysRevD.55.7114 [arXiv:hep-ph/9609381 [hep-ph]].
375
+ [5] A. V. Radyushkin, Asymmetric gluon distributions and hard diffractive electroproduction,
376
+ Phys. Lett. B 385, 333-342 (1996) doi:10.1016/0370-2693(96)00844-1 [arXiv:hep-ph/9605431
377
+ [hep-ph]].
378
+ [6] J. C. Collins, L. Frankfurt and M. Strikman, “Factorization for hard exclusive electroproduc-
379
+ tion of mesons in QCD,” Phys. Rev. D 56, 2982-3006 (1997) doi:10.1103/PhysRevD.56.2982
380
+ [arXiv:hep-ph/9611433 [hep-ph]].
381
+ [7] D. Kharzeev, H. Satz, A. Syamtomov and G. Zinovjev, J / psi photoproduction and the
382
+ gluon structure of the nucleon, Eur. Phys. J. C 9, 459-462 (1999) doi:10.1007/s100529900047
383
+ [arXiv:hep-ph/9901375 [hep-ph]].
384
+ [8] E. R. Berger, M. Diehl and B. Pire, “Time - like Compton scattering: Exclusive photo-
385
+ production of lepton pairs,” Eur. Phys. J. C 23, 675-689 (2002) doi:10.1007/s100520200917
386
+ [arXiv:hep-ph/0110062 [hep-ph]].
387
+ [9] X. D. Ji, “A QCD analysis of the mass structure of the nucleon,” Phys. Rev. Lett. 74, 1071-
388
+ 1074 (1995) doi:10.1103/PhysRevLett.74.1071 [arXiv:hep-ph/9410274 [hep-ph]].
389
+ [10] X. D. Ji, “Breakup of hadron masses and energy - momentum tensor of QCD,” Phys. Rev. D
390
+ 52, 271-281 (1995) doi:10.1103/PhysRevD.52.271 [arXiv:hep-ph/9502213 [hep-ph]].
391
+ [11] J. Hudson and P. Schweitzer, “D term and the structure of pointlike and composed
392
+ spin-0 particles,” Phys. Rev. D 96, no.11, 114013 (2017) doi:10.1103/PhysRevD.96.114013
393
+ 9
394
+
395
+ [arXiv:1712.05316 [hep-ph]].
396
+ [12] M. V. Polyakov and P. Schweitzer, Forces inside hadrons:
397
+ pressure, surface tension,
398
+ mechanical radius,
399
+ and all that,
400
+ Int. J. Mod. Phys. A 33,
401
+ no.26,
402
+ 1830025 (2018)
403
+ doi:10.1142/S0217751X18300259 [arXiv:1805.06596 [hep-ph]].
404
+ [13] D. E. Kharzeev, “Mass radius of the proton,” Phys. Rev. D 104, no.5, 054015 (2021)
405
+ doi:10.1103/PhysRevD.104.054015 [arXiv:2102.00110 [hep-ph]].
406
+ [14] K. F. Liu, “Proton mass decomposition and hadron cosmological constant,” Phys. Rev. D
407
+ 104, no.7, 076010 (2021) doi:10.1103/PhysRevD.104.076010 [arXiv:2103.15768 [hep-ph]].
408
+ [15] C. Lorc´e, A. Metz, B. Pasquini and S. Rodini, “Energy-momentum tensor in QCD:
409
+ nucleon
410
+ mass
411
+ decomposition
412
+ and
413
+ mechanical
414
+ equilibrium,”
415
+ JHEP
416
+ 11,
417
+ 121
418
+ (2021)
419
+ doi:10.1007/JHEP11(2021)121 [arXiv:2109.11785 [hep-ph]].
420
+ [16] X. Ji, Y. Liu and I. Zahed, “Mass structure of hadrons and light-front sum rules in the
421
+ ′t Hooft model,” Phys. Rev. D 103, no.7, 074002 (2021) doi:10.1103/PhysRevD.103.074002
422
+ [arXiv:2010.06665 [hep-ph]].
423
+ [17] K. A. Milton, “Quantum corrections to stress tensors and conformal invariance,” Phys. Rev.
424
+ D 4, 3579-3593 (1971) doi:10.1103/PhysRevD.4.3579.
425
+ [18] K. A. Milton, “Scale invariance and spectral forms for conformal stress tensors. (er-
426
+ ratum),”
427
+ Phys. Rev. D 7,
428
+ 1120 (1973)
429
+ [erratum:
430
+ Phys. Rev. D 7,
431
+ 3821 (1973)]
432
+ doi:10.1103/PhysRevD.7.1120.
433
+ [19] F. A. Berends and R. Gastmans, “Quantum Electrodynamical Corrections to Graviton-Matter
434
+ Vertices,” Annals Phys. 98, 225 (1976) doi:10.1016/0003-4916(76)90245-1.
435
+ [20] K. A. Milton, “Quantum Electrodynamic Corrections to the Gravitational Interaction of the
436
+ electron,” Phys. Rev. D 15, 538 (1977) doi:10.1103/PhysRevD.15.538.
437
+ [21] X. D. Ji and W. Lu, A Modern anatomy of electron mass, [arXiv:hep-ph/9802437 [hep-ph]].
438
+ [22] S. Rodini, A. Metz and B. Pasquini, Mass sum rules of the electron in quantum electrody-
439
+ namics, JHEP 09, 067 (2020) doi:10.1007/JHEP09(2020)067 [arXiv:2004.03704 [hep-ph]].
440
+ [23] B. d. Sun, Z. h. Sun and J. Zhou, “Trace anomaly contribution to hydrogen atom mass,”
441
+ Phys. Rev. D 104, no.5, 056008 (2021) doi:10.1103/PhysRevD.104.056008 [arXiv:2012.09443
442
+ [hep-ph]].
443
+ [24] X. Ji, Y. Liu and A. Sch¨afer, Scale symmetry breaking, quantum anomalous energy and proton
444
+ mass decomposition, Nucl. Phys. B 971, 115537 (2021) doi:10.1016/j.nuclphysb.2021.115537
445
+ 10
446
+
447
+ [arXiv:2105.03974 [hep-ph]].
448
+ [25] A. Metz, B. Pasquini and S. Rodini, “The gravitational form factor D(t) of the electron,” Phys.
449
+ Lett. B 820, 136501 (2021) doi:10.1016/j.physletb.2021.136501 [arXiv:2104.04207 [hep-ph]].
450
+ [26] X. Ji and Y. Liu, “Momentum-Current Gravitational Multipoles of Hadrons,” Phys. Rev. D
451
+ 106, no.3, 034028 (2022) doi:10.1103/PhysRevD.106.034028 [arXiv:2110.14781 [hep-ph]].
452
+ [27] X. Ji and Y. Liu, “Gravitational Tensor-Monopole Moment of Hydrogen Atom To Order
453
+ O(α),” [arXiv:2208.05029 [hep-ph]].
454
+ [28] A. Freese, A. Metz, B. Pasquini and S. Rodini, “The gravitational form factors of the electron
455
+ in quantum electrodynamics,” [arXiv:2212.12197 [hep-ph]].
456
+ [29] M. E. Peskin and D. V. Schroeder, “An Introduction to quantum field theory,” Addison-
457
+ Wesley, 1995, ISBN 978-0-201-50397-5.
458
+ [30] N. K. Nielsen, “The Energy Momentum Tensor in a Nonabelian Quark Gluon Theory,” Nucl.
459
+ Phys. B 120, 212-220 (1977) doi:10.1016/0550-3213(77)90040-2.
460
+ [31] S.
461
+ L.
462
+ Adler,
463
+ J.
464
+ C.
465
+ Collins
466
+ and
467
+ A.
468
+ Duncan,
469
+ “Energy-Momentum-Tensor
470
+ Trace
471
+ Anomaly in Spin 1/2 Quantum Electrodynamics,”
472
+ Phys. Rev. D 15,
473
+ 1712
474
+ (1977)
475
+ doi:10.1103/PhysRevD.15.1712.
476
+ [32] J. C. Collins, A. Duncan and S. D. Joglekar, “Trace and Dilatation Anomalies in Gauge
477
+ Theories,” Phys. Rev. D 16, 438-449 (1977) doi:10.1103/PhysRevD.16.438.
478
+ [33] R. Tarrach, “The renormalization of FF,” Nucl. Phys. B 196, 45-61 (1982) doi:10.1016/0550-
479
+ 3213(82)90301-7.
480
+ [34] Y. Hatta, A. Rajan and K. Tanaka, “Quark and gluon contributions to the QCD trace
481
+ anomaly,” JHEP 12, 008 (2018) doi:10.1007/JHEP12(2018)008 [arXiv:1810.05116 [hep-ph]].
482
+ [35] K. Tanaka, “Three-loop formula for quark and gluon contributions to the QCD trace anomaly,”
483
+ JHEP 01, 120 (2019) doi:10.1007/JHEP01(2019)120 [arXiv:1811.07879 [hep-ph]].
484
+ [36] A. Metz, B. Pasquini and S. Rodini, “Revisiting the proton mass decomposition,” Phys. Rev.
485
+ D 102, 114042 (2020) doi:10.1103/PhysRevD.102.114042 [arXiv:2006.11171 [hep-ph]].
486
+ [37] T. Ahmed, L. Chen and M. Czakon, “A note on quark and gluon energy-momentum tensors,”
487
+ [arXiv:2208.01441 [hep-ph]].
488
+ [38] K. Tanaka, “Twist-four gravitational form factor at NNLO QCD from trace anomaly con-
489
+ straints,” [arXiv:2212.09417 [hep-ph]].
490
+ 11
491
+
CtE1T4oBgHgl3EQfDwP-/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf,len=443
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
3
+ page_content='02883v1 [hep-ph] 7 Jan 2023 One-Loop Electron Mass and QED Trace Anomaly Michael I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
4
+ page_content=' Eides∗ Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA Abstract Electron mass is considered as a matrix element of the energy-momentum trace in the rest frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
5
+ page_content=' The one-loop diagrams for this matrix element are different from the textbook diagrams for the electron mass renormalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
6
+ page_content=' We clarify connection between the two sets of diagrams and explain analytically and diagrammatically why the results of both calculations coincide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
7
+ page_content=' ∗ Email address:meides@g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
8
+ page_content='uky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
9
+ page_content='edu Typeset by REVTEX 1 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
10
+ page_content=' INTRODUCTION Hadron energy-momentum tensor (EMT), its matrix elements, anomalous trace, form factors and multipole expansion is now a vibrant field of research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
11
+ page_content=' EMT form factors describe interaction of particles with weak external gravitational field [1, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
12
+ page_content=' For a long time there was no way to measure form factors of hadron EMT, but the situation changed when it was realized that they are connected to the generalized parton distribution functions which can be measured in deeply virtual Compton scattering and other hard exclusive reactions, see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
13
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
14
+ page_content=', [3–8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
15
+ page_content=' Due to nonperturbative nature of the low-energy QCD theoretical studies of hadron grav- itational form factors and other hadron EMT properties use general gauge theory principles, lattice QCD, QCD inspired low-energy models and model theories which admit quantitative analysis, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
16
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
17
+ page_content=', [9–16] and numerous other papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
18
+ page_content=' A new insight into the EMT properties could arise from consideration of EMT in theories which allow perturbative treatment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
19
+ page_content=' While perturbative approach is clearly impossible in QCD, one can consider a simpler gauge theory, namely QED, and hope to acquire some experience which would be useful for the hadronic world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
20
+ page_content=' One-loop QED contributions to the EMT form factors, matrix elements and trace were calculated for a free electron and electron in the Coulomb field in a number of old and recent papers [17–28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
21
+ page_content=' One-loop electron mass renormalization in the mass-shell renormalization scheme is a textbook problem discussed in every introductory quantum field theory textbook, see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
22
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
23
+ page_content=', [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
24
+ page_content=' Consideration of EMT suggests another perspective on this classical problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
25
+ page_content=' One can calculate electron mass as a matrix element of the EMT trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
26
+ page_content=' The diagrams describing this matrix element do not coincide with the well known diagrams for the one-loop corrections to the electron mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
27
+ page_content=' We will calculate electron mass with the help of both sets of different contributions and explain why they produce coinciding results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
28
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
29
+ page_content=' MATRIX ELEMENTS OF EMT AND MASS OF PARTICLES General formulae for EMT T µν(x) follow from its definition as a conserved two-index symmetric tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
30
+ page_content=' Due to translational invariance 2 ⟨p′|T µν(x)|p⟩ = ei(p′−p)·x⟨p′|T µν(0)|p⟩, (1) where |p⟩ is a particle eigenstate with momentum p and states here are normalized rela- tivistically, ⟨p′|p⟩ = 2Ep(2π)3δ(3)(p − p′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
31
+ page_content=' The Hamiltonian is a three-dimensional integral, H = � d3xT 00(x), and on the one hand � d3x⟨p′|T 00(x)|p⟩ = 2E2 p(2π)3δ(3)(p − p′), (2) and on the other hand (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
32
+ page_content=' (1)) � d3x⟨p′|T 00(x)|p⟩ = (2π)3δ(3)(p − p′)⟨p′|T 00(0)|p⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
33
+ page_content=' (3) Hence, ⟨p|T 00(0)|p⟩ = 2E2 p, (4) and due to Lorentz invariance ⟨p|T µν(0)|p⟩ = 2pµpν, ⟨p|T µ µ(0)|p⟩ = 2m2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
34
+ page_content=' (5) In the rest frame and with the nonrelativistic normalization of states ⟨p′|p⟩ = (2π)3δ(3)(p − p′) ⟨0|T µ µ(0)|0⟩ = m, ⟨0|T 00(0)|0⟩ = m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
35
+ page_content=' (6) These relations hold both elementary particles and for bound states, and are obviously valid in any relativistic field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
36
+ page_content=' Below we will consider the first of these equations for an electron in QED.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
37
+ page_content=' Symmetric EMT tensor is conserved in a translationally invariant relativistic field theory and it is not renormalized as any conserved operator T µν 0 = [T µν]R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
38
+ page_content=' It is well known that EMT trace in gauge theories acquires an anomalous contribution [30–32] and has the form T µ 0 µ = (1 + γm(e0)) ¯ψ0m0ψ0 + β(e0) 2e0 F 2 0 = (1 + γm(e))[ ¯ψmψ]R + β(e) 2e [F 2]R, (7) where β(e)/2e = α/6π, γm(e) = 3α/2π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
39
+ page_content=' The left hand side in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
40
+ page_content=' (7) is renorminvariant and then the sum of the operators on the right hand side (RHS) is also renorminvariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
41
+ page_content=' There are subtleties with separation of 3 the terms on the right hand side in a sum of renorminvariant operators beyond one loop, see [15, 33–38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
42
+ page_content=' We are going to consider matrix element of the anomalous trace in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
43
+ page_content=' (7) for an electron at rest in the one-loop approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
44
+ page_content=' We will be working in the renormalized perturbation theory and use the mass-shell renormalization scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
45
+ page_content=' Then, according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
46
+ page_content=' (6), this matrix element should be equal to the physical electron mass m and describe one-loop mass renormalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
47
+ page_content=' At the same time the diagrams which contribute to this matrix element do not coincide with the well known mass renormalization diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
48
+ page_content=' Our goal is to clarify from the diagrammatic and analytic perspectives, why two different diagrammatic descriptions lead to the identical results1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
49
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
50
+ page_content=' ONE-LOOP MASS RENORMALIZATION AND EMT ANOMALOUS TRACE FOR A FREE ELECTRON Let us recall one-loop electron mass renormalization in the mass-shell scheme with dimen- sional regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
51
+ page_content=' We collected the well known relevant formulae in the Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
52
+ page_content=' In the mass-shell renormalization scheme the counterterm δm(2) kills the ultraviolet divergence in the regularized but not renormalized self-energy diagram Σ(p) and preserves the physical mass at m = m + − m δm i Σ(m) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
53
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
54
+ page_content=' One-loop mass renormalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
55
+ page_content=' m = m + Σ(m) − δm(2), (8) where δm(2) = Σ(m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
56
+ page_content=' This expression is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
57
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
58
+ page_content=' The factor i before the self- energy diagram in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
59
+ page_content=' 1 is included in the standard diagrammatic definition of Σ(p), see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
60
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
61
+ page_content=', [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
62
+ page_content=' 1 One-loop matrix element of the EMT trace in the electron state was calculated in the mass-shell renor- malization scheme with the momentum cutoff in [23], but the relationship between two sets of diagrams was not addressed there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
63
+ page_content=' 4 Next we turn to the matrix element of the EMT trace in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
64
+ page_content=' (6) for the electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
65
+ page_content=' The leading contribution to the matrix element of the term (β(e0)/2e0)F 2 0 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
66
+ page_content=' (7) is of order α2 and we ignore it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
67
+ page_content=' It is sufficient to calculate the one-loop matrix element T = ⟨0|m0(1 + γm) ¯ψ0ψ0|0⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
68
+ page_content=' (9) In the one-loop approximation T = ⟨0|(1 + γm)m0 ¯ψ0ψ0|0⟩ ≈ ⟨0|(1 + γm)(m − δm(2)) ¯ψ0ψ0|0⟩ (10) = m + mδZ2 − δm(2) + mγm + Γm(m) where Γm(m) is the one-loop diagram for the scalar vertex m ¯ψψ, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
69
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
70
+ page_content=' mδZ2 Γm(m) δm(2) − T = + + m + γmm FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
71
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
72
+ page_content=' One-loop matrix element of the EMT trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
73
+ page_content=' All terms on the RHS in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
74
+ page_content=' (10) and in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
75
+ page_content=' 2, except Γm(m), are known from the one-loop mass-shell renormalization scheme (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
76
+ page_content=' (A7) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
77
+ page_content=' (A8)) and only Γm(m) requires calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
78
+ page_content=' After an easy one-loop calculation we obtain Γm(m) = α 4πm �8 ǫ − 4γ + 2 ln λ2 m2 + 4 ln µ2 m2 + 2 + 4 ln(4π) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
79
+ page_content=' (11) Next we use Γm(m), the renormalization constants in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
80
+ page_content=' (A7) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
81
+ page_content=' (A8), and γm = 3α/2π to calculate the sum in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
82
+ page_content=' (10) T = m + mδZ2 − δm + mγm + Γm(m) = m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
83
+ page_content=' (12) Thus we confirmed that the matrix element T of the anomalous EMT trace in the one-loop approximation is equal the physical electron mass, as it should be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
84
+ page_content=' Comparing Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
85
+ page_content=' (8) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
86
+ page_content=' (12) (and the respective Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
87
+ page_content=' 1 and 2) we see that Σ(m) = Γm(m) + mδZ2 + γmm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
88
+ page_content=' (13) 5 At this stage it is unclear why the different sets of diagrams in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
89
+ page_content=' 1 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
90
+ page_content=' 2 produce coinciding results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
91
+ page_content=' To figure out a deeper reason why this happens we expand the unrenor- malized electron self-energy Σ(/p) in the Taylor series near the physical mass Σ(/p) = Σ(/p = m) + (/p − m)Σ′(/p = m) + O((/p − m)2) (14) = δm(2) + (/p − m)δZ2 + O((/p − m)2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
92
+ page_content=' Differentiating with respect to m we obtain at /p = m mdΣ(/p) dm |/p=m = mdΣ(/p = m) dm − mΣ′(/p = m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
93
+ page_content=' (15) Notice that (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
94
+ page_content=' 3) mdΣ(p) dm = Γm(p), (16) i Γm(p) Σ(p) m d dm � � = FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
95
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
96
+ page_content=' Logarithmic mass derivative of Σ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
97
+ page_content=' which holds due to the identity m d dm � 1 /p − m � = 1 /p − mm 1 /p − m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
98
+ page_content=' (17) Then Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
99
+ page_content=' (15) can be written in the form Γm(m) + mδZ2 = mdΣ(/p = m) dm , (18) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
100
+ page_content=' (13) turns into (δm(2) = Σ(/p = m)) Σ(m) = mdΣ(/p = m) dm + γmm ≡ md(δm(2)) dm + γmm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
101
+ page_content=' (19) We calculate the derivative on the RHS using the explicit expression for δm(2) in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
102
+ page_content=' (A7) and obtain (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
103
+ page_content=' 4) 6 md(δm(2)) dm = δm(2) − µdδm(2) dµ = δm(2) − γmm, (20) where at the last step we used the definition of the electron mass anomalous dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
104
+ page_content=' i Σ(m) Σ(m) m d dm � � = − γmm i FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
105
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
106
+ page_content=' Logarithmic mass derivative of Σ(m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
107
+ page_content=' Thus we proved by direct calculation that Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
108
+ page_content=' (19) holds and the expressions in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
109
+ page_content=' (8) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
110
+ page_content=' (12) (and the respective sets of diagrams in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
111
+ page_content=' 1 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
112
+ page_content=' 2) coincide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
113
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
114
+ page_content=' CONCLUSIONS We have shown that the standard mass renormalization in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
115
+ page_content=' 1 and the sum of the diagrams for the matrix element of the EMT trace in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
116
+ page_content=' 2 coincide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
117
+ page_content=' This happens due to two important relationships.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
118
+ page_content=' First, the one-loop diagram for a scalar vertex is equal to the logarithmic derivative of the self-energy diagram, see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
119
+ page_content=' (16) and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
120
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
121
+ page_content=' Second, the mass renormalization counterterm (self-energy at /p = m) is equal to its own logarithmic derivative plus the product of mass and its anomalous dimension, see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
122
+ page_content=' (19) and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
123
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
124
+ page_content=' The calculations above are made in the one-loop approximation, but we expect that they can be generalized to any number of loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
125
+ page_content=' Really, connection between an arbitrary diagram and its logarithmic derivative with respect to the fermion mass, and the connection between such derivative and the fermion mass anomalous dimension do not depend on the number of loops, and these are the only essentail steps in the derivation above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
126
+ page_content=' Appendix A: Standard one-loop electron mass renormalization Some well known results are collected below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
127
+ page_content=' We use dimensional regularization and mass-shell renormalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
128
+ page_content=' The QED Lagrangian in this scheme is L0 = −1 4F 2 0 + ¯ψ0(i/∂ − m0)ψ0 − e0 ¯ψ0 /A0ψ0 = L + δL, (A1) 7 where L = −1 4F 2 + ¯ψ(i/∂ − m)ψ − µ ǫ 2e ¯ψ /Aψ, (A2) δL = −1 4δZ3F 2 + ¯ψ(iδZ2/∂ − δm)ψ − µ ǫ 2eδZ1 ¯ψ /Aψ, (A3) L + δL = −1 4Z3F 2 + iZ2 ¯ψ/∂ψ − mZm ¯ψψ − eZ1µ ǫ 2 ¯ψ /Aψ, (A4) and Z1 = 1 + δZ1, Z2 = 1 + δZ2, Z3 = 1 + δZ3, mZm = m(1 + δZm) = m + δm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
129
+ page_content=' (A5) We define δm = m−m0 = m−mZmZ−1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
130
+ page_content=' In the one-loop approximation δm = m−m0 = m − mZmZ−1 2 ≈ −mδZm + mδZ2 = −δm + mδZ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
131
+ page_content=' The renormalized one-loop self-energy Σr(p) is Σr(p) = α 2π � 1 0 dx � (2m − x/p) �2 ǫ − γ + ln(4π) + ln µ2 −x(1 − x)p2 + xλ2 + (1 − x)m2 � − (m − x/p) � − (/pδZ2 − δm)|/p→m ≈ Σ(m) + (/p − m)Σ′(/p = m) − (/p − m)δZ2 + (δm − mδZ2) = 3α 4π m �2 ǫ − γ + ln(4π) + ln µ2 m2 + 4 3 � − (/p − m) α 4π �2 ǫ − γ + ln(4π) + ln µ2 m2 + 2 ln λ2 m2 + 4 � − (/p − m)δZ2 + (δm − mδZ2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
132
+ page_content=' (A6) where Σ(p) is the dimensionally regularized self-energy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
133
+ page_content=' µ is the auxiliary dimensional reg- ularization mass,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
134
+ page_content=' λ is the IR photon mass and ǫ = 4 − d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
135
+ page_content=' The one-loop counterterms are δm(2) ≡ mδZ2 − δm = Σ(m) = 3α 4πm �2 ǫ − γ + ln(4π) + ln µ2 m2 + 4 3 � , (A7) δZ2 = Σ′(/p = m) = − α 4π �2 ǫ − γ + ln(4π) + ln µ2 m2 + 2 ln λ2 m2 + 4 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
136
+ page_content=' (A8) 8 ACKNOWLEDGMENTS This work was supported by the NSF grant PHY- 2011161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
137
+ page_content=' [1] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
138
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
139
+ page_content=' Kobzarev and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
140
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
141
+ page_content=' Okun, “Gravitational interaction of fermions,” Zh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
142
+ page_content=' Eksp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
143
+ page_content=' Teor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
144
+ page_content=' Fiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
145
+ page_content=' 43, 1904-1909 (1962).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
146
+ page_content=' [2] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
147
+ page_content=' Pagels, Energy-Momentum Structure Form Factors of Particles, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
148
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
149
+ page_content=' 144, 1250-1260 (1966) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
150
+ page_content='1103/PhysRev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
151
+ page_content='144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
152
+ page_content='1250.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
153
+ page_content=' [3] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
154
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
155
+ page_content=' Ji, Gauge-Invariant Decomposition of Nucleon Spin, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
156
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
157
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
158
+ page_content=' 78, 610-613 (1997) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
159
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
160
+ page_content='78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
161
+ page_content='610 [arXiv:hep-ph/9603249 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
162
+ page_content=' [4] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
163
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
164
+ page_content=' Ji, Deeply virtual Compton scattering, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
165
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
166
+ page_content=' D 55, 7114-7125 (1997) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
167
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
168
+ page_content='55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
169
+ page_content='7114 [arXiv:hep-ph/9609381 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
170
+ page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
171
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
172
+ page_content=' Radyushkin, Asymmetric gluon distributions and hard diffractive electroproduction, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
173
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
174
+ page_content=' B 385, 333-342 (1996) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
175
+ page_content='1016/0370-2693(96)00844-1 [arXiv:hep-ph/9605431 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
176
+ page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
177
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
178
+ page_content=' Collins, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
179
+ page_content=' Frankfurt and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
180
+ page_content=' Strikman, “Factorization for hard exclusive electroproduc- tion of mesons in QCD,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
181
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
182
+ page_content=' D 56, 2982-3006 (1997) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
183
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
184
+ page_content='56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
185
+ page_content='2982 [arXiv:hep-ph/9611433 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
186
+ page_content=' [7] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
187
+ page_content=' Kharzeev, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
188
+ page_content=' Satz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
189
+ page_content=' Syamtomov and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
190
+ page_content=' Zinovjev, J / psi photoproduction and the gluon structure of the nucleon, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
191
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
192
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
193
+ page_content=' C 9, 459-462 (1999) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
194
+ page_content='1007/s100529900047 [arXiv:hep-ph/9901375 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
195
+ page_content=' [8] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
196
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
197
+ page_content=' Berger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
198
+ page_content=' Diehl and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
199
+ page_content=' Pire, “Time - like Compton scattering: Exclusive photo- production of lepton pairs,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
200
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
201
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
202
+ page_content=' C 23, 675-689 (2002) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
203
+ page_content='1007/s100520200917 [arXiv:hep-ph/0110062 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
204
+ page_content=' [9] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
205
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
206
+ page_content=' Ji, “A QCD analysis of the mass structure of the nucleon,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
207
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
208
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
209
+ page_content=' 74, 1071- 1074 (1995) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
210
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
211
+ page_content='74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
212
+ page_content='1071 [arXiv:hep-ph/9410274 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
213
+ page_content=' [10] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
214
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
215
+ page_content=' Ji, “Breakup of hadron masses and energy - momentum tensor of QCD,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
216
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
217
+ page_content=' D 52, 271-281 (1995) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
218
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
219
+ page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
220
+ page_content='271 [arXiv:hep-ph/9502213 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
221
+ page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
222
+ page_content=' Hudson and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
223
+ page_content=' Schweitzer, “D term and the structure of pointlike and composed spin-0 particles,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
224
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
225
+ page_content=' D 96, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
226
+ page_content='11, 114013 (2017) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
227
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
228
+ page_content='96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
229
+ page_content='114013 9 [arXiv:1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
230
+ page_content='05316 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
231
+ page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
232
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
233
+ page_content=' Polyakov and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
234
+ page_content=' Schweitzer, Forces inside hadrons: pressure, surface tension, mechanical radius, and all that, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
235
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
236
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
237
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
238
+ page_content=' A 33, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
239
+ page_content='26, 1830025 (2018) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
240
+ page_content='1142/S0217751X18300259 [arXiv:1805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
241
+ page_content='06596 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
242
+ page_content=' [13] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
243
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
244
+ page_content=' Kharzeev, “Mass radius of the proton,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
245
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
246
+ page_content=' D 104, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
247
+ page_content='5, 054015 (2021) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
248
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
249
+ page_content='104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
250
+ page_content='054015 [arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
251
+ page_content='00110 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
252
+ page_content=' [14] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
253
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
254
+ page_content=' Liu, “Proton mass decomposition and hadron cosmological constant,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
255
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
256
+ page_content=' D 104, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
257
+ page_content='7, 076010 (2021) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
258
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
259
+ page_content='104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
260
+ page_content='076010 [arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
261
+ page_content='15768 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
262
+ page_content=' [15] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
263
+ page_content=' Lorc´e, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
264
+ page_content=' Metz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
265
+ page_content=' Pasquini and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
266
+ page_content=' Rodini, “Energy-momentum tensor in QCD: nucleon mass decomposition and mechanical equilibrium,” JHEP 11, 121 (2021) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
267
+ page_content='1007/JHEP11(2021)121 [arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
268
+ page_content='11785 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
269
+ page_content=' [16] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
270
+ page_content=' Ji, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
271
+ page_content=' Liu and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
272
+ page_content=' Zahed, “Mass structure of hadrons and light-front sum rules in the ′t Hooft model,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
273
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
274
+ page_content=' D 103, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
275
+ page_content='7, 074002 (2021) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
276
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
277
+ page_content='103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
278
+ page_content='074002 [arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
279
+ page_content='06665 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
280
+ page_content=' [17] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
281
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
282
+ page_content=' Milton, “Quantum corrections to stress tensors and conformal invariance,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
283
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
284
+ page_content=' D 4, 3579-3593 (1971) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
285
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
286
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
287
+ page_content='3579.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
288
+ page_content=' [18] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
289
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
290
+ page_content=' Milton, “Scale invariance and spectral forms for conformal stress tensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
291
+ page_content=' (er- ratum),” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
292
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
293
+ page_content=' D 7, 1120 (1973) [erratum: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
294
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
295
+ page_content=' D 7, 3821 (1973)] doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
296
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
297
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
298
+ page_content='1120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
299
+ page_content=' [19] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
300
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
301
+ page_content=' Berends and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
302
+ page_content=' Gastmans, “Quantum Electrodynamical Corrections to Graviton-Matter Vertices,” Annals Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
303
+ page_content=' 98, 225 (1976) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
304
+ page_content='1016/0003-4916(76)90245-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
305
+ page_content=' [20] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
306
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
307
+ page_content=' Milton, “Quantum Electrodynamic Corrections to the Gravitational Interaction of the electron,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
308
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
309
+ page_content=' D 15, 538 (1977) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
310
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
311
+ page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
312
+ page_content='538.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
313
+ page_content=' [21] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
314
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
315
+ page_content=' Ji and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
316
+ page_content=' Lu, A Modern anatomy of electron mass, [arXiv:hep-ph/9802437 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
317
+ page_content=' [22] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
318
+ page_content=' Rodini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
319
+ page_content=' Metz and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
320
+ page_content=' Pasquini, Mass sum rules of the electron in quantum electrody- namics, JHEP 09, 067 (2020) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
321
+ page_content='1007/JHEP09(2020)067 [arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
322
+ page_content='03704 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
323
+ page_content=' [23] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
324
+ page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
325
+ page_content=' Sun, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
326
+ page_content=' h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
327
+ page_content=' Sun and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
328
+ page_content=' Zhou, “Trace anomaly contribution to hydrogen atom mass,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
329
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
330
+ page_content=' D 104, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
331
+ page_content='5, 056008 (2021) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
332
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
333
+ page_content='104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
334
+ page_content='056008 [arXiv:2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
335
+ page_content='09443 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
336
+ page_content=' [24] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
337
+ page_content=' Ji, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
338
+ page_content=' Liu and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
339
+ page_content=' Sch¨afer, Scale symmetry breaking, quantum anomalous energy and proton mass decomposition, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
340
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
341
+ page_content=' B 971, 115537 (2021) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
342
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
343
+ page_content='nuclphysb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
344
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
345
+ page_content='115537 10 [arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
346
+ page_content='03974 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
347
+ page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
348
+ page_content=' Metz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
349
+ page_content=' Pasquini and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
350
+ page_content=' Rodini, “The gravitational form factor D(t) of the electron,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
351
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
352
+ page_content=' B 820, 136501 (2021) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
353
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
354
+ page_content='physletb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
355
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
356
+ page_content='136501 [arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
357
+ page_content='04207 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
358
+ page_content=' [26] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
359
+ page_content=' Ji and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
360
+ page_content=' Liu, “Momentum-Current Gravitational Multipoles of Hadrons,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
361
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
362
+ page_content=' D 106, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
363
+ page_content='3, 034028 (2022) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
364
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
365
+ page_content='106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
366
+ page_content='034028 [arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
367
+ page_content='14781 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
368
+ page_content=' [27] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
369
+ page_content=' Ji and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
370
+ page_content=' Liu, “Gravitational Tensor-Monopole Moment of Hydrogen Atom To Order O(α),” [arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
371
+ page_content='05029 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
372
+ page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
373
+ page_content=' Freese, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
374
+ page_content=' Metz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
375
+ page_content=' Pasquini and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
376
+ page_content=' Rodini, “The gravitational form factors of the electron in quantum electrodynamics,” [arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
377
+ page_content='12197 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
378
+ page_content=' [29] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
379
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
380
+ page_content=' Peskin and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
381
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
382
+ page_content=' Schroeder, “An Introduction to quantum field theory,” Addison- Wesley, 1995, ISBN 978-0-201-50397-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
383
+ page_content=' [30] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
384
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
385
+ page_content=' Nielsen, “The Energy Momentum Tensor in a Nonabelian Quark Gluon Theory,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
386
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
387
+ page_content=' B 120, 212-220 (1977) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
388
+ page_content='1016/0550-3213(77)90040-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
389
+ page_content=' [31] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
390
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
391
+ page_content=' Adler, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
392
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
393
+ page_content=' Collins and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
394
+ page_content=' Duncan, “Energy-Momentum-Tensor Trace Anomaly in Spin 1/2 Quantum Electrodynamics,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
395
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
396
+ page_content=' D 15, 1712 (1977) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
397
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
398
+ page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
399
+ page_content='1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
400
+ page_content=' [32] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
401
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
402
+ page_content=' Collins, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
403
+ page_content=' Duncan and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
404
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
405
+ page_content=' Joglekar, “Trace and Dilatation Anomalies in Gauge Theories,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
406
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
407
+ page_content=' D 16, 438-449 (1977) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
408
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
409
+ page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
410
+ page_content='438.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
411
+ page_content=' [33] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
412
+ page_content=' Tarrach, “The renormalization of FF,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
413
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
414
+ page_content=' B 196, 45-61 (1982) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
415
+ page_content='1016/0550- 3213(82)90301-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
416
+ page_content=' [34] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
417
+ page_content=' Hatta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
418
+ page_content=' Rajan and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
419
+ page_content=' Tanaka, “Quark and gluon contributions to the QCD trace anomaly,” JHEP 12, 008 (2018) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
420
+ page_content='1007/JHEP12(2018)008 [arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
421
+ page_content='05116 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
422
+ page_content=' [35] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
423
+ page_content=' Tanaka, “Three-loop formula for quark and gluon contributions to the QCD trace anomaly,” JHEP 01, 120 (2019) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
424
+ page_content='1007/JHEP01(2019)120 [arXiv:1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
425
+ page_content='07879 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
426
+ page_content=' [36] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
427
+ page_content=' Metz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
428
+ page_content=' Pasquini and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
429
+ page_content=' Rodini, “Revisiting the proton mass decomposition,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
430
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
431
+ page_content=' D 102, 114042 (2020) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
432
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
433
+ page_content='102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
434
+ page_content='114042 [arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
435
+ page_content='11171 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
436
+ page_content=' [37] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
437
+ page_content=' Ahmed, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
438
+ page_content=' Chen and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
439
+ page_content=' Czakon, “A note on quark and gluon energy-momentum tensors,” [arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
440
+ page_content='01441 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
441
+ page_content=' [38] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
442
+ page_content=' Tanaka, “Twist-four gravitational form factor at NNLO QCD from trace anomaly con- straints,” [arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
443
+ page_content='09417 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
444
+ page_content=' 11' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CtE1T4oBgHgl3EQfDwP-/content/2301.02883v1.pdf'}
F9E2T4oBgHgl3EQf-Qn4/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FNAyT4oBgHgl3EQfrPlH/content/tmp_files/2301.00556v1.pdf.txt ADDED
@@ -0,0 +1,1198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00556v1 [q-bio.PE] 2 Jan 2023
2
+ Competition of alliances in a cyclically dominant eight-species population
3
+ Junpyo Parka, Xiaojie Chenb, and Attila Szolnokic,∗∗
4
+ aDepartment of Applied Mathematics, Kyung Hee University, Yongin 17104, Republic of Korea
5
+ bSchool of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
6
+ cInstitute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary
7
+ Abstract
8
+ In a diverse population, where many species are present, competitors can fight for surviving at individual
9
+ and collective levels. In particular, species, which would beat each other individually, may form a specific
10
+ alliance that ensures them stable coexistence against the invasion of an external species. Our principal goal
11
+ is to identify those general features of a formation which determine its vitality. Therefore, we here study a
12
+ traditional Lotka-Volterra model of eight-species where two four-species cycles can fight for space. Beside
13
+ these formations, there are other solutions which may emerge when invasion rates are varied. The complete
14
+ range of parameters is explored and we find that in most of the cases those alliances prevail which are formed
15
+ by equally strong members. Interestingly, there are regions where the symmetry is broken and the system
16
+ is dominated by a solution formed by seven species. Our work also highlights that serious finite-size effects
17
+ may emerge which prevent observing the valid solution in a small system.
18
+ Keywords:
19
+ cyclic dominance, alliances, competition
20
+ 1. Introduction
21
+ If a species is stronger and beats the other one
22
+ then how can the “weaker” species survive? This
23
+ is a fundamental problem of ecology to explain the
24
+ amazing biodiversity of life [1, 2]. A possible expla-
25
+ nation could be the so-called intransitive or cycli-
26
+ cally dominated relation among competing species
27
+ where a third (or more) species beat the preda-
28
+ tor species, hence establishing a delicate balance
29
+ among all competitors. In the simplest case, these
30
+ relations remind the well-known rock-scissors-paper
31
+ game and this type of interaction can really be
32
+ observed among animals, plants, or even among
33
+ bacterias [3, 4, 5, 6, 7, 8, 9]. Evidently, a three-
34
+ member loop can be easily enlarged for more par-
35
+ ticipants, as it was made in the extended Lotka-
36
+ Volterra model [10, 11, 12, 13]. Motivated by the
37
+ complexity of such interactions, researchers have
38
+ studied related models actively over the last decade
39
+ and several interesting observations have been made
40
+ [14, 15, 16, 17, 18].
41
+ ∗Email
42
+ addresses:
43
+ junpyopark@khu.ac.kr;
44
+ xiao-
45
+ jiechen@uestc.edu.cn; szolnoki.attila@ek-cer.hu
46
+ ∗∗Corresponding author
47
+ It would be almost impossible to sum all impor-
48
+ tant observations, such as reported in Refs. [19, 20,
49
+ 21, 22, 23, 24, 25]. Instead, the reader is referred
50
+ to specific review papers about the milestones along
51
+ this research path [26, 27, 28, 29]. Nevertheless, it is
52
+ also worth noting here that the mentioned cyclic or
53
+ intransitive relation among participants should not
54
+ necessarily be defined by a Lotka-Volterra-type mi-
55
+ croscopic rule, but could be the result of collective
56
+ behavior among competing strategies in evolution-
57
+ ary game models [30, 31, 32, 33, 34, 35, 36, 37, 38]
58
+ The most exciting question is whether we can
59
+ predict the direction of evolution based on the food-
60
+ web that defines the microscopic dynamics? Can
61
+ we identify general principles which may inform us
62
+ about the vitality of an alliance? An early observa-
63
+ tion was, for instance, that when two three-member
64
+ cycles fight then the one, where the inner invasion
65
+ is faster, is more viable [39].
66
+ The picture, how-
67
+ ever, is more subtle, because a faster general rota-
68
+ tion does not necessarily provide an advantage if
69
+ the members of the trio are unequal. In the lat-
70
+ ter case, the triplet becomes vulnerable no matter
71
+ the average of inner invasion rates is higher than in
72
+ the rival triplet which is formed by less aggressive,
73
+ Preprint submitted to Chaos Solitons and Fractals
74
+ January 3, 2023
75
+
76
+ but equally strong partners [40]. Notably, hetero-
77
+ geneous invasion rates may emerge temporarily or
78
+ locally [41, 42]. Or, the extension of the original
79
+ food-web by adding a reverse link can also change
80
+ a stable solution [43]. Furthermore, the number of
81
+ members could also be a decisive factor because a
82
+ smaller loop is generally stronger than a large one
83
+ [44].
84
+ In this work we introduce a minimal eight-species
85
+ model where two four-member loops fight for space.
86
+ The interaction between these quartets practically
87
+ establishes a traditional Lotka-Volterra circle of
88
+ eight species, which can be described by an inva-
89
+ sion rate. Not to break the balance between the
90
+ quartets, we assume that the inner invasion is uni-
91
+ form and equally strong in both formations. The
92
+ only difference between them is we introduce two
93
+ short-cuts in one of the loops which generates extra
94
+ interactions within the related alliance. Our major
95
+ question is how the stability of alliances change due
96
+ to this extension and can we identify new solutions
97
+ which would be hidden otherwise?
98
+ It could also
99
+ be interesting whether the previously established
100
+ principles, observed for simpler systems formed by
101
+ trials and duets, remain valid when we apply them
102
+ to alliances formed by larger groups.
103
+ 2. Alliances formed at different levels
104
+ To make our observations comparable with pre-
105
+ vious works [45, 46, 47, 48, 49, 50], we assume
106
+ that species are distributed on an L × L square
107
+ lattice where periodic boundary conditions are ap-
108
+ plied. Each node is occupied by one of the species
109
+ which are denoted by Xi where indexes are from
110
+ i = 0 to 7. During an elementary step, we select
111
+ a neighboring pair nodes. If they are occupied by
112
+ the same species or represent species which are neu-
113
+ tral then nothing happens. Otherwise, an invasion
114
+ happens with a specific probability and predator
115
+ species invades prey species. The microscopic rules
116
+ are defined in the following way:
117
+ XiXi+1
118
+ γ−→ XiXi
119
+ (1)
120
+ XiXi+2
121
+ α−→ XiXi
122
+ (2)
123
+ X2X6
124
+ β−→ X2X2, X4X0
125
+ β−→ X4X4,
126
+ (3)
127
+ where i + 1 and i + 2 are calculated in cyclic man-
128
+ ner. The parameters α, β and γ define the proba-
129
+ bilities of successful invasions between the involved
130
+ predator-prey neighbors.
131
+ γ
132
+ α
133
+ β
134
+ 1
135
+ 2
136
+ 4
137
+ 0
138
+ 3
139
+ 5
140
+ 6
141
+ 7
142
+ Figure 1: Food-web of competing species. In the basic model
143
+ eight species are invade cyclically each other with probabil-
144
+ ity γ, similar to the extended Lotka-Volterra model.
145
+ Ad-
146
+ ditionally, we introduce a cyclic inner invasion among odd
147
+ and separately among even species with probability α. To
148
+ break the symmetry among the quartets, we also introduce
149
+ an inner invasion between species “2” and “6” and between
150
+ species “4” and “0” with probability β. Importantly, we use
151
+ the color-code of species in later figures where spatial distri-
152
+ butions are presented.
153
+ For a deeper insight about the model, in Fig. 1 we
154
+ show the food-web of competing species. Our first
155
+ note is about the biggest loop where all species are
156
+ involved, according to the extended Lotka-Volterra
157
+ type system. Here every species is simultaneously
158
+ a predator and a prey of another one, hence es-
159
+ tablishing a possible solution.
160
+ The invasion rate
161
+ is γ for all interactions here. Another solution is
162
+ formed by “1”, “3”, “5”, and “7” species who in-
163
+ vade each other cyclically with probability α. For
164
+ later reference, we denote this alliance as A4
165
+ 1,3,5,7.
166
+ A similar A4
167
+ 0,2,4,6 quartet is formed among species
168
+ “0”, “2”, “4” and “6”. Additionally, we introduce
169
+ an extra chance of invasions among group members
170
+ here. In particular, species “2” invades species “6”
171
+ and species “4” invades species “0” with probabil-
172
+ ity β.
173
+ In this way, there are no neutral pairs in
174
+ the mentioned quartet anymore. As a consequence,
175
+ the average inner invasion is augmented among the
176
+ four species, which could be a support to their via-
177
+ bility. Interestingly, however, there are many other
178
+ possible solutions in this system. For example, the
179
+ new invasions among even-numbered species offer
180
+ 2
181
+
182
+ the chance for trials to emerge: A3
183
+ 0,2,4 or A3
184
+ 0,2,6 can
185
+ work as a rock-scissors-paper-type solution. Beside
186
+ the mentioned formations, there are A5 (five-), A6
187
+ (six-), or A7 seven-member solutions, as well. Per-
188
+ haps, it is not necessary to specify them because
189
+ the reader can easily construct examples, based on
190
+ the food-web, shown in Fig. 1.
191
+ As we noted, there are three parameters in our
192
+ model and in the following we systematically scan
193
+ the whole parameter field to identify the dominant
194
+ solution for each combination of parameters. For
195
+ this reason, we executed Monte Carlo simulations
196
+ where a Monte Carlo step (MCS) means that on
197
+ average every node has a chance to update its state.
198
+ The linear system size varied between L = 100 to
199
+ L = 3200 and the necessary relaxation steps were
200
+ between 103 to 3 × 105 MCSs. According to the
201
+ standard protocol, simulations were launched from
202
+ an initial state where species are distributed ran-
203
+ domly on the lattice and monitor the ρi concentra-
204
+ tion of Xi for all species. We, however, would like
205
+ to stress that this initial state does not always could
206
+ be a good choice to find the solution which is valid
207
+ in the large size limit. It is because a small sys-
208
+ tem size does not necessarily “offer” equal chance
209
+ for all possible solutions to emerge. Some solution,
210
+ which involves large typical lengths, would emerge
211
+ just later, but to that stage of the evolutionary pro-
212
+ cess other solutions may invade the whole available
213
+ space. Therefore, a more complex solution practi-
214
+ cally has no chance to emerge at a small system size.
215
+ As a consequence, other solutions may win and an
216
+ independent run can easily terminates onto a differ-
217
+ ent solution, no matter we use the same set of model
218
+ parameters. To overcome this uncertainty, we not
219
+ simply enlarged the system size, but also used alter-
220
+ native initial states where larger and homogeneous
221
+ domains of competing species were distributed ran-
222
+ domly on the lattice. Similar approach was used
223
+ previously in Refs.[51, 52], for instance. In this way,
224
+ we can create all types of interfaces which could
225
+ be the foundation to build more sophisticated solu-
226
+ tions. To make our analysis more complete, at the
227
+ critical values of control parameters we also gener-
228
+ ated sub-solutions independently in restricted areas
229
+ of space and after we let them fight directly along
230
+ the separating interface [53, 54, 55]. This technique
231
+ can identify the dominant solution unambiguously.
232
+ The details of the above mentioned protocols will
233
+ be specified in the next section.
234
+ 3. Results
235
+ 3.1. Phase diagrams
236
+ We first summarize our main findings and later
237
+ we give further details about the microscopic mech-
238
+ anisms which are responsible how dominant solu-
239
+ tions emerge.
240
+ According to our simulations, we
241
+ can distinguish three main cases which determine
242
+ the system behavior. The decisive condition is the
243
+ intensity of interaction between the quartets men-
244
+ tioned in Sec. 2. If this interaction is weak, means
245
+ the value of γ is small, then the A4
246
+ {1,3,5,7} solution
247
+ dominates the whole β − α parameter plane.
248
+ In
249
+ other words, only the quartet of “1+3+5+7” sur-
250
+ vive independently of the α and β values.
251
+ For intermediate values of γ, when the invasion
252
+ flow in the large cycle becomes substantial, a con-
253
+ ceptually new behavior emerges. We represent this
254
+ phenomenon by showing the phase diagram ob-
255
+ tained at γ = 0.5.
256
+ Figure 2 shows that beside
257
+ the mentioned A4
258
+ {1,3,5,7} quartet, other solutions be-
259
+ come dominant at certain values of β − α pairs.
260
+ When both α and β are small then the “large cir-
261
+ cle” is the winner, hence all eight species coexist.
262
+ For intermediate β values this solution is replaced
263
+ by A7
264
+ {0,1,2,3,4,6,7} where only species “5” is missing.
265
+ 0
266
+ 0.2
267
+ 0.4
268
+ 0.6
269
+ 0.8
270
+ 1
271
+ 0
272
+ 0.2
273
+ 0.4
274
+ 0.6
275
+ 0.8
276
+ 1
277
+ A4
278
+ {1,3,5,7}
279
+ A7
280
+ {0,1,2,3,4,6,7}
281
+ all
282
+ β
283
+ α
284
+ Figure 2: Phase diagram on β − α parameter plane obtained
285
+ at γ = 0.5. If α is large enough, the quartet of “1+3+5+7”
286
+ species always win. If both β and α are small, all species
287
+ survive. Interestingly, for low α and intermediate β a seven-
288
+ member solution dominates where species “5” is missing.
289
+ Dashed blue line denotes discontinuous, while solid red line
290
+ marks the positions of continuous phase transition points.
291
+ Qualitatively similar system behavior can be ob-
292
+ served when γ is large, hence the flow in the ex-
293
+ 3
294
+
295
+ ternal loop is intensive. In other words, the inter-
296
+ action between the quartets becomes large. This
297
+ is illustrated in Fig. 3 where we present the com-
298
+ plete phase diagram on the β − α plane. The only
299
+ difference between the diagrams is the area, where
300
+ complete eight-species solution dominates, is larger
301
+ and the seven-member solution is shifted toward
302
+ larger β values.
303
+ 0
304
+ 0.2
305
+ 0.4
306
+ 0.6
307
+ 0.8
308
+ 1
309
+ 0
310
+ 0.2
311
+ 0.4
312
+ 0.6
313
+ 0.8
314
+ 1
315
+ A4
316
+ {1,3,5,7}
317
+ A7
318
+ {0,1,2,3,4,6,7}
319
+ all
320
+ β
321
+ α
322
+ Figure 3: Phase diagram on β − α parameter plane obtained
323
+ at γ = 1. The diagram is similar to the one shown in Fig. 2.
324
+ The only difference is the eight-member full solution occu-
325
+ pies larger area in the parameter field, while seven-member
326
+ solution is shifted toward higher β values.
327
+ We must stress that the presented phase dia-
328
+ grams are valid in the large system size limit. If
329
+ the system size is small then we may observe that
330
+ the system can easily terminate onto different so-
331
+ lutions. To illustrate it, in Fig. 4 we present the
332
+ survival probabilities at each (α, β) parameter pairs
333
+ for γ = 1, when the linear system size was L = 100.
334
+ More precisely, we launched the evolution from a
335
+ random initial state and monitored the fractions of
336
+ species until N = L×L MCSs. After, we recorded
337
+ the number of surviving species and repeated the
338
+ whole process 100 times. In this way we can esti-
339
+ mate the probability that S species survive for long
340
+ time.
341
+ The panels of Fig. 4 show these surviving
342
+ probabilities for all possible S values at x different
343
+ (α, β) pairs on the parameter plane.
344
+ These pan-
345
+ els indicate that different solutions may emerge no
346
+ matter we use the same values of (α, β) parameters.
347
+ Therefore, the destination is rarely unambiguous,
348
+ hence the surviving probability equals to 1 only for
349
+ S = 4 when α is high and β is low. Nevertheless,
350
+ 0
351
+ 0.5
352
+ 1
353
+ 0
354
+ 0.5
355
+ 1
356
+ S=1
357
+ 0
358
+ 0.5
359
+ 1
360
+ 0
361
+ 0.5
362
+ 1
363
+ S=2
364
+ 0
365
+ 0.5
366
+ 1
367
+ 0
368
+ 0.5
369
+ 1
370
+ S=3
371
+ 0
372
+ 0.5
373
+ 1
374
+ 0
375
+ 0.5
376
+ 1
377
+ S=4
378
+ 0
379
+ 0.5
380
+ 1
381
+ 0
382
+ 0.5
383
+ 1
384
+ S=5
385
+ 0
386
+ 0.5
387
+ 1
388
+ 0
389
+ 0.5
390
+ 1
391
+ S=6
392
+ 0
393
+ 0.5
394
+ 1
395
+ 0
396
+ 0.5
397
+ 1
398
+ S=7
399
+ 0
400
+ 0.5
401
+ 1
402
+ 0
403
+ 0.5
404
+ 1
405
+ S=8
406
+ 0
407
+ 0.2
408
+ 0.4
409
+ 0.6
410
+ 0.8
411
+ 1
412
+ Figure 4: Heat maps of the survival probability on β − α
413
+ parameter plane obtained for γ = 1 by using 100×100 system
414
+ size. Each panel shows the probability to reach a state which
415
+ contains S species after N = L2 MCSs. The value of S is
416
+ indicated on each panel. The results are averaged over 100
417
+ independent runs.
418
+ the contour of areas around “maximum” values are
419
+ roughly agree with the diagram shown in Fig. 3.
420
+ But, as Fig. 4 illustrated, this system size is insuffi-
421
+ cient to make reliable conclusions about the proper
422
+ system behavior.
423
+ 3.2. Detecting phase transitions
424
+ Therefore, to detect the phase transition points
425
+ more precisely, we need to apply systematic finite-
426
+ size analysis. An example is given in Fig. 5 where
427
+ we present the “lack” of species “5” in dependence
428
+ of α at fixed β = 0.75 and γ = 1 values. When the
429
+ value of 1 − ρ5 reaches 1 then the system enters
430
+ onto the mentioned A7
431
+ {0,1,2,3,4,6,7} solution.
432
+ Evi-
433
+ dently, we also checked the portions of other species,
434
+ because ρ5 = 0 is fulfilled in other solutions, too.
435
+ Here the symbols are the average of many indepen-
436
+ dent runs.
437
+ As an example, for L = 100 we exe-
438
+ cuted 2000 times. Importantly, the average hides
439
+ the proper system behavior for small system size,
440
+ because it mixes different destinations. For exam-
441
+ ple, at L = 100, α = 0.15 we never measured
442
+ ρ5 = 0.063.
443
+ Instead, the majority of indepen-
444
+ dent runs terminated onto a state where ρ5 = 0
445
+ or ρ5 = 0.25. This ambiguity disappears for large
446
+ system sizes. The plot also highlights that the tran-
447
+ sition from the eight-member to seven-member so-
448
+ lution is continuous because species “5” vanishes
449
+ gradually as we increase α. The transition, how-
450
+ ever, between A7
451
+ {0,1,2,3,4,6,7} and A4
452
+ {1,3,5,7} phases is
453
+ discontinuous.
454
+ To illustrate another type of phase transition, in
455
+ Fig. 6 we show an alternative order parameter in
456
+ dependence of β at γ = 0.5 and α = 0.01. Here,
457
+ we calculate the difference between the portions of
458
+ 4
459
+
460
+
461
+ 0.8
462
+
463
+ 0.9
464
+
465
+ 1
466
+ 0
467
+
468
+ 0.1
469
+
470
+ 0.2
471
+
472
+ 0.3
473
+
474
+ 0.4
475
+ all
476
+ A7
477
+ {0,1,2,3,4,6,7}
478
+ A4
479
+ {1,3,5,7}
480
+ 1 - ρ5
481
+ α
482
+ 100
483
+ 200
484
+ 400
485
+ 800
486
+ 1600
487
+ Figure 5: The absence of species “5”, as an order param-
488
+ eter, in dependence of α at γ = 1, β = 0.75 for different
489
+ system sizes. The linear sizes are indicated in the legend.
490
+ The dominant solutions are marked on the top. The plots
491
+ are the average of 100-2000 runs depending on the system
492
+ size. Lines are just to guide the eye.
493
+ quartets formed by odd- and even-indexed species,
494
+ respectively. When β is small, all available species
495
+ coexist, the system is in the “all” phase, hence the
496
+ mentioned difference is small. When this parame-
497
+ ter becomes 1, then species with even indexes van-
498
+ ish and the quartet of “1+3+5+7” species becomes
499
+ dominant.
500
+ Interestingly, this formation is viable
501
+ even if the inner invasion, due to the tiny α = 0.01,
502
+ is extremely slow. The explanation of this surpris-
503
+ ing behavior is given in the next subsection.
504
+ Similarly to the previously discussed Fig. 5 case,
505
+ the average of the order parameter could be mis-
506
+ leading when the system size is small. This can be
507
+ clearly seen for L = 100 and L = 200, where the av-
508
+ erage is larger than the value for larger system sizes.
509
+ It is because the system can easily be trapped in the
510
+ A4
511
+ {1,3,5,7} state already at small β values. The pos-
512
+ sible destinations, however, are less ambiguous for
513
+ larger sizes, but the jump in the order parameter is
514
+ valid signaling a discontinuous phase transition at
515
+ β = 0.66.
516
+ 3.3. Battles of solutions
517
+ In the following, we analyze the possible mech-
518
+ anisms which explain the system behavior summa-
519
+ rized in Fig. 2 and in Fig. 3. To get a deeper insight
520
+ about the dominant processes, which drive the pat-
521
+ ter formation, it is instructive to use a specific ini-
522
+ tial state where we divide the available space into
523
+ two halves and both regions are occupied by one of
524
+ the main quartets formed by odd- or even-indexed
525
+ 0
526
+ 0.2
527
+ 0.4
528
+ 0.6
529
+ 0.8
530
+ 1
531
+ 0
532
+ 0.1
533
+ 0.2
534
+ 0.3
535
+ 0.4
536
+ 0.5
537
+ 0.6
538
+ 0.7
539
+ 0.8
540
+ all
541
+ A4
542
+ {1,3,5,7}
543
+ (ρ1+ρ3+ρ5+ρ7) - (ρ0+ρ2+ρ4+ρ6)
544
+ β
545
+ 100
546
+ 200
547
+ 400
548
+ 800
549
+ 1600
550
+ Figure 6: The difference between symmetric quartets in de-
551
+ pendence of β at γ = 0.5, α = 0.1. When this order param-
552
+ eter becomes 1, the system enters to a four-species state.
553
+ The dominant solutions are marked on the top. The plots
554
+ are the average over 20-2000 runs, depending on the system
555
+ size. The linear size of squares are indicated.
556
+ species. In this way, we can follow how these solu-
557
+ tions compete, or how new possibilities may emerge
558
+ due to their interaction.
559
+ The β − α parameter plane can be divided into
560
+ four main sectors which fundamentally determine
561
+ the relation of different solutions.
562
+ We first con-
563
+ sider the low α – low β region.
564
+ It is impor-
565
+ tant to note that the A4
566
+ {0,2,4,6} quartet formed
567
+ by even-indexed species is not a proper solution
568
+ here.
569
+ Instead, we can see the battle of A3
570
+ {0,2,4}
571
+ and A3
572
+ {0,2,6} triplets when even-indexed species are
573
+ present. Since species “4” beats species “6”, this
574
+ fight ends up with the victory of the former solu-
575
+ tion.
576
+ This domain is marked by “A” on the left
577
+ panel of Fig. 7. When γ is small then there is just
578
+ a weak interaction between odd- and even-indexed
579
+ species. Therefore, the mentioned domains remain
580
+ compact and they fight along the separating inter-
581
+ face. Finally, A4
582
+ {1,3,5,7} quartet win this battle and
583
+ the whole space will be occupied by the domain,
584
+ marked by “B” on the left panel.
585
+ If γ is high enough then the evolution changes
586
+ drastically. This is illustrated on the right panel
587
+ of Fig. 7. Because of high γ, species “7”, who has
588
+ no predator in the “0+2+4” triplet, can easily en-
589
+ ter into the A3
590
+ {0,2,4} domain. The raid of species
591
+ “7” results in a neutral duo.
592
+ This A2{2, 7} so-
593
+ lution is marked by “C” on this panel. Interest-
594
+ ingly, however, this solution has limited life, be-
595
+ cause the intensive interactions of the original quar-
596
+ tets at the border offer a chance for the complete
597
+ 5
598
+
599
+ A
600
+ B
601
+ C
602
+ D
603
+ Figure 7: Pattern formation in the low α – low β region when
604
+ we launch the evolution from a prepared state where left
605
+ (right) side of the space is occupied by even-indexed (odd-
606
+ indexed) species. In the former case only the A3
607
+ {0,2,4}triplet
608
+ survive, shown by “A” on the left panel. For small γ, when
609
+ the interaction is weak around the main loop, the A4
610
+ {1,3,5,7}
611
+ quartet, marked by “B”, can beat the other solution and
612
+ gradually invades the whole space.
613
+ If γ is high enough,
614
+ species “7” can easily invade the triplet leaving a neutral
615
+ A2
616
+ {2,7} pair behind. But this solution, marked by “C”, can-
617
+ not survive because the interface between the original quar-
618
+ tets is a birthplace of the complete eight-species solution.
619
+ This is marked by “D”. Since γ is high enough, this solution
620
+ is viable and prevails. Color codes agree with those we intro-
621
+ duced in Fig. 1. Parameters are: α = 0.1, β = 0.1, γ = 0.05
622
+ (left panel), and γ = 1 (right panel).
623
+ eight-member solution to emerge.
624
+ This solution
625
+ is marked by “D” on this panel. Because of the
626
+ high γ value, the general invasion flow is intensive
627
+ in the largest loop, which makes it strong against
628
+ A4
629
+ {1,3,5,7}. Notably, the latter quartet is weak due to
630
+ small α. The above described mechanism explains
631
+ the left-down corners of phase diagrams shown in
632
+ Fig. 2 and in Fig. 3.
633
+ We can face a conceptually different situation
634
+ in the large α – small β corner of the parame-
635
+ ter plane, because it provides supporting conditions
636
+ both for A4
637
+ {0,2,4,6} and A4
638
+ {1,3,5,7} quartets. There-
639
+ fore, both solutions would be viable in the absence
640
+ of the other. Importantly, the high α value makes
641
+ the difference from the previously discussed cases,
642
+ which generates a fast rotation withing both quar-
643
+ tets. There is, however, a crucial difference between
644
+ these solutions: while A4
645
+ {1,3,5,7} is formed by equal
646
+ partners, the extra inner invasions described by β
647
+ probability break this delicate balance for the ben-
648
+ efit of species “0” at the expense of species “6”. In
649
+ this way the pattern formed by even-indexed species
650
+ becomes heterogeneous, including larger domains of
651
+ “0” species. This makes the whole alliance vulner-
652
+ able against the attack of the rival well-balanced
653
+ loop.
654
+ This process is illustrated in Fig. 8, where we
655
+ 0
656
+
657
+ 0.1
658
+
659
+ 0.2
660
+
661
+ 0.3
662
+ 0
663
+ 20000
664
+ 40000
665
+ 60000
666
+ 80000 100000 120000
667
+ 0
668
+ 6
669
+ 2
670
+ 4
671
+ 1 3 5 7
672
+ ρi
673
+ time [MCS]
674
+ Figure 8: The time evolution of species when quartets are
675
+ fighting at high α, low β values.
676
+ Initially both A4
677
+ {0,2,4,6}
678
+ and A4
679
+ {1,3,5,7} solutions evolve independently in separated
680
+ areas of available space. When separating borders opened,
681
+ marked by an arrow, symmetric quartet gradually crowd out
682
+ the rival gang. Color codes are the usual, except white line
683
+ is replaced by grey one. Parameters are: α = 0.5, β = 0.1,
684
+ γ = 0.1, L = 1600.
685
+ monitor the battle of these quartets. Initially, we
686
+ allowed both solutions to emerge peacefully in re-
687
+ stricted areas and the stationary portions of species
688
+ “0” and “6” change, as we described previously. Let
689
+ us stress that in the initial state all species repre-
690
+ sented equally, which is practically invisible because
691
+ the unequal stationary distributions of “0+2+4+6”
692
+ species evolve very fast. After 20000 MCSs, when
693
+ the separating borders opened, the symmetric so-
694
+ lution gradually invades the whole space. Notably,
695
+ the presented simulation was recorded at γ = 0.1,
696
+ where the interaction between the quartets is mod-
697
+ erate. Still, this light communication is capable to
698
+ reveal the advantage of A4
699
+ {1,3,5,7} solution.
700
+ If we
701
+ apply larger γ values then nothing changes concep-
702
+ tually, but the victory of A4
703
+ {1,3,5,7} becomes faster.
704
+ Hence, in agreement with the phase diagrams, the
705
+ symmetric four-member solutions is always the win-
706
+ ner in the mentioned corner of the β − α parameter
707
+ plane.
708
+ The lastly discussed observation also answers one
709
+ of our original questions. Namely, one may argue
710
+ that the introduction of an additional inner inva-
711
+ sion within A4
712
+ {0,2,4,6} solution results in a faster ro-
713
+ tation among these species, which could be useful
714
+ them [39]. But the weakening consequence of sym-
715
+ metry breaking is stronger, as it was also the case
716
+ for three-member loops [40].
717
+ Next, we discuss the small α – large β corner of
718
+ the parameter plane. Here, the situation is partly
719
+ 6
720
+
721
+ similar to the first discussed case. More precisely,
722
+ A4
723
+ {0,2,4,6} solution is unstable and replaced very
724
+ soon by A3
725
+ {0,2,4}. But this triplet is vulnerable, be-
726
+ cause the large heterogeneity of inner flow, (α ≪ β),
727
+ results in huge homogeneous domains, as it was al-
728
+ ready reported in [56] for traditional rock-scissors-
729
+ paper game.
730
+ Such a large homogeneous domain
731
+ is also an easy prey of the rival A4
732
+ {1,3,5,7} quartet.
733
+ This picture is valid for small and medium γ values,
734
+ where the interaction between the even- and odd-
735
+ indexed species is not too strong. For large γ val-
736
+ ues, however, the evolution could be more complex,
737
+ which can be observed more easily from a “random-
738
+ patch” initial state. This starting pattern is illus-
739
+ trated in Fig. 9. As we already mentioned in Sec. 2,
740
+ this prepared initial state can offer all possible in-
741
+ terfaces to be present at the very beginning, which
742
+ is extremely useful when there are large difference
743
+ among the invasion rates. In this way, we can ob-
744
+ serve the valid solution already at smaller system
745
+ size. We stress, however, that the mentioned state
746
+ should be reached from all kind of initial states if
747
+ all available species are present and the system size
748
+ is large enough.
749
+ (a)
750
+ (b)
751
+ (c)
752
+ Figure 9: Alternative initial states from where evolution is
753
+ launched when L = 200.
754
+ Panel (a) shows the traditional
755
+ starting state where every node is uploaded by a randomly
756
+ chosen species. Panel (b) shows a state where two competing
757
+ quartets are generated first. Panel (c) shows a state where
758
+ larger patches of species are distributed randomly. The so-
759
+ lution, which is valid in the large size limit, can be reached
760
+ from all starting points, but the necessary system size could
761
+ be largely different.
762
+ Turning back to the large γ, large β, small α re-
763
+ gion, the above specified prepared initial state can
764
+ help us to identify the valid A7
765
+ {0,1,2,3,4,6,7} solution
766
+ already at relatively small system sizes.
767
+ At first
768
+ sight, this solution may seem weird or exotic, but its
769
+ emergence can be understood if we follow how the
770
+ portion of species change by increasing β. This phe-
771
+ nomenon is illustrated in Fig. 10 where we present
772
+ the stationary fractions of all species when we in-
773
+ crease the intensity of additional invasions at fixed
774
+ γ = 1 and α = 0.2. At β = 0 we have a completely
775
+ symmetric food-web where there are equally strong
776
+ 0
777
+
778
+ 0.1
779
+
780
+ 0.2
781
+ 0
782
+ 0.1
783
+ 0.2
784
+ 0.3
785
+ 0.4
786
+ 0.5
787
+ 0.6
788
+ 0.7
789
+ all
790
+ A7
791
+ {0,1,2,3,4,6,7}
792
+ 0
793
+ 1
794
+ 2
795
+ 3
796
+ 4
797
+ 5
798
+ 6
799
+ 7
800
+ ρi
801
+ β
802
+ Figure 10: Stationary fractions of species in dependence of
803
+ β at γ = 1, α = 0.2. The results are obtained at L = 3200
804
+ system size. Species are denoted to every lines. For clarity
805
+ we only show the lines without symbols here.
806
+ The stable
807
+ phases are shown on the top.
808
+ quartets. Consequently, all species are present at
809
+ the same level here. When we introduce a non-zero
810
+ β then not only the fractions of species “0” and
811
+ “6” start decaying, but simultaneously, the portions
812
+ of their principal preys, species “1” and “7” start
813
+ growing. This increment involves the decay of their
814
+ preys, which are species “2” and “0”. This dou-
815
+ ble stress explains why species “0” suffers the most
816
+ at small β values. Naturally, the decay of species
817
+ “6” affects the population of its principal predator,
818
+ hence the portion of species “5” also a decreasing
819
+ function. One may argue that the decay of species
820
+ “0” should affect its main predator species “7”. But
821
+ the predator of the latter, which is species “6”, can-
822
+ not grow here, hence in sum species “7” should not
823
+ necessarily decrease. This difference between the
824
+ status of species “5” and “7” explains why there are
825
+ diverse consequences when both of their principal
826
+ preys, species “6” and “0”, are attacked directly via
827
+ an inner invasion described by parameter β. Impor-
828
+ tantly, the direct support of species “4” via the in-
829
+ tensive “4”→“2” helps the spreading of species “4”.
830
+ This process is also dangerous for species “5”. On
831
+ the other hand, the intensive “2”→“6” process will
832
+ not simply strengthen species “2”, but also weaken
833
+ its prey species “3”, which consequence is also en-
834
+ joyed by species “4”. When the latter species die
835
+ out, the remaining seven species form a heteroge-
836
+ neous seven-member Lotka-Volterra loop where the
837
+ “weakest” species (species “4”, who beats species
838
+ “6” with probability α) occupies the largest frac-
839
+ tion of space. This effect is an example for the phe-
840
+ 7
841
+
842
+ C
843
+ B
844
+ F
845
+ H
846
+ G
847
+ A
848
+ D
849
+ E
850
+ I
851
+ Figure 11: Intermediate stage of the evolution taken from
852
+ the battlefield when different solutions emerge and fight for
853
+ space. The domains mark the following solutions: A4
854
+ {0,1,3,4}
855
+ (A),
856
+ A5
857
+ {1,3,4,5,7}
858
+ (B),
859
+ A4
860
+ {1,3,5,7}
861
+ (C),
862
+ A5
863
+ {0,2,3,5,7}
864
+ (D),
865
+ A5
866
+ {0,1,3,4,6} (E), A3
867
+ {0,2,4} (F ), A6
868
+ {1,2,3,4,5,7} (G), A5
869
+ {1,2,4,5,7}
870
+ (H), and A5
871
+ {1,2,3,5,7} (I). Finally “C” domain wins. Param-
872
+ eters are α = 0.9, β = 0.9, γ = 1, and L = 400.
873
+ nomenon observed first by Tainaka in the simplest
874
+ three-member loop [57].
875
+ Last, we discuss the remaining large α – large β
876
+ corner of the parameter plane. Here the A4
877
+ {0,2,4,6}
878
+ solution is not stable again, hence the remaining
879
+ A3
880
+ {0,2,4} solution fights against A4
881
+ {1,3,5,7} quartet.
882
+ When γ is low and the interaction is weak between
883
+ these groups then the latter formation wins. This
884
+ evolution is similar to the case we reported in the
885
+ left panel of Fig. 7. Practically, the same happens
886
+ when γ is high, but in this case a large set of solu-
887
+ tions may emerge temporarily. Despite of this di-
888
+ versity, however, the winning alliance remains the
889
+ symmetric quartet.
890
+ To give an impression about
891
+ the variety of different candidates, we present an in-
892
+ termediate snapshot about the “battlefield” taken
893
+ at α = 0.9, β = 0.9, and γ = 1. Figure 11 shows
894
+ that in the intermediate stage of the evolution at
895
+ least nine(!) solutions emerge locally and fight for
896
+ space. But eventually the symmetric A4
897
+ {1,3,5,7} so-
898
+ lution crowds out all other competitors.
899
+ 4. Conclusions
900
+ Which are the most important features of a cycli-
901
+ cally dominant alliance that determine its viabil-
902
+ ity against alternative formations?
903
+ Motivated by
904
+ this question, we introduced an eight-species model
905
+ where there are two four-member quartets who in-
906
+ teract each other, hence forming a complete eight-
907
+ member loop, too.
908
+ The original model is com-
909
+ pletely symmetric where the inner invasion within
910
+ the quartets are equally strong. Additionally, we
911
+ break the symmetry and introduced an extra inner
912
+ invasion within one of the loops.
913
+ Based on pre-
914
+ vious observations about three-member loops, one
915
+ may argue that this faster rotation of alliance mem-
916
+ bers could be positive to make them stronger. From
917
+ the other viewpoint, the broken symmetry is always
918
+ detrimental, hence the new opportunity would just
919
+ weaken the involved quartet. It is also worth not-
920
+ ing that the slight alteration of the original “sym-
921
+ metric” food-web offers the chance several potential
922
+ solutions to emerge. Indeed, an armada of candi-
923
+ dates can be observed at intermediate stage of the
924
+ evolution, but it is believed that the final pattern
925
+ is determined by some basic concepts.
926
+ According to our findings, keeping the symme-
927
+ try is vital and the solutions, which maintain a
928
+ balance among their members, are fitter.
929
+ In the
930
+ complete parameter space we studied, it can hap-
931
+ pen that there are more than one solution which
932
+ possess this attractive character. In this case the
933
+ general speed of inner invasion could be a decisive
934
+ factor. If the rotations are equally strong then we
935
+ could give examples when a short or a larger loop is
936
+ the winner. For example, a quartet can beat a trio,
937
+ but a quartet can also beat an octet. Therefore, it
938
+ cannot be made a simple conclusion that a smaller
939
+ or larger alliance is better. Probably, there are two
940
+ competing effects whose relation determines the ac-
941
+ tual fitness of a loop. On one hand, a short loop
942
+ may involve relatively large homogeneous domains,
943
+ which could always be dangerous.
944
+ On the other
945
+ hand, too large loop also means that the reaction of
946
+ the alliance could be delayed, because several inner
947
+ invasions should happen to produce the predator of
948
+ the external intruder. Therefore, the sum of these
949
+ adverse impacts could be case-sensitive.
950
+ Naturally, our present study is a sterile theoreti-
951
+ cal model, but we strongly believe that the observa-
952
+ tions we made could be useful when real systems are
953
+ studied. Our another important message is the im-
954
+ portance of appropriately chosen system size, which
955
+ 8
956
+
957
+ is always a central issue when cyclic dominance is
958
+ present. Otherwise, the observations could be di-
959
+ verse without deeper understanding. This is why
960
+ we should always consider the actual size when we
961
+ want to give predictions about the pattern forma-
962
+ tion in a finite system driven by intransitive inter-
963
+ actions.
964
+ This work was supported by the National Re-
965
+ search Foundation of Korea (NRF) grant funded
966
+ by the Korea government (MSIT) (No.
967
+ NRF-
968
+ 2021R1A4A1032924). J.P. was also supported by
969
+ a grant from Kyung Hee University in 2022 (KHU-
970
+ 20220901).
971
+ X.C. was supported by the National
972
+ Natural Science Foundation of China (Grants Nos.
973
+ 61976048 and 62036002) and the Fundamental Re-
974
+ search Funds of the Central Universities of China.
975
+ A.S. was supported by the National Research, De-
976
+ velopment and Innovation Office (NKFIH) under
977
+ Grant No. K142948.
978
+ References
979
+ [1] K. Sigmund, Games of Life: Exploration in Ecology,
980
+ Evolution and Behavior, Oxford University Press, Ox-
981
+ ford, UK, 1993.
982
+ [2] J. Bascompte, G. Sol´e (Eds.), Modeling Spatiotemporal
983
+ Dynamics in Ecology, Springer, New York, 1998.
984
+ [3] B. Sinervo, C. M. Lively, The rock-paper-scissors game
985
+ and the evolution of alternative male strategies, Nature
986
+ 380 (1996) 240–243.
987
+ [4] M. T. Burrows, S. J. Hawkins,
988
+ Modelling patch dy-
989
+ namics on rocky shores using deterministic cellular au-
990
+ tomata, Mar. Ecol. Prog. Ser. 167 (1998) 1–13.
991
+ [5] B. Kerr, M. A. Riley, M. W. Feldman, B. J. M. Bohan-
992
+ nan, Local dispersal promotes biodiversity in a real-life
993
+ game of rock-paper-scissors,
994
+ Nature 418 (2002) 171–
995
+ 174.
996
+ [6] D. D. Cameron, A. White, J. Antonovics,
997
+ Parasite-
998
+ grass-forb interactions and rock-paper-scissor dynam-
999
+ ics: predicting the effects of the parasitic plant Rhi-
1000
+ nanthus minor on host plant communities, J. Ecol. 97
1001
+ (2009) 1311–1319.
1002
+ [7] J. L. Ruifrok, T. Janzen, D. P. Kuijper, M. Rietkerk,
1003
+ H. Olff, C. Smit, Cyclical succession in grazed ecosys-
1004
+ tems: The importance of interactions between different-
1005
+ sized herbivores and different-sized predators,
1006
+ Theor.
1007
+ Popul. Biol. 101 (2015) 31–39.
1008
+ [8] R. Garde, J. Ewald, ´A. T. Kov´acs, S. Schuster, Mod-
1009
+ elling population dynamics in a unicellular social organ-
1010
+ ism community using a minimal model and evolutionary
1011
+ game theory, Open Biol. 10 (2020) 200206.
1012
+ [9] M. J. Liao, A. Miano, C. B. Nguyen, L. Chao, J. Hasty,
1013
+ Survival of the weakest in non-transitive asymmetric
1014
+ interactions among strains of E. coli,
1015
+ Nat. Com. 11
1016
+ (2020) 6055.
1017
+ [10] L. Frachebourg, P. L. Krapivsky, E. Ben-Naim, Spatial
1018
+ organization in cyclic Lotka-Volterra systems,
1019
+ Phys.
1020
+ Rev. E 54 (1996) 6186–6200.
1021
+ [11] S. Esmaeili, B. L. Brown, M. Pleimling,
1022
+ Perturbing
1023
+ cyclic predator-prey systems: How a six-species coars-
1024
+ ening system with nontrivial in-domain dynamics re-
1025
+ sponds to sudden changes,
1026
+ Phys. Rev. E 98 (2018)
1027
+ 062105.
1028
+ [12] R. Baker, M. Pleimling, The effect of habitats and fit-
1029
+ ness on species coexistence in systems with cyclic dom-
1030
+ inance, J. Theor. Biol. 486 (2020) 110084.
1031
+ [13] A. Bayliss, A. Nepomnyashchy, V. Volpert,
1032
+ Beyond
1033
+ rock-paper-scissors systems - deterministic models of
1034
+ cyclic ecological systems with more than three species,
1035
+ Physica D 411 (2020) 132585.
1036
+ [14] C. H. Durney, S. O. Case, M. Pleimling, R. Zia, Saddles,
1037
+ arrows, and spirals: Deterministic trajectories in cyclic
1038
+ competition of four species,
1039
+ Phys. Rev. E 83 (2011)
1040
+ 051108.
1041
+ [15] A. Cazaubiel, A. F. L¨utz, J. J. Arenzon,
1042
+ Collec-
1043
+ tive strategies and cyclic dominance in asymmetric
1044
+ predator-prey spatial games, J. Theor. Biol. 430 (2017)
1045
+ 45–52.
1046
+ [16] C. W. Choi, C. Xu, P. M. Hui,
1047
+ Adaptive cyclically
1048
+ dominating game on co-evolving networks: numerical
1049
+ and analytic results, Eur. Phys. J. B 90 (2017) 190.
1050
+ [17] A. Roman, D. Dasgupta, M. Pleimling, A theoretical
1051
+ approach to understand spatial organization in complex
1052
+ ecologies, J. Theor. Biol. 403 (2016) 10–16.
1053
+ [18] G. Szab´o, A. Szolnoki, G. A. Sznaider, Segregation pro-
1054
+ cess and phase transition in cyclic predator-prey models
1055
+ with even number of species, Phys. Rev. E 76 (2007)
1056
+ 051921.
1057
+ [19] J. Park, Correlation between the formation of new com-
1058
+ peting group and spatial scale for biodiversity in the
1059
+ evolutionary dynamics of cyclic competition, Chaos 32
1060
+ (2022) 081101.
1061
+ [20] T. Yoshida, T. Mizoguchi, Y. Hatsugai, Non-Hermitian
1062
+ topology in rock-paper-scissors games,
1063
+ Sci. Rep. 12
1064
+ (2022) 560.
1065
+ [21] K. Tainaka, N. Nakagiri, H. Yokoi, K. Sato,
1066
+ Multi-
1067
+ layered model for rock-paper-scissors game: A swarm
1068
+ intelligence sustains biodiversity, Ecological Informatics
1069
+ 66 (2021) 101477.
1070
+ [22] S. R. Serrao, U. C. T¨auber,
1071
+ Stabilizing spiral struc-
1072
+ tures and population diversity in the asymmetric may–
1073
+ leonard model through immigration, Eur. Phys. J. B
1074
+ 94 (2021) 175.
1075
+ [23] J. Park, Y. Do, B. Jang,
1076
+ Multistability in the cyclic
1077
+ competition system, Chaos 28 (2018) 113110.
1078
+ [24] T. Nagatani, G. Ichinose, K. Tainaka, Heterogeneous
1079
+ network promotes species coexistence: metapopulation
1080
+ model for rock-paper-scissors game, Sci. Rep. 8 (2018)
1081
+ 7094.
1082
+ [25] M. Mobilia, A. M. Rucklidge, B. Szczesny, The influence
1083
+ of mobility rate on spiral waves in spatial rock-paper-
1084
+ scissors games, Games 7 (2016) 24.
1085
+ [26] A. Szolnoki, M. Mobilia, L.-L. Jiang, B. Szczesny, A. M.
1086
+ Rucklidge, M. Perc,
1087
+ Cyclic dominance in evolution-
1088
+ ary games: a review,
1089
+ J. R. Soc. Interface 11 (2014)
1090
+ 20140735.
1091
+ [27] G. Szab´o, G. F´ath,
1092
+ Evolutionary games on graphs,
1093
+ Phys. Rep. 446 (2007) 97–216.
1094
+ [28] U. Dobramysl, M. Mobilia, M. Pleimling, U. C. T¨auber,
1095
+ Stochastic population dynamics in spatially extended
1096
+ predator-prey systems,
1097
+ J. Phys. A: Math. Theor. 51
1098
+ (2018) 063001.
1099
+ [29] A. Szolnoki, B. F. de Oliveira, D. Bazeia, Pattern for-
1100
+ 9
1101
+
1102
+ mations driven by cyclic interactions: A brief review of
1103
+ recent developments, EPL 131 (2020) 68001.
1104
+ [30] C. Hauert, S. De Monte, J. Hofbauer, K. Sigmund, Vol-
1105
+ unteering as Red Queen mechanism for cooperation in
1106
+ public goods game, Science 296 (2002) 1129–1132.
1107
+ [31] A. Szolnoki, X. Chen, Strategy dependent learning ac-
1108
+ tivity in cyclic dominant systems, Chaos Soliton. Fract.
1109
+ 138 (2020) 109935.
1110
+ [32] F. Palombi, S. Ferriani, S. Toti,
1111
+ Coevolutionary dy-
1112
+ namics of a variant of the cyclic Lotka-Volterra model
1113
+ with three-agent interactions, Eur. Phys. J. B 93 (2020)
1114
+ 194.
1115
+ [33] A. Szolnoki, X. Chen, Alliance formation with exclu-
1116
+ sion in the spatial public goods game, Phys. Rev. E 95
1117
+ (2017) 052316.
1118
+ [34] G. A. Canova, J. J. Arenzon, Risk and interaction aver-
1119
+ sion: Screening mechanisms in the prisoner’s dilemma
1120
+ game, J. Stat. Phys. 172 (2018) 279–292.
1121
+ [35] A. Szolnoki, M. Perc, Second-order free-riding on anti-
1122
+ social punishment restores the effectiveness of prosocial
1123
+ punishment, Phys. Rev. X 7 (2017) 041027.
1124
+ [36] Y. Tao, K. Hu, L. Shi, Risk-preference-driven partici-
1125
+ pate willingness provides alternative routes to solve so-
1126
+ cial dilemma, EPL 135 (2021) 28001.
1127
+ [37] A. Szolnoki, Z. Wang, J. Wang, X. Zhu,
1128
+ Dynami-
1129
+ cally generated cyclic dominance in spatial prisoner’s
1130
+ dilemma games, Phys. Rev. E 82 (2010) 036110.
1131
+ [38] L. Liu, Z. Xiao, X. Chen, A. Szolnoki, Early exclusion
1132
+ leads to cyclical cooperation in repeated group interac-
1133
+ tions, J. R. Soc. Interface 19 (2022) 20210755.
1134
+ [39] M. Perc, A. Szolnoki, G. Szab´o,
1135
+ Cyclical interac-
1136
+ tions with alliance specific heterogeneous invasion rates,
1137
+ Phys. Rev. E 75 (2007) 052102.
1138
+ [40] M. Blahota, I. Blahota, A. Szolnoki, Equal partners do
1139
+ better in defensive alliances, EPL 131 (2020) 58002.
1140
+ [41] A. Szolnoki, M. Perc, Biodiversity in models of cyclic
1141
+ dominance is preserved by heterogeneity in site-specific
1142
+ invasion rates, Sci. Rep. 6 (2016) 38608.
1143
+ [42] A. Szolnoki, M. Perc,
1144
+ Zealots tame oscillations in
1145
+ the spatial rock-paper-scissors game, Phys. Rev. E 93
1146
+ (2016) 062307.
1147
+ [43] D. Bazeia, B. F. de Oliveira, J. V. O. Silva, A. Szolnoki,
1148
+ Breaking unidirectional invasions jeopardizes biodiver-
1149
+ sity in spatial May-Leonard systems, Chaos, Solitons
1150
+ and Fractals 141 (2020) 110356.
1151
+ [44] B. F. de Oliveira, A. Szolnoki, Competition among al-
1152
+ liances of different sizes, Chaos, Solitons and Fractals
1153
+ 157 (2022) 111940.
1154
+ [45] B. Intoy, M. Pleimling, Synchronization and extinction
1155
+ in cyclic games with mixed strategies, Phys. Rev. E 91
1156
+ (2015) 052135.
1157
+ [46] A. L¨utz, S. Risau-Gusman, J. Arenzon, Intransitivity
1158
+ and coexistence in four species cyclic games, J. Theor.
1159
+ Biol. 317 (2013) 286–292.
1160
+ [47] H. Mir, J. Stidham, M. Pleimling,
1161
+ Emerging spa-
1162
+ tiotemporal patterns in cyclic predator-prey systems
1163
+ with habitats, Phys. Rev. E 105 (2022) 054401.
1164
+ [48] G. Szab´o, A. Szolnoki,
1165
+ Phase transitions induced by
1166
+ variation of invasion rates in spatial cyclic predator-
1167
+ prey models with four or six species, Phys. Rev. E 77
1168
+ (2008) 011906.
1169
+ [49] B. L. Brown, H. Meyer-Ortmanns, M. Pleimling, Dy-
1170
+ namically generated hierarchies in games of competi-
1171
+ tion, Phys. Rev. E 99 (2019) 062116.
1172
+ [50] J. Park, B. Jang, Robust coexistence with alternative
1173
+ competition strategy in the spatial cyclic game of five
1174
+ species, Chaos 29 (2019) 051105.
1175
+ [51] A. Szolnoki, G. Szab´o, M. Perc, Phase diagrams for the
1176
+ spatial public goods game with pool punishment, Phys.
1177
+ Rev. E 83 (2011) 036101.
1178
+ [52] A. Szolnoki, X. Chen, Competition and partnership be-
1179
+ tween conformity and payoff-based imitations in social
1180
+ dilemmas, New J. Phys. 20 (2018) 093008.
1181
+ [53] A. Szolnoki, M. Perc, Reentrant phase transitions and
1182
+ defensive alliances in social dilemmas with informed
1183
+ strategies, EPL 110 (2015) 38003.
1184
+ [54] A. Szolnoki, M. Perc, Competition of tolerant strate-
1185
+ gies in the spatial public goods game, New J. Phys. 18
1186
+ (2016) 083021.
1187
+ [55] A. Szolnoki, Z. Danku,
1188
+ Dynamic-sensitive coopera-
1189
+ tion in the presence of multiple strategy updating rules,
1190
+ Physica A 511 (2018) 371–377.
1191
+ [56] J. Juul, K. Sneppen, J. Mathiesen, Clonal selection pre-
1192
+ vents tragedy of the commons when neighbors compete
1193
+ in a rock-paper-scissors game, Phys. Rev. E 85 (2012)
1194
+ 061924.
1195
+ [57] K. Tainaka, Paradoxial effect in a three-candidate voter
1196
+ model, Phys. Lett. A 176 (1993) 303–306.
1197
+ 10
1198
+
FNAyT4oBgHgl3EQfrPlH/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
KNAyT4oBgHgl3EQfsfkS/content/tmp_files/2301.00576v1.pdf.txt ADDED
@@ -0,0 +1,2400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MNRAS 000, 1–?? (2023)
2
+ Preprint 3 January 2023
3
+ Compiled using MNRAS LATEX style file v3.0
4
+ Time-averaging Polarimetric and Spectral Properties of GRBs
5
+ Liang Li1,2,3⋆ Soroush Shakeri4,1,5†
6
+ 1ICRANet, Piazza della Repubblica 10, I-65122 Pescara, Italy
7
+ 2ICRA and Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Roma, Italy
8
+ 3INAF – Osservatorio Astronomico d’Abruzzo, Via M. Maggini snc, I-64100, Teramo, Italy
9
+ 4Department of Physics, Isfahan University of Technology, Isfahan 84156-83111
10
+ 5ICRANet-Isfahan, Isfahan University of Technology, Isfahan 84156-83111, Iran
11
+ Accepted XXX. Received YYY; in original form ZZZ
12
+ ABSTRACT
13
+ One of the most fundamental and yet open issues in gamma-ray burst (GRB) physics, is the comprehension of the nature of
14
+ their jet composition. The investigation of joint polarimetric and spectral properties is essential to probe the jet composition and
15
+ radiation mechanism of GRBs. Several distinct categories of jet properties—the “Kinetic-energy-dominated" (KED), “Poynting-
16
+ flux-dominated" (PFD), and “Hybrid-dominated" (HD) jets—have been observed in the observed GRB spectra, and the emission
17
+ dominated by different jet properties is expected to have a different level of polarization (πKED ≲ πHD ≲ πPED). In the present
18
+ paper, we collected a GRB sample in which all the bursts detected by the Gamma-ray Burst Monitor (GBM) on board the
19
+ NASA Fermi Gamma-ray Space Telescope whose polarization measurements are also reported in the literature and the epochs
20
+ of prompt emission are heavily overlapped with their polarization observations, aiming to establish a connection between the
21
+ polarization and jet properties of GRBs, and to confirm the validity of this correlation (πKED ≲ πHD ≲ πPED) from observations.
22
+ With a detailed spectral analysis, we found that all the bursts are classified as the “Hybrid" jet type, implying that one cannot
23
+ rule out that the photosphere emission may also be the possible mechanism powering the high levels of polarization. Moreover,
24
+ we also discovered that the polarization degrees π are tightly correlated with the cosmological rest-frame peak energy (Ep,z) of
25
+ the νFν prompt emission spectrum, the isotropic-bolometric-equivalent emission energy (Eγ,iso), and the blackbody temperature
26
+ (kT). Finally, we present different polarization models in the presence of ordered and random magnetic field configurations
27
+ with the properties of corresponding hybrid jets in order to interpret polarization measurements of the prompt emission in our
28
+ sample.
29
+ Key words: gamma-ray burst: general, radiation mechanisms: non-thermal, radiation mechanisms: thermal
30
+ 1 INTRODUCTION
31
+ Gamma-ray bursts (GRBs) are one of the most explosive, and elec-
32
+ tromagnetically the brightest transient phenomena in the Universe,
33
+ occurrence at cosmological distances. After decades of investiga-
34
+ tion, the origin of the jet composition (a hot baryonic-dominated
35
+ fireball or a cold Poynting-flux-dominated outflow), and the radi-
36
+ ation mechanism and energy dissipation mechanism (synchrotron,
37
+ or Comptonization of quasi-thermal emission from the photosphere)
38
+ in gamma-ray burst (GRB) physics are still unclear (e.g., Rees &
39
+ Meszaros 1994; Mészáros & Rees 2000; Rees & Mészáros 2005;
40
+ Pe’er et al. 2006; Dai et al. 2006; Pe’er 2015; Pe’Er & Ryde 2017;
41
+ Zhang 2018; Bégué et al. 2022).
42
+ There are two crucial clues that can in principle be helpful in di-
43
+ agnosing the jet composition of GRBs, as well as their radiation
44
+ mechanism and energy dissipation mechanism. The conventional
45
+ approach is to examine the spectral properties of prompt emission.
46
+ ⋆ E-mail: liang.li@icranet.org (LL)
47
+ † E-mail:s.shakeri@iut.ac.ir (SS)
48
+ Theoretically, a thermal component originating from photosphere
49
+ emission, or a non-thermal component originating from synchrotron
50
+ radiation, possibly also from inverse Compton scattering, is often
51
+ expected to be present in GRB spectral analysis. Phenomenologi-
52
+ cally, GRB spectra in the keV-MeV energy range can be typically
53
+ well-delineated by an empirical function, known as the Band func-
54
+ tion (Band et al. 1993), which is generally considered to be a non-
55
+ thermal spectrum. The Band spectrum features a smoothly broken
56
+ power law, with the peak energy Ep ≃ 210 keV (the energy at which
57
+ most of the energy is released) in νFν space and the asymptotic
58
+ power-law photon indices below (α ≃ −0.8) and above (β ≃ −2.5)
59
+ the break energy (e.g., Li et al. 2021). The low-energy spectra dur-
60
+ ing GRB prompt emission phase are closely related to the energy
61
+ distribution of electrons (e.g., Preece et al. 1998; Lloyd & Petrosian
62
+ 2000; Geng et al. 2018). This fact can be utilized in order to diag-
63
+ nose GRBs radiation mechanism as well as their jet properties. For
64
+ instance, synchrotron emission predicts two different α values: α=-
65
+ 3/2 and α=-2/3 (so-called the line-of-death (LOD) of synchrotron
66
+ emission, Preece et al. 1998) correspond to the fast-cooling and
67
+ slow-cooling synchrotron emission, respectively. It has been shown
68
+ © 2023 The Authors
69
+ arXiv:2301.00576v1 [astro-ph.HE] 2 Jan 2023
70
+
71
+ 2
72
+ Li & Shakeri
73
+ that the synchrotron emission in the presence of a decaying mag-
74
+ netic field can reproduce the Band-like spectrum of the GRB prompt
75
+ phase (Lan et al. 2021). While photosphere models, on the other
76
+ hand, predict much harder values of α; e.g., above α=-2/3. For ex-
77
+ ample, a recent study (Acuner et al. 2020) suggests that the spec-
78
+ tra that prefer the photospheric model all have low-energy power-
79
+ law indices α ∼>-0.5, as long as the data has a high significance.
80
+ Years of observations have revealed, however, that GRBs have di-
81
+ verse spectral properties, making it difficult for a single spectral
82
+ model (such as the Band-alone model) to accurately characterize all
83
+ the spectral shapes. For instance, time-resolved and time-integrated
84
+ spectral analysis inferred from the broadband Fermi observations
85
+ have revealed that GRB prompt emission exhibits remarkably di-
86
+ verse spectral properties (e.g., Abdo et al. 2009; Ryde et al. 2010;
87
+ Axelsson et al. 2012; Acuner et al. 2019; Li 2019a; Li et al. 2019,
88
+ 2021, 2022b; Deng et al. 2022). A kinetic-energy-dominated (KED)
89
+ jet characterised by a quasi-thermal Planck-like spectrum has been
90
+ detected in some bursts (e.g. GRBs 090902B, 220426A, Ryde et al.
91
+ 2010; Deng et al. 2022; Wang et al. 2022; Song et al. 2022), while
92
+ a cold Poynting-flux-dominated (PFD) outflow characterised by a
93
+ Band (or cutoff power-law1)-only function (Band et al. 1993) has
94
+ been also observed in some other bursts (e.g. GRB 080916C2, GRB
95
+ 130606B, and many others, Abdo et al. 2009; Li 2022a), even a
96
+ hybrid-dominated (HD) relativistic outflow with a hot fireball com-
97
+ ponent and a cold Poynting-flux component, characterized by either
98
+ a composited spectral scenario, with a non-thermal component and
99
+ a thermal component, e.g., GRBs 100724B, 110721A, 150314A,
100
+ 190114C, and several others, Axelsson et al. 2012; Guiriec et al.
101
+ 2011; Wang et al. 2019; Li 2022a; Li et al. 2022b), or a transition
102
+ from a fireball to a Poynting-flux-dominated outflow within a single
103
+ burst (e.g. GRBs 140206B, 160625B, and several others, Li 2019a),
104
+ have also been observed.
105
+ An alternative approach is to investigate their polarization prop-
106
+ erties. Theoretically, photon polarizations play a key role to un-
107
+ derstand the jet composition, angular structure, geometric config-
108
+ uration, magnetic composition and magnetic field configuration of
109
+ GRB jets, and radiation mechanism of GRB jets (Toma et al. 2009a;
110
+ Lundman et al. 2013; Zhang 2014; Zhang et al. 2019). Although
111
+ magnetic field configurations with relatively large coherence lengths
112
+ more than gyroradius of charged particles can generate the same
113
+ energy spectrum via synchrotron mechanism, the level of polariza-
114
+ tion may significantly different for various magnetic field structures.
115
+ Therefore joint spectral and polarization analysis is essential to de-
116
+ termine the magnetic field structure in outflow materials of GRBs
117
+ (Granot 2003; Lyutikov et al. 2003; Granot & Königl 2003a; Kole
118
+ et al. 2020). For instance, the center engine is anticipated to gen-
119
+ erate strong magnetic fields (a highly magnetized jet) and launch
120
+ them concurrently with the relativistic jets. It is unclear, neverthe-
121
+ less, whether the GRB emission is caused by shock dissipation or
122
+ magnetic reconnection, and whether the outflow is dominated by the
123
+ photosphere or synchrotron emission (Toma et al. 2009a).
124
+ In fact, the generation of the polarization signal can be intrinsic
125
+ to the emission process or due to the propagation effects Shakeri
126
+ 1 Recent studies (Li 2022b,a) supported by several pieces of additional ev-
127
+ idence (e.g., inconsistent spectral parameter distributions and distinct Amati
128
+ and Yonetoku correlations) have shown that Band-like spectra and CPL-like
129
+ spectra may originate from distinct radiation processes.
130
+ 2 It has been demonstrated in recent studies (Guiriec et al. 2015; Vereshcha-
131
+ gin et al. 2022) that a thermal component needs to be added during the initial
132
+ prompt emission of GRB 080916C to obtain an acceptable fit to the spectral
133
+ data.
134
+ & Allahyari (2018). Several emission models (induced synchrotron
135
+ emission, Rybicki & Lightman 1979; photosphere emission, Lund-
136
+ man et al. 2014a; and Compton drag model, Lazzati et al. 2004)
137
+ have been proposed to explain the intrinsic polarization properties
138
+ of relativistic jets during prompt emissions. (i) Synchrotron emis-
139
+ sion model. There are some studies (e.g., Rybicki & Lightman 1979;
140
+ Toma et al. 2009b; Lan & Dai 2020) showing that higher values
141
+ of linear polarized signal (polarization degree π ranging from 20%
142
+ to 70%) is expected to be measured with an ordered magnetic field
143
+ from the synchrotron emission from a relativistic jet. While jets with
144
+ random magnetic fields produce lower levels of polarization, this is
145
+ due to the polarization being canceled out so that the net polariza-
146
+ tion degree being close to zero for an on-axis observer. A polariza-
147
+ tion detection which is less than 15% is believed to be originated
148
+ from a random magnetic field configuration within the jet (Mao &
149
+ Wang 2013). For example, if the emission is dominated by the inter-
150
+ nal shock (IS) model, π is expected to range from 10% (the maxed
151
+ magnetic field configuration) to 70% (the large-scale ordered mag-
152
+ netic field configuration). (ii) Dissipative photosphere model. The
153
+ dissipative photosphere model predicts a relatively low degree of po-
154
+ larization in the γ-ray band. However, a structured jet photosphere
155
+ model might also generate polarized photons by Compton scatter-
156
+ ing, but the degree of polarization would be energy-dependent from
157
+ the synchrotron model in ordered magnetic fields. For instance, it
158
+ is demonstrated that if the jet has considerable structure, the model
159
+ may create polarizations of up to 40% within δΘ ∼ Γ−1. However, in
160
+ the absence of dissipation and below the photosphere the polariza-
161
+ tion is rather limited to values below 15%-20% (Gill et al. 2018). To
162
+ restrict these models, a high-sensitivity gamma-ray polarimeter with
163
+ a broad band-pass to detect energy-dependent polarization signals is
164
+ required (Zhang 2014; Ito et al. 2014; Lundman et al. 2014a; Lund-
165
+ man et al. 2018a). (iii) Internal-collision-induced magnetic recon-
166
+ nection and turbulence (ICMART) model. In the ICMART model
167
+ (Zhang & Yan 2011a), π is expected to range from 60 percent at the
168
+ beginning of the pulse and down to about 10 percent at the end of
169
+ the pulse. A decaying polarization degree is predicted.
170
+ It is highly speculated that the prompt emission is likely expected
171
+ to be strongly polarized owing to its non-thermal origin (a non-
172
+ thermal Band-like spectrum). Observationally, higher levels of lin-
173
+ ear polarization measured from prompt γ-ray emission have been
174
+ reported by several authors (e.g., Coburn & Boggs 2003; Willis
175
+ et al. 2005; McGlynn et al. 2007; Yonetoku et al. 2012a). For in-
176
+ stance, a higher polarization degree π = 80%±20% in GRB 021006
177
+ was claimed by Coburn & Boggs (2003) using the RHESSI data.
178
+ Later, several other cases were also reported, e.g., GRB 930131 (π >
179
+ 35%), GRB 960924 (π > 50%), GRB 041219A, GRB 100826A
180
+ (π = 27% ± 11%), GRB 110301A (π = 70% ± 22%), and GRB
181
+ 110721A (π = 84%+16%
182
+ −28%). Subsequent observations were also ob-
183
+ served in the optical band during the afterglow emission and were of
184
+ relatively low polarization. Compared with prompt γ-ray emission,
185
+ the levels of linear polarization measured from afterglow emission
186
+ are relatively lower. e.g., GRB 060418 (π < 8%), GRB 090102 (π =
187
+ 10.1% ± 1.3%), GRB 091208B (π = 10.4% ± 2.5%), and 120328A
188
+ (π = 28% ± 4%). However, higher degrees of polarization observa-
189
+ tions are still expected to be measured from early reverse shocks, up
190
+ to ∼ 60%.
191
+ Generally speaking, we can study GRB polarization and spec-
192
+ tral properties either in a time-integrated (e.g., Li 2022a) or time-
193
+ resolved (e.g., Li et al. 2021) manner. The former represents average
194
+ polarimetric and spectral properties and is treated as a single-time
195
+ event for the entire emission period. The latter treats the entire emis-
196
+ sion period as divided into multiple-time events, and polarimetric
197
+ MNRAS 000, 1–?? (2023)
198
+
199
+ Time-averaging Polarimetric and Spectral Properties of GRBs
200
+ 3
201
+ and spectral analyses are therefore performed on each event individ-
202
+ ually. The time-integrated method depends more heavily on the sta-
203
+ tistical results of a large sample in order to produce a more trustwor-
204
+ thy result because different bursts have distinct observational prop-
205
+ erties (e.g., angular structure). However, this issue does not arise
206
+ when a time-resolved technique is used in the same burst since it
207
+ ensures that other conditions (e.g., magnetic field configuration) are
208
+ essentially the same and, therefore, makes it easier to obtain reliable
209
+ results.
210
+ Following these lines of argument, the emissions dominated by
211
+ different jet properties (KED, PFD, and HD) may have different lev-
212
+ els of prompt-GRB polarization measurements3 (Li 2019a). As a
213
+ result, a different level of polarization degrees (πKED ≲ πHD ≲ πPED)
214
+ is naturally expected due to different jet properties if other condi-
215
+ tions are basically the same, where πKED, πHD, and πPED are the po-
216
+ larization degree in the KED, HD, and PHD jets, respectively. This
217
+ may provide a method to study the correlations between polarization
218
+ properties and their spectral properties, as well as their jet properties.
219
+ A possible connection between the spectral and polarization proper-
220
+ ties has not yet been firmly established, though recent works provide
221
+ some statistical results (Chattopadhyay et al. 2019; Kole et al. 2020).
222
+ Therefore, we dedicate this work to examining whether any possi-
223
+ ble connections exist between polarization and jet properties, and
224
+ aim to confirm the validity of this correlation (πKED ≲ πHD ≲ πPED)
225
+ from observations. Practically, several important factors need to be
226
+ taken into account in our analysis. (i) In order to potentially evaluate
227
+ all of the frequently-used GRB spectral models and thus diagnose
228
+ the jet properties, our analysis focuses on the bursts detected by the
229
+ Gamma-ray Burst Monitor (GBM, 8 KeV-40 MeV, Meegan et al.
230
+ 2009) onboard the NASA Fermi Gamma-ray Space Telescope. (ii)
231
+ To directly compare the spectral and polarization properties and thus
232
+ make our results more trustworthy, we select the bursts during which
233
+ polarization observations and spectral data are available during the
234
+ same epoch. (iii) Realistically, systematic error is frequently at play
235
+ in polarization measurements and different polarization instruments
236
+ have different systematic errors. Therefore, a high-significance sig-
237
+ nal from polarization measurement is required. In this paper, we
238
+ collect a sample of the Fermi-GBM detected bursts along with the
239
+ polarized measurements reported in the literature using the time-
240
+ integrated spectral and polarization analysis approach based on their
241
+ statistical results, aiming to establish a connection between the po-
242
+ larization and jet properties of GRBs.
243
+ The paper is organized as follows. The sample and Methodol-
244
+ ogy are presented in Section 2 and Section 3, respectively. Our re-
245
+ sults and their physical implication are summarized in Section 4 and
246
+ Section 5, respectively. The conclusion is presented in Section 5.
247
+ Throughout the paper, the standard Λ-CDM cosmology with the pa-
248
+ rameters H0 = 67.4 kms−1 Mpc−1, ΩM = 0.315, and ΩΛ = 0.685 are
249
+ adopted (Planck Collaboration et al. 2018).
250
+ 3 Polarization measurement is a measurement where π ranges from 0% to
251
+ 100% (0% ≤ π ≤ 100%) and includes the non-detection (0%), so measur-
252
+ ing something consistent with zero is a measurement. Polarization detection,
253
+ however, indicates a different meaning, where 0% < π ≤ 100% and excludes
254
+ 0%, since we have excluded part of the parameter space equivalent to detec-
255
+ tion measurements due to the fact that a non-detection of flux implies that we
256
+ did not measure something.
257
+ 2 THE SAMPLE
258
+ A comprehensive database of GRB polarimetric observations has
259
+ been created in a recent work (Li et al. 2022a) by extensively search-
260
+ ing for those GRBs in the literature whose polarization measure-
261
+ ments have been reported. A total of 73 bursts with polarization
262
+ detections were included in the database, covering a broad wave-
263
+ length range from radio to optical, X-ray, and γ-ray emission (see
264
+ Table 1 in Li et al. 2022a). The prompt emission data of these bursts
265
+ were observed by different satellites (Fermi, Swift, BeppoSAX, and
266
+ BATSE). On the other hand, the diagnosis of jet composition usually
267
+ requires a refined spectral analysis. Among these satellites, Fermi
268
+ covers the broadest energy range in the observation. Consequently,
269
+ in order to fully evaluate all current spectral models we pay spe-
270
+ cial attention to these Fermi-detected bursts. The Gamma-ray Burst
271
+ Monitor (GBM, 8 KeV-40 MeV, Meegan et al. 2009) and the Large
272
+ Area Telescope (LAT, 20 MeV- 300 GeV, Atwood et al. 2009), on-
273
+ board the NASA Fermi Gamma-ray Space Telescope, together pro-
274
+ vide unprecedented spectral coverage for seven orders of magnitude
275
+ in energy (from ∼8 keV to ∼300 GeV). Our statistical analysis in
276
+ the current work includes the prompt γ-ray emission spectral anal-
277
+ ysis and the connection between the spectrum and polarization are
278
+ thus based on the Fermi-detected bursts. On the other hand, we fo-
279
+ cus on the GRBs whose polarization measurements were recorded
280
+ during the prompt emission in the γ-ray band in order to compare
281
+ the polarization and spectral properties during the same time period.
282
+ Following are the specific observational properties of the five fas-
283
+ cinating bursts (see Table 1) that made up the smaller sample as a
284
+ result of these selection criteria.
285
+ • GRB 100826A. On August 26, 2010 at 22:58:22.898 (T0)
286
+ UT, GRB 100826A, was detected by the Fermi/GBM. A t90 of
287
+ (84.993±0.724) s in the 10-1000 keV was measured using the
288
+ GBM data. The GBM lightcurve exhibits a complicated shape with
289
+ multiple-peak pulses, and the fluence (flux integrated over the burst
290
+ duration) in the energy range of 10-1000 keV during the t90 dura-
291
+ tion reported by the GBM team is (1.6388±0.001)×10−4 erg cm−2
292
+ (Figure 2). This burst has no redshift measurement, a value of 2.3
293
+ is estimated using the Yonetoku correlation (Yonetoku et al. 2004).
294
+ Therefore, the isotropic-equivalent energy released from gamma-
295
+ ray emission in the cosmological frame for this burst can be cal-
296
+ culated as, Eγ,iso=(3.39+0.36
297
+ −0.33)×1054 erg. The KED-to-PFD transition
298
+ pattern belonging to the “HD” jet type is diagnosed for this burst
299
+ by using a low-energy spectrum based on a detailed time-resolved
300
+ spectral analysis during prompt emission (see Section 4). Yonetoku
301
+ et al. (2011a) reported that a relatively higher polarization degree
302
+ (πobs=27±11) with a 2.9σ linear polarization signal significance was
303
+ detected during the prompt emission (0-100 seconds after the trig-
304
+ ger) of GRB 100826A using a GAmma-ray Polarimeter (GAP) on
305
+ board a small Japanese solar-power-sail demonstrator, Interplanetary
306
+ Kite-craft Accelerated by Radiation of the Sun (IKAROS).
307
+ • GRB 110301A. On March 01, 2011 at 05:08:43.070 (T0) UT,
308
+ GRB 110301A, was detected by the Fermi-GBM. A t90 of (5.693±
309
+ 0.362) s in the 10-1000 keV was measured using the GBM data. The
310
+ lightcurve exhibits a complicated shape with multiple-peak pulses,
311
+ and the fluence in the energy range of 10-1000 keV from T0+0 s
312
+ to T0+5.693 s reported by the GBM team is (3.5891±0.003)×10−5
313
+ erg cm−2 (Figure 3). This burst has no redshift measurement, a
314
+ value of 0.36 is estimated by using the Yonetoku relation (Yone-
315
+ toku et al. 2004). With this estimated value of redshift, the isotropic-
316
+ equivalent energy released from gamma-ray emission in the cosmo-
317
+ logical frame for this burst can be calculated as, Eγ,iso=1.4×1052 erg.
318
+ A KED-to-PFD jet is diagnosed for this burst by using a low-energy
319
+ MNRAS 000, 1–?? (2023)
320
+
321
+ 4
322
+ Li & Shakeri
323
+ spectrum based on a detailed time-resolved spectral analysis during
324
+ prompt emission. A linear polarization signal (3.7σ) with a very high
325
+ polarization degree (π=70±22) for this burst was claimed by Yone-
326
+ toku et al. (2012b) using the IKAROS/GAP data 0-7 seconds after
327
+ the trigger (Figure 3).
328
+ • GRB 110721A. On July 21, 2011 at 04:47:43.761 (T0)
329
+ UT, GRB 110721A, was detected by the Fermi-GBM. A t90 of
330
+ (21.822±0.572) s in the 10-1000 keV was measured using the GBM
331
+ data. The lightcurve exhibits a single-peak pulse, and the fluence in
332
+ the energy range of 10-1000 keV from T0+0 s to T0+21.822 s as re-
333
+ ported by the GBM team is (3.5891±0.003)×10−5 erg cm−2 (Figure
334
+ 4). This burst has a value of 0.382 of redshift. With this redshift, we
335
+ calculate the isotropic-equivalent energy released from gamma-ray
336
+ emission in the cosmological frame for this burst, Eγ,iso=3.0×1052
337
+ erg. A peak-KED jet is diagnosed for this burst by using a low-
338
+ energy spectrum based on a detailed time-resolved spectral analysis
339
+ during prompt emission. A linear polarization signal (3.3σ) with a
340
+ very high polarization degree (π=85+16
341
+ −22) for this burst was claimed
342
+ by Yonetoku et al. (2012b) using the IKAROS/GAP data 0-11 sec-
343
+ onds after the trigger (Figure 4).
344
+ • GRB 140206A. On 6 February 2014 at 06:36:12.843 UT (T0),
345
+ a long burst, GRB 140206B, was detected by Fermi-GBM and sev-
346
+ eral other satellites (e.g., INTEGRAL/IBIS). Its GBM lightcurve in
347
+ the 10-900 keV exhibits three clearly separated emission episodes
348
+ (G1, G2, and G3) as shown in the left panel of Figure 5, with T90 of
349
+ 146.690±4.419 s was measured by GBM data. GRB 140206B is a
350
+ very bright burst, and the fluence (flux integrated over the burst dura-
351
+ tion) in the energy range of 10-1000 keV from T0+0 s to T0+146.690
352
+ s reported by the GBM team is (1.23±0.003)×10−4 erg cm−2. This
353
+ burst has a value of 2.73 for redshift. With this redshift, we calculate
354
+ the isotropic-equivalent energy released from gamma-ray emission
355
+ in the cosmological frame for this burst, Eγ,iso=2.3×1054 erg. The
356
+ spectral analysis has been performed in great detail in Li (2019a),
357
+ and three different spectral components (KED-to-PFD) have been
358
+ identified, a short-thermalized precursor early on, followed up with
359
+ the main burst with a non-thermal emission later on, and in the last
360
+ with a fainter burst with still a non-thermal emission. Interestingly,
361
+ immediately following up with the short-thermalized precursor, a
362
+ clear polarization signal with 90% confidence was observed 4-26
363
+ seconds after the trigger as reported in Götz et al. (2014) using the
364
+ INTEGRAL/IBIS data. This signal is a linear polarization with an
365
+ up-limit polarization degree of π > 28 observed in the γ-ray energy
366
+ band (Figure 5).
367
+ • GRB 160802A. GRB 160802A was detected by GBM on Au-
368
+ gust 2, 2016 at UT 06:13:29.63. A T90 of (16.384±0.362) s in the
369
+ 10-1000 keV was measured using the GBM data. The prompt emis-
370
+ sion light curve shows two clearly separated active periods, with a
371
+ quiescent time interval between the two periods of about 10 sec-
372
+ onds. The earlier period consists of overlapping pulses while the lat-
373
+ ter period shows a clear single-peak pulse. The fluence in the energy
374
+ range of 10-1000 keV from T0+0 s to T0+21.822 s as reported by
375
+ the GBM team is (6.8399±0.0057)×10−5 erg cm−2. This burst has
376
+ no redshift measurement, a value of 0.36 is estimated by using the
377
+ Yonetoku relation (Yonetoku et al. 2004). Using this estimated value
378
+ of redshift, we further calculate the isotropic-equivalent energy re-
379
+ leased from gamma-ray emission in the cosmological frame for this
380
+ burst, Eγ,iso=2.2×1053 erg. A peak-KED jet for each period is di-
381
+ agnosed for this burst by using a low-energy spectrum based on a
382
+ detailed time-resolved spectral analysis during prompt emission. A
383
+ linear polarization signal (∼3σ) with a very high polarization degree
384
+ (π=85±29) for this burst was claimed by Yonetoku et al. (2012b) us-
385
+ ing the AstroSat/GZTI data 0-20.34 seconds after the trigger (Figure
386
+ 6).
387
+ 3 METHODOLOGY
388
+ 3.1 Spectral Analysis Techniques
389
+ In order to diagnose the jet properties for a given burst, a de-
390
+ tailed time-integrated or time-resolved spectral analysis is re-
391
+ quired. The spectral analysis is performed by a pure Python pack-
392
+ age, namely, the Multi-Mission Maximum Likelihood
393
+ Framework (3ML,Vianello et al. 2015). Moreover, a Bayesian
394
+ approach and Markov Chain Monte Carlo (MCMC) iterations to
395
+ explore the best parameter space was used. Our spectral analy-
396
+ sis includes the following main steps. (1). First is to select detec-
397
+ tors, sources, and background intervals; (2). Second, we used the
398
+ Bayesian block method (BBlocks, Scargle et al. 2013) to bin the
399
+ Time-Tagged Events (TTE) lightcurve of the brightest detector (with
400
+ the minimum viewing angle), and the significance (S, Vianello 2018)
401
+ for each BBlocks time bin was also calculated. (3). Third, we use a
402
+ typical GRB spectral model (Band function, Band et al. 1993) to fit
403
+ all the spectra selected by the BBlocks method and the best model
404
+ parameters are obtained by adopting a fully Bayesian approach. For
405
+ a detailed Bayesian spectral analysis and the reduction procedure
406
+ applied to a GRB spectrum, we refer to Li (2019a,b, 2020); Li et al.
407
+ (2021); Li & Zhang (2021).
408
+ 3.2 Using the Yonetoku correlation to infer their redshift values
409
+ In order to study the intrinsic properties in the cosmological rest
410
+ frame, a redshift measurement for each burst is needed. Unfortu-
411
+ nately, we currently have 3 bursts (GRB 100826A, GRB 110301A,
412
+ and GRB 160802A) without known redshift. Several works to in-
413
+ fer redshifts using empirical relations of GRB have been reported in
414
+ the literature(Amati et al. 2002; Yonetoku et al. 2004). For example,
415
+ (Yonetoku et al. 2004) discovered a new and much tighter relation-
416
+ ship between the spectral peak energy (Ep) and the peak luminos-
417
+ ity (Lp) using the combined data detected by the BeppoSAX and
418
+ BATSE satellites, and claimed that one can use the Ep-Lp relation to
419
+ estimating redshift without knowing distances in the BSTASE cata-
420
+ log. We, therefore, attempt applying the Yonetoku relation(Yonetoku
421
+ et al. 2004) to estimate redshift values for these bursts.
422
+ Our procedure to estimate the pseudo-redshift using the Yonetoku
423
+ relation includes the following steps.
424
+ First, we perform a spectral fit to the peak spectrum (the brightest
425
+ time bin was selected by using the Bayesian blocks method(Scargle
426
+ et al. 2013) at the highest statistical significance S) of each burst.
427
+ The peak flux Fγ and peak energy Ep on the observer’s frame from
428
+ the spectral fits are thus obtained, where Fγ is the observed peak flux
429
+ integrated between (1-104) keV in units or erg cm−2 s−1.
430
+ Second, in order to use the Ep,z-Lp,iso relation, a bolometric lu-
431
+ minosity in a common cosmological rest-frame energy band (1-104
432
+ keV) is needed. It can be obtained by using the spectral parameters to
433
+ conduct a k-correction extrapolating the observed energy band to 1-
434
+ 104 keV. For a given burst, the k-correction factor (kc) can be derived
435
+ using the following procedure. The observed flux Fobs (erg cm−2 s−1),
436
+ in a fixed detector energy bandwidth [e1, e2] (for instance, for the
437
+ Fermi-GBM observation, e1=8 keV, e2=40 MeV), can be written as:
438
+ Fobs
439
+ [e1,e2] =
440
+ � e2
441
+ e1
442
+ EN(E)dE,
443
+ (1)
444
+ MNRAS 000, 1–?? (2023)
445
+
446
+ Time-averaging Polarimetric and Spectral Properties of GRBs
447
+ 5
448
+ where E is in units of keV, and N(E) is a GRB photon number spec-
449
+ trum. The total luminosity emitted in the bandwidth [e1,e2], defined
450
+ in the cosmological rest-frame, is given by:
451
+ L[e1(1+z),e2(1+z)] = 4ˆπD2
452
+ L(z)Fobs
453
+ [e1,e2],
454
+ (2)
455
+ which DL(z) is the luminosity distance. To express the luminosity
456
+ L in the cosmological rest-frame energy band, [E1=1 keV, E2 =104
457
+ keV], common to all sources, the Eq.(2) can be rewritten as:
458
+ L[E1,E2] = 4ˆπD2
459
+ LFobs
460
+ � E1
461
+ 1+z , E2
462
+ 1+z
463
+ � = 4πD2
464
+ Lk[e1,e2,E1,E2,z]Fobs
465
+ [e1,e2],
466
+ (3)
467
+ where the k-correction factor, kc, is therefore defined as:
468
+ kc = k[e1,e2,E1,E2,z] =
469
+ Fobs
470
+ � E1
471
+ 1+z ; E2
472
+ 1+z
473
+
474
+ Fobs
475
+ [e1,e2]
476
+ =
477
+ � E2/(1+z)
478
+ E1/(1+z) EN(E)dE
479
+ � e2
480
+ e1 EN(E)dE
481
+ ,
482
+ (4)
483
+ Last, with the k-correction factors known, the peak luminosity can be
484
+ derived from the observed γ-ray flux Fγ according to L = 4ˆπd2
485
+ LFγkc,
486
+ where dL is the luminosity distance.
487
+ Finally, as long as the prompt emission spectral properties can be
488
+ obtained, the Yonetoku relation can be used to infer redshift. With
489
+ the above Steps, one can use Equation (2) in Yonetoku et al. (2004)
490
+ to estimate their redshift values,
491
+ Lp
492
+ 1052ergs−1 = (2.34+2.29
493
+ −1.76)×105
494
+ �Ep(1+z)
495
+ 1keV
496
+ �2.0±0.2
497
+ .
498
+ (5)
499
+ Table 2 lists the spectral properties obtained from the peak spec-
500
+ tral analysis and the estimated redshift values inferred from the Yo-
501
+ netoku relation.
502
+ 4 RESULTS
503
+ 4.1 Spectral Properties and their inferred jet properties
504
+ Five bursts were claimed to have a high-significance polarization
505
+ detection (Table 1) and GBM data (Table 4) taken at their prompt
506
+ emission, thereby providing an “ideal” sample to study the possi-
507
+ ble connection between jet properties and polarization straightfor-
508
+ wardly.
509
+ In practice, either time-integrated or time-resolved spectral analy-
510
+ sis is frequently used to diagnose their jet properties. Several meth-
511
+ ods have been widely used to diagnose the jet properties based on
512
+ their spectral analysis. The simplest method is to use the low-energy
513
+ spectrum (e.g., Preece et al. 1998) to resolve the jet properties for
514
+ a given pulse/burst (Method-I). In this method, a single empirical
515
+ model (such as the Band model) based on a time-resolved tech-
516
+ nique is typically used. The KED jets, therefore, can be defined
517
+ as all α indices, within uncertainties, in a given burst, obtained
518
+ from time-resolved spectral analysis, are systematically above the
519
+ synchrotron limit throughout the entire burst/pulse duration, being
520
+ consistent with a matter-dominated fireball jet. The PFD jets, on
521
+ the other hand, are consistent with the scenario that all α indices,
522
+ within uncertainties, in a given burst are below the synchrotron limit
523
+ throughout the burst/pulse duration, this suggests a Poynting-flux-
524
+ dominated jet. The HD jets represent the moderate scenario, and
525
+ can be presented that some α indices, obtained from time-resolved
526
+ spectral analysis, are above the synchrotron limit (α >2/3) while
527
+ some others are below the synchrotron limit (α <2/3) throughout
528
+ the burst/pulse duration. The HD jets can be further divided into two
529
+ subcategories. (1) the peak-KED pattern since the thermal emission
530
+ component (the spectra that violate the LOD line) is only detected
531
+ around the peak of the pulse (thermal component dominates the peak
532
+ of a pulse/burst); and (2) the KED-to-PFD (thermal to non-thermal
533
+ component) transition pattern (Li 2019a), since the thermal emission
534
+ component is detected at the beginning of the burst, and followed by
535
+ non-thermal emission component. However, it may be difficult to
536
+ classify jets as either KED or PFD jets based on the spectral index
537
+ alone. In contrast to an optically-thin synchrotron emission, a photo-
538
+ spheric quasi-thermal component would, in fact, have a harder low-
539
+ energy spectral index, but this does not guarantee that the jet is KED
540
+ (Gill et al. 2020). Therefore, a more reliable approach is to find the
541
+ best model (Method-II) by comparing various frequently-used spec-
542
+ tral models using certain statistical information criteria, such as the
543
+ Akaike Information Criteria (AIC; Akaike 1974), Bayesian Infor-
544
+ mation Criteria (BIC; Schwarz 1978), and the Deviance Information
545
+ Criterion (DIC; Spiegelhalter et al. 2002; Moreno et al. 2013). Af-
546
+ ter the identification of the best spectral model, one can assess the jet
547
+ properties using the spectral properties inferred from the best model.
548
+ Moreover, we may also directly fit the spectral data with a physical
549
+ model (such as the synchrotron emission model, Burgess et al. 2020;
550
+ Method-III), so as to diagnose the jet properties and any potential
551
+ connection with their polarization properties. Our analysis in this
552
+ task incorporates both Method-I and Method-II (primary method).
553
+ Method III will be used elsewhere.
554
+ We first perform time-integrated spectral analysis (treating the
555
+ entire epoch of polarization observation as one time bin) by using
556
+ various GRB spectral models, including power-law (PL), blackbody
557
+ (BB), cutoff power law (CPL), Band function, PL+BB, CPL+BB,
558
+ and Band+BB, respectively. We adopted both AIC and BIC to eval-
559
+ uate different spectral models and select the preferred one, and the
560
+ preferred model is the one that provides the lowest AIC and BIC
561
+ scores. As such, we define
562
+ • PFD jets: a single non-thermal (Band-like) spectral compo-
563
+ nent was found in the time-integrated spectral analysis, like GRB
564
+ 080916C (Abdo et al. 2009).
565
+ • KED jets: a dominate thermal (BB-like) spectral compo-
566
+ nent was found in the time-integrated spectral analysis, like GRB
567
+ 090902B (Ryde et al. 2010) and GRB 220426A (Deng et al. 2022).
568
+ • HD jets: a hybrid spectrum of thermal (BB-like) and non-
569
+ thermal (Band-like) components was observed in the time-integrated
570
+ spectral analysis in a single burst, like GRB 110721A (Axelsson
571
+ et al. 2012), and GRB 140206A (e.g., Li 2019a).
572
+ Our refined time-integrated spectral analysis suggests that the
573
+ Band+BB model can best characterize the spectral shape of all the
574
+ five bursts (see Table 3). The global properties of our sample used in
575
+ the spectral analysis are reported in Table 4. These include the GRB
576
+ name (column 1), observed duration T90 of burst4 (column 2), 10-
577
+ 1000 KeV fluence (column 3), together with the used detectors (col-
578
+ umn 4), the selected source (column 5) and background (column 6)
579
+ intervals, and the best model (column 7). The best-fit spectral param-
580
+ eters of the sample with the Band+BB model are reported in Table 5,
581
+ including GRB name (column 1), source duration (column 2), and
582
+ corresponding significance (column 3), and Band component nor-
583
+ malization K (column 4), low-energy power-law index α (column
584
+ 5), peak energy Ep (column 6) of the νFν spectrum, and high-energy
585
+ power-law index β (column 7); and BB component normalization K
586
+ (column 8), and temperature kT (column 9).
587
+ We next perform time-resolved spectral analysis (treating the
588
+ entire epoch of polarization observation as divided into multiple-
589
+ 4 The time interval during which 90% of the total observed counts have been
590
+ detected.
591
+ MNRAS 000, 1–?? (2023)
592
+
593
+ 6
594
+ Li & Shakeri
595
+ time events) for each individual BBlocks time bin using the Band
596
+ model. Temporal evolution of α is presented in Figures 2-6 for GRB
597
+ 110826A, GRB 110301A, GRB110721A, GRB 140206A, and GRB
598
+ 160802A, respectively. With the BBlock time bins selected and the
599
+ corresponding significance (S) values calculated, the data points are
600
+ shown in different S ranges5: S < 10, 10 ≤ S ≤ 20, and S > 20.
601
+ For a subset of GRBs, a mixture of thermal (blackbody contribution
602
+ from the photosphere emission) and non-thermal (synchrotron emis-
603
+ sion from relativistic electrons) components was observed in a sin-
604
+ gle burst (e.g., Li 2019a). Previous studies (e.g., Burgess et al. 2014)
605
+ showed that the characteristic energy (Ep) of non-thermal emission is
606
+ correlated to the characteristic energy (kT) of thermal emission with
607
+ a power-law relation in form of Ep ∝ T q, where q ranges from ∼1-2.
608
+ Burgess et al. (2014) studied a set of bright Fermi single-pulse GRBs
609
+ and claimed that one can use this correlation to identify whether the
610
+ jet is dominated by kinetic (q ∼ 1) or magnetic energy (q ∼ 2) de-
611
+ pending on the value of the exponent. GRB 110721A was identified
612
+ as the baryonic jet type in Burgess et al. (2014) with q = 1.24±0.11,
613
+ which is also consistent with our finding in the current analysis.
614
+ Our time-integrated spectral analysis indicates that all five bursts
615
+ belong to the HD jet type. This finding is quite interesting since only
616
+ a subset of GRBs (a fairly low percentage) have an observed ther-
617
+ mal component in their spectral analysis, as suggested by several
618
+ statistical studies (e.g., Li 2022a). Recently, (Li 2022a) has made a
619
+ great effort to collect a complete GRB sample in which all bursts
620
+ were detected by Fermi/GBM with known redshift, and created a
621
+ spectral parameter catalog based on their model-wise properties. He
622
+ discovered that ∼ 5% (7/153) of the analyzed bursts were found to
623
+ require a subdominant thermal component in their time-integrated
624
+ spectral analysis, including GRB 110721A. Our results imply that
625
+ high-degree polarization measurements may also be associated with
626
+ a thermal component originating from photosphere emission. Our
627
+ time-resolved spectral analysis, on the other hand, further suggests
628
+ that two bursts exhibit the peak-KED pattern (GRB 110721A and
629
+ GRB 160802A) while the other three bursts (GRB 110301A, GRB
630
+ 140206A, and GRB 160625B) display the KED-to-PFD transition
631
+ pattern across the entire burst durations since all α indices are
632
+ above the synchrotron limit early on (α >2/3), and then drop be-
633
+ low the synchrotron limit later on (α <2/3), indicating a thermal-
634
+ to-nonthermal transition signature. Interestingly, after carrying out
635
+ a detailed time-resolved spectral analysis for a sample of the multi-
636
+ pulsed bursts, Li (2019a) reported that the jet properties for a good
637
+ fraction of the multi-pulsed bursts exhibit a transition from thermal
638
+ to non-thermal component among pulses within a single burst, and
639
+ claimed that such “transition" jet properties are clearly observed in
640
+ four bursts (GRB 140206B, GRB 140329B, GRB 150330A, and
641
+ GRB 160625B), and the polarization properties in those transition
642
+ bursts would also differ.
643
+ 4.2 The Observed Parameter Correlations: Polarization
644
+ Degrees versus Other Relevant Quantities
645
+ The most interesting result that draws our attention is that all five
646
+ bursts in our target sample have a relatively high-degree polarization
647
+ measurement and are associated with the “HD” jet properties. In
648
+ the following discussion, we, therefore, pay special attention to this
649
+ interesting observation and its theoretical interpretation.
650
+ 5 Note that the results obtained for those lower-S spectra may not be robust,
651
+ since the spectral fits would not be well determined due to lack of enough
652
+ photons.
653
+ Much evidence points towards the fact that correlation analysis
654
+ plays a crucial role in the understanding of GRB physics as it pro-
655
+ vides a crucial clue to revealing its nature (e.g., Amati et al. 2002;
656
+ Yonetoku et al. 2004; Liang & Zhang 2005; Dainotti et al. 2008;
657
+ Xu & Huang 2012; Zhang et al. 2012; Liang et al. 2015; Dain-
658
+ otti & Amati 2018; Li 2022a,
659
+ and references therein). Here, an
660
+ attempt has been made to explore the correlations between the po-
661
+ larization properties and several typical GRB observed quantities.
662
+ For instance, the polarization degrees π correlated with (i) the cos-
663
+ mological rest-frame peak energy (Ep,z) of the νFν prompt emission
664
+ spectrum, (ii) the isotropic-bolometric-equivalent emission energy
665
+ Eγ,iso, (iii) the magnetization parameter σ0, (iv) the blackbody tem-
666
+ perature kT, (v) the redshift z, and (vi) the corresponding energy
667
+ fluence Sγ. Using the same observed epoch during the prompt emis-
668
+ sion phase, our target sample allows for a reasonable comparison.
669
+ Our analysis includes the following steps. (1) For a given burst in our
670
+ target sample, we first select the same time interval for the prompt
671
+ emission data as for the polarization measurement. (2) We then at-
672
+ tempt to perform a spectral fit to the selected prompt emission data
673
+ using PL, BB, CPL, Band, PL+BB, CPL+BB, and Band+BB func-
674
+ tions, respectively. The Band+BB model has an AIC/BIC-statistic
675
+ improvement of at least 10 with respect to the Band-alone and other
676
+ models for these bursts, which suggests Band+BB as the preferred
677
+ model that would fit the data and a thermal component existing in
678
+ the spectrum. Since the thermal flux ratio (FBB/Ftot) for these bursts
679
+ is less than 50% (see Table 5), the thermal components thus are sub-
680
+ dominant. Interestingly, Chattopadhyay et al. (2019) analyzed the
681
+ prompt emission and polarization data of 11 bright bursts detected
682
+ during the first year of operation of CZTI, and reported that of these
683
+ bursts, four bursts (GRB 160106A, GRB 160509A, GRB 160802A,
684
+ and GRB 160910A) in their spectral analysis showed a deviation
685
+ from the Band model and an additional thermal blackbody is needed
686
+ in order to model their spectrum more precisely. (3) With the spec-
687
+ tral analysis done in Step (2), we are able to obtain the spectral peak
688
+ energy (Ep,z) and the blackbody temperature (kT). Eγ,iso can also be
689
+ calculated in the cosmological frame with a redshift known (GRB
690
+ 110721A and GRB 140206B), and with a k-correction applied by
691
+ integrating the observed energy spectrum over 1 KeV/(1+z) to 10
692
+ MeV/(1+z). We note here that for the remaining three bursts (GRB
693
+ 100826A, GRB 110301A, and GRB 160802A) with an unknown
694
+ redshift, we use the Yonetoku relation (Yonetoku et al. 2004) to es-
695
+ timate their redshift values (see Section 3.2). Using these hybrid-
696
+ spectrum observed properties and following the method described
697
+ in Gao & Zhang (2015) and Li (2020), we also calculate the mag-
698
+ netization parameter σ0 for these bursts. Finally, with these Steps
699
+ completed, we therefore present π-Ep,z (Fig.7a), π-Eγ,iso (Fig.7b),
700
+ π-kTz (Fig.7c), π-σ0 (Fig.7d), π-z (Fig.7e), and π-Sγ (Fig.7f) plots
701
+ in Figure 7. Interestingly, these scatter plots all seem to exhibit a
702
+ monotonic power-law decay in their log-log space (except for the
703
+ π-σ0 correlation), with a similar decay slope ranging from -0.40 to
704
+ -0.20. Our results indicate that a higher Ep,z, Eγ,iso, and kTz tend to
705
+ have a lower-degree polarization π. However, we should note that
706
+ the sample size is too small to be reliable enough to support the de-
707
+ rived conclusion, so the results may not be statistically significant.
708
+ 5 PHYSICAL IMPLICATION
709
+ There are several parameters to impact on the degree of polariza-
710
+ tion in GRBs including the geometry of the jet, its angular struc-
711
+ ture, the bulk Lorentz factor of outflow material, the magnetic field
712
+ configuration and observer’s point of view. Here, we consider an
713
+ MNRAS 000, 1–?? (2023)
714
+
715
+ Time-averaging Polarimetric and Spectral Properties of GRBs
716
+ 7
717
+ ultra-relativistic axi-symmetric jet which lunched by a central en-
718
+ gine weather a black hole or an rapidly rotating magnetar (e.g., Usov
719
+ 1992; Thompson 1994; Dai & Lu 1998; Wheeler et al. 2000; Zhang
720
+ & Mészáros 2001; Liu et al. 2007; Metzger et al. 2008; Lei et al.
721
+ 2009; Metzger et al. 2011; Bucciantini et al. 2012; Lü & Zhang
722
+ 2014; Li et al. 2018). During the prompt emission, we have ultra-
723
+ relativistic jet with bulk lorentz factor Γ ≫ 1 leading to strong beam-
724
+ ing effect of GRB outflow materials where the Doppler factor can be
725
+ approximated as
726
+ δD ≈
727
+
728
+ 1+(Γ ˜θ)2 ,
729
+ (6)
730
+ Due to the relativistic beaming effect of GRB jets, the measured ra-
731
+ diation energy of the bursts is smaller than its isotropic energy as
732
+ Eγ = fbEγ,iso by a factor fb = ∆Ω/4π = (1 − cosθ j) ≈ θ2
733
+ j/2 where
734
+ θ j is the half opening angle of the ejecta. In principle, different
735
+ GRBs can be viewed from different observing angles θobs with re-
736
+ spect to the jet’s central axis. Only those observers whose line-of-
737
+ sight (LOS) intersects the surface of the jet can detect the GRBs. In
738
+ the ultra-relativistic regime, the observed emission mainly receives
739
+ from a region that is limited to a cone with angular size ˜θ ≲ 1/Γ
740
+ around LOS. At the early time prompt emission when the LOS in-
741
+ tersects the jet surface, if θobs/θ j ≲ 1−(Γθ j)−1 and Γθ j ≳ O(10), the
742
+ jet’s edge remains invisible to the observer Gill et al. (2018).
743
+ In this case, the emission region can be approximated as an ex-
744
+ panding thin spherical shell of width ∆ ≪ R/Γ2 (in the lab frame)
745
+ in which particles cool relatively fast compared to the dynamical
746
+ time scale of the system. As the GRB jet has slowed down signifi-
747
+ cantly when the opening angle θ j ≃ Γ−1 then the jet break happens
748
+ and the edge effects become important. The flux density measured
749
+ by a distant observer from each fluid element in an infinite thin-shell
750
+ approximation for the prompt emission is given by (Granot 2005)
751
+ Fν(t) =
752
+ (1+z)
753
+ 16π2d2
754
+ L(z)
755
+
756
+ δ3
757
+ DL′
758
+ ν��(r)d ˜Ω,
759
+ (7)
760
+ where dL(z) is the luminosity distance of the source, and d ˜Ω =
761
+ d ˜φd(cos ˜θ) is the solid angle with ˜θ and ˜φ as the polar angle and
762
+ the azimuthal angle measured from the LOS, respectively. The co-
763
+ moving spectral luminosity L′
764
+ ν′(r) for the synchrotron emission is
765
+ L′
766
+ ν′(r) = L′
767
+ ν′(R)
768
+
769
+ 1−(ˆn′ · ˆB′)2� 1+α
770
+ 2 ,
771
+ (8)
772
+ where α = −dlog(Fν)/dlog(ν) is the spectral index, ˆn is the ob-
773
+ server’s LOS in the comoving frame of the GRB jet and ˆB is the
774
+ local direction of the magnetic field. The spectral luminosity L′
775
+ ν′(R)
776
+ in the comoving frame of the fluid in terms of frequency ν′ and the
777
+ peak frequency ν′
778
+ p at which the most of the power is emitted is given
779
+ by
780
+ L′
781
+ ν′(R) = L′
782
+ ν′p
783
+ � ν′
784
+ ν′p
785
+ �−α
786
+ ,
787
+ (9)
788
+ here we consider a constant luminosity with a radius which the peak
789
+ value L′
790
+ ν′p. We assume to have synchrotron emission from accelerat-
791
+ ing electrons in the magnetig field with isotropic velocity distribu-
792
+ tion and the energy distribution as a power law ne ∝ γ−p.
793
+ In our scenario, we assume that each pulse originates from a sin-
794
+ gle thin shell and Γ can in principle change for different pulses. The
795
+ state of polarization of a radiation field can be expressed in terms of
796
+ the Stokes parameters I (intensity), Q and U (linear polarizations), V
797
+ (circular polarization). In spite of linear polization, only a few mech-
798
+ anisms can generate the high value of circular polarization in the
799
+ usual scattering processes in GRBs, and the measured circular polar-
800
+ ization has only been reported once in a GRB afterglow Wiersema
801
+ et al. (2014). Therefore we will not consider circular polarization
802
+ in this paper. Stokes parameters Q and U are differences in flux for
803
+ two orthogonal directions on the sky which are coordinate dependent
804
+ quantities (Rybicki & Lightman 2008; Westfold 1959), we define the
805
+ local degree of linear polarization Π =
806
+
807
+ Q2 +U2/I where
808
+ U
809
+ I = Πsin2θp ,
810
+ Q
811
+ I = Πcos2θp ,
812
+ θp = 1
813
+ 2 arctan
814
+ �U
815
+ Q
816
+
817
+ , (10)
818
+ and θp is the polarization position angle (PA). The direction of the
819
+ polarization vector in the synchrotron emission is orthogonal to the
820
+ LOS of the observer ˆn and the local direction of the magnetic field
821
+ ˆB in the jet,
822
+ ˆΠ = (ˆn× ˆB)
823
+ |ˆn× ˆB)|
824
+ ,
825
+ (11)
826
+ The polarization measurements can help in order to probe the
827
+ magnetic field structure inside the shock wave. Moreover, the de-
828
+ gree of the polarization depends on the GRB jet’s angular structure
829
+ and the observer’s viewing angle from jet symmetry axis (Lazzati
830
+ et al. 2004). The magnetic field structure in KED and PFD flows
831
+ has a different origin and can be classified into three categories (Gill
832
+ et al. 2018; Gill et al. 2021): (i) a locally ordered magnetic field
833
+ (Bord) with angular coherent length θ j > θB ≳ 1/Γ, (ii) a toroidal
834
+ magnetic field (Btrod) which has an ordered axisymmetric configura-
835
+ tion in the transverse direction with respect to the jet (iii) a tangent
836
+ magnetic field which could be in principle parallel (B∥) or perpen-
837
+ dicular (B⊥) to the local fluid velocity. In the PFD the magnetic field
838
+ is dynamically dominated and usually has a large coherence length
839
+ such as Btrod which can be produced by a rotating central engine or
840
+ in a high magnetized flow, other locally and globally ordered field
841
+ configuration are also possible in this case. On the other hand in
842
+ KED we may have a tangled magnetic field structure with B⊥ or/and
843
+ B∥ components, however generating such an anisotropic field con-
844
+ figurations in shock waves seems to be challenging (Gill & Granot
845
+ 2020). A globally ordered magnetic field may naturally be advected
846
+ from near the central source, while the random magnetic fields gen-
847
+ erated in the shock dissipation region (Kumar & Zhang 2015; Geng
848
+ et al. 2018; Gill et al. 2018; Fan et al. 2008). The magnetic field
849
+ structures that are generated at relativistic collision-less shocks, due
850
+ to the two-stream instabilities, are expected to be tangled within the
851
+ shock plane (Medvedev & Loeb 1999).
852
+ The degree of linear polarization generated in the synchrotron
853
+ emission from an isotropic electron distribution with power-law en-
854
+ ergy spectrum, and for a given direction of magnetic field is given
855
+ by (Rybicki & Lightman 2008; Westfold 1959)
856
+ Πlin
857
+ max =
858
+ α+1
859
+ α+5/3 =
860
+ peff +1
861
+ peff +7/3,
862
+ (12)
863
+ where peff = 2α + 1 is the effective power-law index of the electron
864
+ distribution.
865
+ peff =
866
+
867
+
868
+
869
+ 2,
870
+ νc < ν < νm,
871
+ slow cooling
872
+ p,
873
+ νm < ν < νc,
874
+ fast cooling
875
+ p+1,
876
+ ν > max(νc,νm),
877
+ either fast or slow cooling
878
+ (13)
879
+ and, therefore
880
+ Πlin
881
+ max =
882
+
883
+
884
+
885
+
886
+
887
+ 9/13,
888
+ νc < ν < νm,
889
+ fast cooling
890
+ (p+1)
891
+ (p+7/3),
892
+ νm < ν < νc,
893
+ slow cooling
894
+ (p+2)
895
+ (p+10/3),
896
+ ν > max(νc,νm),either fast or slow cooling
897
+ (14)
898
+ MNRAS 000, 1–?? (2023)
899
+
900
+ 8
901
+ Li & Shakeri
902
+ This polarization may originate from a very small region (point-
903
+ like emitter) in which the magnetic field has a specific orientation.
904
+ Only in the case of ordered magnetic field with the coherence length
905
+ comparable or larger than the visible surface of the emitting region,
906
+ the highest value of the polarization Πlin
907
+ max in Eq. (19) can be gen-
908
+ erated. The photon index in the Synchrotron radiation is limited to
909
+ −1/3 ⩽ α ≲ 3/2 which regarding Eq. (19) leads to the maximum
910
+ degree of polarization 50% ≲ Π ≲ 75%. In the left panel of Fig-
911
+ ure (8), we see predicted polarization values using this theoretical
912
+ model with observed data using our target sample. Here α indices
913
+ are obtained using the spectral analysis defined in §4. We find that
914
+ the observed data are well distributed along the line predicted by this
915
+ model.
916
+ In general, the measured polarization is obtained by integrating
917
+ the local stokes parameters over the flux of the GRB jet as
918
+ Π(tf ) =
919
+ ¯
920
+ Q(tf )
921
+ I(t f ) =
922
+
923
+ dFν cos2θp
924
+
925
+ dFν
926
+ ,
927
+ (15)
928
+ assuming to have an axisymmetric flow and taking into account sym-
929
+ metry consideration, we see that ¯U = 0 and consequently the instan-
930
+ taneous total degree of the linear polarization is ¯Π = | ¯Q|/I. We per-
931
+ form an integration over the equal time surface (EATS) for a single
932
+ pulse
933
+
934
+ ¯
935
+ Q(t)dt/
936
+
937
+ I(t)dt in order to obtain pulse integrated polariza-
938
+ tion of the prompt emission which leads to
939
+ Πord
940
+ Πmax =
941
+ � ymax
942
+ 0
943
+ dy(1+y)−2−α �
944
+ dφΛ(y,φ)cos2θp
945
+ � ymax
946
+ 0
947
+ dy(1+y)−2−α �
948
+ dφΛ(y,φ)
949
+ ,
950
+ (16)
951
+ The above formula is valid for the prompt emission from an ultra-
952
+ relativistic thin-shell for an on-axis observer (θobs = 0) where ymax =
953
+ (Γθmax)2 and θmax defined as the maximum angle from LOS Granot
954
+ (2003a). The factor Λ(y,φ) is an average over the magnetic field
955
+ orientations in the plane of the ejecta as
956
+ Λ(y,φ) ≡ ⟨(1−(ˆn′ · ˆB′)2)
957
+ 1+α
958
+ 2 ⟩ ,
959
+ (17)
960
+ The polarization angle θp and Λ(y,φ) take different forms regarding
961
+ the configuration of the magnetic field in the plane the GRB jet. In
962
+ the case of an ordered magnetic field Bord we have :
963
+ Λord(y,φ) ≈
964
+
965
+ (1−y
966
+ 1+y)2 cos2 φ+sin2 φ
967
+ � 1+α
968
+ 2
969
+ ,
970
+ (18)
971
+ θp = φ+arctan
972
+
973
+ (1−y
974
+ 1+y)cotφ
975
+
976
+ .
977
+ (19)
978
+ The time-integrated linear polarization in the presence of an ordered
979
+ magnetic field in the plane normal to the jet velocity is plotted as
980
+ a function of the spectral index in the right panel of Fig. (8). As it
981
+ is seen the polarization degree increases towards higher values of α
982
+ and lower values of ymax which can cover the observed polarization
983
+ of GRB 110721A, GRB 160802A, and GRB 110301A. Therefore
984
+ for a configuration with the globally ordered magnetic field, high
985
+ values of linear polarization even larger than 50% are obtainable.
986
+ The degree of polarization for a magnetic field with locally tan-
987
+ gled or random configuration is obtained by averaging over all direc-
988
+ tions of the local magnetic field within the plane of the shock (Granot
989
+ & Königl 2003a; Sari 1999; Gruzinov 1999; Nava et al. 2016). The
990
+ presence of a random magnetic field leads to negligible values of net
991
+ linear polarization measured by an on-axis observer. In the case of a
992
+ random field behind the shock wave only if the observer is off-axis
993
+ and the circular symmetry is broken, non-zero net polarization is
994
+ measurable. The total linear polarization arising from the whole jet
995
+ which is subjected to a random field with a direction perpendicular
996
+ to the jet velocity is given by Granot (2003a)
997
+ Π⊥
998
+ Πmax =
999
+ � y2
1000
+ y1 dy(1+y)−2−α sin[2Ψ1(y)]G(y,α)
1001
+ Θ(1−ζ)
1002
+ � y1
1003
+ 0
1004
+ dy H(y,α)
1005
+ (1+y)α+2 +
1006
+ � y2
1007
+ y1 dy dy H(y,α)
1008
+ (1+y)α+2
1009
+ � π−Ψ(y)
1010
+ π
1011
+ �,
1012
+ (20)
1013
+ where Θ(1 − ζ) is the Heaviside step-function with ζ ≡ θobs/θ j as a
1014
+ parameter to define observer’s point of view, and
1015
+ G(y,α) = 1
1016
+
1017
+ � π
1018
+ 0
1019
+
1020
+ �(1−y)2
1021
+ (1+y)2 cos2 φ−sin2 φ
1022
+ ��
1023
+ 1− 4ycos2 φ
1024
+ (1+y)2
1025
+ � α−1
1026
+ 2
1027
+ , (21)
1028
+ H(y,α) =
1029
+ � π
1030
+ 0
1031
+
1032
+
1033
+ 1− 4ycos2 φ
1034
+ (1+y)2
1035
+ � 1+α
1036
+ 2
1037
+ ,
1038
+ (22)
1039
+ cosΨ(y) = (1−ζ2)y j −y
1040
+ 2ζ√yy j
1041
+ .
1042
+ (23)
1043
+ In above expressions y1,2 = (1∓ζ)2yj and y j = (Γθ j)2. The variation
1044
+ of the linear polarization in the presence of a random field configura-
1045
+ tion measured by an off-axis observer is displayed in Fig. (9). In the
1046
+ left panel, the spectral indices are selected to be consistent with aver-
1047
+ age values reported in Table (5) for our target sample and for y j = 10.
1048
+ In the right panel, yj is changed while α = 1, it is found that the ap-
1049
+ peared peak has a width in order of 1/√y j. From Fig. (9), we see that
1050
+ the polarization degree is limited to small values for ζ < 1 while it
1051
+ is sharply increased for ζ ≈ 1 and finally reaches to an asymptotic
1052
+ limit at ζ > O(1). It is seen that the Synchrotron radiation with B⊥
1053
+ can potentially generate wide range of polarization values from low
1054
+ levels to moderate values which cover observed values associated to
1055
+ our sample. In principle, various viewing angles θobs and different
1056
+ angular structures of the jet affect the measured fluence of GRBs.
1057
+ Note that the fluence significantly decreases for a top-hat jet view-
1058
+ ing from outside the jet’s sharp edge, so high levels of polarization
1059
+ in off-axis jets may only be obtainable in very close bursts. In fact,
1060
+ the detectibility of GRB polarization needs high-fluence sources and
1061
+ usually, the fluence rapidly drops below the detector threshold for a
1062
+ large off-axis observer.
1063
+ The time-resolved spectral analysis in §4.1 showed thermal to
1064
+ non-thermal (KED-to-PFD) transitions in our sample where a sub-
1065
+ dominant component of the thermal emission during bursts is ob-
1066
+ served. Observing hard values of the spectral indices during the
1067
+ bursts can be served as hints that LOS is not highly off-axis, since
1068
+ high latitude emission leads to a softer spectrum Lundman et al.
1069
+ (2013).
1070
+ As it was reported in §4.2, a correlation between the polariza-
1071
+ tion and the isotropic energy π-Eγ,iso (Fig.7b) has been observed
1072
+ within our sample, it is worth mentioning that higher polariza-
1073
+ tion values are recorded for closer bursts GRB 110301A (z=0.36),
1074
+ GRB 110721A (z=0.382), GRB 160802A (z=0.90) and lower val-
1075
+ ues for farther sources GRB 140206B (z=2.73) and GRB 100826A
1076
+ (z=2.3) (Fig.7e). The observed fluences of GRB 140206B and GRB
1077
+ 100826A is higher than other sources (see Table. 4 and Fig.7f) and
1078
+ due to their higher redshifts ζ can not obtain large values, however,
1079
+ low values of ζ would be enough to reproduce their measured polar-
1080
+ izations.
1081
+ The local degree of linear polarization for a tangled or random
1082
+ field configuration for a thin ultrarelativistic shell modeling of the
1083
+ prompt emission by assuming α = 1 is obtained by averaging over
1084
+ all local magnetic field directions as
1085
+ Πlin
1086
+ rnd = Πlin
1087
+ max
1088
+ (b−1)sin2 θB
1089
+ 2+(b−1)sin2 θB
1090
+ (24)
1091
+ MNRAS 000, 1–?? (2023)
1092
+
1093
+ Time-averaging Polarimetric and Spectral Properties of GRBs
1094
+ 9
1095
+ where b ≡ 2⟨B2
1096
+ ∥⟩/⟨B2
1097
+ ⊥⟩ denotes the anisotropy of the magnetic field
1098
+ distribution as the ratio of the parallel B∥ to the perpendicular B⊥
1099
+ components with respects to the shock direction, and θB is the an-
1100
+ gle between the LOS from the observer and the direction of the
1101
+ shock Sari (1999); Gruzinov (1999). In the case of a globally ordered
1102
+ magnetic field configuration aligned with the jet direction (B → B∥,
1103
+ b → ∞), Eq. (24) returns back to Eq. (19) and gives the maximum
1104
+ value of the linear polarization.
1105
+ The polarized emission may also originate from independent
1106
+ magnetic patches with various field orientation Li (2022a) where
1107
+ magnetic patches are locally coherent but distributed randomly in
1108
+ observed emission region. In this case the measured polarization
1109
+ from different patches is estimated as Π = Πmax/
1110
+
1111
+ N, where N is the
1112
+ number of magnetic patches or equivalently multiple pulses where
1113
+ the coherence length of the magnetic field is as large as the emis-
1114
+ sion region in a single pulse and observed polarization is an average
1115
+ over multiple pulses (Gruzinov & Waxman 1999; Granot & Königl
1116
+ 2003b).
1117
+ The magnetic field which is generated within IS for KED jets has
1118
+ usually a coherence length much smaller than the angular size of the
1119
+ emission region which causes negligible net polarization. It has been
1120
+ shown that even by taking into account the angular structure of the
1121
+ flow the polarization is limited to Π ≲ 20% for photospheric emis-
1122
+ sion of a relativistically expanding fireball Ito et al. (2014); Lund-
1123
+ man et al. (2014a); Parsotan et al. (2020). The observed high val-
1124
+ ues of the polarization for GRB 110721A and GRB 160802A while
1125
+ they show the peak-KED pattern cannot be explained simply by the
1126
+ sub-photospheric dissipation model based on Comptonisation. Be-
1127
+ cause the multiple scatterings at large optical depths region leads to
1128
+ wash out the directionality of polarization vectors (Lundman et al.
1129
+ 2018b). To explain the strong polarized signals, models invoking dis-
1130
+ sipation of ordered magnetic field are favored (Lyutikov et al. 2003;
1131
+ Zhang & Yan 2011b; McKinney & Uzdensky 2012). A structured jet
1132
+ photosphere model may also generate polarized photons via Comp-
1133
+ ton scattering but with a different energy-dependence compare to
1134
+ the synchrotron model in the ordered magnetic field (Chang et al.
1135
+ 2014b,a, 2013).
1136
+ The Jitter radiation emitted by ultra-relativistic electrons acceler-
1137
+ ating in a small-scale random magnetic field (Medvedev 2000), can
1138
+ also generate a hard energy spectrum with the photon index as high
1139
+ as α = +0.5. Due to the random distribution of the magnetic field,
1140
+ jitter radiation is highly symmetric in the electron radiative plane,
1141
+ leading to the vanishing polarization degree for an on-axis observer
1142
+ (Mao & Wang 2013, 2017; Mao et al. 2018). The maximum level
1143
+ of polarization is obtainable when the emitting plane is viewed from
1144
+ the edge on, it can even reach up to 90% (Prosekin et al. 2016).
1145
+ However, for smaller off-axis viewing angles which can yield mea-
1146
+ surable fluences, jitter radiation causes almost negligible polariza-
1147
+ tion degree. Meanwhile, regardless of the viewing angle the Jitter
1148
+ radiation cannot produce the observed high degree of polarisation
1149
+ close to the spectral peak energy of the jet.
1150
+ To summarize, polarization features can be explained either by the
1151
+ synchrotron radiation in the ordered/random magnetic field (Granot
1152
+ 2003b; Granot & Königl 2003b; Nakar et al. 2003), the jet structure
1153
+ (Lazzati & Begelman 2009), or the observer’s viewing angle with re-
1154
+ spect to the jet (Lazzati et al. 2004), even in the case of thermal radi-
1155
+ ation from the jet photosphere (Lundman et al. 2014b). For a hybrid
1156
+ spectrum which include thermal and non-thermal components, we
1157
+ expect to see relatively high values of the polarization in the prompt
1158
+ emission which can be produced by synchrotron emission mecha-
1159
+ nism in the ordered magnetic field of the jet, and for random field
1160
+ configurations only for off-axis observers (Gill et al. 2021). How-
1161
+ ever, the spectral properties of our target sample demonstrated that
1162
+ off-axis observations specially for the large viewing angle is not the
1163
+ case, and the observed values of the polarization most probably is
1164
+ a hint of the ordered magnetic field originating from the central en-
1165
+ gine. Since from PFD jets towards HD and KED jets, polarization
1166
+ washout effects are increased gradually due to thermal photons, we
1167
+ would expect that the inequality πKED ≲ πHD ≲ πPED is satisfied if
1168
+ other conditions are fixed for a given jet. Due to the different de-
1169
+ grees of polarization predicted by different emission models in var-
1170
+ ious energy bands, it is essential to have a high-sensitivity gamma-
1171
+ ray polarimeter with a wide band-pass to detect energy-dependent
1172
+ polarization signals and constrain different models (Zhang 2014).
1173
+ However, it should be noted that due to several free parameters in
1174
+ polarization models, upcoming more precise observations and theo-
1175
+ retical investigations are needed to discriminate between competing
1176
+ models in order to explain observed joint polarization and spectral
1177
+ properties.
1178
+ 6 CONCLUSION
1179
+ Early polarization observations during the prompt emission phase
1180
+ play a crucial role in understanding the radiation mechanism and
1181
+ jet composition of GRBs. Observations over the past few decades
1182
+ suggest that the jet composition of GRBs may have diverse prop-
1183
+ erties. If the jet composition is matter-dominated (i.e., a fireball),
1184
+ the GRB prompt emission spectra would include a bright thermal
1185
+ component originating from the fireball photosphere. Alternatively,
1186
+ if the jet composition is Poynting-flux-dominated, the GRB prompt
1187
+ emission spectra would include a dominant non-thermal compo-
1188
+ nent originating from the synchrotron radiation. Moreover, if the jet
1189
+ composition is hybrid-dominated, the GRB prompt emission spec-
1190
+ tra would include a thermal component originating from the fire-
1191
+ ball photosphere and a non-thermal component originating from the
1192
+ synchrotron radiation. It is highly speculated that the prompt emis-
1193
+ sion is likely expected to be strongly polarized owing to its non-
1194
+ thermal origin. Consequently, a different level of polarization de-
1195
+ grees (πKED ≲ πHD ≲ πPED) during the prompt emission phase is nat-
1196
+ urally expected due to the different types of jet composition. In this
1197
+ paper, we have collected a GRB sample in which all the bursts de-
1198
+ tected by Fermi/GBM and whose polarization detection in the emis-
1199
+ sion region was also reported in the literature, containing five inter-
1200
+ esting bursts (GRB 100826A, GRB 110301A, GRB 110721A, GRB
1201
+ 140206A, and GRB 160802A). Using the time-averaging polariza-
1202
+ tion observations and selecting the same epoch for the GBM data
1203
+ taken during the prompt emission phase, we then attempted to ex-
1204
+ plore the correlations between jet properties and polarization prop-
1205
+ erties of GRBs and aimed to confirm the validity of this correlation
1206
+ (πKED ≲ πHD ≲ πPED) from observations.
1207
+ We first performed a detailed time-averaged spectral analysis for
1208
+ each burst in our target sample by using several frequency-used GRB
1209
+ spectral models and selected the best one by using information crite-
1210
+ ria (AIC and BIC). The jet properties of GRBs can be classified into
1211
+ three categories based on their spectral analysis: the “KED”, “PFD”,
1212
+ and “HD” types. Using the spectral properties we then inferred their
1213
+ jet properties and discovered that all five bursts belong to the “HD”-
1214
+ jet type. The lack of the other two types of jets (KED and PED)
1215
+ prevents us from validating this correlation (πKED ≲ πHD ≲ πPED).
1216
+ Hopefully, upcoming instruments will provide high-sensitivity po-
1217
+ larization observations in the future, leading to well-sampled, well-
1218
+ studied data sets, enabling such statistical analysis.
1219
+ We next conducted a time-resolved spectral analysis for each in-
1220
+ MNRAS 000, 1–?? (2023)
1221
+
1222
+ 10
1223
+ Li & Shakeri
1224
+ dividual burst by dividing the emission period into multiple-time
1225
+ slices using the BBlocks method using the Band-alone model. Our
1226
+ refined time-resolved spectral analysis, on the other hand, further
1227
+ suggested that the “HD”-type has two subcategories: the peak-KED
1228
+ pattern and the KED-to-PFD transition pattern. In our attempt to as-
1229
+ sess the jet properties of GRBs using Band-α evolution, we discov-
1230
+ ered that two bursts exhibit the peak-KED pattern (GRB 110721A
1231
+ and GRB 160802A) whereas the other three bursts show the KED-
1232
+ to-PFD transition pattern (GRB 110301A, GRB 140206A, and GRB
1233
+ 160625B). All five bursts found in the “HD”-type imply that the pho-
1234
+ tosphere emission may also be a possible mechanism to power the
1235
+ high-degree polarization observation.
1236
+ We also made an attempt to explore the correlations between the
1237
+ polarization properties and several typical GRB observed quantities.
1238
+ Using the same observed epoch during the prompt emission phase,
1239
+ our target sample allows for a reasonable comparison. The corre-
1240
+ lations we attempted to study included the polarization degrees π
1241
+ correlated with (i) the cosmological rest-frame peak energy (Ep,z)
1242
+ of the νFν prompt emission spectrum, (ii) the isotropic-bolometric-
1243
+ equivalent emission energy Eγ,iso, (iii) the magnetization parameter
1244
+ σ0, (iv) the blackbody temperature kT, (v) the redshift z, and (vi) the
1245
+ corresponding energy fluence Sγ. As a result, we discovered that a
1246
+ higher Ep,z, Eγ,iso, and kTz tend to have a lower-degree polarization
1247
+ π.
1248
+ Lastly, we discovered that all five bursts in our target sample have
1249
+ a relatively high-degree polarization detection that seems to corre-
1250
+ late with the “HD”-jet type. If it is an intrinsic characteristic of
1251
+ GRBs, this could provide a clue to studying the radiation mechanism
1252
+ and jet composition of GRBs. We have also discussed some physical
1253
+ interpretations of this interesting phenomenon. Since the configura-
1254
+ tion of the magnetic field inside the jet is one of the crucial param-
1255
+ eters to determine the polarization degree, we discussed two main
1256
+ configurations (i.e. ordered and random fields), and their connec-
1257
+ tion to the jet composition is clarified. We considered polarization
1258
+ patterns as a function of different dynamical parameters associated
1259
+ to the outflow materials, the spectral indices and the observer’s LOS
1260
+ with respect to the jet. Combining the spectral analysis and the polar-
1261
+ ization measurements allowed us to find out the detection of polar-
1262
+ ization values Π > 50% during prompt emission of GRB 160802A,
1263
+ GRB 110721A and GRB 110301A is a piece of strong evidence for
1264
+ the synchrotron emission mechanism in the presence of an ordered
1265
+ magnetic field which can be advected from the GRB central engine.
1266
+ Regarding the different properties of our target sample, we conclude
1267
+ that geometrical effects and large off-axis observations are unlikely
1268
+ responsible for the measured polarizations assuming random mag-
1269
+ netic fields within the jets.
1270
+ Finally, there are some caveats that are worth mentioning when
1271
+ applying our analysis. (i) Spectrum. We have resolved the jet proper-
1272
+ ties based on the low-energy spectrum. However, it may be difficult
1273
+ to classify jets as either KED or PFD jets based on the spectral index
1274
+ alone. Indeed, a photospheric quasi-thermal component would have
1275
+ a harder low-energy spectral index as compared to an optically-thin
1276
+ synchrotron, but that does not guarantee that the jet is KED (an ex-
1277
+ ample, see Gill et al. 2020). (ii) Polarization. The degree of polariza-
1278
+ tion ultimately probes the (local) structure of the B-field in the emis-
1279
+ sion region. An ordered field would necessarily yield high polariza-
1280
+ tion whereas a tangled field would yield a very small polarization. It
1281
+ is unclear, however, whether these field configurations are exclusive
1282
+ to a given jet configuration (or a particular level of magnetization).
1283
+ In addition, the angular structure of the jet also plays an important
1284
+ role in governing the observed polarization. Thus, due to the large
1285
+ range of model parameters, it is difficult to attribute a given level of
1286
+ polarization to a given jet composition. More discussion is provided
1287
+ in a recent review article (Gill et al. 2021). (iii) Different instrument
1288
+ analysis. Currently, it is not clear why different instruments, namely,
1289
+ POLAR, IKAROS-GAP, and ASTROSAT/CZTI, are finding differ-
1290
+ ent levels of polarization for a small sample of GRBs (Chattopad-
1291
+ hyay et al. 2019). There is no consensus. POLAR is finding a rather
1292
+ low-level polarization, which is consistent with zero within 3σ of
1293
+ their quoted central values, whereas both IKAROS and AstroSAT
1294
+ are finding much higher levels. Hard X-ray to soft gamma-ray po-
1295
+ larization measurements are very tricky and the analysis has to be
1296
+ carried out very carefully. As such, some of these measurements are
1297
+ probably not representative of GRBs and need to be further verified
1298
+ by future more precise instruments. (iv) Time-resolved polarization
1299
+ analysis. In the current analysis, none of the cases have shown time-
1300
+ resolved polarization measurements. Even though the GRBs in our
1301
+ target sample have time-resolved spectral indices, not having corre-
1302
+ sponding polarization measurements makes it difficult to ascertain
1303
+ the properties of the B-field and outflows.
1304
+ Acknowledgements. We thank Ramandeep Gill, Jonathan Gra-
1305
+ not, Rahim Moradi, Mi-Xiang Lan, Asaf Pe’er, Jin-Jun Geng,
1306
+ Christoffer Lundman, Remo Ruffini, and ICRANet members for
1307
+ many discussions on GRBs physics and phenomena. This research
1308
+ made use of the High Energy Astrophysics Science Archive Re-
1309
+ search Center (HEASARC) Online Service at the NASA/Goddard
1310
+ Space Flight Center (GSFC).
1311
+ Data availability. The data underlying this article will be shared
1312
+ on reasonable request to the corresponding author.
1313
+ REFERENCES
1314
+ Abdo, A. A., Ackermann, M., Arimoto, M., et al. 2009, Science, 323, 1688
1315
+ Acuner, Z., Ryde, F., Pe’er, A., Mortlock, D., & Ahlgren, B. 2020, ApJ , 893,
1316
+ 128
1317
+ Acuner, Z., Ryde, F., & Yu, H.-F. 2019, MNRAS , 487, 5508
1318
+ Akaike, H. 1974, IEEE Transactions on Automatic Control, 19, 716
1319
+ Amati, L., Frontera, F., Tavani, M., et al. 2002, A&A , 390, 81
1320
+ Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ , 697, 1071
1321
+ Axelsson, M., Baldini, L., Barbiellini, G., et al. 2012, ApJ , 757, L31
1322
+ Band, D., Matteson, J., Ford, L., et al. 1993, ApJ , 413, 281
1323
+ Bégué, D., Samuelsson, F., & Pe’er, A. 2022, ApJ , 937, 101
1324
+ Bucciantini, N., Metzger, B. D., Thompson, T. A., & Quataert, E. 2012, MN-
1325
+ RAS , 419, 1537
1326
+ Burgess, J. M., Bégué, D., Greiner, J., et al. 2020, Nature Astronomy, 4, 174
1327
+ Burgess, J. M., Preece, R. D., Ryde, F., et al. 2014, ApJ , 784, L43
1328
+ Chand, V., Chattopadhyay, T., Iyyani, S., et al. 2018, ApJ , 862, 154
1329
+ Chang, Z., Jiang, Y., & Lin, H. N. 2013, Astrophys. J., 769, 70
1330
+ Chang, Z., Jiang, Y., & Lin, H.-N. 2014a, Astrophys. J., 780, 68
1331
+ Chang, Z., Lin, H.-N., & Jiang, Y. 2014b, Astrophys. J., 783, 30
1332
+ Chattopadhyay, T., Vadawale, S. V., Aarthy, E., et al. 2019, ApJ , 884, 123
1333
+ Coburn, W., & Boggs, S. E. 2003, Nature , 423, 415
1334
+ Dai, Z. G., & Lu, T. 1998, A&A , 333, L87
1335
+ Dai, Z. G., Wang, X. Y., Wu, X. F., & Zhang, B. 2006, Science, 311, 1127
1336
+ Dainotti, M. G., & Amati, L. 2018, PASP, 130, 051001
1337
+ Dainotti, M. G., Cardone, V. F., & Capozziello, S. 2008, MNRAS , 391, L79
1338
+ Deng, L.-T., Lin, D.-B., Zhou, L., et al. 2022, ApJ , 934, L22
1339
+ Fan, Y.-Z., Xu, D., & Wei, D.-M. 2008, Mon. Not. Roy. Astron. Soc., 387,
1340
+ 92
1341
+ Gao, H., & Zhang, B. 2015, ApJ , 801, 103
1342
+ Geng, J.-J., Huang, Y.-F., Wu, X.-F., Song, L.-M., & Zong, H.-S. 2018, As-
1343
+ trophys. J., 862, 115
1344
+ Geng, J.-J., Huang, Y.-F., Wu, X.-F., Zhang, B., & Zong, H.-S. 2018, ApJS ,
1345
+ 234, 3
1346
+ Gill, R., & Granot, J. 2020, Mon. Not. Roy. Astron. Soc., 491, 5815
1347
+ MNRAS 000, 1–?? (2023)
1348
+
1349
+ Time-averaging Polarimetric and Spectral Properties of GRBs
1350
+ 11
1351
+ Gill, R., Granot, J., & Beniamini, P. 2020, MNRAS , 499, 1356
1352
+ Gill, R., Granot, J., & Kumar, P. 2018, arXiv:1811.11555
1353
+ Gill, R., Kole, M., & Granot, J. 2021, Galaxies, 9, 82
1354
+ Götz, D., Laurent, P., Antier, S., et al. 2014, MNRAS , 444, 2776
1355
+ Granot, J. 2003, Astrophys. J. Lett., 596, L17
1356
+ Granot, J. 2003a, ApJ , 596, L17
1357
+ —. 2003b, ApJ , 596, L17
1358
+ —. 2005, ApJ , 631, 1022
1359
+ Granot, J., & Königl, A. 2003a, APJ, 594, L83
1360
+ —. 2003b, ApJ , 594, L83
1361
+ Gruzinov, A. 1999, ApJ , 525, L29
1362
+ Gruzinov, A., & Waxman, E. 1999, Astrophys. J., 511, 852
1363
+ Guiriec, S., Connaughton, V., Briggs, M. S., et al. 2011, ApJ , 727, L33
1364
+ Guiriec, S., Kouveliotou, C., Daigne, F., et al. 2015, ApJ , 807, 148
1365
+ Ito, H., Nagataki, S., Matsumoto, J., et al. 2014, ApJ , 789, 159
1366
+ Ito, H., Nagataki, S., Matsumoto, J., et al. 2014, Astrophys. J., 789, 159
1367
+ Kole, M., De Angelis, N., Berlato, F., et al. 2020, A&A , 644, A124
1368
+ Kumar, P., & Zhang, B. 2015, Phys. Rep. , 561, 1
1369
+ Lan, M.-X., & Dai, Z.-G. 2020, ApJ , 892, 141
1370
+ Lan, M.-X., Wang, H.-B., Xu, S., Liu, S., & Wu, X.-F. 2021, Astrophys. J.,
1371
+ 909, 184
1372
+ Lazzati, D., & Begelman, M. C. 2009, ApJ , 700, L141
1373
+ Lazzati, D., Rossi, E., Ghisellini, G., & Rees, M. J. 2004, MNRAS , 347, L1
1374
+ Lei, W. H., Wang, D. X., Zhang, L., et al. 2009, ApJ , 700, 1970
1375
+ Li, L. 2019a, ApJS , 242, 16
1376
+ —. 2019b, ApJS , 245, 7
1377
+ —. 2020, ApJ , 894, 100
1378
+ —. 2022a, arXiv e-prints, arXiv:2211.12187
1379
+ —. 2022b, ApJ , 941, 27
1380
+ Li, L., Ryde, F., Pe’er, A., Yu, H.-F., & Acuner, Z. 2021, ApJS , 254, 35
1381
+ Li, L., Wu, X.-F., Lei, W.-H., et al. 2018, ApJS , 236, 26
1382
+ Li, L., Xue, S.-S., & Dai, Z.-G. 2022a, arXiv e-prints, arXiv:2208.03583
1383
+ Li, L., & Zhang, B. 2021, ApJS , 253, 43
1384
+ Li, L., Geng, J.-J., Meng, Y.-Z., et al. 2019, ApJ , 884, 109
1385
+ Li, L., Wang, Y., Ryde, F., et al. 2022b, arXiv e-prints, arXiv:2212.02141
1386
+ Liang, E., & Zhang, B. 2005, ApJ , 633, 611
1387
+ Liang, E.-W., Lin, T.-T., Lü, J., et al. 2015, ApJ , 813, 116
1388
+ Liu, T., Gu, W.-M., Xue, L., & Lu, J.-F. 2007, ApJ , 661, 1025
1389
+ Lloyd, N. M., & Petrosian, V. 2000, ApJ , 543, 722
1390
+ Lü, H.-J., & Zhang, B. 2014, ApJ , 785, 74
1391
+ Lundman, C., Pe’er, A., & Ryde, F. 2013, MNRAS , 428, 2430
1392
+ —. 2014a, MNRAS , 440, 3292
1393
+ —. 2014b, MNRAS , 440, 3292
1394
+ Lundman, C., Vurm, I., & Beloborodov, A. M. 2018a, Astrophys. J., 856,
1395
+ 145
1396
+ —. 2018b, Astrophys. J., 856, 145
1397
+ Lyutikov, M., Pariev, V. I., & Blandford, R. D. 2003, ApJ , 597, 998
1398
+ Lyutikov, M., Pariev, V. I., & Blandford, R. D. 2003, Astrophys. J., 597, 998
1399
+ Mao, J., Covino, S., & Wang, J. 2018, Astrophys. J., 860, 153
1400
+ Mao, J., & Wang, J. 2013, Astrophys. J., 776, 17
1401
+ —. 2017, Astrophys. J., 838, 78
1402
+ McGlynn, S., Clark, D. J., Dean, A. J., et al. 2007, A&A , 466, 895
1403
+ McKinney, J. C., & Uzdensky, D. A. 2012, MNRAS , 419, 573
1404
+ Medvedev, M. V. 2000, Astrophys. J., 540, 704
1405
+ Medvedev, M. V., & Loeb, A. 1999, ApJ , 526, 697
1406
+ Meegan, C., Lichti, G., Bhat, P. N., et al. 2009, ApJ , 702, 791
1407
+ Mészáros, P., & Rees, M. J. 2000, ApJ , 530, 292
1408
+ Metzger, B. D., Giannios, D., Thompson, T. A., Bucciantini, N., & Quataert,
1409
+ E. 2011, MNRAS , 413, 2031
1410
+ Metzger, B. D., Quataert, E., & Thompson, T. A. 2008, MNRAS , 385, 1455
1411
+ Moreno, E., Vazquez-Polo, F. J., & Robert, C. P. 2013, arXiv e-prints,
1412
+ arXiv:1310.2905
1413
+ Nakar, E., Piran, T., & Waxman, E. 2003, J. Cosmology Astropart. Phys., 10,
1414
+ 005
1415
+ Nava, L., Nakar, E., & Piran, T. 2016, Monthly Notices of the Royal Astro-
1416
+ nomical Society, 455, 1594
1417
+ Parsotan, T., Lopez-Camara, D., & Lazzati, D. 2020, Astrophys. J., 896, 139
1418
+ Pe’er, A. 2015, Advances in Astronomy, 2015, 907321
1419
+ Pe’er, A., Mészáros, P., & Rees, M. J. 2006, ApJ , 642, 995
1420
+ Pe’Er, A., & Ryde, F. 2017, International Journal of Modern Physics D, 26,
1421
+ 1730018
1422
+ Planck Collaboration, Aghanim, N., Akrami, Y., et al. 2018, arXiv e-prints,
1423
+ arXiv:1807.06209
1424
+ Preece, R. D., Briggs, M. S., Mallozzi, R. S., et al. 1998, ApJ , 506, L23
1425
+ Prosekin, A. Yu., Kelner, S. R., & Aharonian, F. A. 2016, Phys. Rev., D94,
1426
+ 063010
1427
+ Rees, M. J., & Meszaros, P. 1994, ApJ , 430, L93
1428
+ Rees, M. J., & Mészáros, P. 2005, ApJ , 628, 847
1429
+ Rybicki, G. B., & Lightman, A. P. 1979, Radiative processes in astrophysics
1430
+ Rybicki, G. B., & Lightman, A. P. 2008, Radiative Processes in Astrophysics
1431
+ (John Wiley & Sons)
1432
+ Ryde, F., Axelsson, M., Zhang, B. B., et al. 2010, ApJ , 709, L172
1433
+ Sari, R. 1999, APJ, 524, L43
1434
+ Scargle, J. D., Norris, J. P., Jackson, B., & Chiang, J. 2013, ApJ , 764, 167
1435
+ Schwarz, G. 1978, Annals of Statistics, 6, 461
1436
+ Shakeri, S., & Allahyari, A. 2018, JCAP, 11, 042
1437
+ Song, X.-Y., Zhang, S.-N., Ge, M.-Y., & Zhang, S. 2022, MNRAS , 517,
1438
+ 2088
1439
+ Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. 2002,
1440
+ Journal of the royal statistical society: Series b (statistical methodology),
1441
+ 64, 583
1442
+ Thompson, C. 1994, MNRAS , 270, 480
1443
+ Toma, K., Sakamoto, T., Zhang, B., et al. 2009a, ApJ , 698, 1042
1444
+ —. 2009b, ApJ , 698, 1042
1445
+ Usov, V. V. 1992, Nature , 357, 472
1446
+ Vereshchagin, G., Li, L., & Bégué, D. 2022, MNRAS , 512, 4846
1447
+ Vianello, G. 2018, ApJS , 236, 17
1448
+ Vianello, G., Lauer, R. J., Younk, P., et al. 2015, arXiv e-prints,
1449
+ arXiv:1507.08343
1450
+ Wang, Y., Li, L., Moradi, R., & Ruffini, R. 2019, arXiv e-prints,
1451
+ arXiv:1901.07505
1452
+ Wang, Y., Zheng, T.-C., & Jin, Z.-P. 2022, ApJ , 940, 142
1453
+ Westfold, K. C. 1959, ApJ , 130, 241
1454
+ Wheeler, J. C., Yi, I., Höflich, P., & Wang, L. 2000, ApJ , 537, 810
1455
+ Wiersema, K., Covino, S., Toma, K., et al. 2014, Nature , 509, 201
1456
+ Willis, D. R., Barlow, E. J., Bird, A. J., et al. 2005, A&A , 439, 245
1457
+ Xu, M., & Huang, Y. F. 2012, A&A , 538, A134
1458
+ Yonetoku, D., Murakami, T., Nakamura, T., et al. 2004, ApJ , 609, 935
1459
+ Yonetoku, D., Murakami, T., Gunji, S., et al. 2011a, ApJ , 743, L30
1460
+ —. 2011b, ApJ , 743, L30
1461
+ —. 2012a, ApJ , 758, L1
1462
+ —. 2012b, ApJ , 758, L1
1463
+ Zhang, B. 2014, International Journal of Modern Physics D, 23, 1430002
1464
+ —. 2018, The Physics of Gamma-Ray Bursts, doi:10.1017/9781139226530
1465
+ Zhang, B., & Mészáros, P. 2001, ApJ , 552, L35
1466
+ Zhang, B., & Yan, H. 2011a, ApJ , 726, 90
1467
+ —. 2011b, ApJ , 726, 90
1468
+ Zhang, F.-W., Shao, L., Yan, J.-Z., & Wei, D.-M. 2012, ApJ , 750, 88
1469
+ Zhang, S.-N., Kole, M., Bao, T.-W., et al. 2019, Nature Astronomy,
1470
+ arXiv:1901.04207
1471
+ MNRAS 000, 1–?? (2023)
1472
+
1473
+ 12
1474
+ Li & Shakeri
1475
+ Table 1 A sample of GRB polarimetric observations
1476
+ GRB
1477
+ PD
1478
+ PA
1479
+ Energy band
1480
+ Time
1481
+ Significance
1482
+ Instrument
1483
+ Ref.
1484
+ z
1485
+ (Fermi ID)
1486
+ (π%)
1487
+ (◦)
1488
+ (t-t0)
1489
+ (σ)
1490
+ (For polarization)
1491
+ 100826A(957)
1492
+ 27±11
1493
+ 159±18, 75±20
1494
+ γ-ray
1495
+ 0-100s
1496
+ 2.9σ
1497
+ IKAROS-GAP
1498
+ Yonetoku et al. (2011b)
1499
+ NA
1500
+ 110301A(214)
1501
+ 70±22
1502
+ 73±11
1503
+ γ-ray
1504
+ 0-7s
1505
+ 3.7σ
1506
+ IKAROS-GAP
1507
+ Yonetoku et al. (2012a)
1508
+ NA
1509
+ 110721A(200)
1510
+ 84+16
1511
+ −28
1512
+ 160±11
1513
+ γ-ray
1514
+ 0-11s
1515
+ 3.3σ
1516
+ IKAROS-GAP
1517
+ Yonetoku et al. (2012a)
1518
+ 0.382
1519
+ 140206A(275)
1520
+ > 28
1521
+ 80±15
1522
+ γ-ray
1523
+ 4-26s
1524
+ 90% confidence
1525
+ INTEGRAL-IBIS
1526
+ Götz et al. (2014)
1527
+ 2.73
1528
+ 160802A(259)
1529
+ 85±29
1530
+ ∼-32
1531
+ hard X-rays
1532
+ 0-20.34s
1533
+ ∼3σ
1534
+ AstroSat-CZTI
1535
+ Chand et al. (2018)
1536
+ NA
1537
+ MNRAS 000, 1–?? (2023)
1538
+
1539
+ Time-averaging Polarimetric and Spectral Properties of GRBs
1540
+ 13
1541
+ Table 2 Estimated values of redshift using the Yonetoku relation
1542
+ GRB
1543
+ tstart∼tstop
1544
+ S
1545
+ Eobs
1546
+ p
1547
+ Fobs
1548
+ p
1549
+ kc
1550
+ Lp
1551
+ z
1552
+ (s)
1553
+ (keV)
1554
+ (erg cm−2 s−1)
1555
+ (erg s−1)
1556
+ (Estimated)
1557
+ 100826957
1558
+ 18.208∼22.288
1559
+ 107.97
1560
+ 459±20
1561
+ (1.42±0.10)×10−5
1562
+ 0.85
1563
+ (1.27±0.10)×1053
1564
+ 2.3
1565
+ 110301214
1566
+ 3.876∼4.126
1567
+ 107.60
1568
+ 126±6
1569
+ (1.36±0.16)×10−5
1570
+ 1.02
1571
+ (1.46±0.17)×1053
1572
+ 0.36
1573
+ 160802259
1574
+ 0.962∼1.171
1575
+ 73.79
1576
+ 385±39
1577
+ (3.04±0.80)×10−5
1578
+ 0.95
1579
+ (3.05±0.80)×1053
1580
+ 0.90
1581
+ MNRAS 000, 1–?? (2023)
1582
+
1583
+ 14
1584
+ Li & Shakeri
1585
+ Table 3 Comparison of AIC/BIC between the best model and other models
1586
+ GRB
1587
+ t1 ∼ t2
1588
+ AIC/BIC(1)
1589
+ AIC/BIC(2)
1590
+ AIC/BIC(3)
1591
+ AIC/BIC(4)
1592
+ AIC/BIC(5)
1593
+ AIC/BIC(6)
1594
+ AIC/BIC(7)
1595
+ (s)
1596
+ (PL)
1597
+ (BB)
1598
+ (CPL)
1599
+ (Band)
1600
+ (PL+BB)
1601
+ (CPL+BB)
1602
+ (Band+BB)
1603
+ 100826A(957)
1604
+ 0∼100
1605
+ 11662/11670
1606
+ 12225/12232
1607
+ 6819/6830
1608
+ 6706/6721
1609
+ 7819/7834
1610
+ 6693/6712
1611
+ 6638/6661
1612
+ 110301A(214)
1613
+ 0∼7
1614
+ 10969/10978
1615
+ 20029/20038
1616
+ 5342/5354
1617
+ 5284/5301
1618
+ 6124/6140
1619
+ 5302/5323
1620
+ 5254/5278
1621
+ 110721A(200)
1622
+ 0∼11
1623
+ 7319/7327
1624
+ 14194/14203
1625
+ 5694/5707
1626
+ 5541/5557
1627
+ 7323/7340
1628
+ 5524/5544
1629
+ 5504/5528
1630
+ 140206A(275)
1631
+ 4∼26
1632
+ 12649/12657
1633
+ 20413/20421
1634
+ 7617/7630
1635
+ 7431/7448
1636
+ 8549/8566
1637
+ 7345/7366
1638
+ 7293/7317
1639
+ 160802A(259)
1640
+ 0∼20.34
1641
+ 6840/6847
1642
+ 7480/7487
1643
+ 3984/3994
1644
+ 3898/3912
1645
+ 4383/4397
1646
+ 3839/3856
1647
+ 3840/3861
1648
+ MNRAS 000, 1–?? (2023)
1649
+
1650
+ Time-averaging Polarimetric and Spectral Properties of GRBs
1651
+ 15
1652
+ Table 4 Global properties of the Sample
1653
+ GRB
1654
+ T90
1655
+ Fluence
1656
+ Detectors
1657
+ ∆Tsrc
1658
+ [∆T(bkg,1),∆T(bkg,2)]
1659
+ Spectral model
1660
+ (Fermi ID)
1661
+ (s)
1662
+ (erg cm−2)
1663
+ (s)
1664
+ (s)
1665
+ (Preferred)
1666
+ 100826A(957)
1667
+ 84.993±0.724
1668
+ (1.64±0.01)×10−4
1669
+ n7(n8)b1
1670
+ (0 to 100)
1671
+ (-20 to -10, 200 to 250)
1672
+ Band+BB
1673
+ 110301A(214)
1674
+ 5.693±0.362
1675
+ (3.59±0.01)×10−5
1676
+ n7(n8)nbb1
1677
+ (0 to 7)
1678
+ (-20 to -10, 40 to 60)
1679
+ Band+BB
1680
+ 110721A(200)
1681
+ 21.822±0.572
1682
+ (3.70±0.01)×10−5
1683
+ (n6)n7n9b1
1684
+ (0 to 11)
1685
+ (-20 to -10, 40 to 60)
1686
+ Band+BB
1687
+ 140206A(275)
1688
+ 146.690±4.419
1689
+ (1.23±0.01)×10−4
1690
+ n0(n1)n3b0
1691
+ (4 to 26)
1692
+ (-40 to -20, 70 to 90)
1693
+ Band+BB
1694
+ 160802A(259)
1695
+ 16.384±0.362
1696
+ (6.84±0.01)×10−5
1697
+ (n2)b0
1698
+ (0 to 20.34)
1699
+ (-20 to -10, 60 to 80)
1700
+ Band+BB
1701
+ MNRAS 000, 1–?? (2023)
1702
+
1703
+ 16
1704
+ Li & Shakeri
1705
+ Table 5 Spectral Fit Results of the Sample with the Band+BB Model.
1706
+ GRB
1707
+ t1∼t2
1708
+ S
1709
+ K
1710
+ α
1711
+ Ep
1712
+ β
1713
+ K
1714
+ kT
1715
+ Flux
1716
+ Flux ratio
1717
+ (s)
1718
+ (Band)
1719
+ (Band)
1720
+ (Band)
1721
+ (Band)
1722
+ (BB)
1723
+ (BB)
1724
+ (FBB/Ftot)
1725
+ (s)
1726
+ (ph.s−1.cm−2.keV−1)
1727
+ (keV)
1728
+ (ph.s−1.cm−2.keV−1)
1729
+ (keV)
1730
+ (erg.cm−2.s−1)
1731
+ 100826957
1732
+ 0∼82
1733
+ 102.7
1734
+ (3.04+0.16
1735
+ −0.16)×10−2
1736
+ -0.84+0.04
1737
+ −0.04
1738
+ 518+46
1739
+ −46
1740
+ -2.28+0.07
1741
+ −0.07
1742
+ (5.54+1.97
1743
+ −1.93)×10−5
1744
+ 21+2
1745
+ −2
1746
+ (3.20+0.34
1747
+ −0.31)×10−6
1748
+ 0.03+0.03
1749
+ −0.03
1750
+ 110301214
1751
+ 0∼7
1752
+ 276.8
1753
+ (3.73+0.34
1754
+ −0.30)×10−1
1755
+ -0.72+0.07
1756
+ −0.07
1757
+ 114+2
1758
+ −3
1759
+ -2.87+0.08
1760
+ −0.07
1761
+ (1.14+0.57
1762
+ −0.49)×10−2
1763
+ 7+1
1764
+ −1
1765
+ (5.90+0.73
1766
+ −0.69)×10−6
1767
+ 0.04+0.03
1768
+ −0.03
1769
+ 110721200
1770
+ 0∼11
1771
+ 114.5
1772
+ (3.01+0.09
1773
+ −0.09)×10−2
1774
+ -1.20+0.02
1775
+ −0.02
1776
+ 1620+234
1777
+ −229
1778
+ -2.19+0.10
1779
+ −0.10
1780
+ (1.73+0.33
1781
+ −0.34)×10−5
1782
+ 33+2
1783
+ −2
1784
+ (6.94+0.66
1785
+ −0.63)×10−6
1786
+ 0.03+0.01
1787
+ −0.01
1788
+ 140206275
1789
+ 4∼26
1790
+ 170.2
1791
+ (3.87+0.11
1792
+ −0.11)×10−2
1793
+ -1.06+0.02
1794
+ −0.02
1795
+ 679+43
1796
+ −43
1797
+ -2.32+0.08
1798
+ −0.08
1799
+ (4.78+0.53
1800
+ −0.52)×10−5
1801
+ 27+1
1802
+ −1
1803
+ (4.57+0.25
1804
+ −0.24)×10−6
1805
+ 0.05+0.01
1806
+ −0.01
1807
+ 160802259
1808
+ 0∼20.34
1809
+ 151.7
1810
+ (3.89+0.21
1811
+ −0.21)×10−2
1812
+ -1.00+0.03
1813
+ −0.03
1814
+ 515+44
1815
+ −44
1816
+ -3.23+0.73
1817
+ −0.74
1818
+ (9.11+1.22
1819
+ −1.21)×10−5
1820
+ 25+1
1821
+ −1
1822
+ (3.85+0.55
1823
+ −0.41)×10−6
1824
+ 0.09+0.02
1825
+ −0.02
1826
+ MNRAS 000, 1–?? (2023)
1827
+
1828
+ Time-averaging Polarimetric and Spectral Properties of GRBs
1829
+ 17
1830
+ 1
1831
+ 0
1832
+ 2
1833
+ 4
1834
+ 6
1835
+ 8
1836
+ 10
1837
+ redshift
1838
+ 10
1839
+ 1
1840
+ 100
1841
+ 101
1842
+ 102
1843
+ 103
1844
+ GRB 100826A
1845
+ Estimated value
1846
+ 0
1847
+ 2
1848
+ 4
1849
+ 6
1850
+ 8
1851
+ 10
1852
+ redshift
1853
+ 10
1854
+ 1
1855
+ 100
1856
+ 101
1857
+ 102
1858
+ 103
1859
+ GRB 110301A
1860
+ Estimated value
1861
+ 0
1862
+ 2
1863
+ 4
1864
+ 6
1865
+ 8
1866
+ 10
1867
+ redshift
1868
+ 10
1869
+ 1
1870
+ 100
1871
+ 101
1872
+ 102
1873
+ 103
1874
+ GRB 160802A
1875
+ Estimated value
1876
+ Figure 1. Estimated redshift using the Yonetoku relation for three bursts (GRB 100826A, GRB 110301A, and GRB 160802A). The yellow and cyan lines
1877
+ represent the left and right function of Eq.(5), and their intersection point (purple color) is the estimated value of redshift.
1878
+ MNRAS 000, 1–?? (2023)
1879
+
1880
+ 18
1881
+ Li & Shakeri
1882
+ 1
1883
+ 20
1884
+ 0
1885
+ 20
1886
+ 40
1887
+ 60
1888
+ 80
1889
+ 100
1890
+ 120
1891
+ 140
1892
+ Time (s)
1893
+ 0
1894
+ 20
1895
+ 40
1896
+ 60
1897
+ 80
1898
+ 100
1899
+ =27±11%
1900
+ 2.0
1901
+ 1.5
1902
+ 1.0
1903
+ 0.5
1904
+ 0.0
1905
+ 0.5
1906
+ (S > 20)
1907
+ (10 < S < 20)
1908
+ (S < 10)
1909
+ 100826A
1910
+ 101
1911
+ 102
1912
+ 103
1913
+ 104
1914
+ 105
1915
+ Photon Energy - keV
1916
+ 100
1917
+ 101
1918
+ 102
1919
+ 103
1920
+ 104
1921
+ keV × [keV
1922
+ 1S
1923
+ 1cm
1924
+ 2]
1925
+ Band fits
1926
+ Blackbody
1927
+ Band+Blackbody
1928
+ NAI7
1929
+ NAI8
1930
+ BGO1
1931
+ Figure 2. Left panel: prompt emission GBM light curve (overlaid in gray) and polarization observations in γ-ray/hard X-ray energy bands (cyan shaded area),
1932
+ as well as the temporal evolution of α based on the time-resolved spectral analysis. The horizontal dashed line represents the limiting value of α = −2/3 for
1933
+ electrons in the slow-cooling regime. Right panel: the spectral data and its best-fit model (Band+BB) during the time epoch (see Table 1 and Table 4) of the
1934
+ matching polarization observations.
1935
+ MNRAS 000, 1–?? (2023)
1936
+
1937
+ Time-averaging Polarimetric and Spectral Properties of GRBs
1938
+ 19
1939
+ 1
1940
+ 5.0
1941
+ 2.5
1942
+ 0.0
1943
+ 2.5
1944
+ 5.0
1945
+ 7.5
1946
+ 10.0
1947
+ 12.5
1948
+ 15.0
1949
+ Time (s)
1950
+ 0
1951
+ 20
1952
+ 40
1953
+ 60
1954
+ 80
1955
+ 100
1956
+ =70±22%
1957
+ 2.0
1958
+ 1.5
1959
+ 1.0
1960
+ 0.5
1961
+ 0.0
1962
+ 0.5
1963
+ 1.0
1964
+ 1.5
1965
+ (S > 20)
1966
+ (10 < S < 20)
1967
+ (S < 10)
1968
+ 110301A
1969
+ 101
1970
+ 102
1971
+ 103
1972
+ 104
1973
+ 105
1974
+ Photon Energy - keV
1975
+ 100
1976
+ 101
1977
+ 102
1978
+ 103
1979
+ 104
1980
+ keV × [keV
1981
+ 1S
1982
+ 1cm
1983
+ 2]
1984
+ Band fits
1985
+ Blackbody
1986
+ Band+Blackbody
1987
+ NAI7
1988
+ NAI8
1989
+ NAIb
1990
+ BGO1
1991
+ nai
1992
+ bgo
1993
+ Figure 3. Same as Figure 2 but for GRB 110301A.
1994
+ MNRAS 000, 1–?? (2023)
1995
+
1996
+ 20
1997
+ Li & Shakeri
1998
+ 1
1999
+ 15
2000
+ 10
2001
+ 5
2002
+ 0
2003
+ 5
2004
+ 10
2005
+ 15
2006
+ 20
2007
+ 25
2008
+ 30
2009
+ Time (s)
2010
+ 0
2011
+ 20
2012
+ 40
2013
+ 60
2014
+ 80
2015
+ 100
2016
+ = (84+16
2017
+ 28)%
2018
+ 2.0
2019
+ 1.5
2020
+ 1.0
2021
+ 0.5
2022
+ 0.0
2023
+ 0.5
2024
+ (S > 20)
2025
+ (10 < S < 20)
2026
+ (S < 10)
2027
+ 110721A
2028
+ 101
2029
+ 102
2030
+ 103
2031
+ 104
2032
+ 105
2033
+ Photon Energy - keV
2034
+ 101
2035
+ 102
2036
+ 103
2037
+ 104
2038
+ keV × [keV
2039
+ 1S
2040
+ 1cm
2041
+ 2]
2042
+ Band fits
2043
+ Blackbody
2044
+ Band+Blackbody
2045
+ NAI6
2046
+ NAI7
2047
+ NAI9
2048
+ BGO1
2049
+ nai
2050
+ bgo
2051
+ Figure 4. Same as Figure 2 but for GRB 110721A.
2052
+ MNRAS 000, 1–?? (2023)
2053
+
2054
+ Time-averaging Polarimetric and Spectral Properties of GRBs
2055
+ 21
2056
+ 1
2057
+ 20
2058
+ 0
2059
+ 20
2060
+ 40
2061
+ 60
2062
+ 80
2063
+ 100
2064
+ 120
2065
+ 140
2066
+ Time (s)
2067
+ 0
2068
+ 20
2069
+ 40
2070
+ 60
2071
+ 80
2072
+ 100
2073
+ (Upper limit)
2074
+ 2.0
2075
+ 1.5
2076
+ 1.0
2077
+ 0.5
2078
+ 0.0
2079
+ 0.5
2080
+ 1.0
2081
+ 1.5
2082
+ (S > 20)
2083
+ (10 < S < 20)
2084
+ (S < 10)
2085
+ 140206A
2086
+ 101
2087
+ 102
2088
+ 103
2089
+ 104
2090
+ 105
2091
+ Photon Energy - keV
2092
+ 101
2093
+ 102
2094
+ 103
2095
+ 104
2096
+ keV × [keV
2097
+ 1S
2098
+ 1cm
2099
+ 2]
2100
+ Band fits
2101
+ Blackbody
2102
+ Band+Blackbody
2103
+ NAI0
2104
+ NAI1
2105
+ NAI3
2106
+ BGO0
2107
+ nai
2108
+ bgo
2109
+ Figure 5. Same as Figure 2 but for GRB 140206A.
2110
+ MNRAS 000, 1–?? (2023)
2111
+
2112
+ 22
2113
+ Li & Shakeri
2114
+ 1
2115
+ 20
2116
+ 10
2117
+ 0
2118
+ 10
2119
+ 20
2120
+ 30
2121
+ 40
2122
+ Time (s)
2123
+ 0
2124
+ 20
2125
+ 40
2126
+ 60
2127
+ 80
2128
+ 100
2129
+ = 85 ± 29
2130
+ 2.0
2131
+ 1.5
2132
+ 1.0
2133
+ 0.5
2134
+ 0.0
2135
+ 0.5
2136
+ (S > 20)
2137
+ (10 < S < 20)
2138
+ (S < 10)
2139
+ 160802A
2140
+ 101
2141
+ 102
2142
+ 103
2143
+ 104
2144
+ 105
2145
+ Photon Energy - keV
2146
+ 101
2147
+ 102
2148
+ 103
2149
+ 104
2150
+ keV × [keV
2151
+ 1S
2152
+ 1cm
2153
+ 2]
2154
+ Band fits
2155
+ Blackbody
2156
+ Band+Blackbody
2157
+ NAI2
2158
+ BGO0
2159
+ nai
2160
+ bgo
2161
+ Figure 6. Same as Figure 2 but for GRB 160802A.
2162
+ MNRAS 000, 1–?? (2023)
2163
+
2164
+ Time-averaging Polarimetric and Spectral Properties of GRBs
2165
+ 23
2166
+ 1
2167
+ 101
2168
+ 102
2169
+ 103
2170
+ 104
2171
+ Ep, z[keV]
2172
+ 100
2173
+ 101
2174
+ 102
2175
+ 103
2176
+ a
2177
+ 100826A
2178
+ 110301A
2179
+ 110721A
2180
+ 140206B
2181
+ 160802A
2182
+ 100
2183
+ 101
2184
+ 102
2185
+ 103
2186
+ Power-law index= -0.41±0.24
2187
+ 1051
2188
+ 1052
2189
+ 1053
2190
+ 1054
2191
+ 1055
2192
+ E , iso (erg)
2193
+ 100
2194
+ 101
2195
+ 102
2196
+ 103
2197
+ b
2198
+ 100826A
2199
+ 110301A
2200
+ 110721A
2201
+ 140206B
2202
+ 160802A
2203
+ 100
2204
+ 101
2205
+ 102
2206
+ 103
2207
+ Power-law index= -0.20±0.04
2208
+ 100
2209
+ 101
2210
+ 102
2211
+ 103
2212
+ 104
2213
+ KT,z[keV]
2214
+ 100
2215
+ 101
2216
+ 102
2217
+ 103
2218
+ c
2219
+ 100826A
2220
+ 110301A
2221
+ 110721A
2222
+ 140206B
2223
+ 160802A
2224
+ 100
2225
+ 101
2226
+ 102
2227
+ 103
2228
+ Power-law index= -0.32±0.18
2229
+ 100
2230
+ 101
2231
+ 102
2232
+ 1+
2233
+ 0
2234
+ 100
2235
+ 101
2236
+ 102
2237
+ 103
2238
+ d
2239
+ 100826A
2240
+ 110301A
2241
+ 110721A
2242
+ 140206B
2243
+ 160802A
2244
+ 100
2245
+ 101
2246
+ 102
2247
+ 103
2248
+ 0
2249
+ 1
2250
+ 2
2251
+ 3
2252
+ 4
2253
+ 5
2254
+ 6
2255
+ 7
2256
+ 8
2257
+ 9
2258
+ redshift
2259
+ 100
2260
+ 101
2261
+ 102
2262
+ 103
2263
+ e
2264
+ 100826A
2265
+ 110301A
2266
+ 110721A
2267
+ 140206A
2268
+ 160802A
2269
+ 10
2270
+ 6
2271
+ 10
2272
+ 5
2273
+ 10
2274
+ 4
2275
+ 10
2276
+ 3
2277
+ 10
2278
+ 2
2279
+ Fluence (erg cm
2280
+ 2)
2281
+ 100
2282
+ 101
2283
+ 102
2284
+ 103
2285
+ f
2286
+ 100826A
2287
+ 110301A
2288
+ 110721A
2289
+ 140206A
2290
+ 160802A
2291
+ Figure 7. Scatter plots of polarization degree π versus several other observed quantities: (a) the cosmological rest-frame peak energy (Ep,z) of the νFν prompt
2292
+ emission spectrum, (b) the isotropic-bolometric-equivalent emission energy Eγ,iso, (c) the magnetization parameter σ0, (d) the blackbody temperature kT, (e)
2293
+ the redshift z, and (d) the corresponding energy fluence Sγ. Data points with different colors indicate the different bursts in our target sample. The solid lines
2294
+ (grey) are the best fit using the power-law model with 2σ (95% confidence interval) error region (shadow area).
2295
+ MNRAS 000, 1–?? (2023)
2296
+
2297
+ 24
2298
+ Li & Shakeri
2299
+ 1
2300
+ 1.0
2301
+ 0.5
2302
+ 0.0
2303
+ 0.5
2304
+ 1.0
2305
+ 1.5
2306
+ 2.0
2307
+ 2.5
2308
+ 3.0
2309
+ 100
2310
+ 101
2311
+ 102
2312
+ 100826A
2313
+ 110301A
2314
+ 110721A
2315
+ 160802A
2316
+ 140206A
2317
+ 100
2318
+ 101
2319
+ 102
2320
+ lin
2321
+ max =
2322
+ + 1
2323
+ + 5/3
2324
+ ymax=1
2325
+ ymax=2
2326
+ ymax=5
2327
+ ymax=10
2328
+ ymax=102
2329
+ 110721A
2330
+ 160802A
2331
+ 110301A
2332
+ 100826A
2333
+ 140206A
2334
+ 0.0
2335
+ 0.5
2336
+ 1.0
2337
+ 1.5
2338
+ 0.0
2339
+ 0.2
2340
+ 0.4
2341
+ 0.6
2342
+ 0.8
2343
+ 1.0
2344
+ α
2345
+ Π/Πmax
2346
+ Figure 8. Left: The maximum degree of the linear polarization applying synchrotron emission model (Πlin
2347
+ max Eq. (19)) with observed data using α indices based
2348
+ on a time-integrated spectral analysis. Right: Time integrated polarization degree in the presence of an ordered magnetic field Bord with in the plane of ejecta
2349
+ (Eq. (19)) measured by an on-axis observer (θobs = 0), the evolution of the polarization is plotted in terms of α for different values of ymax = (Γθmax)2.
2350
+ MNRAS 000, 1–?? (2023)
2351
+
2352
+ Time-averaging Polarimetric and Spectral Properties of GRBs
2353
+ 25
2354
+ 1
2355
+ α=0.72
2356
+ α=0.84
2357
+ α=1
2358
+ α=1.2
2359
+ Random B⟂
2360
+ yj = 10
2361
+ 0.6
2362
+ 0.8
2363
+ 1.0
2364
+ 1.2
2365
+ 1.4
2366
+ 1.6
2367
+ 1.8
2368
+ 2.0
2369
+ 0.0
2370
+ 0.1
2371
+ 0.2
2372
+ 0.3
2373
+ 0.4
2374
+ 0.5
2375
+ ζ=θobs/θj
2376
+ Π/Πmax
2377
+ yj=103
2378
+ yj=102
2379
+ yj=10
2380
+ yj=1
2381
+ α = 1
2382
+ Random B⟂
2383
+ 0.6
2384
+ 0.8
2385
+ 1.0
2386
+ 1.2
2387
+ 1.4
2388
+ 1.6
2389
+ 1.8
2390
+ 2.0
2391
+ 0.0
2392
+ 0.2
2393
+ 0.4
2394
+ 0.6
2395
+ ζ=θobs/θj
2396
+ Π/Πmax
2397
+ Figure 9. The time integrated polarization for a random magnetic field B⊥ which lies entirely in the plane of the shock (Eq. (20)) as a function of the off-axis
2398
+ parameter ζ = θobs/θ j for different values of spectral index α (left) and yj = (Γθ j)2 (right) as labeled.
2399
+ MNRAS 000, 1–?? (2023)
2400
+
KNAyT4oBgHgl3EQfsfkS/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
LtFOT4oBgHgl3EQf0TSa/content/tmp_files/2301.12935v1.pdf.txt ADDED
@@ -0,0 +1,1569 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ERA-Solver: Error-Robust Adams Solver
2
+ for Fast Sampling of Diffusion Probabilistic Models
3
+ Shengmeng Li 1 Luping Liu 2 Zenghao Chai 3 Runnan Li 1 Xu Tan 3
4
+ Abstract
5
+ Though denoising diffusion probabilistic models
6
+ (DDPMs) have achieved remarkable generation
7
+ results, the low sampling efficiency of DDPMs
8
+ still limits further applications. Since DDPMs
9
+ can be formulated as diffusion ordinary differ-
10
+ ential equations (ODEs), various fast sampling
11
+ methods can be derived from solving diffusion
12
+ ODEs. However, we notice that previous sam-
13
+ pling methods with fixed analytical form are not
14
+ robust with the error in the noise estimated from
15
+ pretrained diffusion models. In this work, we
16
+ construct an error-robust Adams solver (ERA-
17
+ Solver), which utilizes the implicit Adams nu-
18
+ merical method that consists of a predictor and a
19
+ corrector. Different from the traditional predictor
20
+ based on explicit Adams methods, we leverage a
21
+ Lagrange interpolation function as the predictor,
22
+ which is further enhanced with an error-robust
23
+ strategy to adaptively select the Lagrange bases
24
+ with lower error in the estimated noise. Exper-
25
+ iments on Cifar10, LSUN-Church, and LSUN-
26
+ Bedroom datasets demonstrate that our proposed
27
+ ERA-Solver achieves 5.14, 9.42, and 9.69 Fenchel
28
+ Inception Distance (FID) for image generation,
29
+ with only 10 network evaluations.
30
+ 1. Introduction
31
+ In recent years, denoising diffusion probabilistic models
32
+ (DDPMs) (Ho et al., 2020) have been proven to have poten-
33
+ tial in data generation tasks such as text-to-image genera-
34
+ tion(Poole et al., 2022; Gu et al., 2022; Kim & Ye, 2021;
35
+ Chen et al., 2022), speech synthesis(Huang et al., 2021; Lam
36
+ et al., 2022; Leng et al., 2022), and molecular conformation
37
+ formation(Hoogeboom et al., 2022; Jing et al., 2022; Wu
38
+ et al., 2022; Huang et al., 2022). They build a diffusion
39
+ process to add noise into the sample and a denoising process
40
+ to remove noise from the sample gradually. Compared with
41
+ 1Microsoft Cloud+AI 2Zhejiang University 3Microsoft Re-
42
+ search Asia. Correspondence to: Xu Tan <xuta@microsoft.com>.
43
+ Implicit Adams
44
+ DPM-Solver
45
+ ERA-Solver (Ours)
46
+ Figure 1. We adopt the pretrained diffusion model from (Song
47
+ et al., 2020a) and visualize the error between the estimated noise
48
+ and ground-truth noise in training. We also provide the gener-
49
+ ated samples from the pretrained model based on implicit Adams
50
+ (traditional predictor-corrector method (Diethelm et al., 2002)),
51
+ DPM-Solver(Lu et al., 2022a), and our error-robust Adams solver
52
+ (ERA-Solver). Our solver is robust for the error from pretrained
53
+ model so as to generate samples with better quality.
54
+ generative adversarial networks (GANs)(Goodfellow et al.,
55
+ 2014) and variational auto-encoders (VAEs)(Child, 2021),
56
+ DDPMs have achieved remarkable generation quality. How-
57
+ ever, due to the properties of the Markov chain, the sampling
58
+ process requires hundreds or even thousands of denoising
59
+ steps. Such defects limit the wide applications of diffusion
60
+ models. Thus, it is an urgent request for a fast sampling of
61
+ DDPMs.
62
+ There have already existed many works for accelerating
63
+ sampling speed. Some works introduced an extra training
64
+ stage, such as knowledge distillation method (Salimans &
65
+ Ho, 2021), training sampler (Watson et al., 2021), or directly
66
+ combining with GANs (Wang et al., 2022), to obtain a fast
67
+ sampler. These methods require a cumbersome training
68
+ process for each task, and are black-box samplers due to
69
+ the lack of theoretical explanations. Denoising diffusion
70
+ implicit model (DDIM) (Song et al., 2020a) and Score-
71
+ SDE(Song et al., 2020b) revealed that the sampling can
72
+ be reformulated as a diffusion ordinary differential equa-
73
+ tion (ODE) solving process, which inspired many works to
74
+ design learning-free fast samplers based on numerical meth-
75
+ ods. PNDM (Liu et al., 2021) introduced the analytic form
76
+ arXiv:2301.12935v1 [cs.LG] 30 Jan 2023
77
+
78
+ 70
79
+ 2
80
+ 60
81
+ 50
82
+ 40
83
+ )03
84
+ 30
85
+ 20
86
+ 3
87
+ 10
88
+ 0
89
+ 0.9
90
+ 0.8
91
+ 0.7
92
+ 0.6
93
+ 0.5
94
+ 0.4
95
+ 0.3
96
+ 0.2
97
+ 0.1
98
+ time tError-Robust Adams Solver
99
+ of a 4-order linear multistep method, which is also called ex-
100
+ plicit Adams method (Małgorzata & Marciniak, 2002), and
101
+ utilized the estimated noises observed at previous sampling
102
+ steps to sample efficiently, with a warming initialization
103
+ based on Runge-Kutta methods (Butcher, 1996). DPM-
104
+ Solver(Lu et al., 2022a) introduced exponential integrator
105
+ from ODE literature (Atkinson et al., 2011) and required ex-
106
+ tra network evaluations to observe intermediate noise terms
107
+ for approximating Taylor expansion (Mohazzabi & Becker,
108
+ 2017) in the sampling process.
109
+ The existing learning-free methods (Liu et al., 2021; Lu
110
+ et al., 2022a; Song et al., 2020a) are based on the assump-
111
+ tion that the learned network has high accuracy in noise
112
+ estimations across all the sampling steps. However, we no-
113
+ tice that the noise estimated from the neural network is not
114
+ accurate enough and the error exists at almost every time
115
+ t, especially when time t approaches 0, as shown in Fig.
116
+ 1. Existing sampling methods are not able to be robust for
117
+ noise estimation errors, since they consist of an analytic
118
+ sampling scheme with fixed coefficients to ensure sampling
119
+ convergence. For example, explicit Adams (Małgorzata &
120
+ Marciniak, 2002) consists of the analytic form with fixed
121
+ coefficients as formulated in Eq. 9.
122
+ In this paper, we aim at designing an error-robust diffusion
123
+ ODE solver to speed up the sampling process of DDPMs
124
+ while achieving good sampling quality. To this end, we
125
+ focus on implicit Adams solver (Małgorzata & Marciniak,
126
+ 2006), a kind of numerical ODE solver, which involves
127
+ unobserved terms to achieve high-order precision and con-
128
+ vergence. In existing ODE literature(Atkinson et al., 2011),
129
+ predictor-corrector has been introduced to perform implicit
130
+ Adams solver, which avoids solving the implicit equation.
131
+ Explicit Adams usually acts as the predictor to predict the
132
+ unobserved term. However, traditional predictor-corrector
133
+ still suffers from the inaccurate estimation of diffusion noise
134
+ at each sampling step since it is composed of fixed coeffi-
135
+ cients, which is shown in Fig. 1. Instead of utilizing explicit
136
+ Adams as the predictor, we adopt the Lagrange interpola-
137
+ tion function (Sauer & Xu, 1995) that interpolates several
138
+ Lagrange function bases as the predictor. We maintain a
139
+ buffer of estimated noises observed at previous sampling
140
+ steps during sampling and adaptively select those estimated
141
+ noises with low estimation error as the Lagrange function
142
+ bases, to ensure accurate interpolation result and thus an ac-
143
+ curate predictor. In this way, we can obtain a diffusion ODE
144
+ sampler with not only high convergence (thanks to the im-
145
+ plicit Adams method(Małgorzata & Marciniak, 2006)) but
146
+ also good error robustness (thanks to the adaptive strategy
147
+ for the Lagrange interpolation function).
148
+ However, it is not easy to select noises with low estima-
149
+ tion error as the Lagrange function bases. That is because,
150
+ unlike the training stage, there exist no reference noises
151
+ at the sampling stage to judge how accurate the estimated
152
+ noise is. Thus, we further propose an approach to roughly
153
+ measure the accuracy of the estimated noise by calculating
154
+ the difference between the noise obtained by the predictor
155
+ (as the prediction) and the noise observed at the previous
156
+ sampling step (as the reference). Based on this measure-
157
+ ment, we propose a selection strategy for the buffer which
158
+ adaptively chooses estimated noises that are more accurate
159
+ to construct the Lagrange function bases, so as to result in a
160
+ more accurate predictor, and thus a better ODE solver.
161
+ Our contributions can be summarized as follows:
162
+ • We are the first to explore the potential of numerical im-
163
+ plicit Adams methods (Małgorzata & Marciniak, 2006)
164
+ to solve diffusion ODEs. We propose an error-robust im-
165
+ plicit Adams Solver (ERA-Solver), which is training-free
166
+ and can be extended to pretrained DDPMs conveniently.
167
+ • We propose to adopt the Lagrange interpolation function
168
+ (Sauer & Xu, 1995) that selectively interpolates several
169
+ Lagrange function bases with low errors of estimated
170
+ noises to ensure the ERA-solver is robust to the error in
171
+ estimated noise.
172
+ • Experiment results show that we achieve better results
173
+ on LSUN-Bedroom, LSUN-Church, and Cifar10 datasets
174
+ when compared with previous methods in 10 function
175
+ evaluations. On LSUN-Church and LSUN-Bedroom, we
176
+ achieve state-of-the-art FID results of 7.39 and 5.39 with
177
+ more function evaluations, compared with the previous
178
+ best results of 7.74 and 6.46.
179
+ 2. Preliminary
180
+ 2.1. Denoising Diffusion Probabilistic Models
181
+ Denoising diffusion probabilistic models (DDPMs)(Ho
182
+ et al., 2020) have demonstrated their great generation poten-
183
+ tial on various applications, such as text-to-image synthesis
184
+ (Poole et al., 2022; Gu et al., 2022; Kim & Ye, 2021), image
185
+ inpainting (Lugmayr et al., 2022; Liu et al., 2022; Kawar
186
+ et al., 2022), speech synthesis (Huang et al., 2021; Lam
187
+ et al., 2022; Leng et al., 2022), and molecular conformation
188
+ generation (Hoogeboom et al., 2022; Jing et al., 2022; Wu
189
+ et al., 2022; Huang et al., 2022). It involves a diffusion
190
+ process to gradually add noise to data, and a parameterized
191
+ denoising process to reverse the diffusion process, sampling
192
+ through gradually removing the noise from random noise.
193
+ The diffusion process is modeled as a transition distribution:
194
+ q(xt|xt−1) := N(xt; √αtxt−1, (1 − αt)I),
195
+ (1)
196
+ where α1, ..., αT are fixed parameters. With the transition
197
+ distribution above, noisy distribution conditioned on clean
198
+ data x0 can be formulated as follows:
199
+ q(xt|x0) = N(xt; √αtx0, (1 − αt)I),
200
+ (2)
201
+
202
+ Error-Robust Adams Solver
203
+ where ¯αt = �t
204
+ s=1 αs. When t is large enough, the Markov
205
+ process will converge to a Gaussian steady-state distribution
206
+ N(0, I).
207
+ DDPMs also build the reverse process, i.e., the sampling
208
+ process, to the diffusion process above. Similar to VAEs,
209
+ DDPMs introduce the variational bound to derive optimiza-
210
+ tion objectives. After simplification (Luo, 2022), the main
211
+ objective of training optimization is formulated as a KL
212
+ divergence:
213
+ Lt−1 = DKL(q(xt−1|x0, xt)||pθ(xt−1|xt)),
214
+ (3)
215
+ where q(xt−1|x0, xt) has an analytical form derived from
216
+ the bayesian formula and can be expressed as a Gaussian
217
+ distribution parameterized with µt−1 =
218
+ 1
219
+ √αt (xt −
220
+ 1−αt
221
+ √1−¯αt ϵ)
222
+ and σt−1 = 1−¯αt−1
223
+ 1−¯αt (1 − αt).
224
+ To simplify the optimization loss, the parameterized denois-
225
+ ing distribution is formulated as follows:
226
+ pθ(xt−1|xt) = N(xt−1; µθ(xt), σ2
227
+ t−1I)
228
+ µθ(xt) =
229
+ 1
230
+ √αt
231
+ (xt − 1 − αt
232
+ √1 − ¯αt
233
+ ϵθ(xt, t)),
234
+ (4)
235
+ where ϵθ(xt, t) estimates the noise in noisy sample xt and
236
+ is called estimated noise in our paper. The variance σ2
237
+ t−1 is
238
+ constant. In this way, the objective function Eq. 3 can be
239
+ rewritten as following:
240
+ Lt−1 = Eq[
241
+ 1
242
+ 2σ2
243
+ t−1
244
+ ||µt−1 − µθ(xt)||2]
245
+ = Ex0,ϵ[
246
+ 1
247
+ 2σ2
248
+ t−1
249
+ ||
250
+ 1
251
+ √αt (xt − 1 − αt
252
+ √1 − ¯αt
253
+ ϵ) − µθ(xt)||2]
254
+ = Ex0,ϵ[
255
+ 1
256
+ 2σ2
257
+ t−1
258
+ (1 − αt)2
259
+ αt(1 − ¯αt)||ϵ − ϵθ(xt, t)||2].
260
+ (5)
261
+ Though DDPMs have good theoretical properties, they suf-
262
+ fer from sampling efficiency. It usually requires hundreds
263
+ or even thousands of network evaluations, which limits var-
264
+ ious downstream applications for DDPMs. There already
265
+ existed methods (Watson et al., 2021; Lyu et al., 2022; Lam
266
+ et al., 2022; Salimans & Ho, 2021) which depend on extra
267
+ training stage to derive fast sampling methods. The training-
268
+ based methods usually require tremendous training costs
269
+ for different data manifolds and tasks, which inspires many
270
+ works to explore a training-free sampler based on numerical
271
+ methods.
272
+ 2.2. Numerical Methods for Fast Sampling
273
+ Denoising diffusion implicit model (DDIM) (Song et al.,
274
+ 2020a) is a classic training-free approach for fast sampling,
275
+ which introduces a non-Markovian process that allows the
276
+ sampling with any number of evaluation steps. We formu-
277
+ late the iteration time steps for solving diffusion ODEs as
278
+ {ti}N
279
+ i=0, where t0 is the beginning time and tN is the end
280
+ time. The sequence of sampling steps maintains the prop-
281
+ erty that ti>ti+1 and tN = 0. In particular, the last iterate
282
+ xtN represents the final generated sample. The denoising
283
+ iteration process of DDIM can be formulated as follows:
284
+ xti+1 = �¯αti+1(xt − √1 − ¯αtiϵθ(xti, ti)
285
+ √¯αti)
286
+ +
287
+
288
+ 1 − ¯αti+1 − σ2
289
+ tiϵθ(xti, ti) + σtiz.
290
+ (6)
291
+ Furthermore, DDIM shares the same training objective with
292
+ DDPMs, which means the fast sampling scheme can be
293
+ applied to any pre-trained models. When the variance σ2
294
+ ti is
295
+ set to 0, the sampling process becomes deterministic, which
296
+ can be regarded as the solving process of diffusion ODEs.
297
+ We use a term ϵti for the ease of description so that the
298
+ solving formula of diffusion ODE can be formulated (Song
299
+ et al., 2020a) as follows:
300
+ ϵti = ϵθ(xti, ti),
301
+ (7)
302
+ xti+1 =
303
+ √¯αti+1
304
+ √¯αti
305
+ xti
306
+ + (
307
+
308
+ 1 − ¯αti+1 −
309
+
310
+ ¯αti+1(1 − ¯αti)
311
+ √¯αti
312
+ )ϵti.
313
+ (8)
314
+ Many numerical solvers, such as Runge-Kutta (Butcher,
315
+ 1996) method and linear multistep method (Wells, 1982),
316
+ can be applied to solve diffusion ODEs. PNDM(Liu et al.,
317
+ 2021) combined Runge-Kutta and linear multistep method
318
+ so as to solve the manifold problem of diffusion ODEs.
319
+ Essentially, the linear multistep method can be regarded
320
+ as explicit Adams (Małgorzata & Marciniak, 2002), which
321
+ utilized previously estimated noises to calculate the ϵti. The
322
+ ϵti in Eq. 7 is reformulated as following:
323
+ ϵti = 1
324
+ 24(55ϵθ(xti, ti) − 59ϵθ(xti−1, ti−1)
325
+ + 37ϵθ(xti−2, ti−2) − 9ϵθ(xti−3, ti−3)).
326
+ (9)
327
+ DPM-Solver(Lu et al., 2022a) introduced the method of
328
+ exponential integrator from ODE literature (Atkinson et al.,
329
+ 2011) to eliminate the discretization errors of the linear term
330
+ in the sampling process. Furthermore, DPM-Solver pro-
331
+ posed to utilize Taylor expansion (Mohazzabi & Becker,
332
+ 2017) to approximate ϵti and contributed its analytical
333
+ forms for solving diffusion ODEs.
334
+ We notice that the estimated noises of pretrained diffusion
335
+ models are not precise across all sampling time, especially
336
+ when time ti is close to 0. Previous numerical methods
337
+ with analytical forms will suffer from the noise estimation
338
+ error of pretrained DDPMs. In this paper, we propose an
339
+ error-robust solver based on Adams numerical methods,
340
+ adaptively selecting noises with low estimation error.
341
+
342
+ Error-Robust Adams Solver
343
+ Eq.(8)
344
+ Eq.(17)
345
+ Corrector
346
+ Eq.(11)
347
+ Predictor
348
+ Lagrange Buffer
349
+ Initial indexs
350
+ Selected Indexs
351
+ ERA-Solver
352
+
353
+ Push
354
+ Selected
355
+ Not Selected
356
+ Initial Indexs
357
+ Error-Robust Selection
358
+ Figure 2. The pipeline of ERA-Solver. The sampling scheme is based on the predictor-corrector method for implicit Adams. Our predictor
359
+ is robust to the errors of the estimated noises from pretrained models. The sampling starts from normal Gaussian noise xt0 and performs a
360
+ denoising scheme (from xti to xti+1) iteratively to get the final generated image.
361
+ 3. ERA-Solver
362
+ In this section, we first point out that the error in the esti-
363
+ mated noise ϵθ(xti, ti) by the network θ limits the previ-
364
+ ous numerical fast samplers and introduce implicit Adams
365
+ numerical solver (Sec. 3.1). Then, we apply predictor-
366
+ corrector sampling and leverage a Lagrange interpolation
367
+ function as the predictor (Sec. 3.2). We design an error
368
+ distance to measure the accuracy of the estimated noise and
369
+ enhance the proposed predictor with an error-robust strategy
370
+ to adaptively select the Lagrange bases with lower noise
371
+ estimation error (Sec. 3.3). The whole sampling process is
372
+ shown in Fig. 2.
373
+ 3.1. Implicit Adams Methods
374
+ The sampling of DDPMs starts from a prior noise distribu-
375
+ tion xt0 ∼ N(0, I), and iteratively denoises xti to xti+1
376
+ until time t reaches 0. In the sampling process, the most
377
+ time-consuming step is network evaluation. Assuming we
378
+ have a pretrained noise estimation model ϵθ, we need to
379
+ achieve good generation quality with as few evaluation times
380
+ as possible.
381
+ We notice that the noise estimation error exists across every
382
+ sampling time, especially when time ti is close to 0. It limits
383
+ previous numerical high-order solvers (Liu et al., 2021; Lu
384
+ et al., 2022a; Song et al., 2020a) since they are based on
385
+ the assumption that the network has no estimation errors.
386
+ Previous solvers usually involved observed noise terms to
387
+ achieve the analytic form of the sampling scheme that is
388
+ critical for sampling convergence. Thus, they are sensitive
389
+ to the errors of estimated noises from pretrained models.
390
+ In this paper, we explore the potential of implicit Adams
391
+ solver (Małgorzata & Marciniak, 2006). Different from
392
+ explicit Adams (Eq. 9), implicit Adams involves the unob-
393
+ served noise term and the ϵti in Eq. 7 is reformulated as
394
+ follows:
395
+ ϵti = 1
396
+ 24(9ϵθ(xti+1, ti+1) + 19ϵθ(xti, ti)
397
+ − 5ϵθ(xti−1, ti−1) + ϵθ(xti−2, ti−2)).
398
+ (10)
399
+ It can be noticed that xti+1 can be observed only when
400
+ ϵti is achieved, while the ϵti contains unobserved term
401
+ ϵθ(xti+1, ti+1), which makes it challenging to solve implicit
402
+ equations and may need more time-consuming iteration
403
+ steps. This greatly limits the implicit Adams method to be a
404
+ fast solver for diffusion ODEs.
405
+ Fortunately, in numerical ODE literature, the sampling effi-
406
+ ciency of implicit Adams can be improved with a predictor-
407
+ corrector sampling scheme (Diethelm et al., 2002). Specifi-
408
+ cally, the predictor makes a rough estimation of unobserved
409
+ term ¯ϵθ(xti+1, ti+1) and the corrector derives the precise
410
+ xti+1, which can reformulate Eq.10 as follows:
411
+ ϵti = 1
412
+ 24(9¯ϵθ(xti+1, ti+1) + 19ϵθ(xti, ti)
413
+ − 5ϵθ(xti−1, ti−1) + ϵθ(xti−2, ti−2)).
414
+ (11)
415
+ The traditional predictor-corrector utilizes explicit Adams
416
+ (Eq. 9) to perform predictor to make xti+1 observed so as
417
+ to derive ¯ϵθ(xti+1, ti+1). However, it still suffers from the
418
+ fixed form that is not robust to the noise estimation errors,
419
+ which can be observed in Fig. 1.
420
+ 3.2. Predictor with Lagrange Interpolation Function
421
+ In this paper, we propose to utilize noises observed at pre-
422
+ vious sampling steps and construct the Lagrange interpo-
423
+ lation function as the predictor to predict unobserved term
424
+ ϵθ(xti+1, ti+1). In this way, we can design an adaptive
425
+ strategy to select Lagrange function bases to construct the
426
+ error-robust predictor.
427
+ Specifically, we maintain a buffer about all previously esti-
428
+ mated noises, which have been observed and need no extra
429
+
430
+ Error-Robust Adams Solver
431
+ Selected
432
+ Not Selected
433
+ Sampling Process
434
+ Figure 3. Error-robust selection process. ∆ϵ is calculated based on
435
+ Eq. 15 instead of the training loss in Fig. 1. The sampling NFE is
436
+ set to 20.
437
+ computations, and its corresponding time:
438
+ {(tn, ϵθ(xtn, tn)), n = 0, 1, .., i}.
439
+ (12)
440
+ The maintained buffer is also called the Lagrange buffer
441
+ in this paper. Assume that the interpolation order is k, the
442
+ selected function bases to construct the Lagrange function
443
+ can be written as {(tτm, ϵθ(xtτm, tτm)), m = 0, ...k − 1}.
444
+ The corresponding Lagrange interpolation function can be
445
+ formulated as:
446
+ lm(t) =
447
+ k−1
448
+
449
+ l=0,l̸=m
450
+ ( t − tτl
451
+ tτm − tτl
452
+ ),
453
+ Lϵ(t) =
454
+ k−1
455
+
456
+ m=0
457
+ lm(t) ∗ ϵθ(xtτm , tτm),
458
+ (13)
459
+ where τl belongs to the maintained Lagrange buffer and
460
+ has already been observed. At time ti+1, we can derive an
461
+ estimation about ϵθ(xti+1, ti+1):
462
+ ¯ϵθ(xti+1, ti+1) = Lϵ(ti+1).
463
+ (14)
464
+ With this prediction, we apply the corrector process in Eq.
465
+ 11 to get the ϵti and Eq. 8 to get the denoised sample xti+1.
466
+ It can be noticed that the proposed predictor makes use of
467
+ the observed noise estimations and involves no network eval-
468
+ uations. Furthermore, the Lagrange bases in the predictor
469
+ can be adaptively selected from those noise estimations with
470
+ low errors, which is more error-robust. We introduce this
471
+ error-robust selection strategy in the next subsection.
472
+ 3.3. Error-Robust Selection Strategy
473
+ In this part, our goal is to design an error-robust selection
474
+ strategy for the maintained Lagrange buffer. When the
475
+ interpolation order is k, the intuitive selection approach is
476
+ to make a fixed selection of the last k estimated noises from
477
+ the maintained Lagrange buffer, which means τm = i − m
478
+ in Eq. 13. However, we notice that the noise estimation
479
+ Algorithm 1 ERA-Solver
480
+ 1: Input: {ti}N
481
+ i=0, k, ϵθ
482
+ 2: Instantiate: xt0 ∼ N(0, I), buffer Ω = ∅, ∆ϵ = λ
483
+ 3: Ω = Ω ∪ {(t0, ϵθ(xt0, t0))}
484
+ 4: for i in 0, 1, · · · , N − 1 do
485
+ 5:
486
+ if i<k − 1 then
487
+ 6:
488
+ Derive xti+1 based on Eq. 8 and ϵθ(xti, ti)
489
+ 7:
490
+ Ω = Ω ∪ {(ti+1, ϵθ(xti+1, ti+1))}
491
+ 8:
492
+ else
493
+ 9:
494
+ Calculate {¯τm}k−1
495
+ m=0 via Eq. 16
496
+ 10:
497
+ Calculate {τm}k−1
498
+ m=0 via Eq. 17 and ∆ϵ
499
+ 11:
500
+ Derive Lagrange function Lϵ via Eq. 13 and τm
501
+ 12:
502
+ ¯ϵθ(xti+1, ti+1) ← Lϵ(ti+1)
503
+ 13:
504
+ Calculate ϵti via Ω, ¯ϵθ(xti+1, ti+1), and Eq. 11
505
+ 14:
506
+ Derive xti+1 based on Eq. 8 and ϵti
507
+ 15:
508
+ Ω = Ω ∪ {(ti+1, ϵθ(xti+1, ti+1))}
509
+ 16:
510
+ Update ∆ϵ via Eq. 15 and ¯ϵθ(xti+1, ti+1)
511
+ 17:
512
+ end if
513
+ 18: end for
514
+ 19: return xtN
515
+ error tends to increase as time ti approaches 0 (Fig. 1), in
516
+ which case the fixed selection strategy may aggregate the
517
+ noise estimation errors from Lagrange buffer and make the
518
+ constructed Lagrange function inaccurate for prediction at
519
+ time ti+1. It motivates us to seek a reasonable measure of
520
+ the error in estimated noise so as to select those noises with
521
+ low estimation error for Lagrange interpolation.
522
+ Error Measure for Estimated Noise.
523
+ Since there exists
524
+ no ground-truth noise in sampling process, it is hard to mea-
525
+ sure the error in estimated noise. To this end, we propose to
526
+ utilize the observed noise term ϵθ(xti, ti) as the target noise
527
+ and the predicted noise term ¯ϵθ(xti, ti) from last sampling
528
+ step as the estimated noise to calculate the approximation
529
+ error, which can be seen in Fig. 2. It can be formulated as
530
+ follows:
531
+ ∆ϵ = ||ϵθ(xti, ti) − ¯ϵθ(xti, ti)||2.
532
+ (15)
533
+ ϵθ(xti, ti) is observed based on xti, which is achieved via
534
+ the ¯ϵθ(xti, ti) and Eq. 8. When the error of estimated noise
535
+ from pretrained models increases, it tends to be hard for
536
+ ¯ϵθ(xti, ti) to approximate ϵθ(xti, ti). As shown in Fig.3,
537
+ our error measure in the sampling process shares the same
538
+ trend as the error of estimated noises in the training process
539
+ (Fig. 1), which demonstrates the rationality of the proposed
540
+ error measure.
541
+ Selection Strategy.
542
+ The high-level idea of our error-
543
+ robust selection strategy is that we tend to choose those
544
+ estimated noises from Lagrange buffer with low errors mea-
545
+ sured by Eq. 15 as the Lagrange bases. When sampling
546
+
547
+ 14
548
+ 12
549
+ 10
550
+ 8
551
+ 3
552
+ 6
553
+ 4
554
+ 2
555
+ 0
556
+ 0.8
557
+ 0.7
558
+ 0.6
559
+ 0.5
560
+ 0.4
561
+ 0.3
562
+ 0.2
563
+ 0.1
564
+ time tiError-Robust Adams Solver
565
+ Table 1. Generation quality measured by FID ↓ on LSUN-Church, varying the number of function evaluation (NFE).
566
+ Sampling method \ NFE
567
+ 5
568
+ 10
569
+ 12
570
+ 15
571
+ 20
572
+ 40
573
+ 50
574
+ 100
575
+ DDIM (Song et al., 2020a)
576
+ 56.74
577
+ 19.62
578
+ 15.77
579
+ 13.31
580
+ 11.75
581
+ 10.24
582
+ 10.1
583
+ 9.97
584
+ FON (Liu et al., 2021)
585
+ \
586
+ \
587
+ \
588
+ 21.32
589
+ 10.35
590
+ 9.44
591
+ 9.70
592
+ 9.83
593
+ PNDM (Liu et al., 2021)
594
+ \
595
+ \
596
+ \
597
+ 9.31
598
+ 7.74
599
+ 9.49
600
+ 9.89
601
+ 10.38
602
+ DPM-Solver-2 (Lu et al., 2022a)
603
+ 310.49
604
+ 23.01
605
+ 16.56
606
+ 13.68
607
+ 11.59
608
+ 10.48
609
+ 10.60
610
+ 10.49
611
+ DPM-Solver-fast (Lu et al., 2022a)
612
+ 346.38
613
+ 19.81
614
+ 13.35
615
+ 11.52
616
+ 10.64
617
+ 10.37
618
+ 10.19
619
+ 10.49
620
+ ERA-Solver
621
+ 32.76
622
+ 9.42
623
+ 8.15
624
+ 7.41
625
+ 7.39
626
+ 8.26
627
+ 8.50
628
+ 9.52
629
+ at time ti, the length of the Lagrange buffer is i + 1. We
630
+ initialize k indexes uniformly to cover the whole buffer:
631
+ �τm = (i/k) ∗ m, m = 1, 2, .., k
632
+ (16)
633
+ Then we utilize the power function as an index translator.
634
+ We parameterize the power function with the error measure
635
+ (Eq. 15) so that the translation of initial indexes can be
636
+ formulated as:
637
+ τm = ⌊(�τm/i)∆ϵ/λ ∗ i⌋.
638
+ (17)
639
+ where λ is a hyperparameter to adjust the scale.
640
+ As shown in Fig. 3, our selection focus more on the be-
641
+ ginning of the Lagrange buffer, which tends to be more
642
+ accurate, when the error of estimated noises increases. In
643
+ this way, our selection strategy of buffer makes our La-
644
+ grange interpolation function more accurate in an adaptive
645
+ way, which contributes to an error-robust Adams solver.
646
+ 3.4. Overall Sampling Algorithm
647
+ In this part, we summarize our sampling algorithm. Given a
648
+ pretrained diffusion model ϵθ, we sample from a prior noise
649
+ xt0 ∼ N(0, I) and iteratively denoise from xti to xti+1
650
+ until time ti reaches 0 and xtN is our final generated sample.
651
+ The sampling algorithm is based on the predict-corrector
652
+ method. The k represents the Lagrange interpolation order.
653
+ For the initialization of Lagrange buffer, the first k sampling
654
+ steps are based on DDIM sampling scheme. The details of
655
+ the sampling process can be found in Alg. 1.
656
+ 4. Experiment
657
+ In this section, we demonstrate that, as a training-free sam-
658
+ pler, ERA-Solver is able to accelerate the sampling process
659
+ and be robust for the error from existing pretrained diffusion
660
+ models on various datasets.
661
+ 4.1. Experiment Setting
662
+ We conduct sampling experiments mainly based on three
663
+ datasets: Cifar10 (32 × 32) (Krizhevsky et al., 2009),
664
+ LSUN-Church (256 × 256), (Yu et al., 2015), LSUN-
665
+ Bedroom (256 × 256) (Yu et al., 2015), and Celeba (64
666
+ × 64) (Liu et al., 2015). We adopt the pretrained models
667
+ from DDIM (Song et al., 2020a) on three datasets above to
668
+ evaluate our method.
669
+ We adopt Fenchel Inception Distance (FID) (Heusel et al.,
670
+ 2017) as the evaluation metric to test the generation quality
671
+ of all sampling methods. All evaluation results are based on
672
+ 50k generated samples.
673
+ When sampling on LSUN-Bedroom and LSUN-Church,
674
+ we set tN = 10−4 (withdraw the denoising trick (Song
675
+ et al., 2020b) at the final step) and adopt a uniform timestep
676
+ scheme (select ti uniformly) with discrete-time pretrained
677
+ models. We set λ = 5.0 in Eq. 17 emprically. We set k = 4
678
+ for LSUN-Church and k = 3 for LSUN-Bedroom.
679
+ When sampling on Cifar10, we follow DPM-Solver (Lu
680
+ et al., 2022a) and evaluate on both tN = 10−3 and tN =
681
+ 10−4 settings. We adopt logSNR timestep scheme applied
682
+ in DPM-Solver (Lu et al., 2022a). It has been demonstrated
683
+ (Lu et al., 2022a) that logSNR timestep scheme is more
684
+ suitable for Cifar10, which causes lower discretization er-
685
+ rors. We set λ = 15.0 in Eq. 17 and k = 4 emprically. The
686
+ experiment details and results on Celeba can be found in
687
+ Appendix. B.
688
+ 4.2. Comparison with Previous Fast Sampling Methods
689
+ In this subsection, we show the comparison results of our
690
+ ERA-Solver and other training-free sampling methods. We
691
+ first compare ERA-Solver with previous fast sampling meth-
692
+ ods on LSUN-Church and LSUN-Bedroom datasets. We
693
+ directly use the code released in (Liu et al., 2021; Lu et al.,
694
+ 2022a) to implement PNDM (Liu et al., 2021), FON(Liu
695
+ et al., 2021), and DPM-Solver(Lu et al., 2022a) methods to
696
+ generate the samples for evaluation. We compare the sam-
697
+ pling quality of the training-free sampling methods based on
698
+ 5, 10, 12, 15, 20, 40, 50, and 100 NFEs. Note that PNDM
699
+ and FON (Liu et al., 2021) use 4-order Runge-Kutta for
700
+ the first three sampling steps and each step costs 4 NFEs,
701
+ which means their methods need at least 13 NFEs to per-
702
+ form sampling. Thus, their FID results are missing on 5, 10,
703
+ and 12 NFEs. For DPM-Solver, we adopt a 2-order setting
704
+ (DPM-Solver-2) and its fast scheme (DPM-Solver-fast) for
705
+ comparison.
706
+
707
+ Error-Robust Adams Solver
708
+ Table 2. Generation quality measured by FID ↓ on LSUN-Bedroom, varying the number of function evaluation (NFE).
709
+ Sampling method \ NFE
710
+ 5
711
+ 10
712
+ 12
713
+ 15
714
+ 20
715
+ 40
716
+ 50
717
+ 100
718
+ DDIM (Song et al., 2020a)
719
+ 73.18
720
+ 19.81
721
+ 15.24
722
+ 11.57
723
+ 9.24
724
+ 6.95
725
+ 6.76
726
+ 6.84
727
+ FON (Liu et al., 2021)
728
+ \
729
+ \
730
+ \
731
+ 15.89
732
+ 7.85
733
+ 6.08
734
+ 6.16
735
+ 6.81
736
+ PNDM (Liu et al., 2021)
737
+ \
738
+ \
739
+ \
740
+ 11.59
741
+ 7.19
742
+ 6.46
743
+ 6.87
744
+ 7.77
745
+ DPM-Solver-2 (Lu et al., 2022a)
746
+ 354.12
747
+ 20.95
748
+ 16.98
749
+ 13
750
+ 10.17
751
+ 8.91
752
+ 8.74
753
+ 8.62
754
+ DPM-Solver-fast (Lu et al., 2022a)
755
+ 376.69
756
+ 19.03
757
+ 10.47
758
+ 8.79
759
+ 8.26
760
+ 7.35
761
+ 7.52
762
+ 7.31
763
+ ERA-Solver
764
+ 21.69
765
+ 10.44
766
+ 9.53
767
+ 8.10
768
+ 6.99
769
+ 5.45
770
+ 5.39
771
+ 5.72
772
+ Table 3. Generation quality measured by FID ↓ on Cifar10, varying the number of function evaluation (NFE).
773
+ Sampling method \ NFE
774
+ 5
775
+ 10
776
+ 12
777
+ 15
778
+ 20
779
+ 40
780
+ 50
781
+ 100
782
+ DDPM(Ho et al., 2020)
783
+ \
784
+ 278.67
785
+ 246.29
786
+ 197.63
787
+ 137.34
788
+ \
789
+ 32.63
790
+ \
791
+ Analytic-DDPM (Bao et al., 2022)
792
+ \
793
+ 35.03
794
+ 27.69
795
+ 20.82
796
+ 15.35
797
+ \
798
+ 7.34
799
+ \
800
+ Analytic-DDIM (Bao et al., 2022)
801
+ \
802
+ 14.74
803
+ 11.68
804
+ 9.16
805
+ 7.20
806
+ \
807
+ 4.28
808
+ \
809
+ DDIM(Song et al., 2020a)
810
+ 40.41
811
+ 13.58
812
+ 11.02
813
+ 8.92
814
+ 6.94
815
+ 4.92
816
+ 4.73
817
+ 3.65
818
+ PNDM(Liu et al., 2021)
819
+ \
820
+ \
821
+ \
822
+ 11.8
823
+ 5.7
824
+ 3.47
825
+ 3.31
826
+ 3.35
827
+ DPM-Solver-fast (Lu et al., 2022a) (tN = 10−3)
828
+ 269.36
829
+ 6.37
830
+ 4.65
831
+ 3.78
832
+ 4.28
833
+ 3.80
834
+ 4.03
835
+ 3.88
836
+ DPM-Solver-fast (Lu et al., 2022a) (tN = 10−4)
837
+ 330.08
838
+ 11.32
839
+ 7.31
840
+ 4.75
841
+ 3.80
842
+ 3.51
843
+ 3.54
844
+ 3.44
845
+ ERA-Solver (tN = 10−3)
846
+ 32.45
847
+ 5.14
848
+ 4.38
849
+ 3.86
850
+ 3.79
851
+ 3.97
852
+ 3.91
853
+ 4.0
854
+ ERA-Solver (tN = 10−4)
855
+ 43.31
856
+ 6.16
857
+ 4.84
858
+ 4.2
859
+ 3.84
860
+ 3.45
861
+ 3.42
862
+ 3.51
863
+ LSUN-Church.
864
+ The comparison results on LSUN-
865
+ Church are shown in Tab. 1. When tested on extremely
866
+ few NFE like 5, our ERA-Solver obtains better FID 32.76,
867
+ achieving 42.2% improvement compared with DDIM (Song
868
+ et al., 2020a). When tested on a few NFE like 10 and 15, our
869
+ ERA-Solver obtains 9.42 and 7.41 FID results, achieving
870
+ 51.9% and 20.4% improvements compared with the previ-
871
+ ous best results of 19.62 and 9.31. When tested on larger
872
+ NFE, our ERA-Solver achieves state-of-the-art generation
873
+ quality with FID 7.39, compared with the previous best
874
+ result of 7.74.
875
+ LSUN-Bedroom.
876
+ The comparison results on LSUN-
877
+ Bedroom are shown in Tab. 2. When tested on extremely
878
+ small NFE like 5, our ERA-Solver obtains better FID 21.69,
879
+ achieving 70.3% improvement compared with 73.18 from
880
+ DDIM (Song et al., 2020a). When tested on small NFEs like
881
+ 10 and 12, our ERA-Solver obtains 10.44 and 9.53 FID re-
882
+ sults, achieving 45.1% and 14.5% improvements compared
883
+ with the previous best results of 19.03 and 10.47. When
884
+ tested on larger NFE, our ERA-Solver achieves state-of-the-
885
+ art generation quality with FID 5.39, compared with the
886
+ previous best result of 6.08.
887
+ Cifar10.
888
+ The comparison results on Cifar10 are shown
889
+ in Tab. 3. Our ERA-Solver achieves better results at 5,
890
+ 10, 12, 20, and 40 NFEs. When evaluated on 10 NFE, our
891
+ ERA-Solver obtains 5.14 FID result, achieving a 19.15%
892
+ improvement compared with the previous best result of 6.37.
893
+ Fixed
894
+ NFE=10
895
+ NFE=20
896
+ NFE=30
897
+ ERS
898
+ Figure 4. Generation quality comparison between error-robust se-
899
+ lection strategy (ERS) with λ = 5.0 and fixed strategy (Fixed)
900
+ that select the last k estimated noises fixedly based on 5-order
901
+ Lagrange interpolation function.
902
+ 4.3. Ablation Study
903
+ Effectiveness of error-robust selection strategy.
904
+ We
905
+ compare our error-robust selection strategy and fixed strat-
906
+ egy which selects the last k estimated noises (τm = i − m
907
+ in Eq. 13) based on various orders of Lagrange interpolation
908
+ function in the predictor. The results can be seen in Tab .4.
909
+ We further visualize the samples generated from two strate-
910
+ gies based on a 5-order Lagrange interpolation function, the
911
+ results of which are shown in Fig. 4. It can be concluded
912
+ that our error-robust strategy is more effective than intuitive
913
+ strategies, especially when Lagrange function order is high.
914
+
915
+ Error-Robust Adams Solver
916
+ Table 4. FID comparison between error-robust selection strategy
917
+ (ERS) and fixed strategy (fixed) that select the last k estimated
918
+ noises fixedly based on various Lagrange function orders (k =
919
+ 3, 4, 5, 6). All experiments are conducted on LSUN-Church.
920
+ Method\ NFE
921
+ 10
922
+ 15
923
+ 20
924
+ 40
925
+ 50
926
+ ERA-Solver-3 fixed
927
+ 9.83
928
+ 8.52
929
+ 8.72
930
+ 9.58
931
+ 9.69
932
+ ERS
933
+ 10.2
934
+ 8.03
935
+ 7.63
936
+ 8.11
937
+ 8.37
938
+ ERA-Solver-4 fixed 10.56
939
+ 8.72
940
+ 8.99
941
+ 9.89
942
+ 9.92
943
+ ERS
944
+ 9.42
945
+ 7.41
946
+ 7.39
947
+ 8.26
948
+ 8.5
949
+ ERA-Solver-5 fixed
950
+ 26.7
951
+ 30.36 31.58
952
+ 10.09
953
+ 10.12
954
+ ERS 10.85
955
+ 7.48
956
+ 7.28
957
+ 8.26
958
+ 8.64
959
+ ERA-Solver-6 fixed 63.91 191.69 315.6 298.22 182.44
960
+ ERS 13.79
961
+ 8.41
962
+ 7.41
963
+ 8.43
964
+ 8.7
965
+ Effectiveness of error measure.
966
+ We compare different
967
+ power scales based on the proposed error measure and var-
968
+ ious constants. The results can be seen in Fig. 5. It can
969
+ be observed that the selection strategy based on our error
970
+ measure has better performance than those based on the
971
+ constant scale in general.
972
+ 5. Discussion
973
+ Why FID gets worse when NFE >50.
974
+ We can notice
975
+ that our solver performs worse when NFE increases to 50,
976
+ especially on LSUN dataset (Tab. 2 and Tab. 1). It can be
977
+ understood that FID results fluctuate around a value, which
978
+ is verified on PNDM (Liu et al., 2021).
979
+ Why ERA-Solver performs worse on Cifar10.
980
+ From
981
+ Tab. 3, we can notice that ERA-Solver performs slightly
982
+ worse than DPM-Solver and PNDM when NFE increases,
983
+ which is different from the results on LSUN. The reason
984
+ behind it is the resolution of data. Cifar10 has a very low res-
985
+ olution (32 × 32) while LSUN has a higher resolution (256
986
+ × 256), which means the LSUN dataset is more informative
987
+ than Cifar10. Thus, the model tends to have lower train-
988
+ ing error (noise estimation error) when trained on Cifar10,
989
+ leading to the slightly worse performance of ERA-Solver.
990
+ Rationality of selection function.
991
+ In this paper, we de-
992
+ sign the selection function for the error robustness of the
993
+ sampling solver. The changing trend of noise estimation
994
+ error with timestep (Fig. 1) inspires us to choose the power
995
+ function as an error-robust selection function and experi-
996
+ ments demonstrate its effectiveness. There may exist a better
997
+ selection function or a learning-based approach to selecting
998
+ Lagrange functions and we leave it for future work.
999
+ Why ERA-Solver has better error robustness.
1000
+ We no-
1001
+ tice that the previous numeric solvers depend on the assump-
1002
+ tion that the pretrained diffusion model achieves accurate
1003
+ 10
1004
+ 15
1005
+ 20
1006
+ 25
1007
+ 30
1008
+ 35
1009
+ 40
1010
+ 45
1011
+ 50
1012
+ NFE
1013
+ 9.5
1014
+ 10.0
1015
+ 10.5
1016
+ 11.0
1017
+ 11.5
1018
+ 12.0
1019
+ 12.5
1020
+ 13.0
1021
+ FID
1022
+ ERS = 3.0
1023
+ ERS = 5.0
1024
+ ERS = 8.0
1025
+ Constant 0.2
1026
+ Constant 0.5
1027
+ Constant 0.8
1028
+ Constant 1.0
1029
+ Constant 2.0
1030
+ Figure 5. Generation quality measured by FID ↓. We compare our
1031
+ error-aware scale (∆ϵ/λ in Eq. 17) and constant scale (replace
1032
+ ∆ϵ/λ with a constant) to demonstrate the effectiveness of the pro-
1033
+ posed error measure based on the 3-order Lagrange interpolation
1034
+ function. All FID results are evaluated on LSUN-Church with
1035
+ 5000 generated samples.
1036
+ noise estimation. In this paper, we demonstrate that there
1037
+ exists an obvious estimation error (Fig. 1) from pretrained
1038
+ model, which limits the sampling efficiency of previous fast
1039
+ solvers.
1040
+ Combined with the Lagrange interpolation as the predictor
1041
+ and an error-robust selection strategy, we show that the Im-
1042
+ plicit Adams solver has the potential to be error-robust so as
1043
+ to achieve better sampling efficiency. The predictor based on
1044
+ Lagrange interpolation makes sure our solver has the conver-
1045
+ gence property of the numerical solver (predictor-corrector
1046
+ sampling scheme). The error-robust selection strategy adap-
1047
+ tively introduces relatively accurate estimated noises and
1048
+ mitigates the error accumulation in the sampling process.
1049
+ More analysis can be found in Appendix. C.
1050
+ 6. Conclusion
1051
+ In this paper, we propose an error-robust Adams solver
1052
+ (ERA-Solver) that consists of a predictor and a corrector.
1053
+ We leverage the Lagrange interpolation function to perform
1054
+ the predictor, and further propose an error measure for the
1055
+ sampling process and an error-robust strategy to enhance
1056
+ the predictor. Experiments demonstrate that ERA-Solver
1057
+ achieves better generation quality on LSUN-Church and
1058
+ LSUN-Bedroom datasets at all NFEs. Our ERA-Solver
1059
+ might be misused with powerful diffusion models (Rombach
1060
+ et al., 2022; Kim & Ye, 2021) to generate adverse fake
1061
+ content. We will restrict the usage of our solver and share it
1062
+ with the fake detection community.
1063
+ References
1064
+ Atkinson, K., Han, W., and Stewart, D. E. Numerical so-
1065
+ lution of ordinary differential equations. John Wiley &
1066
+ Sons, 2011.
1067
+
1068
+ Error-Robust Adams Solver
1069
+ Bao, F., Li, C., Zhu, J., and Zhang, B. Analytic-dpm: an ana-
1070
+ lytic estimate of the optimal reverse variance in diffusion
1071
+ probabilistic models. arXiv preprint arXiv:2201.06503,
1072
+ 2022.
1073
+ Butcher, J. C. A history of runge-kutta methods. Applied
1074
+ numerical mathematics, 20(3):247–260, 1996.
1075
+ Chen, W., Hu, H., Saharia, C., and Cohen, W. W. Re-
1076
+ imagen: Retrieval-augmented text-to-image generator.
1077
+ arXiv preprint arXiv:2209.14491, 2022.
1078
+ Child, R. Very deep vaes generalize autoregressive models
1079
+ and can outperform them on images. arXiv:2011.10650,
1080
+ 2021.
1081
+ Diethelm, K., Ford, N. J., and Freed, A. D. A predictor-
1082
+ corrector approach for the numerical solution of fractional
1083
+ differential equations. Nonlinear Dynamics, 29(1):3–22,
1084
+ 2002.
1085
+ Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
1086
+ Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
1087
+ Generative adversarial networks. arXiv:1406.2661, 2014.
1088
+ Gu, S., Chen, D., Bao, J., Wen, F., Zhang, B., Chen,
1089
+ D., Yuan, L., and Guo, B. Vector quantized diffusion
1090
+ model for text-to-image synthesis. In Proceedings of the
1091
+ IEEE/CVF Conference on Computer Vision and Pattern
1092
+ Recognition, pp. 10696–10706, 2022.
1093
+ Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
1094
+ Hochreiter, S. Gans trained by a two time-scale update
1095
+ rule converge to a local nash equilibrium. Advances in
1096
+ Neural Information Processing Systems 30 (NIPS 2017),
1097
+ 2017.
1098
+ Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
1099
+ bilistic models. In NeurIPS, 2020.
1100
+ Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling,
1101
+ M. Equivariant diffusion for molecule generation in 3d.
1102
+ In International Conference on Machine Learning, pp.
1103
+ 8867–8887. PMLR, 2022.
1104
+ Huang, C.-W., Lim, J. H., and Courville, A. C. A varia-
1105
+ tional perspective on diffusion-based generative models
1106
+ and score matching. Advances in Neural Information
1107
+ Processing Systems, 34, 2021.
1108
+ Huang, L., Zhang, H., Xu, T., and Wong, K.-C. Mdm:
1109
+ Molecular diffusion model for 3d molecule generation.
1110
+ arXiv preprint arXiv:2209.05710, 2022.
1111
+ Jing, B., Corso, G., Chang, J., Barzilay, R., and Jaakkola, T.
1112
+ Torsional diffusion for molecular conformer generation.
1113
+ arXiv preprint arXiv:2206.01729, 2022.
1114
+ Kawar, B., Elad, M., Ermon, S., and Song, J.
1115
+ De-
1116
+ noising diffusion restoration models.
1117
+ arXiv preprint
1118
+ arXiv:2201.11793, 2022.
1119
+ Kim, G. and Ye, J. C. Diffusionclip: Text-guided image
1120
+ manipulation using diffusion models. 2021.
1121
+ Krizhevsky, A., Nair, V., and Hinton, G. CIFAR-10 (Cana-
1122
+ dian Institute for Advanced Research), 2009. URL http:
1123
+ //www.cs.toronto.edu/˜kriz/cifar.html.
1124
+ Lam, M. W., Wang, J., Su, D., and Yu, D. Bddm: Bilat-
1125
+ eral denoising diffusion models for fast and high-quality
1126
+ speech synthesis. arXiv preprint arXiv:2203.13508, 2022.
1127
+ Leng, Y., Chen, Z., Guo, J., Liu, H., Chen, J., Tan, X.,
1128
+ Mandic, D., He, L., Li, X.-Y., Qin, T., et al. Binau-
1129
+ ralgrad: A two-stage conditional diffusion probabilis-
1130
+ tic model for binaural audio synthesis. arXiv preprint
1131
+ arXiv:2205.14807, 2022.
1132
+ Liu, H., Wang, Y., Wang, M., and Rui, Y. Delving globally
1133
+ into texture and structure for image inpainting. In Pro-
1134
+ ceedings of the 30th ACM International Conference on
1135
+ Multimedia, pp. 1270–1278, 2022.
1136
+ Liu, L., Ren, Y., Lin, Z., and Zhao, Z. Pseudo numerical
1137
+ methods for diffusion models on manifolds. In Interna-
1138
+ tional Conference on Learning Representations, 2021.
1139
+ Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
1140
+ attributes in the wild. In Proceedings of International
1141
+ Conference on Computer Vision (ICCV), December 2015.
1142
+ Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J.
1143
+ Dpm-solver: A fast ode solver for diffusion probabilis-
1144
+ tic model sampling in around 10 steps. arXiv preprint
1145
+ arXiv:2206.00927, 2022a.
1146
+ Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J. Dpm-
1147
+ solver++: Fast solver for guided sampling of diffusion
1148
+ probabilistic models. arXiv preprint arXiv:2211.01095,
1149
+ 2022b.
1150
+ Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte,
1151
+ R., and Van Gool, L. Repaint: Inpainting using denoising
1152
+ diffusion probabilistic models. In Proceedings of the
1153
+ IEEE/CVF Conference on Computer Vision and Pattern
1154
+ Recognition, pp. 11461–11471, 2022.
1155
+ Luo, C. Understanding diffusion models: A unified perspec-
1156
+ tive. arXiv preprint arXiv:2208.11970, 2022.
1157
+ Lyu, Z., Xu, X., Yang, C., Lin, D., and Dai, B. Accelerating
1158
+ diffusion models via early stop of the diffusion process.
1159
+ arXiv preprint arXiv:2205.12524, 2022.
1160
+ Małgorzata, J. and Marciniak, A. On explicit interval meth-
1161
+ ods of adams-bashforth type. CMST, 8(2):46–57, 2002.
1162
+
1163
+ Error-Robust Adams Solver
1164
+ Małgorzata, J. and Marciniak, A. On two families of implicit
1165
+ interval methods of adams-moulton type. CMST, 12(2):
1166
+ 109–113, 2006.
1167
+ Mohazzabi, P. and Becker, J. L. Numerical solution of dif-
1168
+ ferential equations by direct taylor expansion. Journal of
1169
+ Applied Mathematics and Physics, 5(3):623–630, 2017.
1170
+ Poole, B., Jain, A., Barron, J. T., and Mildenhall, B. Dream-
1171
+ fusion: Text-to-3d using 2d diffusion. arXiv preprint
1172
+ arXiv:2209.14988, 2022.
1173
+ Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
1174
+ Ommer, B. High-resolution image synthesis with latent
1175
+ diffusion models. In Proceedings of the IEEE/CVF Con-
1176
+ ference on Computer Vision and Pattern Recognition, pp.
1177
+ 10684–10695, 2022.
1178
+ Salimans, T. and Ho, J. Progressive distillation for fast sam-
1179
+ pling of diffusion models. In International Conference
1180
+ on Learning Representations, 2021.
1181
+ Sauer, T. and Xu, Y. On multivariate lagrange interpolation.
1182
+ Mathematics of computation, 64(211):1147–1170, 1995.
1183
+ Song, J., Meng, C., and Ermon, S. Denoising diffusion
1184
+ implicit models. arXiv:2010.02502, 2020a.
1185
+ Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar,
1186
+ A., Ermon, S., and Poole, B.
1187
+ Score-based genera-
1188
+ tive modeling through stochastic differential equations.
1189
+ arXiv:2011.13456, 2020b.
1190
+ von Platen, P., Patil, S., Lozhkov, A., Cuenca, P., Lambert,
1191
+ N., Rasul, K., Davaadorj, M., and Wolf, T. Diffusers:
1192
+ State-of-the-art diffusion models. https://github.
1193
+ com/huggingface/diffusers, 2022.
1194
+ Wang, Z., Zheng, H., He, P., Chen, W., and Zhou, M.
1195
+ Diffusion-gan: Training gans with diffusion.
1196
+ arXiv
1197
+ preprint arXiv:2206.02262, 2022.
1198
+ Watson, D., Chan, W., Ho, J., and Norouzi, M. Learning fast
1199
+ samplers for diffusion models by differentiating through
1200
+ sample quality. In International Conference on Learning
1201
+ Representations, 2021.
1202
+ Wells, D. R. Multirate linear multistep methods for the so-
1203
+ lution of systems of ordinary differential equations. Uni-
1204
+ versity of Illinois at Urbana-Champaign, 1982.
1205
+ Wu, L., Gong, C., Liu, X., Ye, M., and Liu, Q. Diffusion-
1206
+ based molecule generation with informative prior bridges.
1207
+ arXiv preprint arXiv:2209.00865, 2022.
1208
+ Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., and
1209
+ Xiao, J.
1210
+ Lsun: Construction of a large-scale image
1211
+ dataset using deep learning with humans in the loop.
1212
+ arXiv:1506.03365, 2015.
1213
+ A. Ablation Study on Cifar10
1214
+ In this part, we provide ablation experiments on Cifar10
1215
+ dataset. We replace our error-robust selection strategy with
1216
+ the fixed selection strategy that fixedly selects the last k
1217
+ estimated noises previously saved in the Lagrange buffer at
1218
+ every sampling step. The results are shown in Tab. 5. From
1219
+ the table, we can see that our selection strategy achieves
1220
+ better FID generation results.
1221
+ We also conduct ablation studies for proposed error mea-
1222
+ sures in the sampling process. We parameterize the power
1223
+ function with various constants instead of our error mea-
1224
+ sure. The comparison results are shown in Fig. 6. Our
1225
+ error measure can enhance the selection strategy with better
1226
+ generation results in general.
1227
+ B. Additional Results on Celeba
1228
+ The comparison results on Celeba are shown in Tab. 6.
1229
+ When tested on a few NFEs like 10 and 12, our ERA-Solver
1230
+ obtains 5.06 and 3.67 FID results, achieving 26.8% and
1231
+ 14.4% improvements compared with the previous best re-
1232
+ sults of 6.92 and 4.20. It can also be observed that FID result
1233
+ of ERA-Solver converges at about NFE 15. Compared with
1234
+ DPM-Solver which converges at NFE 36, ERA-Solver has
1235
+ better convergence speed, while achieving comparable gen-
1236
+ eration quality (FID 2.75 vs 2.71).
1237
+ C. Analysis of Error Robustness
1238
+ Since data distributions like LSUN are high-dimensional
1239
+ and complex, it is difficult to seek a ground truth for the pre-
1240
+ dicted noise in the sampling process. Thus, we demonstrate
1241
+ the error robustness of ERA-Solver from another perspec-
1242
+ tive. Assume that we achieve a generated sample xgen
1243
+ 0
1244
+ from
1245
+ a solver, we can utilize the diffusion process to add noise
1246
+ to the sample, remapping the sample obtained from the de-
1247
+ noising process back to the noise space to derive xgen
1248
+ t
1249
+ . We
1250
+ measure the error robustness of the solver as the following:
1251
+ ||ϵ − ϵθ(xgen
1252
+ t
1253
+ , t)||2,
1254
+ (18)
1255
+ The estimated noise from pretrained model can be seen
1256
+ as the stepping direction of the noisy sample (Song et al.,
1257
+ 2020b). If a solver is not error-robust, its generated samples
1258
+ will deviate from the original generation path in the sam-
1259
+ pling process. Since the generation process can be seen as
1260
+ the reverse process of the diffusion process, the deviation of
1261
+ generated samples will increase the error in Eq. 18.
1262
+ We select normal Implicit Adam solver (Małgorzata &
1263
+ Marciniak, 2006), DPM-Solver (Lu et al., 2022a), and ERA-
1264
+ Solver for comparisons and generate a batch of samples to
1265
+ calculate Eq. 15 separately. Three solvers share the same
1266
+ sampling NFE, random seed, and the pretrained model ϵθ.
1267
+
1268
+ Error-Robust Adams Solver
1269
+ Table 5. FID comparison between error-robust selection strategy
1270
+ (ERS) and fixed strategy (fixed) based on various Lagrange func-
1271
+ tion orders (k = 3, 4, 5, 6).
1272
+ Method\ NFE
1273
+ 10
1274
+ 15
1275
+ 20
1276
+ 50
1277
+ ERA-Solver-3
1278
+ fixed
1279
+ 5.95
1280
+ 4.62
1281
+ 4.24
1282
+ 4.0
1283
+ ERS
1284
+ 5.79
1285
+ 4.31
1286
+ 4.07
1287
+ 3.94
1288
+ ERA-Solver-4
1289
+ fixed
1290
+ 6.4
1291
+ 4.46
1292
+ 4.1
1293
+ 3.98
1294
+ ERS
1295
+ 5.14
1296
+ 3.86
1297
+ 3.79
1298
+ 3.91
1299
+ ERA-Solver-5
1300
+ fixed
1301
+ 17.21
1302
+ 15.11
1303
+ 17.47
1304
+ 3.99
1305
+ ERS
1306
+ 6.26
1307
+ 3.73
1308
+ 3.69
1309
+ 3.98
1310
+ ERA-Solver-6
1311
+ fixed
1312
+ 36.34
1313
+ 51.58
1314
+ 83.39
1315
+ 118.38
1316
+ ERS
1317
+ 19.26
1318
+ 4.16
1319
+ 3.73
1320
+ 4.04
1321
+ 10
1322
+ 15
1323
+ 20
1324
+ 25
1325
+ 30
1326
+ 35
1327
+ 40
1328
+ 45
1329
+ 50
1330
+ NFE
1331
+ 4.0
1332
+ 4.5
1333
+ 5.0
1334
+ 5.5
1335
+ 6.0
1336
+ 6.5
1337
+ FID
1338
+ ERS = 10.0
1339
+ ERS = 5.0
1340
+ ERS = 8.0
1341
+ Constant 0.2
1342
+ Constant 0.5
1343
+ Constant 0.8
1344
+ Constant 1.0
1345
+ Constant 1.2
1346
+ Constant 1.5
1347
+ Figure 6. Generation quality measured by FID ↓. We compare our
1348
+ error-aware scale (∆ϵ/λ) and constant scale based on the 4-order
1349
+ Lagrange function. All FID results are evaluated on Cifar10 with
1350
+ 50k generated samples.
1351
+ The results are shown in Fig. 7, from which we can see that
1352
+ ERA-Solver achieves lower error in general.
1353
+ D. Qualitative Results
1354
+ We sample and visualize the generated samples from LSUN-
1355
+ Church and LSUN-Bedroom datasets. We evaluate DDIM,
1356
+ DPM-Solver, and our method based on 5, 8, 10, 12, 15, and
1357
+ 20 NFEs. Since PNDM (Liu et al., 2021) requires at least 13
1358
+ NFEs to perform sampling, we only compared our method
1359
+ with DDIM (Song et al., 2020a) and DPM-Solver-fast (Lu
1360
+ et al., 2022a) methods. We set λ = 5.0 and apply a 4-order
1361
+ Lagrange interpolation function (k = 4) for comparison.
1362
+ The comparison results are shown in Fig. 9 and Fig. 10.
1363
+ Compared with DDIM, our ERA-Solver can obtain sharper
1364
+ textures, benefiting from its high precision of the implicit
1365
+ Adams scheme. Compared with DPM-Solver-fast, our ERA-
1366
+ Solver can avoid excessive contrast and exposure, achieving
1367
+ more natural texture details.
1368
+ We also provide generated samples based on the 4-order
1369
+ ERA-Solver with λ = 5.0 on Cifar10, as shown in Fig. 8.
1370
+ E. Results on Stable Diffusion
1371
+ We conduct generation comparison based on large-scale
1372
+ latent diffusion mode, i.e., Stable Diffusion (Rombach et al.,
1373
+ 2022). We apply the improved version (Lu et al., 2022b) of
1374
+ DPM-Solver for better conditional generation. The PNDM
1375
+ and improved DPM-Solver are all encapsulated in diffusers
1376
+ (von Platen et al., 2022). We directly apply them by diffusers
1377
+ to make sampling. For ERA-Solver, we set k = 4 and
1378
+ λ = 10.0. The results are shown in Fig. 11 and Fig. 12. It
1379
+ can be observed that ERA-Solver can generate promising
1380
+ images when NFE is 15, which is faster than DPM-Solver
1381
+ and PNDM.
1382
+ We also provide computation time for each sampling pro-
1383
+ cess, as shown in Tab. 7. It can be observed that at NFE
1384
+ 15, ERA-Solver consumes slightly more time (0.08s) than
1385
+ DPM-Solver, which can be contributed to the cost of main-
1386
+ taining the Lagrange buffer. The cost of the Lagrange buffer
1387
+ will increase with NFE increasing. However, ERA-Solver
1388
+ has been able to generate exquisite images on NFE 15. Thus,
1389
+ the computation cost of the Lagrange buffer can be ignored.
1390
+
1391
+ Error-Robust Adams Solver
1392
+ 0.1
1393
+ 0.2
1394
+ 0.3
1395
+ 0.4
1396
+ 0.5
1397
+ 0.6
1398
+ 0.7
1399
+ 0.8
1400
+ 0.9
1401
+ time t
1402
+ 0
1403
+ 50
1404
+ 100
1405
+ 150
1406
+ 200
1407
+ 250
1408
+ 300
1409
+ 350
1410
+ ||
1411
+ (xgen
1412
+ t
1413
+ , t)||2
1414
+ DPM-Solver
1415
+ ERA-Solver (Ours)
1416
+ Normal Implicit Adams
1417
+ Figure 7. The error comparison between three fast solvers. For ERA-Solver, we set k = 4 and λ = 5.0. The random seed and pretrained
1418
+ model are shared with three solvers.
1419
+ Table 6. Generation quality measured by FID ↓ on Celeba, varying the number of function evaluation (NFE).
1420
+ Sampling method \ NFE
1421
+ 5
1422
+ 10
1423
+ 12
1424
+ 15
1425
+ 20
1426
+ 40
1427
+ 50
1428
+ 100
1429
+ DDIM (Song et al., 2020a)
1430
+ 24.26
1431
+ 13.4
1432
+ 13.23
1433
+ 11.63
1434
+ 9.62
1435
+ 6.87
1436
+ 6.08
1437
+ 4.5
1438
+ Analytic-DDPM (Bao et al., 2022)
1439
+ \
1440
+ 28.99
1441
+ 25.27
1442
+ 21.80
1443
+ 18.14
1444
+ \
1445
+ 11.23
1446
+ \
1447
+ Analytic-DDIM (Bao et al., 2022)
1448
+ \
1449
+ 15.62
1450
+ 13.90
1451
+ 12.29
1452
+ 10.45
1453
+ \
1454
+ 6.13
1455
+ \
1456
+ PNDM (Liu et al., 2021)
1457
+ \
1458
+ \
1459
+ \
1460
+ 10.91
1461
+ 7.59
1462
+ 4.06
1463
+ 3.45
1464
+ 2.97
1465
+ DPM-Solver-fast (Lu et al., 2022a)
1466
+ \
1467
+ 6.92
1468
+ 4.20
1469
+ 3.05
1470
+ 2.82
1471
+ 2.71 (NFE = 36)
1472
+ ERA-Solver
1473
+ 23.32
1474
+ 5.06
1475
+ 3.67
1476
+ 2.99
1477
+ 2.75
1478
+ 2.69
1479
+ 2.73
1480
+ 2.72
1481
+ Figure 8. Generated samples from ERA-Solver-4 (20 NFE).
1482
+ Table 7. Computation time of sampling on Stable Diffusion, vary-
1483
+ ing different solvers and NFE.
1484
+ Sampling Method \ NFE
1485
+ 15
1486
+ 25
1487
+ 50
1488
+ PNDM (Liu et al., 2021)
1489
+ 2.69
1490
+ 3.74
1491
+ 6.13
1492
+ DPM-Solver (Lu et al., 2022a)
1493
+ 1.86
1494
+ 2.76
1495
+ 5.30
1496
+ ERA-Solver
1497
+ 1.94
1498
+ 3.05
1499
+ 6.01
1500
+
1501
+ Error-Robust Adams Solver
1502
+ DDIM
1503
+ DPM-
1504
+ Solver-
1505
+ fast​
1506
+ Ours
1507
+ NFE=5
1508
+ NFE=8
1509
+ NFE=10
1510
+ NFE=12
1511
+ NFE=15
1512
+ NFE=20
1513
+ DDIM
1514
+ DPM-
1515
+ Solver-
1516
+ fast​
1517
+ Ours
1518
+ DDIM
1519
+ DPM-
1520
+ Solver-
1521
+ fast​
1522
+ Ours
1523
+ Figure 9. Generation quality comparison with 5, 8, 10, 12, 15, and 20 NFEs on LSUN-Church dataset.
1524
+
1525
+ Error-Robust Adams Solver
1526
+ DDIM
1527
+ DPM-
1528
+ Solver-
1529
+ fast​
1530
+ Ours
1531
+ NFE=5
1532
+ NFE=8
1533
+ NFE=10
1534
+ NFE=12
1535
+ NFE=15
1536
+ NFE=20
1537
+ DDIM
1538
+ DPM-
1539
+ Solver-
1540
+ fast​
1541
+ Ours
1542
+ DDIM
1543
+ DPM-
1544
+ Solver-
1545
+ fast​
1546
+ Ours
1547
+ Figure 10. Generation quality comparison with 5, 8, 10, 12, 15, and 20 NFEs on LSUN-Bedroom dataset.
1548
+
1549
+ Error-Robust Adams Solver
1550
+ PNDM
1551
+ DPM-Solver
1552
+ Ours
1553
+ NFE=15
1554
+ NFE=25
1555
+ NFE=50
1556
+ Prompt: Cute and adorable ferret wizard, wearing coat and suit
1557
+ Figure 11. Samples using the pretrained Stable-Diffusion (Rombach et al., 2022) with a classifier-free guidance scale 7.5 (the default
1558
+ setting), varying different solvers and NFEs. The main part of input prompt is: “Cute and adorable ferret wizard, wearing coat and suit”.
1559
+
1560
+ Error-Robust Adams Solver
1561
+ NFE=15
1562
+ NFE=25
1563
+ NFE=50
1564
+ PNDM
1565
+ DPM-Solver
1566
+ Ours
1567
+ Figure 12. Samples using the pretrained Stable-Diffusion (Rombach et al., 2022) with a classifier-free guidance scale 7.5 (the default
1568
+ setting), varying different solvers and NFEs. The main part of input prompt is: “A beautiful mansion beside a waterfall in the woods”.
1569
+
LtFOT4oBgHgl3EQf0TSa/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
NNE0T4oBgHgl3EQf0QK5/content/tmp_files/2301.02684v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
NNE0T4oBgHgl3EQf0QK5/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
NtAyT4oBgHgl3EQfgviP/content/tmp_files/2301.00364v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
NtAyT4oBgHgl3EQfgviP/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
NtE0T4oBgHgl3EQfTQBT/content/tmp_files/2301.02233v1.pdf.txt ADDED
@@ -0,0 +1,2256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02233v1 [math.OA] 5 Jan 2023
2
+ THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK
3
+ GRAPH ALGEBRAS
4
+ JEFFREY L. BOERSEMA AND SARAH L. BROWNE AND ELIZABETH GILLASPY
5
+ Abstract. For each odd integer n ≥ 3, we construct a rank-3 graph Λn with involution γn
6
+ whose real C∗-algebra C∗
7
+ R (Λn, γn) is stably isomorphic to the exotic Cuntz algebra E
8
+ R
9
+ n. This
10
+ construction is optimal, as we prove that a rank-2 graph with involution (Λ, γ) can never
11
+ satisfy C∗
12
+ R (Λ, γ) ∼ME E
13
+ R
14
+ n, and the first author reached the same conclusion for rank-1 graphs
15
+ (directed graphs) in [Boe17, Corollary 4.3]. Our construction relies on a rank-1 graph with
16
+ involution (Λ, γ) whose real C∗-algebra C∗
17
+ R (Λ, γ) is stably isomorphic to the suspension SR.
18
+ In the Appendix, we show that the i-fold suspension SiR is stably isomorphic to a graph
19
+ algebra iff −2 ≤ i ≤ 1.
20
+ 1. Introduction
21
+ For every odd integer n ≥ 3, the (complex) Cuntz algebra On has two real forms: the real
22
+ Cuntz algebra O
23
+ R
24
+ n and the exotic Cuntz algebra En. While the existence of En follows from the
25
+ classification of simple purely infinite real C∗-algebras [Boe06, BRS11], the non-constructive
26
+ nature of the existence portion of this classification theorem [Boe06, Theorem 1] means that
27
+ we know very little about En beyond its K-theory. In particular, until now there has been
28
+ no construction or representation of En in terms of familiar C∗-algebraic objects.
29
+ In this paper, we give an explicit realization of the stabilized exotic Cuntz algebras KR ⊗R
30
+ En as higher-rank graph algebras associated to rank-3 graphs with involution. Given the
31
+ extensive literature on the properties of higher-rank graph C∗-algebras, we anticipate that
32
+ this concrete description will facilitate an improved understanding of these elusive algebras.
33
+ Higher-rank graphs, or k-graphs, are a k-dimensional generalization of directed graphs
34
+ which were introduced by Kumjian and Pask in [KP00]. Many of the properties of (complex)
35
+ directed graph C∗-algebras, such as their K-theory [RS04] and their ideal structure [BHRS02,
36
+ HS04], are visible from the graph.
37
+ While the structure of k-graph C∗-algebras is more
38
+ intricate than that of graph C∗-algebras, k-graph C∗-algebras also encompass a broader
39
+ range of examples. Indeed [RSS15], every complex UCT Kirchberg algebra is a direct limit
40
+ of 2-graph C∗-algebras. The real C∗-algebra C∗
41
+ R(Λ, γ) of a higher-rank graph with involution
42
+ (Λ, γ) was recently introduced by the first and third authors in [BG22]. In that paper, the
43
+ authors also generalized the work of [Eva08] and [Boe17] to describe a spectral sequence
44
+ which converges to the CR K-theory of these real C∗-algebras.
45
+ The main result (Theorem 4.3) of the present paper, that the exotic Cuntz algebra is stably
46
+ isomorphic to the C∗-algebra of a 3-graph with involution, is the best possible in terms of
47
+ the rank of Λ. In [Boe17], the first author made an extensive analysis of the K-theory of the
48
+ real C∗-algebra C∗
49
+ R(Λ, γ) of a rank-1 graph (directed graph) with involution. 1 In particular,
50
+ [Boe17, Corollary 4.3] establishes that the exotic Cuntz algebra cannot be isomorphic or
51
+ stably isomorphic to the real C∗-algebra C∗
52
+ R(Λ) of a directed graph Λ, or to the real C∗-
53
+ algebra C∗
54
+ R(Λ, γ) of a graph with involution, since KO7(En) = Z2 but KO7(C∗
55
+ R(Λ, γ)) is
56
+ always torsion-free. Theorem 3.1 below uses the K-theory spectral sequence for real higher-
57
+ rank graph C∗-algebras ([BG22, Section 3]) to show that En ̸∼ME C∗
58
+ R(Λ, γ)) for any rank-2
59
+ 1This class of C∗-algebras includes the real C∗-algebras C∗
60
+ R (Λ) of a directed graph, introduced in [Boe14],
61
+ as C∗
62
+ R (Λ) ∼= C∗
63
+ R (Λ, γtriv).
64
+ 1
65
+
66
+ 2
67
+ JEFFREY L. BOERSEMA AND SARAH L. BROWNE AND ELIZABETH GILLASPY
68
+ graph with involution (Λ, γ).
69
+ However, we construct in Theorem 4.3 a family of rank-3
70
+ graphs with involution (Λn, γn) such that C∗
71
+ R(Λn, γn) ∼= En ⊗R KR.
72
+ Our construction combines the directed graphs with involution (En, γn) of [Boe17, Exam-
73
+ ple 6.2], which satisfy C∗
74
+ R(En, γn) ∼ME S6En, with a directed graph with involution (Λ, γ)
75
+ such that (Proposition 4.1) C∗
76
+ R(Λ, γ) is a real Kirchberg algebra which is KK-equivalent
77
+ to the suspension algebra SR ∼= C0((0, 1)).
78
+ To be precise, the 3-graph Λn which gives
79
+ C∗
80
+ R(Λn, γn) ∼= En ⊗R KR is a product graph, Λn = En × Λ × Λ.
81
+ Prompted by the graph with involution of Proposition 4.1, we consider in Section 5 the
82
+ question of which suspensions SiR are KK-equivalent to the real C∗-algebra of a graph with
83
+ involution. For −2 ≤ i ≤ 1 we exhibit an example of a graph with involution (Λ, γ) such that
84
+ C∗
85
+ R(Λ, γ) is KK-equivalent to SiR, and we show in Proposition 5.2 that SiR ̸∼KK C∗
86
+ R(Λ, γ)
87
+ if 2 ≤ i ≤ 5. (However, we can realize these suspensions as 2-graph or 3-graph algebras, by
88
+ taking products of the graphs which do realize suspensions of R.)
89
+ Many key questions remain open for further investigation about the class of real C∗-
90
+ algebras that can be obtained using higher-rank graphs. For example, it is still unknown
91
+ whether or not En itself can be realized as a rank-k graph-with-involution algebra. Similarly,
92
+ it remains unknown which real Kirchberg algebras can be realized by higher-rank graphs
93
+ with involution (as opposed to inductive limits of such objects); we would particularly like
94
+ to find a K-theoretic characterization of such algebras.
95
+ Acknowledgments: E.G. was partially supported by NSF grant 1800749.
96
+ 2. Preliminaries
97
+ 2.1. Higher-rank graphs.
98
+ Definition 2.1. [KP00, Definition 1.1] A higher-rank graph of rank k, or a k-graph, is
99
+ a countable small category Λ equipped with a degree functor d: Λ → Nk such that, if a
100
+ morphism λ ∈ Λ satisfies d(λ) = m + n, then there exist unique morphisms µ, ν ∈ Λ such
101
+ that λ = µν, d(µ) = m and d(ν) = n.
102
+ Write ei for the standard ith basis vector of Nk.
103
+ The morphisms of degree ei can be
104
+ advantageously viewed as the “edges of color i” in Λ. In this perspective, if e is an edge of
105
+ color i and f is an edge of color j, their composition ef ∈ Λ satisfies
106
+ d(ef) = ei + ej = ej + ei,
107
+ so we must be able to rewrite ef = f ′e′ for some morphisms e′, f ′ ∈ Λ with d(f ′) = ej and
108
+ d(e′) = ei.
109
+ Indeed, by [HRSW13, Theorems 4.4 and 4.5], a k-graph can be equivalently thought of
110
+ as arising from a directed graph G, with k colors of edges and with a factorization rule on
111
+ multicolored paths. That is, given any two colors (“red” and “blue”) and any two vertices
112
+ v, w in G, the factorization rule identifies each red-blue path ef from v to w with an equivalent
113
+ blue-red path f ′e′ from v to w.
114
+ We would like the quotient of the space G∗ of directed paths in G by the equivalence
115
+ relation ∼ generated by the factorization rule to be a k-graph.
116
+ For this to occur, the
117
+ factorization rule must also satisfy certain consistency conditions which ensure that, for each
118
+ path in G∗, its equivalence class under ∼ corresponds to a k-dimensional hyper-rectangle;
119
+ see [EFG+21, Theorem 2.3] for more details. As our work in this paper does not depend on
120
+ these consistency conditions, we will not reproduce them here. That said, we remark that in
121
+
122
+ THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK GRAPH ALGEBRAS
123
+ 3
124
+ a rank-1 graph, the factorization rule is nonexistent, and so a 1-graph is precisely the space
125
+ of paths of a directed graph.
126
+ Let Λ be a k-graph. Given n ∈ Nk and objects v, w ∈ Λ, we write
127
+ (1)
128
+ Λn = {λ ∈ Λ : d(λ) = n}.
129
+ By the factorization rule, for every λ ∈ Λ, there are unique v, w ∈ Λ0 with vλ = λw =
130
+ vλw = λ. That is, we can identify Λ0 with the objects of Λ. If λ = vλw, we write v = r(λ)
131
+ and w = s(λ). Thus, expanding on Equation (1), we have
132
+ vΛn = {λ ∈ Λ : r(λ) = v and d(λ) = n}
133
+ Λnw = {λ ∈ Λ : s(λ) = w and d(λ) = n},
134
+ (2)
135
+ as well as the obvious variations such as vΛnw.
136
+ A k-graph Λ has k adjacency matrices Mi ∈ MΛ0(N), which are given by
137
+ (3)
138
+ Mi(v, w) = #vΛeiw.
139
+ In the graphical picture, λ ∈ Λ(n1,...,nk) means that λ represents the ∼-equivalence class of
140
+ a path with ni edges of color i, for each 1 ≤ i ≤ k. That is, Λ0 consists of the length-0 paths,
141
+ ie, the vertices. Then Mi(v, w) is the number of edges of color i from vertex w to vertex v.
142
+ If Λ1 is a k1-graph and Λ2 is a k2-graph, then [KP00, Proposition 1.8] their (Cartesian)
143
+ product Λ1 ×Λ2 is a (k1 +k2)-graph; the degree functor is given by d(λ1, λ2) = (d(λ1), d(λ2).
144
+ We have (Λ1 × Λ2)0 = Λ0
145
+ 1 × Λ0
146
+ 2 and s(λ1 × λ2) = (s(λ1), s(λ2)).
147
+ In this paper we will focus on k-graphs which are row-finite and source-free (or have no
148
+ sources). We say a k-graph Λ is row-finite if |vΛn| < ∞ for all n ∈ Nk and v ∈ Λ0. The
149
+ k-graph has no sources if vΛn ̸= ∅ for all v, n. It is straightforward to check that if Λ1, Λ2
150
+ are row-finite and source-free, then so is Λ1 × Λ2.
151
+ For a row-finite source-free k-graph Λ, its (complex) C∗-algebra is the universal C∗-algebra
152
+ generated by a Cuntz–Krieger Λ-family.
153
+ Definition 2.2. [KP00, Definition 1.5] Given a row-finite source-free k-graph Λ, a Cuntz–Krieger
154
+ Λ-family is a collection {tλ}λ∈Λ of partial isometries in a C∗-algebra A which satisfy the fol-
155
+ lowing conditions:
156
+ (CK1) For each v ∈ Λ0, tv is a projection, and tvtw = δv,wtv.
157
+ (CK2) For each λ ∈ Λ, t∗
158
+ λtλ = ts(λ).
159
+ (CK3) For each λ, µ ∈ Λ, tλtµ = tλµ.
160
+ (CK4) For each v ∈ Λ0 and each n ∈ Nk, tv =
161
+
162
+ λ∈vΛn
163
+ tλt∗
164
+ λ.
165
+ We define C∗(Λ) to be the universal (complex) C∗-algebra generated by a Cuntz–Krieger
166
+ family, in the sense that for any Cuntz–Krieger Λ-family {tλ}λ∈Λ, there is a surjective ∗-
167
+ homomorphism C∗(Λ) → C∗({tλ}λ).
168
+ We write {sλ}λ∈Λ for the generators of C∗(Λ). By using the Cuntz–Krieger relations,
169
+ one can compute that C∗(Λ) = span{sλs∗
170
+ µ : s(λ) = s(µ)}. Corollary 3.5(iv) of [KP00] also
171
+ establishes that C∗(Λ1 × Λ2) ∼= C∗(Λ1) ⊗ C∗(Λ2); the isomorphism takes s(λ1,λ2) to sλ1 ⊗ sλ2.
172
+ We will use one more ingredient – an involution – to construct the real C∗-algebras asso-
173
+ ciated to higher-rank graphs.
174
+ Definition 2.3. An involution γ on a k-graph Λ is a degree-preserving functor γ : Λ → Λ
175
+ which satisfies γ ◦ γ = id Λ.
176
+
177
+ 4
178
+ JEFFREY L. BOERSEMA AND SARAH L. BROWNE AND ELIZABETH GILLASPY
179
+ As established in [BG22, Lemma 2.4], the real C∗-algebra associated to a k-graph Λ and
180
+ an involution γ : Λ → Λ is
181
+ (4)
182
+ C∗
183
+ R(Λ, γ) = spanR{zsλs∗
184
+ µ + zsγ(λ)s∗
185
+ γ(µ) | z ∈ C, λ, µ ∈ Λ}.
186
+ Equivalently, we have C∗
187
+ R(Λ, γ) = {a ∈ C∗(Λ) | �γ(a) = a∗}, where �γ is the antimultiplicative
188
+ C∗-involution uniquely determined by �γ(sλ) = s∗
189
+ γ(λ). For any involution γ on Λ, we have
190
+ C∗(Λ) ∼= C ⊗R C∗
191
+ R(Λ, γ).
192
+ 2.2. CRT K-theory. In our work, we will use the full united K-theory K
193
+ CRT(A) (introduced
194
+ in [Boe02]) as well as the abbreviated variation K
195
+ CR(A) which contains just the real and
196
+ complex parts. Theorem 10.2 of [BRS11] shows that the category of real purely infinite
197
+ simple C∗-algebras, whose complexifications are simple and in the UCT class, is classified up
198
+ to isomorphism by either of these invariants. We tend to use K
199
+ CR(A) since it is simpler and
200
+ usually sufficient, but we will also need to use K
201
+ CRT(A) on occasion since that is the context
202
+ in which we have the K¨unneth formula. Specifically, recall that for a real C∗-algebra A,
203
+ K
204
+ CR(A) = {KO∗(A), KU∗(A)}
205
+ K
206
+ CRT(A) = {KO∗(A), KU∗(A), KT∗(A)}
207
+ where KO∗(A) is the standard 8-periodic real K-theory for a real C∗-algebra and KU∗(A) =
208
+ K∗(C ⊗C A) is the 2-periodic K-theory of the complexification of A. Meanwhile KT∗(A) is
209
+ the 4-periodic self-conjugate K-theory. These invariants also include the additional CR and
210
+ CRT -module structure. In particular for K
211
+ CR(A) there are natural transformations
212
+ ri : KUi(A) → KOi(A)
213
+ induced by the standard inclusion C → M2(R)
214
+ ci : KOi(A) → KUi(A)
215
+ induced by the standard inclusion R → C
216
+ ψi : KUi(A) → KUi(A)
217
+ induced by conjugation C → C
218
+ ηi : KOi(A) → KOi+1(A)
219
+ induced by multiplication by η ∈ KO1(R) = Z2
220
+ ξi : KOi(A) → KOi+1(A)
221
+ induced by multiplication by ξ ∈ KO4(R) = Z.
222
+ This additional structure tends to aid in the computations of KO∗(A) because the natural
223
+ transformations satisfy the relations
224
+ rc = 2
225
+ cr = 1 + ψ
226
+ 2η = 0
227
+ rψ = r
228
+ ψ2 = id
229
+ η3 = 0
230
+ ψc = c
231
+ ψβU = −βUψ
232
+ ξ = rβ2
233
+ Uc
234
+ and they fit into a long exact sequence
235
+ (5)
236
+ · · ·
237
+ rβ−1
238
+ U
239
+ −−−→ KOi(A)
240
+ η−→ KOi+1(A)
241
+ c−→ KUi+1(A)
242
+ rβ−1
243
+ U
244
+ −−−→ KOi−1(A)
245
+ η−→ · · ·
246
+ These two invariants K
247
+ CR(A) and K
248
+ CRT(A) contain the same information by results of
249
+ [Hew96] (summarized, for example, in [BRS11, Proposition 2.5]).
250
+ 2.3. K-theory for higher-rank graphs. For the real C∗-algebra C∗
251
+ R(Λ, γ) of a higher-
252
+ rank graph with involution, [BG22, Theorem 3.10] establishes the existence of a spectral
253
+ sequence {Er, dr} of CR-modules that converges to K
254
+ CR(C∗
255
+ R(Λ, γ)). The complex part of this
256
+ spectral sequence (Er
257
+ p,q)
258
+ U coincides with the Evans spectral sequence [Eva08] and converges
259
+ to KU∗(C∗
260
+ R(Λ, γ)) = K∗(C∗(Λ)). The real part of this spectral sequence (Er
261
+ p,q)
262
+ O converges to
263
+ KO∗(C∗
264
+ R(Λ, γ)).
265
+
266
+ THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK GRAPH ALGEBRAS
267
+ 5
268
+ The E2 page of the spectral sequence arises from the homology of a certain chain complex C
269
+ based on the combinatorial information of Λ and γ. We will use the spectral sequence only in
270
+ the rank-1 and rank-2 cases, where these chain complexes have the following straightforward
271
+ descriptions which we recall from [BG22, Theorems 3.14 and 3.15]. First let Λ0
272
+ f be the set
273
+ of vertices fixed by the involution γ and let Λ0
274
+ g ⊔ Λ0
275
+ h be any partition of Λ0\Λ0
276
+ f satisfying
277
+ γ(Λ0
278
+ g) = Λ0
279
+ h and γ(Λ0
280
+ h) = Λ0
281
+ g. Then let A = K
282
+ CR(R)Λ0
283
+ f ⊕ K
284
+ CR(C)Λ0
285
+ g.
286
+ For a rank-1 graph with involution the chain complex C is given by
287
+ 0 → A
288
+ ∂1
289
+ −→ A → 0,
290
+ where ∂1 = ρ1. For a rank-2 graph with involution the chain complex C is given by
291
+ 0 → A
292
+ ∂2
293
+ −→ A2 ∂1
294
+ −→ A → 0,
295
+ where ∂1 =
296
+
297
+ ρ1
298
+ ρ2�
299
+ and ∂2 =
300
+
301
+ −ρ2
302
+ ρ1
303
+
304
+ . Here the maps ρi are determined by the adjacency
305
+ structure of Λ as follows. For 1 ≤ i ≤ k, the complex part (ρi)
306
+ U
307
+ 0 : ZΛ0 → ZΛ0 is represented
308
+ by the matrix Bi = I − Mt
309
+ i , where Mi is the adjacency matrix of the graph Λ for the edges
310
+ of degree ei, and (ρi)
311
+ U
312
+ 1 = 0 for all i. The real parts of this map (ρi)
313
+ O
314
+ j , for 0 ≤ j ≤ 7, can
315
+ similarly be determined for each i by some variations of Bi as shown in Table 3 of [BG22]
316
+ and Theorem 4.4 of [Boe17], which we also reproduce here as Table 1.
317
+ complex part
318
+ 0
319
+
320
+
321
+ B11
322
+ B12
323
+ B12
324
+ B21
325
+ B22
326
+ B23
327
+ B21
328
+ B23
329
+ B22
330
+
331
+
332
+ Z|Λ0
333
+ f | ⊕ Z|Λ0
334
+ g| ⊕ Z|Λ0
335
+ h → Z|Λ0
336
+ f| ⊕ Z|Λ0
337
+ g| ⊕ Z|Λ0
338
+ h
339
+ 1
340
+ 0
341
+ 0
342
+ real part
343
+ 0
344
+
345
+ B11
346
+ 2B12
347
+ B21
348
+ B22 + B23
349
+
350
+ Z|Λ0
351
+ f| ⊕ Z|Λ0
352
+ g| → Z|Λ0
353
+ f| ⊕ Z|Λ0
354
+ g|
355
+ 1
356
+ B11
357
+ Z
358
+ |Λ0
359
+ f |
360
+ 2
361
+ → Z
362
+ |Λ0
363
+ f|
364
+ 2
365
+ 2
366
+
367
+ B11
368
+ B12
369
+ 0
370
+ B22 − B23
371
+
372
+ Z
373
+ |Λf|
374
+ 2
375
+ ⊕ Z|Λ0
376
+ g| → Z
377
+ |Λf|
378
+ 2
379
+ ⊕ Z|Λ0
380
+ g|
381
+ 3
382
+ 0
383
+ 0
384
+ 4
385
+
386
+ B11
387
+ B12
388
+ 2B21
389
+ B22 + B23
390
+
391
+ Z|Λ0
392
+ f| ⊕ Z|Λ0
393
+ g| → Z|Λ0
394
+ f| ⊕ Z|Λ0
395
+ g|
396
+ 5
397
+ 0
398
+ 0
399
+ 6
400
+ B22 − B23
401
+ Z|Λ0
402
+ g| → Z|Λ0
403
+ g|
404
+ 7
405
+ 0
406
+ 0
407
+ Table 1. Chain complex maps for real K-theory
408
+ For reference, the groups of K
409
+ CR(R) and K
410
+ CR(C) are shown below. The natural trans-
411
+ formations η, c, r, and ψ that are part of the structure of united K-theory are uniquely
412
+ determined from these groups and the long exact sequence (5); they are also shown in Ta-
413
+ bles 1 and 2 of [BG22]. In particular we note that for KO∗(R), the map ηi is non-trivial
414
+ exactly for i = 0, 1.
415
+
416
+ 6
417
+ JEFFREY L. BOERSEMA AND SARAH L. BROWNE AND ELIZABETH GILLASPY
418
+ 0
419
+ 1
420
+ 2
421
+ 3
422
+ 4
423
+ 5
424
+ 6
425
+ 7
426
+ KO∗(R)
427
+ Z
428
+ Z2
429
+ Z2
430
+ 0
431
+ Z
432
+ 0
433
+ 0
434
+ 0
435
+ KU∗(R)
436
+ Z
437
+ 0
438
+ Z
439
+ 0
440
+ Z
441
+ 0
442
+ Z
443
+ 0
444
+ 0
445
+ 1
446
+ 2
447
+ 3
448
+ 4
449
+ 5
450
+ 6
451
+ 7
452
+ KO∗(C)
453
+ Z
454
+ 0
455
+ Z
456
+ 0
457
+ Z
458
+ 0
459
+ Z
460
+ 0
461
+ KU∗(C)
462
+ Z2
463
+ 0
464
+ Z2
465
+ 0
466
+ Z2
467
+ 0
468
+ Z2
469
+ 0
470
+ 3. Non-Existence of a Rank-2 Graph with Involution
471
+ Theorem 3.1. Let n be an odd integer, n ≥ 3. There does not exist a (row-finite, source-
472
+ free) rank-2 graph with involution (Λ, γ) such that K
473
+ CR(C∗
474
+ R(Λ, γ)) ∼= K
475
+ CR(En).
476
+ Proof. Suppose that (Λ, γ) is a row-finite, source-free rank-2 graph with involution and that
477
+ K
478
+ CR(C∗
479
+ R(Λ, γ)) ∼= K
480
+ CR(En). For reference we reproduce the groups of K
481
+ CR(En) here:
482
+ 0
483
+ 1
484
+ 2
485
+ 3
486
+ 4
487
+ 5
488
+ 6
489
+ 7
490
+ KO∗(En)
491
+ Z2(n−1)
492
+ Z2
493
+ Z2
494
+ 0
495
+ Z(n−1)/2
496
+ 0
497
+ Z2
498
+ Z2
499
+ KU∗(En)
500
+ Zn−1
501
+ 0
502
+ Zn−1
503
+ 0
504
+ Zn−1
505
+ 0
506
+ Zn−1
507
+ 0
508
+ Note that since KU7(En) = 0 and since im η6 = ker c7 from the long exact sequence (5) relat-
509
+ ing KO∗(A) and KU∗(A), we see immediately that η6: Z2 → Z2 must be an isomorphism.
510
+ Now, we consider only the real part of the spectral sequence from [BG22, Theorem 3.15].
511
+ This is a spectral sequence converging to KO∗(C∗
512
+ R(Λ, γ)), where the E2-page consists of the
513
+ homology of the chain complex
514
+ (6)
515
+ 0 → A
516
+ ∂2
517
+ −−→ A2
518
+ ∂1
519
+ −−→ A → 0
520
+ where A ∼= KO∗(R)Λ0
521
+ f ⊕ KO∗(C)Λ0
522
+ g as described in Section 2.3.
523
+ In particular, the spectral sequence has three non-zero columns (for 0 ≤ p ≤ 2) and
524
+ is periodic in q (with period 8). Furthermore, a quick examination of the structure of A
525
+ (cf. Figure 1) reveals that Ai = 0 for i = 3, 5, 7 and also that Ai is free for i = 0, 4, 6.
526
+ Consequently, E2
527
+ p,q = 0 for q = 3, 5, 7. Moreover, since E2
528
+ 2,q = ker ∂2 is a subgroup of Ai, we
529
+ must have E2
530
+ 2,q free for q = 0, 4, 6. Indeed, E∞
531
+ 2,q = ker d2
532
+ 2,q is a subgroup of E2
533
+ 2,q, so E∞
534
+ 2,q must
535
+ also be free for q = 0, 4, 6. On the other hand, KOi(C∗
536
+ R(Λ, γ)) is finite in all degrees, so it
537
+ must be that E∞
538
+ 2,q = 0 for q = 0, 4, 6.
539
+
540
+ THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK GRAPH ALGEBRAS
541
+ 7
542
+ From what we have said so far, the E∞
543
+ p,q page of the spectral sequence is as follows:
544
+ ...
545
+ ...
546
+ ...
547
+ 7
548
+ 0
549
+ 0
550
+ 0
551
+ 6
552
+
553
+
554
+ 0
555
+ 5
556
+ 0
557
+ 0
558
+ 0
559
+ 4
560
+
561
+
562
+ 0
563
+ 3
564
+ 0
565
+ 0
566
+ 0
567
+ 2
568
+
569
+
570
+
571
+ 1
572
+
573
+
574
+
575
+ 0
576
+
577
+
578
+ 0
579
+ q/p
580
+ 0
581
+ 1
582
+ 2
583
+ This E∞ page identifies a filtration of KO∗(C∗
584
+ R(Λ, γ)), in which the subquotients of KOj(C∗
585
+ R(Λ, γ))
586
+ appear along the diagonal p + q = j of the E∞ page.
587
+ By hypothesis we have KO0(C∗
588
+ R(Λ, γ)) = Z2(n−1). However, the only non-zero group along
589
+ the diagonal p + q = 0 is E∞
590
+ 0,0. Thus E∞
591
+ 0,0 = Z2(n−1). Similarly, since KO7(C∗
592
+ R(Λ, γ)) = Z2
593
+ and KO6(C∗
594
+ R(Λ, γ)) = Z2, we must have E∞
595
+ 1,6 = Z2 = E∞
596
+ 0,6:
597
+ ...
598
+ ...
599
+ ...
600
+ 7
601
+ 0
602
+ 0
603
+ 0
604
+ 6
605
+ Z2
606
+ Z2
607
+ 0
608
+ 5
609
+ 0
610
+ 0
611
+ 0
612
+ 4
613
+
614
+
615
+ 0
616
+ 3
617
+ 0
618
+ 0
619
+ 0
620
+ 2
621
+
622
+
623
+
624
+ 1
625
+
626
+
627
+
628
+ 0
629
+ Z2(n−1)
630
+
631
+ 0
632
+ q/p
633
+ 0
634
+ 1
635
+ 2
636
+ Now, we consider the natural transformation η: A → A of degree 1. Because A is a
637
+ direct sum of copies of K
638
+ CR(R) and K
639
+ CR(C), which data already includes the map η, the
640
+ natural transformation η : KO∗(C∗
641
+ R(Λ, γ)) → KO∗+1(C∗
642
+ R(Λ, γ)) exists at the level of the
643
+ chain complex (6), passes to a map on the E2-page, then to a map on the E∞-page, and
644
+ finally converges to the map η: KOi(C∗
645
+ R(Λ, γ)) → KOi+1(C∗
646
+ R(Λ, γ)) described in Section 2.2.
647
+ This means that the map η on KO∗(C∗
648
+ R(Λ, γ)) respects the filtration of KOi(C∗
649
+ R(Λ, γ))
650
+ associated with the spectral sequence; and the resulting maps on the subquotients are the
651
+ same as that on the E∞ page.
652
+ In particular, the diagonals of the E∞-page that yield
653
+ KO6(C∗
654
+ R(Λ, γ)) and KO7(C∗
655
+ R(Λ, γ)) give the commutative diagram below. The vertical η
656
+ maps on the left and right come from A as described above.
657
+ 0
658
+ � E∞
659
+ 0.6
660
+
661
+ η
662
+
663
+ KO6(C∗
664
+ R(Λ, γ))
665
+
666
+ η
667
+
668
+ E∞
669
+ 1,5
670
+
671
+ η
672
+
673
+ 0
674
+ 0
675
+ � E∞
676
+ 0.7
677
+ � KO7(C∗
678
+ R(Λ, γ))
679
+ � E∞
680
+ 1,6
681
+ � 0
682
+ ⇐⇒
683
+ 0
684
+ � Z2
685
+
686
+ η
687
+
688
+ Z2
689
+
690
+ η
691
+
692
+ 0
693
+
694
+ η
695
+
696
+ 0
697
+ 0
698
+ � 0
699
+ � Z2
700
+ � Z2
701
+ � 0
702
+
703
+ 8
704
+ JEFFREY L. BOERSEMA AND SARAH L. BROWNE AND ELIZABETH GILLASPY
705
+ Since the nonzero horizontal maps must be isomorphisms, the commutative diagram forces
706
+ the vertical map η6: KO6(C∗
707
+ R(Λ, γ)) → KO7(C∗
708
+ R(Λ, γ)) in the center of the diagram to be
709
+ zero, which contradicts the known value of η in KO∗(E
710
+ R
711
+ n).
712
+
713
+ 4. Existence of a Rank-3 Graph with Involution
714
+ In this section, we will construct a 3-graph Λ with involution γ, by taking products of
715
+ 1-graphs with involution, such that C∗
716
+ R(Λ, γ) is stably isomorphic to E
717
+ R
718
+ n. In what follows, we
719
+ use the following convention for suspension of graded modules. If H = {Hi} is a Z-graded
720
+ group, then ΣH is a Z-graded group with (ΣH)i = Hi+1. Similarly, Σ−1H is a Z-graded
721
+ group with (Σ−1H)i = Hi−1. This convention is consistent with K-theory and suspensions
722
+ of C∗-algebras: K∗(SnA) = ΣnK∗(A).
723
+ For the proof of the following proposition, we will need a few more preliminaries. For a
724
+ graph Λ, a subset X ⊆ Λ0 is hereditary if whenever v ∈ X and vΛw ̸= ∅, then w ∈ X. A cycle
725
+ in Λ is a path e1e2 · · ·en with r(e1) = s(en) but, for all 1 ≤ i < n, we have s(ei) ̸= r(ei+1).
726
+ We say that a cycle has an entrance if there exists 1 ≤ j ≤ n and an edge f ̸= ej with
727
+ r(f) = r(ej). If the only hereditary subsets of Λ0 are ∅ and Λ0, and every cycle in Λ has an
728
+ entrance, then [Szy01, Theorem 12] C∗(Λ) is simple. Furthermore, if every cycle in Λ has an
729
+ entrance, then Λ is aperiodic.
730
+ Proposition 4.1. There exists a 1-graph Λ and involution γ such that K
731
+ CR(C∗
732
+ R(Λ, γ)) ∼=
733
+ ΣK
734
+ CR(R). Furthermore, C∗
735
+ R(Λ, γ) is simple and purely infinite.
736
+ Proof. Let Λ be the 1-graph below (which extends infinitely in both directions) and let γ be
737
+ the non-trivial involution, which fixes the vertices and edges of the infinite branch on the
738
+ left and swaps the vertices and edges of the two infinite branches on the right in the obvious
739
+ way. (In fact γ is the only non-trivial involution on Λ.)
740
+
741
+ �❅
742
+
743
+
744
+
745
+
746
+
747
+
748
+
749
+
750
+ �❅
751
+
752
+
753
+
754
+
755
+
756
+
757
+
758
+
759
+ �❅
760
+
761
+
762
+
763
+
764
+
765
+
766
+
767
+
768
+
769
+ �❅
770
+
771
+
772
+
773
+
774
+
775
+
776
+
777
+
778
+ �❅
779
+
780
+
781
+
782
+
783
+
784
+
785
+
786
+
787
+ �❅
788
+
789
+
790
+
791
+
792
+
793
+
794
+ •�
795
+
796
+ �⑦
797
+
798
+
799
+
800
+
801
+
802
+
803
+
804
+
805
+ �⑦
806
+
807
+
808
+
809
+
810
+
811
+
812
+
813
+
814
+ �⑦
815
+
816
+
817
+
818
+
819
+
820
+
821
+
822
+
823
+
824
+
825
+
826
+
827
+
828
+ �⑦
829
+
830
+
831
+
832
+
833
+
834
+
835
+
836
+
837
+ �⑦
838
+
839
+
840
+
841
+
842
+
843
+
844
+
845
+
846
+ �⑦
847
+
848
+
849
+
850
+
851
+
852
+
853
+
854
+
855
+ �⑦
856
+
857
+
858
+
859
+
860
+
861
+
862
+
863
+ �❅
864
+
865
+
866
+
867
+
868
+
869
+
870
+
871
+
872
+ �❅
873
+
874
+
875
+
876
+
877
+
878
+
879
+
880
+
881
+ �❅
882
+
883
+
884
+
885
+
886
+
887
+
888
+
889
+
890
+ �❅
891
+
892
+
893
+
894
+
895
+
896
+
897
+ • �
898
+
899
+
900
+
901
+ �⑦
902
+
903
+
904
+
905
+
906
+
907
+
908
+
909
+
910
+ �⑦
911
+
912
+
913
+
914
+
915
+
916
+
917
+
918
+
919
+ �⑦
920
+
921
+
922
+
923
+
924
+
925
+
926
+
927
+ We begin by showing that C∗
928
+ R(Λ, γ) is simple and purely infinite. It is straightforward to
929
+ check that Λ has no nontrivial hereditary subsets, and that every cycle has an entrance, so
930
+ simplicity of the complex algebra C∗(Λ) follows from [Szy01, Theorem 12]. Note further that
931
+ for every vertex v ∈ Λ0, there is a vertex w with vΛw ̸= ∅ for some vertex w which supports
932
+ a loop. As Λ is aperiodic, one easily checks that the conditions of [KP00, Proposition 4.9]
933
+ are satisfied, and so C∗(Λ) is purely infinite. Consequently, [BRS11, Theorem 3.9] implies
934
+ that the real C∗-algebra C∗
935
+ R(Λ, γ) is also simple and purely infinite.
936
+ We now show that KU0(C∗
937
+ R(Λ, γ)) = 0 and KU1(C∗
938
+ R(Λ, γ)) = Z. (This is the same as
939
+ calculating K∗(C∗(Λ)) and does not involve the involution γ.) Let M be the adjacency matrix
940
+ for Λ (so Mv,w is the number of edges from w to v). Then KU0(C∗
941
+ R(Λ, γ)) ∼= coker (I − Mt),
942
+
943
+ THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK GRAPH ALGEBRAS
944
+ 9
945
+ which can be interpreted as saying that KU0(C∗
946
+ R(Λ, γ)) is generated by vertex projection
947
+ classes [pv], which are subject only to relations of the form
948
+ [pv] =
949
+
950
+ w∈Λ0
951
+ Mv,w[pw] .
952
+ Let v be one of the vertices of Λ that has a loop, and let w ̸= v be the vertex for which there
953
+ is an edge from w to v (in each case there is a unique such w). Then the formula above
954
+ gives the relation [pv] = [pv] + [pw], which implies that [pw] = 0. If [pw] = 0 we will say
955
+ that w is a zero vertex. Now if w is a zero vertex and there is only one edge to w, say from
956
+ vertex u, then it follows that u is also a zero vertex. More generally, if w is a zero vertex
957
+ and all the edges to w are known to emanate from zero vertices except possibly one edge
958
+ from vertex u, then it follows that u is also a zero vertex. Using these principles, it is now
959
+ straightforward to work through the graph and to find that every vertex is a zero vertex.
960
+ Hence KU0(C∗
961
+ R(Λ, γ)) = 0.
962
+ We know that KU1(C∗
963
+ R(Λ, γ)) ∼= ker(I − Mt), which is to say that
964
+ (7)
965
+ KU1(C∗
966
+ R(Λ, γ)) ∼= NΛ :=
967
+
968
+ α: Λ0 → Z | α(v) =
969
+
970
+ w∈Λ0
971
+ Mw,v α(w)
972
+
973
+ .
974
+ Let v be one of the vertices of Λ that has a loop, and let w ̸= v be the vertex for which
975
+ there is an edge from v to w (in each case there is a unique such w). Then we have the
976
+ relation α(v) = α(v) + α(w), which implies that α(w) = 0 for any α ∈ NΛ. If α(w) = 0 for
977
+ all α ∈ NΛ we will say that w is a null vertex. Now if w is a null vertex and there is only one
978
+ edge emanating from w, say to vertex u, then it follows that u is also a null vertex. More
979
+ generally, if w is a null vertex and all the edges from w are known to point to null vertices
980
+ except possibly one edge to vertex u, then u is also a null vertex. Using these principles,
981
+ it is now straightforward to work through the graph and to find that every vertex is a null
982
+ vertex, except for the six vertices labelled u, v, w, x, y, z shown below.
983
+ v•
984
+ �❇
985
+
986
+
987
+
988
+
989
+
990
+
991
+
992
+
993
+ u•
994
+ �❇
995
+
996
+
997
+
998
+
999
+
1000
+
1001
+
1002
+
1003
+
1004
+ �❅
1005
+
1006
+
1007
+
1008
+
1009
+
1010
+
1011
+
1012
+
1013
+
1014
+ �❅
1015
+
1016
+
1017
+
1018
+
1019
+
1020
+
1021
+
1022
+
1023
+ �❅
1024
+
1025
+
1026
+
1027
+
1028
+
1029
+
1030
+
1031
+
1032
+ �❅
1033
+
1034
+
1035
+
1036
+
1037
+
1038
+
1039
+ w•�
1040
+
1041
+ �②
1042
+
1043
+
1044
+
1045
+
1046
+
1047
+
1048
+
1049
+
1050
+
1051
+ �⑤
1052
+
1053
+
1054
+
1055
+
1056
+
1057
+
1058
+
1059
+
1060
+
1061
+ �⑦
1062
+
1063
+
1064
+
1065
+
1066
+
1067
+
1068
+
1069
+
1070
+
1071
+
1072
+
1073
+
1074
+
1075
+ �⑦
1076
+
1077
+
1078
+
1079
+
1080
+
1081
+
1082
+
1083
+
1084
+ �⑦
1085
+
1086
+
1087
+
1088
+
1089
+
1090
+
1091
+
1092
+
1093
+ �⑦
1094
+
1095
+
1096
+
1097
+
1098
+
1099
+
1100
+
1101
+
1102
+ �④
1103
+
1104
+
1105
+
1106
+
1107
+
1108
+
1109
+
1110
+
1111
+ �❈
1112
+
1113
+
1114
+
1115
+
1116
+
1117
+
1118
+
1119
+
1120
+ x•
1121
+ �❉
1122
+
1123
+
1124
+
1125
+
1126
+
1127
+
1128
+
1129
+
1130
+
1131
+ �❆
1132
+
1133
+
1134
+
1135
+
1136
+
1137
+
1138
+
1139
+
1140
+
1141
+ �❄
1142
+
1143
+
1144
+
1145
+
1146
+
1147
+
1148
+
1149
+ • �
1150
+
1151
+
1152
+ y•
1153
+ �⑥
1154
+
1155
+
1156
+
1157
+
1158
+
1159
+
1160
+
1161
+
1162
+ z•
1163
+ �⑥
1164
+
1165
+
1166
+
1167
+
1168
+
1169
+
1170
+
1171
+
1172
+
1173
+ �⑧
1174
+
1175
+
1176
+
1177
+
1178
+
1179
+
1180
+
1181
+
1182
+ Using Equation (7) and the fact that the unlabeled vertices are null vertices, we see that
1183
+ any α ∈ NΛ must satisfy the equations
1184
+ 0 = α(u) + α(w)
1185
+ α(w) = α(v) + α(x)
1186
+ 0 = α(w) + α(x)
1187
+ α(x) = α(w) + α(y)
1188
+ 0 = α(x) + α(z)
1189
+
1190
+ 10
1191
+ JEFFREY L. BOERSEMA AND SARAH L. BROWNE AND ELIZABETH GILLASPY
1192
+ Solving this system over Z, we find that α(u) is a free variable and that
1193
+ α(v) = −2α(u), α(w) = −α(u), α(x) = α(u), α(y) = 2α(u), and α(z) = −α(u) .
1194
+ Thus NΛ ∼= Z. Hence KU∗(C∗
1195
+ R(Λ, γ)) = K∗(C∗(Λ)) = (0, Z).
1196
+ Turning to the real K-theory, we now prove that KO∗(C∗
1197
+ R(Λ, γ))) = (Z2, Z2, 0, Z, 0, 0, 0, Z).
1198
+ First, we show that the real and complex E2 = E∞ page of the Evans spectral sequence for
1199
+ C∗
1200
+ R(Λ, γ) is as follows.
1201
+ E2
1202
+ p,q
1203
+ (8)
1204
+ real part
1205
+ ...
1206
+ ...
1207
+ ...
1208
+ 7
1209
+ 0
1210
+ 0
1211
+ 6
1212
+ 0
1213
+ Z
1214
+ 5
1215
+ 0
1216
+ 0
1217
+ 4
1218
+ 0
1219
+ 0
1220
+ 3
1221
+ 0
1222
+ 0
1223
+ 2
1224
+ 0
1225
+ Z
1226
+ 1
1227
+ Z2
1228
+ 0
1229
+ 0
1230
+ Z2
1231
+ 0
1232
+ q/p
1233
+ 0
1234
+ 1
1235
+ complex part
1236
+ ...
1237
+ ...
1238
+ ...
1239
+ 7
1240
+ 0
1241
+ 0
1242
+ 6
1243
+ 0
1244
+ Z
1245
+ 5
1246
+ 0
1247
+ 0
1248
+ 4
1249
+ 0
1250
+ Z
1251
+ 3
1252
+ 0
1253
+ 0
1254
+ 2
1255
+ 0
1256
+ Z
1257
+ 1
1258
+ 0
1259
+ 0
1260
+ 0
1261
+ 0
1262
+ Z
1263
+ q/p
1264
+ 0
1265
+ 1
1266
+ (9)
1267
+ We have already discussed the complex part of this spectral sequence. For the real part we
1268
+ will only discuss the computations for the rows corresponding to j = −1, 0, 1. As we will see,
1269
+ this is enough to determine KO∗(C∗
1270
+ R(Λ, γ)). The other rows can be computed using similar
1271
+ methods and we include them in the table above for completeness, but we will neither need
1272
+ nor discuss them.
1273
+ First, the spectral sequence for a 1-graph with involution always vanishes in row j = −1,
1274
+ since the chain complex vanishes in that degree. To compute row j = 1 of the spectral
1275
+ sequence, we refer to [BG22, Theorem 3.14] and Table 1 above, which indicates that E2
1276
+ 0,1
1277
+ and E2
1278
+ 1,1 are the cokernel and kernel of the map
1279
+ (∂1)1 = I − Mt
1280
+ 11 : Z
1281
+ Λ0
1282
+ f
1283
+ 2
1284
+ → Z
1285
+ Λ0
1286
+ f
1287
+ 2
1288
+ where Λ0
1289
+ f is the set of fixed vertices of (Λ, γ) and M11 is the restriction of the incidence
1290
+ matrix to those vertices. So it suffices to consider the graph consisting of the fixed points of
1291
+ Λ, shown here.
1292
+
1293
+
1294
+ �❄
1295
+
1296
+
1297
+
1298
+
1299
+
1300
+
1301
+
1302
+
1303
+
1304
+ �❄
1305
+
1306
+
1307
+
1308
+
1309
+
1310
+
1311
+
1312
+ •x
1313
+
1314
+ �❆
1315
+
1316
+
1317
+
1318
+
1319
+
1320
+
1321
+
1322
+ •y
1323
+
1324
+ �❈
1325
+
1326
+
1327
+
1328
+
1329
+
1330
+
1331
+
1332
+
1333
+
1334
+
1335
+ �⑧
1336
+
1337
+
1338
+
1339
+
1340
+
1341
+
1342
+
1343
+
1344
+
1345
+ �⑧
1346
+
1347
+
1348
+
1349
+
1350
+
1351
+
1352
+
1353
+
1354
+
1355
+ �⑥
1356
+
1357
+
1358
+
1359
+
1360
+
1361
+
1362
+
1363
+
1364
+
1365
+ �⑥
1366
+
1367
+
1368
+
1369
+
1370
+
1371
+
1372
+ •z
1373
+
1374
+ Using this graph, and the same sort of analysis that we did in the complex case, we find that
1375
+ coker (I − Mt
1376
+ 11) = Z2. More precisely, working modulo 2 we find that [pv] = 0 for all vertices
1377
+ in Λ0
1378
+ f except those labeled x, y and z in the graph above and that [px] = [py] = [pz] ̸= 0. We
1379
+ also find easily that ker(I − Mt
1380
+ 11) = 0.
1381
+ Now, for j = 0, we need to find the cokernel and kernel of the map (∂1)0 which we will
1382
+ do using Table 1. First recall the partition Λ0 = Λ0
1383
+ f ⊔ Λ0
1384
+ g ⊔ Λ0
1385
+ h where Λ0
1386
+ f is the set of fixed
1387
+
1388
+ THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK GRAPH ALGEBRAS
1389
+ 11
1390
+ vertices (the branch on the left of Λ), Λ0
1391
+ g is the set of vertices of the “upper right” branch of
1392
+ Λ, and Λ0
1393
+ h is the set of vertices of the “lower right” branch. With this structure on Λ, the
1394
+ (infinite) matrix B = I − Mt can be written in block form as
1395
+ B = I − Mt =
1396
+ ���
1397
+
1398
+ B11
1399
+ B12
1400
+ B12
1401
+ B21
1402
+ B22
1403
+ B23
1404
+ B21
1405
+ B23
1406
+ B33
1407
+
1408
+
1409
+ where, for example, B12 keeps track of edges from vertices in Λ0
1410
+ f to vertices in Λ0
1411
+ g. Using
1412
+ Table 1, we see that
1413
+ (∂1)0 : ZΛ0
1414
+ f ⊕ ZΛ0
1415
+ g → ZΛ0
1416
+ f ⊕ ZΛ0
1417
+ g
1418
+ is given by
1419
+ (∂1)0 =
1420
+
1421
+ B11
1422
+ 2B12
1423
+ B21
1424
+ B22 + B23
1425
+
1426
+ .
1427
+ We will use a new graph Λ′ to analyze this map. The graph Λ′, shown below, is obtained
1428
+ from Λ by keeping the vertices from Λ0
1429
+ f and Λ0
1430
+ g. For each edge in Λ from a vertex in Λ0
1431
+ g to
1432
+ a vertex in Λ0
1433
+ f, we create a corresponding edge in Λ′ and for each edge in Λ from a vertex
1434
+ in Λ0
1435
+ f to a vertex in Λ0
1436
+ g we create 2 corresponding edges in Λ′. Also, for each edge from a
1437
+ vertex v = γ(u) ∈ Λ0
1438
+ h to a vertex w ∈ Λ0
1439
+ g we obtain an edge in Λ′ from u to w.
1440
+ •x
1441
+
1442
+ �❆
1443
+
1444
+
1445
+
1446
+
1447
+
1448
+
1449
+
1450
+
1451
+ ⑥⑥⑥⑥⑥⑥⑥⑥
1452
+ •z
1453
+
1454
+ �❈
1455
+
1456
+
1457
+
1458
+
1459
+
1460
+
1461
+
1462
+
1463
+ ⑥⑥⑥⑥⑥⑥⑥⑥
1464
+
1465
+ �❄
1466
+
1467
+
1468
+
1469
+
1470
+
1471
+
1472
+
1473
+
1474
+
1475
+ �❄
1476
+
1477
+
1478
+
1479
+
1480
+
1481
+
1482
+
1483
+
1484
+
1485
+
1486
+
1487
+
1488
+
1489
+ •y
1490
+ (2)
1491
+
1492
+
1493
+ •w
1494
+
1495
+
1496
+ �⑤
1497
+
1498
+
1499
+
1500
+
1501
+
1502
+
1503
+
1504
+
1505
+
1506
+ �⑧
1507
+
1508
+
1509
+
1510
+
1511
+
1512
+
1513
+
1514
+
1515
+
1516
+
1517
+
1518
+ By construction the adjacency matrix M′ for the graph Λ′ satisfies
1519
+ I − (M′)t =
1520
+
1521
+ B11
1522
+ 2B12
1523
+ B21
1524
+ B22 + B23
1525
+
1526
+ .
1527
+ Therefore, we can use the graph Λ′ to find the cokernel and kernel of (∂1)0. Using the same
1528
+ logic and terminology we used when calculating the complex K-theory, we see that w is
1529
+ a zero vertex because it emits an edge to a vertex v which supports a loop, and the edge
1530
+ from w to v is the only non-loop edge which points to v. Indeed, every vertex along the
1531
+ bottom row of the graph Λ′ except y is a zero vertex. The fact that these zero vertices
1532
+ (with the exception of w) only receive edges from one (potentially) nonzero vertex on the
1533
+ top row of Λ′ implies that every vertex in the top row except x and z are also zero vertices.
1534
+ Now, w is a zero vertex, but since there are two edges from y to w we obtain the relation
1535
+ [pw] = [pw] + 2[py] which implies that 2[py] = 0, but [py] ̸= 0. Finally, from the relations
1536
+ [px] = −[py] and [pz] = [py] we conclude that coker (∂1)0 = Z2.
1537
+ To compute ker(∂1)0, we also proceed as in the computations for the complex case: All
1538
+ of the vertices in the bottom row of Λ′, save w, are null vertices. Moreover, if a null vertex
1539
+ v emits n edges to a single potentially non-null vertex u, we must have nα(u) = 0 for any
1540
+ α ∈ NΛ′, and as α(u) ∈ Z we conclude that u must also be null. It follows that w is null, as
1541
+ are all of the vertices in the top row of Λ′. That is, ker(∂1)0 = {0}.
1542
+ Now, with the three rows that we’ve identified, the spectral sequence (8) implies that
1543
+ KO0(C∗
1544
+ R(Λ, γ)) ∼= KO1(C∗
1545
+ R(Λ, γ)) ∼= Z2. We claim that using this we can compute KOi(C∗
1546
+ R(Λ, γ))
1547
+ for 2 ≤ i ≤ 7 using the long exact sequence (5) and other aspects of CR-structure. The
1548
+ fact that KU6(C∗
1549
+ R(Λ, γ)) = KU0(C∗
1550
+ R(Λ, γ)) = 0 implies that η0 is injective, and hence an
1551
+
1552
+ 12
1553
+ JEFFREY L. BOERSEMA AND SARAH L. BROWNE AND ELIZABETH GILLASPY
1554
+ isomorphism, and also that η−1 is surjective. Since KU2(C∗
1555
+ R(Λ, γ)) = 0 it follows that η1 is
1556
+ surjective. Thus if KO2(C∗
1557
+ R(Λ, γ)) has a non-zero element, then it would have to be in the
1558
+ image of η1 ◦ η0 ◦ η−1 = η3. But η3 = 0 for all real C∗-algebras. Thus KO2(C∗
1559
+ R(Λ, γ)) = 0.
1560
+ Since KO2(C∗
1561
+ R(Λ, γ)) = 0, the long exact sequence implies that c3: KO3(C∗
1562
+ R(Λ, γ)) →
1563
+ KU3(C∗
1564
+ R(Λ, γ)) = Z is injective. This forces KO3(C∗
1565
+ R(Λ, γ)) = Z. Moreover, as im r1 =
1566
+ ker η1 = Z2 we must have r1 : Z → Z2 the unique nonzero map. Since im c3 ∼= ker r1, we
1567
+ conclude that c3 is multiplication by 2. The relation rc = 2 then implies that r3 = 1.
1568
+ Continuing this process using the long exact sequence, we compute that KO∗(C∗
1569
+ R(Λ, γ))) =
1570
+ (Z2, Z2, 0, Z, 0, 0, 0, Z). The module maps η, r, c, ψ are then completely determined by these
1571
+ groups and the long exact sequence (5); that is, K
1572
+ CR(C∗
1573
+ R(Λ, γ)) and hence K
1574
+ CRT(C∗
1575
+ R(Λ, γ))
1576
+ coincide with ΣK
1577
+ CRT(R).
1578
+
1579
+ Lemma 4.2. Suppose that (Λ1, γ1) and (Λ2, γ2) are higher-rank graphs with involutions.
1580
+ Then (Λ1 × Λ2, γ1 × γ2) is a higher-rank graph with involution and
1581
+ C∗
1582
+ R(Λ1 × Λ2, γ1 × γ2) ∼= C∗
1583
+ R(Λ1, γ1) ⊗R C∗
1584
+ R(Λ2, γ2) .
1585
+ Proof. Assume that Λ1 and Λ2 have rank k1 and k2 respectively.
1586
+ From [KP00, Proposi-
1587
+ tion 1.8] the product Λ1 × Λ2 is a graph of rank k1 + k2, with degree functor d(λ1, λ2) =
1588
+ d(λ1) + d(λ2). Furthermore, there is an involution γ on Λ1 × Λ2 defined by γ(λ1, λ2) =
1589
+ (γ1(λ1), γ2(λ2)).
1590
+ From [KP00, Corollary 3.5], there is an isomorphism φ: C∗(Λ1 × Λ2) → C∗(Λ1) ⊗ C∗(Λ2)
1591
+ defined by φ(s(λ1,λ2)) = sλ1 ⊗sλ2. To finish the proof, we need only show that φ preserves the
1592
+ real structures (4) of C∗(Λ1 × Λ2) and C∗(Λ1) ⊗ C∗(Λ2) which are induced by the graphical
1593
+ involutions γi. This is straightforward:
1594
+ φ(�γ(s(λ1,λ2)) = φ(s∗
1595
+ (γ1(λ1),γ2(λ2))))
1596
+ = s∗
1597
+ γ1(λ1) ⊗ s∗
1598
+ γ2(λ2)
1599
+ = �γ1(sλ1) ⊗ �γ2(sλ2)
1600
+ = �
1601
+ γ1 ⊗ γ2(sλ1 ⊗ sλ2)
1602
+ = �
1603
+ γ1 ⊗ γ2(φ(s(λ1,λ2))) .
1604
+
1605
+ Theorem 4.3. Let n be an odd integer, n ≥ 3. There exists a rank-3 graph with invo-
1606
+ lution (Λn, γn) such that C∗
1607
+ R(Λn, γn) ∼= K
1608
+ R ⊗R E
1609
+ R
1610
+ n.
1611
+ Furthermore, there exists a projection
1612
+ p ∈ C∗
1613
+ R(Λn, γn) such that pC∗
1614
+ R(Λn, γn)p ∼= E
1615
+ R
1616
+ n.
1617
+ Proof. Let (Λ, γ) be the 1-graph given by Proposition 4.1 and let (En, γn) be the finite 1-
1618
+ graph with involution from Example 6.2 of [Boe17]. Then both C∗
1619
+ R(Λ, γ) and C∗
1620
+ R(En, γn) are
1621
+ simple and purely infinite and we have
1622
+ K
1623
+ CR(C∗
1624
+ R(Λ, γ)) ∼= ΣK
1625
+ CR(R)
1626
+ and
1627
+ K
1628
+ CR(C∗
1629
+ R(En, γn)) ∼= Σ6K
1630
+ CR(En) .
1631
+ This implies by [BRS11, Proposition 2.1] that
1632
+ K
1633
+ CRT(C∗
1634
+ R(Λ, γ)) ∼= ΣK
1635
+ CRT(R)
1636
+ and
1637
+ K
1638
+ CRT(C∗
1639
+ R(En, γn)) ∼= Σ6K
1640
+ CRT(En) .
1641
+ Let (Λn, γn) be the product rank-3 graph with involution
1642
+ (Λn, γn) = (Λ, γ) × (Λ, γ) × (En, γn).
1643
+
1644
+ THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK GRAPH ALGEBRAS
1645
+ 13
1646
+ Lemma 4.2 then implies that
1647
+ C∗
1648
+ R(Λn, γn) ∼= C∗
1649
+ R(Λ, γ) ⊗R C∗
1650
+ R(Λ, γ) ⊗R C∗
1651
+ R(En, γn).
1652
+ Now, K
1653
+ CRT(C∗
1654
+ R(Λ, γ)) is a free CRT -module, since it is isomorphic to a suspension of K
1655
+ CRT(R)
1656
+ (see [Boe02, Section 2.1]). Therefore the K¨unneth formula for the K-theory of real C∗-
1657
+ algebras (Proposition 3.5 and Theorem 4.2 of [Boe02]) gives
1658
+ K
1659
+ CRT(C∗
1660
+ R(Λn, γn)) ∼= K
1661
+ CRT(C∗
1662
+ R(Λ, γ)) ⊗CRT K
1663
+ CRT(C∗
1664
+ R(Λ, γ)) ⊗CRT K
1665
+ CRT(C∗
1666
+ R(En, γn))
1667
+ ∼= Σ2K
1668
+ CRT(R) ⊗CRT Σ6K
1669
+ CRT(En)
1670
+ ∼= K
1671
+ CRT(En) .
1672
+ Note that C∗
1673
+ R(Λn, γn) is a stable, simple, purely infinite, real C∗-algebra, thanks to Propo-
1674
+ sition 4.1 and [Boe17, Example 6.2]. We also know that KR ⊗R En is a a stable, simple,
1675
+ purely infinite, real C∗-algebra, because its complexification K ⊗ On is simple and purely
1676
+ infinite (see Theorem 3.9 of [BRS11]). Thus the first statement of the theorem follows by
1677
+ the classification of real Kirchberg algebras, [BRS11, Theorem 10.2, Part (1)].
1678
+ To prove the second statement, by [BRS11, Proposition 3.13] there is a projection p ∈
1679
+ C∗
1680
+ R(Λn, γn) such that [p] is a generator of KO0(C∗
1681
+ R(Λn, γn)) = Z2(n−1). Then
1682
+ K
1683
+ CR(pC∗
1684
+ R(Λn, γn)p) ∼= K
1685
+ CR(C∗
1686
+ R(Λn, γn)) ∼= K
1687
+ CR(En)
1688
+ (where the first isomorphism is by [Boe06, Proposition 9]). Furthermore the class of the
1689
+ identity [p] ∈ KO0(pC∗
1690
+ R(Λ, γ)p) ∼= Z2(n−1) corresponds under this isomorphism to the class
1691
+ of the identity [1] ∈ KO0(En) ∼= Z2(n−1). Therefore by [BRS11, Theorem 10.2, Part (2)], we
1692
+ have pC∗
1693
+ R(Λ, γ)p ∼= En.
1694
+
1695
+ 5. Appendix – real Kirchberg suspension algebras
1696
+ In the previous section, we introduced a graph with involution for which K
1697
+ CR(C∗(Λ, γ)) ∼=
1698
+ ΣK
1699
+ CR(R). We consider this algebra as a sort of real Kirchberg suspension, since it is a real
1700
+ purely infinite simple stable nuclear C∗-algebra satisfying the UCT, and with the same KK-
1701
+ type as the suspension algebra SR ∼= C0((0, 1), R). By repeatedly taking the product of this
1702
+ graph with itself, which corresponds to repeatedly tensoring this algebra with itself, we can
1703
+ obtain a higher-rank graph, the real C∗-algebra of which is a real Kirchberg algebra with the
1704
+ same KK-type as SiR for any i. These tensor products will be higher-rank graph algebras
1705
+ of rank i. It is natural to ask which of these suspensions can be obtained from a 1-graph
1706
+ with involution. In this section, we will answer this question completely, providing a full
1707
+ characterization of the integers i (mod 8) for which there exists a 1-graph with involution
1708
+ (Λ, γ) such that K
1709
+ CR(C∗(Λ, γ)) ∼= ΣiK
1710
+ CR(R) ∼= K
1711
+ CR(SiR). For the positive results, we will
1712
+ exhibit directly the appropriate graph or graph with involution.
1713
+ Proposition 5.1. For each i = {−2, −1, 0, 1} there exists a 1-graph with involution (Λ, γ)
1714
+ such that K
1715
+ CR(C∗(Λ, γ)) ∼= ΣiK
1716
+ CR(R). Furthermore, C∗
1717
+ R(Λ, γ) is simple and purely infinite.
1718
+ Sketch of proof. For each i we show below a graph or graph with involution that satisfies
1719
+ K
1720
+ CR(C∗(Λ, γ)) ∼= ΣiK
1721
+ CR(R). The K-theory calculations, not shown, are carried out using
1722
+ the same techniques as in the proof of Proposition 4.1.
1723
+
1724
+ 14
1725
+ JEFFREY L. BOERSEMA AND SARAH L. BROWNE AND ELIZABETH GILLASPY
1726
+ i = −2. The graph Λ is shown below; we equip it with the non-trivial involution γ which
1727
+ interchanges the right-hand branches.
1728
+ • �
1729
+
1730
+
1731
+
1732
+
1733
+
1734
+
1735
+
1736
+ �⑦⑦⑦⑦⑦⑦⑦
1737
+
1738
+ • �
1739
+
1740
+
1741
+
1742
+
1743
+
1744
+
1745
+
1746
+ �⑦⑦⑦⑦⑦⑦⑦
1747
+
1748
+ • �
1749
+
1750
+
1751
+
1752
+
1753
+
1754
+
1755
+
1756
+ �⑦⑦⑦⑦⑦⑦⑦
1757
+
1758
+
1759
+
1760
+ �⑦⑦⑦⑦⑦⑦⑦
1761
+
1762
+
1763
+
1764
+
1765
+
1766
+
1767
+
1768
+
1769
+
1770
+
1771
+ �⑦⑦⑦⑦⑦⑦⑦
1772
+
1773
+
1774
+
1775
+
1776
+
1777
+
1778
+
1779
+
1780
+
1781
+
1782
+ �⑦⑦⑦⑦⑦⑦⑦
1783
+
1784
+
1785
+
1786
+
1787
+
1788
+
1789
+
1790
+
1791
+ •�
1792
+
1793
+ � •
1794
+ � •
1795
+ � •
1796
+
1797
+
1798
+ � •
1799
+
1800
+
1801
+
1802
+ � •
1803
+ � •
1804
+
1805
+ �⑦
1806
+
1807
+
1808
+
1809
+
1810
+
1811
+
1812
+
1813
+ �❅
1814
+
1815
+
1816
+
1817
+
1818
+
1819
+
1820
+
1821
+ � •
1822
+ � •
1823
+ � •
1824
+
1825
+
1826
+
1827
+
1828
+
1829
+
1830
+
1831
+
1832
+
1833
+
1834
+
1835
+ �❅❅❅❅❅❅❅
1836
+
1837
+
1838
+
1839
+
1840
+
1841
+
1842
+
1843
+
1844
+
1845
+
1846
+ �❅❅❅❅❅❅❅
1847
+
1848
+
1849
+
1850
+
1851
+
1852
+
1853
+
1854
+
1855
+
1856
+
1857
+ �❅❅❅❅❅❅❅
1858
+
1859
+ i = −1. The graph Λ is shown below, with trivial involution γ = id .
1860
+
1861
+ �❅
1862
+
1863
+
1864
+
1865
+
1866
+
1867
+
1868
+
1869
+
1870
+ �❅
1871
+
1872
+
1873
+
1874
+
1875
+
1876
+
1877
+
1878
+
1879
+ �❅
1880
+
1881
+
1882
+
1883
+
1884
+
1885
+
1886
+
1887
+
1888
+ �❅
1889
+
1890
+
1891
+
1892
+
1893
+
1894
+
1895
+
1896
+
1897
+ �⑦
1898
+
1899
+
1900
+
1901
+
1902
+
1903
+
1904
+
1905
+
1906
+ �⑦
1907
+
1908
+
1909
+
1910
+
1911
+
1912
+
1913
+
1914
+
1915
+ �⑦
1916
+
1917
+
1918
+
1919
+
1920
+
1921
+
1922
+
1923
+
1924
+ �⑦
1925
+
1926
+
1927
+
1928
+
1929
+
1930
+
1931
+
1932
+
1933
+
1934
+
1935
+ i = 0. The graph Λ is shown below, with trivial involution γ = id .
1936
+
1937
+ �⑦⑦⑦⑦⑦⑦⑦
1938
+
1939
+
1940
+
1941
+
1942
+
1943
+
1944
+
1945
+
1946
+
1947
+
1948
+ �⑦⑦⑦⑦⑦⑦⑦
1949
+
1950
+
1951
+
1952
+
1953
+
1954
+
1955
+
1956
+
1957
+
1958
+
1959
+ �⑦⑦⑦⑦⑦⑦⑦
1960
+
1961
+
1962
+
1963
+
1964
+
1965
+
1966
+
1967
+
1968
+
1969
+
1970
+ �⑦⑦⑦⑦⑦⑦⑦
1971
+
1972
+
1973
+
1974
+
1975
+
1976
+
1977
+
1978
+
1979
+
1980
+
1981
+ � •
1982
+ � •
1983
+ � •
1984
+ � •
1985
+
1986
+
1987
+ i = 1. The graph Λ is shown below with non-trivial involution γ, as in Proposition 4.1.
1988
+
1989
+ �❅
1990
+
1991
+
1992
+
1993
+
1994
+
1995
+
1996
+
1997
+
1998
+ �❅
1999
+
2000
+
2001
+
2002
+
2003
+
2004
+
2005
+
2006
+
2007
+ �❅
2008
+
2009
+
2010
+
2011
+
2012
+
2013
+
2014
+
2015
+
2016
+
2017
+ �❅
2018
+
2019
+
2020
+
2021
+
2022
+
2023
+
2024
+
2025
+
2026
+ �❅
2027
+
2028
+
2029
+
2030
+
2031
+
2032
+
2033
+
2034
+
2035
+ �❅
2036
+
2037
+
2038
+
2039
+
2040
+
2041
+
2042
+ •�
2043
+
2044
+ �⑦
2045
+
2046
+
2047
+
2048
+
2049
+
2050
+
2051
+
2052
+
2053
+ �⑦
2054
+
2055
+
2056
+
2057
+
2058
+
2059
+
2060
+
2061
+
2062
+ �⑦
2063
+
2064
+
2065
+
2066
+
2067
+
2068
+
2069
+
2070
+
2071
+
2072
+
2073
+
2074
+
2075
+
2076
+ �⑦
2077
+
2078
+
2079
+
2080
+
2081
+
2082
+
2083
+
2084
+
2085
+ �⑦
2086
+
2087
+
2088
+
2089
+
2090
+
2091
+
2092
+
2093
+
2094
+ �⑦
2095
+
2096
+
2097
+
2098
+
2099
+
2100
+
2101
+
2102
+
2103
+ �⑦
2104
+
2105
+
2106
+
2107
+
2108
+
2109
+
2110
+
2111
+ �❅
2112
+
2113
+
2114
+
2115
+
2116
+
2117
+
2118
+
2119
+
2120
+ �❅
2121
+
2122
+
2123
+
2124
+
2125
+
2126
+
2127
+
2128
+
2129
+ �❅
2130
+
2131
+
2132
+
2133
+
2134
+
2135
+
2136
+
2137
+
2138
+ �❅
2139
+
2140
+
2141
+
2142
+
2143
+
2144
+
2145
+ • �
2146
+
2147
+
2148
+
2149
+ �⑦
2150
+
2151
+
2152
+
2153
+
2154
+
2155
+
2156
+
2157
+
2158
+ �⑦
2159
+
2160
+
2161
+
2162
+
2163
+
2164
+
2165
+
2166
+
2167
+ �⑦
2168
+
2169
+
2170
+
2171
+
2172
+
2173
+
2174
+
2175
+ For the i = −2 graph, one can determine all of the groups KOi(C∗
2176
+ R(Λ, γ)) from the
2177
+ associated spectral sequence, except for KO2(C∗
2178
+ R(Λ, γ)). In that case, the spectral sequence
2179
+ KO2(C∗
2180
+ R(Λ, γ)) has the filtration 0 → Z → KO2(C∗
2181
+ R(Λ, γ)) → Z2 → 0.
2182
+ Although this
2183
+ filtration by itself does not determine KO2(C∗
2184
+ R(Λ, γ)), the long exact sequence (5) forces
2185
+ KO2(C∗
2186
+ R(Λ, γ)) = Z. Moreover, the module maps r, c, η, ψ are uniquely determined by (5).
2187
+
2188
+
2189
+ THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK GRAPH ALGEBRAS
2190
+ 15
2191
+ Proposition 5.2. For 2 ≤ i ≤ 5, there does not exist a 1-graph (Λ, γ) with involution such
2192
+ that K
2193
+ CR(C∗
2194
+ R(Λ, γ)) ∼= ΣiK
2195
+ CR(R).
2196
+ Proof. Suppose that (Λ, γ) is a graph with involution and K
2197
+ CR(C∗
2198
+ R(Λ, γ)) ∼= ΣiK
2199
+ CR(R).
2200
+ The real Pimsner-Voiculescu sequence (or equivalently, the real Evans spectral sequence)
2201
+ for K
2202
+ CR(C∗(Λ, γ)) implies that KO−1(C∗
2203
+ R(Λ, γ)) and KO−3(C∗
2204
+ R(Λ, γ)) are free abelian groups.
2205
+ But recall that KO1(R) ∼= KO2(R) ∼= Z2. Thus the group (Σ2KO(R))−1 = KO1(R) has
2206
+ torsion, implying that K
2207
+ CR(C∗
2208
+ R(Λ, γ)) ≇ Σ2KO
2209
+ CR(R), hence i ̸= 2. Similarly, the groups
2210
+ (Σ3KO(R))−1, (Σ4KO(R))−3, and (Σ5KO(R))−3 have torsion, showing that i ̸= 3, 4, 5.
2211
+
2212
+ References
2213
+ [BG22]
2214
+ Jeffrey L. Boersema and Elizabeth Gillaspy, K-theory for real k-graph C∗-algebras, Ann. K-
2215
+ Theory 7 (2022), no. 2, 395–440.
2216
+ [BHRS02]
2217
+ T. Bates, J.-H. Hong, I. Raeburn, and W. Szyma´nski, The ideal structure of the C∗-algebras of
2218
+ infinite graphs, Illinois J. Math. 46 (2002), no. 4, 1159–1176.
2219
+ [Boe02]
2220
+ Jeffrey L. Boersema, Real C∗-algebras, united K-theory, and the K¨unneth formula, K-Theory
2221
+ 26 (2002), no. 4, 345–402.
2222
+ [Boe06]
2223
+ , The range of united K-theory, J. Funct. Anal. 235 (2006), no. 2, 701–718.
2224
+ [Boe14]
2225
+ , The K-theory of real graph C∗-algebras, Rocky Mountain J. Math. 44 (2014), 397–417.
2226
+ [Boe17]
2227
+ , The real C∗-algebra of a graph with involution, M¨unster J. Math. 10 (2017), 485–521.
2228
+ [BRS11]
2229
+ Jeffrey L. Boersema, Efren Ruiz, and P. J. Stacey, The classification of real purely infinite simple
2230
+ C∗-algebras, Doc. Math. 16 (2011), 619–655. MR 2837543
2231
+ [EFG+21] C. Eckhardt, K. Fieldhouse, D. Gent, E. Gillaspy, I. Gonzales, and D. Pask, Moves on k-graphs
2232
+ preserving Morita equivalence, Canad. J. Math. (2021), to appear, arXiv:2006.13441.
2233
+ [Eva08]
2234
+ D.G. Evans, On the K-theory of higher rank graph C∗-algebras, New York J. Math. 14 (2008),
2235
+ 1–31.
2236
+ [Hew96]
2237
+ Beatrice Hewitt, On the homotopical classification of KO-module spectra, Ph.D. thesis, Univer-
2238
+ sity of Illinois at Chicago, 1996.
2239
+ [HRSW13] R. Hazlewood, I. Raeburn, A. Sims, and S.B.G. Webster, Remarks on some fundamental results
2240
+ about higher-rank graphs and their C∗-algebras, Proc. Edinb. Math. Soc. (2) 56 (2013), no. 2,
2241
+ 575–597.
2242
+ [HS04]
2243
+ Jeong Hee Hong and Wojciech Szyma´nski, The primitive ideal space of the C∗-algebras of infinite
2244
+ graphs, J. Math. Soc. Japan 56 (2004), 45–64.
2245
+ [KP00]
2246
+ A. Kumjian and D. Pask, Higher rank graph C∗-algebras, New York J. Math. 6 (2000), 1–20.
2247
+ [RS04]
2248
+ Iain Raeburn and Wojciech Szyma´nski, Cuntz-Krieger algebras of infinite graphs and matrices,
2249
+ Trans. Amer. Math. Soc. 356 (2004), no. 1, 39–59.
2250
+ [RSS15]
2251
+ E. Ruiz, A. Sims, and A. P. W. Sørensen, UCT-Kirchberg algebras have nuclear dimension one,
2252
+ Adv. Math. 279 (2015), 1–28.
2253
+ [Szy01]
2254
+ Wojciech Szyma´nski, Simplicity of Cuntz-Krieger algebras of infinite matrices, Pacific J. Math.
2255
+ 199 (2001), no. 1, 249–256.
2256
+
NtE0T4oBgHgl3EQfTQBT/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
Q9FJT4oBgHgl3EQf3C2V/content/tmp_files/2301.11659v1.pdf.txt ADDED
@@ -0,0 +1,1894 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Matching linear algebra and tensor code to
2
+ specialized hardware accelerators
3
+ Pablo Antonio Martínez
4
+ pabloantonio.martinezs@um.es
5
+ University of Murcia
6
+ Murcia, Spain
7
+ Jackson Woodruff
8
+ J.C.woodruff@sms.ed.ac.uk
9
+ University of Edinburgh
10
+ Edinburgh, United Kingdom
11
+ Jordi Armengol-Estapé
12
+ jordi.armengol.estape@ed.ac.uk
13
+ University of Edinburgh
14
+ Edinburgh, United Kingdom
15
+ Gregorio Bernabé
16
+ gbernabe@um.es
17
+ University of Murcia
18
+ Murcia, Spain
19
+ José Manuel García
20
+ jmgarcia@um.es
21
+ University of Murcia
22
+ Murcia, Spain
23
+ Michael F.P. O’Boyle
24
+ mob@inf.ed.ac.uk
25
+ University of Edinburgh
26
+ Edinburgh, United Kingdom
27
+ Abstract
28
+ Dedicated tensor accelerators demonstrate the importance
29
+ of linear algebra in modern applications. Such accelerators
30
+ have the potential for impressive performance gains, but
31
+ require programmers to rewrite code using vendor APIs — a
32
+ barrier to wider scale adoption. Recent work overcomes this
33
+ by matching and replacing patterns within code, but such
34
+ approaches are fragile and fail to cope with the diversity of
35
+ real-world codes.
36
+ We develop ATC, a compiler that uses program synthesis
37
+ to map regions of code to specific APIs. The mapping space
38
+ that ATC explores is combinatorially large, requiring the
39
+ development of program classification, dynamic analysis,
40
+ variable constraint generation and lexical distance matching
41
+ techniques to make it tractable.
42
+ We apply ATC to real-world tensor and linear algebra
43
+ codes and evaluate them against four state-of-the-art ap-
44
+ proaches. We accelerate between 2.6x and 7x more programs,
45
+ leading to over an order of magnitude performance improve-
46
+ ment.
47
+ ACM Reference Format:
48
+ Pablo Antonio Martínez, Jackson Woodruff, Jordi Armengol-Estapé,
49
+ Gregorio Bernabé, José Manuel García, and Michael F.P. O’Boyle.
50
+ 2023. Matching linear algebra and tensor code to specialized hard-
51
+ ware accelerators. In Proceedings of the 32nd ACM SIGPLAN Interna-
52
+ tional Conference on Compiler Construction (CC ’23), February 25–26,
53
+ 2023, Montréal, QC, Canada. ACM, New York, NY, USA, 13 pages.
54
+ https://doi.org/10.1145/3578360.3580262
55
+ 1
56
+ Introduction
57
+ Linear algebra is a fundamental building block of many of
58
+ today’s critical applications; from weather modeling [13] to
59
+ CC ’23, February 25–26, 2023, Montréal, QC, Canada
60
+ © 2023 Copyright held by the owner/author(s).
61
+ This is the author’s version of the work. It is posted here for your personal
62
+ use. Not for redistribution. The definitive Version of Record was published in
63
+ Proceedings of the 32nd ACM SIGPLAN International Conference on Compiler
64
+ Construction (CC ’23), February 25–26, 2023, Montréal, QC, Canada, https:
65
+ //doi.org/10.1145/3578360.3580262.
66
+ ubiquitous DNN [22] workloads. Its importance is reflected
67
+ in the large number of accelerator libraries and hardware
68
+ devices devoted to fast linear algebra. These range from
69
+ specialized devices such as Google’s TPU [34] to the tensor
70
+ cores on NVIDIA [12] among many others [5, 8, 25, 31, 33].
71
+ While such devices promise significant performance for an
72
+ important class of applications [19], their uptake is limited by
73
+ their programmability [24]. Typically, these accelerators and
74
+ libraries are accessed via calls to specialized APIs, meaning
75
+ existing code has to be rewritten. Given the volume [35]
76
+ and variety [39] of existing legacy code, such rewriting is a
77
+ significant undertaking [19].
78
+ The combined importance of linear algebra acceleration
79
+ and the difficulty of rewriting legacy code to accelerators has
80
+ led to recent work which attempts to automate the process.
81
+ These techniques search user code for matrix multiplica-
82
+ tions using constraints [20, 28] or polyhedral analyses [9]
83
+ and replace regions of code with appropriate API calls or
84
+ instructions.
85
+ However, as we show in Section 8.1, these approaches are
86
+ fragile. Constraints capture only a limited set of program
87
+ patterns and small variations in the user code defeat them.
88
+ While they work well on curated benchmarks, they perform
89
+ poorly on real-world code [20, 63], defeated by function calls,
90
+ optimized code and inline assembler.
91
+ Neural classification (e.g. [18]) can effectively detect code
92
+ despite these challenges. However, it does not provide a path
93
+ to acceleration, but requires further steps. These include gen-
94
+ erating variable mappings and checking for equivalence [63]
95
+ which has shown promising results for Fourier Transforms.
96
+ However, one of the key challenges in matching code to
97
+ APIs is the cost of searching for user program variables that
98
+ map to API formal parameters. As the width of the API and
99
+ complexity of the user program increase, this becomes com-
100
+ binatorially expensive. As we show in Section 8.3 existing
101
+ approaches [63] fail to scale to the challenges that linear
102
+ algebra APIs present.
103
+ 1
104
+ arXiv:2301.11659v1 [cs.PL] 27 Jan 2023
105
+
106
+ CC ’23, February 25–26, 2023, Montréal, QC, Canada
107
+ P.A. Martínez, J. Woodruff, J. Armengol-Estapé, G. Bernabé, J.M. García, M.F.P. O’Boyle
108
+ We present ATC, a compiler that applies program synthe-
109
+ sis to compile general user-code to linear algebra accelerators.
110
+ We identify and solve key challenges
111
+ enabling the detect/synthesize paradigm to scale to the
112
+ more complex APIs of linear algebra acceleration. In addi-
113
+ tion, ATC employs a trained platform predictor to determine
114
+ whether acceleration is profitable or not.
115
+ We applied our approach to 50 GitHub GEMM and 15
116
+ convolution projects and discovered between 2.6 and 7x more
117
+ linear operators compared to KernelFaRer [20], IDL [28],
118
+ Polly [30] or FACC[63]. This resulted in more than an order
119
+ of magnitude performance improvement.
120
+ This paper makes the following contributions:
121
+ • We present ATC, which maps matrix multiplication
122
+ and convolution programs to hardware accelerators,
123
+ up to 7x more frequently than existing techniques.
124
+ • We introduce novel heuristics to reduce the mapping
125
+ search space by four orders of magnitude.
126
+ • We develop novel dynamic analyses to determine higher-
127
+ level information about variables, enabling synthesis
128
+ without costly whole-program analyses.
129
+ 2
130
+ Motivation
131
+ Figure 1. Example application of API replacement. The
132
+ above program is taken from the parboil benchmark [56], a
133
+ widely-used benchmark suite, which is transformed into a
134
+ call to an optimized matrix-multiplication accelerator API.
135
+ Figure 2. GEMM code optimized for AVX2 found on GitHub
136
+ consisting of 120 lines of hand-optimized intrinsics and how
137
+ ATC matches the code to the accelerator API
138
+ 2.1
139
+ Exisiting Match and replace
140
+ IDL and KernelFaRer. Both aim to detect linear algebra
141
+ operations in user programs and replace them with an appro-
142
+ priate accelerator library call. To illustrate this consider the
143
+ code in Figure 1. This shows a straight-forward matrix mul-
144
+ tiplication program fragment, from the parboil benchmark
145
+ suite [56]. They aim to detect this matrix-multiplication and
146
+ replace it with a call to the library, shown at the bottom of
147
+ the diagram.
148
+ To replace code with an API call they have to both de-
149
+ tect the code performing a matrix multiplication and also
150
+ determine which user program variables correspond to the
151
+ arguments of the API call. Both approaches are able to detect
152
+ that this is a matrix multiplication, and can determine the
153
+ mapping between user variables and API parameters.
154
+ 2.2
155
+ Examples of complex GEMM programs
156
+ Unfortunately, in practice, user code can be complex such
157
+ that code structure or pattern-based approaches inevitably
158
+ fail.
159
+ As an example, consider the code found on GitHub shown
160
+ in Figure 2 which implements a matrix-multiplication al-
161
+ gorithm (only a fragment of the 120 lines of user code are
162
+ shown here). The code structure is complex and difficult to
163
+ understand as it makes extensive use of inline assembler in-
164
+ trinsics which defeats the code structure analysis approaches
165
+ of IDL and KernelFaRer, preventing acceleration.
166
+ 2
167
+
168
+ Matching linear algebra and tensor code to specialized hardware accelerators
169
+ CC ’23, February 25–26, 2023, Montréal, QC, Canada
170
+ OJCLONE
171
+ DATASET
172
+ + GEMM
173
+ PROGRAMS
174
+ + CONV
175
+ PROGRAMS
176
+ NEURAL EMBEDDINGS
177
+ FUNCTION
178
+ CANDIDATES
179
+ F1
180
+ F2
181
+ F3
182
+ ... FN
183
+ IO
184
+ EQUIVALENCE
185
+ IO
186
+ DETECTION
187
+ ACCELERATABLE
188
+ FUNCTION
189
+ MATCHES
190
+ GENERATION
191
+ MISMATCH
192
+ SOLVER
193
+ PROGRAM
194
+ SYNTHESIS
195
+ SET OF MATCHES
196
+ MATCHES HEURISTCS
197
+ MATCH ALGORITHM
198
+ LEVENSHTEIN
199
+ VALID MATCHES
200
+ PERFORMANCE
201
+ ANALYSIS
202
+ ACCELERATOR
203
+ SAMPLING
204
+ FUNCTION
205
+ SAMPLING
206
+ SVM CLASSIFIER
207
+ PROGRAM CLASSIFICATION
208
+ ACCELERATOR API
209
+ USER CODE
210
+ ACCELERATED CODE
211
+ Acceleratable Candidate Detection
212
+ IO Detection
213
+ Matches Generation
214
+ Matches
215
+ Reduction
216
+ Profitability Detection
217
+ Figure 3. ATC compiler architecture
218
+ 2.3
219
+ Our approach - ATC
220
+ Rather than relying on code structure to guide detection,
221
+ ATC uses behavioral equivalence to determine if a section of
222
+ code is a linear algebra operation. Firstly, ATC uses neural
223
+ program classification [18] to detect that the code in Figure
224
+ 2 is probably a GEMM. It then searches variable matches to
225
+ determine the potential source and output arrays. As the
226
+ search space is combinatorially large, we introduce scal-
227
+ able, algorithm-independent heuristics (which we discuss in
228
+ Section 5) that keep the number of mappings manageable.
229
+ Next, ATC generates different input values for the arrays
230
+ and records the output. After generating many randomized
231
+ inputs, it observes that it has the equivalent behavior to the
232
+ corresponding API and is able to replace the AVX2 code with
233
+ the GEMM call at the bottom of Figure 2.
234
+ Legality. Now, IO behavioral equivalence is not proof that
235
+ a section of code is a particular linear algebra operation -
236
+ similarly IDL and KernelFaRer do not prove equivalence. For
237
+ proof, bounded model checking based on Kleene [14] can be
238
+ deployed. In practice, as demonstrated in our experimental
239
+ section, IO equivalence gives no false positives. For further
240
+ guarantees, we can ask for programmer sign-off or employ
241
+ model checking.
242
+ Profitable. Once we have detected and can replace a sec-
243
+ tion of code with an accelerator call, we need to determine if
244
+ it is profitable to do. Due to hardware evolution, we do not
245
+ use a hard-wired heuristic to determine profitability. Instead,
246
+ we learn, off-line, a simple predictive model to determine if
247
+ the target accelerator is faster than a CPU implementation.
248
+ The model is called at runtime, determining if offloading is
249
+ worthwhile.
250
+ FACC. Behavioral equivalence is also employed in FACC
251
+ [63]. Unfortunately, it is restricted to FFTs and one-dimensional
252
+ arrays, and cannot detect the replacement in Figure 1. There-
253
+ fore, we extended FACC to FACC* to consider GEMMs and
254
+ multi-dimensional arrays. This, however, exposes its weak
255
+ variable binding model which is combinatorial in the number
256
+ of user array variables and their dimensionality. Furthermore,
257
+ it relies on program synthesis to determine the length of ar-
258
+ rays, which scales poorly to problems with many potential
259
+ length parameters for arrays such as GEMM.
260
+ FACC also relies on brittle inter-procedural liveness analy-
261
+ ses to determine the liveness status of variables. This restricts
262
+ it to running only at link time, rendering it invalid for use
263
+ in shared libraries. We will see in Section 8 that the com-
264
+ bination of these issues results in excessively large search
265
+ spaces.
266
+ 3
267
+ System overview
268
+ Figure 3 gives a system flow overview of ATC. We first de-
269
+ tect regions of code that are likely to be linear algebraic
270
+ operations using a neural program classifier. The classifier is
271
+ trained ahead of time, based on programs that are equivalent
272
+ to the accelerator and prior examples of linear algebra code.
273
+ Once candidate code sections have been identified, we ap-
274
+ ply program analysis to match user program variables with
275
+ the particular API formal parameters. Given the combina-
276
+ torially large search space, we develop novel techniques to
277
+ make the problem tractable.
278
+ For each candidate matching, we generate multiple data
279
+ inputs, execute the user code section and record the output
280
+ values. If the input/output pairs correspond to the input/out-
281
+ put behavior of the accelerator API, we can say they are
282
+ behavioral equivalent and candidates for replacement.
283
+ 3
284
+
285
+ CC ’23, February 25–26, 2023, Montréal, QC, Canada
286
+ P.A. Martínez, J. Woodruff, J. Armengol-Estapé, G. Bernabé, J.M. García, M.F.P. O’Boyle
287
+ While candidate user code may be replaceable with a call
288
+ to an accelerator API, it may not be profitable. Therefore, we
289
+ employ a simple ML classifier, trained offline, and invoked
290
+ at runtime to see if acceleration is appropriate for the user
291
+ code for the runtime known array sizes.
292
+ 3.1
293
+ Neural Program Classification
294
+ To detect potentially acceleratable parts of a program, we use
295
+ prior work in neural program classification [18]. A network is
296
+ trained with multiple instances of different program classes.
297
+ We use the OJClone dataset [43], which includes 105 classes
298
+ of different programs, and add examples of the programs that
299
+ we want to detect e.g. GEMMs and convolutions, gathered
300
+ from benchmark suite repositories other than GitHub.
301
+ At compile time a new candidate program is divided into
302
+ functions, which are presented to the neural classifier. The
303
+ classifier assigns each function in the program a probability
304
+ of belonging to a certain class. We consider the most proba-
305
+ ble class, which in the case of a GEMM or convolution is then
306
+ considered for variable matching and eventual code replace-
307
+ ment as described in the following sections. Classification
308
+ is fast (≤ 1.5 sec) and has negligible impact on compilation
309
+ time (see Section 8.3).
310
+ 4
311
+ Variable Matching
312
+ To check if a section of user code is behaviorally equivalent
313
+ to the API, we have to match up the user program variables
314
+ with API formal parameters. We first detect what variables
315
+ are livein/liveout (Section 4.1) and then the dimensions of
316
+ arrays (Section 4.2).
317
+ 4.1
318
+ Detecting livein and liveout variables
319
+ Detecting livein and liveout variables via standard static
320
+ analysis is
321
+ straightforward for well-structured programs but fails for
322
+ more diverse real-world codes, which may use assembly code
323
+ or intrinsic functions.
324
+ ATC uses dynamic analysis to determine which variables
325
+ are livein and liveouts inside a function. In C, variables are
326
+ passed by value so non-pointers variables are always livein.
327
+ In the case of pointers (or arrays), we generate random inputs
328
+ with arbitrary sizes. If the values in memory change after
329
+ executing the program, the array is considered liveout.
330
+ This allows us to detect which variables are livein or live-
331
+ out, but not both livein and liveout at the same time. We gen-
332
+ erate a new random input for liveout variables and re-execute
333
+ the function. If the output differs from the first execution, it
334
+ is both livein and liveout. We implement this algorithm as a
335
+ just-in-time compiler pass in LLVM [37].
336
+ 4.2
337
+ Detecting the dimensions of arrays
338
+ Detecting arrays length enables offloading of appropriately-
339
+ sized regions of codes, so it is a critical step in ATC. For
340
+ Load/StoreInst
341
+ Array A?
342
+ Out of
343
+ bound?
344
+ Replace Load/Store
345
+ to/from index 0
346
+ Perform the
347
+ instruction
348
+ Exit with
349
+ error code
350
+ YES
351
+ NO
352
+ YES
353
+ NO
354
+ Figure 4. Dimension detection algorithm overview for a
355
+ target example array called A.
356
+ Algorithm 1 Dimensions detection algorithm
357
+ 1: for arr in function do
358
+ 2:
359
+ fakeLoadAndStoresExcept(𝑎𝑟𝑟)
360
+ 3:
361
+ replaceLoadAndStores(𝑎𝑟𝑟)
362
+ 4:
363
+ repeat
364
+ 5:
365
+ 𝑐 = getNextCombination(𝑎𝑟𝑟)
366
+ 6:
367
+ ffi_call(𝐴,𝑉 )
368
+ 7:
369
+ if not failed then
370
+ 8:
371
+ 𝑓 𝑜𝑢𝑛𝑑 = 𝑇𝑟𝑢𝑒
372
+ 9:
373
+ end if
374
+ 10:
375
+ until not found
376
+ 11:
377
+ Add 𝑐 to 𝐶
378
+ 12: end for
379
+ 13: return 𝐶
380
+ some programs, lengths can be found using static analysis
381
+ (e.g. [49]), but this fails in more complex cases. We use run-
382
+ time analysis to determine which program variables define
383
+ array size using a modified form of runtime array bound
384
+ checking. For each set of variables that could define an ar-
385
+ ray’s size (typically, from the argument list), we set such
386
+ variables to a fixed value. We then execute the user code that
387
+ is modified to check runtime array accesses.
388
+ First, the compiler selects a target array to find its size.
389
+ Then, to generate the modified program, we tweak the load
390
+ and store instructions in the user program, replacing them
391
+ with custom function calls in the IR. If a load or store does
392
+ not access the array we are interested in, we modify it to
393
+ load and store at a constant, safe location. If it does, the
394
+ instruction is replaced with a function call that will check at
395
+ runtime if the access is out of bounds. If so, the program exits
396
+ with a custom error code. If not, we have found a valid array
397
+ size. The basic idea is depicted in Figure 4. This is used by
398
+ our JIT analysis as shown in Algorithm 1 and implemented
399
+ in LLVM.
400
+ This way, the compiler can assign different input sizes to a
401
+ given array and check the exit code. Therefore, the compiler
402
+ iterates over all the possible dimensions combinations until
403
+ one of the executions does not end with the custom error exit
404
+ code. That means that the program was completed without
405
+ any illegal access to the target array, which indicates that it
406
+ is the right dimension of the array.
407
+ 4
408
+
409
+ Matching linear algebra and tensor code to specialized hardware accelerators
410
+ CC ’23, February 25–26, 2023, Montréal, QC, Canada
411
+ Algorithm 2 Automatic matching algorithm
412
+ 1: function dimsMatch(𝑓 1𝑎, 𝑓 2𝑎, 𝑝,𝑛)
413
+ 2:
414
+ 𝑆 = ∅
415
+ 3:
416
+ 𝑖𝑑𝑥 ← 0
417
+ 4:
418
+ for 𝑎𝑟𝑔𝑠1 in f1a do
419
+ 5:
420
+ 𝑎𝑟𝑔𝑠2 = f2a[p[idx]]
421
+ 6:
422
+ Add {𝑎𝑟𝑔𝑠1,𝑎𝑟𝑔𝑠2} to 𝑆
423
+ 7:
424
+ 𝑖𝑑𝑥 ← 𝑖𝑑𝑥 + 1
425
+ 8:
426
+ end for
427
+ 9:
428
+ return Size(S) = 𝑛
429
+ 10: end function
430
+ 11:
431
+ 12: function outMatch(𝑓 1𝑜, 𝑓 2𝑜, 𝑝)
432
+ 13:
433
+ idx = IndexOf(𝑓 2𝑜, 1)
434
+ 14:
435
+ return IndexOf(𝑝, idx) = IndexOf(𝑓 1𝑜, 1)
436
+ 15: end function
437
+ 16:
438
+ 17: function findMatchings(𝑓 1𝑎, 𝑓 2𝑎, 𝑓 1𝑜, 𝑓 2𝑜,𝑛)
439
+ 18:
440
+ 𝐵 = ∅
441
+ 19:
442
+ for p in permutations(0...𝑛) do
443
+ 20:
444
+ if dimsMatch(f1a, f2a, p) and
445
+ 21:
446
+ outMatch(f1o, f2o, p) then
447
+ 22:
448
+ Add 𝑝 to 𝐵
449
+ 23:
450
+ end if
451
+ 24:
452
+ end for
453
+ 25:
454
+ return 𝐵
455
+ 26: end function
456
+ 5
457
+ Reducing the matchings search space
458
+ To match code to APIs, the compiler generates different can-
459
+ didates for the variable to formal parameter mappings and
460
+ then tests them using IO equivalence. For small APIs, all map-
461
+ pings can be explored, but the combinatorial cost makes it
462
+ prohibitive for real-world accelerator APIs. We develop tech-
463
+ niques that reduce the mapping space by exploiting arrays
464
+ information and human coding styles.
465
+ 5.1
466
+ Exploiting array information
467
+ Using array dimensions (Section 4.2), we can reduce the num-
468
+ ber of possible matches that must be checked, as assigning
469
+ one array to another means that the dimensions of each array
470
+ must line up.
471
+ 5.1.1
472
+ Automatic matching algorithm. We first gener-
473
+ ate all 𝑛! permutations of the 𝑛 array variables to 𝑛 parame-
474
+ ters mapping. We discard all permutations where variable
475
+ livenesses do not match. Then for each candidate user array
476
+ and parameter array pair, we generate the constraints defin-
477
+ ing how their dimensions match. If we find contradictory
478
+ constraints for any permutation, we discard it. The algorithm
479
+ is shown in Algorithm 2.
480
+ 5.1.2
481
+ Automatic Matching Algorithm: Example. To il-
482
+ lustrate this, Figure 5 shows an example where we have two
483
+ X(x0*x1)
484
+ Y(x1*x2)
485
+ Z(x2*x0)
486
+ A(y0*y1)
487
+ B(y1*y2)
488
+ C(y2*y0)
489
+ [0,1,2]
490
+ A:
491
+ U:
492
+ x0 -> y0
493
+ x1 -> y1
494
+ x2 -> y2
495
+ Liveout A:[0,0,1] U:[0,0,1]
496
+ [1,0,2]
497
+ x0 -> y1
498
+ x1 -> y2
499
+ x1 -> y0
500
+ x2 -> y1
501
+ x2 -> y2
502
+ x0 -> y0
503
+ [2,0,1]
504
+ x0 -> y2
505
+ x1 -> y0
506
+ x2 -> y1
507
+ Figure 5. Example application of the matching algorithm.
508
+ The right match is found the algorithm automatically. Per-
509
+ mutations in red means they are invalid, while the green
510
+ permutation means valid.
511
+ functions with three 2D arrays each. First, the algorithm
512
+ generates all the permutations between 0 and 𝑛 − 1 (𝑛 = 3 in
513
+ this example). Then, for each permutation, it tries matching
514
+ each variable in every array in the user code with the cor-
515
+ responding variable in the array of the API (here we show
516
+ only three of the six possible permutations).
517
+ In the first case (with the permutation [0, 1, 2]), the algo-
518
+ rithm tries matching the array variables of the user program
519
+ 𝑋,���,𝑍 with API parameters 𝐴, 𝐵,𝐶 . We then examine each
520
+ of the variables defining each of the corresponding arrays.
521
+ Comparing 𝑋 and 𝐴 gives a match of 𝑥0 → 𝑦0 and 𝑥1 → 𝑦1.
522
+ For the second array variable 𝑌 and API parameter 𝐵, we
523
+ have 𝑥1 → 𝑦1 and 𝑥2 → 𝑦2 and for the third variable pair
524
+ 𝑍,𝐶 we have 𝑥2 → 𝑦2 and 𝑥0 → 𝑦0. All of these are con-
525
+ sistent with 𝑛=3 constraint, which satisfies the condition
526
+ (dimsMatch in Algorithm 2). Liveout information is also sat-
527
+ isfied so this permutation is added as a potential mapping.
528
+ In the second permutation [1, 0, 2], where 𝑋,𝑌,𝑍 maps
529
+ to 𝐵,𝐴,𝐶, the constraints are inconsistent e.g. 𝑥1 → 𝑦2 and
530
+ 𝑥1 → 𝑦0 leading to 6 ≥ 3, so it is not a valid match. In the
531
+ third and last example, constraints are equal to 𝑛, but the
532
+ liveout arrays do not match. Thus, the only valid match is
533
+ the one found in the first permutation.
534
+ 5.2
535
+ Using argument names
536
+ Programs are developed by humans, so we can assume that
537
+ the functions that humans write follow common patterns.
538
+ We exploit this by analyzing the argument names of the API
539
+ and the user program to find lexical similarities.
540
+ To compare argument names, we use the Levenshtein dis-
541
+ tance [38] to compute the distance between each of the user
542
+ programs and API arguments. Figure 6 shows the definition
543
+ of the Levenshtein distance, which calculation is based on
544
+ the minimal number of modifications needed to transform
545
+ one word into another, representing how close are those
546
+ 5
547
+
548
+ CC ’23, February 25–26, 2023, Montréal, QC, Canada
549
+ P.A. Martínez, J. Woodruff, J. Armengol-Estapé, G. Bernabé, J.M. García, M.F.P. O’Boyle
550
+ 𝑙𝑒𝑣(𝑎,𝑏) =
551
+ 
552
+ 
553
+ |𝑎|
554
+ if |𝑏| = 0,
555
+ |𝑏|
556
+ if |𝑎| = 0,
557
+ 𝑙𝑒𝑣(𝑡𝑎𝑖𝑙(𝑎),𝑡𝑎𝑖𝑙(𝑏))
558
+ if 𝑎[0] = 𝑏[0],
559
+ 1 + 𝑚𝑖𝑛
560
+ 
561
+ 
562
+ 𝑙𝑒𝑣(𝑡𝑎𝑖𝑙(𝑎),𝑏)
563
+ 𝑙𝑒𝑣(𝑎,𝑡𝑎𝑖𝑙(𝑏))
564
+ 𝑙𝑒𝑣(𝑡𝑎𝑖𝑙(𝑎),𝑡𝑎𝑖𝑙(𝑏))
565
+ otherwise
566
+ (1)
567
+ Figure 6. Levenshtein recursive definition
568
+ gemm_api(float* tc_A , float* tc_B , float* tc_C ,
569
+ int tc_m , int tc_n , int tc_k ,
570
+ int tc_lda , int tc_ldb , int tc_ldc ,
571
+ float
572
+ tc_alpha , float
573
+ tc_beta) {
574
+ gemm(int M, int N, int K, float
575
+ alpha ,
576
+ float *A, int lda , float *B, int ldb ,
577
+ float beta , float *C, int ldc) {
578
+ tc A
579
+ ...
580
+ tc lda
581
+ ...
582
+ M
583
+ 1
584
+ ...
585
+ 3
586
+ ...
587
+ N
588
+ 1
589
+ ...
590
+ 3
591
+ ...
592
+ K
593
+ 1
594
+ ...
595
+ 3
596
+ ...
597
+ alpha
598
+ 4
599
+ ...
600
+ 3
601
+ ...
602
+ A
603
+ 0
604
+ ...
605
+ 2
606
+ ...
607
+ lda
608
+ 2
609
+ ...
610
+ 0
611
+ ...
612
+ ........
613
+ .......
614
+ ...
615
+ .......
616
+ ...
617
+ Figure 7. Levenshtein distance calculation for the arguments
618
+ of the tensor core API (above) and an example user program.
619
+ words. After computing the distance, the compiler selects
620
+ the combination that minimizes the Levenshtein distance.
621
+ Figure 7 shows an application example of the Levenshtein
622
+ distance to a real case of GEMM matching. For calculating
623
+ the distance, we strip the API suffix (tc_) and convert all
624
+ names to lowercase. Results show that the most probable
625
+ mapping for tc_A is A in the user code, and for tc_lda is
626
+ lda, which are the right matches.
627
+ 5.3
628
+ IO generation
629
+ Once we have a candidate match we generate random inputs
630
+ of different sizes and test for input-output (IO) equivalence.
631
+ We use 30 inputs of varying sizes. Although IO behavioral
632
+ equivalence is not proof, we can increase the number of tests
633
+ for increased confidence. No existing technique such as IDL
634
+ or KernelFaReR can prove that a matched piece of code is
635
+ provably equivalent to an API and therefore rely on user
636
+ sign-off.
637
+ 5.3.1
638
+ Behavioral Equivalence and the Limits of Veri-
639
+ fication. ATC, like prior work on floating-point accelera-
640
+ tors [63], uses behavioral equivalence. The downside of this
641
+ strategy is that it requires programmer sign-off to make any
642
+ substitution. However, due to the complexities of verifying
643
+ floating-point programs [63], verification of such liftings are
644
+ some way off.
645
+ In summary, the key challenges that all competing tech-
646
+ niques face are:
647
+ • Floating-point numbers often raise challenges in theo-
648
+ rem provers as they are challenging to reason about.
649
+ • Floating-point functions may have different accuracies
650
+ in different input ranges, meaning that the obvious
651
+ checks of correctness (even within bounds) are difficult
652
+ to apply.
653
+ The backend of ATC is not tied to using behavioral equiva-
654
+ lence. As we will see, the use of such behavioral equivalence
655
+ results in no false positives. Further development of theorem
656
+ prover technologies would mean that the weak behavioral
657
+ equivalence in ATC could easily be replaced with a theorem
658
+ prover guaranteeing correctness and enabling automatic
659
+ transformations.
660
+ 6
661
+ Automatic profitability detection
662
+ We assume that user code runs faster when replaced by a
663
+ platform-specific library. The question is whether it is best
664
+ to run on a CPU or accelerator version (XPU) of the library.
665
+ This in turn depends on the input size, which is only known
666
+ at runtime. We use a predictive model based on empirical
667
+ data to enable accurate predictions as platforms and libraries
668
+ evolve by retraining the model.
669
+ SVM. We use the well-known support vector machine
670
+ (SVM) classifier with a polynomial kernel of degree 3 with
671
+ gamma=1 and𝐶=100. We sample the CPU and the accelerator
672
+ with a common dataset of input sizes, which produces a
673
+ dataset that is small enough to be processed in less than
674
+ five minutes, but large enough to be highly accurate. Data
675
+ is labeled with 0 or 1 meaning that the CPU or the XPU is
676
+ faster. The model is then trained and deployed at runtime,
677
+ when matrix sizes are known, The training phase is done
678
+ only once, at “factory time”, and the resulting model when
679
+ deployed has negligible (≤ 0.3𝑚𝑠𝑒𝑐) runtime overhead (see
680
+ Section 8.2).
681
+ 7
682
+ Setup
683
+ We evaluate GEMM and convolution acceleration on special-
684
+ ized platforms. For GEMM, we used an Intel i7-11700 (CPU)
685
+ with an NVIDIA Quadro RTX 5000 (tensor cores) (XPU). For
686
+ convolution, we used the Google Cloud Platform (GCP) ser-
687
+ vices equipped with a TPUv3 with 8 TPU cores. Compilation
688
+ benchmarks in Section 8.3 are executed in an AMD EPYC
689
+ 7413.
690
+ The Intel/NVIDIA platform runs CentOS 8.3 with kernel
691
+ 4.18.0. LLVM was downloaded from the official Git repository,
692
+ using commit 329fda3. User codes were compiled using gcc
693
+ 11.2.0 with -O3 -march=native flags. We used cuBLAS 11.2
694
+ and MKL 2020.2.254 for compiling codes to the XPU and
695
+ CPU, respectively. For compiling convolution programs to
696
+ 6
697
+
698
+ Matching linear algebra and tensor code to specialized hardware accelerators
699
+ CC ’23, February 25–26, 2023, Montréal, QC, Canada
700
+ Algorithm
701
+ Code
702
+ LoC
703
+ Nº Args
704
+ Optimizations
705
+ Constraints
706
+ C struct?
707
+ Direct
708
+ 1
709
+ 35
710
+ 12
711
+ None
712
+ None
713
+ No
714
+ 2
715
+ 36
716
+ 10
717
+ OpenMP
718
+ FW = FH = 3
719
+ No
720
+ 3
721
+ 34
722
+ 8
723
+ OpenMP
724
+ FW = FH = 3
725
+ No
726
+ 4
727
+ 43
728
+ 11
729
+ None
730
+ FW = FH = 3
731
+ No
732
+ 5
733
+ 39
734
+ 8
735
+ OpenMP
736
+ FW = FH = 3
737
+ No
738
+ 6
739
+ 76
740
+ 16
741
+ None
742
+ N = 1
743
+ No
744
+ 7
745
+ 209
746
+ 18
747
+ Vectorized
748
+ N = 1
749
+ Yes
750
+ 8
751
+ 102
752
+ 12
753
+ None
754
+ None
755
+ No
756
+ 9
757
+ 42
758
+ 16
759
+ None
760
+ None
761
+ No
762
+ im2col+
763
+ gemm
764
+ 10
765
+ 189
766
+ 15
767
+ None
768
+ N = 1
769
+ Yes
770
+ 11
771
+ 286
772
+ 15
773
+ BLAS
774
+ N = 1
775
+ Yes
776
+ 12
777
+ 179
778
+ 17
779
+ BLAS
780
+ FW = FH
781
+ Yes
782
+ Winograd
783
+ 13
784
+ 687
785
+ 17
786
+ Intrinsics + OpenMP
787
+ FW = FH = 3
788
+ No
789
+ 14
790
+ 254
791
+ 12
792
+ None
793
+ N = 1
794
+ Yes
795
+ 15
796
+ 782
797
+ 12
798
+ Intrinsics + OpenMP
799
+ FW = FH = 3
800
+ No
801
+ Table 1. List of convolution codes
802
+ the CPU, we used oneDNN v1.96. The TPU system runs
803
+ Debian 10 with kernel 4.19.0-14.
804
+ 7.1
805
+ User code
806
+ We explored GitHub looking for C and C++ GEMM codes,
807
+ analyzing more than 400 programs from which we selected
808
+ 50 programs. We discarded the rest of them because of wrong
809
+ implementations, compilation errors or duplicated code. The
810
+ final list of programs is shown in Table 8. We categorize
811
+ the codes as follows: Naive: naive implementations with the
812
+ traditional 3-loop structure; Naive Parallel: as Naive but with
813
+ simple outer loop parallelization; Unrolled: naive implemen-
814
+ tation with unrolled loops; Kernel Calls: implementations
815
+ that divide the loops into different function calls; Blocked:
816
+ tiled implementations; Goto: implementations of the Goto
817
+ algorithm [29]; Strassen: implementations of the Strassen
818
+ algorithm [55]; Intrinsics: implementations using Intel intrin-
819
+ sics.
820
+ In addition, we selected 50 non-GEMM projects to check
821
+ whether any of the approaches gave false positives.
822
+ Convolutions. We explored GitHub looking for C and
823
+ C++ 4D convolution implementations. We analyzed around
824
+ 50 programs from which we a selected list of 15 programs
825
+ based on the same methodology used for selecting GEMMs.
826
+ The list of convolution programs is shown in Table 1. We
827
+ have included codes from the most relevant convolution
828
+ implementations: Direct: the direct convolution algorithm;
829
+ im2col+gemm: an algorithm that casts the input as matrices
830
+ (im2col) and later uses a GEMM, as in Caffe [32]; Winograd:
831
+ the Winograd algorithm.
832
+ 7.2
833
+ Methods
834
+ We evaluate our approach against 4 well known schemes:
835
+ IDL: Idioms are described using an idiom description lan-
836
+ guage [28], which is translated into a set of constraints over
837
+ LLVM IR.
838
+ KernelFaRer: Uses different pattern matching to detect spe-
839
+ cific code constructs, matching specific matrix-multiplication
840
+ structures [20].
841
+ Polly: Detects static control parts (SCoPs) in the code using
842
+ the polyhedral model [30]. It does not replace the code with
843
+ a call to an optimized library.
844
+ FACC*: FACC uses neural embeddings and behavioral syn-
845
+ thesis to detect candidates for acceleration [63]. It is limited
846
+ to 1D arrays so we developed an extended version, FACC*,
847
+ which supports multi-dimensional arrays.
848
+ 8
849
+ Results
850
+ 8.1
851
+ Detection
852
+ Figure 9 shows the percentage of GEMM programs matched
853
+ by each technique across each of 8 categories listed in Table 8.
854
+ IDL. The constraint based scheme [28] only matches 6
855
+ out of 50 cases. These programs are largely naive implemen-
856
+ tations of GEMM, with a simple loop structure. It is able to
857
+ manage 2 programs containing unrolled loops but fails on
858
+ anything more complex. Matching more diverse cases would
859
+ require writing a new IDL constraint description for each
860
+ sub-class.
861
+ KernelFaRer. This code matching approach [20] is more
862
+ successful, matching 11 GEMMs due to a more robust pattern
863
+ matcher. For straightforward sequential implementations, it
864
+ is able to match all but one of the cases. However, any code
865
+ variation, including loop unrolling, defeats it.
866
+ Polly. Although it does not match and replace GEMMs,
867
+ it can detect SCoPs which may be candidates for replace-
868
+ ment with appropriate API calls. It is less successful than
869
+ KernelFaRer in detecting naive implementations but is more
870
+ robust across other more complex categories including one
871
+ parallel and unrolled versions and 2 blocked cases. It slightly
872
+ outperforms KernelFaRer, matching 13 vs. 11 out of 50 cases.
873
+ FACC*. Unlike the other approaches, FACC* performed
874
+ poorly on naive implementations, but better on others. Here,
875
+ the size of the mapping search space is the limiting factor. It
876
+ was able to find 10 cases in the available time (timeout ≤ 10
877
+ mins). We examine the reasons for this in Section 8.3.
878
+ ATC. Our approach is significantly more robust across all
879
+ categories, matching 42 out of 50 cases. It is able to detect all
880
+ naive implementations and the majority within each other
881
+ category. It detects more naive parallel implementations,
882
+ unrolled and blocked programs than Polly and is the only
883
+ technique to detect GEMMs in codes containing kernel calls
884
+ and intrinsic instructions.
885
+ 8.1.1
886
+ Accuracy. Figure 10 provides a summary of ATC’s
887
+ success and failure by type. In 8 cases ATC failed to detect
888
+ that the program contained a GEMM. In one case, program
889
+ 23, this is due to there being too many candidate matches,
890
+ 280 which is above our timeout threshold of 100 candidates.
891
+ The remaining cases are due to overly aggressive search
892
+ 7
893
+
894
+ CC ’23, February 25–26, 2023, Montréal, QC, Canada
895
+ P.A. Martínez, J. Woodruff, J. Armengol-Estapé, G. Bernabé, J.M. García, M.F.P. O’Boyle
896
+ Algorithm
897
+ Code
898
+ LoC
899
+ Layout
900
+ Sizes
901
+ Optimizations
902
+ Naive
903
+ 1
904
+ 22
905
+ Column-major
906
+ Squared
907
+ None
908
+ 2
909
+ 127
910
+ Both
911
+ Any
912
+ None
913
+ 3
914
+ 18
915
+ Row-major
916
+ Any
917
+ None
918
+ 4
919
+ 41
920
+ Column-major
921
+ Squared
922
+ None
923
+ 5
924
+ 11
925
+ Row-major
926
+ Any
927
+ None
928
+ 6
929
+ 11
930
+ Row-major
931
+ Any
932
+ None
933
+ 7
934
+ 30
935
+ Row-major
936
+ Any
937
+ None
938
+ 8
939
+ 18
940
+ Column-major
941
+ Any
942
+ None
943
+ 9
944
+ 40
945
+ Column-major
946
+ Any
947
+ None
948
+ 10
949
+ 39
950
+ Column-major
951
+ Any
952
+ None
953
+ 11
954
+ 43
955
+ Row-major
956
+ Any
957
+ None
958
+ 12
959
+ 11
960
+ Row-major
961
+ Squared
962
+ None
963
+ Naive
964
+ parallel
965
+ 13
966
+ 39
967
+ Row-major
968
+ Squared
969
+ OpenMP
970
+ 14
971
+ 28
972
+ Column-major
973
+ Squared
974
+ OpenMP
975
+ 15
976
+ 164
977
+ Row-major
978
+ Any
979
+ OpenMP
980
+ 16
981
+ 22
982
+ Row-major
983
+ Multiple of nthreads
984
+ C++ threads
985
+ 17
986
+ 107
987
+ Row-major
988
+ Squared
989
+ C++ threads
990
+ Unrolled
991
+ 18
992
+ 57
993
+ Row-major
994
+ Any
995
+ None
996
+ 19
997
+ 50
998
+ Row-major
999
+ Any
1000
+ None
1001
+ 20
1002
+ 63
1003
+ Row-major
1004
+ Squared
1005
+ OpenMP
1006
+ 21
1007
+ 38
1008
+ Row-major
1009
+ Squared, multiple of bs
1010
+ None
1011
+ Kernel Calls
1012
+ 22
1013
+ 46
1014
+ Column-major
1015
+ Any
1016
+ None
1017
+ 23
1018
+ 115
1019
+ Column-major
1020
+ Any
1021
+ OpenMP
1022
+ 24
1023
+ 61
1024
+ Column-major
1025
+ Any
1026
+ None
1027
+ 25
1028
+ 105
1029
+ Column-major
1030
+ Any
1031
+ Unrolled
1032
+ Algorithm
1033
+ Code
1034
+ LoC
1035
+ Layout
1036
+ Sizes
1037
+ Optimizations
1038
+ Kernel Calls
1039
+ 26
1040
+ 164
1041
+ Column-major
1042
+ Any
1043
+ Unrolled
1044
+ Blocked
1045
+ 27
1046
+ 104
1047
+ Row-major
1048
+ Any
1049
+ Block
1050
+ 28
1051
+ 30
1052
+ Row-major
1053
+ Squared
1054
+ OpenMP
1055
+ 29
1056
+ 52
1057
+ Column-major
1058
+ Any
1059
+ None
1060
+ 30
1061
+ 35
1062
+ Row-major
1063
+ Squared
1064
+ None
1065
+ 31
1066
+ 38
1067
+ Column-major
1068
+ Squared
1069
+ None
1070
+ 32
1071
+ 42
1072
+ Row-major
1073
+ Multiple of bs
1074
+ Unrolled
1075
+ 33
1076
+ 49
1077
+ Row-major
1078
+ Squared
1079
+ None
1080
+ 34
1081
+ 18
1082
+ Row-major
1083
+ Squared
1084
+ None
1085
+ 35
1086
+ 21
1087
+ Row-major
1088
+ Squared
1089
+ None
1090
+ Goto
1091
+ 36
1092
+ 247
1093
+ Column-major
1094
+ Squared
1095
+ Intrinsics (SSE)
1096
+ 37
1097
+ 89
1098
+ Row-major
1099
+ Squared
1100
+ None
1101
+ Strassen
1102
+ 38
1103
+ 210
1104
+ Row-major
1105
+ Squared
1106
+ None
1107
+ 39
1108
+ 315
1109
+ Row-major
1110
+ Squared, power of 2
1111
+ None
1112
+ 40
1113
+ 162
1114
+ Row-major
1115
+ Squared
1116
+ None
1117
+ Intrinsics
1118
+ 41
1119
+ 102
1120
+ Row-major
1121
+ Squared
1122
+ Intrinsics (AVX2)
1123
+ 42
1124
+ 91
1125
+ Row-major
1126
+ Multiple of 8
1127
+ Intrinsics (AVX2)
1128
+ 43
1129
+ 82
1130
+ Row-major
1131
+ Multiple of 8
1132
+ Intrinsics (AVX2)
1133
+ 44
1134
+ 58
1135
+ Row-major
1136
+ Any
1137
+ Intrinsics (SSE)
1138
+ 45
1139
+ 112
1140
+ Row-major
1141
+ Multiple of bs
1142
+ Intrinsics (AVX2)
1143
+ 46
1144
+ 136
1145
+ Row-major
1146
+ Multiple of bs
1147
+ Intrinsics (AVX2)
1148
+ 47
1149
+ 120
1150
+ Row-major
1151
+ Any
1152
+ Intrinsics (AVX2)
1153
+ 48
1154
+ 143
1155
+ Row-major
1156
+ Multiple of bs
1157
+ Intrinsics (AVX2)
1158
+ 49
1159
+ 57
1160
+ Row-major
1161
+ Multiple of bs
1162
+ Intrinsics (AVX2)
1163
+ 50
1164
+ 60
1165
+ Row-major
1166
+ Any
1167
+ Intrinsics (SSE)
1168
+ Figure 8. List of GEMM codes
1169
+ Naive
1170
+ Naive p.
1171
+ Unrrolled
1172
+ Kernels
1173
+ Blocked
1174
+ Goto
1175
+ Strassen
1176
+ Intrinsics
1177
+ All
1178
+ 0
1179
+ 20
1180
+ 40
1181
+ 60
1182
+ 80
1183
+ 100
1184
+ 4
1185
+ 9
1186
+ 11
1187
+ 1
1188
+ 12
1189
+ 0
1190
+ 1
1191
+ 0
1192
+ 3
1193
+ 4
1194
+ 2
1195
+ 1
1196
+ 0
1197
+ 1
1198
+ 3
1199
+ 0 0 0 0
1200
+ 4
1201
+ 0
1202
+ 2
1203
+ 0
1204
+ 2
1205
+ 6
1206
+ 0 0 0
1207
+ 1 1
1208
+ 0 0 0
1209
+ 2
1210
+ 3
1211
+ 0 0 0 0
1212
+ 9
1213
+ 6
1214
+ 131110
1215
+ 42
1216
+ % of matched codes
1217
+ IDL
1218
+ POLLY
1219
+ KFR
1220
+ FACC*
1221
+ ATC
1222
+ Figure 9. Percentage of matched GEMM codes by different techniques.
1223
+ 0
1224
+ 20
1225
+ 40
1226
+ 60
1227
+ 80
1228
+ % of programs
1229
+ Matched
1230
+ Too many candidates
1231
+ Missed matches
1232
+ Figure 10. Percentage of matched GEMM codes by ATC
1233
+ divided by failure reason.
1234
+ pruning, missing a legal match. Improved search heuristics
1235
+ are likely to improve program coverage.
1236
+ False positives. None of the methods classified any of the
1237
+ 50 non-GEMMs as a GEMM. Across all methods, there were
1238
+ no false positives.
1239
+ 8.2
1240
+ Performance
1241
+ The performance of each approach is shown in Figure 11.
1242
+ Polly is not included here as although it can detect SCoPs, it
1243
+ does not explicitly identify them as GEMMs for API replace-
1244
+ ment. We show two bars for KernelFaRer, which correspond
1245
+ to the strategy of GEMM code with an optimized CPU im-
1246
+ plementation as described in [20] and KFR (XPU) which is
1247
+ our extension, replacing the CPU library with the optimized
1248
+ XPU implementation. IDL and FACC* directly target the ac-
1249
+ celerator, while ATC chooses the CPU or accelerator based
1250
+ on its SVM platform predictor. This runtime prediction cost
1251
+ is negligible ≤ 0.3𝑚𝑠𝑒𝑐 and included in Figure 11.
1252
+ What is immediately clear is that detecting more GEMMs
1253
+ leads to better overall speedup. In the Naive category, KFR
1254
+ and ATC are both able to achieve good performance, with
1255
+ a speedup of 726x and 1031x, respectively. The gap is nar-
1256
+ rowed when using KFR (XPU). However, KFR is unable to
1257
+ detect GEMMs in any other category leading to just a 6.2x
1258
+ 8
1259
+
1260
+ Matching linear algebra and tensor code to specialized hardware accelerators
1261
+ CC ’23, February 25–26, 2023, Montréal, QC, Canada
1262
+ Naive
1263
+ Naive p. Unrrolled Kernels
1264
+ Blocked
1265
+ Goto
1266
+ Strassen Intrinsics
1267
+ All
1268
+ 1
1269
+ 10
1270
+ 100
1271
+ 1000
1272
+ 10000
1273
+ Speedup
1274
+ IDL
1275
+ KFR (CPU)
1276
+ KFR (XPU)
1277
+ FACC*
1278
+ ATC
1279
+ Figure 11. Geometric mean speedup obtained by IDL, KernelFaRer, FACC* and ATC in GEMM programs with 𝑛 = 8192.
1280
+ speedup overall while ATC achieves 344.0x. Unsurprisingly,
1281
+ there is more performance available on naive sequential im-
1282
+ plementations than in those cases where the programmer
1283
+ has spent effort in optimizing the program.
1284
+ 8.3
1285
+ Candidate search complexity and compile time
1286
+ One of the key challenges in matching code to APIs is search-
1287
+ ing for program variables that map to API formal parameters.
1288
+ As the width of the API and complexity of the user program
1289
+ increase, this becomes combinatorially expensive. Figure 12
1290
+ evaluates FACC* naive matching of variables and our ap-
1291
+ proach based on the Levenshtein distance. Naive matching
1292
+ varies considerably from just 4 candidates to over 1 million.
1293
+ Our approach greatly reduces the number of candidates for
1294
+ the majority of the programs. There is one special case, code
1295
+ 23, where we reduce the number of candidates, but it is still
1296
+ too high.
1297
+ Figure 13 shows the compilation time of ATC. The initial
1298
+ neural classifier has a negligible constant execution time of
1299
+ 1.3 seconds, while the other phases’ compilation time grows
1300
+ with the number of candidates.
1301
+ As the number of candidates begins to increase compi-
1302
+ lation time becomes prohibitively expensive. Code 23 has
1303
+ 280 candidates which would take 35 mins more to evaluate.
1304
+ We limit the number of candidates considered to 100 which
1305
+ corresponds to a timeout of ≤ 10 minutes.
1306
+ 8.4
1307
+ Profitability accuracy
1308
+ To measure the accuracy of the SVM platform predictor, we
1309
+ built a model offline and tested it on unseen data values.
1310
+ Table 2 summarizes the SVM accuracy with different input
1311
+ sizes and shapes. The SVM achieves a global accuracy of
1312
+ 99.7%, where the misprediction occurs between 𝑚 = 2000
1313
+ and 𝑚 = 8000 which is the “edge” between the CPU and the
1314
+ XPU. In all other intervals, the prediction is always correct.
1315
+ The best accuracy is achieved with non-squared matrices,
1316
+ while square matrices give slightly lower accuracy. Overall,
1317
+ this is a highly accurate predictor with a negligible runtime
1318
+ overhead of ‘ ≤ 0.3𝑚𝑠𝑒𝑐.
1319
+ Parameter
1320
+ Value
1321
+ (mnk)
1322
+ m
1323
+ Global
1324
+ Accuracy
1325
+ 2000
1326
+ 4000
1327
+ 6000
1328
+ 8000
1329
+ 10000
1330
+ 111
1331
+ 100%
1332
+ 100%
1333
+ 100%
1334
+ 70.0%
1335
+ 100%
1336
+ 93.8%
1337
+ 123
1338
+ 100%
1339
+ 78.9%
1340
+ 100%
1341
+ 100%
1342
+ 100%
1343
+ 95.9%
1344
+ 312
1345
+ 100%
1346
+ 84.3%
1347
+ 100%
1348
+ 100%
1349
+ 100%
1350
+ 96.9%
1351
+ 136
1352
+ 100%
1353
+ 89.5%
1354
+ 100%
1355
+ 100%
1356
+ 100%
1357
+ 97.9%
1358
+ Table 2. SVM accuracy for different sizes. 111 means m = 1
1359
+ × m, n = 1 × m, k = 1 × m. 123 means m = 1 × m, n = 2 × m,
1360
+ k = 3 × m etc
1361
+ 8.5
1362
+ Convolutions
1363
+ Our approach is generic and can be applied to other APIs
1364
+ other than GEMMs. As an example, we consider tensor con-
1365
+ volutions which are a significant component of DNN work-
1366
+ loads. While IDL, KernelFaRer, Polly and FACC* were unable
1367
+ to detect any of the convolutions, ATC detected 10 of the
1368
+ 15 convolutions as shown in Figure 14; we were unable to
1369
+ match 5 due to the excessive number of candidates.
1370
+ Figure 15 shows the performance achieved by replacing
1371
+ with library code for each of the programs we are able to
1372
+ accelerate. Across all codes, the SVM predicts that the TPU
1373
+ accelerator outperforms the CPU, giving an average 17.8x
1374
+ performance improvement across the programs.
1375
+ 9
1376
+ Related work
1377
+ Matching in Programs. Matching high-level program
1378
+ structure has been used to discover parallelism [23], het-
1379
+ erogenous offloading [6, 44] and many other core compiler
1380
+ tasks [27]. Constraint languages make these tasks easier [10,
1381
+ 27, 28] but their constraints are very sensitive to code struc-
1382
+ ture [20].
1383
+ For matrix multiplications in particular, KernelFaRer [20]
1384
+ provides a more robust approach, detecting characteristics
1385
+ that define matrix multiplications. Polyhedral analyses can
1386
+ also be used to target matrix multiplication accelerators [9,
1387
+ 58], but both these techniques fail to scale to the diversity
1388
+ 9
1389
+
1390
+ CC ’23, February 25–26, 2023, Montréal, QC, Canada
1391
+ P.A. Martínez, J. Woodruff, J. Armengol-Estapé, G. Bernabé, J.M. García, M.F.P. O’Boyle
1392
+ 5
1393
+ 10
1394
+ 15
1395
+ 20
1396
+ 25
1397
+ 30
1398
+ 35
1399
+ 40
1400
+ 45
1401
+ 50
1402
+ 1
1403
+ 101
1404
+ 102
1405
+ 103
1406
+ 104
1407
+ 105
1408
+ 106
1409
+ Code
1410
+ Candidates generated
1411
+ 4s
1412
+ 45s
1413
+ 10m
1414
+ 1h
1415
+ 12h
1416
+ 2d
1417
+ 20d
1418
+ Approx. compilation time
1419
+ FACC*
1420
+ ATC
1421
+ Threshold
1422
+ Figure 12. Comparison of the number of candidates generated for matching GEMM codes: FACC* vs our approach.
1423
+ 1
1424
+ 3
1425
+ 8
1426
+ 48
1427
+ 0
1428
+ 20
1429
+ 40
1430
+ 60
1431
+ 80
1432
+ 100
1433
+ Code 2
1434
+ Code 21
1435
+ Code 7
1436
+ Code 1
1437
+ Number of candidates
1438
+ Time (s)
1439
+ IO Testing
1440
+ Tests
1441
+ Generation
1442
+ Candidates
1443
+ Generation
1444
+ Neural
1445
+ Embeddings
1446
+ 280
1447
+ 0
1448
+ 500
1449
+ 1,000
1450
+ 1,500
1451
+ 2,000
1452
+ Code 23
1453
+ Figure 13. Compilation time for different number of candi-
1454
+ dates.
1455
+ Direct
1456
+ i2mcol+gemm
1457
+ Winograd
1458
+ All
1459
+ 0
1460
+ 20
1461
+ 40
1462
+ 60
1463
+ 80
1464
+ 100
1465
+ 6
1466
+ 3
1467
+ 3
1468
+ 0
1469
+ 1
1470
+ 2
1471
+ 10
1472
+ 5
1473
+ % of matched codes
1474
+ Matched
1475
+ Not matched
1476
+ Figure 14. Matched convolution codes by ATC.
1477
+ 1
1478
+ 3
1479
+ 4
1480
+ 5
1481
+ 6
1482
+ 8
1483
+ 10
1484
+ 11
1485
+ 13
1486
+ 15
1487
+ All
1488
+ 1
1489
+ 10
1490
+ 100
1491
+ 1000
1492
+ Code
1493
+ Speedup
1494
+ Speedup (CPU)
1495
+ Speedup (TPU)
1496
+ ATC
1497
+ Figure 15. ATC speedup in convolution programs with ℎ =
1498
+ 𝑤 = 224, 𝑘𝑤 = 𝑘ℎ = 11, 𝑐 = 3, 𝑘 = 96 and 𝑛 = 100.
1499
+ of real code. FACC [63] uses IO equivalence, which is ro-
1500
+ bust to program structure, but only addresses the challenges
1501
+ of FFTs and does not scale to longer function signatures
1502
+ used for GEMM. To support any accelerator type, the com-
1503
+ piler should support multi-dimensional arrays, while FACC
1504
+ only supports 1D arrays. Because in 1D arrays and FFTs the
1505
+ search space in matching the API parameters is small, FACC
1506
+ does not include anything to reduce it. With more complex
1507
+ programs and domains, this limitation makes compiling pro-
1508
+ grams intractable.
1509
+ Mask [51] uses symbolic execution to prove equivalence,
1510
+ which does not work well for floating-point problems. Fuzzy
1511
+ classification techniques based on code clone detection [40,
1512
+ 57], domain-classification [59], pattern matching [15], code
1513
+ embeddings [2, 3, 21] and identifiers [36, 47] can be used
1514
+ to help compile to accelerators [63]. These classification
1515
+ strategies are able to classify diverse code structures, but do
1516
+ not provide a compilation strategy for using an accelerator
1517
+ on their own.
1518
+ A large class of techniques focus on migrating between
1519
+ APIs. These techniques often use program synthesis [16],
1520
+ NLP [46] and code embeddings [45, 48]. These techniques
1521
+ are unable to extract existing code into APIs.
1522
+ Compiling for GEMM Accelerators. Existing compila-
1523
+ tion strategies largely focus on lowering code from intrinsics
1524
+ to accelerators using rewrite rules [52, 53, 62] and synthesis
1525
+ techniques [17].
1526
+ Existing approaches to extracting matrix multiplications [20,
1527
+ 28] are brittle. Synthesis-based techniques [1, 7, 41] and
1528
+ rewriting-based techniques [11, 54] have been developed
1529
+ to extract these DSLs that can then be lowered: but they
1530
+ largely require flexible DSLs, rather than APIs presented by
1531
+ hardware accelerators.
1532
+ Performance Prediction. Predicting code the performance
1533
+ of hardware accelerators is challenging, as the break-even
1534
+ point may depend on many different arguments within a
1535
+ function’s interface [4]. LogCA [4] introduces static perfor-
1536
+ mance comparison models for hardware accelerators and
1537
+ similar models have been applied in offloading tasks [64]. Ma-
1538
+ chine learning has often been applied in profitability settings,
1539
+ 10
1540
+
1541
+ Matching linear algebra and tensor code to specialized hardware accelerators
1542
+ CC ’23, February 25–26, 2023, Montréal, QC, Canada
1543
+ such as OpenCL Kernels [60, 61] and OpenMP [42]. Similar
1544
+ techniques have been applied to FPGAs, by estimating pow-
1545
+ er/performance [26] and tracking actual performance [50].
1546
+ 10
1547
+ Conclusions
1548
+ This work presented ATC, a flexible domain-agnostic com-
1549
+ piler that matches legacy linear algebra code to accelerators.
1550
+ By using IO behavioral equivalence and smart search space
1551
+ reduction, we are able to match over 80% of challenging
1552
+ real-world programs to accelerator APIs, significantly out-
1553
+ performing all alternative approaches.
1554
+ Supporting new domains different from GEMM and convo-
1555
+ lution is easy because ATC focuses on behavior rather than
1556
+ code structure, which makes it very flexible and extensible.
1557
+ Furthermore, to support other accelerators in GEMM or con-
1558
+ volution, only the accelerator API is needed: ATC adapts to
1559
+ the new specification automatically.
1560
+ Future work will examine how to further reduce the search
1561
+ space using online learning and to expand the complexity
1562
+ of user code considered. Longer-term, we wish to automati-
1563
+ cally target a range of accelerators with diverse functionality,
1564
+ matching and transforming user code to maximize perfor-
1565
+ mance.
1566
+ Acknowledgments
1567
+ Grant TED2021-129221B-I00 funded by MCIN/AEI/10.13039/
1568
+ 501100011033 and by the “European Union NextGenera-
1569
+ tionEU/PRTR”.
1570
+ References
1571
+ [1] Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and
1572
+ Shoaib Kamil. 2019. Automatically translating image processing li-
1573
+ braries to halide. ACM Transactions on Graphics 38 (Nov. 2019), 1–13.
1574
+ Issue 6. doi: 10.1145/3355089.3356549.
1575
+ [2] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton.
1576
+ 2015. Suggesting accurate method and class names, In the 2015 10th
1577
+ Joint Meeting. Proceedings of the 2015 10th Joint Meeting on Foundations
1578
+ of Software Engineering - ESEC/FSE 2015. doi: 10.1145/2786805.2786849.
1579
+ [3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019.
1580
+ code2vec: learning distributed representations of code. Proceedings of
1581
+ the ACM on Programming Languages 3 (Jan. 2019), 1–29. Issue POPL.
1582
+ doi: 10.1145/3290353.
1583
+ [4] Muhammad Shoaib Bin Altaf and David A. Wood. 2017. LogCA: A
1584
+ High-Level Performance Model for Hardware Accelerators. In Proceed-
1585
+ ings of the 44th Annual International Symposium on Computer Architec-
1586
+ ture (Toronto, ON, Canada) (ISCA ’17). Association for Computing Ma-
1587
+ chinery, New York, NY, USA, 375–388. doi: 10.1145/3079856.3080216.
1588
+ [5] Michael Anderson, Benny Chen, Summer Deng, Jordan Fix, Michael
1589
+ Gschwind, Aravind Kalaiah, Changkyu Kim, Jaewon Lee, Jason Liang,
1590
+ Haixin Lui, Arun Montgomery, Jacka dn Moorthy, Satish Nadathur,
1591
+ Sam Naghshineh, Avinash Nayak, Jongsoo Park, Chris Petersen, Martin
1592
+ Schatz, Narayanan Sundaram, Bandsheng Ten, Peter Tang, Amy Yang,
1593
+ Jiecao Yu, Hector Yuen, Ying Zhang, Aravind Anbudarai, Vandana
1594
+ Balan, Harsha Bojja, Joe Boyd, Matthew Breitback, Claudio Caldato,
1595
+ Anna Calvo, Garret Catron, Sneh Chandwani, Panos Christeas, Brad
1596
+ Cottel, Briand Countinho, Arun Dalli, Abhishek Chanotia, Oniel Dun-
1597
+ can, Roman Dzhabrov, Simon Elmir, Chunli Fu, Wenyin Fu, Michael
1598
+ Fulthrop, Adi Gangidi, Nick Gibson, Sean Gordon, Beatriz Padilla
1599
+ Hernandez, Daniel Ho, Yu-Cheng Huang, Olof Johansson, Shishir
1600
+ Juluri, Shobhit Kanaujia, Mannli Kesarkar, Jonathan Killinger, Ben
1601
+ Kim, Rohan Kulkarni, Meghan Lele, Hauyi Li, Huamin Li, Christo-
1602
+ pher Mitchell, Bharath Muthiah, Nitin Nagarkatte, Ashwin Narasimha,
1603
+ Bernard Nguyen, Thiara Ortiz, Soumya Padmanabha, Deng Pan, Ash-
1604
+ win Poojary, Ye Qi, Oliver Raginel, Dward Rajagopal, Tristian Rice,
1605
+ Craig Ross, Nadav Rotem, Scott Russ, Kushal Shsh, Bauhua Shan, Hao
1606
+ Shen, Pavan Shetty, Krish Skandakumaran, Kutta Srinivasan, Roshan
1607
+ Sumbaly, Michael Taubery, Mor Tzur, Hao Wang, Man Wang, Ben Wei,
1608
+ Alex Xia, Chanyu Xu, Martin Yang, Kai Zhang, Ruoxi Zhang, Ming
1609
+ Zhao, Witney Zhao, Rui Zhu, Lin Qiao, Misha Smelyanskiy, Bill Jia, and
1610
+ Vijay Roa. 2021. First-Generation Inference Accelerator Deployment
1611
+ at Facebook. (2021). arXiv:2107.04140 [cs.AR]
1612
+ [6] José M Andión. 2015. Compilation techniques for automatic extraction
1613
+ of parallelism and locality in heterogeneous architectures. Ph.D. Thesis.
1614
+ Universidade Da Coruña. http://hdl.handle.net/2183/15854.
1615
+ [7] Kevin Angstadt, Jean-Baptiste Jeannin, and Westley Weimer. 2020.
1616
+ Accelerating Legacy String Kernels via Bounded Automata Learning.
1617
+ ASPLOS. doi: 10.1145/3373376.3378503.
1618
+ [8] Arm. 2020. Arm Ethos-U55: microNPU. Avaialable at https://www.arm.
1619
+ com/products/silicon-ip-cpu/ethos/ethos-u55 (Accessed 2022).
1620
+ [9] Somashekaracharya G Bhaskaracharya, Julien Demouth, and Vinod
1621
+ Grover. 2020. Automatic Kernel Generation for Volta Tensor Cores.
1622
+ (2020). arXiv:2006.12645 [cs.PL]
1623
+ [10] Gabriel Hjort Blindell. 2018. Universal Instruction Selection. Ph.D.
1624
+ Thesis. KTH Royal Institute of Technology.
1625
+ [11] Lorenzo Chelini, Andi Drebes, Oleksandr Zinenko, Albert Cohen,
1626
+ Nicolas Vasilache, Tobias Grosser, and Henk Corporaal. 2021. Pro-
1627
+ gressive Raising in Multi-level IR. In 2021 IEEE/ACM International
1628
+ Symposium on Code Generation and Optimization (CGO). 15–26. doi:
1629
+ 10.1109/CGO51591.2021.9370332.
1630
+ [12] Jack Choquette, Olivier Giroux, and Denis Foley. 2018. Volta: Perfor-
1631
+ mance and Programmability. IEEE Micro 38, 2 (2018), 42–52.
1632
+ doi:
1633
+ 10.1109/MM.2018.022071134.
1634
+ [13] Jean Coiffier. 2011. Fundamentals of Numerical Weather Prediction.
1635
+ Cambridge University Press. doi: 10.1017/CBO9780511734458.
1636
+ [14] Bruce Collie. 2022. Practical Synthesis from Real-World Oracles. Ph.D.
1637
+ Thesis. The University of Edinburgh. doi: 10.7488/era/2334.
1638
+ [15] Bruce Collie, Philip Ginsbach, and Michael F.P. O’Boyle. 2019.
1639
+ Type-Directed Program Synthesis and Constraint Generation for
1640
+ Library Portability. In 2019 28th International Conference on Paral-
1641
+ lel Architectures and Compilation Techniques (PACT). 55–67.
1642
+ doi:
1643
+ 10.1109/PACT.2019.00013.
1644
+ [16] Bruce Collie, Philip Ginsbach, Jackson Woodruff, Ajitha Rajan, and
1645
+ Michael F. P. O’Boyle. 2021. M3: Semantic API Migrations. In Pro-
1646
+ ceedings of the 35th IEEE/ACM International Conference on Automated
1647
+ Software Engineering (Virtual Event, Australia) (ASE ’20). Associa-
1648
+ tion for Computing Machinery, New York, NY, USA, 90–102.
1649
+ doi:
1650
+ 10.1145/3324884.3416618.
1651
+ [17] Meghan Cowan, Thierry Moreau, Tianqi Chen, James Bornholt, and
1652
+ Luis Ceze. 2020. Automatic Generation of High-Performance Quan-
1653
+ tized Machine Learning Kernels. In Proceedings of the 18th ACM/IEEE
1654
+ International Symposium on Code Generation and Optimization (San
1655
+ Diego, CA, USA) (CGO 2020). Association for Computing Machinery,
1656
+ New York, NY, USA, 305–316. doi: 10.1145/3368826.3377912.
1657
+ [18] Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler,
1658
+ Michael F P O’Boyle, and Hugh Leather. 2021. ProGraML: A Graph-
1659
+ based Program Representation for Data Flow Analysis and Compiler
1660
+ Optimizations. In Proceedings of the 38th International Conference on
1661
+ Machine Learning (Proceedings of Machine Learning Research, Vol. 139),
1662
+ Marina Meila and Tong Zhang (Eds.). PMLR, 2244–2253.
1663
+ [19] William J. Dally, Yatish Turakhia, and Song Han. 2020. Domain-Specific
1664
+ Hardware Accelerators. Commun. ACM 63, 7 (June 2020), 48–57. doi:
1665
+ 10.1145/3361682.
1666
+ 11
1667
+
1668
+ CC ’23, February 25–26, 2023, Montréal, QC, Canada
1669
+ P.A. Martínez, J. Woodruff, J. Armengol-Estapé, G. Bernabé, J.M. García, M.F.P. O’Boyle
1670
+ [20] João P. L. De Carvalho, Braedy Kuzma, Ivan Korostelev, José Nelson
1671
+ Amaral, Christopher Barton, José Moreira, and Guido Araujo. 2021.
1672
+ KernelFaRer: Replacing Native-Code Idioms with High-Performance
1673
+ Library Calls. ACM Trans. Archit. Code Optim. 18, 3, Article 38 (jun
1674
+ 2021), 22 pages. doi: 10.1145/3459010.
1675
+ [21] Daniel DeFreez, Aditya V. Thakur, and Cindy Rubio-González. 2018.
1676
+ Path-based function embedding and its application to error-handling
1677
+ specification mining, In the 2018 26th ACM Joint Meeting. Proceedings
1678
+ of the 2018 26th ACM Joint Meeting on European Software Engineering
1679
+ Conference and Symposium on the Foundations of Software Engineering
1680
+ - ESEC/FSE 2018. doi: 10.1145/3236024.3236059.
1681
+ [22] Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. 2020.
1682
+ Mathematics for Machine Learning. Cambridge University Press. doi:
1683
+ 10.1017/9781108679930.
1684
+ [23] B. Di Martino and G. Iannello. 1996. PAP Recognizer: a tool for auto-
1685
+ matic recognition of parallelizable patterns. In WPC ’96. 4th Workshop
1686
+ on Program Comprehension. 164–174. doi: 10.1109/WPC.1996.501131.
1687
+ [24] J. Domke, E. Vatai, A. Drozd, P. ChenT, Y. Oyama, L. Zhang, S. Salaria,
1688
+ D. Mukunoki, A. Podobas, M. WahibT, et al. 2021. Matrix Engines for
1689
+ High Performance Computing: A Paragon of Performance or Grasping
1690
+ at Straws?. In 2021 IEEE International Parallel and Distributed Processing
1691
+ Symposium (IPDPS). IEEE Computer Society, Los Alamitos, CA, USA,
1692
+ 1056–1065. doi: 10.1109/IPDPS49936.2021.00114.
1693
+ [25] Jeremy Fowers, Kalin Ovtcharov, Michael K Papamichael, Todd Mas-
1694
+ sengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman,
1695
+ Logan Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam
1696
+ Sapek, Gabriel Weisz, Lisa Woods, Sitaram Lanka, Steven K Reinhardt,
1697
+ Adrian M Caulfield, Eric S Chung, and Doug Burger. 2019. Inside
1698
+ Project Brainwave’s Cloud-Scale, Real-Time AI Processor. IEEE Micro
1699
+ 39, 3 (2019), 20–28. doi: 10.1109/MM.2019.2910506.
1700
+ [26] Gereon Führ, Seyit Halil Hamurcu, Diego Pala, Thomas Grass, Rainer
1701
+ Leupers, Gerd Ascheid, and Juan Fernando Eusse. 2019. Automatic
1702
+ Energy-Minimized HW/SW Partitioning for FPGA-Accelerated MP-
1703
+ SoCs.
1704
+ IEEE Embedded Systems Letters 11, 3 (2019), 93–96.
1705
+ doi:
1706
+ 10.1109/LES.2019.2901224.
1707
+ [27] gcc documentation. 2022. 26.2 Match and Simplify: The Language. Ava-
1708
+ ialable at https://gcc.gnu.org/onlinedocs/gccint/The-Language.html
1709
+ (Accessed 2022).
1710
+ [28] Philip Ginsbach, Toomas Remmelg, Michel Steuwer, Bruno Bodin,
1711
+ Christophe Dubach, and Michael F. P. O’Boyle. 2018. Automatic Match-
1712
+ ing of Legacy Code to Heterogeneous APIs: An Idiomatic Approach.
1713
+ SIGPLAN Not. 53, 2 (mar 2018), 139–153. doi: 10.1145/3296957.3173182.
1714
+ [29] Kazushige Goto and Robert A. van de Geijn. 2008. Anatomy of High-
1715
+ Performance Matrix Multiplication. ACM Trans. Math. Softw. 34, 3,
1716
+ Article 12 (may 2008), 25 pages. doi: 10.1145/1356052.1356053.
1717
+ [30] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger,
1718
+ Armin Größlinger, and Louis-Noël Pouchet. 2011. Polly-Polyhedral op-
1719
+ timization in LLVM. In Proceedings of the First International Workshop
1720
+ on Polyhedral Compilation Techniques (IMPACT), Vol. 2011. 1.
1721
+ [31] Intel. 2022. AI Hardware. Available at https://www.intel.com/content/
1722
+ www/us/en/artificial-intelligence/hardware.html.
1723
+ [32] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
1724
+ Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.
1725
+ Caffe: Convolutional Architecture for Fast Feature Embedding. (2014).
1726
+ arXiv:1408.5093 [cs.CV]
1727
+ [33] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho,
1728
+ Thomas B. Jablin, George Kurian, James Laudon, Sheng Li, Peter
1729
+ Ma, Xiaoyu Ma, et al. 2021. Ten Lessons From Three Generations
1730
+ Shaped Google’s TPUv4i : Industrial Product. In 2021 ACM/IEEE 48th
1731
+ Annual International Symposium on Computer Architecture (ISCA).
1732
+ IEEE Computer Society, Los Alamitos, CA, USA, 1–14.
1733
+ doi:
1734
+ 10.1109/ISCA52012.2021.00010.
1735
+ [34] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
1736
+ rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
1737
+ den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
1738
+ Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
1739
+ Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
1740
+ Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
1741
+ Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
1742
+ der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
1743
+ Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
1744
+ Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-
1745
+ ana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
1746
+ Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
1747
+ Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
1748
+ Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snel-
1749
+ ham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
1750
+ Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
1751
+ Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-
1752
+ Datacenter Performance Analysis of a Tensor Processing Unit. In Pro-
1753
+ ceedings of the 44th Annual International Symposium on Computer Archi-
1754
+ tecture (Toronto, ON, Canada) (ISCA ’17). Association for Computing
1755
+ Machinery, New York, NY, USA, 1–12. doi: 10.1145/3140659.3080246.
1756
+ [35] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
1757
+ Daniel M. German, and Daniela Damian. 2014. The Promises and
1758
+ Perils of Mining GitHub. In Proceedings of the 11th Working Confer-
1759
+ ence on Mining Software Repositories (Hyderabad, India) (MSR 2014).
1760
+ Association for Computing Machinery, New York, NY, USA, 92–101.
1761
+ doi: 10.1145/2597073.2597074.
1762
+ [36] Jakapong Klainongsuang, Yusuf Sulistyo Nugroho, Hideaki Hata, Bun-
1763
+ dit Manaskasemsak, Arnon Rungsawang, Pattara Leelaprute, and
1764
+ Kenichi Matsumoto. 2019. Identifying Algorithm Names in Code
1765
+ Comments. (2019). arXiv:1907.04557 [cs.SE]
1766
+ [37] Chris Lattner and Vikram Adve. 2004. LLVM: a compilation framework
1767
+ for lifelong program analysis & transformation. In International Sym-
1768
+ posium on Code Generation and Optimization, 2004. CGO 2004. 75–86.
1769
+ doi: 10.1109/CGO.2004.1281665.
1770
+ [38] Vladimir I Levenshtein et al. 1966. Binary codes capable of correcting
1771
+ deletions, insertions, and reversals. In Soviet physics doklady, Vol. 10.
1772
+ Soviet Union, 707–710.
1773
+ [39] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej
1774
+ Lhoták, J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer,
1775
+ Uday P. Khedker, Anders Møller, and Dimitrios Vardoulakis. 2015. In
1776
+ defense of soundiness. Commun. ACM 58 (Jan. 2015), 44–46. Issue 2.
1777
+ doi: 10.1145/2644805.
1778
+ [40] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy,
1779
+ Ambrosio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu
1780
+ Tang, et al. 2021.
1781
+ CodeXGLUE: A Machine Learning Bench-
1782
+ mark Dataset for Code Understanding and Generation.
1783
+ (2021).
1784
+ arXiv:2102.04664 [cs.SE]
1785
+ [41] Charith Mendis, Jeffrey Bosboom, Kevin Wu, Shoaib Kamil, Jonathan
1786
+ Ragan-Kelley, Sylvain Paris, Qin Zhao, and Saman Amarasinghe. 2015.
1787
+ Helium: lifting high-performance stencil kernels from stripped x86
1788
+ binaries to halide DSL code. PLDI. doi: 10.1145/2737924.2737974.
1789
+ [42] Alok Mishra, Abid M Malik, and Barbara Chapman. 2020. Using
1790
+ Machine Learning for OpenMP GPU Offloading in LLVM. SC (2020).
1791
+ [43] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional
1792
+ Neural Networks over Tree Structures for Programming Language
1793
+ Processing. In Proceedings of the Thirtieth AAAI Conference on Artificial
1794
+ Intelligence (Phoenix, Arizona) (AAAI’16). AAAI Press, 1287–1293. doi:
1795
+ 10.5555/3015812.3016002.
1796
+ [44] Alastair Colin Murray. 2012. Customising Compilers for Customisable
1797
+ Processors. Ph.D. Thesis. The University of Edinburgh.
1798
+ http://hdl.
1799
+ handle.net/1842/8028.
1800
+ 12
1801
+
1802
+ Matching linear algebra and tensor code to specialized hardware accelerators
1803
+ CC ’23, February 25–26, 2023, Montréal, QC, Canada
1804
+ [45] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N.
1805
+ Nguyen. 2017. Exploring API Embedding for API Usages and Applica-
1806
+ tions. ICSE. doi: 10.1109/icse.2017.47.
1807
+ [46] Ansong Ni, Daniel Ramos, Aidan Yang, Ines Lynce, Vasco Man-
1808
+ quinho, Ruben Martins, and Claire Le Goues. 2021. SOAR: A Syn-
1809
+ thesis Approach for Data Science API Refactoring.
1810
+ ICSE (2021).
1811
+ arXiv:2102.06726 [cs.SE]
1812
+ [47] Seiya Numata, Norihiro Yoshida, Eunjong Choi, and Katsuro Inoue.
1813
+ 2016. On the Effectiveness of Vector-Based Approach for Supporting
1814
+ Simultaneous Editing of Software Clones. Product-Focused Software
1815
+ Process Improvement (Nov. 2016), 560–567.
1816
+ [48] Hung Dang Phan, Anh Tuan Nguyen, Trong Duc Nguyen, and Tien N.
1817
+ Nguyen. 2017. Statistical Migration of API Usages. ICSE-C.
1818
+ doi:
1819
+ 10.1109/icse-c.2017.17.
1820
+ [49] Tristan Ravitch, Steve Jackson, Eric Aderhold, and Ben Liblit. 2009.
1821
+ Automatic generation of library bindings using static analysis.
1822
+ ACM SIGPLAN Notices 44 (May 2009), 352–362.
1823
+ Issue 6.
1824
+ doi:
1825
+ 10.1145/1543135.1542516.
1826
+ [50] Roberto Rigamonti, Baptiste Delporte, Anthony Convers, and Alberto
1827
+ Dassatti. 2016. Transparent Live Code Offloading on FPGA. (2016).
1828
+ arXiv:1609.00130 [cs.DC]
1829
+ [51] Malavika Samak, Deokhwan Kim, and Martin C. Rinard. 2019. Syn-
1830
+ thesizing Replacement Classes. Proc. ACM Program. Lang. 4, POPL,
1831
+ Article 52 (dec 2019), 33 pages. doi: 10.1145/3371120.
1832
+ [52] Christof Schlaak, Tzung-Han Juang, and Christophe Dubach. 2022. Op-
1833
+ timizing Data Reshaping Operations in Functional IRs for High-Level
1834
+ Synthesis. In Proceedings of the 23rd ACM SIGPLAN/SIGBED Interna-
1835
+ tional Conference on Languages, Compilers, and Tools for Embedded Sys-
1836
+ tems (San Diego, CA, USA) (LCTES 2022). Association for Computing
1837
+ Machinery, New York, NY, USA, 61–72. doi: 10.1145/3519941.3535069.
1838
+ [53] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe
1839
+ Dubach. 2015. Generating Performance Portable Code Using Rewrite
1840
+ Rules: From High-Level Functional Expressions to High-Performance
1841
+ OpenCL Code. (2015), 205–217. doi: 10.1145/2784731.2784754.
1842
+ [54] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2016.
1843
+ Matrix multiplication beyond auto-tuning: Rewrite-based GPU code
1844
+ generation. In 2016 International Conference on Compliers, Archi-
1845
+ tectures, and Sythesis of Embedded Systems (CASES). 1–10.
1846
+ doi:
1847
+ 10.1145/2968455.2968521.
1848
+ [55] Volker Strassen. 1969. Gaussian elimination is not optimal. Numer.
1849
+ Math. 13, 4 (01 Aug 1969), 354–356. doi: 10.1007/BF02165411.
1850
+ [56] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-
1851
+ Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu.
1852
+ 2012. Parboil: A revised benchmark suite for scientific and commercial
1853
+ throughput computing. Center for Reliable and High-Performance
1854
+ Computing 127 (2012), 27.
1855
+ [57] Fang-Hsiang Su, Jonathan Bell, Kenneth Harvey, Simha Sethumadha-
1856
+ van, Gail Kaiser, and Tony Jebara. 2016. Code Relatives: Detecting
1857
+ Similarly Behaving Software. In Proceedings of the 2016 24th ACM SIG-
1858
+ SOFT International Symposium on Foundations of Software Engineering
1859
+ (Seattle, WA, USA) (FSE 2016). Association for Computing Machinery,
1860
+ New York, NY, USA, 702–714. doi: 10.1145/2950290.2950321.
1861
+ [58] Wei Sun, Savvas Sioutas, Sander Stuijk, Andrew Nelson, and Henk Cor-
1862
+ poraal. 2021. Efficient Tensor Cores support in TVM for Low-Latency
1863
+ Deep learning. In 2021 Design, Automation & Test in Europe Conference
1864
+ & Exhibition (DATE). 120–123. doi: 10.23919/DATE51398.2021.9473984.
1865
+ [59] Richard Uhrie. 2021. Automatic Computational Domain Detection. Ph.D.
1866
+ Thesis. Arizona State University. https://hdl.handle.net/2286/R.2.N.
1867
+ 161894.
1868
+ [60] Zheng Wang, Dominik Grewe, and Michael F. P. O’boyle. 2014. Auto-
1869
+ matic and Portable Mapping of Data Parallel Programs to OpenCL for
1870
+ GPU-Based Heterogeneous Systems. ACM Trans. Archit. Code Optim.
1871
+ 11, 4, Article 42 (12 2014), 26 pages. doi: 10.1145/2677036.
1872
+ [61] Yuan Wen and Michael F.P. O’Boyle. 2017. Merge or Separate? Multi-
1873
+ Job Scheduling for OpenCL Kernels on CPU/GPU Platforms. In Pro-
1874
+ ceedings of the General Purpose GPUs (Austin, TX, USA) (GPGPU-10).
1875
+ Association for Computing Machinery, New York, NY, USA, 22–31.
1876
+ doi: 10.1145/3038228.3038235.
1877
+ [62] Jian Weng, Animesh Jain, Jie Wang, Leyuan Wang, Yida Wang, and
1878
+ Tony Nowatzki. 2021. UNIT: Unifying Tensorized Instruction Compi-
1879
+ lation. In 2021 IEEE/ACM International Symposium on Code Generation
1880
+ and Optimization (CGO). 77–89. doi: 10.1109/CGO51591.2021.9370330.
1881
+ [63] Jackson Woodruff, Jordi Armengol-Estapé, Sam Ainsworth, and
1882
+ Michael F. P. O’Boyle. 2022.
1883
+ Bind the Gap: Compiling Real Soft-
1884
+ ware to Hardware FFT Accelerators. In Proceedings of the 43rd ACM
1885
+ SIGPLAN International Conference on Programming Language De-
1886
+ sign and Implementation (San Diego, CA, USA) (PLDI 2022). Asso-
1887
+ ciation for Computing Machinery, New York, NY, USA, 687–702. doi:
1888
+ 10.1145/3519939.3523439.
1889
+ [64] Gina Yuan, Shoumik Palkar, Deepak Narayanan, and Matei Zaharia.
1890
+ 2020. Offload Annotations: Bringing Heterogeneous Computing to
1891
+ Existing Libraries and Workloads. In 2020 USENIX Annual Technical
1892
+ Conference (USENIX ATC 20). USENIX Association, 293–306.
1893
+ 13
1894
+
Q9FJT4oBgHgl3EQf3C2V/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
T9E2T4oBgHgl3EQfCga9/content/tmp_files/2301.03615v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
T9E2T4oBgHgl3EQfCga9/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
TdAzT4oBgHgl3EQf0v6x/content/tmp_files/2301.01789v1.pdf.txt ADDED
@@ -0,0 +1,850 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MNRAS 000, 1–7 (2022)
2
+ Preprint 6 January 2023
3
+ Compiled using MNRAS LATEX style file v3.0
4
+ Vortex weighing and dating of planets in protoplanetary discs
5
+ Roman R. Rafikov1,2★, Nicolas P. Cimerman1
6
+ 1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
7
+ 2Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA
8
+ Accepted XXX. Received YYY; in original form ZZZ
9
+ ABSTRACT
10
+ High-resolution sub-mm observations of some protoplanetary discs reveal non-asixymmetric features, which can often be
11
+ interpreted as dust concentrations in vortices that form at the edges of gaps carved out by the embedded planets. We use recent
12
+ results on the timescale for the planet-driven vortex development in low-viscosity discs to set constraints on the mass and age of
13
+ a planet producing the vortex. Knowledge of the age of the central star in a vortex-bearing protoplanetary disc system allows one
14
+ to set a lower limit on the planetary mass at the level of several tens of 𝑀⊕. Also, an independent upper limit on the planetary
15
+ mass would constrain the planetary age, although given the current direct imaging detection limits this constraint is not yet very
16
+ stringent (it is also sensitively dependent on the disc scale height). These results can be extended to account for the history of
17
+ planetary mass accretion if it is known. We apply our calculations to several protoplanetary discs harbouring vortex-like features
18
+ as revealed by ALMA and set limits of (30−50)𝑀⊕ (for disc aspect ratio of 0.1) on the minimum masses of putative planets that
19
+ could be responsible for these vortices. Our vortex-based method provides an independent way of constraining the properties of
20
+ embedded planets, complementary to other approaches.
21
+ Key words: hydrodynamics – instabilities – shock waves – accretion discs – planets and satellites: formation – methods:
22
+ numerical
23
+ 1 INTRODUCTION
24
+ Observations of protoplanetary discs (PPDs) in dust continuum emis-
25
+ sion with ALMA revealed a variety of substructures (Andrews 2020),
26
+ including axisymmetric gaps and rings as well as non-axisymmetric
27
+ clumps and arcs. An intriguing possibility is that these features could
28
+ be produced by young embedded planets. In particular, gravitational
29
+ coupling between a massive planet and the disc is known to result in
30
+ formation of observable gaps around the planetary orbit (Papaloizou
31
+ & Lin 1984; Rafikov 2002b). The evolution of vortensity (potential
32
+ vorticity) at the edges of these gaps (Lin & Papaloizou 2010; Dong
33
+ et al. 2011; Cimerman & Rafikov 2021) due to shock dissipation of
34
+ the planet-driven density waves (Goodman & Rafikov 2001; Rafikov
35
+ 2002a) can trigger the Rossby Wave Instability (RWI, Lovelace et al.
36
+ 1999) resulting in the formation of fluid vortices at these locations.
37
+ Dust accumulation inside the vortices (Barge & Sommeria 1995)
38
+ naturally leads to observable non-axisymmetric arcs and lobes.
39
+ Formation of these structures does not necessarily require massive
40
+ (Jovian) planets. For example, it was shown (Dong et al. 2017; Bae
41
+ et al. 2017; Miranda & Rafikov 2019, 2020a,b) that multiple visible
42
+ gaps and rings in the dust distribution can result from nonlinear
43
+ damping of multiple spirals triggered by a single sub-Jovian mass
44
+ planet in a low viscosity disc. The mass of the planet 𝑀p can in fact be
45
+ below the so-called thermal mass defined as 𝑀th = �𝐻p/𝑅p
46
+ �3 𝑀★ =
47
+ ℎ3p 𝑀★, where 𝐻p is the disc scale height at the planetary distance 𝑅p,
48
+ ℎp = 𝐻p/𝑅p is the disc aspect ratio there, and 𝑀★ is the stellar mass.
49
+ Emergence of vortices at the edges of planetary gaps also does not
50
+ ★ E-mail: rrr@damtp.cam.ac.uk (RRR)
51
+ require massive planets if the disc is almost inviscid (Hammer et al.
52
+ 2021; Hallam & Paardekooper 2020), and sub-𝑀th mass planets can
53
+ easily trigger them (Cimerman & Rafikov 2023, hereafter CR23).
54
+ In this study we focus on non-axisymmetric disc features which
55
+ can be interpreted as planet-induced vortices (other ways to produce
56
+ vortices are mentioned in Section 2). Their development is not an
57
+ instantaneous process as the evolution of vortensity near the planetary
58
+ orbit towards the RWI takes a certain amount of time. As we show
59
+ in this work, this fact can be exploited to set useful constraints on
60
+ the mass and/or age of a putative planet responsible for production
61
+ of the observed vortices in a PPD. This method relies on the recent
62
+ calculation of CR23 who studied the development of vortices in
63
+ inviscid PPDs. In that work, we showed that the time it takes for
64
+ vortices to emerge at the edge of the gap carved out by a sub-𝑀th
65
+ mass planet can be approximated as
66
+ 𝜏vrt ≈ 𝐴 𝑃p
67
+ � 𝑀p
68
+ 𝑀th
69
+ � 𝛼
70
+ ℎ𝛽
71
+ p ,
72
+ where
73
+ (1)
74
+ 𝐴 ≈ 1.6,
75
+ 𝛼 ≈ −2.7,
76
+ 𝛽 ≈ −0.86,
77
+ (2)
78
+ and 𝑃p is the orbital period at 𝑅p. This result assumes 𝑀p to be fixed
79
+ in time. Interestingly, CR23 found 𝜏vrt to only weakly depend on the
80
+ radial profile of surface density in the disc.
81
+ We describe the general idea of our method in Section 2 and show
82
+ how it can constrain the mass and age of the planet in Section 3 and
83
+ Section 4, respectively. In Section 5 we extend our constraints to the
84
+ case of a planet accreting its mass over an extended period of time.
85
+ We apply our results to observed PPDs in Section 6 and discuss them
86
+ in Section 7.
87
+ © 2022 The Authors
88
+ arXiv:2301.01789v1 [astro-ph.EP] 4 Jan 2023
89
+
90
+ 2
91
+ R. R. Rafikov and N. P. Cimerman
92
+ 2 GENERAL IDEA OF THE METHOD
93
+ Let us suppose that observations of dust continuum emission reveal
94
+ a gap in a PPD, together with a non-axisymmetric lobe or arc at
95
+ the gap edge, indicative of a vortex which traps dust grains at this
96
+ location (e.g. van der Marel et al. 2016; Kraus et al. 2017; Dong
97
+ et al. 2018; Pérez et al. 2018). We will interpret this observation by
98
+ assuming that a planet (not necessarily directly visible) is located
99
+ within the gap and is responsible for creating both the gap and the
100
+ vortex (via the RWI). The spatial association of a vortex with an
101
+ adjacent gap provides strong support to this interpretation and makes
102
+ some other possibilities for triggering vortices, e.g. global baroclinic
103
+ instability (Klahr & Bodenheimer 2003), convective overstability
104
+ (Teed & Latter 2021), vertical shear instability (Richard et al. 2016)
105
+ less attractive.
106
+ We assume the disc viscosity to be low (essentially inviscid),
107
+ consistent with many observations of PPDs (Pinte et al. 2016; Rafikov
108
+ 2017; Flaherty et al. 2020). For now we will also assume that 𝑀p has
109
+ been constant ever since the planet appeared in the disc, a constraint
110
+ that we will relax in Section 5. With these conditions fulfilled, the
111
+ result (1)-(2) applies. We can then use the observation of the vortex
112
+ to set a constraint on a particular combination of the planetary mass
113
+ 𝑀p and the planetary age 𝜏p — the time that has passed since the
114
+ planet has reached its final mass 𝑀p.
115
+ Indeed, the observation of a vortex at the gap edge implies that the
116
+ RWI had enough time to fully develop into the non-linear stage in
117
+ that region, i.e. that
118
+ 𝜏p > 𝜏vrt.
119
+ (3)
120
+ Together with equation (1) this leads to the following combined
121
+ constraint on 𝜏p and 𝑀p:
122
+ 𝜏p𝑀−𝛼
123
+ p
124
+ > 𝐴𝑃p𝑀−𝛼
125
+ th ℎ𝛽
126
+ p .
127
+ (4)
128
+ With fit parameters (2) we can write this in physical units as
129
+ 𝜏p
130
+ Myr
131
+
132
+ 𝑀p
133
+ 102𝑀⊕
134
+ �2.7
135
+ > 0.11
136
+
137
+ 𝑅p
138
+ 50AU
139
+ �1.5 � 𝑀★
140
+ 𝑀⊙
141
+ �2.2 � ℎp
142
+ 0.1
143
+ �7.2
144
+ .
145
+ (5)
146
+ This condition must be fulfilled whenever a vortex is observed at the
147
+ gap edge. It is illustrated in Fig. 1 for several values of ℎp and 𝑅p.
148
+ In a similar vein, the absence of vortex-like structures at the edges
149
+ of a visible gap in a disc might be interpreted as meaning that 𝜏p <
150
+ 𝜏vrt, i.e. that planet-driven accumulation of vortensity has not yet led
151
+ to RWI. If that were the case, the inequality in the constraint (4)-(5)
152
+ would change its sign. However, this possibility has an important
153
+ caveat as the absence of a vortex may also be interpreted differently:
154
+ it could have formed at the gap edge earlier but then got destroyed
155
+ through one of the processes that tend to destabilize vortices once
156
+ they evolve into the nonlinear regime: the elliptical instability (Lesur
157
+ & Papaloizou 2009), baroclinic effects (Rometsch et al. 2021; Fung &
158
+ Ono 2021), dust feedback (Fu et al. 2014), etc. Also, vortex formation
159
+ may have been delayed or suppressed altogether if disc viscosity
160
+ is sufficiently high (Hammer et al. 2017; Hallam & Paardekooper
161
+ 2020). Thus, the lack of a vortex near a planetary gap cannot be
162
+ unambiguously interpreted as meaning that the embedded planet did
163
+ not get a chance to create it, i.e. that 𝜏p < 𝜏vrt. For that reason (and
164
+ unlike Hallam & Paardekooper 2020) in the following we will not
165
+ draw any conclusions from the absence of vortices at the edges of
166
+ putative planetary gaps found in sub-mm observations.
167
+ We will now show how equations (4) & (5) can be used to sepa-
168
+ rately constrain 𝑀p or 𝜏p.
169
+ 10
170
+ 100
171
+ 1000
172
+ Mp [M
173
+ ]
174
+ 0.01
175
+ 0.1
176
+ 1
177
+ 10
178
+ p [Myr]
179
+ no vortex
180
+ hp = 0.07
181
+ hp = 0.1
182
+ hp = 0.15
183
+ Rp = 100 AU
184
+ Figure 1. Combined constraint (5) on the planetary mass 𝑀p and age 𝜏p,
185
+ shown for different parameters of a system with 𝑀★ = 𝑀⊙. Solid lines are
186
+ for 𝑅p = 50 AU and ℎp = 0.07 (fuchsia), ℎp = 0.1 (blue), ℎp = 0.15
187
+ (green). Blue dashed line is for 𝑅p = 100 AU, ℎp = 0.1. Grey shaded region
188
+ is excluded as no vortices should appear in this part of the parameter space
189
+ (bounded by ℎp = 0.07 curve for illustration). Arrows indicate 𝑀th calculated
190
+ using ℎp corresponding to the arrow color (same as in the legend). Constraint
191
+ (5) — solid curves — is strictly valid only for 𝑀p ≲ 𝑀th.
192
+ 0.1
193
+ 1
194
+ 10
195
+ sys [Myr]
196
+ 10
197
+ 100
198
+ 1000
199
+ Mp [M
200
+ ]
201
+ no vortex
202
+ hp = 0.07
203
+ hp = 0.1
204
+ hp = 0.15
205
+ Rp = 100 AU
206
+ Figure 2. Mass constraint (6), (7) as a function of the system (stellar) age
207
+ 𝜏sys. Meaning of curves, arrows and shading are the same as in Fig. 1.
208
+ 3 VORTEX WEIGHING OF PLANETS
209
+ Let us suppose that the age (time since formation) of the protostar-
210
+ disc system 𝜏sys is known, e.g. from isochrone fitting of the charac-
211
+ teristics of the central star. This is usually the case at some level of
212
+ accuracy. Since, obviously, the planet is younger than its parent star,
213
+ one must have 𝜏sys > 𝜏p. However, the presence of a vortex at the gap
214
+ edge means that the inequality (3) is also fulfilled, which necessarily
215
+ implies that 𝜏sys > 𝜏vrt. Using equation (4), this condition can be
216
+ converted into a lower limit on 𝑀p:
217
+ 𝑀p > 𝑀vrt = 𝑀th
218
+
219
+ 𝐴 ℎ𝛽
220
+ p
221
+ 𝑃p
222
+ 𝜏sys
223
+ �−1/𝛼
224
+ .
225
+ (6)
226
+ In physical units,
227
+ 𝑀vrt ≈ 40𝑀⊕
228
+ � 𝜏sys
229
+ Myr
230
+ �−0.37 �
231
+ 𝑅p
232
+ 50AU
233
+ �0.56 � ℎp
234
+ 0.1
235
+ �2.7 � 𝑀★
236
+ 𝑀⊙
237
+ �0.81
238
+ .
239
+ (7)
240
+ Note a strong dependence of 𝑀vrt on ℎp, but a rather weak scaling
241
+ with 𝜏sys. This constraint is illustrated in Fig. 2.
242
+ Note that for the mass constraint (6)-(7) to be valid, the timescale
243
+ fit (1) should be justified in the first place. For this to be the case,
244
+ the planetary mass must be in the sub-thermal mass regime. One can
245
+ MNRAS 000, 1–7 (2022)
246
+
247
+ Vortex weighing and dating
248
+ 3
249
+ easily show that
250
+ 𝑀vrt
251
+ 𝑀th
252
+ ≈ 0.13
253
+ � 𝜏sys
254
+ Myr
255
+ �−0.37 �
256
+ 𝑅p
257
+ 50AU
258
+ �0.56 � ℎp
259
+ 0.1
260
+ �−0.32 � 𝑀★
261
+ 𝑀⊙
262
+ �−0.19
263
+ ,
264
+ (8)
265
+ i.e. the condition 𝑀p ≲ 𝑀th should be not difficult to satisfy in
266
+ general (in Figs. 1,2 we illustrate the values of 𝑀th with arrows).
267
+ Thus, we expect 𝑀vrt to provide a lower limit on 𝑀p quite generally.
268
+ The constraint (6)-(7) can be improved (i.e. 𝑀vrt increased) if we
269
+ had some independent way to set an upper limit on 𝜏p, which is
270
+ lower than the system age 𝜏sys. In practice, however, such refined
271
+ information on 𝜏p may be difficult to obtain.
272
+ 4 VORTEX DATING OF PLANETS
273
+ One can also turn the argument around and assume that, in addition
274
+ to observing a vortex adjacent to a gap, we also know the mass 𝑀p
275
+ of the gap-opening planet — either via atmospheric modelling if the
276
+ planet is visible, or through indirect dynamical measurements if it
277
+ has not been imaged. We can then use the presence of the vortex to
278
+ set a lower limit on the planetary age 𝜏p via equation (3), in which
279
+ 𝜏vrt ≈ 105yr
280
+
281
+ 𝑀p
282
+ 102𝑀⊕
283
+ �−2.7 �
284
+ 𝑅p
285
+ 50AU
286
+ �1.5 � ℎp
287
+ 0.1
288
+ �7.2 � 𝑀★
289
+ 𝑀⊙
290
+ �2.2
291
+ .
292
+ (9)
293
+ If only an upper limit 𝑀↓ on planetary mass is available to us,
294
+ 𝑀p < 𝑀↓ (e.g. from non-detection of the planet through near-IR
295
+ imaging), then one should use 𝑀↓ instead of 𝑀p in (9). Solid and
296
+ dashed lines in Fig. 1 give 𝜏vrt (as a function of 𝑀p or 𝑀↓) for
297
+ different values of ℎp and 𝑅p.
298
+ A constraint on 𝜏p would be extremely useful for understanding the
299
+ timing of planet formation. It can also serve as a consistency check for
300
+ calculations of planetary evolution post-formation, since the present
301
+ day temperature and luminosity of the planet are themselves functions
302
+ of its age 𝜏p (e.g. Linder et al. 2019), see Section 7. Unfortunately, the
303
+ accuracy of the lower limit (3) & (9) may be somewhat compromised
304
+ by the uncertainties in the determination of various parameters that
305
+ enter it, e.g. 𝑀p and, especially, ℎp, given how steeply 𝜏vrt scales
306
+ with them.
307
+ 5 ACCOUNTING FOR ACCRETION HISTORY OF A
308
+ PLANET
309
+ Our results (1) & (2) for 𝜏vrt have been obtained in CR23 for a
310
+ constant 𝑀p (not varying in time). This implicitly assumes that planet
311
+ has grown to its final 𝑀p very rapidly, having accreted its mass
312
+ almost instantaneously; this accretion history is illustrated in panel
313
+ (a) of Fig. 3. In panel (b) we also illustrate the corresponding growth
314
+ of the characteristic amplitude1 𝐴𝜁 of the planet-induced vortensity
315
+ perturbation 𝜁, which is the variable that eventually determines vortex
316
+ generation (CR23): very crudely, one may expect the RWI to set in
317
+ when 𝐴𝜁 reaches some threshold value (illustrated with red dotted
318
+ line). The growth rate of 𝐴𝜁 in panel (b) is constant since it sensitively
319
+ depends on 𝑀p and 𝑀p is fixed in this case.
320
+ One may consider other representative histories of planetary mass
321
+ evolution. For example, in Fig. 3c 𝑀p undergoes an initial period of
322
+ accretion and then stays at its final value until the RWI sets in. As
323
+ another example, in panel (e) the planetary mass increases steadily
324
+ 1 E.g. a maximum or minimum value of 𝜁 as a function of radius, see CR23.
325
+ and the RWI gets triggered while 𝑀p is still growing. For these
326
+ growth histories, the increase of 𝐴𝜁 is no longer purely linear, see
327
+ panels (d) and (f), and using the final planetary mass2 in formula
328
+ (1) we would underestimate the true age of the planet 𝜏p (illustrated
329
+ in top panels), i.e. the time since its growth has started and until
330
+ the present day when the vortex has emerged. Instead, application of
331
+ equation (1) would give us some other time 𝜏0, which is illustrated
332
+ by the orange lines (based on the growth rate of 𝐴𝜁 at the time when
333
+ RWI sets in) in panels (d) & (f). Since growth of 𝜁 accelerates (quite
334
+ steeply) for higher 𝑀p, the growth rate of 𝐴𝜁 can only increase in
335
+ time, so that 𝜏p ≥ 𝜏0 always (with equality only for 𝑀p(𝑡) = const.,
336
+ see Fig. 3a,b).
337
+ Very importantly, this complication does not affect the validity
338
+ of our time constraint, since 𝜏0 is given by our equation (1) and
339
+ we just saw that 𝜏p ≥ 𝜏0. However, in some scenarios, e.g. in the
340
+ continuous accretion case shown in panels (e),(f), 𝜏0 can be much
341
+ shorter than 𝜏p, making our time constraint (3) too conservative.
342
+ Thus, it is desirable to find ways to somehow account for the history
343
+ of accretion (provided that it is known) to improve limits on 𝜏p.
344
+ One way to do this has already been discussed in CR23 and
345
+ amounts to replacing 𝜏p𝑀−𝛼
346
+ p
347
+ with
348
+ ∫ 𝜏p
349
+ 0
350
+
351
+ 𝑀p(𝑡)
352
+ �−𝛼 d𝑡 in equation
353
+ (4); this modification allows us to account for the evolution of the
354
+ vortensity (or 𝐴𝜁 ) growth rate, which is proportional to 𝑀−𝛼
355
+ p
356
+ , as
357
+ 𝑀p(𝑡) increases. Thus, we generalize the combined constraint on 𝜏p
358
+ and 𝑀p in the case of an accreting planet to
359
+ ∫ 𝜏p
360
+ 0
361
+
362
+ 𝑀p(𝑡)
363
+ �−𝛼 d𝑡 > 𝐴𝑃p𝑀−𝛼
364
+ th ℎ𝛽
365
+ p .
366
+ (10)
367
+ Since this constraint must reduce to the inequality (4), we will assume
368
+ all its parameters — 𝛼, 𝛽, 𝐴 — to be still given by the equation3 (2).
369
+ Then in physical units equation (10) becomes
370
+ (Myr)−1
371
+ ∫ 𝜏p
372
+ 0
373
+ � 𝑀p(𝑡)
374
+ 102𝑀⊕
375
+ �2.7
376
+ d𝑡 > 0.11
377
+
378
+ 𝑅p
379
+ 50AU
380
+ �1.5
381
+ ×
382
+ � 𝑀★
383
+ 𝑀⊙
384
+ �2.2 � ℎp
385
+ 0.1
386
+ �7.2
387
+ .
388
+ (11)
389
+ For 𝑀p(𝑡) = const this inequality reduces to (5).
390
+ We can apply this generalized criterion to the simulations of Hal-
391
+ lam & Paardekooper (2020) who considered planetary accretion his-
392
+ tory in the form 𝑀p(𝑡) = 𝑀f sin2 [(𝜋/2)(𝑡/𝑡G)] (where 𝑡G is the
393
+ growth time) and determined the values of the final planet mass 𝑀f
394
+ such that the RWI would marginally set in at 𝑡 = 𝑡G. In our notation
395
+ this means setting 𝑡G = 𝜏vrt. We can use our results and determine the
396
+ relation between such 𝑡G and 𝑀f by changing inequality to equality
397
+ in equation (10) and setting 𝜏p = 𝑡G. We find, using the definition of
398
+ 𝑀th and introducing 𝑞f = 𝑀f/𝑀★,
399
+ 𝑡G = 𝐴 𝜅−1𝑃p 𝑞𝛼
400
+ f ℎ𝛽−3𝛼
401
+ p
402
+ ,
403
+ (12)
404
+ where, for a particular accretion history of Hallam & Paardekooper
405
+ (2020), 𝜅 =
406
+ ∫ 1
407
+ 0 [sin(𝜋𝑥/2)]2𝛼𝑑𝑥 ≈ 0.33.
408
+ As these authors also included the effects of viscosity, which is
409
+ 2 For simplicity we neglect the possible growth of 𝑀p after the vortex has
410
+ appeared and until the present time.
411
+ 3 This assumption is only approximate since the non-trivial history of accre-
412
+ tion may modify the radial profile of 𝜁 , which determines the RWI stability
413
+ (Cimerman & Rafikov 2021). Also, the RWI threshold itself is not entirely
414
+ universal (CR23). But this approximation should not be too bad as the RWI
415
+ onset is mainly determined by the late-time behavior of 𝑀p(𝑡). Finally, note
416
+ that theoretical arguments suggest 𝛼 = 2.6, but the numerical results are
417
+ closer to 𝛼 ≈ 2.7 (CR23).
418
+ MNRAS 000, 1–7 (2022)
419
+
420
+ 4
421
+ R. R. Rafikov and N. P. Cimerman
422
+ 0
423
+ Mp(t)
424
+ p
425
+ a
426
+ Instant accretion
427
+ p
428
+ c
429
+ Initial episode of accretion
430
+ p
431
+ e
432
+ Continuous accretion
433
+ t
434
+ 0
435
+ A (t)
436
+ 0
437
+ b
438
+ t
439
+ 0
440
+ d
441
+ t
442
+ 0
443
+ f
444
+ Figure 3. Illustration of the different representative planetary accretion histories: (left) very rapid (instant) initial accretion to the final mass, (centre) extended
445
+ initial interval of accretion, (right) continuous accretion. Top panels illustrate 𝑀p(𝑡) (blue) while the bottom panels show the corresponding growth of the
446
+ characteristic amplitude 𝐴𝜁 (green) of the planet-driven vortensity perturbation (this calculations assumes d𝐴𝜁 /d𝑡 ∝ [𝑀p(𝑡)]2.7, see text). Arrows in the top
447
+ panels indicate the planetary age 𝜏p (time since the start of its accretion), while in the bottom panels they show the "time to vortex formation" 𝜏0 calculated
448
+ using equation (1) and assuming 𝑀p given by its final value. The red dotted line indicates the critical value of 𝐴𝜁 when the vortices are expected to appear. The
449
+ key point illustrated here is that 𝜏0 ≤ 𝜏p always.
450
+ known to delay the onset of RWI (Hammer et al. 2017), we cannot
451
+ directly compare our results for 𝑡G with theirs. However, if we focus
452
+ on their smallest 𝑞f = 1.5×10−4 (since in their setup this corresponds
453
+ to the lowest value of viscosity, closer to our inviscid setup) and adopt
454
+ their ℎp = 0.05 and the fit parameters (2), we find the age of the planet
455
+ to satisfy 𝜏p ≳ 𝑡G ≈ 39𝑃p. This is comfortably below 𝑡G ≈ 200𝑃p
456
+ that Hallam & Paardekooper (2020) find for the same 𝑞f, consistent
457
+ with the viscosity-driven delay. Equally importantly, had we used the
458
+ equation (4), that assumes 𝑀p = const, instead of (10), we would
459
+ have found 𝜏p ≳ 13𝑃p (a factor of 𝜅 lower), far less constraining
460
+ than the result that we obtained accounting for the (known) accretion
461
+ history.
462
+ Given the steep dependence of the integrand in (11) on 𝑀p (reflect-
463
+ ing 𝑀p-dependence of the 𝜁 growth rate), we expect 𝐴𝜁 to increase
464
+ the most when 𝑀p(𝑡) is close to its final value. This is indeed what
465
+ we see in Fig. 3d, in which the initial accretion episode contributes
466
+ only weakly to the total increase of 𝐴𝜁 , despite its duration being
467
+ comparable to the time interval when 𝑀p stayed at its final value (our
468
+ calculation in this plot assumed d𝐴𝜁 /d𝑡 ∝ 𝑀2.7
469
+ p
470
+ for compatibility
471
+ with equation (11), see CR23). Thus, it is the history of 𝑀p accre-
472
+ tion at late times that is most important for determining the age of a
473
+ putative planet in an observed vortex-hosting system.
474
+ 6 APPLICATION TO OBSERVED DISCS
475
+ We apply the constraints derived above to several protostellar
476
+ systems observed by ALMA, for which the vortices have been
477
+ invoked as a possible explanation of the observed non-axisymmetric
478
+ features — arcs, clumps, etc. It is important to remember that
479
+ the features detected in continuum emission by ALMA are due to
480
+ thermal emission of dust grains, while our results on the emergence
481
+ of vortices apply to the gaseous component of the disc. However,
482
+ it has been shown by a number of authors (Barge & Sommeria
483
+ 1995; Godon & Livio 1999; Fu et al. 2014) that vortices are very
484
+ efficient at trapping dust, providing support to our association of
485
+ the dust asymmetries with the gas vortices in PPDs. Since our
486
+ limits on 𝜏p and 𝑀p are highly sensitive to the disk aspect ratio ℎp,
487
+ which is poorly known in most cases, we will retain the scaling with
488
+ ℎ0.1 = ℎp/0.1 in our estimates.
489
+ HD 135344B (SAO 206462)
490
+ This 𝑀★ = 1.5𝑀⊙, 𝜏sys ≈ 9 Myr old (Asensio-Torres et al. 2021)
491
+ Herbig F star harbours a transitional disc. ALMA dust continuum
492
+ observations reveal an axisymmetric inner ring separated by a gap-
493
+ like structure (centered around 70 AU) from an (outer) arc that can
494
+ be interpreted as a vortex at the outer gap edge (van der Marel
495
+ et al. 2016; Cazzoletti et al. 2018). The possibility of a planetary
496
+ origin of these structures is supported by the near-IR scattered light
497
+ observations of a two-armed spiral (Muto et al. 2012), although a
498
+ unified model explaining all these features at once is lacking. We
499
+ will nevertheless assume that the gap and the outer vortex are due to
500
+ the (unseen) gap-opening planet at 𝑅p ≈ 70 AU, and the inner ring
501
+ reflects dust trapping at the pressure maximum at the inner gap edge.
502
+ These data and equations (6)-(7) allow us to constrain planetary mass
503
+ as 𝑀p ≳ 32ℎ2.7
504
+ 0.1𝑀⊕.
505
+ Direct imaging of HD 135344B with VLT/SPHERE sets an upper
506
+ limit of 𝑀↓ ≈ 4𝑀J on the mass of a planetary object at ∼ 102AU
507
+ scales (Asensio-Torres et al. 2021). Unfortunately, this 𝑀↓ is higher
508
+ than the thermal mass 𝑀th = 1.5ℎ3
509
+ 0.1𝑀J, which makes the use of the
510
+ timescale constraint (3),(9) unjustified (its blind application would
511
+ give 𝜏vrt ≈ 500ℎ7.2
512
+ 0.1 yr, comparable to the orbital period at the gap
513
+ location and not constraining 𝜏p effectively).
514
+ HD 36112 (MWC 758)
515
+ This 𝑀★ ≈ 1.8𝑀⊙, 𝜏sys ≈ 9 Myr old (Asensio-Torres et al. 2021)
516
+ star harbours two clumps on top of the two rings separated by a gap
517
+ in the outer disc (Dong et al. 2018). Neglecting the slight eccentricity
518
+ of the disc and assuming the rings with clumps to correspond to the
519
+ inner and outer edges of the gap carved by a planet, we will adopt
520
+ 𝑅p ≈ 70 AU for the planetary orbit. Then equations (6)-(7) allow us
521
+ to set a mass constraint 𝑀p ≳ 37ℎ2.7
522
+ 0.1𝑀⊕.
523
+ Analysis of the direct imaging observations of this system by
524
+ Asensio-Torres et al. (2021) suggests that the upper limit on the
525
+ possible point source inside the assumed gap is ∼ 8𝑀J, significantly
526
+ higher than 𝑀th, precluding us from meaningfully constraining the
527
+ MNRAS 000, 1–7 (2022)
528
+
529
+ Vortex weighing and dating
530
+ 5
531
+ age of the planet.
532
+ HD 143006
533
+ This G-type T Tauri star with 𝑀★ = 1.8𝑀⊙ and an estimated age
534
+ of 𝜏sys ≈ 8 Myr harbours a disc rich in substructures (Pérez et al.
535
+ 2018). In addition to a misaligned inner disc, it features two outer
536
+ rings separated by a gap centered around 52 AU, with an arc just
537
+ outside the outermost ring. Interpreting these features as produced
538
+ by an unseen planet inside the gap at 𝑅p = 52 AU, we get the mass
539
+ constraint 𝑀p ≳ 33ℎ2.7
540
+ 0.1𝑀⊕ from equations (6)-(7).
541
+ NaCo/VLT direct imaging does not provide a useful constraint on
542
+ the mass of a putative planet, with 𝑀↓ at the level of several tens of
543
+ 𝑀J at the outer gap location (Jorquera et al. 2021). Thus, we cannot
544
+ set a useful lower limit on the planetary age.
545
+ V1247 Ori
546
+ V1247 Ori is a 𝜏sys = 7.5 Myr old, 𝑀★ ≈ 1.9𝑀⊙ star (Willson et al.
547
+ 2019) harbouring a pre-transitional disc. ALMA dust continuum ob-
548
+ servations (Kraus et al. 2017) reveal an inner disc (or ring) separated
549
+ by a gap from the outer arc, which may be interpreted as a vortex at
550
+ the outer gap edge. Assuming a planet to be in the gap, at 𝑅p ≈ 90
551
+ AU, one finds that the planetary mass must satisfy 𝑀p ≳ 48ℎ2.7
552
+ 0.1𝑀⊕.
553
+ While we could not find explicit limits on the mass of the putative
554
+ planet in V1247 Ori system from direct imaging observations, Kraus
555
+ et al. (2017) found that an 𝑀p = 3𝑀J planet can roughly match
556
+ the shape of the spiral observed in scattered light using HiCIAO.
557
+ Unfortunately, this 𝑀p is again above 𝑀th, not allowing the age of
558
+ the planet to be meaningfully constrained.
559
+ 7 DISCUSSION
560
+ 7.1 Combination of multiple constraints
561
+ Our limits on 𝑀p and 𝜏p based on the presence of vortices next
562
+ to gaps in PPDs become even more powerful when combined with
563
+ additional constraints on these key parameters. In particular, young
564
+ planets passively lose thermal energy that they have been endowed
565
+ with at formation, resulting in their luminosity decreasing with time.
566
+ As more massive planets retain more heat at formation, it takes
567
+ them longer to cool. Thus, if one can observationally constrain the
568
+ luminosity of a planet 𝐿p to lie below a certain limit (or determine
569
+ it in the case of direct detection), this would provide an additional
570
+ constraint on 𝑀p and 𝜏p.
571
+ We illustrate this approach in Fig. 4, where we show the vortex-
572
+ based constraints from Fig. 1 together with the constraint 𝐿p <
573
+ 10−6𝐿⊙ (outside the pink shaded region to the right of the black
574
+ dotted curve) based on the work4 of Linder et al. (2019). We also
575
+ show the 𝐿p = 10−7𝐿⊙ curve (red dotted) which may be relevant
576
+ for future direct imaging experiments. In addition, we impose a con-
577
+ straint 𝜏p < 15 Myr (region below the orange dot-dashed line) since
578
+ protoplanetary discs usually do not survive for that long (similar to
579
+ the logic used in Section 3). There are other, complementary ways
580
+ of constraining planetary properties, for example gap width/depth
581
+ fitting (Dong & Fung 2017; Asensio-Torres et al. 2021) which can
582
+ provide model-dependent information on 𝑀p for individual systems;
583
+ we will not consider them here.
584
+ 4 We use the tracks for the bolometric luminosity 𝐿p of a fixed mass planet
585
+ from Fig. 6 of Linder et al. (2019), which assume evolution with a cloud-free
586
+ atmosphere of solar metallicity and use the petitCODE grid.
587
+ 10
588
+ 100
589
+ 1000
590
+ Mp [M
591
+ ]
592
+ 0.01
593
+ 0.1
594
+ 1
595
+ 10
596
+ p [Myr]
597
+ no vortex
598
+ hp = 0.07
599
+ hp = 0.1
600
+ hp = 0.15
601
+ Rp = 100 AU
602
+ Lp = 10
603
+ 6L
604
+ Lp = 10
605
+ 7L
606
+ p = 15 Myr
607
+ Figure 4. Combination of the different constraints on the mass 𝑀p and age
608
+ 𝜏p of a planet in a vortex-hosting PPD. Grey shaded region is excluded
609
+ (for ℎp = 0.07) as vortices have no time to develop in this part of the
610
+ parameter space, analogous to Fig. 1 (solid and dashed lines are the same as
611
+ in that figure). Pink shaded region is excluded as it corresponds to planetary
612
+ (bolometric) cooling luminosity 𝐿p exceeding 𝐿p = 10−6𝐿⊙ (black dotted
613
+ curve). We also show the curve 𝐿p = 10−7𝐿⊙ (red dotted curve); the 𝐿p
614
+ curves are based on Linder et al. (2019). The orange shaded region above
615
+ the orange dot-dashed curve excludes planetary ages above 15 Myr. Planets
616
+ satisfying all three constraints reside in the unshaded part of the parameter
617
+ space.
618
+ A combination of the three constraints — based on planetary lu-
619
+ minosity, age and presence of vortices — limits planetary 𝑀p and
620
+ 𝜏p to lie within the unshaded region. This region shrinks for hotter
621
+ discs with larger ℎp (compare fuchsia and green solid curves), as
622
+ well as for larger 𝑅p (compare blue solid and dashed lines). Thus, the
623
+ vortex-based limits are more stringent in hotter discs and for more
624
+ distant planets. Also, the allowed region would shrink even further as
625
+ the upper limit on 𝐿p gets lowered in the future. It should also be re-
626
+ membered that the luminosity-based (dotted) curves assume that the
627
+ (possible ongoing) gas accretion provides insignificant contribution
628
+ to 𝐿p. If the planetary accretion luminosity is non-negligible, this
629
+ would additionally shift the dotted curves to the left, constraining
630
+ 𝑀p and 𝜏p even further.
631
+ 7.2 Utility of the vortex-based constraint
632
+ The sub-Jovian value of 𝑀vrt implied by the equation (7) and our
633
+ estimates in Section 6 is very relevant in light of the recent results
634
+ (Dong et al. 2017; Bae et al. 2017; Miranda & Rafikov 2019, 2020a,b)
635
+ showing that in a low viscosity disc a single sub-𝑀th planet can give
636
+ rise to a series of several prominent gaps and rings in the radial dust
637
+ distribution. For example, for the AS 209 system (𝑀★ = 0.83𝑀⊙,
638
+ 𝜏sys ≈ 1 Myr, Andrews et al. 2018) imaged with ALMA Zhang et al.
639
+ (2018) have shown that a single planet with 𝑀p as low as 25𝑀⊕ orbit-
640
+ ing within the outer (primary) gap at 𝑅p ≈ 100AU can be responsible
641
+ for creating all five gaps observed in this disc. This possibility makes
642
+ the typical values of 𝑀p implied by the constraint (6)-(7) very inter-
643
+ esting for understanding the architecture of the underlying planetary
644
+ system.
645
+ Given the upper limits on 𝑀p based on direct imaging in several
646
+ systems covered in Section 6, we found our age constraint (3) & (9)
647
+ to be not very useful at present. However, things will improve as
648
+ 𝑀↓ decreases in the future. Once 𝑀↓ is below 𝑀th, our constraint
649
+ (3) & (9) becomes valid and may provide useful information on the
650
+ MNRAS 000, 1–7 (2022)
651
+
652
+ 6
653
+ R. R. Rafikov and N. P. Cimerman
654
+ planetary age. The decrease of 𝑀↓ may not necessarily come from
655
+ improved direct imaging capabilities. In particular, one may use the
656
+ technique of multiple gap fitting used by Zhang et al. (2018) for AS
657
+ 209 to get a much better measurement of 𝑀p or 𝑀↓.
658
+ Just for illustration, let us imagine that AS 209 did possess a vortex
659
+ at the edge of its outermost gap (just outside 𝑅p = 100AU). Then
660
+ using 𝑀p ≈ 25𝑀⊕ (based on Zhang et al. 2018) equation (9) would
661
+ predict 𝜏p ≳ 8ℎ7.2
662
+ 0.1 Myr. This 𝜏p is much longer (for ℎp = 0.1) than
663
+ the age of the system 𝜏sys ≈ 1 Myr, and could have implied that either
664
+ the planetary mass is underestimated (by a factor of ∼ 2), or that the
665
+ stellar age is underestimated (by almost an order of magnitude), or
666
+ that the disc is somewhat colder — using ℎp = 0.075 (consistent
667
+ with Paneque-Carreño et al. 2022) in (9) would reconcile 𝜏p with its
668
+ estimated 𝜏sys.
669
+ The latter possibility represents a simple way to resolve the age
670
+ discrepancy for this imaginary AS 209-like system. It also highlights
671
+ the importance of good knowledge of the thermal state of the disc
672
+ near the planet, which sets ℎp. Indeed, 𝜏vrt depends very sensitively
673
+ on ℎp and a mis-estimate of ℎp by a factor of 2 would result in a
674
+ factor of ≈ 150 error in the determination of 𝜏vrt and the planetary
675
+ age. The situation is somewhat improved for the mass constraint
676
+ (6)-(7), in which variation of ℎp by a factor of 2 results in 𝑀vrt
677
+ changing by a factor of ≈ 6.5. In any case, good understanding
678
+ of disc thermodynamics is clearly needed when applying the age
679
+ constraint (3) & (9). Recent ALMA measurements of emission heights
680
+ of different molecular lines in PPDs (Law et al. 2021, 2022; Paneque-
681
+ Carreño et al. 2022) provide a (model-dependent) way to determine
682
+ disc aspect ratio at different radii, generally finding values in the
683
+ range ℎp ∼ (0.07 − 0.1) for 𝑅p ∼ (50 − 100) AU.
684
+ On the other hand, our constraints (5),(7) & (9) should be rather
685
+ insensitive to the radial profile of the disc surface density near the
686
+ planet. Indeed, CR23 showed that the parameters of the fit (1),(2)
687
+ show little variation when changing the slope of the surface density
688
+ profile near the planet. Also, the dependence of the vortex-based con-
689
+ straints on 𝑅p and 𝑀★ is not as steep as for ℎp, and the characteristic
690
+ accuracy with which these parameters can be measured is (10−20)%
691
+ or better.
692
+ 7.3 Additional processes and further extensions
693
+ Since the constraints (3)-(6) are lower limits on 𝜏p and 𝑀p, respec-
694
+ tively, they do not change if the vortices we observe in discs now are
695
+ not the first generation vortices. It is possible that the vortices that
696
+ formed early on have then dissolved and what we are seeing now are
697
+ the second (or multiple) generation vortices (Hammer et al. 2021).
698
+ Nevertheless, even in this case the condition 𝜏p > 𝜏vrt would still
699
+ need to be fulfilled, definitely for the first generation of vortices, as
700
+ well as for the following generations, confirming the validity of the
701
+ constraints (3)-(6).
702
+ Similarly, dust trapped in vortices can maintain observable non-
703
+ axisymmetric distribution even after the vortices in the gaseous com-
704
+ ponent dissolve (Fu et al. 2014). Thus, when we see an asymmetry in
705
+ dust continuum observations, the original vortex that has led to it may
706
+ have already been gone. However, this would again not invalidate the
707
+ constraints obtained in Sections 3 & 4.
708
+ The fit (1),(2) for 𝜏vrt was derived by CR23 for discs which are
709
+ inviscid or have low viscosity, an assumption which is consistent
710
+ with observations of many systems (see Section 2). We can roughly
711
+ estimate the upper limit on the viscosity 𝜈 below which the inviscid
712
+ assumption should be valid by demanding the timescale on which the
713
+ vortensity structures produced by the planet get viscously diffused
714
+ away to be longer that the age of the system 𝜏sys. For the characteristic
715
+ radial scale of the vortensity structures 𝐿 ∼ 𝐻p(𝑀p/𝑀th)−0.4 (Dong
716
+ et al. 2011; CR23) this timescale is ∼ 𝐿2/𝜈 ∼ 𝑃p𝛼−1(𝑀p/𝑀th)−0.8,
717
+ where we adopted the 𝛼-ansatz for the viscosity 𝜈 = 𝛼Ωp𝐻2p (and
718
+ Ωp = 2𝜋𝑃−1
719
+ p ). For this to exceed 𝜏sys for a sub-thermal mas planet
720
+ we require that roughly 𝛼 ≲ 𝑃p/𝜏sys ∼ 10−4, given the long orbital
721
+ periods at 𝑅p = 50 − 100 AU. A more refined estimate of the critical
722
+ 𝛼 can be found in CR23.
723
+ However, even if the disc were sufficiently viscous (i.e. for
724
+ 𝛼 ≳ 10−4), the RWI development would get only delayed (Hallam &
725
+ Paardekooper 2020) or the instability may be suppressed altogether,
726
+ see Hammer et al. (2017), CR23. Because of that, our inviscid esti-
727
+ mate for 𝜏vrt continues to provide a lower limit on 𝜏p in the presence
728
+ of a vortex, i.e. the equation (3) and all other constraints remain valid
729
+ (see Section 5 for application of this logic).
730
+ On the other hand, some other effects may accelerate vortex pro-
731
+ duction compared to the results of CR23. For example, this could
732
+ happen as a result of baroclinicity of the disc near the planet since
733
+ the RWI is sensitive to entropy gradients (Lovelace et al. 1999).
734
+ Under certain circumstances dust feedback can also promote vor-
735
+ tex production (Lin & Youdin 2017). These processes, if they are
736
+ important, may somewhat weaken our constraints on 𝑀p and 𝜏p.
737
+ We demonstrated in Section 5 how our constraints can be modified
738
+ to account for the evolution of planetary mass 𝑀p. Other relevant
739
+ parameters might change as well, for example 𝑅p can vary as a result
740
+ of planet migration, or ℎp can change as the disc evolves in time.
741
+ CR23 outlined ways in which one can account for these processes
742
+ to derive a new estimate for 𝜏vrt instead of (1),(2), thus providing a
743
+ pathway to modifying our constraints on 𝑀p and 𝜏p.
744
+ Of the four systems considered in Section 6, three show vortex-like
745
+ non-axisymmetries only at the outer edge of the putative planetary
746
+ gap, and only one, MWC 758, has them on both sides of the gap.
747
+ This is somewhat surprising, since the simulations of CR23 not only
748
+ show the emergence of vortices on both sides of the gap, but also
749
+ demonstrate that the time interval separating their production by
750
+ RWI is typically smaller than 𝜏vrt (see Table 1 in that work). Thus,
751
+ one would expect to see vortices on both sides of the gap more
752
+ often. It is not clear why this expectation fails. It could be that the
753
+ dust concentration is more efficient in the outer vortices5 or that it
754
+ tends to survive there considerably longer than in the inner ones.
755
+ Or that some physical processes neglected in our study suppress the
756
+ formation of the inner vortices. Expanding the sample of observed
757
+ discs with vortex-like asymmetries would help in resolving this issue
758
+ in the future.
759
+ 8 SUMMARY
760
+ In this work we used the results of CR23 on the time it takes visible
761
+ gas vortices to appear next to a gap carved by a low-mass planet in a
762
+ low-viscosity PPD to set constraints on the masses 𝑀p and ages 𝜏p of
763
+ planets in PPDs with observed vortex-like structures. We found that
764
+ the presence of a vortex sets a lower limit on a particular combination
765
+ of 𝑀p and 𝜏p, with separate constraints on these variables possible
766
+ if some additional information (such as the system age 𝜏sys or the
767
+ upper limit on the planetary mass 𝑀↓) is available. These considera-
768
+ tions allowed us to constrain the masses of putative planets in several
769
+ vortex-bearing PPDs to be above several tens of 𝑀⊕. The limits
770
+ 5 Outer vortices should form first in inviscid discs with radially decreasing
771
+ surface density (CR23).
772
+ MNRAS 000, 1–7 (2022)
773
+
774
+ Vortex weighing and dating
775
+ 7
776
+ on the planetary age are not very constraining at the moment, but
777
+ they will improve as future observations lower 𝑀↓. Our constraints
778
+ can be extended to account for the non-trivial history of planetary
779
+ mass accretion, and we provide a recipe for doing that in Section
780
+ 5. Finally, we showed the robustness of our constraints in light of
781
+ additional complications (e.g. non-zero disc viscosity, multiple gen-
782
+ eration of vortices, etc.) and demonstrated their useful synergy with
783
+ other types of constraints on 𝑀p and 𝜏p, e.g. based on the upper lim-
784
+ its on the planetary cooling luminosity coming from direct imaging
785
+ observations.
786
+ ACKNOWLEDGEMENTS
787
+ Software: Matplotlib (Hunter 2007). Authors are grateful to Ewine
788
+ van Dishoeck for illuminating discussions and to an anonymous ref-
789
+ eree for useful suggestions. R.R.R. acknowledges financial support
790
+ through the Science and Technology Facilities Council (STFC) grant
791
+ ST/T00049X/1 and Ambrose Monell Foundation. N.P.C. is funded
792
+ by a STFC and Isaac Newton studentship.
793
+ DATA AVAILABILITY
794
+ The data underlying this article will be shared on reasonable request
795
+ to the corresponding author.
796
+ REFERENCES
797
+ Andrews S. M., 2020, ARA&A, 58, 483
798
+ Andrews S. M., et al., 2018, ApJ, 869, L41
799
+ Asensio-Torres R., et al., 2021, A&A, 652, A101
800
+ Bae J., Zhu Z., Hartmann L., 2017, ApJ, 850, 201
801
+ Barge P., Sommeria J., 1995, A&A, 295, L1
802
+ Cazzoletti P., et al., 2018, A&A, 619, A161
803
+ Cimerman N. P., Rafikov R. R., 2021, MNRAS, 508, 2329
804
+ Cimerman N. P., Rafikov R. R., 2023, MNRAS, 519, 208
805
+ Dong R., Fung J., 2017, ApJ, 835, 146
806
+ Dong R., Rafikov R. R., Stone J. M., 2011, ApJ, 741, 57
807
+ Dong R., Li S., Chiang E., Li H., 2017, ApJ, 843, 127
808
+ Dong R., et al., 2018, ApJ, 860, 124
809
+ Flaherty K., et al., 2020, ApJ, 895, 109
810
+ Fu W., Li H., Lubow S., Li S., Liang E., 2014, ApJ, 795, L39
811
+ Fung J., Ono T., 2021, ApJ, 922, 13
812
+ Godon P., Livio M., 1999, ApJ, 523, 350
813
+ Goodman J., Rafikov R. R., 2001, ApJ, 552, 793
814
+ Hallam P. D., Paardekooper S. J., 2020, MNRAS, 491, 5759
815
+ Hammer M., Kratter K. M., Lin M.-K., 2017, MNRAS, 466, 3533
816
+ Hammer M., Lin M.-K., Kratter K. M., Pinilla P., 2021, MNRAS, 504, 3963
817
+ Hunter J. D., 2007, Computing in Science Engineering, 9, 90
818
+ Jorquera S., et al., 2021, AJ, 161, 146
819
+ Klahr H. H., Bodenheimer P., 2003, ApJ, 582, 869
820
+ Kraus S., et al., 2017, ApJ, 848, L11
821
+ Law C. J., et al., 2021, ApJS, 257, 4
822
+ Law C. J., et al., 2022, ApJ, 932, 114
823
+ Lesur G., Papaloizou J. C. B., 2009, A&A, 498, 1
824
+ Lin M.-K., Papaloizou J. C. B., 2010, MNRAS, 405, 1473
825
+ Lin M.-K., Youdin A. N., 2017, ApJ, 849, 129
826
+ Linder E. F., Mordasini C., Mollière P., Marleau G.-D., Malik M., Quanz
827
+ S. P., Meyer M. R., 2019, A&A, 623, A85
828
+ Lovelace R. V. E., Li H., Colgate S. A., Nelson A. F., 1999, ApJ, 513, 805
829
+ Miranda R., Rafikov R. R., 2019, ApJ, 878, L9
830
+ Miranda R., Rafikov R. R., 2020a, ApJ, 892, 65
831
+ Miranda R., Rafikov R. R., 2020b, ApJ, 904, 121
832
+ Muto T., et al., 2012, ApJ, 748, L22
833
+ Paneque-Carreño T., Miotello A., van Dishoeck E. F., Tabone B., Izquierdo
834
+ A. F., Facchini S., 2022, arXiv e-prints, p. arXiv:2210.01130
835
+ Papaloizou J., Lin D. N. C., 1984, ApJ, 285, 818
836
+ Pérez L. M., et al., 2018, ApJ, 869, L50
837
+ Pinte C., Dent W. R. F., Ménard F., Hales A., Hill T., Cortes P., de Gregorio-
838
+ Monsalvo I., 2016, ApJ, 816, 25
839
+ Rafikov R. R., 2002a, ApJ, 569, 997
840
+ Rafikov R. R., 2002b, ApJ, 572, 566
841
+ Rafikov R. R., 2017, ApJ, 837, 163
842
+ Richard S., Nelson R. P., Umurhan O. M., 2016, MNRAS, 456, 3571
843
+ Rometsch T., Ziampras A., Kley W., Béthune W., 2021, A&A, 656, A130
844
+ Teed R. J., Latter H. N., 2021, MNRAS, 507, 5523
845
+ Willson M., et al., 2019, A&A, 621, A7
846
+ Zhang S., et al., 2018, ApJ, 869, L47
847
+ van der Marel N., Cazzoletti P., Pinilla P., Garufi A., 2016, ApJ, 832, 178
848
+ This paper has been typeset from a TEX/LATEX file prepared by the author.
849
+ MNRAS 000, 1–7 (2022)
850
+
TdAzT4oBgHgl3EQf0v6x/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
UdE_T4oBgHgl3EQfxBzD/content/tmp_files/2301.08310v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
UdE_T4oBgHgl3EQfxBzD/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
VNE_T4oBgHgl3EQfxhzT/content/tmp_files/2301.08313v1.pdf.txt ADDED
@@ -0,0 +1,537 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ A note on the constant characteristic time of failure incubation processes under various high-
4
+ rate loads
5
+ Ivan Smirnov
6
+ Saint Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
7
+ Corresponding author: ivansmirnov.sci@gmail.com
8
+
9
+ Abstract. The research reveals the existence of a constant characteristic time of preparatory micro-
10
+ structural processes before the onset of macro-failure at various high loading rates of brittle and
11
+ quasi-brittle materials. The presence of this characteristic is analysed based on available data in the
12
+ literature from dynamic tests for uniaxial compression and splitting. It is shown that the
13
+ characteristic time can be determined experimentally and used to calculate the strain rate
14
+ dependencies of either critical failure stresses or time to failure, at least in the case of linearly
15
+ growing loads. In addition, it is discussed that the presence of this constant parameter opens up a
16
+ prospective opportunity for research and development of new methods for assessing the structural-
17
+ temporal and scale characteristics of the strength and failure of materials under dynamic loads.
18
+
19
+ Keywords: quasi-brittle material, high strain rate, dynamic strength, time to fracture, characteristic
20
+ time, failure criteria.
21
+
22
+ 1. Introduction
23
+ The problems of deformation and failure of materials at high-rate intensive loads have been
24
+ relevant for a significant period of time. Today, these studies continue to both certify the behaviour
25
+ of materials at a given range of strain rates [1–3], and solve fundamental issues in order to develop
26
+ approaches for qualitative forecasting the behaviour of materials, regardless of loading history
27
+ [1,4,5]. However, there are still no universally accepted test methods or parameters that could allow
28
+ us to evaluate and model the dynamic strength of materials based on simple engineering principles.
29
+
30
+ 2
31
+
32
+ At sufficiently slow loads, the tensile strength and yield strength can, in fact, be assumed to be
33
+ constant and considered as characteristic strength parameters of a material. This forms the basis of
34
+ systems for state and industry standards to determine the strength characteristics of brittle and
35
+ plastic materials. When the strain or loading rates exceed the standardized quasi-static range, these
36
+ strength characteristics can become unstable and often strongly depend on the load history [5,6].
37
+ Therefore, under dynamic loads, they can no longer be considered as material parameters. To date,
38
+ there is no agreement on which characteristics can serve as the primary indicators of the properties
39
+ of materials under high-rate and shock loads. There is an urgent need to identify the characteristics,
40
+ which do not depend on the history and method (set-up) of load application.
41
+ This short communication presents an important, previously unknown effect of the
42
+ connection between failure incubation processes in the material structure and a constant time
43
+ characteristic, which are independent of strain/loading rate. It is shown that this characteristic time
44
+ can be determined experimentally and applied to criteria for evaluating the strength of a material
45
+ within a wide range of loading rates.
46
+
47
+ 2. The characteristic time of failure incubation processes
48
+ Let us consider the case of uniaxial loading for which failure begins at the stage of load
49
+ growth without the pronounced and irreversible deformation of a specimen. This situation is typical
50
+ when testing brittle and quasi-brittle materials, using the scheme of uniaxial compression or
51
+ splitting tensile tests, for example. Let the beginning of a decrease in stresses in the stress-time or
52
+ stress-strain diagram be the factor indicating the beginning of failure. The strength of a material
53
+ then corresponds to the maximum value of stress. This is a common procedure for determining the
54
+ strength of such materials with quasi-static tests. However, with an increase in the load or strain rate
55
+ above the quasi-static range, the maximum failure stresses increase. Further in this paper, the
56
+ maximum failure stresses are assumed as critical stresses.
57
+ Fig. 1 demonstrates the case described above. Since the loading area up until the moment of
58
+ failure can be considered linear, the next expression is valid for the critical stress σcr:
59
+
60
+ 3
61
+
62
+ 𝜎𝑐𝑟 = 𝐸𝜀̇𝑡𝑐𝑟, 𝑡𝑐𝑟 > 0, (1)
63
+ where E is the modulus of elasticity, 𝜀̇ is the strain rate and tcr is the time before the start of failure.
64
+ When the critical stress σcr is greater than the quasi-static strength σst, the time to failure and
65
+ expression (1) can be written as the sum of two terms:
66
+ 𝑡𝑐𝑟 = 𝑡𝑠𝑡 + 𝑡𝑑 = 𝜎𝑠𝑡
67
+ 𝐸𝜀̇ + 𝑡𝑑, (2)
68
+ 𝜎𝑐𝑟 = 𝜎𝑠𝑡 + 𝐸𝜀̇𝑡𝑑,
69
+ 𝑡𝑠𝑡 + 𝑡𝑑 > 0, (3)
70
+ where td is the time from time tst when the quasi-static strength of a material is reached to the time
71
+ of the actual critical stress tcr. As a rule, experimental equipment allows for recording time diagrams
72
+ of load and strain. The strain or loading rate is specified by the input test conditions. For the case
73
+ under consideration, the stress rate is 𝜎̇ = 𝐸𝜀̇. Thus, all components of expression (3) can be
74
+ determined from the experiment.
75
+
76
+ Fig. 1. Schematic representation of loading at different rates. Designations are disclosed in the text.
77
+ Then we can estimate the time td that characterises the dynamics of micro-processes in the
78
+ structure of the material after reaching the quasi-static strength of the material σst until the onset of
79
+ ‘macro’ failure tcr:
80
+ 𝑡𝑑 = 𝜎𝑐𝑟 − 𝜎𝑠𝑡
81
+ 𝐸𝜀̇
82
+ . (4)
83
+ Let us consider such an estimate regarding various experimental data. Dynamic strength is
84
+ typically evaluated by the dependence of critical stress on the strain or stress rate. An example of
85
+ (3
86
+ cr,t3
87
+ cr)
88
+ (1
89
+ cr,t1
90
+ cr)
91
+
92
+
93
+ st
94
+ st
95
+ st
96
+ 3td
97
+ 4td
98
+ 2td
99
+ Stress
100
+ Time
101
+ td
102
+ st
103
+ (2
104
+ cr,t2
105
+ cr)
106
+
107
+ 4
108
+
109
+ such dependence for the case of dynamic uniaxial compression of concrete is presented in Fig. 2.
110
+ Substituting the experimental points in expression (4), we derive the dependence of time td on the
111
+ strain rate. Fig. 3 presents such calculations for the uniaxial compression and splitting test of
112
+ various materials. Usually experimental points have a spread, so it is convenient to use the equation
113
+ of the slope of a regression line to determine the time td. The results show that, regardless of the
114
+ material and loading scheme, the time td for each experiment can be considered constant.
115
+
116
+ Fig. 2. Strain rate dependencies of critical stresses and time to failure for dynamic uniaxial
117
+ compression testing of concrete. Experimental data were obtained by [7]. The solid curves ware
118
+ calculated using expressions (2) and (3). The dashed line is a linear approximation.
119
+ Note that we use the same notation for the case of compression and splitting. This is not
120
+ only to avoid unnecessary notation, but also to show the commonality of the effect for various tests.
121
+ A caveat, however, is that when considering a specific test method, these load and material
122
+ parameters only apply to this method of testing.
123
+ Up to this point, it has been assumed that the time to failure tcr is greater than the time td.
124
+ However, the question arises: up to what value does the time to failure decrease, and would it be
125
+ less than time td? In order to answer this question, it is necessary to consider the stress impulse
126
+ before the start of failure.
127
+ 0
128
+ 100
129
+ 200
130
+ 300
131
+ 400
132
+ 40
133
+ 60
134
+ 80
135
+ 100
136
+ 120
137
+
138
+ - cr
139
+ - tcr
140
+ - td
141
+ Strain rate (1/s)
142
+ cr (MPa)
143
+ 0
144
+ 20
145
+ 40
146
+ 60
147
+ 80
148
+ 100
149
+ tcr, td (s)
150
+
151
+ 5
152
+
153
+
154
+
155
+ Fig. 3. The characteristic times of incubation micro-processes from the moment of reaching quasi-
156
+ static strength to the moment of the onset of macro-failure of various materials under high-rate
157
+ loading. The calculations were carried out by Eq. (4) for the experimental data: a) compression tests
158
+ of concrete 1 [7], 2 [8], 3 [9], 4 [10], and granite 5 [11] and 6 [12]; b) splitting test of granite 7 [13],
159
+ ceramics 8 [14] and 9 [15] and glass 10 [16].
160
+ A stress analysis shows that for critical stress σst < σcr < 2σst, the stress impulse applied to a
161
+ specimen is constant over a time from tcr – 2td to tcr (at the condition that td is constant). These
162
+ segments of the stress pulses Jcr are indicated by the shaded areas in Fig. 1. It is evident that the
163
+ stress impulse Jcr is equal to
164
+ 𝐽𝑐𝑟 = 2𝜎𝑠𝑡𝑡𝑑. (5)
165
+ 101
166
+ 102
167
+ 103
168
+ 104
169
+ 0.1
170
+ 1
171
+ 10
172
+ 100
173
+ td (s)
174
+
175
+
176
+ Concrete 4
177
+ Concrete 3
178
+ Concrete 1
179
+ Strain rate (1/s)
180
+ Concrete 2
181
+ Granite 5,6
182
+ a)
183
+ 102
184
+ 103
185
+ 104
186
+ 105
187
+ 0.1
188
+ 1
189
+ 10
190
+ 100
191
+
192
+
193
+ td (s)
194
+ Stress rate (GPa/s)
195
+ Glass 10
196
+ Macor 9
197
+ Al2O3 8
198
+ Granite 7
199
+ b)
200
+
201
+ 6
202
+
203
+ Suppose this impulse is the minimum value of the stress impulse that must be applied to the
204
+ specimen in order to initiate and prepare its macro failure. Then, if the time to failure is tcr ≤ 2td, the
205
+ failure stress impulse must also be at least 2σsttd. Since for tcr ≤ 2td 2σsttd =0.5σcrtcr, then the
206
+ expressions for the strain rate dependence of the critical stress and time to failure, taking (1) into
207
+ account, can be written in the following form:
208
+ 𝜎𝑐𝑟 = √4𝐸𝜎𝑠𝑡𝑡𝑑𝜀̇, 𝑡𝑐𝑟 ≤ 2𝑡𝑑, (6)
209
+ 𝑡𝑐𝑟 = √4𝜎𝑠𝑡𝑡𝑑
210
+ 𝐸𝜀̇
211
+ , 𝑡𝑐𝑟 ≤ 2𝑡𝑑. (7)
212
+ In addition, the condition for time to failure in expression (3) should now be specified as
213
+ tcr ≥ 2td.
214
+ The characteristic time td can be easily obtained from expression (6). Fig. 4 and 5 present
215
+ these calculations for the uniaxial compression and splitting test of various materials. Thereby, the
216
+ time td was determined by formula (4) for the case σcr <2σst and from formula (6) for σcr ≥ 2σst. This
217
+ example also demonstrates that the time td can be considered constant for various strain and loading
218
+ rates.
219
+
220
+ Fig. 4. Strain rate dependencies of critical stresses and time to failure for dynamic uniaxial
221
+ compression tests of concrete in the cases of tcr ≥ 2td and tcr ≤ 2td. Experimental data was obtained
222
+ by [17]. The solid curves were calculated using conditions (2), (3), (6) and (7). The dashed line is a
223
+ linear approximation.
224
+ 0.0
225
+ 2.0x104
226
+ 4.0x104
227
+ 6.0x104
228
+ 8.0x104
229
+ 0
230
+ 200
231
+ 400
232
+ 600
233
+ 800
234
+ −cr
235
+ − tcr
236
+ − td
237
+ Stress rate (GPa/s)
238
+ cr (MPa)
239
+ 15
240
+ 30
241
+ 45
242
+ 60
243
+ 75
244
+ tcr, td (s)
245
+
246
+ 7
247
+
248
+
249
+
250
+
251
+ Fig. 5. The characteristic times calculated for different conditions of σcr < 2σst and σcr ≥ 2σst. The
252
+ calculations were carried out according to Eq. (4) and (6) for the experimental data: a) compression
253
+ tests of concrete 11 [18] and 12 [19], glass 10 [16] and 13 [20], brick 14 [21], and mortar 15 [22]; b)
254
+ splitting test of rocks 6 [12], 16 [23], and 17 [24], concrete 11 [18] and 12 [19], and 18 [25], mortar
255
+ 19 [25], and ceramics 20 [26].
256
+
257
+ 3. Discussion and future work
258
+ Thus, the experimental data provides reason to introduce the characteristic time of
259
+ incubation processes of failure td, which can be considered a constant value independent of a strain
260
+ rate above the quasi-static range, at least for cases of continuous linear increase in load during the
261
+ 101
262
+ 102
263
+ 103
264
+ 104
265
+ 10-1
266
+ 100
267
+ 101
268
+ 102
269
+ 103
270
+ Mortar 15
271
+ Glass 13
272
+
273
+
274
+ Glass 10
275
+ td (s)
276
+ Strain rate (1/s)
277
+ a)
278
+ Concrete 11, 12
279
+ Brick 14
280
+ 100
281
+ 101
282
+ 102
283
+ 103
284
+ 104
285
+ 105
286
+ 106
287
+ 107
288
+ 10-1
289
+ 100
290
+ 101
291
+ 102
292
+ 103
293
+ Concrete 11
294
+ Mortar 19
295
+ Concrete 12
296
+
297
+
298
+ td (s)
299
+ Stress rate (GPa/s)
300
+ b)
301
+ Ceramics 20
302
+ Argillite 17
303
+ Concrete 18
304
+ Granite 6,16
305
+
306
+ 8
307
+
308
+ uniaxial compression or splitting tests. This time parameter characterises the individual response of
309
+ a material to dynamic loads. Therefore, this characteristic time can be used in criteria conditions of
310
+ structural-temporal approaches to failure analysis and strength prediction. For example, similar
311
+ expressions for (3) and (6) were obtained theoretically using the incubation time criterion [5,27,28].
312
+ The criterion assumes that the following condition must be implemented for failure to occur:
313
+ ∫ 𝜎(𝑡)𝑑𝑡 ≥ 𝜎𝑠𝑡𝜏
314
+ 𝑡
315
+ 𝑡−𝜏
316
+ , (8)
317
+ where σ(t) is the stress profile at the failure place, σst is the quasi-static strength, and τ is the
318
+ incubation time of failure. The parameters σst and τ are strength parameters of a material for a
319
+ particular test scheme, for example, compression or tension. The incubation time was introduced as
320
+ a hypothetical characteristic period of time responsible for the incubation period of macro-failure.
321
+ This was necessary to ensure the possibility of a smooth transition from pulsed loads to quasi-static
322
+ loads using the Nikiforovsky-Shemyakin integral criterion for spall fracture (full integral of the
323
+ stress over time at the spall section should reach a critical value) [5,29]. Therefore, according to (8),
324
+ failure will occur in the case that the stress impulse in the region of failure is not less than σstτ for
325
+ the time t ≤ τ (for t < 0, σ(t) = 0). A similar assumption is made in the discussion of (5).
326
+ Substituting (1) for σ(t) in (8), we can obtain simple relationships for calculating the strain
327
+ rate dependencies of critical stresses σcr and the time to failure tcr:
328
+ {
329
+ 𝜎𝑐𝑟 = 𝜎𝑠𝑡 + 0.5𝐸𝜀̇𝜏, 𝑡𝑐𝑟 = 𝜏
330
+ 2 + 𝜎𝑠𝑡
331
+ 𝐸𝜀̇ , 𝑡𝑐𝑡 > 𝜏,
332
+ 𝜎𝑐𝑟 = √2𝐸𝜎𝑠𝑡𝜏𝜀̇,
333
+ 𝑡𝑐𝑟 = √4𝜎𝑠𝑡𝑡𝑑
334
+ 𝐸𝜀̇
335
+ , 𝑡𝑐𝑟 ≤ 𝜏.
336
+ (9)
337
+ Substituting τ = 2td, we derive the expressions in (9), which correspond exactly to
338
+ expressions (2), (3), (6) and (7).
339
+ The incubation time approach allows us to successfully solve a number of dynamic
340
+ problems related to fracture mechanics [5,27–30]. However, the question of experimental
341
+ determination of the incubation time of failure still remains open-ended. The obtained result shows
342
+
343
+ 9
344
+
345
+ that the incubation time of failure, at least for the case of a controlled linear increase in fast loading,
346
+ can be determined experimentally by estimating td.
347
+ The demonstrated effect opens up new possibilities for solving important problems related
348
+ to the mechanics of dynamic deformation and fracture of materials. One of these tasks relates to the
349
+ possibility of determining the parameters of the dynamic strength of materials using basic tests that
350
+ are both publicly available and generally accepted. Furthermore, it is necessary to study appropriate
351
+ methods and basic rules to determine the characteristic time td. Experimental conditions affecting
352
+ time td should also be established.
353
+ Another problem relates to the determination of the strain rate dependence of the yield
354
+ strength. The presented reasoning can be applied to consider similar characteristic time of
355
+ incubation processes involved in the plastic deformation [30].
356
+ The found characteristic time of failure incubation processes can provide a new approach to
357
+ the determination of scale levels of failure. Since we have a constant time characteristic for the
358
+ implementation of preparatory failure processes, we can assume that there is also a constant
359
+ characteristic structural scale at which these processes are realised. For example, according to the
360
+ structural-temporal approach [29], this characteristic scale can relate to the propagation distance of
361
+ the elastic wave during time τ (d = τC, in which C is the speed of sound); as well, the scale can be
362
+ introduced as 𝑑 = (2𝐾𝐼𝐶
363
+ 2)/(𝜋𝜎𝑠𝑡
364
+ 2 ) (KIC as the stress intensity factor). However, the accuracy of
365
+ these expressions for the elementary scale of failure is still being studied. Thus, the relationship of
366
+ time td, scale factors and the dynamics of the preparatory microstructural processes of macro-
367
+ fracture should be studied.
368
+
369
+ 4. Conclusions
370
+ The presented study shows the existence of a characteristic time for preparatory micro-
371
+ processes of macro-failure of brittle and quasi-brittle materials. This time does not depend on the
372
+ strain or loading rate, at least in terms of the compression and splitting test methods under
373
+ consideration. The value of the characteristic time can be determined directly from the experiment.
374
+
375
+ 10
376
+
377
+ The presented results show that this integral time characteristic of the dynamic failure process can
378
+ be used for the development of experimental and theoretical foundations to determine and predict
379
+ the strength characteristics of constructional materials across a wide range of loading rates.
380
+
381
+ Acknowledgements
382
+ This work was supported by the Russian Science Foundation, grant № 18-79-00193.
383
+
384
+ References
385
+ [1]
386
+ Zhang QB, Zhao J. A Review of Dynamic Experimental Techniques and Mechanical
387
+ Behaviour
388
+ of
389
+ Rock
390
+ Materials.
391
+ Rock
392
+ Mech
393
+ Rock
394
+ Eng
395
+ 2014;47:1411–78.
396
+ https://doi.org/10.1007/s00603-013-0463-y.
397
+ [2]
398
+ Shukla A, Ravichandran G, Rajapakse YDS, editors. Dynamic Failure of Materials and
399
+ Structures. Boston, MA: Springer US; 2010. https://doi.org/10.1007/978-1-4419-0446-1.
400
+ [3]
401
+ Brara A, Klepaczko JR. Experimental characterization of concrete in dynamic tension. Mech
402
+ Mater 2006;38:253–67. https://doi.org/10.1016/j.mechmat.2005.06.004.
403
+ [4]
404
+ Forquin P, Hild F. A Probabilistic Damage Model of the Dynamic Fragmentation Process in
405
+ Brittle Materials, 2010, p. 1–72. https://doi.org/10.1016/S0065-2156(10)44001-6.
406
+ [5]
407
+ Morozov N, Petrov Y. Dynamics of Fracture. Berlin, Heidelberg: Springer Berlin
408
+ Heidelberg; 2000. https://doi.org/10.1007/978-3-540-69712-1.
409
+ [6]
410
+ Curran DR, Seaman L, Shockey DA. Dynamic failure of solids. Phys Rep 1987;147:253–
411
+ 388. https://doi.org/10.1016/0370-1573(87)90049-4.
412
+ [7]
413
+ Zhang M, Wu HJ, Li QM, Huang FL. Further investigation on the dynamic compressive
414
+ strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests.
415
+ Part
416
+ I:
417
+ Experiments.
418
+ Int
419
+ J
420
+ Impact
421
+ Eng
422
+ 2009;36:1327–34.
423
+ https://doi.org/10.1016/j.ijimpeng.2009.04.009.
424
+ [8]
425
+ Chen X, Wu S, Zhou J. Experimental and modeling study of dynamic mechanical properties
426
+ of
427
+ cement
428
+ paste,
429
+ mortar
430
+ and
431
+ concrete.
432
+ Constr
433
+ Build
434
+ Mater
435
+ 2013;47:419–30.
436
+
437
+ 11
438
+
439
+ https://doi.org/10.1016/j.conbuildmat.2013.05.063.
440
+ [9]
441
+ Malvern LE, Ross CA. Dynamic response of concrete and concrete structures, Second
442
+ Annual Technical Report, AFOSR Contract No. F49620-83-K007. 1985.
443
+ [10] Klepaczko JR. Behavior of rock-like materials at high strain rates in compression. Int J Plast
444
+ 1990;6:415–32. https://doi.org/10.1016/0749-6419(90)90011-3.
445
+ [11] Xia K, Nasseri MHB, Mohanty B, Lu F, Chen R, Luo SN. Effects of microstructures on
446
+ dynamic compression of Barre granite. Int J Rock Mech Min Sci 2008;45:879–87.
447
+ https://doi.org/10.1016/j.ijrmms.2007.09.013.
448
+ [12] Dai F, Huang S, Xia K, Tan Z. Some Fundamental Issues in Dynamic Compression and
449
+ Tension Tests of Rocks Using Split Hopkinson Pressure Bar. Rock Mech Rock Eng
450
+ 2010;43:657–66. https://doi.org/10.1007/s00603-010-0091-8.
451
+ [13] Dai F, Xia K. Loading Rate Dependence of Tensile Strength Anisotropy of Barre Granite.
452
+ Pure Appl Geophys 2010;167:1419–32. https://doi.org/10.1007/s00024-010-0103-3.
453
+ [14] Chen P, Guo B, Chen J. Dynamic Brazilian Test Using the Kolsky-Hopkinson Bar Machine.
454
+ Kolsk. Bar Mach., Cham: Springer International Publishing; 2018, p. 121–41.
455
+ https://doi.org/10.1007/978-3-319-71919-1_4.
456
+ [15] Dong S, Xia K, Huang S, Yin T. Rate dependence of the tensile and flexural strengths of
457
+ glass–ceramic Macor. J Mater Sci 2011;46:394–9.
458
+ https://doi.org/10.1007/s10853-010-4852-2.
459
+ [16] Zhang X, Zou Y, Hao H, Li X, Ma G, Liu K. Laboratory Test on Dynamic Material
460
+ Properties
461
+ of
462
+ Annealed
463
+ Float
464
+ Glass.
465
+ Int
466
+ J
467
+ Prot
468
+ Struct
469
+ 2012;3:407–30.
470
+ https://doi.org/10.1260/2041-4196.3.4.407.
471
+ [17] Liu P, Zhou X, Qian Q, Berto F, Zhou L. Dynamic splitting tensile properties of concrete and
472
+ cement
473
+ mortar.
474
+ Fatigue
475
+ Fract
476
+ Eng
477
+ Mater
478
+ Struct
479
+ 2020;43:757–70.
480
+ https://doi.org/10.1111/ffe.13162.
481
+ [18] Tedesco JW, Ross CA. Strain-Rate-Dependent Constitutive Equations for Concrete. J Press
482
+ Vessel Technol 1998;120:398–405. https://doi.org/10.1115/1.2842350.
483
+
484
+ 12
485
+
486
+ [19] Bragov AM, Lomunov AK, Lamzin DA, Konstantinov AY. Change of Strength of Brittle
487
+ Building Materials under High Strain and Stress Rates. Lobachevskii J Math 2019;40:284–
488
+ 91. https://doi.org/10.1134/S1995080219030077.
489
+ [20] Zhang X, Hao H, Ma G. Dynamic material model of annealed soda-lime glass. Int J Impact
490
+ Eng 2015;77:108–19. https://doi.org/10.1016/j.ijimpeng.2014.11.016.
491
+ [21] Lamzin DA, Bragov AM, Lomunov AK, Konstantinov AY, Dell’Isola F. Analysis of the
492
+ dynamic behavior of sand-lime and ceramic bricks. Mater Phys Mech 2019;42:691–698.
493
+ https://doi.org/10.18720/MPM.4262019_1.
494
+ [22] Grote DL, Park SW, Zhou M. Dynamic behavior of concrete at high strain rates and
495
+ pressures:
496
+ I. experimental characterization. Int
497
+ J
498
+ Impact
499
+ Eng 2001;25:869–86.
500
+ https://doi.org/10.1016/S0734-743X(01)00020-3.
501
+ [23] Dai F, Xia K, Tang L. Rate dependence of the flexural tensile strength of Laurentian granite.
502
+ Int J Rock Mech Min Sci 2010;47:469–75. https://doi.org/10.1016/j.ijrmms.2009.05.001.
503
+ [24] Cai M, Kaiser PK, Suorineni F, Su K. A study on the dynamic behavior of the Meuse/Haute-
504
+ Marne
505
+ argillite.
506
+ Phys
507
+ Chem
508
+ Earth,
509
+ Parts
510
+ A/B/C
511
+ 2007;32:907–16.
512
+ https://doi.org/10.1016/j.pce.2006.03.007.
513
+ [25] Jin X, Hou C, Fan X, Lu C, Yang H, Shu X, et al. Quasi-static and dynamic experimental
514
+ studies on the tensile strength and failure pattern of concrete and mortar discs. Sci Rep
515
+ 2017;7:15305. https://doi.org/10.1038/s41598-017-15700-2.
516
+ [26] Liu J, Hu Z, Zhang Y. Dynamic tensile mechanical properties and failure mode of zirconium
517
+ diboride‐silicon carbide ceramic composites. Int J Appl Ceram Technol 2020;17:886–92.
518
+ https://doi.org/10.1111/ijac.13462.
519
+ [27] Morozov NF, Petrov Y V. Incubation time based testing of materials. Eur J Mech - A/Solids
520
+ 2006;25:670–6. https://doi.org/10.1016/j.euromechsol.2006.05.005.
521
+ [28] Petrov YV, Smirnov IV, Volkov GA, Abramian AK, Bragov АM, Verichev SN. Dynamic
522
+ failure of dry and fully saturated limestone samples based on incubation time concept. J Rock
523
+ Mech Geotech Eng 2017;9. https://doi.org/10.1016/j.jrmge.2016.09.004.
524
+
525
+ 13
526
+
527
+ [29] Petrov Y V., Gruzdkov AA, Bratov VA. Structural-temporal theory of fracture as a
528
+ multiscale
529
+ process.
530
+ Phys
531
+ Mesomech
532
+ 2012;15:232–7.
533
+ https://doi.org/10.1134/S1029959912020117.
534
+ [30] Borodin EN, Mayer AE, Petrov Y V., Gruzdkov AA. Maximum yield strength under quasi-
535
+ static and high-rate plastic deformation of metals. Phys Solid State 2014;56:2470–9.
536
+ https://doi.org/10.1134/S1063783414120051.
537
+
VNE_T4oBgHgl3EQfxhzT/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf,len=399
2
+ page_content='1 A note on the constant characteristic time of failure incubation processes under various high- rate loads Ivan Smirnov Saint Petersburg State University, Universitetskaya nab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
3
+ page_content=' 7/9, St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
4
+ page_content=' Petersburg, 199034, Russia Corresponding author: ivansmirnov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
5
+ page_content='sci@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
6
+ page_content='com Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
7
+ page_content=' The research reveals the existence of a constant characteristic time of preparatory micro- structural processes before the onset of macro-failure at various high loading rates of brittle and quasi-brittle materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
8
+ page_content=' The presence of this characteristic is analysed based on available data in the literature from dynamic tests for uniaxial compression and splitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
9
+ page_content=' It is shown that the characteristic time can be determined experimentally and used to calculate the strain rate dependencies of either critical failure stresses or time to failure, at least in the case of linearly growing loads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
10
+ page_content=' In addition, it is discussed that the presence of this constant parameter opens up a prospective opportunity for research and development of new methods for assessing the structural- temporal and scale characteristics of the strength and failure of materials under dynamic loads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
11
+ page_content=' Keywords: quasi-brittle material, high strain rate, dynamic strength, time to fracture, characteristic time, failure criteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
12
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
13
+ page_content=' Introduction The problems of deformation and failure of materials at high-rate intensive loads have been relevant for a significant period of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
14
+ page_content=' Today, these studies continue to both certify the behaviour of materials at a given range of strain rates [1–3], and solve fundamental issues in order to develop approaches for qualitative forecasting the behaviour of materials, regardless of loading history [1,4,5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
15
+ page_content=' However, there are still no universally accepted test methods or parameters that could allow us to evaluate and model the dynamic strength of materials based on simple engineering principles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
16
+ page_content=' 2 At sufficiently slow loads, the tensile strength and yield strength can, in fact, be assumed to be constant and considered as characteristic strength parameters of a material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
17
+ page_content=' This forms the basis of systems for state and industry standards to determine the strength characteristics of brittle and plastic materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
18
+ page_content=' When the strain or loading rates exceed the standardized quasi-static range, these strength characteristics can become unstable and often strongly depend on the load history [5,6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
19
+ page_content=' Therefore, under dynamic loads, they can no longer be considered as material parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
20
+ page_content=' To date, there is no agreement on which characteristics can serve as the primary indicators of the properties of materials under high-rate and shock loads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
21
+ page_content=' There is an urgent need to identify the characteristics, which do not depend on the history and method (set-up) of load application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
22
+ page_content=' This short communication presents an important, previously unknown effect of the connection between failure incubation processes in the material structure and a constant time characteristic, which are independent of strain/loading rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
23
+ page_content=' It is shown that this characteristic time can be determined experimentally and applied to criteria for evaluating the strength of a material within a wide range of loading rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
24
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
25
+ page_content=' The characteristic time of failure incubation processes Let us consider the case of uniaxial loading for which failure begins at the stage of load growth without the pronounced and irreversible deformation of a specimen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
26
+ page_content=' This situation is typical when testing brittle and quasi-brittle materials, using the scheme of uniaxial compression or splitting tensile tests, for example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
27
+ page_content=' Let the beginning of a decrease in stresses in the stress-time or stress-strain diagram be the factor indicating the beginning of failure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
28
+ page_content=' The strength of a material then corresponds to the maximum value of stress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
29
+ page_content=' This is a common procedure for determining the strength of such materials with quasi-static tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
30
+ page_content=' However, with an increase in the load or strain rate above the quasi-static range, the maximum failure stresses increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
31
+ page_content=' Further in this paper, the maximum failure stresses are assumed as critical stresses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
32
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
33
+ page_content=' 1 demonstrates the case described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
34
+ page_content=' Since the loading area up until the moment of failure can be considered linear, the next expression is valid for the critical stress σcr: 3 𝜎𝑐𝑟 = 𝐸𝜀̇𝑡𝑐𝑟, 𝑡𝑐𝑟 > 0, (1) where E is the modulus of elasticity, 𝜀̇ is the strain rate and tcr is the time before the start of failure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
35
+ page_content=' When the critical stress σcr is greater than the quasi-static strength σst, the time to failure and expression (1) can be written as the sum of two terms: 𝑡𝑐𝑟 = 𝑡𝑠𝑡 + 𝑡𝑑 = 𝜎𝑠𝑡 𝐸𝜀̇ + 𝑡𝑑, (2) 𝜎𝑐𝑟 = 𝜎𝑠𝑡 + 𝐸𝜀̇𝑡𝑑, 𝑡𝑠𝑡 + 𝑡𝑑 > 0, (3) where td is the time from time tst when the quasi-static strength of a material is reached to the time of the actual critical stress tcr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
36
+ page_content=' As a rule, experimental equipment allows for recording time diagrams of load and strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
37
+ page_content=' The strain or loading rate is specified by the input test conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
38
+ page_content=' For the case under consideration, the stress rate is 𝜎̇ = 𝐸𝜀̇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
39
+ page_content=' Thus, all components of expression (3) can be determined from the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
40
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
41
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
42
+ page_content=' Schematic representation of loading at different rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
43
+ page_content=' Designations are disclosed in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
44
+ page_content=' Then we can estimate the time td that characterises the dynamics of micro-processes in the structure of the material after reaching the quasi-static strength of the material σst until the onset of ‘macro’ failure tcr: 𝑡𝑑 = 𝜎𝑐𝑟 − 𝜎𝑠𝑡 𝐸𝜀̇ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
45
+ page_content=' (4) Let us consider such an estimate regarding various experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
46
+ page_content=' Dynamic strength is typically evaluated by the dependence of critical stress on the strain or stress rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
47
+ page_content=' An example of (\uf0733 cr,t3 cr) (\uf0731 cr,t1 cr) \uf034\uf073st \uf033\uf073st \uf032\uf073st 3td 4td 2td Stress Time td \uf073st (\uf0732 cr,t2 cr) 4 such dependence for the case of dynamic uniaxial compression of concrete is presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
48
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
49
+ page_content=' Substituting the experimental points in expression (4), we derive the dependence of time td on the strain rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
50
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
51
+ page_content=' 3 presents such calculations for the uniaxial compression and splitting test of various materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
52
+ page_content=' Usually experimental points have a spread, so it is convenient to use the equation of the slope of a regression line to determine the time td.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
53
+ page_content=' The results show that, regardless of the material and loading scheme, the time td for each experiment can be considered constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
54
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
55
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
56
+ page_content=' Strain rate dependencies of critical stresses and time to failure for dynamic uniaxial compression testing of concrete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
57
+ page_content=' Experimental data were obtained by [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
58
+ page_content=' The solid curves ware calculated using expressions (2) and (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
59
+ page_content=' The dashed line is a linear approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
60
+ page_content=' Note that we use the same notation for the case of compression and splitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
61
+ page_content=' This is not only to avoid unnecessary notation, but also to show the commonality of the effect for various tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
62
+ page_content=' A caveat, however, is that when considering a specific test method, these load and material parameters only apply to this method of testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
63
+ page_content=' Up to this point, it has been assumed that the time to failure tcr is greater than the time td.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
64
+ page_content=' However, the question arises: up to what value does the time to failure decrease, and would it be less than time td?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
65
+ page_content=' In order to answer this question, it is necessary to consider the stress impulse before the start of failure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
66
+ page_content=' 0 100 200 300 400 40 60 80 100 120 \uf073cr tcr td Strain rate (1/s) \uf073cr (MPa) 0 20 40 60 80 100 tcr, td (\uf06ds) 5 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
67
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
68
+ page_content=' The characteristic times of incubation micro-processes from the moment of reaching quasi- static strength to the moment of the onset of macro-failure of various materials under high-rate loading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
69
+ page_content=' The calculations were carried out by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
70
+ page_content=' (4) for the experimental data: a) compression tests of concrete 1 [7], 2 [8], 3 [9], 4 [10], and granite 5 [11] and 6 [12];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
71
+ page_content=' b) splitting test of granite 7 [13], ceramics 8 [14] and 9 [15] and glass 10 [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
72
+ page_content=' A stress analysis shows that for critical stress σst < σcr < 2σst, the stress impulse applied to a specimen is constant over a time from tcr – 2td to tcr (at the condition that td is constant).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
73
+ page_content=' These segments of the stress pulses Jcr are indicated by the shaded areas in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
74
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
75
+ page_content=' It is evident that the stress impulse Jcr is equal to 𝐽𝑐𝑟 = 2𝜎𝑠𝑡𝑡𝑑.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
76
+ page_content=' (5) 101 102 103 104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
77
+ page_content='1 1 10 100 td (\uf06ds) Concrete 4 Concrete 3 Concrete 1 Strain rate (1/s) Concrete 2 Granite 5,6 a) 102 103 104 105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
78
+ page_content='1 1 10 100 td (\uf06ds) Stress rate (GPa/s) Glass 10 Macor 9 Al2O3 8 Granite 7 b) 6 Suppose this impulse is the minimum value of the stress impulse that must be applied to the specimen in order to initiate and prepare its macro failure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
79
+ page_content=' Then, if the time to failure is tcr ≤ 2td, the failure stress impulse must also be at least 2σsttd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
80
+ page_content=' Since for tcr ≤ 2td 2σsttd =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
81
+ page_content='5σcrtcr, then the expressions for the strain rate dependence of the critical stress and time to failure, taking (1) into account, can be written in the following form: 𝜎𝑐𝑟 = √4𝐸𝜎𝑠𝑡𝑡𝑑𝜀̇, 𝑡𝑐𝑟 ≤ 2𝑡𝑑, (6) 𝑡𝑐𝑟 = √4𝜎𝑠𝑡𝑡𝑑 𝐸𝜀̇ , 𝑡𝑐𝑟 ≤ 2𝑡𝑑.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
82
+ page_content=' (7) In addition, the condition for time to failure in expression (3) should now be specified as tcr ≥ 2td.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
83
+ page_content=' The characteristic time td can be easily obtained from expression (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
84
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
85
+ page_content=' 4 and 5 present these calculations for the uniaxial compression and splitting test of various materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
86
+ page_content=' Thereby, the time td was determined by formula (4) for the case σcr <2σst and from formula (6) for σcr ≥ 2σst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
87
+ page_content=' This example also demonstrates that the time td can be considered constant for various strain and loading rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
88
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
89
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
90
+ page_content=' Strain rate dependencies of critical stresses and time to failure for dynamic uniaxial compression tests of concrete in the cases of tcr ≥ 2td and tcr ≤ 2td.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
91
+ page_content=' Experimental data was obtained by [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
92
+ page_content=' The solid curves were calculated using conditions (2), (3), (6) and (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
93
+ page_content=' The dashed line is a linear approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
94
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
95
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
96
+ page_content='0x104 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
97
+ page_content='0x104 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
98
+ page_content='0x104 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
99
+ page_content='0x104 0 200 400 600 800 −\uf073cr − tcr − td Stress rate (GPa/s) \uf073cr (MPa) 15 30 45 60 75 tcr, td (\uf06ds) 7 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
100
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
101
+ page_content=' The characteristic times calculated for different conditions of σcr < 2σst and σcr ≥ 2σst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
102
+ page_content=' The calculations were carried out according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
103
+ page_content=' (4) and (6) for the experimental data: a) compression tests of concrete 11 [18] and 12 [19], glass 10 [16] and 13 [20], brick 14 [21], and mortar 15 [22];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
104
+ page_content=' b) splitting test of rocks 6 [12], 16 [23], and 17 [24], concrete 11 [18] and 12 [19], and 18 [25], mortar 19 [25], and ceramics 20 [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
105
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
106
+ page_content=' Discussion and future work Thus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
107
+ page_content=' the experimental data provides reason to introduce the characteristic time of incubation processes of failure td,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
108
+ page_content=' which can be considered a constant value independent of a strain rate above the quasi-static range,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
109
+ page_content=' at least for cases of continuous linear increase in load during the 101 102 103 104 10-1 100 101 102 103 Mortar 15 Glass 13 Glass 10 td (\uf06ds) Strain rate (1/s) a) Concrete 11,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
110
+ page_content=' 12 Brick 14 100 101 102 103 104 105 106 107 10 1 100 101 102 103 Concrete 11 Mortar 19 Concrete 12 td (\uf06ds) Stress rate (GPa/s) b) Ceramics 20 Argillite 17 Concrete 18 Granite 6,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
111
+ page_content='16 8 uniaxial compression or splitting tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
112
+ page_content=' This time parameter characterises the individual response of a material to dynamic loads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
113
+ page_content=' Therefore, this characteristic time can be used in criteria conditions of structural-temporal approaches to failure analysis and strength prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
114
+ page_content=' For example, similar expressions for (3) and (6) were obtained theoretically using the incubation time criterion [5,27,28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
115
+ page_content=' The criterion assumes that the following condition must be implemented for failure to occur: ∫ 𝜎(𝑡)𝑑𝑡 ≥ 𝜎𝑠𝑡𝜏 𝑡 𝑡−𝜏 , (8) where σ(t) is the stress profile at the failure place, σst is the quasi-static strength, and τ is the incubation time of failure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
116
+ page_content=' The parameters σst and τ are strength parameters of a material for a particular test scheme, for example, compression or tension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
117
+ page_content=' The incubation time was introduced as a hypothetical characteristic period of time responsible for the incubation period of macro-failure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
118
+ page_content=' This was necessary to ensure the possibility of a smooth transition from pulsed loads to quasi-static loads using the Nikiforovsky-Shemyakin integral criterion for spall fracture (full integral of the stress over time at the spall section should reach a critical value) [5,29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
119
+ page_content=' Therefore, according to (8), failure will occur in the case that the stress impulse in the region of failure is not less than σstτ for the time t ≤ τ (for t < 0, σ(t) = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
120
+ page_content=' A similar assumption is made in the discussion of (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
121
+ page_content=' Substituting (1) for σ(t) in (8), we can obtain simple relationships for calculating the strain rate dependencies of critical stresses σcr and the time to failure tcr: { 𝜎𝑐𝑟 = 𝜎𝑠𝑡 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
122
+ page_content='5𝐸𝜀̇𝜏, 𝑡𝑐𝑟 = 𝜏 2 + 𝜎𝑠𝑡 𝐸𝜀̇ , 𝑡𝑐𝑡 > 𝜏, 𝜎𝑐𝑟 = √2𝐸𝜎𝑠𝑡𝜏𝜀̇, 𝑡𝑐𝑟 = √4𝜎𝑠𝑡𝑡𝑑 𝐸𝜀̇ , 𝑡𝑐𝑟 ≤ 𝜏.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
123
+ page_content=' (9) Substituting τ = 2td, we derive the expressions in (9), which correspond exactly to expressions (2), (3), (6) and (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
124
+ page_content=' The incubation time approach allows us to successfully solve a number of dynamic problems related to fracture mechanics [5,27–30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
125
+ page_content=' However, the question of experimental determination of the incubation time of failure still remains open-ended.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
126
+ page_content=' The obtained result shows 9 that the incubation time of failure, at least for the case of a controlled linear increase in fast loading, can be determined experimentally by estimating td.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
127
+ page_content=' The demonstrated effect opens up new possibilities for solving important problems related to the mechanics of dynamic deformation and fracture of materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
128
+ page_content=' One of these tasks relates to the possibility of determining the parameters of the dynamic strength of materials using basic tests that are both publicly available and generally accepted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
129
+ page_content=' Furthermore, it is necessary to study appropriate methods and basic rules to determine the characteristic time td.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
130
+ page_content=' Experimental conditions affecting time td should also be established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
131
+ page_content=' Another problem relates to the determination of the strain rate dependence of the yield strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
132
+ page_content=' The presented reasoning can be applied to consider similar characteristic time of incubation processes involved in the plastic deformation [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
133
+ page_content=' The found characteristic time of failure incubation processes can provide a new approach to the determination of scale levels of failure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
134
+ page_content=' Since we have a constant time characteristic for the implementation of preparatory failure processes, we can assume that there is also a constant characteristic structural scale at which these processes are realised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
135
+ page_content=' For example, according to the structural-temporal approach [29], this characteristic scale can relate to the propagation distance of the elastic wave during time τ (d = τC, in which C is the speed of sound);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
136
+ page_content=' as well, the scale can be introduced as 𝑑 = (2𝐾𝐼𝐶 2)/(𝜋𝜎𝑠𝑡 2 ) (KIC as the stress intensity factor).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
137
+ page_content=' However, the accuracy of these expressions for the elementary scale of failure is still being studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
138
+ page_content=' Thus, the relationship of time td, scale factors and the dynamics of the preparatory microstructural processes of macro- fracture should be studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
139
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
140
+ page_content=' Conclusions The presented study shows the existence of a characteristic time for preparatory micro- processes of macro-failure of brittle and quasi-brittle materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
141
+ page_content=' This time does not depend on the strain or loading rate, at least in terms of the compression and splitting test methods under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
142
+ page_content=' The value of the characteristic time can be determined directly from the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
143
+ page_content=' 10 The presented results show that this integral time characteristic of the dynamic failure process can be used for the development of experimental and theoretical foundations to determine and predict the strength characteristics of constructional materials across a wide range of loading rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
144
+ page_content=' Acknowledgements This work was supported by the Russian Science Foundation, grant № 18-79-00193.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
145
+ page_content=' References [1] Zhang QB, Zhao J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
146
+ page_content=' A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
147
+ page_content=' Rock Mech Rock Eng 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
148
+ page_content='47:1411–78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
149
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
150
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
151
+ page_content='1007/s00603-013-0463-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
152
+ page_content=' [2] Shukla A, Ravichandran G, Rajapakse YDS, editors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
153
+ page_content=' Dynamic Failure of Materials and Structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
154
+ page_content=' Boston, MA: Springer US;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
155
+ page_content=' 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
156
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
157
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
158
+ page_content='1007/978-1-4419-0446-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
159
+ page_content=' [3] Brara A, Klepaczko JR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
160
+ page_content=' Experimental characterization of concrete in dynamic tension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
161
+ page_content=' Mech Mater 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
162
+ page_content='38:253–67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
163
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
164
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
165
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
166
+ page_content='mechmat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
167
+ page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
168
+ page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
169
+ page_content='004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
170
+ page_content=' [4] Forquin P, Hild F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
171
+ page_content=' A Probabilistic Damage Model of the Dynamic Fragmentation Process in Brittle Materials, 2010, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
172
+ page_content=' 1–72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
173
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
174
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
175
+ page_content='1016/S0065-2156(10)44001-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
176
+ page_content=' [5] Morozov N, Petrov Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
177
+ page_content=' Dynamics of Fracture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
178
+ page_content=' Berlin, Heidelberg: Springer Berlin Heidelberg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
179
+ page_content=' 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
180
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
181
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
182
+ page_content='1007/978-3-540-69712-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
183
+ page_content=' [6] Curran DR, Seaman L, Shockey DA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
184
+ page_content=' Dynamic failure of solids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
185
+ page_content=' Phys Rep 1987;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
186
+ page_content='147:253– 388.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
187
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
188
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
189
+ page_content='1016/0370-1573(87)90049-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
190
+ page_content=' [7] Zhang M, Wu HJ, Li QM, Huang FL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
191
+ page_content=' Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
192
+ page_content=' Part I: Experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
193
+ page_content=' Int J Impact Eng 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
194
+ page_content='36:1327–34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
195
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
196
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
197
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
198
+ page_content='ijimpeng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
199
+ page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
200
+ page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
201
+ page_content='009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
202
+ page_content=' [8] Chen X, Wu S, Zhou J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
203
+ page_content=' Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
204
+ page_content=' Constr Build Mater 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
205
+ page_content='47:419–30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
206
+ page_content=' 11 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
207
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
208
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
209
+ page_content='conbuildmat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
210
+ page_content='2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
211
+ page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
212
+ page_content='063.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
213
+ page_content=' [9] Malvern LE, Ross CA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
214
+ page_content=' Dynamic response of concrete and concrete structures, Second Annual Technical Report, AFOSR Contract No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
215
+ page_content=' F49620-83-K007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
216
+ page_content=' 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
217
+ page_content=' [10] Klepaczko JR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
218
+ page_content=' Behavior of rock-like materials at high strain rates in compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
219
+ page_content=' Int J Plast 1990;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
220
+ page_content='6:415–32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
221
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
222
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
223
+ page_content='1016/0749-6419(90)90011-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
224
+ page_content=' [11] Xia K, Nasseri MHB, Mohanty B, Lu F, Chen R, Luo SN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
225
+ page_content=' Effects of microstructures on dynamic compression of Barre granite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
226
+ page_content=' Int J Rock Mech Min Sci 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
227
+ page_content='45:879–87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
228
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
229
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
230
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
231
+ page_content='ijrmms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
232
+ page_content='2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
233
+ page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
234
+ page_content='013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
235
+ page_content=' [12] Dai F, Huang S, Xia K, Tan Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
236
+ page_content=' Some Fundamental Issues in Dynamic Compression and Tension Tests of Rocks Using Split Hopkinson Pressure Bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
237
+ page_content=' Rock Mech Rock Eng 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
238
+ page_content='43:657–66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
239
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
240
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
241
+ page_content='1007/s00603-010-0091-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
242
+ page_content=' [13] Dai F, Xia K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
243
+ page_content=' Loading Rate Dependence of Tensile Strength Anisotropy of Barre Granite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
244
+ page_content=' Pure Appl Geophys 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
245
+ page_content='167:1419–32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
246
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
247
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
248
+ page_content='1007/s00024-010-0103-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
249
+ page_content=' [14] Chen P, Guo B, Chen J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
250
+ page_content=' Dynamic Brazilian Test Using the Kolsky-Hopkinson Bar Machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
251
+ page_content=' Kolsk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
252
+ page_content=' Bar Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
253
+ page_content=', Cham: Springer International Publishing;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
254
+ page_content=' 2018, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
255
+ page_content=' 121–41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
256
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
257
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
258
+ page_content='1007/978-3-319-71919-1_4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
259
+ page_content=' [15] Dong S, Xia K, Huang S, Yin T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
260
+ page_content=' Rate dependence of the tensile and flexural strengths of glass–ceramic Macor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
261
+ page_content=' J Mater Sci 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
262
+ page_content='46:394–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
263
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
264
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
265
+ page_content='1007/s10853-010-4852-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
266
+ page_content=' [16] Zhang X, Zou Y, Hao H, Li X, Ma G, Liu K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
267
+ page_content=' Laboratory Test on Dynamic Material Properties of Annealed Float Glass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
268
+ page_content=' Int J Prot Struct 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
269
+ page_content='3:407–30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
270
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
271
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
272
+ page_content='1260/2041-4196.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
273
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
274
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
275
+ page_content='407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
276
+ page_content=' [17] Liu P, Zhou X, Qian Q, Berto F, Zhou L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
277
+ page_content=' Dynamic splitting tensile properties of concrete and cement mortar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
278
+ page_content=' Fatigue Fract Eng Mater Struct 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
279
+ page_content='43:757–70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
280
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
281
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
282
+ page_content='1111/ffe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
283
+ page_content='13162.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
284
+ page_content=' [18] Tedesco JW, Ross CA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
285
+ page_content=' Strain-Rate-Dependent Constitutive Equations for Concrete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
286
+ page_content=' J Press Vessel Technol 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
287
+ page_content='120:398–405.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
288
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
289
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
290
+ page_content='1115/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
291
+ page_content='2842350.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
292
+ page_content=' 12 [19] Bragov AM, Lomunov AK, Lamzin DA, Konstantinov AY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
293
+ page_content=' Change of Strength of Brittle Building Materials under High Strain and Stress Rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
294
+ page_content=' Lobachevskii J Math 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
295
+ page_content='40:284– 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
296
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
297
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
298
+ page_content='1134/S1995080219030077.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
299
+ page_content=' [20] Zhang X, Hao H, Ma G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
300
+ page_content=' Dynamic material model of annealed soda-lime glass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
301
+ page_content=' Int J Impact Eng 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
302
+ page_content='77:108–19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
303
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
304
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
305
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
306
+ page_content='ijimpeng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
307
+ page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
308
+ page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
309
+ page_content='016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
310
+ page_content=' [21] Lamzin DA, Bragov AM, Lomunov AK, Konstantinov AY, Dell’Isola F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
311
+ page_content=' Analysis of the dynamic behavior of sand-lime and ceramic bricks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
312
+ page_content=' Mater Phys Mech 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
313
+ page_content='42:691–698.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
314
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
315
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
316
+ page_content='18720/MPM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
317
+ page_content='4262019_1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
318
+ page_content=' [22] Grote DL, Park SW, Zhou M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
319
+ page_content=' Dynamic behavior of concrete at high strain rates and pressures: I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
320
+ page_content=' experimental characterization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
321
+ page_content=' Int J Impact Eng 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
322
+ page_content='25:869–86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
323
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
324
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
325
+ page_content='1016/S0734-743X(01)00020-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
326
+ page_content=' [23] Dai F, Xia K, Tang L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
327
+ page_content=' Rate dependence of the flexural tensile strength of Laurentian granite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
328
+ page_content=' Int J Rock Mech Min Sci 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
329
+ page_content='47:469–75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
330
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
331
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
332
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
333
+ page_content='ijrmms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
334
+ page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
335
+ page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
336
+ page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
337
+ page_content=' [24] Cai M, Kaiser PK, Suorineni F, Su K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
338
+ page_content=' A study on the dynamic behavior of the Meuse/Haute- Marne argillite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
339
+ page_content=' Phys Chem Earth, Parts A/B/C 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
340
+ page_content='32:907–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
341
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
342
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
343
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
344
+ page_content='pce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
345
+ page_content='2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
346
+ page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
347
+ page_content='007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
348
+ page_content=' [25] Jin X, Hou C, Fan X, Lu C, Yang H, Shu X, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
349
+ page_content=' Quasi-static and dynamic experimental studies on the tensile strength and failure pattern of concrete and mortar discs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
350
+ page_content=' Sci Rep 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
351
+ page_content='7:15305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
352
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
353
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
354
+ page_content='1038/s41598-017-15700-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
355
+ page_content=' [26] Liu J, Hu Z, Zhang Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
356
+ page_content=' Dynamic tensile mechanical properties and failure mode of zirconium diboride‐silicon carbide ceramic composites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
357
+ page_content=' Int J Appl Ceram Technol 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
358
+ page_content='17:886–92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
359
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
360
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
361
+ page_content='1111/ijac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
362
+ page_content='13462.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
363
+ page_content=' [27] Morozov NF, Petrov Y V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
364
+ page_content=' Incubation time based testing of materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
365
+ page_content=' Eur J Mech - A/Solids 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
366
+ page_content='25:670–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
367
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
368
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
369
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
370
+ page_content='euromechsol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
371
+ page_content='2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
372
+ page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
373
+ page_content='005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
374
+ page_content=' [28] Petrov YV, Smirnov IV, Volkov GA, Abramian AK, Bragov АM, Verichev SN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
375
+ page_content=' Dynamic failure of dry and fully saturated limestone samples based on incubation time concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
376
+ page_content=' J Rock Mech Geotech Eng 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
377
+ page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
378
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
379
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
380
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
381
+ page_content='jrmge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
382
+ page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
383
+ page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
384
+ page_content='004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
385
+ page_content=' 13 [29] Petrov Y V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
386
+ page_content=', Gruzdkov AA, Bratov VA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
387
+ page_content=' Structural-temporal theory of fracture as a multiscale process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
388
+ page_content=' Phys Mesomech 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
389
+ page_content='15:232–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
390
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
391
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
392
+ page_content='1134/S1029959912020117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
393
+ page_content=' [30] Borodin EN, Mayer AE, Petrov Y V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
394
+ page_content=', Gruzdkov AA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
395
+ page_content=' Maximum yield strength under quasi- static and high-rate plastic deformation of metals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
396
+ page_content=' Phys Solid State 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
397
+ page_content='56:2470–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
398
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
399
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
400
+ page_content='1134/S1063783414120051.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNE_T4oBgHgl3EQfxhzT/content/2301.08313v1.pdf'}
WdE_T4oBgHgl3EQfyhxs/content/tmp_files/2301.08318v1.pdf.txt ADDED
@@ -0,0 +1,1758 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.08318v1 [gr-qc] 18 Jan 2023
2
+ Gravitational-wave equation in
3
+ effective one-body background for spinless binary
4
+ Ya Guo1, Hiroaki Nakajima2 and Wenbin Lin1, 2, ∗
5
+ 1 School of Physical Science and Technology, Southwest Jiaotong University,
6
+ Chengdu, 610031, China
7
+ 2 School of Mathematics and Physics, University of South China,
8
+ Hengyang, 421001, China
9
+ ∗ Email: lwb@usc.edu.cn
10
+ Abstract
11
+ We construct the gravitational-wave equation in the background of the effec-
12
+ tive one-body system for the spinless binary, which is in general available with the
13
+ spherically symmetric background as well. The gauge conditions are given in terms
14
+ of the metric perturbation.
15
+
16
+ 1
17
+ Introduction
18
+ The direct observation of gravitational waves by LIGO and Virgo [1] has opened the
19
+ new era of cosmology. The binary system such as two black holes is a good object to
20
+ observe the gravitational waves, where the analytical calculation is also possible. One of
21
+ the calculation method of the gravitational waves radiated from the binary system is the
22
+ theory of post-Newtonian approximations [2]. On the other hand, one can also use the
23
+ black hole perturbation theory [3], which is useful for the case of the extreme mass-ratio
24
+ inspiral (EMRI). The advantage of this method is that there is no divergence and one can
25
+ calculate the observable quantity at very high post-Newtonian order [4].
26
+ The reason why the black-hole perturbation theory is available for EMRI is because
27
+ the field of one object is regarded as the background and the other body is regarded as
28
+ the test particle. If one can map the two-body dynamics into the dynamics of the test
29
+ particle in some appropriate background exactly, then the calculation beyond the EMRI
30
+ approximation would be possible in terms of the black-hole perturbation theory. This
31
+ approach is called the effective one-body (EOB) dynamics [5, 6]. In Newtonian limit, it
32
+ is well-known that the effect of the two-body dynamics can exactly be included by just
33
+ replacing the light (heavy) mass in the EMRI approximation with the reduced (total)
34
+ mass. However when the correction of general relativity is included, the correspondence
35
+ between the two-body dynamics and the dynamics of the test particle in some background
36
+ becomes complicated. It turns out that the Hamiltonians of the two dynamics are related
37
+ by a very nontrivial way [5, 6].
38
+ The gravitational-wave equation in the EOB background has been studied in [7] using
39
+ the Newman-Penrose formalism [8], which is a natural extension of the method to obtain
40
+ the Teukolsky equation [9] in the Schwarzschild spacetime. It is obtained for some special
41
+ cases of the background and is restricted to the even-parity mode. Later the same group
42
+ obtained the equation both for the even- and odd-parity modes using the different choices
43
+ of the gauge conditions [10]. The wave equation from the metric perturbation in the
44
+ generally spherically symmetric background has also been studied in [11, 12].
45
+ Inspired by the work of Jing et al. [7], in this paper, we show that the gravitational-
46
+ wave equation for both the even- and odd-parity modes can be obtained using the gauge
47
+ conditions taken in their work. Moreover our formalism can be applicable for more general
48
+ spherically symmetric backgrounds.
49
+ The reminder of this work is organized as follows: in section 2, we briefly review the
50
+ EOB dynamics.
51
+ In section 3, we consider the wave equation for the perturbed Weyl
52
+ scalars. In section 4, we discuss the gauge condition. In section 5, we derive the explicit
53
+ gravitational-wave equation. Section 6 is devoted to summary and discussion.
54
+ 2
55
+ EOB dynamics
56
+ The EOB system for the spinless binary is first introduced in [5] in the post-Newtonian
57
+ formalism. The effective background metric geff
58
+ µν is taken as the spherically symmetric
59
+ 1
60
+
61
+ form:
62
+ ds2
63
+ eff = geff
64
+ µνdxµdxν = A(r)dt2 − B(r)dr2 − C(r)r2(dθ2 + sin2 θdϕ2),
65
+ (2.1)
66
+ where the function C(r) can be freely chosen by the coordinate transformation for the
67
+ radial coordinate r, and we here choose the Schwarzschild coordinate corresponding to
68
+ C(r) ≡ 1. The explicit forms of A(r) and B(r) can be determined by the comparison
69
+ with the two-body dynamics. For the Newman-Penrose formalism [8], we will take the
70
+ corresponding null tetrad basis
71
+ lA
72
+ µ dxµ = dt − D(r)
73
+ A(r)dr,
74
+ nA
75
+ µdxµ = A(r)
76
+ 2
77
+ dt + D(r)
78
+ 2
79
+ dr,
80
+ mA
81
+ µdxµ = − r
82
+
83
+ 2(dθ + i sin θdϕ),
84
+ ¯mA
85
+ µdxµ = − r
86
+
87
+ 2(dθ − i sin θdϕ),
88
+ (2.2)
89
+ where D(r) =
90
+
91
+ A(r)B(r). The suffix A denotes the background quantities. The null
92
+ tetrads satisfy the orthonormal condition as
93
+ lA
94
+ µ nµ
95
+ A = 1,
96
+ mA
97
+ µ ¯mµ
98
+ A = −1,
99
+ (2.3)
100
+ and the other inner products vanish. From the tetrad basis, one can compute the spin
101
+ coefficients, the components of the Ricci tensor and the Weyl scalars as
102
+ κA = νA = σA = λA = πA = τ A = ǫA = 0,
103
+ (2.4)
104
+ ρA = − 1
105
+ rD,
106
+ µA = − A
107
+ 2rD,
108
+ γA = A′
109
+ 4D,
110
+ αA = −βA = − cot θ
111
+ 2
112
+
113
+ 2r,
114
+ (2.5)
115
+ ΦA
116
+ 01 = ΦA
117
+ 10 = ΦA
118
+ 02 = ΦA
119
+ 20 = ΦA
120
+ 12 = ΦA
121
+ 21 = 0,
122
+ (2.6)
123
+ ΦA
124
+ 00 = �� D′
125
+ rD3,
126
+ ΦA
127
+ 22 = −A2D′
128
+ 4rD3,
129
+ (2.7)
130
+ ΦA
131
+ 11 = −
132
+ 1
133
+ 8r2D3
134
+
135
+ 2D3 − 2AD − r2(A′D′ − A′′D)
136
+
137
+ ,
138
+ (2.8)
139
+ ΛA =
140
+ 1
141
+ 24r2D3
142
+
143
+ −2D3 − r2A′D′ + 2A(D − 2rD′) + rD(4A′ + rA′′)
144
+
145
+ ,
146
+ (2.9)
147
+ ΨA
148
+ 0 = ΨA
149
+ 1 = ΨA
150
+ 3 = ΨA
151
+ 4 = 0,
152
+ (2.10)
153
+ ΨA
154
+ 2 =
155
+ 1
156
+ 12r2D3
157
+
158
+ 2(AD + rAD′ − D3) − rA′(2D + rD′) + r2A′′D
159
+
160
+ ,
161
+ (2.11)
162
+ where the prime denotes the ordinary derivative with respect to r. One can find that the
163
+ background belongs the petrov type D from (2.10), but is not in the vacuum since there
164
+ are nonvanishing components of the Ricci tensor. This type D property is important to
165
+ derive the gravitational-wave equation in the next section. Note that for the special case
166
+ D(r)=1, which was taken in [7, 10], we have
167
+ ΦA
168
+ 00 = ΦA
169
+ 22 = 0,
170
+ (2.12)
171
+ 2
172
+
173
+ and the nonvanishing quantities in the above becomes simplified as
174
+ ρA = −1
175
+ r,
176
+ µA = − A
177
+ 2r,
178
+ γA = A′
179
+ 4 ,
180
+ αA = −βA = − cot θ
181
+ 2
182
+
183
+ 2r,
184
+ (2.13)
185
+ ΦA
186
+ 11 = − 1
187
+ 8r2(2 − 2A + r2A′′),
188
+ (2.14)
189
+ ΛA =
190
+ 1
191
+ 24r2(−2 + 2A + 4rA′ + r2A′′),
192
+ (2.15)
193
+ ΨA
194
+ 2 =
195
+ 1
196
+ 12r2(−2 + 2A − 2rA′ + r2A′′),
197
+ (2.16)
198
+ Note that when we choose A = 1 − 2M/r and D = 1, the background (2.1) is reduced to
199
+ the Schwarzschild spacetime.
200
+ The EOB Hamiltonian Heff can be determined from the geodesic motion under the
201
+ background (2.1). The action S satisfies the Hamilton-Jacobi equation
202
+ gµν
203
+ eff PµPν − m2
204
+ 0 = 0,
205
+ (2.17)
206
+ where Pµ = ∂S/∂xµ is the momentum. m0 is the mass of the test particle and is matched
207
+ as the reduced mass in the two-body dynamics. From (2.17), Heff is computed as
208
+ Heff = m0
209
+
210
+ A
211
+
212
+ 1 + AP 2r
213
+ m2
214
+ 0D2 +
215
+ P 2ϕ
216
+ m2
217
+ 0r2
218
+
219
+ ,
220
+ (2.18)
221
+ where the motion plane is fixed on θ = π/2 due to the spherical symmetry. The effective
222
+ Hamiltonian Heff and the real two-body Hamiltonian Hreal are compared by matching the
223
+ masses and the action variables. It turns out that the two Hamiltonians are related by a
224
+ rather nontrivial way as [5, 6]
225
+ Hreal = M0
226
+
227
+ 1 + 2m0
228
+ M0
229
+ �Heff
230
+ m0
231
+ − 1
232
+
233
+ ,
234
+ (2.19)
235
+ where M0 is the total mass in the two-body dynamics. The functions A(r) and D(r) are
236
+ obtained as [5]
237
+ A(r) = 1 − 2M0
238
+ r
239
+ + 2m0
240
+ M0
241
+ �M0
242
+ r
243
+ �3
244
+ + · · · ,
245
+ D(r) = 1 − 3m0
246
+ M0
247
+ �M0
248
+ r
249
+ �2
250
+ + · · · .
251
+ (2.20)
252
+ However hereafter we leave A(r) and D(r) arbitrarily. Because of that, the metric (2.1)
253
+ takes the most general form of the spherically symmetric background, which can also be
254
+ applied to other kinds of the background. Moreover we will see later that when D(r)=1,
255
+ the gravitational-wave equation and the gauge condition becomes simplified drastically.
256
+ 3
257
+
258
+ 3
259
+ Wave equation for perturbed Weyl scalars
260
+ It has been shown that the background (2.1) is classified as the nonvacuum Petrov type
261
+ D background, which is useful to derive the gravitational-wave equation for the perturbed
262
+ Weyl scalars using the Newman-Penrose formalism, as in the Teukolsky equation [9] in
263
+ the Schwarzschild and the Kerr background.
264
+ We begin with the following equations in Newman-Penrose formalism:
265
+ (δ + 4β − τ)Ψ4 − (∆ + 4µ + 2γ)Ψ3 + 3νΨ2
266
+ = (¯δ − ¯τ + 2¯β + 2α)Φ22 − (∆ + 2γ + 2¯µ)Φ21 − 2λΦ12 + 2νΦ11 + ¯νΦ20,
267
+ (3.1)
268
+ (D + 4ǫ − ρ)Ψ4 − (¯δ + 4π + 2α)Ψ3 + 3λΨ2
269
+ = (¯δ − 2¯τ + 2α)Φ21 − (∆ + 2γ − 2¯γ + ¯µ)Φ20 + ¯σΦ22 − 2λΦ11 + 2νΦ10,
270
+ (3.2)
271
+ (∆ + µ + ¯µ + 3γ − ¯γ)λ − (¯δ + π − ¯τ + ¯β + 3α)ν + Ψ4 = 0.
272
+ (3.3)
273
+ We split all the quantities in the above into the background part (A) and the perturbation
274
+ part (B), e. g. Ψ4 = ΨA
275
+ 4 + ΨB
276
+ 4 , etc. Now we have to take into account the case where ΦA
277
+ 22
278
+ is nonvanishing, then the background part of the equation becomes nontrivial, i. e.
279
+ (¯δ − ¯τ + 2¯β + 2α)AΦA
280
+ 22 = 0,
281
+ (3.4)
282
+ has to be satisfied1, and one can confirm that it is indeed the case.
283
+ The part of the
284
+ first-order perturbation in (3.1)–(3.3) becomes2
285
+ (δ + 4β − τ)AΨB
286
+ 4 − (∆ + 4µ + 2γ)AΨB
287
+ 3 + 3νBΨA
288
+ 2
289
+ = (¯δ − ¯τ + 2¯β + 2α)BΦA
290
+ 22 + (¯δ − ¯τ + 2¯β + 2α)AΦB
291
+ 22
292
+ − (∆ + 2γ + 2¯µ)AΦB
293
+ 21 + 2νBΦA
294
+ 11,
295
+ (3.5)
296
+ (D + 4ǫ − ρ)AΨB
297
+ 4 − (¯δ + 4π + 2α)AΨB
298
+ 3 + 3λBΨA
299
+ 2
300
+ = (¯δ − 2¯τ + 2α)AΦB
301
+ 21 − (∆ + 2γ − 2¯γ + ¯µ)AΦB
302
+ 20 + ¯σBΦA
303
+ 22 − 2λBΦA
304
+ 11,
305
+ (3.6)
306
+ (∆ + µ + ¯µ + 3γ − ¯γ)AλB − (¯δ + π − ¯τ + ¯β + 3α)AνB + ΨB
307
+ 4 = 0.
308
+ (3.7)
309
+ Again, when ΦA
310
+ 22 is nonvanishing, the first term in the right hand side in (3.5) appears,
311
+ and more perturbed quantities ¯τ B, ¯βB and αB contribute to the equation, compared with
312
+ the vacuum case. In order to reduce the number of those quantities, we require that this
313
+ term should vanish by the gauge condition;
314
+ Ξ22 ≡ (¯δ − ¯τ + 2¯β + 2α)BΦA
315
+ 22 = 0,
316
+ (3.8)
317
+ 1Here the superscript A (B) on the parentheses denotes that all the quantities and the operators inside
318
+ the parentheses are in the background (perturbation).
319
+ 2Here we will not use πA = τA = ǫA = 0 from the beginning and keep them for a while, which would
320
+ be useful to extend the result into the spinning case.
321
+ 4
322
+
323
+ Now we will obtain the wave equation for ΨB
324
+ 4 in a similar way with the method used
325
+ to derive the Teukolsky equation. First we show the following commutation relation of
326
+ the differential operators:
327
+ [∆ + (p + 1)γ − ¯γ − qµ + ¯µ]A (¯δ + pα − qπ)A
328
+
329
+ �¯δ + (p + 1)α + ¯β − ¯τ − qπ
330
+ �A (∆ + pγ − qµ)A
331
+ = νADA − λAδA − p [(β + τ)λ − (ρ + ǫ)ν + Ψ3]A
332
+ + q [−Dν + δλ + (¯π + τ + 3β − ¯α)λ − (3ǫ + ¯ǫ + ρ − ¯ρ)ν + 2Ψ3]A
333
+ = 0,
334
+ (3.9)
335
+ where p and q are arbitrary constants and we have used νA = λA = ΨA
336
+ 3 = 0. We operate
337
+ (∆ + 3γ − ¯γ + 4µ + ¯µ)A to (3.6) and (¯δ + 3α + ¯β − ¯τ + 4π)A to (3.5), and then subtract
338
+ one equation from the other. The terms with ΨB
339
+ 3 cancel by (3.9) with p = 2, q = −4 and
340
+ the remaining becomes
341
+
342
+ (∆ + 3γ − ¯γ + 4µ + ¯µ)(D + 4ǫ − ρ) − (¯δ + 3α + ¯β − ¯τ + 4π)(δ + 4β − τ)
343
+ �A ΨB
344
+ 4
345
+ + 3ΨA
346
+ 2
347
+
348
+ (∆ + 3γ − ¯γ + 4µ + ¯µ)AλB − (¯δ + 3α + ¯β − ¯τ + 4π)AνB�
349
+ + 3λB∆AΨA
350
+ 2 − 3νB¯δAΨA
351
+ 2
352
+ = T4 + (∆ + 3γ − ¯γ + 4µ + ¯µ)A(¯σBΦA
353
+ 22) − 2λB∆AΦA
354
+ 11 − 2νB¯δAΦA
355
+ 11
356
+ − 2ΦA
357
+ 11
358
+
359
+ (∆ + 3γ − ¯γ + 4µ + ¯µ)AλB + (¯δ + 3α + ¯β − ¯τ + 4π)AνB�
360
+ ,
361
+ (3.10)
362
+ where T4 is defined by
363
+ T4 = (∆ + 3γ − ¯γ + 4µ + ¯µ)A �
364
+ (¯δ − 2¯τ + 2α)AΦB
365
+ 21 − (∆ + 2γ − 2¯γ + ¯µ)AΦB
366
+ 20
367
+
368
+ − (¯δ + 3α + ¯β − ¯τ + 4π)A �
369
+ (¯δ − ¯τ + 2¯β + 2α)AΦB
370
+ 22 − (∆ + 2γ + 2¯µ)AΦB
371
+ 21
372
+
373
+ .
374
+ (3.11)
375
+ For the third line in (3.10), we have
376
+ ∆AΨA
377
+ 2 = −3µAΨA
378
+ 2 − 2µΦA
379
+ 11 − (D − ¯ρ + 2ǫ + 2¯ǫ)AΦA
380
+ 22 − 2∆AΛA,
381
+ (3.12)
382
+ ¯δAΨA
383
+ 2 = −3πAΨA
384
+ 2 + 2πAΦA
385
+ 11 − 2¯δAΛA,
386
+ (3.13)
387
+ and then substituting the above into (3.10), we get
388
+
389
+ (∆+3γ−¯γ+4µ + ¯µ)(D+4ǫ−ρ)−(¯δ + 3α + ¯β − ¯τ + 4π)(δ + 4β − τ)
390
+ �A ΨB
391
+ 4
392
+ + 3ΨA
393
+ 2
394
+
395
+ (∆ + 3γ − ¯γ + µ + ¯µ)AλB − (¯δ + 3α + ¯β − ¯τ + π)AνB�
396
+ = T4 + (∆ + 3γ − ¯γ + 4µ + ¯µ)A(¯σBΦA
397
+ 22) − 2λB∆AΦA
398
+ 11 − 2νB¯δAΦA
399
+ 11
400
+ − 2ΦA
401
+ 11
402
+
403
+ (∆ + 3γ − ¯γ + µ + ¯µ)AλB + (¯δ + 3α + ¯β − ¯τ + π)AνB�
404
+ + 3λB(D − ¯ρ + 2ǫ + 2¯ǫ)AΦA
405
+ 22 + 6λB∆AΛA − 6νB¯δAΛA.
406
+ (3.14)
407
+ 5
408
+
409
+ The second line in (3.14) becomes −3ΨA
410
+ 2 ΨB
411
+ 4 using (3.7), and there is also similar terms in
412
+ the fourth line but the relative sign is positive. We now require more gauge conditions as
413
+ λB = σB = 0.
414
+ (3.15)
415
+ Then the fourth line in (3.14) becomes −2ΦA
416
+ 11ΨB
417
+ 4 and the terms with ΦA
418
+ 22 disappear.
419
+ Thus under the gauge conditions (3.8) and (3.15), the decoupled wave equation for ΨB
420
+ 4 is
421
+ obtained as
422
+
423
+ (∆ + 3γ − ¯γ + 4µ + ¯µ)(D + 4ǫ − ρ)
424
+ − (¯δ + 3α + ¯β − ¯τ + 4π)(δ + 4β − τ) − 3Ψ2 + 2Φ11
425
+ �AΨB
426
+ 4 = T4,
427
+ (3.16)
428
+ One can also consider the wave equation for ΨB
429
+ 0 , which can be obtained in a similar way.
430
+ The resultant equation becomes
431
+
432
+ (D − 3ǫ + ¯ǫ − 4ρ − ¯ρ)(∆ − 4γ + µ)
433
+ − (δ − 3β − ¯α + ¯π − 4τ)(¯δ − 4α + π) − 3Ψ2 + 2Φ11
434
+ �AΨB
435
+ 0 = T0.
436
+ (3.17)
437
+ The gauge conditions are (3.15) and
438
+ Ξ00 ≡ (δ + ¯π − 2¯α − 2β)BΦA
439
+ 00 = 0.
440
+ (3.18)
441
+ Note that for the case D=1 we have (2.12), then (3.8) and (3.18) are obviously satisfied.
442
+ The other conditions (3.15) are also relaxed as just λB = 0 for (3.16) and just σB = 0 for
443
+ (3.17).
444
+ 4
445
+ Gauge conditions
446
+ Here we will study the consistency of the gauge conditions (3.8), (3.18) and (3.15) (or
447
+ just (3.15) for D = 1). In Newman-Penrose formalism, there are ten gauge degrees of
448
+ freedom. Six of them are the tetrad rotation (the local Lorentz transformation), which
449
+ can be decomposed as the following three kinds [13]:
450
+ lµ → lµ,
451
+ mµ → mµ + alµ,
452
+ ¯mµ → ¯mµ + ¯alµ,
453
+ nµ → nµ + ¯amµ + a ¯mµ + a¯alµ,
454
+ (4.1)
455
+ nµ → nµ,
456
+ mµ → mµ + bnµ,
457
+ ¯mµ → ¯mµ + ¯bnµ,
458
+ lµ → lµ + ¯bmµ + b ¯mµ + b¯bnµ,
459
+ (4.2)
460
+ lµ → e−clµ,
461
+ nµ → ecnµ,
462
+ mµ → eiϑmµ,
463
+ ¯mµ → e−iϑ ¯mµ.
464
+ (4.3)
465
+ Here a and b are complex functions, and c and ϑ are real functions. The transformations of
466
+ the quantities in Newman-Penrose equations (the spin coefficients, the Weyl scalars, etc.)
467
+ under the above are shown in [14], for example. The other four are the general coordinate
468
+ transformation x′µ = xµ+ξµ(x). Under the transformation, the null tetrads behave as the
469
+ 6
470
+
471
+ one-forms or the vector fields, and the quantities in Newman-Penrose equations behave
472
+ as the scalar fields. Because of this, the form of the transformation for the latter becomes
473
+ X → X − ξµ∂µX,
474
+ (4.4)
475
+ where X represents either one of the spin coefficients, Ψ’s, Φ’s or Λ. Since we want to
476
+ keep the background (2.4)–(2.11) (or (2.13)-(2.16) for D=1) intact, the functions a, b, c,
477
+ ϑ and ξµ have to be at the order of the perturbed quantities, and in particular the second
478
+ and the higher orders of them are neglected.
479
+ The gauge conditions (3.8), (3.15) and (3.18) are transformed under the the gauge
480
+ transformations (4.1), (4.2), (4.3) and (4.4) as3
481
+ Ξ00 → Ξ00 + (δ + ¯π − 2¯α − 2β)A(ξµ∂µΦA
482
+ 00) + DA(aΦA
483
+ 00) − 2aρAΦA
484
+ 00
485
+ + b(∆A + ¯µA − 2µA − 2¯γA − 2γA)ΦA
486
+ 00 + 2ΦA
487
+ 00δc,
488
+ (4.5)
489
+ Ξ22 → Ξ22 + (¯δ − ¯τ + 2α + 2¯β)A(ξµ∂µΦA
490
+ 22) + ¯a(DA − ¯ρA + 2ρA)ΦA
491
+ 22
492
+ + ∆(¯bΦA
493
+ 22) + 2¯b(µA + γA + ¯γA)ΦA
494
+ 22 − 2ΦA
495
+ 22¯δc,
496
+ (4.6)
497
+ λB → λB + 2αA¯a + ¯δA¯a,
498
+ (4.7)
499
+ σB → σB + 2βAb − δAb.
500
+ (4.8)
501
+ One can find that there are nine real degrees (four ξ’s, a, b and c) of freedom for eight real
502
+ conditions (Ξ00, Ξ22, λB and σB). In general, it is enough to satisfy all the conditions.
503
+ In order to see the the condition explicitly, here we will use the form of the metric
504
+ perturbation, following the A-K parametrization [15, 12]. First, the metric perturbation
505
+ is given as
506
+ gµν = gA
507
+ µν + hBE
508
+ µν + hBO
509
+ µν ,
510
+ (4.9)
511
+ where gA
512
+ µν = geff
513
+ µν is the background metric (2.1). hBE
514
+ µν and hBO
515
+ µν are respectively the even-
516
+ and the odd-parity part of the perturbation, which are parametrized as
517
+ hBE
518
+ µν =
519
+
520
+
521
+
522
+
523
+
524
+ AS
525
+ −DS
526
+ −rB∂θS
527
+ −rB∂ϕS
528
+ KS
529
+ rH∂θS
530
+ rH∂ϕS
531
+ r2E+
532
+ F
533
+ r2FPS1
534
+ r2 sin2 θ E−
535
+ F
536
+
537
+
538
+
539
+
540
+  ,
541
+ (4.10)
542
+ hBO
543
+ µν = 1
544
+ D
545
+
546
+
547
+
548
+
549
+
550
+ 0
551
+ 0
552
+ rC csc θ∂ϕS
553
+ −rC sin θ∂θS
554
+ 0
555
+ −rJ csc θ∂ϕS
556
+ rJ sin θ∂θS
557
+ −r2G csc θPS1
558
+ −1
559
+ 2r2GPS2
560
+ r2GPS3
561
+
562
+
563
+
564
+
565
+  .
566
+ (4.11)
567
+ 3Our gauge conditions are invariant under the transformation generated by ϑ.
568
+ 7
569
+
570
+ Here the lower-left blanks have to be filled as hBE
571
+ µν and hBO
572
+ µν to be symmetric. A, B, C,
573
+ D, E, F, G, H, J and K are the functions4 of t and r, and S is the function of θ and ϕ,
574
+ which should in turn be identified as the spherical harmonics Ylm(θ, ϕ). The quantities
575
+
576
+ F , PS1, PS2 and PS3 are defined by
577
+
578
+ F =
579
+
580
+ E ± F
581
+
582
+ ∂2
583
+ θ + 1
584
+ 2l(l + 1)
585
+ ��
586
+ S,
587
+ (4.12)
588
+ PS1 = (∂θ∂ϕ − cot θ∂ϕ)S,
589
+ (4.13)
590
+ PS2 = (csc θ∂2
591
+ ϕ + cos θ∂θ − sin θ∂2
592
+ θ)S,
593
+ (4.14)
594
+ PS3 = (sin θ∂θ∂ϕ − cos θ∂ϕ)S,
595
+ (4.15)
596
+ where l is one of the label in Ylm(θ, ϕ). Other perturbed quantities are also decomposed
597
+ into the even- and the odd-parity modes, such as lB
598
+ µ = lBE
599
+ µ
600
+ + lBO
601
+ µ , etc.
602
+ Now we have to find the null tetrads corresponding to the metric. Even though the
603
+ metric (2.1) is fixed, the tetrads are not unique due to the tetrad rotation (4.1), (4.2) and
604
+ (4.3). In other words, once a set of null tetrads is found, the others are obtained from
605
+ those tetrads by the tetrad rotation. We will fix the reference tetrads as
606
+ lE
607
+ µ dxµ ≡ (lA
608
+ µ + lBE
609
+ µ )dxµ
610
+ = dt − D
611
+ A
612
+
613
+ 1 − 1
614
+ 2A
615
+
616
+ A − 2A
617
+ D D + A2
618
+ D2K
619
+
620
+ S
621
+
622
+ dr −
623
+ r
624
+ AD(DB − AH)dS,
625
+ (4.16)
626
+ nE
627
+ µ dxµ ≡ (nA
628
+ µ + nBE
629
+ µ )dxµ
630
+ = A
631
+ 2
632
+
633
+ 1+ AS
634
+ A
635
+
636
+ dt+ D
637
+ 2
638
+
639
+ 1+ 1
640
+ 2A
641
+
642
+ A−2A
643
+ D D− A2
644
+ D2K
645
+
646
+ S
647
+
648
+ dr− r
649
+ 2D(DB+AH)dS,
650
+ (4.17)
651
+ mE
652
+ µ dxµ ≡ (mA
653
+ µ + mBE
654
+ µ )dxµ
655
+ = − r
656
+
657
+ 2
658
+ ��
659
+ 1 − E+
660
+ F
661
+ 2
662
+
663
+ dθ + i
664
+
665
+ 1 − E−
666
+ F
667
+ 2 + i csc θFPS1
668
+
669
+ sin θdϕ
670
+
671
+ ,
672
+ (4.18)
673
+ ¯mE
674
+ µ dxµ ≡ ( ¯mA
675
+ µ + ¯mBE
676
+ µ )dxµ
677
+ = − r
678
+
679
+ 2
680
+ ��
681
+ 1 − E+
682
+ F
683
+ 2
684
+
685
+ dθ − i
686
+
687
+ 1 − E−
688
+ F
689
+ 2 − i csc θFPS1
690
+
691
+ sin θdϕ
692
+
693
+ ,
694
+ (4.19)
695
+ for the even-parity modes and
696
+ lO
697
+ µ dxµ ≡ (lA
698
+ µ + lBO
699
+ µ )dxµ
700
+ = dt − D
701
+ Adr +
702
+ r
703
+ AD
704
+
705
+ C − A
706
+ DJ
707
+
708
+ (csc θ∂ϕS dθ − sin θ∂θS dϕ),
709
+ (4.20)
710
+ nO
711
+ µ dxµ ≡ (nA
712
+ µ + nBO
713
+ µ )dxµ
714
+ 4We hope the readers may not confuse the function D here and the differential operator D in Newman-
715
+ Penrose formalism.
716
+ 8
717
+
718
+ = A
719
+ 2 dt + D
720
+ 2 dr + r
721
+ 2D
722
+
723
+ C + A
724
+ DJ
725
+
726
+ (csc θ∂ϕS dθ − sin θ∂θS dϕ),
727
+ (4.21)
728
+ mO
729
+ µ dxµ ≡ (mA
730
+ µ + mBO
731
+ µ )dxµ
732
+ = − r
733
+
734
+ 2
735
+ ��
736
+ 1+ csc θ
737
+ 2D GPS1
738
+
739
+ dθ+i sin θ
740
+
741
+ 1 − 1
742
+ 2D csc θG(PS1 + iPS2)
743
+
744
+
745
+
746
+ , (4.22)
747
+ ¯mO
748
+ µ dxµ ≡ ( ¯mA
749
+ µ + ¯mBO
750
+ µ )dxµ
751
+ = − r
752
+
753
+ 2
754
+ ��
755
+ 1+ csc θ
756
+ 2D GPS1
757
+
758
+ dθ−i sin θ
759
+
760
+ 1 − 1
761
+ 2D csc θG(PS1 − iPS2)
762
+
763
+
764
+
765
+ , (4.23)
766
+ for the odd-parity modes. Here dS = (∂θS)dθ + (∂ϕS)dϕ. Note that the above choice
767
+ of the reference tetrads is different from the one taken in [7] for both the even- and the
768
+ odd-parity modes even under the Regge-Wheeler gauge B = F = H = G = 0 [16, 17, 18]
769
+ or the EZ gauge B = E = F = G = 0 [15, 19]. This is again due to the different choice of
770
+ the reference and they are equivalent. The advantage of our choice is that the expressions
771
+ of λB and σB become relatively simple as
772
+ λBE = −A
773
+ 4
774
+ ��
775
+ ∂2
776
+ θ + 1
777
+ 2l(l + 1)
778
+
779
+ S − i csc θPS1
780
+ � � 1
781
+ A∂tF − 1
782
+ D∂rF
783
+
784
+ ,
785
+ (4.24)
786
+ σBE = 1
787
+ 2
788
+ ��
789
+ ∂2
790
+ θ + 1
791
+ 2l(l + 1)
792
+
793
+ S + i csc θPS1
794
+ � � 1
795
+ A∂tF + 1
796
+ D∂rF
797
+
798
+ ,
799
+ (4.25)
800
+ for the even-parity modes and
801
+ λBO = A
802
+ 8 csc θ (2PS1 − iPS2)
803
+ � 1
804
+ A∂t
805
+ �G
806
+ D
807
+
808
+ − 1
809
+ D∂r
810
+ �G
811
+ D
812
+ ��
813
+ ,
814
+ (4.26)
815
+ σBO = −1
816
+ 4 csc θ (2PS1 + iPS2)
817
+ � 1
818
+ A∂t
819
+ �G
820
+ D
821
+
822
+ + 1
823
+ D∂r
824
+ �G
825
+ D
826
+ ��
827
+ ,
828
+ (4.27)
829
+ for the odd-parity modes. In particular, one can easily find that they vanish under the
830
+ Regge-Wheeler or the EZ gauge5, which also means that the above reference tetrads under
831
+ those gauges can be used as the standard form of the perturbation.
832
+ Next we will consider the gauge invariants, are obtained in [12, 15] as
833
+ α = J − r
834
+ 2D∂r
835
+ �G
836
+ D
837
+
838
+ ,
839
+ (4.28)
840
+ β = −C − r
841
+ 2∂tG,
842
+ (4.29)
843
+ χ = H − D2
844
+ 2AE − l(l + 1)D2
845
+ 4A
846
+ F − r
847
+ 2∂rF,
848
+ (4.30)
849
+ ψ = 1
850
+ 2K − r
851
+ 4
852
+ �D2
853
+ A
854
+ �′
855
+ E − D2
856
+ 2AE − rD2
857
+ 2A ∂rE
858
+ 5For the even-parity modes, the choice taken in [7] can also lead to λBE = σBE = 0 under F = 0, but
859
+ not for the odd-parity mode under G = 0.
860
+ 9
861
+
862
+ − r
863
+ 8l(l + 1)
864
+ �D2
865
+ A
866
+ �′
867
+ F − D2
868
+ 4Al(l + 1)F − rD2
869
+ 4A l(l + 1)∂rF
870
+ (4.31)
871
+ δ = D + rD2
872
+ 2A ∂tE +
873
+ �rA′
874
+ A − 1
875
+
876
+ B − r∂rB
877
+ − r2
878
+ 2 ∂t∂rF −
879
+
880
+ r − r2A′
881
+ 2A − rD2
882
+ 4A l(l + 1)
883
+
884
+ ∂tF,
885
+ (4.32)
886
+ ǫ = −1
887
+ 2A − rA′
888
+ 4 E − r∂tB − rA′
889
+ 8 l(l + 1)F − r2
890
+ 2 ∂2
891
+ t F.
892
+ (4.33)
893
+ The perturbed Weyl scalars ΨB
894
+ 4 and ΨB
895
+ 0 can be written as the gauge-invariant combina-
896
+ tions of the perturbation as
897
+ ΨBE
898
+ 4
899
+ = csc θ
900
+ 8r2D3(PS2 + 2iPS1)
901
+
902
+ −A2Dψ − AD2δ + D3ǫ
903
+ −rAD2∂tχ + rA2D∂rχ + A2(D − rD′)χ
904
+
905
+ ,
906
+ (4.34)
907
+ ΨBO
908
+ 4
909
+ = −i csc θ
910
+ 8rD (PS2 + 2iPS1)
911
+
912
+ −A
913
+ D∂tα + A2
914
+ D2∂rα + A2(D − 2rD′)
915
+ rD3
916
+ α
917
+ + ∂tβ − A
918
+ D∂rβ +
919
+ �AD′
920
+ D2 − A − rA′
921
+ rD
922
+
923
+ β
924
+
925
+ ,
926
+ (4.35)
927
+ ΨBE
928
+ 0
929
+ =
930
+ csc θ
931
+ 2r2A2D3(PS2 − 2iPS1)
932
+
933
+ −A2Dψ + AD2δ + D3ǫ
934
+ +rAD2∂tχ + rA2D∂rχ + A2(D − rD′)χ
935
+
936
+ ,
937
+ (4.36)
938
+ ΨBO
939
+ 0
940
+ = i csc θ
941
+ 2rA2D(PS2 − 2iPS1)
942
+
943
+ A
944
+ D∂tα + A2
945
+ D2∂rα + A2(D − 2rD′)
946
+ rD3
947
+ α
948
+ + ∂tβ + A
949
+ D∂rβ +
950
+
951
+ −AD′
952
+ D2 + A − rA′
953
+ rD
954
+
955
+ β
956
+
957
+ ,
958
+ (4.37)
959
+ The gauge conditions (3.8), (3.18) and (3.15) can be expressed as the gauge invariants
960
+ and the set of the variables (B, F, H, G) or (B, E, F, G). The explicit form for the latter
961
+ is shown in Appendix.
962
+ 5
963
+ Explicit PDE and ODE for radial coordinate
964
+ In section 3, we have obtained the wave equation for the perturbed Weyl scalars ΨB
965
+ 4
966
+ and ΨB
967
+ 0 as (3.16) and (3.17), respectively. By substituting the background (2.4)–(2.11)
968
+ (or (2.13)-(2.16) for D = 1), the partial differential equations (the master equations) are
969
+ obtained, Then by the separation of variables, the ordinary differential equation for the
970
+ radial coordinate r and that for the angular coordinates θ and ϕ are also obtained.
971
+ 10
972
+
973
+ We define ψ(−2) as
974
+ ψ(−2) ≡ (ρA)−4ΨB
975
+ 4 = (rD)4ΨB
976
+ 4 .
977
+ (5.1)
978
+ From (3.16), ψ(−2) satisfies the following partial differential equation:
979
+ r2
980
+ A
981
+ ∂2ψ(−2)
982
+ ∂t2
983
+ − (r2A)2D7 ∂
984
+ ∂r
985
+
986
+ (r2A)−1D−9∂ψ(−2)
987
+ ∂r
988
+
989
+ +
990
+ �2r2A′
991
+ AD − 4r
992
+ D
993
+ � ∂ψ(−2)
994
+ ∂t
995
+ +
996
+
997
+ −24r2A(D′)2
998
+ D4
999
+ + 4r2AD′′
1000
+ D3
1001
+ − 3r2A′D′
1002
+ D3
1003
+ − 12rAD′
1004
+ D3
1005
+ − r2A′′
1006
+ D2
1007
+ − 2rA′
1008
+ D2
1009
+
1010
+ ψ(−2)
1011
+
1012
+ 1
1013
+ sin θ
1014
+
1015
+ ∂θ
1016
+
1017
+ sin θ∂ψ(−2)
1018
+ ∂θ
1019
+
1020
+
1021
+ 1
1022
+ sin2 θ
1023
+ ∂2ψ(−2)
1024
+ ∂ϕ2
1025
+ + 4i cot θ
1026
+ sin θ
1027
+ ∂ψ(−2)
1028
+ ∂ϕ
1029
+ +(4 cot2 θ+2)ψ(−2)
1030
+ = 2r6D4T4.
1031
+ (5.2)
1032
+ For homogeneous case (T4 = 0), by assuming the product form ψ(−2) = e−iωteimϕR(r)S(θ),
1033
+ one can obtain the separated equations as
1034
+ (r2A)2D7 d
1035
+ dr
1036
+
1037
+ (r2A)−1D−9dR(r)
1038
+ dr
1039
+
1040
+ +
1041
+ �r2ω2
1042
+ A
1043
+ + iω
1044
+ �2r2A′
1045
+ AD − 4r
1046
+ D
1047
+
1048
+ + 24r2A(D′)2
1049
+ D4
1050
+ −4r2AD′′
1051
+ D3
1052
+ + 3r2A′D′
1053
+ D3
1054
+ + 12rAD′
1055
+ D3
1056
+ + r2A′′
1057
+ D2
1058
+ + 2rA′
1059
+ D2 − λ
1060
+
1061
+ R(r) = 0,
1062
+ (5.3)
1063
+ 1
1064
+ sin θ
1065
+ d
1066
+
1067
+
1068
+ sin θdS(θ)
1069
+
1070
+
1071
+
1072
+ � m2
1073
+ sin2 θ − 4m cot θ
1074
+ sin θ
1075
+ + 4 cot2 θ + 2 − λ
1076
+
1077
+ S(θ) = 0,
1078
+ (5.4)
1079
+ where ω gives the frequency of the gravitational wave and λ is the separation constant.
1080
+ From (5.4) one can find that S(θ)eimϕ coincides with the s = −2 spin-weighted spherical
1081
+ harmonics, denoted as −2Ylm(θ, ϕ), and then the separation constant λ has to be
1082
+ λ = (l − 1)(l + 2),
1083
+ (5.5)
1084
+ where l and m take the integer value with l ≥ 2 and −l ≤ m ≤ l, respectively. For
1085
+ inhomogeneous case (T4 ̸= 0), one can expand ψ(−2) and T4 as
1086
+ ψ(−2) =
1087
+
1088
+
1089
+
1090
+ l,m
1091
+ R(−2)lω(r)−2Ylm(θ, ϕ)e−iωt,
1092
+ (5.6)
1093
+ 2r6D4T4 = −
1094
+
1095
+
1096
+
1097
+ l,m
1098
+ G(−2)lω(r)−2Ylm(θ, ϕ)e−iωt.
1099
+ (5.7)
1100
+ Then the ordinary differential equation for the radial coordinate r is
1101
+ (r2A)2D7 d
1102
+ dr
1103
+
1104
+ (r2A)−1D−9dR(−2)lω(r)
1105
+ dr
1106
+
1107
+ +
1108
+ �r2ω2
1109
+ A
1110
+ + iω
1111
+ �2r2A′
1112
+ AD − 4r
1113
+ D
1114
+
1115
+ +24r2A(D′)2
1116
+ D4
1117
+ − 4r2AD′′
1118
+ D3
1119
+ + 3r2A′D′
1120
+ D3
1121
+ + 12rAD′
1122
+ D3
1123
+ + r2A′′
1124
+ D2
1125
+ + 2rA′
1126
+ D2
1127
+ − (l − 1)(l + 2)
1128
+
1129
+ R(−2)lω(r) = G(−2)lω(r).
1130
+ (5.8)
1131
+ 11
1132
+
1133
+ In the case of D=1, (5.8) is reduced to
1134
+ (r2A)2 d
1135
+ dr
1136
+
1137
+ (r2A)−1dR(−2)lω(r)
1138
+ dr
1139
+
1140
+ +
1141
+ �r2ω2
1142
+ A
1143
+ + iω
1144
+ �2r2A′
1145
+ A
1146
+ − 4r
1147
+
1148
+ + r2A′′ + 2rA′ − (l − 1)(l + 2)
1149
+
1150
+ R(−2)lω(r)
1151
+ = G(−2)lω(r),
1152
+ (5.9)
1153
+ Note that for the case of Schwarzschild background, i. e. A = 1 − 2M/r, the differential
1154
+ equation (5.9) is reduced to the Teukolsky equation [9] with the spin weight s = −2.
1155
+ The equation for ψ(2) ≡ ΨB
1156
+ 0 can be obtained in a similar way. The master equation
1157
+ becomes
1158
+ r2
1159
+ A
1160
+ ∂2ψ(2)
1161
+ ∂t2
1162
+ − (r2A)−2D−1 ∂
1163
+ ∂r
1164
+
1165
+ (r2A)3D−1∂ψ(2)
1166
+ ∂r
1167
+
1168
+
1169
+ �2r2A′
1170
+ AD − 4r
1171
+ D
1172
+ � ∂ψ(2)
1173
+ ∂t
1174
+ +
1175
+ �3r2A′D′
1176
+ D3
1177
+ − 3r2A′′
1178
+ D2
1179
+ − 10rA′
1180
+ D2
1181
+ − 4A
1182
+ D2
1183
+
1184
+ ψ(2)
1185
+
1186
+ 1
1187
+ sin θ
1188
+
1189
+ ∂θ
1190
+
1191
+ sin θ∂ψ(2)
1192
+ ∂θ
1193
+
1194
+
1195
+ 1
1196
+ sin2 θ
1197
+ ∂2ψ(2)
1198
+ ∂ϕ2 −4i cot θ
1199
+ sin θ
1200
+ ∂ψ(2)
1201
+ ∂ϕ +(4 cot2 θ + 2)ψ(2)
1202
+ = 2r2T0.
1203
+ (5.10)
1204
+ After the separation of the variables, for the angular part, we have the s = 2 spin-weighted
1205
+ spherical harmonics 2Ylm(θ, ϕ). For the radial part, we have the following equation:
1206
+ (r2A)−2D−1 d
1207
+ dr
1208
+
1209
+ (r2A)3D−1dR(2)lω(r)
1210
+ dr
1211
+
1212
+ +
1213
+ �r2ω2
1214
+ A
1215
+ − iω
1216
+ �2r2A′
1217
+ AD − 4r
1218
+ D
1219
+
1220
+ − 3r2A′D′
1221
+ D3
1222
+ + 3r2A′′
1223
+ D2
1224
+ + 10rA′
1225
+ D2
1226
+ + 4A
1227
+ D2
1228
+ − (l − 2)(l + 3)
1229
+
1230
+ R(2)lω(r) = G(2)lω(r),
1231
+ (5.11)
1232
+ which is reduced to the Teukolsky equation with s = ±2 for A = 1 − 2M/r and D ≡ 1.
1233
+ 6
1234
+ Summary and discussion
1235
+ In this paper, we have studied the wave equations for the perturbed Weyl scalars ΨB
1236
+ 4 and
1237
+ ΨB
1238
+ 0 in the background of the EOB dynamics for the spinless binary. We also obtained
1239
+ the Teukolsky-like equations for the function of the radial coordinate r. In the previous
1240
+ work [7], the special case D=1 is studied and the (decoupled) wave equation is obtained
1241
+ only for the even-parity mode. On the other hand, here we have studied the odd-parity
1242
+ mode also, and have obtained the same form of the wave equation. Moreover, we have
1243
+ 12
1244
+
1245
+ considered a more general case including D ̸=1. The different form of the wave equation
1246
+ is proposed in [10] by the use of the different gauge, although it is again restricted to the
1247
+ case of D=1. It would be interesting to find the relation between our equations and their
1248
+ ones.
1249
+ One can easily find that the background is assumed to be just spherically symmetric
1250
+ and general enough. Even in the case D = 1, it contains many kinds of the black holes.
1251
+ A similar wave equations in the spherically symmetric background are obtained using
1252
+ the metric perturbation in [12], which are resemble to the Regge-Wheeler and the Zerilli
1253
+ equations [16, 17], and are different from the ones obtained here. This is because we
1254
+ have used the different gauge and the different master variables. However in the case of
1255
+ Schwarzschild background, there is a transformation originated from the connection of
1256
+ the different gauges, which is called the Chandrasekhar transformation [20]. Moreover
1257
+ the relation between the R(−2)lω(r) in (5.8) and R(2)lω(r) in (5.11) can also be regarded
1258
+ as the special case of the Chandrasekhar transformation [9, 21]. It would be interesting
1259
+ to find a similar transformation in the present case.
1260
+ Another possible generalization would be to include the effect of the spin, where the
1261
+ background becomes axially symmetric and contains the Kerr black hole as an example.
1262
+ In this case the method of the metric perturbation is difficult to perform, because it
1263
+ relies on the spherical symmetry and the expansion by the spherical harmonics. However
1264
+ the Newman-Penrose formalism would still be powerful enough, and it can be expected
1265
+ that the gravitational-wave equation could be obtained. Studying the equations for the
1266
+ electromagnetic and the scalar waves is also interesting.
1267
+ Acknowledgements
1268
+ This work was supported in part by the National Natural Science Foundation of China
1269
+ (Grant No. 11973025).
1270
+ A
1271
+ Gauge conditions with gauge invariants
1272
+ The gauge conditions (3.8), (3.18) and (3.15) can be written in terms of the gauge invari-
1273
+ ants and the variables (B, E, F, G). Each condition consists of the even-parity part (E),
1274
+ odd-parity part (O) and the transformation part (T).
1275
+ Ξ22 = ΞE
1276
+ 22 + ΞO
1277
+ 22 + ΞT
1278
+ 22,
1279
+ (A.1)
1280
+ ΞE
1281
+ 22 = A2(∂θS − i csc θ∂ϕS)
1282
+ 4
1283
+
1284
+ 2r
1285
+
1286
+ −AD′′
1287
+ D5
1288
+
1289
+ χ + r
1290
+ 2∂rF + l(l + 1)
1291
+ 4
1292
+ D2
1293
+ A F + D2
1294
+ 2AE
1295
+
1296
+ − D′
1297
+ D3
1298
+
1299
+ − 1
1300
+ D∂tχ+ A
1301
+ 2D2∂rχ+
1302
+
1303
+ − A
1304
+ 2rD2 + 3A′
1305
+ 2D2 −7AD′
1306
+ 2D3
1307
+
1308
+ χ+ 3
1309
+ 2rAǫ−
1310
+ A
1311
+ 2rD2ψ
1312
+ + 1
1313
+ rDδ + 2
1314
+ A∂tB − D
1315
+ A∂tE +
1316
+ �A′
1317
+ A − 3D′
1318
+ 2D − 1
1319
+ 2r
1320
+
1321
+ E + 3r
1322
+ 4A∂2
1323
+ t F + rA
1324
+ 4D2∂2
1325
+ rF
1326
+ 13
1327
+
1328
+ +
1329
+ � 1
1330
+ D − l(l + 1)
1331
+ 2
1332
+ D
1333
+ A − rA′
1334
+ 2AD
1335
+
1336
+ ∂tF +
1337
+ �3rA′
1338
+ 4D2 − 7rAD′
1339
+ 4D3
1340
+
1341
+ ∂rF
1342
+
1343
+ �1
1344
+ r + 3D′
1345
+ D − 2A′
1346
+ A
1347
+ � l(l + 1)
1348
+ 4
1349
+ F
1350
+ ��
1351
+ ,
1352
+ (A.2)
1353
+ ΞO
1354
+ 22 = −iA2(∂θS − i csc θ∂ϕS)
1355
+ 4
1356
+
1357
+ 2r
1358
+
1359
+ −AD′′
1360
+ D6
1361
+
1362
+ α + rD
1363
+ 2 ∂r ˜G
1364
+
1365
+ + D′
1366
+ D3
1367
+ � 1
1368
+ D2∂tα − A
1369
+ 2D3∂rα
1370
+ +
1371
+ � A
1372
+ 2rD3 − 3A′
1373
+ 2D3 + 4AD′
1374
+ D4
1375
+
1376
+ α+
1377
+ 1
1378
+ 2AD∂tβ− 1
1379
+ D2∂rβ+
1380
+ � A′
1381
+ AD2 − 1
1382
+ rD2 + D′
1383
+ D3
1384
+
1385
+ β
1386
+ + r
1387
+ 4A∂2
1388
+ t ˜G +
1389
+ � rA′
1390
+ 2AD − 1
1391
+ D
1392
+
1393
+ ∂t ˜G − rA
1394
+ 4D2∂2
1395
+ r ˜G +
1396
+
1397
+ −3rA′
1398
+ 4D2 + 7rAD′
1399
+ 4D3
1400
+
1401
+ ∂r ˜G
1402
+ ��
1403
+ , (A.3)
1404
+ ΞT
1405
+ 22 =
1406
+ A
1407
+ 4rD4
1408
+ �AD′
1409
+ r
1410
+ − A′D′ + 3A(D′)2
1411
+ D
1412
+ − AD′′
1413
+ � �
1414
+ ¯a − A
1415
+ 2
1416
+ ¯b
1417
+
1418
+ −A2D′
1419
+ 4rD3
1420
+
1421
+ A′
1422
+ AD¯a− 1
1423
+ rD ¯a− A
1424
+ rD
1425
+ ¯b+ 1
1426
+ 2∂t¯b − A
1427
+ 2D∂r¯b −
1428
+
1429
+ 2
1430
+ r ∂θc +
1431
+
1432
+ 2i csc θ
1433
+ r
1434
+ ∂ϕc
1435
+ ���
1436
+ , (A.4)
1437
+ Ξ00 = ΞE
1438
+ 00 + ΞO
1439
+ 00 + ΞT
1440
+ 00,
1441
+ (A.5)
1442
+ ΞE
1443
+ 00 = ∂θS + i csc θ∂ϕS
1444
+
1445
+ 2r
1446
+
1447
+ −AD′′
1448
+ D5
1449
+
1450
+ χ + r
1451
+ 2∂rF + l(l + 1)
1452
+ 4
1453
+ D2
1454
+ A F + D2
1455
+ 2AE
1456
+
1457
+ − D′
1458
+ D3
1459
+ � 1
1460
+ D∂tχ + A
1461
+ 2D2∂rχ+
1462
+ � 3A′
1463
+ 2D2 −
1464
+ A
1465
+ 2rD2 − 7AD′
1466
+ 2D3
1467
+
1468
+ χ− 5
1469
+ 2rAǫ−
1470
+ A
1471
+ 2rD2ψ
1472
+ − 1
1473
+ rDδ − 2
1474
+ A∂tB + D
1475
+ A∂tE −
1476
+ �3D′
1477
+ 2D + 1
1478
+ 2r
1479
+
1480
+ E − 5r
1481
+ 4A∂2
1482
+ t F + rA
1483
+ 4D2∂2
1484
+ rF
1485
+ +
1486
+
1487
+ − 1
1488
+ D + l(l + 1)
1489
+ 2
1490
+ D
1491
+ A + rA′
1492
+ 2AD
1493
+
1494
+ ∂tF +
1495
+ �3rA′
1496
+ 4D2 − 7rAD′
1497
+ 4D3
1498
+
1499
+ ∂rF
1500
+
1501
+ �1
1502
+ r + 3D′
1503
+ D
1504
+ � l(l + 1)
1505
+ 4
1506
+ F
1507
+ ��
1508
+ ,
1509
+ (A.6)
1510
+ ΞO
1511
+ 00 = i(∂θS + i csc θ∂ϕS)
1512
+
1513
+ 2r
1514
+
1515
+ −AD′′
1516
+ D6
1517
+
1518
+ α + rD
1519
+ 2 ∂r ˜G
1520
+
1521
+ − D′
1522
+ D3
1523
+ � 1
1524
+ D2∂tα + A
1525
+ 2D3∂rα
1526
+ +
1527
+ � 3A′
1528
+ 2D3 −
1529
+ A
1530
+ 2rD3 −4AD′
1531
+ D4
1532
+
1533
+ α−
1534
+ 1
1535
+ 2AD∂tβ− 1
1536
+ D2∂rβ+
1537
+ � A′
1538
+ AD2 − 1
1539
+ rD2 + D′
1540
+ D3
1541
+
1542
+ β
1543
+ − r
1544
+ 4A∂2
1545
+ t ˜G +
1546
+ � rA′
1547
+ 2AD − 1
1548
+ D
1549
+
1550
+ ∂t ˜G + rA
1551
+ 4D2∂2
1552
+ r ˜G +
1553
+ �3rA′
1554
+ 4D2 − 7rAD′
1555
+ 4D3
1556
+
1557
+ ∂r ˜G
1558
+ ��
1559
+ , (A.7)
1560
+ ΞT
1561
+ 00 =
1562
+ 1
1563
+ rD4
1564
+ �D′
1565
+ r + 3(D′)2
1566
+ D
1567
+ − D′′
1568
+ � �
1569
+ a − A
1570
+ 2 b
1571
+
1572
+ − D′
1573
+ rD3
1574
+
1575
+ 2
1576
+ rDa+ 1
1577
+ A∂ta + 1
1578
+ D∂ra +
1579
+ A
1580
+ 2rDb − A′
1581
+ D b +
1582
+
1583
+ 2
1584
+ r ∂θc +
1585
+
1586
+ 2i csc θ
1587
+ r
1588
+ ∂ϕc
1589
+
1590
+ , (A.8)
1591
+ λB = λBE + λBO + λBT ,
1592
+ (A.9)
1593
+ 14
1594
+
1595
+ λBE = −A
1596
+ 4
1597
+ ��
1598
+ ∂2
1599
+ θ + 1
1600
+ 2l(l + 1)
1601
+
1602
+ S − i csc θPS1
1603
+ � � 1
1604
+ A∂tF − 1
1605
+ D∂rF
1606
+
1607
+ ,
1608
+ (A.10)
1609
+ λBO = A
1610
+ 8 csc θ (2PS1 − iPS2)
1611
+ � 1
1612
+ A∂t ˜G − 1
1613
+ D∂r ˜G
1614
+
1615
+ ,
1616
+ (A.11)
1617
+ λBT =
1618
+ 1
1619
+
1620
+ 2r
1621
+ (∂θ¯a − i csc θ∂ϕ¯a − ¯a cot θ),
1622
+ (A.12)
1623
+ σB = σBE + σBO + σBT ,
1624
+ (A.13)
1625
+ σBE = 1
1626
+ 2
1627
+ ��
1628
+ ∂2
1629
+ θ + 1
1630
+ 2l(l + 1)
1631
+
1632
+ S + i csc θPS1
1633
+ � � 1
1634
+ A∂tF + 1
1635
+ D∂rF
1636
+
1637
+ ,
1638
+ (A.14)
1639
+ σBO = −1
1640
+ 4 csc θ (2PS1 + iPS2)
1641
+ � 1
1642
+ A∂t ˜G + 1
1643
+ D∂r ˜G
1644
+
1645
+ ,
1646
+ (A.15)
1647
+ σBT = − 1
1648
+
1649
+ 2r
1650
+ (∂θb + i csc θ∂ϕb − b cot θ).
1651
+ (A.16)
1652
+ Here ˜G = G/D and ξ’s are omitted since these are converted to fix the variables (B, E, F, G).
1653
+ Note that in the case of D =1, the conditions Ξ22 = Ξ00 = 0 becomes trivial from (2.12)
1654
+ and λB = σB = 0 can be achieved by setting F = G = a = b = 0.
1655
+ References
1656
+ [1] B. Abbott et al. [LIGO Scientific and Virgo], Phys. Rev. Lett. 116, no.6, 061102
1657
+ (2016) doi:10.1103/PhysRevLett.116.061102 [arXiv:1602.03837 [gr-qc]].
1658
+ [2] E. Poisson and C. M. Will, “Gravity: Newtonian, Post-Newtonian, Relativistic.”
1659
+ Cambridge University Press (2014) doi:10.1017/CBO9781139507486.
1660
+ [3] Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka, Prog. Theor. Phys.
1661
+ Suppl. 128, 1-121 (1997) doi:10.1143/PTPS.128.1 [arXiv:gr-qc/9712057 [gr-qc]].
1662
+ [4] R.
1663
+ Fujita,
1664
+ PTEP
1665
+ 2015,
1666
+ no.3,
1667
+ 033E01
1668
+ (2015)
1669
+ doi:10.1093/ptep/ptv012
1670
+ [arXiv:1412.5689 [gr-qc]].
1671
+ [5] A.
1672
+ Buonanno
1673
+ and
1674
+ T.
1675
+ Damour,
1676
+ Phys.
1677
+ Rev.
1678
+ D
1679
+ 62,
1680
+ 064015
1681
+ (2000)
1682
+ doi:10.1103/PhysRevD.62.064015 [arXiv:gr-qc/0001013 [gr-qc]].
1683
+ [6] T. Damour, Phys. Rev. D 94, no.10, 104015 (2016) doi:10.1103/PhysRevD.94.104015
1684
+ [arXiv:1609.00354 [gr-qc]].
1685
+ [7] J. Jing, S. Chen, M. Sun, X. He, M. Wang and J. Wang, Sci. China Phys. Mech.
1686
+ Astron. 65, no.6, 260411 (2022) doi:10.1007/s11433-022-1885-6 [arXiv:2112.09838
1687
+ [gr-qc]].
1688
+ [8] E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962) doi:10.1063/1.1724257.
1689
+ 15
1690
+
1691
+ [9] S. A. Teukolsky, Astrophys. J. 185, 635 (1973) doi:10.1086/152444.
1692
+ [10] J. Jing, S. Long, W. Deng, M. Wang and J. Wang, Sci. China Phys. Mech. Astron.
1693
+ 65, no.10, 100411 (2022) doi:10.1007/s11433-022-1951-1 [arXiv:2208.02420 [gr-qc]].
1694
+ [11] M.
1695
+ Lenzi
1696
+ and
1697
+ C.
1698
+ F.
1699
+ Sopuerta,
1700
+ Phys.
1701
+ Rev.
1702
+ D
1703
+ 104,
1704
+ no.8,
1705
+ 084053
1706
+ (2021)
1707
+ doi:10.1103/PhysRevD.104.084053 [arXiv:2108.08668 [gr-qc]].
1708
+ [12] W. Liu, X. Fang, J. Jing and A. Wang, Sci. China Phys. Mech. Astron. 66, no.1,
1709
+ 210411 (2023) doi:10.1007/s11433-022-1956-4 [arXiv:2201.01259 [gr-qc]].
1710
+ [13] A.
1711
+ I.
1712
+ Janis
1713
+ and
1714
+ E.
1715
+ T.
1716
+ Newman,
1717
+ J.
1718
+ Math.
1719
+ Phys.
1720
+ 6,
1721
+ 902-914
1722
+ (1965)
1723
+ doi:10.1063/1.1704349
1724
+ [14] S. Chandrasekhar, “The mathematical theory of black holes,” Springer (1985)
1725
+ doi:10.1007/978-94-009-6469-3 2
1726
+ [15] J. E. Thompson, B. F. Whiting and H. Chen, Class. Quant. Grav. 34, no.17, 174001
1727
+ (2017) doi:10.1088/1361-6382/aa7f5b [arXiv:1611.06214 [gr-qc]].
1728
+ [16] T.
1729
+ Regge
1730
+ and
1731
+ J.
1732
+ A.
1733
+ Wheeler,
1734
+ Phys.
1735
+ Rev.
1736
+ 108,
1737
+ 1063
1738
+ (1957)
1739
+ doi:10.1103/PhysRev.108.1063.
1740
+ [17] F. J. Zerilli, Phys. Rev. Lett. 24, 737 (1970) doi:10.1103/PhysRevLett.24.73.7.
1741
+ [18] V. Moncrief, Annals Phys. 88, 323 (1974) doi:10.1016/0003-4916(74)90173-0.
1742
+ [19] S. L. Detweiler, Phys. Rev. D 77, 124026 (2008) doi:10.1103/PhysRevD.77.124026
1743
+ [arXiv:0804.3529 [gr-qc]].
1744
+ [20] S.
1745
+ Chandrasekhar,
1746
+ Proc.
1747
+ R.
1748
+ Soc.
1749
+ Lond.
1750
+ A
1751
+ A343,
1752
+ 289-298
1753
+ (1975)
1754
+ doi:10.1098/rspa.1975.0066
1755
+ [21] A. A. Starobinsky and S. M. Churilov, Zh. Eksp. Teor. Fiz. 65, 3, A. A. Starobinsky
1756
+ and S. M. Churilov, Sov. Phys. JETP 38, 1 (1974).
1757
+ 16
1758
+
WdE_T4oBgHgl3EQfyhxs/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
WtFQT4oBgHgl3EQfcDb0/content/tmp_files/2301.13326v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
WtFQT4oBgHgl3EQfcDb0/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
_NAzT4oBgHgl3EQfS_tm/content/tmp_files/2301.01241v1.pdf.txt ADDED
@@ -0,0 +1,1055 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Developing and deploying deep learning models in brain MRI:
3
+ a review
4
+ Kunal Aggarwal1.2, Marina Manso Jimeno3,4, Keerthi Sravan Ravi3,4, Gilberto Gonzalez5, Sairam
5
+ Geethanath1
6
+
7
+ 1 Accessible MR Laboratory, Biomedical Engineering, and Imaging Institute, Dept. of Diagnostic,
8
+ Molecular and Interventional Radiology, Mount Sinai Hospital, New York City, New York
9
+ 2 Department of Electrical and Computer Engineering, Technical University Munich, Munich,
10
+ Germany
11
+ 3 Department of Biomedical Engineering, Columbia University in the City of New York, New York
12
+ City, New York, USA
13
+ 4 Columbia University Magnetic Resonance Research Center, Columbia University in the City of
14
+ New York, New York City, New York, USA
15
+ 5 Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital,
16
+ Boston, Massachusetts
17
+
18
+
19
+ Word Count: 5952
20
+
21
+
22
+
23
+
24
+
25
+
26
+
27
+
28
+ 2
29
+ Abstract
30
+ Magnetic Resonance Imaging (MRI) of the brain has benefited from deep learning (DL) to alleviate
31
+ the burden on radiologists and MR technologists, and improve throughput. The easy accessibility
32
+ of DL tools have resulted in the rapid increase of DL models and subsequent peer-reviewed
33
+ publications. However, the rate of deployment in clinical settings is low. Therefore, this review
34
+ attempts to bring together the ideas from data collection to deployment into the clinic building on
35
+ the guidelines and principles that accreditation agencies have espoused. We introduce the need
36
+ for and the role of DL to deliver accessible MRI. This is followed by a brief review of DL examples
37
+ in the context of neuropathologies. Based on these studies and others, we collate the
38
+ prerequisites to develop and deploy DL models for brain MRI. We then delve into the guiding
39
+ principles to practice good machine learning practices in the context of neuroimaging with a focus
40
+ on explainability. A checklist based on the FDA's good machine learning practices is provided as
41
+ a summary of these guidelines. Finally, we review the current challenges and future opportunities
42
+ in DL for brain MRI.
43
+
44
+ Keywords: Accessible MRI, Neuroimaging, GMLPs, Explainable AI, FDA, Deep Learning,
45
+ Deployment, Brain
46
+
47
+
48
+
49
+
50
+ 3
51
+ Abbreviations:
52
+ CAD: Computer Aided Detection
53
+ CAM: Class Activation Mapping
54
+ CNN: Convolutional Neural Network
55
+ DAGMNet: Dual attention gate network
56
+ DICOM: Digital Imaging and Communications in Medicine
57
+ DSC: DICE Similarity Coefficient
58
+ FL: Federated Learning
59
+ GDPR: General Data Protection Regulation
60
+ GMLPs: Good Machine Learning Practices
61
+ Grad-CAM: Gradient-weighted Class Activation Mapping
62
+ HR: High-Resolution
63
+ IRB: Institutional Review Board
64
+ LR: Low-Resolution
65
+ MCI: Mild Cognitive Impairment
66
+ OECD: Organisation for Economic Co-operation and Development
67
+ OOD: Out-of-Distribution
68
+ PPML: Privacy Protecting Machine Learning
69
+ PSNR: Peak Signal-to-Noise Ratio
70
+ RF: Radio Frequency
71
+ SSIM: Structural Similarity Index Measure
72
+ XAI: Explainable Artificial Intelligence
73
+
74
+
75
+
76
+ 4
77
+ Introduction
78
+ As of 20181-2, the density of MR scanners was least in geographies with the highest populations
79
+ such as in sub-Saharan Africa and the Indian subcontinent. The severe lack of neurosurgeons
80
+ and skilled human resources required to operate, use, and interpret data from MR scanners is a
81
+ major barrier to accessing this life-saving technology2. In contrast, contemporary radiology
82
+ departments in the Organisation for Economic Co-operation and Development (OECD) countries
83
+ require a close interplay of a team with diverse expertise: radiologists specializing in different
84
+ anatomical sites, MR technologists, medical physicists, and radiologic nurses supported by the
85
+ vendor’s service and application engineers. This MR inaccessibility and the resulting disparity
86
+ necessitates the development and deployment of automated methods to augment existing local
87
+ expertise. Recently, there has been the development of autonomous MRI methods to automate
88
+ protocolling3-4, identify artifacts5-6, and reconstruct images from accelerated scans7. These
89
+ advances are expected to assist local MR technicians, accelerate acquisitions, improve
90
+ throughput by assisting or replacing manual data processing steps, and reduce waiting times for
91
+ radiology reporting. In addition to positively impacting MR accessibility, these automation methods
92
+ facilitate MRI-based big data studies such as the Human Connectome Project8, UK Biobank9, and
93
+ Rhineland study10, among others. This is due to the high volume and velocity associated with
94
+ such studies.
95
+
96
+ These automation methods leverage the recent resurgence of artificial intelligence techniques in
97
+ general and supervised learning methods in particular. A deep cascade of neural networks -
98
+ termed deep learning (DL) models - is trained with a set of input features on one side and the
99
+ resulting outcomes (labels) on the other side, using existing apriori annotated data11. These
100
+ trained DL models are then validated against an unseen but similar data set to fine-tune
101
+ “hyperparameters” of the DL model. Subsequently, the tuned DL model is used to perform
102
+
103
+ 5
104
+ inference on a test dataset to evaluate its performance by comparing it with a human-evaluated
105
+ outcome. Finally, once the classification-tasked model performs satisfactorily with respect to
106
+ false-positive (FP), false-negative (FN), true-positive (TP), and true-negative (TN) prediction
107
+ metrics (captured in a “confusion matrix”), then it is considered for a deployment study and down-
108
+ stream accreditation processes11.
109
+
110
+ In this review, we discuss studies that have developed and deployed deep learning models tasked
111
+ with multi-task classification. We then present an analysis of the related literature to provide
112
+ critical steps involved in data collection and curation required to set up deep learning studies. We
113
+ then highlight the importance of good machine learning practices and the explainability of the DL
114
+ results by illustrating examples and tools. A suggestive set of steps to enable mounting a
115
+ successful development and deployment of MRI DL models will be then discussed based on
116
+ recent literature. Finally, a brief overview of the challenges and opportunities related to MRI-based
117
+ DL studies is presented.
118
+
119
+ MRI DL studies of the brain
120
+ Easy and direct availability of vast amounts of MRI data from publicly available repositories such
121
+ as HCP8, UK Biobank9, among others, as well as accessible tools to build12 and optimize DL
122
+ models13 have significantly accelerated the application of DL methods to address challenges in
123
+ MRI. These studies have resulted in a substantial body of peer-reviewed literature (Figure 1), with
124
+ most of them sharing an open-source implementation of their models with sample data. This
125
+ review focuses on MRI DL studies that meet the following criteria: (i) published in the last five
126
+ years; (ii) Methods mostly focusing on classification and not regression tasks; (iii) studies
127
+ incorporating explainable AI components; (iv) works demonstrating deployment of the DL models
128
+ and preferably across multiple vendors and sites. These criteria were used to focus our review on
129
+
130
+ 6
131
+ specific developments. Notably, the generic tools developed by mathematicians and computer
132
+ scientists in the DL community for explainable AI such as GradCAM14 and other methods15-16 have
133
+ focused more on classification tasks compared to regression tasks (Figure 1). The quantification
134
+ of the outcomes of a classifier network is relatively straightforward compared to a regression
135
+ model. The outcomes are directly compared to the “true annotated labels'' and hence result in a
136
+ binary or a multi-class decision. These can easily be binned into TP, FP, TN, and FN and
137
+ evaluated for sensitivity and specificity. In contrast, regression models accomplishing tasks such
138
+ as DL denoising and synthesizing images are quantified using peak signal-to-noise ratio (PSNR)
139
+ and structural similarity index measure (SSIM). These metrics have a continuous value and are
140
+ hard to set thresholds for acceptance. In addition, regression models are typically explained using
141
+ activation maps that are subsequently interpreted by the authors rather than community-wide
142
+ tools independent of the developed methods. The interested reader is referred to 7 for a detailed
143
+ review of machine learning-based image reconstruction methods that leverage regression
144
+ models.
145
+
146
+ Example DL MRI solutions for neuroimaging
147
+ Brain tumors: Nalepa et al. have demonstrated a fully automated pipeline for DCE-MRI analysis
148
+ of brain tumors called Sens.AI DCE17. In particular, they have substituted manual segmentation
149
+ of brain tumors in T2 FLAIR images with deep-learning-based methods to demonstrate improved
150
+ reproducibility. They complement this with a real-time image processing algorithm to determine
151
+ the vascular input region. Finally, they include a new cubic model of the vascular function for PK
152
+ modeling. They have validated their package with the BraTs dataset for DICE coefficient and area
153
+ under the curve as well as by twelve readers from two institutions. These results show good to
154
+ excellent agreement between the gold standard BraTS dataset and Sens.AI DCE with a total
155
+ execution time of approximately 3 minutes. Another study focused on the automated identification
156
+ and classification of brain tumor MRI data classified into glioma, meningioma, and pituitary tumors
157
+
158
+ 7
159
+ with an accuracy of 93.7% and a DICE similarity coefficient (DSC) of 95.8%18. A subsequent task
160
+ of classifying gliomas into high or low grade had an accuracy of 96.5% and a DSC of 94.3%.
161
+ These models were based on the GoogleNet variant architectures to efficiently combine local
162
+ features. The identification and classification tasks were accomplished in less than 3 minutes.
163
+ The method compared well with other state-of-the-art methods with respect to accuracy. Although
164
+ the study did not explicitly focus on explainable AI methods such as Grad-CAM for interpretation,
165
+ the authors performed an ablation study to demonstrate the effect of the locally chosen features.
166
+ Brain extraction is a key step in multiple neuroimaging pre-processing pipelines and in complying
167
+ with privacy laws. This task becomes more challenging in the presence of pathology such as
168
+ diffuse gliomas as most analytical and deep learning methods focus on healthy brain extraction.
169
+ Thakur et al have addressed this gap by developing and testing their models for brain extraction
170
+ in the presence of diffuse glioma, in a multi-institutional manner19. The authors considered
171
+ multiparametric MRI data from private and public repositories acquired with different acquisition
172
+ protocols to train a “modality-agnostic” tool that does not require retraining. The work
173
+ demonstrated a similar or better accuracy compared to other brain extraction models that worked
174
+ only on healthy brain extractions. The interested reader is pointed to these reviews for further
175
+ reading on deep learning methods for brain tumor imaging20, classification21, and segmentation22.
176
+
177
+ Stroke: The need for automated segmentation and classification of images, especially in
178
+ emergency room settings in this time-critical pathology is well understood. In this direction, Liu et
179
+ al developed a deep learning model that detected and segmented abnormalities in acute ischemic
180
+ stroke23. The work included several steps of pre-processing the data, such as skull stripping and
181
+ DWI intensity normalization, among others. The study compared T-score and the modified c-fuzzy
182
+ methods for lesion segmentation. In addition, the authors implemented the 3D Dual attention gate
183
+ network (DAGMNet) as a supervised learning method to delineate the lesions. The developed
184
+ model performs better than the unsupervised generic tools and is faster, publicly available, and
185
+
186
+ 8
187
+ easy to deploy. They tested their algorithm on a hold-out data set of 280 MRIs and quantified the
188
+ improved performance using DICE scores, precision, sensitivity, subject detection rate, DICE
189
+ scores for the lesion volumes and lesion DWI contrast. Another study on stroke detection
190
+ performed by Zhang et al demonstrated an accuracy of 89.77% over 300 ischemic stroke
191
+ patients24. The authors evaluated three network architectures with labels drawn by experienced
192
+ radiologists from two hospitals. Their models predicted a bounding box covering the lesions.
193
+ Statistical analysis performed on the location, size, and shape correlated well with the radiologists’
194
+ labeling. This implementation aids in rapid localization and preliminary characterization of the
195
+ lesion. The authors have committed to making the data available once a thousand patient data
196
+ are collected. An important task in imaging stroke is to grade the severity of the ischemia. A multi-
197
+ class classification solution for detecting the severity has been developed by Acharya et al.25 The
198
+ authors extracted higher-order features from MR images, such as bispectrum entropy and its
199
+ phase, followed by support vector machines to classify the severity of the stroke into LACS, PACS
200
+ and TACS. The algorithm demonstrated high levels of accuracy without the need for any manual
201
+ intervention to augment the neuroradiologist.
202
+
203
+ Alzheimer’s disease: Supervised learning models have demonstrated the utility of automation
204
+ in the imaging of Dementia. A specific challenge in this area is the classification and staging of
205
+ the progression in mild cognitive impairment (MCI) patients. Kwak et al. have developed a deep
206
+ learning model based on brain atrophy patterns and associated these changes with differences
207
+ in amyloid burden, cognition, and metabolism26. This model is used to classify AD patients from
208
+ cognitively normal subjects. A secondary classification helps identify the trajectory of cognitive
209
+ decline in individuals with MCI. These results were validated with cognitive tests, fluid biomarkers,
210
+ and PET uptake data with good agreement. The approach is expected to benefit from integrating
211
+ cognitive and neurobiological features to capture the heterogeneity of MCI. Another approach
212
+ involved the development and testing of whole-brain 3D convolutional neural networks to detect
213
+
214
+ 9
215
+ AD27. This model did not include any patient-specific information to allow the generalization of the
216
+ algorithm. The implementation included four steps of brain extraction, normalization, 3D CNN
217
+ followed by domain adaptation. A key feature of this study is the authors' focus on accomplishing
218
+ accountability. The method outperformed other state-of-the-art methods in the CAD Dementia
219
+ challenge test, along with explainable AI visualizations to aid the interpretation of classification
220
+ results. Ahmed et al. also used a 3D approach but collected an ensemble of 2D patches in three
221
+ orientations to train an ROI-based neural network to stage AD using MR images as per NIA
222
+ labels28. This approach was demonstrated on the GARD and ADNI datasets. This method was
223
+ compared to other state-of-the-art methods, and the performance was similar or better. The
224
+ landmarks delineated by the algorithm to indicate AD correlated well with known neuroanatomical
225
+ areas. However, the model could not accurately predict asymptomatic AD based on the high rates
226
+ of false positives.
227
+
228
+ Prerequisites for DL-based neuro-MRI
229
+ Data from routine MRI studies result in high volume, velocity, and variety: characteristics of big
230
+ data29–35. For training DL models, high volume and velocity are favorable factors: more data is
231
+ better than lesser; high velocity of data requires automated processing methods. However, the
232
+ variety in MRI data due to a large number of available acquisition parameters, reconstruction
233
+ methods, receive coil configurations, post-processing steps requires attention to fine details
234
+ before collating data for annotation and subsequent training. In line with the classification
235
+ suggested by Wald36, the sources of these variabilities need to be binned as emanating from the
236
+ MR system characteristics, subject-induced variations, and pathology-specific factors. Typically,
237
+ the goal of the DL models discussed in this work is to glean the subtle changes in
238
+ pathophysiological states based on the MR images. Therefore, standardization of parameters
239
+ getting affected by the system and subject priors is critical to ensure that the DL models focus
240
+
241
+ 10
242
+ their attention on the pathology being investigated. The removal or reduction of the confounding
243
+ variables is therefore essential in building these DL models. This exercise is facilitated by the use
244
+ of explainable AI tools. Therefore, two critical requirements to understand an MRI-based DL study
245
+ are standardization of procedures and methods and explainable AI tools. A detailed discussion
246
+ on these prerequisites is performed below.
247
+ DL models require large amounts of data to achieve high accuracy levels37–39. Unlike models
248
+ trained on natural images, large datasets are challenging to achieve for medical imaging
249
+ applications37–39. Training a DL model of medical images entails data collection, curation, and
250
+ annotation. Additionally, data augmentation might be necessary in cases when the data are
251
+ insufficient or to strengthen the generalization ability of the model39–41. The steps of data collection
252
+ and annotation are the most expensive and time-consuming, and patient privacy policies often
253
+ restrict the use and sharing of images37,39,42,43. These factors significantly impact the models’
254
+ performance in clinical settings, limiting their ultimate deployment40,42. The purpose of this section
255
+ is to review strategies and recommendations (Figure 2) at the data level for maximizing the
256
+ likelihood of successful deployment after training based on previously published work.
257
+ Data collection, including patient selection, imaging protocol, sequences, and scan parameters,
258
+ is determined based on the intended use of the model and its targeted application. Cohorts can
259
+ be prospective or retrospective, depending on whether the data are acquired for the study or
260
+ retrieved from a public or private repository44. An initial step in the process is the approval by an
261
+ Institutional Review Board (IRB) or a similar board. Additionally, participants provide informed
262
+ consent about the use of their personal data, which is typically de-identified during data curation.
263
+ Privacy Protecting Machine Learning (PPML) is a niche area of research that aims at maximizing
264
+ the confidentiality of patient data while optimizing its use on data-driven models45. In this field,
265
+ Federated Learning (FL) alleviates the shortage of data problems by allowing training models on
266
+ large-scale, multi-center data without data sharing. FL feasibility in MRI has been explored by
267
+
268
+ 11
269
+ Sarma et al. and Sheller et al. for brain tumor and prostate segmentation tasks46,47. When dealing
270
+ with multi-institutional data, protocol harmonization can avoid model bias that may arise from
271
+ differences in image contrast, intensity, or noise distribution. In MRI, these differences may stem
272
+ from multiple sources, including variations in system manufacturer, field strength, Radio
273
+ Frequency (RF) coils, patient positioning, acquisition sequence and scan time, and even pre-
274
+ processing and reconstruction pipelines.
275
+ Publicly available databases are the results of extensive research projects and contain large
276
+ amounts of data that can be leveraged for training. These datasets are typically acquired using
277
+ the same protocol and scanner or using highly harmonized protocols. Patient inclusion and
278
+ exclusion criteria in these research cohorts are strict, and the datasets are well-curated and
279
+ usually undergo multi-step post-processing pipelines and standardization operations. While the
280
+ reproducibility of models trained on publicly available datasets is easier to assess, the data lack
281
+ the heterogeneity characteristic of clinical data observed during deployment. Martensson et al.43
282
+ systematically studied the performance variability of a DL model trained on different combinations
283
+ of training sets, including publicly available datasets and more heterogeneous Out-of-Distribution
284
+ (OOD) datasets. They observed that performance drops when models trained on homogeneous
285
+ data are applied to clinical data. However, inference on clinical data showed a better agreement
286
+ level with a radiologist reading if clinical cohorts were present in the training data.
287
+ A benefit of local data acquisition for training is having access to raw data. Most public or private
288
+ imaging repositories contain data in the Digital Imaging and Communications in Medicine
289
+ (DICOM) format. The raw data undergo several pre-processing steps, including coil-combination,
290
+ filtering, artifact correction, and phase removal before storage, stripping the images of features
291
+ that DL models in the process could recognize. Raw data might be favored for certain DL tasks,
292
+ data augmentation techniques, or for data synthesis via forward modeling. This is exemplified by
293
+ the increasing usage of the fastMRI dataset48, the only publicly-available dataset of raw MR knee
294
+
295
+ 12
296
+ and brain data. It has become a benchmark for the validation and reproducibility assessment of
297
+ DL-based image reconstruction algorithms. Additionally, models for the detection or correction of
298
+ k-space-occurring artifacts such as motion49–51 and Gibbs ringing5,52 typically leverage raw data
299
+ for the simulation of artifact-corrupted images.
300
+ Data collection is followed by data curation. This step is performed to standardize and improve
301
+ dataset quality for subsequent deep neural network training42. The data used for the model
302
+ development entails a trade-off between distribution heterogeneity and representation bias. It
303
+ should represent varying patient populations and anatomy disparities while avoiding biasing
304
+ network representation. Successfully deployed models are typically developed with data acquired
305
+ using the same imaging protocol and the same system as the site targeted for deployment53,54.
306
+ Failure mode analysis of the prospective evaluation of an automatic kidney segmentation model
307
+ after deployment revealed segmentation errors arising from common clinical scenarios such as a
308
+ fluid-filled stomach and a distended bladder54. These cases are typically excluded during cohort
309
+ building or data curation and reduce the model’s tolerance to data variations. Poor generalizability
310
+ to unseen domains is one of the major challenges to successfully deploying DL models in the
311
+ clinic55.
312
+ For fully and semi-supervised learning tasks, data labeling or annotation is typically the most time-
313
+ consuming step of an AI project. It may require localizing, delineating, or segmenting lesions or
314
+ organs of interest or labeling or annotating characteristics of the data. This step is performed
315
+ manually by an experienced reader via visual inspection. When human observations or clinicians'
316
+ expertise is required to annotate the data, multiple readers and ideally with variable levels of
317
+ experience, are preferred to estimate inter-reader variability and compare it to the model’s
318
+ performance.
319
+
320
+ 13
321
+ Finally, data augmentation is the process of generating additional versions of the initial data to
322
+ enlarge the training set and improve the model's robustness, thereby avoiding overfitting56.
323
+ Typical techniques include translation, flipping, rotation, and cropping. Depending on the
324
+ application, other approaches may be useful, such as random k-space oversampling for model-
325
+ based reconstruction techniques. Data augmentation can also be leveraged to reduce the gap
326
+ between the training data and prospective clinical data, for example, by simulating noise and
327
+ motion artifacts in the images. A recent study57 for accelerated MR reconstruction demonstrated
328
+ that with the introduction of these commonly-occurring artifacts using MR physics-driven data
329
+ augmentation techniques, model performance on both in-distribution and OOD data increases
330
+ compared to state-of-the-art image-based data augmentation methods.
331
+
332
+ Good Machine Learning Practices for MRI
333
+ AI's novelty and current regulatory paradigms are not well adapted to strike a balance between
334
+ patient safety and promoting the expansion of this new industry58. For assessing commercially
335
+ accessible algorithms to guarantee their dependability and safety, defining best practices is an
336
+ area of active research59,60, significant regulatory problems need to be resolved to move clinical
337
+ AI toward becoming safe and robust61. Wu et. al. reviewed the FDA database for parameters that
338
+ were used to evaluate the AI algorithms of products. The parameters they found were - (i) number
339
+ of patients and sites used in the evaluation, (ii) prospective and retrospective collection of data,
340
+ and (iii) whether the performance was stratified by disease subtypes or not. Based on the FDA
341
+ summary, the study revealed that 126 out of 130 AI devices conducted solely retrospective
342
+ investigations at their submission. The influence of the AI decision tool on clinical practice must
343
+ be fully characterized, though, and this is crucial since human-computer interaction might differ
344
+ significantly from a model's intended purpose. For instance, most computer-aided detection
345
+
346
+ 14
347
+ (CAD) diagnostic tools are meant to serve as decision-support aids rather than primary diagnostic
348
+ instruments61. Instead of independently diagnosing, staging, or triaging pathology, CAD is meant
349
+ to identify, mark, highlight, or otherwise draw attention to imaging characteristics62. The FDA
350
+ suggests regulating AI software based on function rather than technical components or intended
351
+ use, which is different from the case for most pharmaceutical items, gadgets, and foods58.
352
+ Therefore, FDA advocates ten guiding principles for medical device development known as 10
353
+ Good Machine Learning Practices (GMLPs) that take into consideration the prerequisites
354
+ discussed above. According to the first and second principle, all expertise related to the product
355
+ development should work together from the development phase until integration into the clinical
356
+ workflow. This includes neuroradiologists, neuroimaging scientists, MR technicians, and data
357
+ scientists implementing good software engineering and security practices. The third principle
358
+ states the importance of metadata in developing DL models and connects to the concept of data
359
+ security from the second principle. The fourth and fifth principles mention the importance of
360
+ datasets. The training and testing datasets should be independent and the reference datasets
361
+ should have the same characteristics as of the patients in the former datasets. According to the
362
+ sixth principle, the intended use of a model must be clearly defined along with its risks and
363
+ performance limitations on different datasets. This relates to principle number three in a sense
364
+ that metadata defines the scope of the model being used on the specific patients. Principle seven
365
+ states the involvement of humans and the fact that human intervention cannot be avoided at any
366
+ stage of development or deployment. This principle focuses more on AI in the loop rather than
367
+ human in the loop. Eighth and ninth principle centers on the user and states that the model should
368
+ be easy to understand for the end user and must list all the possible precautions in order to avoid
369
+ harm to the patient. Principle ten mentions that updates in the model are a mandatory part of the
370
+ DL deployment and must be considered frequently59. A checklist based on these GMLPs is
371
+ provided as a summary specifically designed for experts working in brain MRI (Table 1).
372
+
373
+ 15
374
+ Explainable AI
375
+ Although deep learning techniques produce outcomes, they do not explain how those results were
376
+ obtained. One cannot just analyze the deep neural network to understand how that choice was
377
+ made. As a result, deep learning models are sometimes referred to as "Black Boxes"63. Medical
378
+ professionals believe these "black boxes" may be prejudiced in some way, which might have
379
+ negative effects when used in practical applications63. Additionally, laws like the General Data
380
+ Protection Regulation (GDPR, Article 15) of the European Union specify that patients have the
381
+ right to request an explanation for how a given diagnosis was reached if the standard deep
382
+ learning models cannot64. Therefore, Explainable Artificial Intelligence (XAI) techniques recently
383
+ developed with the primary objective of visualizing and interpreting the results of machine learning
384
+ (ML) and deep learning (DL) networks represent a potential remedy to close this gap between
385
+ high performance and deep-level understanding65 (Figure 3). They have been utilized in a variety
386
+ of applications, including the categorization of ECGs66 and the visualization of feature maps at
387
+ various Convolutional Neural Network (CNN) layers67.
388
+ Velden et al. categorized XAI approaches into three groups based on three criteria: (i) model-
389
+ based vs post-hoc; (ii) model-specific against model-agnostic; and (iii) global versus local. These
390
+ categories are visual, textual, and example based. The most prevalent type of XAI in medical
391
+ imaging, out of these three categories, is the visual explanation. These approaches, sometimes
392
+ referred to as saliency mapping, employ a backpropagation methodology to highlight the key
393
+ elements of a picture for a certain model’s decision by emphasizing the pixels that had the
394
+ greatest influence on the results of the investigation64. Class activation mapping (CAM), a
395
+ technique used in the backpropagation methodology, was introduced by Zhou et al. in 2016. They
396
+ used global average pooling on the last convolutional feature maps to substitute the fully
397
+ connected layers at the conclusion of a CNN. It is a weighted linear sum of the visual patterns
398
+ that were observed and recorded by the filters at various spatial positions68.
399
+
400
+ 16
401
+ Gradient-weighted class activation mapping is a generic strategy that includes CAM as one of its
402
+ specialized methods (Grad-CAM). Grad-CAM can operate with any CNN, but CAM needs global
403
+ average pooling in particular64. Grad-CAM delivers the ROI on an input image that has the
404
+ greatest influence on class prediction. Grad-CAM allows us to track the spatial attention changes
405
+ that occur between network layers, or more precisely, what each network layer focuses on in each
406
+ input image. To do this, the output gradient with respect to each neuron in the network is
407
+ calculated to ascertain its relative significance69.
408
+ Grad-CAM has been widely used to describe deep learning models. Jimeno et. al. used it to
409
+ identify and classify wrap-around and Gibbs ringing artifacts5. It was used by Windisch et al. in
410
+ 2020 to identify brain MRI regions that caused the classifier to determine the existence of a
411
+ malignancy70. A model’s prediction of the fetus's brain age may also be explained using Grad-
412
+ CAM, according to a 2020 publication by Liao et al., which will help avoid congenital
413
+ malformations71. It was also employed by Natekar et al. in 2020 to describe the brain tumor
414
+ segmentation network69.
415
+ Occlusion Sensitivity technique is another XAI tool64. The input MR image is disturbed by a small
416
+ perturbation, and the categorization choice is changed and examined. In order to quantify the
417
+ variation in the output prediction, it covers a piece of the input picture with a black patch. After
418
+ moving the patch across the whole picture, it is simple to determine which parts of the brain are
419
+ responsible for the categorization choice in question by looking at this variation65. This approach
420
+ was utilized by Bordin et al. to identify relationships between White matter hyperintensities and
421
+ the anatomical areas that are most important for the categorization of Alzheimer's disease. In
422
+ conclusion, these XAI approaches present a potentially important addition that may eventually
423
+ boost radiologist's confidence in the usage of AI models.
424
+
425
+
426
+ 17
427
+ Challenges and opportunities
428
+ DL research has recently witnessed accelerating adoption in the field of MRI (Figure 1) impacting
429
+ image acquisition, reconstruction, processing, and radiological reporting tasks.
430
+ Image acquisition: Currently, DL for MRI acquisition can be classified into two broad categories:
431
+ (i) automatically generating MR pulse sequences for a target contrast or signal-to-noise ratio. In
432
+ this approach, once a vendor hardware of interest has been identified, imposing appropriate
433
+ constraints on the cost function (for example, slew rate) will facilitate easy implementation of the
434
+ optimized pulse sequence on the chosen hardware4. Second is the acceleration of existing
435
+ vendor-defined protocols, potentially relying on post-acquisition methods to recover SNR72–74.
436
+ This approach is inherently limited to a particular protocol and vendor. The emergence of physics-
437
+ informed DL methods will allow researchers to develop models that are privy to the underlying
438
+ physical phenomena, potentially resulting in improved interpretability since the outputs can be
439
+ evaluated using existing task-specific knowledge75–79. Performing automated and intelligent slice
440
+ planning for localizers is also an active area of research80,81.
441
+ Image reconstruction and processing: Based on the work by Chaudhari et al.40, applications
442
+ of DL to image reconstruction and processing are classified into model-free image synthesis,
443
+ model-based image reconstruction, and classification and segmentation. Model-free image
444
+ synthesis pertains to the mapping of input images to output images. Examples are image super-
445
+ resolution, denoising, artifact reduction or removal, and synthesis of missing contrasts. Image
446
+ super-resolution enables the acquisition of multiple low-resolution images, which can be upscaled
447
+ using DL models82–87. Compiling a training dataset for this task is not straightforward since it is
448
+ not trivial to acquire paired low-resolution (LR) and high-resolution (HR) data. Apart from logistical
449
+ challenges, image registration is a primary concern. It is therefore convenient to acquire HR
450
+ images and subsequently perform retrospective downsampling to generate LR images. However,
451
+ this does not faithfully replicate MRI encoding, and hence does not accurately represent real-
452
+
453
+ 18
454
+ world LR data. In some other cases, HR data is not readily available. One workaround is to
455
+ leverage a self-supervised learning framework to synthesise low-resolution images from high-
456
+ resolution data, thereby mitigating the requirement of image registration88. Image denoising
457
+ models improve SNR post-acquisition72,74. Two common approaches to achieve image denoising
458
+ are to either directly synthesise the denoised image, or to synthesise the residual from which the
459
+ final denoised image can be obtained. In the first approach, the models are trained on pairs of
460
+ noisy/clean images to optimize for image quality whilst avoiding blurring artifacts and retaining
461
+ the anatomical structures present in the original image89–92. An alternative method is to obtain the
462
+ final denoised image from the difference of the original input image and the predicted residual93,94.
463
+ Next, artifact reduction or removal models improve image quality by partially or completely
464
+ correcting MR image artifacts that might otherwise interfere with diagnosis or reduce image
465
+ quality52,95–97. Finally, contrast-synthesis models enable performing a limited MR exam whilst still
466
+ obtaining the same diagnostic information as from a comprehensive MR exam, by generating the
467
+ missing contrasts98,99. They can also enable performing contrast-enhanced MR examinations with
468
+ reduced dosages of the exogenous contrast agents100,101. Model-based image reconstruction
469
+ involves transforming undersampled data into fully-sampled reconstructed images102–105. One
470
+ primary challenge associated with image synthesis and reconstruction is hallucination40. This
471
+ relates to the addition of features that are not present in the input image. Since the model’s
472
+ representations are learned implicitly, hallucinations typically tend to reflect the characteristics of
473
+ the training dataset. The challenge of distinguishing true image signals from hallucinated signals
474
+ is exacerbated in the task of contrast-synthesis. Existing explainable AI approaches applicable to
475
+ other tasks are not amenable to image synthesis tasks. Consequently, mitigation strategies to
476
+ avoid hallucinations are an active area of research in the broader DL community. For image
477
+ reconstruction, embedding data-consistency steps into the reconstruction process is a viable
478
+ strategy to mitigate hallucinations.
479
+
480
+ 19
481
+ Radiological reporting: The typical workflow of a radiologist involves identifying, localizing, and
482
+ characterizing the pathology of interest. This is labour-intensive, and recent DL implementations
483
+ have attempted to alleviate this burden on the radiologist106. Examples range from predicting
484
+ diagnosis from input images, to generating a text-based radiological report from input images.
485
+ The superior performance of DL methods on identification and classification tasks lends itself to
486
+ the automated detection of findings from acquired images. Furthermore, several works have also
487
+ demonstrated a potential for automated interpretation of findings107. Finally, assisting clinical
488
+ decision support systems could improve quality of care108,109. However, the attribution of clinical
489
+ decisions that were assisted by DL systems is an unresolved problem. Along with other ethical
490
+ and legal challenges such as those related to data sharing and bias (refer to sections on
491
+ prerequisites and GMLP), these bottlenecks need to be addressed prior to a potential deployment
492
+ in a real-world scenario. Wang et al. discuss the entire workflow of medical imaging: from
493
+ tomographic raw data/features to reconstructed images and then extracted diagnostic
494
+ features/readings7.
495
+ Figure 4 briefly captures the broader challenges and opportunities associated with employing DL
496
+ in medical imaging. In general, DL methods present other challenges and opportunities apart from
497
+ the application-specific ones discussed above. First, the current state-of-the-art DL qualifies as
498
+ narrow intelligence since it lacks global context108. This results in severe performance degradation
499
+ when tackling out of distribution data (OOD). Furthermore, it is not trivial to identify whether
500
+ unseen data is OOD110. This problem is exacerbated in diagnostic healthcare imaging because
501
+ the generated data is heterogeneous, noisy, and incomplete. This can be attributed to the
502
+ differences in vendor hardware and software, and the plethora of component configurations111.
503
+ Second, the lack of interpretability of DL models does not allow clinical users to develop trust in
504
+ the models’ predictions, resulting in stymied adoption and deployment in healthcare. Third,
505
+ training DL models to achieve the level of robustness necessary to handle this variety requires an
506
+ ImageNet-like breakthrough in the medical imaging community at large112. Recent works such as
507
+
508
+ 20
509
+ RadImageNet112 are encouraging, and can potentially facilitate such advancements. However,
510
+ with ever-growing scales of data collection, the closely coupled and critical task of data curation
511
+ grows in complexity, at least for supervised learning frameworks. This relates to the fifth
512
+ challenge, which involves ensuring bias-free data curation. The performance of any DL model is
513
+ directly dependent on the quality of the data it was trained on. To avoid any biases in the output
514
+ which could potentially compound in downstream analyses, the training dataset has to be free of
515
+ all confounding factors. Training DL models on large-scale datasets requires prohibitively
516
+ expensive hardware setups to provide the required compute, coupled with extremely long training
517
+ durations. Consequently, this time-, cost-, and resource-intensive workflow raises the
518
+ development barrier thereby mostly limiting research efforts to well-funded organizations and
519
+ institutions. However, the recently increasing availability of commercial cloud solutions by
520
+ Amazon, Microsoft, Google, etc., unlocks cost-effective compute that is globally accessible. In
521
+ addition to the pre-existing heterogeneity of the data, acquisition methods are constantly evolving,
522
+ introducing another dimension of variability to the data. This will require deployed DL models to
523
+ be capable of online training to avoid incorrect or irrelevant predictions, or potential misdiagnoses
524
+ in downstream analyses when encountering OOD data. Any development workflow lag,
525
+ regardless of the duration, will result in incorrect treatment planning until updated models are
526
+ deployed. On the other hand, disengaging the models until newer versions are available will result
527
+ in workflow interruptions and throughput degradation. Lastly, the ethical and legal uncertainties
528
+ involved critically need to be resolved prior to any potential deployments. Different countries
529
+ enforce different medical data custody laws, necessitating region-specific modifications to the DL
530
+ tool and the data pipeline to ensure compliance. Most importantly, the ownership of a DL-assisted
531
+ clinical decision is an open question. Despite these challenges, the ability to automate tasks such
532
+ as image interpretation and diagnosis will alleviate the immense burden on healthcare providers,
533
+ allowing them to focus on other important tasks whilst improving the quality of their work lives.
534
+ Providing more accurate and timely diagnosis, reduced costs, increased efficiency, and tailored
535
+
536
+ 21
537
+ treatments to individual patients based on their specific characteristics and needs all result in
538
+ improved patient outcomes. These are strong motivators to strategize immediate or near-future
539
+ adoption of existing DL methods. Directing research efforts to explore opportunities and
540
+ simultaneously addressing existing issues will aid in the wider adoption and improved realization
541
+ of DL’s potential. Along with addressing weaknesses and leveraging strengths, incorporating the
542
+ GMLP principles (Section 4) across the development lifecycle of DL-assisted medical applications
543
+ will aid in maximizing safety, efficiency, and quality during clinical deployment.
544
+ Conclusion
545
+ Our literature review indicates an increase in DL models for brain MRI tasks related to the
546
+ acquisition, reconstruction, image analysis, and reporting in the last five years across
547
+ neuropathologies such as tumors, stroke, and Alzheimer’s disease. These studies were
548
+ summarized as a suggestive DL pipeline for brain MRI studies. Importantly, the proportion of
549
+ studies that adhere to GMLP principles and contain XAI components are significantly low. This
550
+ DL neuro-MRI GMLP checklist in this review is motivated by this gap and emanates from the ten-
551
+ point guidelines espoused by the accreditation agencies for these principles tailored to brain MRI.
552
+ Finally, our assessment of the opportunities and challenges in DL studies on brain MRI indicates
553
+ that the inclusion of the GMLPs significantly reduces the challenges associated with cost, and
554
+ lack of interpretability, bias in the training data among others (Figure 4). Overcoming these
555
+ challenges will unlock the potential to improve multiple aspects of neuroimaging using MRI
556
+ through the successful deployment of accreditation agency-approved DL models.
557
+ References:
558
+ [1] World Health Organization. Global atlas of medical devices. Published online 2022.
559
+ https://www.who.int/publications/i/item/9789240062207
560
+ [2] Geethanath S, Vaughan JT Jr. Accessible magnetic resonance imaging: A review. J Magn
561
+ Reson Imaging. 2019;49(7):e65-e77.
562
+
563
+ 22
564
+ [3] Ravi KS, Geethanath S. Autonomous magnetic resonance imaging. Magnetic Resonance
565
+ Imaging. 2020;73:177-185. doi:10.1016/j.mri.2020.08.010
566
+ [4] Loktyushin A, Herz K, Dang N, Glang F, Deshmane A, Weinmüller S, et al. MRzero -
567
+ Automated discovery of MRI sequences using supervised learning. Magn Reson Med.
568
+ 2021;86(2):709-724.
569
+ [5] Manso Jimeno M, Ravi KS, Jin Z, Oyekunle D, Ogbole G, Geethanath S. ArtifactID:
570
+ Identifying artifacts in low-field MRI of the brain using deep learning. Magn Reson Imaging.
571
+ 2022;89:42-48.
572
+ [6] Ahmad A, Parker D, Dheer S, Samani ZR, Verma R. 3D-QCNet - A pipeline for automated
573
+ artifact detection in diffusion MRI images. Comput Med Imaging Graph. 2022;103:102151.
574
+ [7] Wang G, Ye JC, Mueller K, Fessler JA. Image Reconstruction is a New Frontier of Machine
575
+ Learning. IEEE Trans Med Imaging. 2018;37(6):1289-1296.
576
+ [8] Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K, et al. The WU-
577
+ Minn Human Connectome Project: an overview. Neuroimage. 2013;80:62-79.
578
+ [9] Littlejohns TJ, Holliday J, Gibson LM, Garratt S, Oesingmann N, Alfaro-Almagro F, et al.
579
+ The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection,
580
+ management and future directions. Nat Commun. 2020;11(1):2624.
581
+ [10] Lohner V, Lu R, Enkirch SJ, Stöcker T, Hattingen E, Breteler MMB. Incidental findings on 3
582
+ T neuroimaging: cross-sectional observations from the population-based Rhineland Study.
583
+ Neuroradiology. 2022;64(3):503-512.
584
+ [11] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016.
585
+ [12] Kheir AMS, Ammar KA, Amer A, Ali MGM, Ding Z, Elnashar A. Machine learning-based
586
+ cloud computing improved wheat yield simulation in arid regions. Comput Electron Agric.
587
+ 2022;203:107457.
588
+ [13] Howard J, Gugger S. Fastai: A Layered API for Deep Learning. Information.
589
+ 2020;11(2):108. doi:10.3390/info11020108
590
+ [14] Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual
591
+ explanations from deep networks via gradient-based localization. In: Proceedings of the
592
+ IEEE International Conference on Computer Vision. ; 2017:618-626.
593
+ [15] Sarker MK. Towards Explainable Artificial Intelligence (XAI) Based on Contextualizing Data
594
+ with Knowledge Graphs. PhD. Kansas State University; 2020.
595
+ [16] Rahman MM. Deep Interpretability Methods for Neuroimaging. PhD. Georgia State
596
+ University; 2022.
597
+ [17] Nalepa J, Ribalta Lorenzo P, Marcinkiewicz M, Bobek-Billewicz B, Wawrzyniak P, Walczak
598
+ M, et al. Fully-automated deep learning-powered system for DCE-MRI analysis of brain
599
+ tumors. Artif Intell Med. 2020;102:101769.
600
+
601
+ 23
602
+ [18] Haq EU, Jianjun H, Li K, Haq HU, Zhang T. An MRI-based deep learning approach for
603
+ efficient classification of brain tumors. Journal of Ambient Intelligence and Humanized
604
+ Computing. Published online 2021. doi:10.1007/s12652-021-03535-9
605
+ [19] Thakur S, Doshi J, Pati S, Rathore S, Sako C, Bilello M, et al. Brain extraction on MRI
606
+ scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep
607
+ learning methods and robust modality-agnostic training. Neuroimage. 2020;220:117081.
608
+ [20] Shaver MM, Kohanteb PA, Chiou C, Bardis MD, Chantaduly C, Bota D, et al. Optimizing
609
+ Neuro-Oncology Imaging: A Review of Deep Learning Approaches for Glioma Imaging.
610
+ Cancers . 2019;11(6). doi:10.3390/cancers11060829
611
+ [21] Muhammad K, Khan S, Ser JD, Albuquerque VHC de. Deep Learning for Multigrade Brain
612
+ Tumor Classification in Smart Healthcare Systems: A Prospective Survey. IEEE Trans
613
+ Neural Netw Learn Syst. 2021;32(2):507-522.
614
+ [22] Magadza T, Viriri S. Deep Learning for Brain Tumor Segmentation: A Survey of State-of-
615
+ the-Art. J Imaging Sci Technol. 2021;7(2). doi:10.3390/jimaging7020019
616
+ [23] Liu CF, Hsu J, Xu X, Ramachandran S, Wang V, Miller MI, et al. Deep learning-based
617
+ detection and segmentation of diffusion abnormalities in acute ischemic stroke. Commun
618
+ Med. 2021;1:61.
619
+ [24] Zhang S, Xu S, Tan L, Wang H, Meng J. Stroke Lesion Detection and Analysis in MRI
620
+ Images Based on Deep Learning. Journal of Healthcare Engineering. 2021;2021:1-9.
621
+ doi:10.1155/2021/5524769
622
+ [25] Acharya UR, Rajendra Acharya U, Meiburger KM, Faust O, Koh JEW, Oh SL, et al.
623
+ Automatic detection of ischemic stroke using higher order spectra features in brain MRI
624
+ images. Cognitive Systems Research. 2019;58:134-142. doi:10.1016/j.cogsys.2019.05.005
625
+ [26] Kwak K, Giovanello KS, Bozoki A, Styner M, Dayan E, Alzheimer’s Disease Neuroimaging
626
+ Initiative. Subtyping of mild cognitive impairment using a deep learning model based on
627
+ brain atrophy patterns. Cell Rep Med. 2021;2(12):100467.
628
+ [27] Folego G, Weiler M, Casseb RF, Pires R, Rocha A. Alzheimer’s Disease Detection
629
+ Through Whole-Brain 3D-CNN MRI. Front Bioeng Biotechnol. 2020;8:534592.
630
+ [28] Ahmed S, Kim BC, Lee KH, Jung HY, Alzheimer’s Disease Neuroimaging Initiative.
631
+ Ensemble of ROI-based convolutional neural network classifiers for staging the Alzheimer
632
+ disease spectrum from magnetic resonance imaging. PLoS One. 2020;15(12):e0242712.
633
+ [29] Santos DP dos, dos Santos DP, Baeßler B. Big data, artificial intelligence, and structured
634
+ reporting. European Radiology Experimental. 2018;2(1). doi:10.1186/s41747-018-0071-4
635
+ [30] Neves J, Vicente H, Esteves M, Ferraz F, Abelha A, Machado J, et al. A Deep-Big Data
636
+ Approach to Health Care in the AI Age. Mobile Networks and Applications.
637
+ 2018;23(4):1123-1128. doi:10.1007/s11036-018-1071-6
638
+ [31] Poldrack RA, Gorgolewski KJ. Making big data open: data sharing in neuroimaging. Nat
639
+ Neurosci. 2014;17(11):1510-1517.
640
+
641
+ 24
642
+ [32] Ding X, de Castro Caparelli E, Ross TJ. Big Data Era in Magnetic Resonance Imaging of
643
+ the Human Brain. Signal Processing and Machine Learning for Biomedical Big Data.
644
+ Published online 2018:21-54. doi:10.1201/9781351061223-3
645
+ [33] Tahmassebi A, Gandomi AH, McCann I, Schulte MH, Goudriaan AE, Meyer-Baese A.
646
+ Deep learning in medical imaging: fmri big data analysis via convolutional neural networks.
647
+ In: Proceedings of the Practice and Experience on Advanced Research Computing. ;
648
+ 2018:1-4.
649
+ [34] Zhu J, Liu AA, Chen M, Tasdizen T, Su H. Special Issue on Biomedical Big Data:
650
+ Understanding, Learning and Applications. IEEE Transactions on Big Data. 2017;3(4):375-
651
+ 377. doi:10.1109/tbdata.2017.2772930
652
+ [35] Wegmayr V, Aitharaju S, Buhmann J. Classification of brain MRI with big data and deep 3D
653
+ convolutional neural networks. Medical Imaging 2018: Computer-Aided Diagnosis.
654
+ Published online 2018. doi:10.1117/12.2293719
655
+ [36] Wald LL. Ultimate MRI. Journal of Magnetic Resonance. 2019;306:139-144.
656
+ doi:10.1016/j.jmr.2019.07.016
657
+ [37] Greenspan H, van Ginneken B, Summers RM. Guest Editorial Deep Learning in Medical
658
+ Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Transactions
659
+ on Medical Imaging. 2016;35(5):1153-1159. doi:10.1109/tmi.2016.2553401
660
+ [38] Ravi D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, et al. Deep Learning for
661
+ Health Informatics. IEEE J Biomed Health Inform. 2017;21(1):4-21.
662
+ [39] Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing
663
+ on MRI. Z Med Phys. 2019;29(2):102-127.
664
+ [40] Chaudhari AS, Sandino CM, Cole EK, Larson DB, Gold GE, Vasanawala SS, et al.
665
+ Prospective Deployment of Deep Learning in MRI: A Framework for Important
666
+ Considerations, Challenges, and Recommendations for Best Practices. J Magn Reson
667
+ Imaging. 2021;54(2):357-371.
668
+ [41] Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: An overview of
669
+ the concepts and a survey of the state of the art with focus on MRI. Journal of Magnetic
670
+ Resonance Imaging. 2019;49(4):939-954. doi:10.1002/jmri.26534
671
+ [42] Montagnon E, Cerny M, Cadrin-Chênevert A, Hamilton V, Derennes T, Ilinca A, et al. Deep
672
+ learning workflow in radiology: a primer. Insights Imaging. 2020;11(1):22.
673
+ [43] Mårtensson G, Ferreira D, Granberg T, Cavallin L, Oppedal K, Padovani A, et al. The
674
+ reliability of a deep learning model in clinical out-of-distribution MRI data: A multicohort
675
+ study. Medical Image Analysis. 2020;66:101714. doi:10.1016/j.media.2020.101714
676
+ [44] Euser AM, Zoccali C, Jager KJ, Dekker FW. Cohort studies: prospective versus
677
+ retrospective. Nephron Clin Pract. 2009;113(3):c214-c217.
678
+ [45] Kaissis G, Ziller A, Passerat-Palmbach J, Ryffel T, Usynin D, Trask A, et al. End-to-end
679
+ privacy preserving deep learning on multi-institutional medical imaging. Nature Machine
680
+
681
+ 25
682
+ Intelligence. 2021;3(6):473-484. doi:10.1038/s42256-021-00337-8
683
+ [46] Sarma KV, Harmon S, Sanford T, Roth HR, Xu Z, Tetreault J, et al. Federated learning
684
+ improves site performance in multicenter deep learning without data sharing. J Am Med
685
+ Inform Assoc. 2021;28(6):1259-1264.
686
+ [47] Sheller MJ, Anthony Reina G, Edwards B, Martin J, Bakas S. Multi-institutional Deep
687
+ Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor
688
+ Segmentation. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries.
689
+ Published online 2019:92-104. doi:10.1007/978-3-030-11723-8_9
690
+ [48] Zbontar J, Knoll F, Sriram A, Murrell T, Huang Z, Muckley MJ, et al. fastMRI: An Open
691
+ Dataset and Benchmarks for Accelerated MRI. arXiv [csCV]. Published online November
692
+ 21, 2018. http://arxiv.org/abs/1811.08839
693
+ [49] Pawar K, Chen Z, Jon Shah N, Egan GF. Suppressing motion artefacts in MRI using an
694
+ Inception‐ResNet network with motion simulation augmentation. NMR in Biomedicine.
695
+ 2022;35(4). doi:10.1002/nbm.4225
696
+ [50] Sommer K, Saalbach A, Brosch T, Hall C, Cross NM, Andre JB. Correction of Motion
697
+ Artifacts Using a Multiscale Fully Convolutional Neural Network. AJNR Am J Neuroradiol.
698
+ 2020;41(3):416-423.
699
+ [51] Duffy BA, Zhao L, Sepehrband F, Min J, Wang DJ, Shi Y, et al. Retrospective motion
700
+ artifact correction of structural MRI images using deep learning improves the quality of
701
+ cortical surface reconstructions. Neuroimage. 2021;230:117756.
702
+ [52] Muckley MJ, Ades-Aron B, Papaioannou A, Lemberskiy G, Solomon E, Lui YW, et al.
703
+ Training a neural network for Gibbs and noise removal in diffusion MRI. Magn Reson Med.
704
+ 2021;85(1):413-428.
705
+ [53] Schelb P, Wang X, Radtke JP, Wiesenfarth M, Kickingereder P, Stenzinger A, et al.
706
+ Simulated clinical deployment of fully automatic deep learning for clinical prostate MRI
707
+ assessment. Eur Radiol. 2021;31(1):302-313.
708
+ [54] Goel A, Shih G, Riyahi S, Jeph S, Dev H, Hu R, et al. Deployed Deep Learning Kidney
709
+ Segmentation for Polycystic Kidney Disease MRI. Radiol Artif Intell. 2022;4(2):e210205.
710
+ [55] Yasaka K, Abe O. Deep learning and artificial intelligence in radiology: Current applications
711
+ and future directions. PLOS Medicine. 2018;15(11):e1002707.
712
+ doi:10.1371/journal.pmed.1002707
713
+ [56] Zhang L, Wang X, Yang D, Sanford T, Harmon S, Turkbey B, et al. Generalizing Deep
714
+ Learning for Medical Image Segmentation to Unseen Domains via Deep Stacked
715
+ Transformation. IEEE Trans Med Imaging. 2020;39(7):2531-2540.
716
+ [57] Desai A. Meddlr: A Flexible ML Framework Built to Simplify Medical Image Reconstruction
717
+ and Analysis Experimentation. Github https://github.com/ad12/meddlr. Accessed
718
+ December 23, 2022
719
+ [58] Harvey HB, Gowda V. How the FDA Regulates AI. Acad Radiol. 2020;27(1):58-61.
720
+
721
+ 26
722
+ [59] The U.S. Food and Drug Administration (FDA), Health Canada, and the United Kingdom’s
723
+ Medicines and Healthcare products Regulatory Agency (MHRA). Good Machine Learning
724
+ Practice for Medical Device Development: Guiding Principles. Published online October
725
+ 2021. https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-
726
+ learning-practice-medical-device-development-guiding-principles
727
+ [60] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016
728
+ on the protection of natural persons with regard to the processing of personal data and on
729
+ the free movement of such data, and repealing Directive 95/46/EC (General Data
730
+ Protection Regulation) (Text with EEA relevance). Published online May 4, 2016:1-88.
731
+ http://data.europa.eu/eli/reg/2016/679/oj
732
+ [61] Wu E, Wu K, Daneshjou R, Ouyang D, Ho DE, Zou J. How medical AI devices are
733
+ evaluated: limitations and recommendations from an analysis of FDA approvals. Nat Med.
734
+ 2021;27(4):582-584.
735
+ [62] Center for Devices and Radiological Health. Computer-Assisted Detection Devices Applied
736
+ to Radiology Images and Radiology Device Data - Premarket Notification [510(k)]
737
+ Submissions. Published online September 2022. https://www.fda.gov/regulatory-
738
+ information/search-fda-guidance-documents/computer-assisted-detection-devices-applied-
739
+ radiology-images-and-radiology-device-data-premarket
740
+ [63] Jia X, Ren L, Cai J. Clinical implementation of AI technologies will require interpretable AI
741
+ models. Med Phys. 2020;47(1):1-4.
742
+ [64] van der Velden BHM, Kuijf HJ, Gilhuijs KGA, Viergever MA. Explainable artificial
743
+ intelligence (XAI) in deep learning-based medical image analysis. Med Image Anal.
744
+ 2022;79:102470.
745
+ [65] Bordin V, Coluzzi D, Rivolta MW, Baselli G. Explainable AI Points to White Matter
746
+ Hyperintensities for Alzheimer’s Disease Identification: a Preliminary Study. Conf Proc
747
+ IEEE Eng Med Biol Soc. 2022;2022:484-487.
748
+ [66] Bodini M, Rivolta MW, Sassi R. Opening the black box: interpretability of machine learning
749
+ algorithms in electrocardiography. Philos Trans A Math Phys Eng Sci.
750
+ 2021;379(2212):20200253.
751
+ [67] Zeiler MD, Fergus R. Visualizing and Understanding Convolutional Networks. In: Computer
752
+ Vision – ECCV 2014. Springer International Publishing; 2014:818-833.
753
+ [68] Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for
754
+ discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision
755
+ and Pattern Recognition. ; 2016:2921-2929.
756
+ [69] Natekar P, Kori A, Krishnamurthi G. Demystifying Brain Tumor Segmentation Networks:
757
+ Interpretability and Uncertainty Analysis. Front Comput Neurosci. 2020;14:6.
758
+ [70] Windisch P, Weber P, Fürweger C, Ehret F, Kufeld M, Zwahlen D, et al. Implementation of
759
+ model explainability for a basic brain tumor detection using convolutional neural networks
760
+ on MRI slices. Neuroradiology. 2020;62(11):1515-1518.
761
+
762
+ 27
763
+ [71] Liao L, Zhang X, Zhao F, Lou J, Wang L, Xu X, et al. Multi-Branch Deformable
764
+ Convolutional Neural Network with Label Distribution Learning for Fetal Brain Age
765
+ Prediction. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI).
766
+ Published online 2020. doi:10.1109/isbi45749.2020.9098553
767
+ [72] Ravi KS, Nandakumar G, Thomas N, Lim M, Qian E, Jimeno MM, et al. Accelerated MRI
768
+ using intelligent protocolling and subject-specific denoising applied to Alzheimer’s disease
769
+ imaging. doi:10.1101/2022.10.24.22281473
770
+ [73] Ravi KS, Geethanath S, Quarterman P, Fung M, Vaughan JT Jr. Intelligent Protocolling for
771
+ Autonomous MRI. In: Proceedings of International Society for Magnetic Resonance in
772
+ Medicine. ; 2020.
773
+ [74] Ravi KS, Nandakumar G, Thomas N, Lim M, Qian E, Jimeno MM, et al. Intelligent
774
+ denoising. Radiology. Published online May 2022.
775
+ [75] Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. Physics-informed
776
+ machine learning. Nature Reviews Physics. 2021;3(6):422-440. doi:10.1038/s42254-021-
777
+ 00314-5
778
+ [76] Fathi MF, Perez-Raya I, Baghaie A, Berg P, Janiga G, Arzani A, et al. Super-resolution and
779
+ denoising of 4D-Flow MRI using physics-Informed deep neural nets. Comput Methods
780
+ Programs Biomed. 2020;197:105729.
781
+ [77] Borges P, Sudre C, Varsavsky T, Thomas D, Drobnjak I, Ourselin S, et al. Physics-
782
+ Informed Brain MRI Segmentation. Simulation and Synthesis in Medical Imaging.
783
+ Published online 2019:100-109. doi:10.1007/978-3-030-32778-1_11
784
+ [78] Qian C, Wang Z, Zhang X, Cai Q, Kang T, Jiang B, et al. PHYSICS-INFORMED DEEP
785
+ DIFFUSION MRI RECONSTRUCTION: BREAK THE BOTTLENECK OF TRAINING
786
+ DATA IN ARTIFICIAL INTELLIGENCE. arXiv [csCV]. Published online October 20, 2022.
787
+ https://arxiv.org/abs/2210.11388
788
+ [79] Weiss T, Senouf O, Vedula S, Michailovich O, Zibulevsky M, Bronstein A. PILOT: Physics-
789
+ Informed Learned Optimized Trajectories for Accelerated MRI. arXiv [csCV]. Published
790
+ online September 12, 2019. https://arxiv.org/abs/1909.05773
791
+ [80] Li S, Gong Q, Li H, Chen S, Liu Y, Ruan G, et al. Automatic location scheme of anatomical
792
+ landmarks in 3D head MRI based on the scale attention hourglass network. Comput
793
+ Methods Programs Biomed. 2022;214:106564.
794
+ [81] Hoffmann M, Turk EA, Gagoski B, Morgan L, Wighton P, Tisdall MD, et al. Rapid head‐
795
+ pose detection for automated slice prescription of fetal‐brain MRI. International Journal of
796
+ Imaging Systems and Technology. 2021;31(3):1136-1154. doi:10.1002/ima.22563
797
+ [82] Masutani EM, Bahrami N, Hsiao A. Deep Learning Single-Frame and Multiframe Super-
798
+ Resolution for Cardiac MRI. Radiology. 2020;295(3):552-561.
799
+ [83] Zhao C, Dewey BE, Pham DL, Calabresi PA, Reich DS, Prince JL. SMORE: A Self-
800
+ Supervised Anti-Aliasing and Super-Resolution Algorithm for MRI Using Deep Learning.
801
+ IEEE Trans Med Imaging. 2021;40(3):805-817.
802
+
803
+ 28
804
+ [84] Luo S, Hu J, Yang Z, Guo D, Wei H, Fu Y. A Survey on Deep Learning for Super-
805
+ Resolution of Diffusion Magnetic Resonance Imaging. Journal of Medical Imaging and
806
+ Health Informatics. 2021;11(9):2440-2449.
807
+ [85] Iglesias JE, Schleicher R, Laguna S, Billot B, Schaefer P, McKaig B, et al. Accurate super-
808
+ resolution low-field brain MRI. arXiv [csCV]. Published online February 7, 2022.
809
+ https://arxiv.org/abs/2202.03564
810
+ [86] Li Y, Sixou B, Peyrin F. A Review of the Deep Learning Methods for Medical Images Super
811
+ Resolution Problems. IRBM. 2021;42(2):120-133. doi:10.1016/j.irbm.2020.08.004
812
+ [87] Higaki T, Nakamura Y, Tatsugami F, Nakaura T, Awai K. Improvement of image quality at
813
+ CT and MRI using deep learning. Japanese Journal of Radiology. 2019;37(1):73-80.
814
+ doi:10.1007/s11604-018-0796-2
815
+ [88] Zhao C, Carass A, Dewey BE, Prince JL. Self super-resolution for magnetic resonance
816
+ images using deep networks. In: IEEE 15th International Symposium on Biomedical
817
+ Imaging (ISBI 2018). ; 2018:365-368.
818
+ [89] Tanabe M, Higashi M, Yonezawa T, Yamaguchi T, Iida E, Furukawa M, et al. Feasibility of
819
+ high-resolution magnetic resonance imaging of the liver using deep learning reconstruction
820
+ based on the deep learning denoising technique. Magn Reson Imaging. 2021;80:121-126.
821
+ [90] Gregory S, Cheng H, Newman S, Gan Y. HydraNet: a multi-branch convolutional neural
822
+ network architecture for MRI denoising. In: Landman BA, Išgum I, eds. Medical Imaging
823
+ 2021: Image Processing. SPIE; 2021. doi:10.1117/12.2582286
824
+ [91] Fadnavis S, Batson J, Garyfallidis E. Patch2Self: Denoising Diffusion MRI with Self-
825
+ Supervised Learning. In: 34th Conference on Neural Information Processing Systems
826
+ (NeurIPS 2020). ; 2020:16293-16303.
827
+ [92] Hernandez AG, Fau P, Rapacchi S, Wojak J, Mailleux H, Benkreira M, et al. Improving
828
+ Image Quality In Low-Field MRI With Deep Learning. 2021 IEEE International Conference
829
+ on Image Processing (ICIP). Published online 2021. doi:10.1109/icip42928.2021.9506659
830
+ [93] Manjón JV, Coupe P. MRI Denoising Using Deep Learning. In: Patch-Based Techniques in
831
+ Medical Imaging. Springer International Publishing; 2018:12-19.
832
+ [94] Singh R, Kaur L. Noise-residue learning convolutional network model for magnetic
833
+ resonance image enhancement. Journal of Physics: Conference Series.
834
+ 2021;2089(1):012029. doi:10.1088/1742-6596/2089/1/012029
835
+ [95] Liu S, Thung KH, Qu L, Lin W, Shen D, Yap PT. Learning MRI artefact removal with
836
+ unpaired data. Nature Machine Intelligence. 2021;3(1):60-67. doi:10.1038/s42256-020-
837
+ 00270-2
838
+ [96] Zhang Q, Ruan G, Yang W, Liu Y, Zhao K, Feng Q, et al. MRI Gibbs‐ringing artifact
839
+ reduction by means of machine learning using convolutional neural networks. Magnetic
840
+ Resonance in Medicine. 2019;82(6):2133-2145. doi:10.1002/mrm.27894
841
+ [97] Kromrey ML, Tamada D, Johno H, Funayama S, Nagata N, Ichikawa S, et al. Reduction of
842
+
843
+ 29
844
+ respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning-based filter
845
+ using convolutional neural network. Eur Radiol. 2020;30(11):5923-5932.
846
+ [98] Wang G, Gong E, Banerjee S, Martin D, Tong E, Choi J, et al. Synthesize High-Quality
847
+ Multi-Contrast Magnetic Resonance Imaging From Multi-Echo Acquisition Using Multi-Task
848
+ Deep Generative Model. IEEE Trans Med Imaging. 2020;39(10):3089-3099.
849
+ [99] Ji S, Yang D, Lee J, Choi SH, Kim H, Kang KM. Synthetic MRI: Technologies and
850
+ Applications in Neuroradiology. J Magn Reson Imaging. 2022;55(4):1013-1025.
851
+ [100] Gong E, Pauly JM, Wintermark M, Zaharchuk G. Deep learning enables reduced
852
+ gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging.
853
+ 2018;48(2):330-340.
854
+ [101] Kleesiek J, Morshuis JN, Isensee F, Deike-Hofmann K, Paech D, Kickingereder P, et al.
855
+ Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study.
856
+ Invest Radiol. 2019;54(10):653-660.
857
+ [102] Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-
858
+ transform manifold learning. Nature. 2018;555(7697):487-492.
859
+ [103] Lee D, Yoo J, Ye JC. Compressed Sensing and Parallel MRI using Deep Residual
860
+ Learning. https://scholarworks.unist.ac.kr › handlehttps://scholarworks.unist.ac.kr › handle.
861
+ Published online April 25, 2017. https://scholarworks.unist.ac.kr/handle/201301/53624.
862
+ Accessed December 25, 2022
863
+ [104] Mardani M, Gong E, Cheng JY, Vasanawala SS, Zaharchuk G, Xing L, et al. Deep
864
+ Generative Adversarial Neural Networks for Compressive Sensing MRI. IEEE Trans Med
865
+ Imaging. 2019;38(1):167-179.
866
+ [105] Liu F, Samsonov A, Chen L, Kijowski R, Feng L. SANTIS: Sampling‐Augmented Neural
867
+ neTwork with Incoherent Structure for MR image reconstruction. Magnetic Resonance in
868
+ Medicine. 2019;82(5):1890-1904. doi:10.1002/mrm.27827
869
+ [106] Ravi KS, Geethanath S, Srinivasan G, Sharma R, Jambawalikar SR, Lignelli-Dipple A, et
870
+ al. Deep learning Assisted Radiological reporT (DART). In: Proceedings of International
871
+ Society for Magnetic Resonance in Medicine 28 (2020). ; 2020.
872
+ [107] Pons E, Braun LMM, Hunink MGM, Kors JA. Natural Language Processing in Radiology:
873
+ A Systematic Review. Radiology. 2016;279(2):329-343.
874
+ [108] Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in
875
+ radiology. Nat Rev Cancer. 2018;18(8):500-510.
876
+ [109] Martín Noguerol T, Paulano-Godino F, Martín-Valdivia MT, Menias CO, Luna A.
877
+ Strengths, Weaknesses, Opportunities, and Threats Analysis of Artificial Intelligence and
878
+ Machine Learning Applications in Radiology. J Am Coll Radiol. 2019;16(9 Pt B):1239-1247.
879
+ [110] Ren J, Liu PJ, Fertig E, Snoek J, Poplin R, DePristo MA, et al. Likelihood ratios for out-
880
+ of-distribution detection. In: Proceedings of the 33rd International Conference on Neural
881
+ Information Processing Systems. Curran Associates Inc.; 2019:14707-14718.
882
+
883
+ 30
884
+ [111] Yan W, Huang L, Xia L, Gu S, Yan F, Wang Y, et al. MRI Manufacturer Shift and
885
+ Adaptation: Increasing the Generalizability of Deep Learning Segmentation for MR Images
886
+ Acquired with Different Scanners. Radiol Artif Intell. 2020;2(4):e190195.
887
+ [112] Mei X, Liu Z, Robson PM, Marinelli B, Huang M, Doshi A, et al. RadImageNet: An Open
888
+ Radiologic Deep Learning Research Dataset for Effective Transfer Learning. Radiol Artif
889
+ Intell. 2022;4(5):e210315.
890
+
891
+
892
+
893
+ 31
894
+ Figures and Tables:
895
+
896
+
897
+
898
+ Figure 1: Publication trend in the past five years for deep learning in MRI. We used the PubMed
899
+ database with the following keywords - regression MRI deep learning, classification MRI deep
900
+ learning, and MRI deep learning.
901
+
902
+
903
+
904
+
905
+ Figure 2: Steps for creating a dataset for the development of a deep learning model.
906
+
907
+
908
+ Studydesign
909
+ DataQA
910
+ Data
911
+ Database
912
+ andIRB
913
+ and
914
+ privacyand
915
+ creation
916
+ curation
917
+ security
918
+ and sharing
919
+ ApprovalData
920
+ Data
921
+ Data
922
+ acquisition
923
+ annotation
924
+ augmentation
925
+ orretrievallearningMRl
926
+ publications
927
+ 2018
928
+ 2019
929
+ 2020
930
+ 2021
931
+ 2022
932
+ Year of Publication Publications
933
+ Abstracts
934
+ containing
935
+ 1000-
936
+ 'classification"
937
+ Deep
938
+ #
939
+ 500-Deep learning MRl publications
940
+ 2000
941
+ Abstracts
942
+ containing32
943
+
944
+
945
+ Figure 3: Mountain represents the number of publications getting reduced as we focus our
946
+ scope. At the base of the mountain, we have a number of publications on AI in MRI. As we
947
+ move up the mountain, we specialize more into accreditation agency approved XAI models in
948
+ MRI following GMLPs. We can see that a small fraction of all publications actually make it to the
949
+ top of the mountain, i.e., follow all the requirements of the accreditation agency. Many of the
950
+ publications follow black box approach which doesn’t explain the decision making methodology
951
+ of their models and thus end up nowhere.
952
+
953
+
954
+
955
+ CAM
956
+ Artificial Intelligence in MRI
957
+ (6486publications)imaging-392
958
+ Guided Backpropagation
959
+ LRP
960
+ Black BoxApproach-Doesn'tanswer
961
+ Occlusion Sensitivity
962
+ why, what and how
963
+ GradCAMAccreditation agency approved XAl models in MRI following Good
964
+ MachineLearningPractices(GMLPs)-35
965
+ Accreditation agency approved XAl models in MRl-166
966
+ Accreditation agency approved XAl models in medical33
967
+
968
+
969
+ Figure 4: Challenges and opportunities of employing deep learning (DL) in neuroimaging.
970
+ Developing DL methods poses several challenges, such as (clockwise from top) ensuring bias-
971
+ free data curation and annotation, difficulty in assembling datasets reflective of real-world
972
+ heterogeneity, black-box models stymieing development of trust in predictions, region-specific
973
+ ethical and legal requirements, and managing the massive compute requirements to train and
974
+ deploy models. However, unrealized opportunities such as (clockwise from top) more timely and
975
+ accurate clinical decisions, augmenting available human expertise to alleviate the burden on
976
+ skilled personnel, increased throughput and the associated reduction in operating costs are
977
+ strong motivators to work toward a successful deployment.
978
+
979
+
980
+
981
+ andradiologists
982
+ Improved
983
+ Lack oftrust inmodels'predictions
984
+ throughput
985
+ dueto lack of interpretabilitydecisions
986
+ $$$
987
+ $$$
988
+ Ethical& legal
989
+ Growing compute
990
+ Lackof
991
+ Reduced costs
992
+ Augment expertise
993
+ requirements
994
+ requirementsto
995
+ robustness due
996
+ from increased
997
+ to alleviate burden
998
+ train and deploy
999
+ tovariegate data
1000
+ efficiency
1001
+ on MRtechniciansCHALLENGES
1002
+ OPPORTUNITIES
1003
+ Bias-free data
1004
+ curation and
1005
+ Improved
1006
+ annotation
1007
+ clinical34
1008
+
1009
+ Checklist of GMLPs for brain MRI
1010
+ 1.
1011
+ Are neuroradiologists, neuroimaging scientists, MR technician and data scientist
1012
+ working together throughout the whole life cycle of the product?
1013
+
1014
+ 2.
1015
+ Is the patient's personal information anonymous in the brain MR images?
1016
+
1017
+ 3.
1018
+ Is the metadata being filled for each patient scan with proper details of all
1019
+ parameters?
1020
+
1021
+ 4.
1022
+ Does training and testing MR datasets contain different scans? There shouldn’t be
1023
+ any common scan in both datasets.
1024
+
1025
+ 5.
1026
+ Does reference MR dataset for validation of model have completely unique scans
1027
+ with same parameters as training and testing dataset?
1028
+
1029
+ 6.
1030
+ Are you using the model for segmenting brain structures from the specific contrast
1031
+ for which it has been trained for? If so, don’t use it for other contrasts.
1032
+
1033
+ 7.
1034
+ Is the output of the model accepted and readable by the neuroradiologist?
1035
+
1036
+ 8.
1037
+ Has the model been tested in the neuroradiology department under the supervision
1038
+ of an expert neuroradiologist before deployment?
1039
+
1040
+ 9.
1041
+ Are the precautions and potential dangers of using the model explicitly
1042
+ mentioned?
1043
+
1044
+ 10.
1045
+ Is the model being updated frequently for incorporating the changes in the new
1046
+ scans that may occur naturally?
1047
+
1048
+
1049
+ Table 1: This checklist represents the 10 guiding principles framed by the FDA for medical
1050
+ device development known as Good Machine Learning Practices (GMLPs). This is a simpler
1051
+ version of those principles rephrased specifically for experts working in brain MRI, such as
1052
+ neuroradiologists, neuroimaging scientists and associated data scientists. In order to get
1053
+ approved by the FDA, the AI model developed for MRI must fulfill all these questions.
1054
+
1055
+
_NAzT4oBgHgl3EQfS_tm/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
_dAzT4oBgHgl3EQfhPzZ/content/tmp_files/2301.01483v1.pdf.txt ADDED
@@ -0,0 +1,640 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Proceedings of the 9th International and 49th National Conference on Fluid Mechanics and Fluid Power (FMFP)
2
+ December 14-16, 2022, IIT Roorkee, Roorkee-247667, Uttarakhand, India
3
+ FMFP2022-594
4
+ Performance enhancement of a 100 watts class Tesla turbine
5
+ Arindam Mandal1, Rajosik Adak1, and Sandeep Saha1
6
+ 1Department of Aerospace Engineering, IIT Kharagpur, Kharagpur 721302, India
7
+ ABSTRACT Tesla turbines are an attractive but less
8
+ explored
9
+ area
10
+ in
11
+ low-power
12
+ applications.
13
+ This
14
+ article
15
+ presents an experimental investigation of a centimeter
16
+ scale
17
+ Tesla
18
+ turbine
19
+ in
20
+ bi
21
+ and
22
+ uni-directional
23
+ outlet
24
+ configuration with compressed air at 6 bar. The turbine’s
25
+ performance is enhanced by ≈ 38% for a uni-directional
26
+ outlet configuration. Furthermore, we also investigate the
27
+ electrical power of the turbine in a bi-directional outlet
28
+ configuration by coupling the turbine with a generator.
29
+ Despite achieving higher performance in uni-directional
30
+ outlet configuration, we observe substantial losses at the
31
+ inlet we use for the experiment. To illustrate and improve
32
+ the losses, we numerically investigate the turbine inlet
33
+ at a total pressure and temperature difference of 2 bar
34
+ and
35
+ 50◦C,
36
+ respectively.
37
+ Subsequently,
38
+ we
39
+ design
40
+ two
41
+ more nozzles and compare their performance with the
42
+ nozzle we used in our experiment. Our findings suggest
43
+ that nozzle 3 performs the best in delivering the highest
44
+ Mach no and uniformity across the slits. This observation
45
+ would help optimize the nozzle suitable for the Tesla turbine.
46
+ Keywords: Tesla turbine, Friction turbine, Low power
47
+ application, Slit nozzle,
48
+ I.
49
+ INTRODUCTION
50
+ Small scale low microturbines are crucial since there is a
51
+ growing need for them in numerous applications. Examples
52
+ of notable applications include waste heat recovery, pico-
53
+ hydro power, organic Rankine cycle technologies, biomass,
54
+ waste heat recovery, micro GT, and many more. The increas-
55
+ ing need for energy harvesting at these scales poses a variety
56
+ of challenges to the performance and manufacturability of
57
+ the turbine due to their compact sizes, high rotational speeds,
58
+ and increased viscous losses. An alternative expansion de-
59
+ vice addressing these challenges can be highly beneficial
60
+ regarding its techno-economic feasibility. The tesla turbine
61
+ is one of its kind, which has a uniquely simple design and
62
+ a unique mechanism of momentum transfer. The turbine
63
+ rotor consists of several co-axial discs closely packed with
64
+ each other. Each of the rotor discs has outlet ports near the
65
+ center. A casing covering the rotors helps guide the flow
66
+ from the inlet. The turbine shaft is attached to the rotor-
67
+ casing configuration with the help of two bearings. Figure 1
68
+ shows the different components of the turbine. After being
69
+ injected through the inlet system of the turbine, the fluid
70
+ flows spirally inward and exits through the ports located
71
+ near the shaft in the axial direction. The momentum transfer
72
+ from the fluid to the rotor takes place using the adhesion
73
+ and viscosity of the fluid. This mechanism makes the turbine
74
+ attractive at small scales where the dominance of the viscous
75
+ force becomes significant.
76
+ This turbine was conceptualized by Nicola Tesla [39]
77
+ in the year 1907. Initially, the device was unable to attract
78
+ market attention because of the no potential requirement of
79
+ low-power harvesting technologies. After that, till the twen-
80
+ tieth century, a considerable amount of thrust was given to
81
+ the possible design modifications [27], [28], [12], improved
82
+ seal designs [2] and loss analysis [6], [30] of the turbine
83
+ and its ancillary components for enhancing performance. In
84
+ addition, a few simplified theoretical models were developed
85
+ [1], [21] to get an insight into the influence of the parameters
86
+ associated to the turbine.
87
+ Figure 1: Schematic of the exploded view of the turbine.
88
+ a: Casing, b: Rotors, c: Inlet configurations (i,ii and iii),
89
+ d: Shaft, e. Bearing. (f) shows the fluid flow between two
90
+ consecutive corotating discs
91
+ More recently, there has been a surge in interest in
92
+ exploring this technology due to its several advantages
93
+ over conventional energy harvesting technologies. Due
94
+ to its simple design and flow mechanics, the turbine can
95
+ handle particle-laden fluids and two-phase expansion with
96
+ minimal damage. Numerical simulations of the gas flow
97
+ and mass transfer between two coaxially co-rotating discs
98
+ were performed by Sandilya et al. [32] where they found a
99
+ satisfactory match between the numerical and experimental
100
+ value
101
+ of
102
+ mass
103
+ transfer
104
+ coefficient.
105
+ Using
106
+ numerical
107
+ simulations, Ladino [18] presented the load coefficient
108
+ curve, efficiency, and degree of reaction variation after
109
+ maintaining a constant rotational speed. Upon developing
110
+ an analytical model, Deam et al. [7] scaled down the turbine
111
+ in millimeter size to achieve better efficiency. Lemma et al.
112
+ [22] investigated the Parasitic, viscous, and other dissipative
113
+ losses in the bearings and end walls to mitigate their effect
114
+ on decaying the performance.
115
+ An explicit description of a flexible test rig was de-
116
+ 1
117
+ arXiv:2301.01483v1 [physics.flu-dyn] 4 Jan 2023
118
+
119
+ (i)
120
+ (ii)
121
+ (ii)
122
+ (c)
123
+ (p)
124
+ (b)
125
+ (a)
126
+ f
127
+ (e)veloped by Hoya et al. [14] where they calculated the
128
+ low torque at high RPM using the angular acceleration
129
+ method. A comparative study in the efficiency offered by
130
+ Tesla and small bladed microturbine in a micro power plant
131
+ was addressed by Lampart et al. [20], [19] to establish
132
+ the competitiveness of a Tesla turbine. To understand the
133
+ transport phenomena inside the turbine rotor, a number
134
+ of numerical and analytical models solving the Navier-
135
+ Stokes equations using different approaches are present in
136
+ the literature repository [15], [9], [36], [10], [31], [35], [34],
137
+ [5]. Aside from that, flow diagnostics using particle tracking
138
+ velocimetry by Schosser et al. [33] provides an insight into
139
+ the component-wise velocity profiles inside the rotor gaps at
140
+ different radial locations. In recent years, A wide range of
141
+ application based studies of Tesla turbine related to Micro-
142
+ air vehicles [23], Organic Rankine cycle [37], [38], [8],
143
+ [25], [24], Combined heat plant [3], Pico-hydro applications
144
+ [13], [4], [16], [17], Ammonia synthesys [11] have been
145
+ investigated or under investigation [26], [29].
146
+ The recent resurgence in interest indicates the impor-
147
+ tance of investigating the turbine further to mitigate the
148
+ losses due to the nonuniformity and disturbances associated
149
+ with the inflow to rotor and rotor to outflow interaction.
150
+ This article presents the experimental investigation of a
151
+ centimeter-scaled Tesla turbine in uni and bi-directional
152
+ outlet configuration with compressed air. We compare the
153
+ performance in terms of Mechanical power output for the
154
+ two configurations. Furthermore, we investigate the losses in
155
+ the inlet due to the sharp divergent and the slit configuration
156
+ at the inlet rotor junction. Finally, we compare the nozzles’
157
+ performance by looking at the peak discharge Mach number
158
+ and channel-wise disparity in flow injection to the rotor. Our
159
+ numerical results can be beneficial in coming up with better
160
+ inlet configurations for extracting maximum energy from the
161
+ fluid, which leaves a further scope for further investigation.
162
+ II.
163
+ METHODOLOGY AND EXPERIMENT
164
+ A lab scale turbine prototype (in fig. 2a) is fabricated
165
+ for experimentation in the Aerospace Engineering depart-
166
+ ment, IIT Kharagpur. The turbine consists of 10 consecutive
167
+ corotating discs having an outer diameter of 10 cm and a
168
+ thickness of 2 mm. The gap between the consecutive rotating
169
+ discs is 2 mm, and the distance between two extreme discs to
170
+ the adjacent casing wall is 1 mm. The turbine has four outlet
171
+ holes near the shaft, having a center distance of 2 cm from
172
+ the shaft center. The shaft and the exhaust ports’ diameters
173
+ are 1.5 cm and 1 cm, respectively. The distance between the
174
+ shroud and the disc’s edge is 1 mm. The inlet system of the
175
+ turbine is designed to connect the compressor outlet port of
176
+ 6mm dia to the turbine having an inlet of 4 cm thickness.
177
+ The area of the inlet is 0.4 cm2, which is segregated using
178
+ slit configurations to guide air to each gap with minimum
179
+ interaction with the peripheral walls of the rotor.
180
+ The turbine inlet is connected to the compressor by
181
+ Polyeurathane pneumatic pipes with an installed pres-
182
+ sure gauge. The RPM of the turbine is measured using
183
+ an Arduino-based tachometer. The angular acceleration-
184
+ deceleration approach computes the net accelerating and de-
185
+ celerating torque.The experiment also uses a digital tachome-
186
+ (a)
187
+ (b)
188
+ Figure 2: (a) Fabricated turbine and (b) the inlet system
189
+ ter to validate the turbine’s RPM. We conduct our experiment
190
+ at 6 bar of inlet pressure for uni-and bi-directional outlet
191
+ configuration. The detail of the experimental setup can be
192
+ seen in the figure 3.
193
+ (a)
194
+ (b)
195
+ Figure 3: Details of the experimental set up. 1- Compres-
196
+ sor discharge, 2- Tachometer, 3- Turbine, 4- Arduino
197
+ based Tachometer, 5- Pressure gauge, 6- PC for data
198
+ acquisition, 7- Camera, 8- Generator, 9- Multimeters,
199
+ 10- Rheostat, 11- Electrical circuit
200
+ III.
201
+ RESULTS AND DISCUSSION
202
+ A. Performance characteristics
203
+ We tabulate the RPM with time with the help of a serial
204
+ monitor and calculate the angular acceleration as a function
205
+ of RPM. Once the turbine reaches its stable RPM, we shut
206
+ off the compressed air sypply and continue to perform data
207
+ acquisition until the turbine becomes stationary. We continue
208
+ the similar process for a uni-directional outlet case. We
209
+ observe from figure 4 that the turbine with a uni-directional
210
+ outlet accelerates faster than the turbine with a bi-directional
211
+ outlet configuration. In addition, for a supply pressure of
212
+ 6 bar, we achieve a maximum RPM of 13019 and 11124
213
+ for uni and bi-directional outlet configurations, respectively.
214
+ Figure 4 shows the power variation due to accelerating
215
+ and braking torque. There is an increment of ≈ 38% in
216
+ power due to accelerating torque for a uni-directional outlet
217
+ configuration.
218
+ We integrate the turbine with a 100 W class Fedus
219
+ RS-775 DC electric motor to measure the electrical power
220
+ output. However, the motor is used as a generator to measure
221
+ the output voltage and current. The electrical circuit is
222
+ attached to a rheostat, and the experiment is performed with
223
+ 2
224
+
225
+ t (sec)
226
+ 0
227
+ 15
228
+ 30
229
+ 45
230
+ RPM
231
+ 0
232
+ 5000
233
+ 10000
234
+ 15000
235
+ RPM
236
+ 0
237
+ 4500
238
+ 9000
239
+ 13500
240
+ Power (Watts)
241
+ 0
242
+ 40
243
+ 80
244
+ 120
245
+ (a)
246
+ (b)
247
+ Figure 4: Distribution of (a) RPM with t; (b) Power
248
+ due to accelerating torque with RPM for bi-directional
249
+ (dashed line) and uni-directional (solid line) outlet. Dot-
250
+ ted line represents the power due to braking torque.
251
+ the 5-ohm load resistance. The figure 5 illustrates the motor’s
252
+ voltage and power variation at various RPM. The turbine-
253
+ generator can produce a maximum of 78 watts of electrical
254
+ power at 7800 RPM for bi-directional outlet configuration.
255
+ RPM
256
+ 0
257
+ 4000
258
+ 8000
259
+ PowerE (Watts)
260
+ 0
261
+ 40
262
+ 80
263
+ 80
264
+ 0
265
+ 40
266
+ Voltage (Volts)
267
+ Figure 5: Experimental results of voltage (dashed line)
268
+ and electrical power (solid line) at different RPM
269
+ B. Inlet design
270
+ Designing the inlet is the most crucial part of the turbine
271
+ where the maximum loss occurs. Notably, the compressor
272
+ and back pressure at the inlet rotor connection point regu-
273
+ lates the flow across the nozzle. In the present article, we
274
+ only consider the inlet section for analysis. The details of
275
+ the nozzle dimensions are in figure 6.
276
+ 1) Numerical methodology and grid Grid sensitivity:
277
+ The Inlet section of the nozzle is a pressure inlet boundary
278
+ where the total pressure is at 6 bar. We consider the outlet
279
+ of the nozzle is at 4 bar. The temperature at the compressor
280
+ discharge and the inlet-rotor junction are 450K and 400K,
281
+ respectively. The surface of the nozzle is a no-slip type
282
+ boundary. Considering these boundary conditions, we solve
283
+ governing compressible Reynolds-averaged Navier-Stokes
284
+ equations using the K − ω SST turbulence model in the
285
+ commercial CFD package Fluent 2021 R2. The numerical
286
+ domain is discretized using the body-fitted tetrahedral grids,
287
+ maintaining a wall y+ ≈ O(1). The table 1 below presents
288
+ the grid sensitivity study. As the desired output shows a
289
+ Figure 6: Schematic diagram of the nozzles. The dotted,
290
+ dashed and solid lines represent nozzle 1, nozzle 2 and
291
+ nozzle 3, respectively.
292
+ variation ≤ 2%, We conduct the subsequent numerical
293
+ simulations using grids with ≈ 1M elements. The inlet
294
+ Table 1: Grid sensitivity of the three inlet configurations
295
+ Grid type
296
+ Elements
297
+ Outlet area averaged Mach no
298
+ Nozzle 1
299
+ Nozzle 2
300
+ Nozzle 3
301
+ Coarse
302
+ ≈ 0.5 M
303
+ .5093
304
+ .4993
305
+ .5296
306
+ Medium
307
+ ≈ 1 M
308
+ .5089
309
+ .4979
310
+ .5289
311
+ Fine
312
+ ≈ 2 M
313
+ .5080
314
+ .4971
315
+ .5284
316
+ design presented in this article is based on a two-pronged
317
+ objective. (a) To Maximize the Mach number peak (b) To
318
+ minimize the disparity in the Mach number peaks through
319
+ every slit. To understand the loss mechanism and the flow
320
+ behavior, we conduct a series of numerical simulations
321
+ Where Nozzle 1 is the replica of the inlet nozzle considered
322
+ for the experiment. Due to the abrupt divergent section and
323
+ the presence of a large recirculation zone enclosed by a
324
+ strong shear layer, we detect significant losses in Mach no.
325
+ The dividing streamlines seen in figure 7 (a) are considered
326
+ when designing the following two inlet systems. The second
327
+ nozzle we design is to eliminate the effect of recirculation.
328
+ We gradually increase the inlet nozzle area until we reach
329
+ the section where the flow bends in the previous observation.
330
+ Despite the improvement in the average peak Mach number
331
+ observed from figure 7 (b), the disparity in the discharge
332
+ Mach number through the slits increased. We consider
333
+ designing the third nozzle as a converging-diverging type
334
+ nozzle where we place the throat section at x/L ≈ 0.6 to
335
+ provide sufficient scope for flow to bend. Figure 8 represents
336
+ the peak discharge Mach number through the nozzles and
337
+ the associated % disparity from the mean peak Mach no
338
+ through each slit. The comparison shows that the third nozzle
339
+ offers maximum peak Mach number along with minimum
340
+ % deviation from the mean peak Mach no. It is necessary
341
+ to note that the differential pressure between the upstream
342
+ and downstream sections, the fluid, and the fluid’s thermo-
343
+ physical characteristics significantly influence the nozzle
344
+ design. The nozzle’s optimal size and shape might differ
345
+ depending on these conditions.
346
+ 3
347
+
348
+ 10mm
349
+ 40 mm
350
+ 4mm
351
+ 8
352
+ 40
353
+ ww
354
+ 20mm
355
+ mm
356
+ mm
357
+ 15
358
+ mm
359
+ 2
360
+ 60mm(a)
361
+ (b)
362
+ (c)
363
+ Figure 7: Distribution of the Mach number for (a) nozzle
364
+ 1 (b) nozzle 2 (c) nozzle 3.
365
+ IV.
366
+ CONCLUSIONS
367
+ The article presents a preliminary experimental investiga-
368
+ tion of a centimeter scaled Tesla turbine using compressed
369
+ air as a working medium and suggests an improved inlet
370
+ design that could deliver higher achievable power compared
371
+ to the inlet nozzle considered for this experiment. The key
372
+ findings of the article are as follows;
373
+ 1)
374
+ Experimental investigation of the turbine conducted
375
+ for uni and bi-directional outlet configuration at 6
376
+ bar inlet pressure.
377
+ 2)
378
+ uni-directional outlet con��guration offered a peak
379
+ power output of ≈ 110 watts at ≈ 7000 RPM.
380
+ Whereas, bi-directional outlet configuration a peak
381
+ output of 80 watts at 6500 RPM.
382
+ 3)
383
+ The turbine-generator configuration produced a
384
+ peak electrical power output of 78 watts at 7800
385
+ -0.02
386
+ -0.01
387
+ 0
388
+ 0.01
389
+ 0.02
390
+ M
391
+ 0
392
+ 0.4
393
+ 0.8
394
+ (a)
395
+ %M/
396
+ -20
397
+ -10
398
+ 0
399
+ 10
400
+ 20
401
+ %M'
402
+ -30
403
+ -20
404
+ -10
405
+ 0
406
+ 10
407
+ 20
408
+ %M'
409
+ -15
410
+ -10
411
+ -5
412
+ 0
413
+ 5
414
+ (b)
415
+ (c)
416
+ (d)
417
+ Figure 8: (a) Comparison of peak Mach number across
418
+ the slits. The dotted, dashed and solid lines represent
419
+ First, second and third nozzle, respectively. (b, c, d) The
420
+ % disparity in peak Mach no at discharge for three
421
+ nozzles.
422
+ RPM.
423
+ 4)
424
+ While assessing the inlet, we observe that nozzle 2
425
+ offers better peak Mach number than nozzle 1, but
426
+ due to the losses accounted by the sharp bend, the
427
+ disparity in % deviation of the peak mach numbers
428
+ from mean peak Mach no is nearly 30%.
429
+ 5)
430
+ Nozzle 3 performs the best among all three nozzles.
431
+ It offers a maximum peak Mach no with minimum
432
+ % deviation from mean peak Mach no is reduced
433
+ to 12%.
434
+ The turbine’s efficiency depends on several factors, e.g.,
435
+ RPM, disc gap, rotor radius, rotor to casing clearance,
436
+ outlet configurations, fluid properties, and many more.
437
+ Designing an efficient Tesla turbine could bring down the
438
+ cost of a turbine substantially as compared to the other
439
+ existing technologies because of its simplistic design. The
440
+ above findings presented in this article could be helpful in
441
+ the design improvement, thus leaving a plausible scope for
442
+ further investigation.
443
+ NOMENCLATURE
444
+ t
445
+ time
446
+ [sec]
447
+ x/L
448
+ Non-dimensional-axial location
449
+ [–]
450
+ k
451
+ Turbulent kinetic energy
452
+ [J/kg]
453
+ ω
454
+ Specific dissipation rate
455
+ [1/sec]
456
+ M
457
+ Mach no
458
+
459
+ M ′
460
+ % Deviation from peak mean Mach no
461
+
462
+ 4
463
+
464
+ 0.050.1
465
+ 0.150.2
466
+ 0.25
467
+ 0.30.350.40.450.50.55
468
+ 0.60.650.7
469
+ 0.75
470
+ 0.8
471
+ 0.85REFERENCES
472
+ [1]
473
+ James Hal Armstrong, An investigation of the performance of a
474
+ modified tesla turbine, Ph.D. thesis, Georgia Institute of Technology,
475
+ 1952.
476
+ [2]
477
+ John Spencer Caldwell, The efficiency of a viscous flow compressor,
478
+ Ph.D. thesis, Georgia Institute of Technology, 1973.
479
+ [3]
480
+ Van P Carey, Assessment of tesla turbine performance for small scale
481
+ rankine combined heat and power systems, Journal of Engineering
482
+ for Gas Turbines and Power 132 (2010), no. 12, 122301.
483
+ [4]
484
+ Tan Wee Choon, AA Rahman, Foo Shy Jer, and Lim Eng Aik,
485
+ Optimization of tesla turbine using computational fluid dynamics
486
+ approach, Industrial Electronics and Applications (ISIEA), 2011
487
+ IEEE Symposium on, IEEE, 2011, pp. 477–480.
488
+ [5]
489
+ L Ciappi, D Fiaschi, PH Niknam, and L Talluri, Computational
490
+ investigation of the flow inside a tesla turbine rotor, Energy 173
491
+ (2019), 207–217.
492
+ [6]
493
+ ME Crawford and W Rice, Calculated design data for the multiple-
494
+ disk pump using incompressible fluid, ASME J. Eng. Power 96
495
+ (1974), no. 3, 274–282.
496
+ [7]
497
+ RT Deam, Engida Lemma, B Mace, and R Collins, On scaling down
498
+ turbines to millimeter size, Journal of Engineering for Gas Turbines
499
+ and Power 130 (2008), no. 5, 052301.
500
+ [8]
501
+ Olivier Dumont, Lorenzo Talluri, D Fiaschi, G Manfrida, and Vincent
502
+ Lemort, Comparison of a scroll, a screw, a roots, a piston expander
503
+ and a tesla turbine for small-scale organic rankine cycle, ORC
504
+ conference 2019, 2019.
505
+ [9]
506
+ Abhijit Guha and Sayantan Sengupta, The fluid dynamics of the
507
+ rotating flow in a tesla disc turbine, European Journal of Mechanics-
508
+ B/Fluids 37 (2013), 112–123.
509
+ [10]
510
+ , Similitude and scaling laws for the rotating flow between
511
+ concentric discs, Proceedings of the Institution of Mechanical En-
512
+ gineers, Part A: Journal of Power and Energy 228 (2014), no. 4,
513
+ 429–439.
514
+ [11]
515
+ Kai Han, Jianjun Luo, Jian Chen, Baodong Chen, Liang Xu, Yawei
516
+ Feng, Wei Tang, and Zhong Lin Wang, Self-powered ammonia
517
+ synthesis under ambient conditions via n2 discharge driven by tesla
518
+ turbine triboelectric nanogenerators, Microsystems & nanoengineer-
519
+ ing 7 (2021), no. 1, 1–8.
520
+ [12]
521
+ Leo Entrican Harold Jr, Tesla turbine, December 5 2002, US Patent
522
+ 20,020,182,054.
523
+ [13]
524
+ Bryan P Ho-Yan, Tesla turbine for pico hydro applications, Guelph
525
+ Engineering Journal 4 (2011), 1–8.
526
+ [14]
527
+ GP Hoya and A Guha, The design of a test rig and study of the
528
+ performance and efficiency of a tesla disc turbine, Proceedings of
529
+ the Institution of Mechanical Engineers, Part A: Journal of Power
530
+ and Energy 223 (2009), no. 4, 451–465.
531
+ [15]
532
+ DP Kavenuke, E Massawe, and OD Makinde, Modeling laminar flow
533
+ between a fixed impermeable disk and a porous rotating disk, African
534
+ Journal of Mathematics and Computer Science Research 2 (2009),
535
+ no. 7, 157–162.
536
+ [16]
537
+ Vedavalli G Krishnan, Zohora Iqbal, and Michel M Maharbiz, A
538
+ micro tesla turbine for power generation from low pressure heads
539
+ and evaporation driven flows, Solid-State Sensors, Actuators and Mi-
540
+ crosystems Conference (TRANSDUCERS), 2011 16th International,
541
+ IEEE, 2011, pp. 1851–1854.
542
+ [17]
543
+ Vedavalli Gomatam Krishnan, Design and fabrication of cm-scale
544
+ tesla turbines, (2015).
545
+ [18]
546
+ Andrés Felipe Rey Ladino, Numerical simulation of the flow field in a
547
+ friction-type turbine (tesla turbine), Ph.D. thesis, National University
548
+ of Colombia, 2004.
549
+ [19]
550
+ Piotr Lampart and Łukasz J˛edrzejewski, Investigations of aerody-
551
+ namics of tesla bladeless microturbines, Journal of Theoretical and
552
+ Applied Mechanics 49 (2011), 477–499.
553
+ [20]
554
+ Piotr Lampart, Krzysztof Kosowski, Marian Piwowarski, and Łukasz
555
+ J˛edrzejewski, Design analysis of tesla micro-turbine operating on a
556
+ low-boiling medium, Polish Maritime Research 16 (2009), no. Spe-
557
+ cial, 28–33.
558
+ [21]
559
+ Michael John Lawn, An investigation of multiple-disk turbine perfor-
560
+ mance parameters., Master’s thesis, Arizona State University, 1972.
561
+ [22]
562
+ Engida Lemma, RT Deam, D Toncich, and R Collins, Characterisa-
563
+ tion of a small viscous flow turbine, Experimental Thermal and Fluid
564
+ Science 33 (2008), no. 1, 96–105.
565
+ [23]
566
+ Arindam Mandal and Sandeep Saha, Performance analysis of a
567
+ centimeter scale tesla turbine for micro-air vehicles, Electronics,
568
+ Communication and Aerospace Technology (ICECA), 2017 Inter-
569
+ national conference of, vol. 1, IEEE, 2017, pp. 62–67.
570
+ [24]
571
+ G Manfrida, L Pacini, and L Talluri, An upgraded tesla turbine
572
+ concept for orc applications, Energy 158 (2018), 33–40.
573
+ [25]
574
+ Giampaolo Manfrida, Leonardo Pacini, and Lorenzo Talluri, A re-
575
+ vised tesla turbine concept for orc applications, Energy Procedia
576
+ 129 (2017), 1055–1062.
577
+ [26]
578
+ Pouriya H Niknam, Lorenzo Talluri, Lorenzo Ciappi, and Daniele
579
+ Fiaschi, Numerical assessment of a two-phase tesla turbine: Para-
580
+ metric analysis, Applied Thermal Engineering 197 (2021), 117364.
581
+ [27]
582
+ Robert A Oklejas and Eli Oklejas Jr, Gas regeneration tesla-type
583
+ turbine, (1975), US Patent 3,899,875.
584
+ [28]
585
+ , Tesla-type turbine with alternating spaces on the rotor of
586
+ cooling air and combustion gases, December 28 1976, US Patent
587
+ 3,999,377.
588
+ [29]
589
+ Leonardo Pacini, Lorenzo Ciappi, Lorenzo Talluri, Daniele Fiaschi,
590
+ Giampaolo Manfrida, and Jacek Smolka, Computational investigation
591
+ of partial admission effects on the flow field of a tesla turbine for
592
+ orc applications, Energy 212 (2020), 118687.
593
+ [30]
594
+ Warren
595
+ Rice,
596
+ Tesla
597
+ turbomachinery,
598
+ MECHANICAL
599
+ ENGINEERING-NEW YORK AND BASEL-MARCEL DEKKER-
600
+ (2003), 861–874.
601
+ [31]
602
+ Vincent D Romanin, Theory and performance of tesla turbines,
603
+ (2012).
604
+ [32]
605
+ P Sandilya, G Biswas, DP Rao, and A Sharma, Numerical simulation
606
+ of the gas flow and mass transfer between two coaxially rotating
607
+ disks, Numerical Heat Transfer: Part A: Applications 39 (2001),
608
+ no. 3, 285–305.
609
+ [33]
610
+ Constantin Schosser, Thomas Fuchs, Rainer Hain, Stefan Lecheler,
611
+ and C Kahler, Three–dimensional particle tracking velocimetry in a
612
+ tesla turbine rotor using a non–intrusive calibration method, 18th
613
+ International Symposium on the Application of Laser and Imaging
614
+ Techniques to Fluid Mechanics, 2016.
615
+ [34]
616
+ Constantin Schosser, Stefan Lecheler, and Michael Pfitzner, Ana-
617
+ lytical and numerical solutions of the rotor flow in tesla turbines,
618
+ Periodica Polytechnica Mechanical Engineering 61 (2017), no. 1,
619
+ 12–22.
620
+ [35]
621
+ Constantin Schosser and Michael Pfitzner, A numerical study of the
622
+ three-dimensional incompressible rotor airflow within a tesla turbine,
623
+ Conference of Modelling Fluid Flow CMFF, 2015, pp. 1–4.
624
+ [36]
625
+ Sayantan Sengupta and Abhijit Guha, A theory of tesla disc turbines,
626
+ Proceedings of the Institution of Mechanical Engineers, Part A:
627
+ Journal of Power and Energy 226 (2012), no. 5, 650–663.
628
+ [37]
629
+ L Talluri, D Fiaschi, G Neri, and L Ciappi, Design and optimization
630
+ of a tesla turbine for orc applications, Applied energy 226 (2018),
631
+ 300–319.
632
+ [38]
633
+ Lorenzo Talluri, Olivier Dumont, Giampaolo Manfrida, Vincent
634
+ Lemort, and Daniele Fiaschi, Experimental investigation of an or-
635
+ ganic rankine cycle tesla turbine working with r1233zd (e), Applied
636
+ Thermal Engineering 174 (2020), 115293.
637
+ [39]
638
+ Nikola Tesla, Turbine., May 6 1913, US Patent 1,061,206.
639
+ 5
640
+
_dAzT4oBgHgl3EQfhPzZ/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf,len=239
2
+ page_content='Proceedings of the 9th International and 49th National Conference on Fluid Mechanics and Fluid Power (FMFP) December 14-16, 2022, IIT Roorkee, Roorkee-247667, Uttarakhand, India FMFP2022-594 Performance enhancement of a 100 watts class Tesla turbine Arindam Mandal1, Rajosik Adak1, and Sandeep Saha1 1Department of Aerospace Engineering, IIT Kharagpur, Kharagpur 721302, India ABSTRACT Tesla turbines are an attractive but less explored area in low-power applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
3
+ page_content=' This article presents an experimental investigation of a centimeter scale Tesla turbine in bi and uni-directional outlet configuration with compressed air at 6 bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
4
+ page_content=' The turbine’s performance is enhanced by ≈ 38% for a uni-directional outlet configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
5
+ page_content=' Furthermore, we also investigate the electrical power of the turbine in a bi-directional outlet configuration by coupling the turbine with a generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
6
+ page_content=' Despite achieving higher performance in uni-directional outlet configuration, we observe substantial losses at the inlet we use for the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
7
+ page_content=' To illustrate and improve the losses, we numerically investigate the turbine inlet at a total pressure and temperature difference of 2 bar and 50◦C, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
8
+ page_content=' Subsequently, we design two more nozzles and compare their performance with the nozzle we used in our experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
9
+ page_content=' Our findings suggest that nozzle 3 performs the best in delivering the highest Mach no and uniformity across the slits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
10
+ page_content=' This observation would help optimize the nozzle suitable for the Tesla turbine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
11
+ page_content=' Keywords: Tesla turbine, Friction turbine, Low power application, Slit nozzle, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
12
+ page_content=' INTRODUCTION Small scale low microturbines are crucial since there is a growing need for them in numerous applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
13
+ page_content=' Examples of notable applications include waste heat recovery, pico- hydro power, organic Rankine cycle technologies, biomass, waste heat recovery, micro GT, and many more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
14
+ page_content=' The increas- ing need for energy harvesting at these scales poses a variety of challenges to the performance and manufacturability of the turbine due to their compact sizes, high rotational speeds, and increased viscous losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
15
+ page_content=' An alternative expansion de- vice addressing these challenges can be highly beneficial regarding its techno-economic feasibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
16
+ page_content=' The tesla turbine is one of its kind, which has a uniquely simple design and a unique mechanism of momentum transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
17
+ page_content=' The turbine rotor consists of several co-axial discs closely packed with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
18
+ page_content=' Each of the rotor discs has outlet ports near the center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
19
+ page_content=' A casing covering the rotors helps guide the flow from the inlet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
20
+ page_content=' The turbine shaft is attached to the rotor- casing configuration with the help of two bearings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
21
+ page_content=' Figure 1 shows the different components of the turbine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
22
+ page_content=' After being injected through the inlet system of the turbine, the fluid flows spirally inward and exits through the ports located near the shaft in the axial direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
23
+ page_content=' The momentum transfer from the fluid to the rotor takes place using the adhesion and viscosity of the fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
24
+ page_content=' This mechanism makes the turbine attractive at small scales where the dominance of the viscous force becomes significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
25
+ page_content=' This turbine was conceptualized by Nicola Tesla [39] in the year 1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
26
+ page_content=' Initially, the device was unable to attract market attention because of the no potential requirement of low-power harvesting technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
27
+ page_content=' After that, till the twen- tieth century, a considerable amount of thrust was given to the possible design modifications [27], [28], [12], improved seal designs [2] and loss analysis [6], [30] of the turbine and its ancillary components for enhancing performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
28
+ page_content=' In addition, a few simplified theoretical models were developed [1], [21] to get an insight into the influence of the parameters associated to the turbine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
29
+ page_content=' Figure 1: Schematic of the exploded view of the turbine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
30
+ page_content=' a: Casing, b: Rotors, c: Inlet configurations (i,ii and iii), d: Shaft, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
31
+ page_content=' Bearing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
32
+ page_content=' (f) shows the fluid flow between two consecutive corotating discs More recently, there has been a surge in interest in exploring this technology due to its several advantages over conventional energy harvesting technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
33
+ page_content=' Due to its simple design and flow mechanics, the turbine can handle particle-laden fluids and two-phase expansion with minimal damage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
34
+ page_content=' Numerical simulations of the gas flow and mass transfer between two coaxially co-rotating discs were performed by Sandilya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
35
+ page_content=' [32] where they found a satisfactory match between the numerical and experimental value of mass transfer coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
36
+ page_content=' Using numerical simulations, Ladino [18] presented the load coefficient curve, efficiency, and degree of reaction variation after maintaining a constant rotational speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
37
+ page_content=' Upon developing an analytical model, Deam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
38
+ page_content=' [7] scaled down the turbine in millimeter size to achieve better efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
39
+ page_content=' Lemma et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
40
+ page_content=' [22] investigated the Parasitic, viscous, and other dissipative losses in the bearings and end walls to mitigate their effect on decaying the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
41
+ page_content=' An explicit description of a flexible test rig was de- 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
42
+ page_content='01483v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
43
+ page_content='flu-dyn] 4 Jan 2023 (i) (ii) (ii) (c) (p) (b) (a) f (e)veloped by Hoya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
44
+ page_content=' [14] where they calculated the low torque at high RPM using the angular acceleration method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
45
+ page_content=' A comparative study in the efficiency offered by Tesla and small bladed microturbine in a micro power plant was addressed by Lampart et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
46
+ page_content=' [20], [19] to establish the competitiveness of a Tesla turbine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
47
+ page_content=' To understand the transport phenomena inside the turbine rotor, a number of numerical and analytical models solving the Navier- Stokes equations using different approaches are present in the literature repository [15], [9], [36], [10], [31], [35], [34], [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
48
+ page_content=' Aside from that, flow diagnostics using particle tracking velocimetry by Schosser et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
49
+ page_content=' [33] provides an insight into the component-wise velocity profiles inside the rotor gaps at different radial locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
50
+ page_content=' In recent years, A wide range of application based studies of Tesla turbine related to Micro- air vehicles [23], Organic Rankine cycle [37], [38], [8], [25], [24], Combined heat plant [3], Pico-hydro applications [13], [4], [16], [17], Ammonia synthesys [11] have been investigated or under investigation [26], [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
51
+ page_content=' The recent resurgence in interest indicates the impor- tance of investigating the turbine further to mitigate the losses due to the nonuniformity and disturbances associated with the inflow to rotor and rotor to outflow interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
52
+ page_content=' This article presents the experimental investigation of a centimeter-scaled Tesla turbine in uni and bi-directional outlet configuration with compressed air.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
53
+ page_content=' We compare the performance in terms of Mechanical power output for the two configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
54
+ page_content=' Furthermore, we investigate the losses in the inlet due to the sharp divergent and the slit configuration at the inlet rotor junction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
55
+ page_content=' Finally, we compare the nozzles’ performance by looking at the peak discharge Mach number and channel-wise disparity in flow injection to the rotor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
56
+ page_content=' Our numerical results can be beneficial in coming up with better inlet configurations for extracting maximum energy from the fluid, which leaves a further scope for further investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
57
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
58
+ page_content=' METHODOLOGY AND EXPERIMENT A lab scale turbine prototype (in fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
59
+ page_content=' 2a) is fabricated for experimentation in the Aerospace Engineering depart- ment, IIT Kharagpur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
60
+ page_content=' The turbine consists of 10 consecutive corotating discs having an outer diameter of 10 cm and a thickness of 2 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
61
+ page_content=' The gap between the consecutive rotating discs is 2 mm, and the distance between two extreme discs to the adjacent casing wall is 1 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
62
+ page_content=' The turbine has four outlet holes near the shaft, having a center distance of 2 cm from the shaft center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
63
+ page_content=' The shaft and the exhaust ports’ diameters are 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
64
+ page_content='5 cm and 1 cm, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
65
+ page_content=' The distance between the shroud and the disc’s edge is 1 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
66
+ page_content=' The inlet system of the turbine is designed to connect the compressor outlet port of 6mm dia to the turbine having an inlet of 4 cm thickness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
67
+ page_content=' The area of the inlet is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
68
+ page_content='4 cm2, which is segregated using slit configurations to guide air to each gap with minimum interaction with the peripheral walls of the rotor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
69
+ page_content=' The turbine inlet is connected to the compressor by Polyeurathane pneumatic pipes with an installed pres- sure gauge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
70
+ page_content=' The RPM of the turbine is measured using an Arduino-based tachometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
71
+ page_content=' The angular acceleration- deceleration approach computes the net accelerating and de- celerating torque.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
72
+ page_content='The experiment also uses a digital tachome- (a) (b) Figure 2: (a) Fabricated turbine and (b) the inlet system ter to validate the turbine’s RPM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
73
+ page_content=' We conduct our experiment at 6 bar of inlet pressure for uni-and bi-directional outlet configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
74
+ page_content=' The detail of the experimental setup can be seen in the figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
75
+ page_content=' (a) (b) Figure 3: Details of the experimental set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
76
+ page_content=' 1- Compres- sor discharge, 2- Tachometer, 3- Turbine, 4- Arduino based Tachometer, 5- Pressure gauge, 6- PC for data acquisition, 7- Camera, 8- Generator, 9- Multimeters, 10- Rheostat, 11- Electrical circuit III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
77
+ page_content=' RESULTS AND DISCUSSION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
78
+ page_content=' Performance characteristics We tabulate the RPM with time with the help of a serial monitor and calculate the angular acceleration as a function of RPM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
79
+ page_content=' Once the turbine reaches its stable RPM, we shut off the compressed air sypply and continue to perform data acquisition until the turbine becomes stationary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
80
+ page_content=' We continue the similar process for a uni-directional outlet case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
81
+ page_content=' We observe from figure 4 that the turbine with a uni-directional outlet accelerates faster than the turbine with a bi-directional outlet configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
82
+ page_content=' In addition, for a supply pressure of 6 bar, we achieve a maximum RPM of 13019 and 11124 for uni and bi-directional outlet configurations, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
83
+ page_content=' Figure 4 shows the power variation due to accelerating and braking torque.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
84
+ page_content=' There is an increment of ≈ 38% in power due to accelerating torque for a uni-directional outlet configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
85
+ page_content=' We integrate the turbine with a 100 W class Fedus RS-775 DC electric motor to measure the electrical power output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
86
+ page_content=' However, the motor is used as a generator to measure the output voltage and current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
87
+ page_content=' The electrical circuit is attached to a rheostat, and the experiment is performed with 2 t (sec) 0 15 30 45 RPM 0 5000 10000 15000 RPM 0 4500 9000 13500 Power (Watts) 0 40 80 120 (a) (b) Figure 4: Distribution of (a) RPM with t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
88
+ page_content=' (b) Power due to accelerating torque with RPM for bi-directional (dashed line) and uni-directional (solid line) outlet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
89
+ page_content=' Dot- ted line represents the power due to braking torque.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
90
+ page_content=' the 5-ohm load resistance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
91
+ page_content=' The figure 5 illustrates the motor’s voltage and power variation at various RPM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
92
+ page_content=' The turbine- generator can produce a maximum of 78 watts of electrical power at 7800 RPM for bi-directional outlet configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
93
+ page_content=' RPM 0 4000 8000 PowerE (Watts) 0 40 80 80 0 40 Voltage (Volts) Figure 5: Experimental results of voltage (dashed line) and electrical power (solid line) at different RPM B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
94
+ page_content=' Inlet design Designing the inlet is the most crucial part of the turbine where the maximum loss occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
95
+ page_content=' Notably, the compressor and back pressure at the inlet rotor connection point regu- lates the flow across the nozzle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
96
+ page_content=' In the present article, we only consider the inlet section for analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
97
+ page_content=' The details of the nozzle dimensions are in figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
98
+ page_content=' 1) Numerical methodology and grid Grid sensitivity: The Inlet section of the nozzle is a pressure inlet boundary where the total pressure is at 6 bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
99
+ page_content=' We consider the outlet of the nozzle is at 4 bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
100
+ page_content=' The temperature at the compressor discharge and the inlet-rotor junction are 450K and 400K, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
101
+ page_content=' The surface of the nozzle is a no-slip type boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
102
+ page_content=' Considering these boundary conditions, we solve governing compressible Reynolds-averaged Navier-Stokes equations using the K − ω SST turbulence model in the commercial CFD package Fluent 2021 R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
103
+ page_content=' The numerical domain is discretized using the body-fitted tetrahedral grids, maintaining a wall y+ ≈ O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
104
+ page_content=' The table 1 below presents the grid sensitivity study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
105
+ page_content=' As the desired output shows a Figure 6: Schematic diagram of the nozzles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
106
+ page_content=' The dotted, dashed and solid lines represent nozzle 1, nozzle 2 and nozzle 3, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
107
+ page_content=' variation ≤ 2%, We conduct the subsequent numerical simulations using grids with ≈ 1M elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
108
+ page_content=' The inlet Table 1: Grid sensitivity of the three inlet configurations Grid type Elements Outlet area averaged Mach no Nozzle 1 Nozzle 2 Nozzle 3 Coarse ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
109
+ page_content='5 M .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
110
+ page_content='5093 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
111
+ page_content='4993 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
112
+ page_content='5296 Medium ≈ 1 M .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
113
+ page_content='5089 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
114
+ page_content='4979 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
115
+ page_content='5289 Fine ≈ 2 M .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
116
+ page_content='5080 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
117
+ page_content='4971 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
118
+ page_content='5284 design presented in this article is based on a two-pronged objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
119
+ page_content=' (a) To Maximize the Mach number peak (b) To minimize the disparity in the Mach number peaks through every slit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
120
+ page_content=' To understand the loss mechanism and the flow behavior, we conduct a series of numerical simulations Where Nozzle 1 is the replica of the inlet nozzle considered for the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
121
+ page_content=' Due to the abrupt divergent section and the presence of a large recirculation zone enclosed by a strong shear layer, we detect significant losses in Mach no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
122
+ page_content=' The dividing streamlines seen in figure 7 (a) are considered when designing the following two inlet systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
123
+ page_content=' The second nozzle we design is to eliminate the effect of recirculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
124
+ page_content=' We gradually increase the inlet nozzle area until we reach the section where the flow bends in the previous observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
125
+ page_content=' Despite the improvement in the average peak Mach number observed from figure 7 (b), the disparity in the discharge Mach number through the slits increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
126
+ page_content=' We consider designing the third nozzle as a converging-diverging type nozzle where we place the throat section at x/L ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
127
+ page_content='6 to provide sufficient scope for flow to bend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
128
+ page_content=' Figure 8 represents the peak discharge Mach number through the nozzles and the associated % disparity from the mean peak Mach no through each slit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
129
+ page_content=' The comparison shows that the third nozzle offers maximum peak Mach number along with minimum % deviation from the mean peak Mach no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
130
+ page_content=' It is necessary to note that the differential pressure between the upstream and downstream sections, the fluid, and the fluid’s thermo- physical characteristics significantly influence the nozzle design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
131
+ page_content=' The nozzle’s optimal size and shape might differ depending on these conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
132
+ page_content=' 3 10mm 40 mm 4mm 8 40 ww 20mm mm mm 15 mm 2 60mm(a) (b) (c) Figure 7: Distribution of the Mach number for (a) nozzle 1 (b) nozzle 2 (c) nozzle 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
133
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
134
+ page_content=' CONCLUSIONS The article presents a preliminary experimental investiga- tion of a centimeter scaled Tesla turbine using compressed air as a working medium and suggests an improved inlet design that could deliver higher achievable power compared to the inlet nozzle considered for this experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
135
+ page_content=' The key findings of the article are as follows;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
136
+ page_content=' 1) Experimental investigation of the turbine conducted for uni and bi-directional outlet configuration at 6 bar inlet pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
137
+ page_content=' 2) uni-directional outlet configuration offered a peak power output of ≈ 110 watts at ≈ 7000 RPM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
138
+ page_content=' Whereas, bi-directional outlet configuration a peak output of 80 watts at 6500 RPM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
139
+ page_content=' 3) The turbine-generator configuration produced a peak electrical power output of 78 watts at 7800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
140
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
141
+ page_content='01 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
142
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
143
+ page_content='02 M 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
144
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
145
+ page_content="8 (a) %M/ 20 10 0 10 20 %M' 30 20 10 0 10 20 %M' 15 10 5 0 5 (b) (c) (d) Figure 8: (a) Comparison of peak Mach number across the slits." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
146
+ page_content=' The dotted, dashed and solid lines represent First, second and third nozzle, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
147
+ page_content=' (b, c, d) The % disparity in peak Mach no at discharge for three nozzles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
148
+ page_content=' RPM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
149
+ page_content=' 4) While assessing the inlet, we observe that nozzle 2 offers better peak Mach number than nozzle 1, but due to the losses accounted by the sharp bend, the disparity in % deviation of the peak mach numbers from mean peak Mach no is nearly 30%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
150
+ page_content=' 5) Nozzle 3 performs the best among all three nozzles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
151
+ page_content=' It offers a maximum peak Mach no with minimum % deviation from mean peak Mach no is reduced to 12%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
152
+ page_content=' The turbine’s efficiency depends on several factors, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
153
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
154
+ page_content=', RPM, disc gap, rotor radius, rotor to casing clearance, outlet configurations, fluid properties, and many more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
155
+ page_content=' Designing an efficient Tesla turbine could bring down the cost of a turbine substantially as compared to the other existing technologies because of its simplistic design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
156
+ page_content=' The above findings presented in this article could be helpful in the design improvement, thus leaving a plausible scope for further investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
157
+ page_content=' NOMENCLATURE t time [sec] x/L Non-dimensional-axial location [–] k Turbulent kinetic energy [J/kg] ω Specific dissipation rate [1/sec] M Mach no – M ′ % Deviation from peak mean Mach no – 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
158
+ page_content='050.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
159
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
160
+ page_content='150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
161
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
162
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
163
+ page_content='30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
164
+ page_content='350.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
165
+ page_content='40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
166
+ page_content='450.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
167
+ page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
168
+ page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
169
+ page_content='60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
170
+ page_content='650.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
171
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
172
+ page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
173
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
174
+ page_content='85REFERENCES [1] James Hal Armstrong, An investigation of the performance of a modified tesla turbine, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
175
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
176
+ page_content=' thesis, Georgia Institute of Technology, 1952.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
177
+ page_content=' [2] John Spencer Caldwell, The efficiency of a viscous flow compressor, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
178
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
179
+ page_content=' thesis, Georgia Institute of Technology, 1973.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
180
+ page_content=' [3] Van P Carey, Assessment of tesla turbine performance for small scale rankine combined heat and power systems, Journal of Engineering for Gas Turbines and Power 132 (2010), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
181
+ page_content=' 12, 122301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
182
+ page_content=' [4] Tan Wee Choon, AA Rahman, Foo Shy Jer, and Lim Eng Aik, Optimization of tesla turbine using computational fluid dynamics approach, Industrial Electronics and Applications (ISIEA), 2011 IEEE Symposium on, IEEE, 2011, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
183
+ page_content=' 477–480.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
184
+ page_content=' [5] L Ciappi, D Fiaschi, PH Niknam, and L Talluri, Computational investigation of the flow inside a tesla turbine rotor, Energy 173 (2019), 207–217.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
185
+ page_content=' [6] ME Crawford and W Rice, Calculated design data for the multiple- disk pump using incompressible fluid, ASME J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
186
+ page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
187
+ page_content=' Power 96 (1974), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
188
+ page_content=' 3, 274–282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
189
+ page_content=' [7] RT Deam, Engida Lemma, B Mace, and R Collins, On scaling down turbines to millimeter size, Journal of Engineering for Gas Turbines and Power 130 (2008), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
190
+ page_content=' 5, 052301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
191
+ page_content=' [8] Olivier Dumont, Lorenzo Talluri, D Fiaschi, G Manfrida, and Vincent Lemort, Comparison of a scroll, a screw, a roots, a piston expander and a tesla turbine for small-scale organic rankine cycle, ORC conference 2019, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
192
+ page_content=' [9] Abhijit Guha and Sayantan Sengupta, The fluid dynamics of the rotating flow in a tesla disc turbine, European Journal of Mechanics- B/Fluids 37 (2013), 112–123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
193
+ page_content=' [10] , Similitude and scaling laws for the rotating flow between concentric discs, Proceedings of the Institution of Mechanical En- gineers, Part A: Journal of Power and Energy 228 (2014), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
194
+ page_content=' 4, 429–439.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
195
+ page_content=' [11] Kai Han, Jianjun Luo, Jian Chen, Baodong Chen, Liang Xu, Yawei Feng, Wei Tang, and Zhong Lin Wang, Self-powered ammonia synthesis under ambient conditions via n2 discharge driven by tesla turbine triboelectric nanogenerators, Microsystems & nanoengineer- ing 7 (2021), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
196
+ page_content=' 1, 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
197
+ page_content=' [12] Leo Entrican Harold Jr, Tesla turbine, December 5 2002, US Patent 20,020,182,054.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
198
+ page_content=' [13] Bryan P Ho-Yan, Tesla turbine for pico hydro applications, Guelph Engineering Journal 4 (2011), 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
199
+ page_content=' [14] GP Hoya and A Guha, The design of a test rig and study of the performance and efficiency of a tesla disc turbine, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 223 (2009), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
200
+ page_content=' 4, 451–465.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
201
+ page_content=' [15] DP Kavenuke, E Massawe, and OD Makinde, Modeling laminar flow between a fixed impermeable disk and a porous rotating disk, African Journal of Mathematics and Computer Science Research 2 (2009), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
202
+ page_content=' 7, 157–162.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
203
+ page_content=' [16] Vedavalli G Krishnan, Zohora Iqbal, and Michel M Maharbiz, A micro tesla turbine for power generation from low pressure heads and evaporation driven flows, Solid-State Sensors, Actuators and Mi- crosystems Conference (TRANSDUCERS), 2011 16th International, IEEE, 2011, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
204
+ page_content=' 1851–1854.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
205
+ page_content=' [17] Vedavalli Gomatam Krishnan, Design and fabrication of cm-scale tesla turbines, (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
206
+ page_content=' [18] Andrés Felipe Rey Ladino, Numerical simulation of the flow field in a friction-type turbine (tesla turbine), Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
207
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
208
+ page_content=' thesis, National University of Colombia, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
209
+ page_content=' [19] Piotr Lampart and Łukasz J˛edrzejewski, Investigations of aerody- namics of tesla bladeless microturbines, Journal of Theoretical and Applied Mechanics 49 (2011), 477–499.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
210
+ page_content=' [20] Piotr Lampart, Krzysztof Kosowski, Marian Piwowarski, and Łukasz J˛edrzejewski, Design analysis of tesla micro-turbine operating on a low-boiling medium, Polish Maritime Research 16 (2009), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
211
+ page_content=' Spe- cial, 28–33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
212
+ page_content=' [21] Michael John Lawn, An investigation of multiple-disk turbine perfor- mance parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
213
+ page_content=', Master’s thesis, Arizona State University, 1972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
214
+ page_content=' [22] Engida Lemma, RT Deam, D Toncich, and R Collins, Characterisa- tion of a small viscous flow turbine, Experimental Thermal and Fluid Science 33 (2008), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
215
+ page_content=' 1, 96–105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
216
+ page_content=' [23] Arindam Mandal and Sandeep Saha, Performance analysis of a centimeter scale tesla turbine for micro-air vehicles, Electronics, Communication and Aerospace Technology (ICECA), 2017 Inter- national conference of, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
217
+ page_content=' 1, IEEE, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
218
+ page_content=' 62–67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
219
+ page_content=' [24] G Manfrida, L Pacini, and L Talluri, An upgraded tesla turbine concept for orc applications, Energy 158 (2018), 33–40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
220
+ page_content=' [25] Giampaolo Manfrida, Leonardo Pacini, and Lorenzo Talluri, A re- vised tesla turbine concept for orc applications, Energy Procedia 129 (2017), 1055–1062.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
221
+ page_content=' [26] Pouriya H Niknam, Lorenzo Talluri, Lorenzo Ciappi, and Daniele Fiaschi, Numerical assessment of a two-phase tesla turbine: Para- metric analysis, Applied Thermal Engineering 197 (2021), 117364.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
222
+ page_content=' [27] Robert A Oklejas and Eli Oklejas Jr, Gas regeneration tesla-type turbine, (1975), US Patent 3,899,875.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
223
+ page_content=' [28] , Tesla-type turbine with alternating spaces on the rotor of cooling air and combustion gases, December 28 1976, US Patent 3,999,377.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
224
+ page_content=' [29] Leonardo Pacini, Lorenzo Ciappi, Lorenzo Talluri, Daniele Fiaschi, Giampaolo Manfrida, and Jacek Smolka, Computational investigation of partial admission effects on the flow field of a tesla turbine for orc applications, Energy 212 (2020), 118687.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
225
+ page_content=' [30] Warren Rice, Tesla turbomachinery, MECHANICAL ENGINEERING-NEW YORK AND BASEL-MARCEL DEKKER- (2003), 861–874.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
226
+ page_content=' [31] Vincent D Romanin, Theory and performance of tesla turbines, (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
227
+ page_content=' [32] P Sandilya, G Biswas, DP Rao, and A Sharma, Numerical simulation of the gas flow and mass transfer between two coaxially rotating disks, Numerical Heat Transfer: Part A: Applications 39 (2001), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
228
+ page_content=' 3, 285–305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
229
+ page_content=' [33] Constantin Schosser, Thomas Fuchs, Rainer Hain, Stefan Lecheler, and C Kahler, Three–dimensional particle tracking velocimetry in a tesla turbine rotor using a non–intrusive calibration method, 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
230
+ page_content=' [34] Constantin Schosser, Stefan Lecheler, and Michael Pfitzner, Ana- lytical and numerical solutions of the rotor flow in tesla turbines, Periodica Polytechnica Mechanical Engineering 61 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
231
+ page_content=' 1, 12–22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
232
+ page_content=' [35] Constantin Schosser and Michael Pfitzner, A numerical study of the three-dimensional incompressible rotor airflow within a tesla turbine, Conference of Modelling Fluid Flow CMFF, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
233
+ page_content=' 1–4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
234
+ page_content=' [36] Sayantan Sengupta and Abhijit Guha, A theory of tesla disc turbines, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 226 (2012), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
235
+ page_content=' 5, 650–663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
236
+ page_content=' [37] L Talluri, D Fiaschi, G Neri, and L Ciappi, Design and optimization of a tesla turbine for orc applications, Applied energy 226 (2018), 300–319.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
237
+ page_content=' [38] Lorenzo Talluri, Olivier Dumont, Giampaolo Manfrida, Vincent Lemort, and Daniele Fiaschi, Experimental investigation of an or- ganic rankine cycle tesla turbine working with r1233zd (e), Applied Thermal Engineering 174 (2020), 115293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
238
+ page_content=' [39] Nikola Tesla, Turbine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
239
+ page_content=', May 6 1913, US Patent 1,061,206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
240
+ page_content=' 5' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfhPzZ/content/2301.01483v1.pdf'}
atAyT4oBgHgl3EQfv_nZ/content/tmp_files/2301.00642v1.pdf.txt ADDED
@@ -0,0 +1,1820 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00642v1 [math.CA] 30 Dec 2022
2
+ SPECIAL POLYNOMIALS AND NEW REAL-ROOTEDNESS RESULTS
3
+ AURELIEN GRIBINSKI
4
+ EPFL
5
+ Abstract. In this paper, we show that for some orthogonal polynomials P (z)
6
+ n (x) showing up
7
+ in physics, namely Laguerre and Gegenbauer, P (z)
8
+ n (x) are realrooted in z for x in the support of
9
+ orthogonality. As an application we show realrootedness in x and interlacing properties of ∂k
10
+ z P (z)
11
+ n (x)
12
+ for k ≤ n for z > 0.
13
+ 1.
14
+ Introduction
15
+ 1
16
+ 2.
17
+ General strategy
18
+ 1
19
+ 3.
20
+ Laguerre polynomials
21
+ 2
22
+ 4.
23
+ Gegenbauer polynomials
24
+ 7
25
+ 5.
26
+ Applications to realrootedness in x
27
+ 13
28
+ References
29
+ 16
30
+ 1. Introduction
31
+ Orthogonal polynomials like generalized Laguerre and Gegenbauer polynomials have long been
32
+ studied, and show up in all fields of maths and physics. However little has been said about the
33
+ properties of such polynomials when we vary the underlying parameter (see [1]). We study families
34
+ of generalized orthogonal polynomials P (z)
35
+ n (x) depending on a parameter z from a new angle, that
36
+ is, as bivariate polynomials Pn(x, z). We fix the usual variable x and consider them instead as
37
+ polynomials in z. We show that they are real-rooted in z for x in the support of the underlying
38
+ measure of orthogonality, and monotonous. Furthermore we show that when we differentiate these
39
+ orthogonal polynomials with respect to z > 0 and consider them as polynomials in x, then they are
40
+ realrooted in x. Such polynomials (derivatives with respect to the parameter) seem to have many
41
+ nice properties similar to their corresponding orthogonal polynomials from which they are derived
42
+ and yet have never been studied.
43
+ 2. General strategy
44
+ Consider P (z)
45
+ n (x), a family of polynomials depending on a parameter z. We want to show that they
46
+ are real-rooted in z for a fixed x in a given interval.
47
+ The strategy is as follows
48
+ • We check that for x at one of the extreme point of the interval it is real-rooted.
49
+ • We show that locally around this extreme point the roots in z are all monotonous.
50
+ • We show that there can’t be a shared zero in z for ∂xPn(x, z) and Pn(x, z) or equivalently
51
+ for Pn−1(x, z) and Pn(x, z).
52
+ • The roots in z are therefore monotonous when they are well-defined.
53
+ Date: January 3, 2023.
54
+ 1
55
+
56
+ 2
57
+ AURELIEN GRIBINSKI EPFL
58
+ • We show that the roots in z of Pn(x, z) and simultaneously Pn−1(x, z) and ∂xPn(x, z) inter-
59
+ lace as long as they are well-defined.
60
+ • We extend the local properties by exhibiting an ODE to which all roots in z are solutions
61
+ and show that there has to be explosion at the other extreme point of the interval, all roots
62
+ evolving monotonously along the way.
63
+ First we derive a way to locally prove the existence of rel-rootedness if it is known at some extreme
64
+ point of the interval.
65
+ Lemma 2.1 (Local existence of the roots and smoothness). Take a ∈ R. Assume P(x, z) is a
66
+ bivariate polynomial such that P(a, z) is realrooted in z of degree j and has only simple roots in
67
+ z (let’s call them zi(a) for i = 1....j). Assume that P(x, z) has degree less than j for all x.Then
68
+ for x in a neighborhood of a, P(x, z) is also realrooted in z of degree j with simple roots zi(x).
69
+ Furthermore, the roots zi(x) are C∞ functions of x.
70
+ Proof. Consider the equation P(x, z) = 0, around the points
71
+
72
+ a, zi(a)
73
+
74
+ . We have ∂zP(x, z)|x=a,z=zi(a) ̸=
75
+ 0 as the roots are simple (can’t be a root of the derivative in z). Then using the implicit function
76
+ theorem, we can find in the neighborhood of each point a C∞ function zi(x) which will be the only
77
+ solution to the equation P(x, z) = 0 on this neighborhood. Therefore we have found j roots, and
78
+ it is the maximal number of roots for a fixed x, as the polynomial is of degree less than j.
79
+
80
+ 3. Laguerre polynomials
81
+ Let L(z)
82
+ n (x) be the Laguerre polynomials with complex parameter z. It is a polynomial in R[x, z].
83
+ Theorem 3.1. For fixed x0 ∈ [0, +∞[, L(z)
84
+ n (x0) is a real-rooted polynomial in z of degree n. Fur-
85
+ thermore, its roots in z are strictly increasing to +∞ when x0 moves along [0, +∞[.
86
+ Proof. Let’s recall the hypergeometric confluent definition
87
+ L(z)
88
+ n (x) =
89
+ �n + z
90
+ n
91
+
92
+ M(−n, z + 1, x)
93
+ =
94
+ n
95
+
96
+ l=1
97
+ z + n + 1 − l
98
+ l
99
+ n
100
+
101
+ k=0
102
+ (−1)kn!
103
+ (n − k)! �k−1
104
+ l=0 (z + 1 + k)
105
+ xk
106
+ =
107
+ n
108
+
109
+ k=0
110
+ (−1)k �n
111
+ l=1(z + l)
112
+ (n − k)! �k
113
+ l=1(z + l)
114
+ xk
115
+ =
116
+ n
117
+
118
+ k=0
119
+ (−1)k �n
120
+ j=k+1(z + j)
121
+ (n − k)!
122
+ xk
123
+ = 1
124
+ n!zn +
125
+ ��n
126
+ j=1 j
127
+ n!
128
+
129
+ x
130
+ (n − 1)!
131
+
132
+ zn−1 + Rn−2(z, x)
133
+ where Rn−2(z, x) is of degree lower than n−2 in z. We will henceforth write Ln(x, z) as it is clearly
134
+ a bivariate polynomial of degree n in z with front coefficient
135
+ 1
136
+ n!.
137
+ Let’s furthermore decompose
138
+ Ln(x, z) using a priori complex roots λi(x):
139
+ Ln(x, z) = 1
140
+ n!
141
+ n
142
+
143
+ i=1
144
+
145
+ z − λi(x)
146
+
147
+ where we order the roots by decreasing module: |λ1(x)| ≥ |λ2(x)| ≥ ... ≥ |λn(x)|.
148
+ Lemma 3.2 (Local realrootedness). Ln(x, z) is real rooted of degree n in z with simple roots in a
149
+ neighborhood of x = 0.
150
+
151
+ SPECIAL POLYNOMIALS AND NEW REAL-ROOTEDNESS RESULTS
152
+ 3
153
+ Proof. We have
154
+ Ln(0, z) =
155
+ �n
156
+ l=1(z + l)
157
+ n!
158
+ so that we can apply Lemma 2.1 with a = 0.
159
+
160
+ Lemma 3.3 (Local increasing property). The roots of Ln(x, z) in z are all strictly increasing when
161
+ x is, in a neighborhood of x = 0.
162
+ Proof. To prove this, we need some information on the derivatives with respect to x of the roots in
163
+ the neighborhood of 0, which we know are going to be real by the previous lemma.
164
+ Lemma 3.4. dlλi(x)
165
+ dxl
166
+ |x=0 = 0 for 1 ≤ l < i, and diλi(x)
167
+ dxi
168
+ |x=0 > 0.
169
+ Proof. We get, for all 1 ≤ l ≤ n,
170
+ ∂l
171
+ xLn(x, z)|x=0 = l!(−1)l
172
+ �n
173
+ j=l+1(z + j)
174
+ (n − l)!
175
+ Notice that λi(0) = −i for i = 1...n, so we see that for l ≤ i − 1,
176
+ ∂l
177
+ xLn
178
+
179
+ 0, λi(0)
180
+
181
+ = l!(−1)l
182
+ �n
183
+ j=l+1(λi(0) + j)
184
+ (n − l)!
185
+ = 0
186
+ And
187
+ ∂i
188
+ xLn
189
+
190
+ 0, λi(0)
191
+
192
+ = i!(−1)i
193
+ �n
194
+ j=i+1(λi(0) + j)
195
+ (n − i)!
196
+ = i!(−1)i
197
+ On the other hand,
198
+ ∂zLn
199
+
200
+ 0, λi(0)
201
+
202
+ = 1
203
+ n!
204
+ n
205
+
206
+ l=1,l̸=i
207
+ (−i + l) = i!(−1)i−1(n − i)!
208
+ n!
209
+ Now we have Ln
210
+
211
+ x, λi(x)
212
+
213
+ = 0 for all i = 1...n, by definition, so differentiating with respect to x,
214
+ we get
215
+ dλi(x)
216
+ dx
217
+ = −∂xLn
218
+ ∂zLn
219
+
220
+ x, λi(x)
221
+
222
+ Note that the denominator is nonzero as the roots in z are simple at 0 ( so they won’t be roots of
223
+ the derivative in z). Using Leibniz’s formula and induction on l, we get for i > l ≥ 1,
224
+ dlλi(x)
225
+ dxl
226
+ |x=0
227
+ = 0
228
+ And
229
+ diλi(x)
230
+ dxi
231
+ |x=0
232
+ = −∂i
233
+ xLn
234
+ ∂zLn
235
+
236
+ − 1, λi(0)
237
+
238
+ =
239
+ n!
240
+ (n − i)! > 0
241
+
242
+ We conclude by a Taylor expansion around 0 as
243
+ λi(x) = −i + xi
244
+ i!
245
+ n!
246
+ (n − i)! + o(xi)
247
+
248
+ Lemma 3.5 (Distinct roots, degree and derivative wise). Assume λi(x) is real for x ∈]0, bi[, bi > 0.
249
+ Then ∂xLn(x, λi(x)) can’t be zero for x ∈]0, bi[. Therefore it has a constant sign on this interval.
250
+ Equivalently, Ln−1(x, λi(x)) can’t be zero either: that is we can’t have a nontrivial shared real root
251
+ for Ln−1(x, z) and Ln(x, z).
252
+
253
+ 4
254
+ AURELIEN GRIBINSKI EPFL
255
+ Proof. Traditional results on simplicity of the roots can’t be used because they are true only for
256
+ z ≥ 0. By definition, Ln
257
+
258
+ x, λi(x)
259
+
260
+ = 0. Then the usual differential euqation still holds
261
+ (1)
262
+ x∂xLn(x, z) = nLn(x, z) − (n + z)Ln−1(x, z)
263
+ Let’s assume by contradiction that ∂xLn
264
+
265
+ x0, λi(x0)
266
+
267
+ = 0 for some i and x0 ∈]0, bi[. As ∂xLn(x, λi(x))
268
+ is nonzero in a neighborhood of x = 0, x > 0(local monotonicity above), then we can assume x0 is
269
+ the smallest x > 0 such that ∂xLn
270
+
271
+ x, λi(x)
272
+
273
+ = 0. Therefore as
274
+ dλi(x)
275
+ dx
276
+ = −∂xLn
277
+ ∂zLn
278
+
279
+ x, λi(x)
280
+
281
+ we have that on ]0, x0], λi(x) is strictly increasing in x. As λi(0) ≥ −n = λn(0) for all i, then
282
+
283
+ n − λi(x0)
284
+
285
+ > 0, and we get that the statement is equivalent to Ln−1
286
+
287
+ x0, λi(x0)
288
+
289
+ = 0 using
290
+ Equation 1. But then, as the following recurrence relations are still valid
291
+ (n + 1)Ln+1(x, z) = (−x + 2(n + 1) + z)Ln(x, z) − (n + z)Ln−1(x, z)
292
+ we also get by induction Ln+k(x0, λi(x0) + 1) = 0 for all k ∈ N. Using then the equality
293
+ ∂xLn+k(x, z) = −Ln+k−1(x, z + 1)
294
+ we get that Ln+k−1(x0, λi(x0) + 1) = 0 for all k ∈ N.
295
+ Using induction, applying successively
296
+ the previous recurrence equations, we then get that Ln+k−1(x0, λi(x0) + j) = 0 for all j ∈ N.
297
+ For j ≤ n, the polynomials Ln+k−1(x, λi(x) + j) are standard Laguerre polynomials (positive
298
+ parameter). It would mean that successive Laguerre polynomials of parameter λi(x0) + j have
299
+ the root x0 in common, so that their derivatives share this root too, which is absurd as the roots
300
+ of Laguerre polynomials are simple by classical orthogonality.
301
+ We conclude that Ln−1(x, λi(x))
302
+ as well as ∂xLn
303
+
304
+ x0, λi(x0)
305
+
306
+ can’t be zero, and therefore ∂xLn
307
+
308
+ x0, λi(x0)
309
+
310
+ has a constant sign for
311
+ x ∈]0, bi[.
312
+
313
+ Corollary 3.6 (Extended monotonicity). Assume λi(x) is real for x ∈]0, bi[, bi > 0. Then it
314
+ follows from the previous proof that for x ∈]0, bi[
315
+ dλi(x)
316
+ dx
317
+ > 0
318
+ Theorem 3.7 (Interlacing roots, degreewise, simple roots). Consider an interval I = [0, b[ such
319
+ that Ln(x, z) has real roots in z on I, then the same will be true of Ln−1(x, z) and their roots
320
+ interlace. Furthermore, the interlacing is strict for x > 0 and both polynomials have simple roots
321
+ on I.
322
+ Proof. Let’s write
323
+ Ln(x, z) = 1
324
+ n!
325
+ n
326
+
327
+ i=1
328
+
329
+ z − λn
330
+ i (x)
331
+
332
+ Ln−1(x, z) =
333
+ 1
334
+ (n − 1)!
335
+ n−1
336
+
337
+ i=1
338
+
339
+ z − λn−1
340
+ i
341
+ (x)
342
+
343
+ and show that all x ∈ I, all i ≤ n − 1:
344
+ λn
345
+ i (x) ≥ λn−1
346
+ i
347
+ (x) ≥ λn
348
+ i+1(x)
349
+ with strict inequalities for x > 0. We first check the property locally, that is a neighborhood of 0.
350
+ λn
351
+ i (0) = −i
352
+ λn−1
353
+ i
354
+ (0) = −i
355
+ λn
356
+ i+1(0) = −(i + 1)
357
+
358
+ SPECIAL POLYNOMIALS AND NEW REAL-ROOTEDNESS RESULTS
359
+ 5
360
+ We have
361
+ diλn
362
+ i (x)
363
+ dxi
364
+ |x=0
365
+ =
366
+ n!
367
+ (n − i)!
368
+ =
369
+ n
370
+ n − i
371
+ (n − 1)!
372
+ (n − 1 − i)!
373
+ =
374
+ n
375
+ n − i
376
+ diλn−1
377
+ i
378
+ (x)
379
+ dxi
380
+ |x=0
381
+ As
382
+ n
383
+ n−i > 1, we conclude that for all i ≤ n − 1, diλn
384
+ i (x)
385
+ dxi
386
+ |x=0 > diλn−1
387
+ i
388
+ (x)
389
+ dxi
390
+ |x=0.
391
+ We can then do a Taylor expansion around x = 0:
392
+ λn
393
+ i (x) = −i + (x + 1)i
394
+ i!
395
+ diλn
396
+ i (x)
397
+ dxi
398
+ |x=−1
399
+ + o((x + 1)i)
400
+ λn−1
401
+ i
402
+ (x) = −i + (x + 1)i
403
+ i!
404
+ diλn−1
405
+ i
406
+ (x)
407
+ dxi
408
+ |x=−1
409
+ + o((x + 1)i)
410
+ It is then clear that in a neighborhood of 0, λn
411
+ i (x) > λn−1
412
+ i
413
+ (x).
414
+ As λn−1
415
+ i
416
+ (−1) − λn
417
+ i+1(−1) = 1, we also get λn−1
418
+ i
419
+ (x) > λn
420
+ i+1(x) in a neighborhood of 0. Now as
421
+ for all i λn
422
+ i (x), λn−1
423
+ i
424
+ (x), λn
425
+ i+1(x) are continuous functions of x, if by contradiction such inequalities
426
+ where to fail for some x ∈ I, then there would exist x0 such that λn
427
+ i (x0) = λn−1
428
+ i
429
+ (x0) or λn−1
430
+ i
431
+ (x0) =
432
+ λn
433
+ i+1(x0).But then this would mean that λn−1
434
+ i
435
+ (x0) is a root of Gn(x0, z) and Gn−1(x0, z), which is
436
+ impossible by Lemma 4.5. Therefore we conclude that the inequality
437
+ λn
438
+ i (x) > λn−1
439
+ i
440
+ (x) > λn
441
+ i+1(x)
442
+ holds for allx ∈ I, x > 0 and i ≤ n − 1.
443
+
444
+ Theorem 3.8 (Interlacing roots, derivative). Consider an interval I = [0, b[ such that Ln(x, z) has
445
+ real roots in z on I, then the same will be true of ∂xLn(x, z) and the roots of the two polynomials
446
+ interlace and are simple.
447
+ Proof. We bring ourselves back to a variant of the previous theorem by using the equality
448
+ ∂xLn(x, z) = −Ln−1(x, z + 1)
449
+ The roots being simple results from Lemma 3.7. So it amounts to proving that Ln−1(x, z + 1) and
450
+ Ln(x, z) interlace. We want to show more precisely that for all x ∈ I, with x > 0, all i ≤ n − 1
451
+ λn
452
+ i (x) ≥ λn−1
453
+ i
454
+ (x) − 1 ≥ λn
455
+ i+1(x)
456
+ With strict inequalities for x > 0. First we check such inequalities in a neighborhood of 0. We
457
+ can check that the inequality λn
458
+ i (x) > λn−1
459
+ i
460
+ (x) − 1 is going to be true in a neighborhood of 0 as
461
+ λn
462
+ i (0) = λn−1
463
+ i
464
+ (0). So the nontrivial one is the other one, λn−1
465
+ i
466
+ (x) − 1 > λn
467
+ i+1(x) for x > 0. We have
468
+ equality at the origin as λi(0) − 1 = λi+1(0). Then we look at the Taylor expansions around x = 0:
469
+ λn−1
470
+ i
471
+ (x) − 1 = λi+1(0) + (x + 1)i
472
+ i!
473
+ diλn−1
474
+ i
475
+ (x)
476
+ dxi
477
+ |x=0
478
+ + o((x + 1)i)
479
+ λn
480
+ i+1(x) = λi+1(0) + (x + 1)i+1
481
+ (i + 1)!
482
+ di+1λn
483
+ i+1(x)
484
+ dxi+1
485
+ |x=0
486
+ + o((x + 1)i+1)
487
+ It is clear then that locally λn−1
488
+ i
489
+ (x) − 1 > λn
490
+ i+1(x) as (x + 1)i+1 << (x + 1)i. We extend the
491
+ inequality to the whole interval I by noticing again that if the inequalities where not valid anymore,
492
+ then there would have to be some equality λn
493
+ i (x) = λn−1
494
+ i
495
+ (x) − 1 or λn−1
496
+ i
497
+ (x) − 1 = λn
498
+ i+1(x), which
499
+ would mean ∂xLn(x, λn−1
500
+ i
501
+ (x)) = 0 and as Ln(x, λn−1
502
+ i
503
+ (x)) = 0, we would again get a contradiction
504
+ by Lemma 4.5.
505
+
506
+
507
+ 6
508
+ AURELIEN GRIBINSKI EPFL
509
+ Lemma 3.9 (Global extension through ODE). The local property is in fact true over the whole
510
+ interval: Ln(x, z) is real rooted in z with simple (distinct) roots for x ∈ [0, +∞[ , and the roots are
511
+ all increasing to +∞ when x goes to +∞.
512
+ Proof. Denote by Fn(x, z) := − ∂xLn
513
+ ∂zLn
514
+
515
+ x, z
516
+
517
+ . Consider a rectangular domain D such that ∂zLn(x, z)
518
+ is nonzero on the domain. Fn is continuous in x and z in the the domain D. Indeed, it is a rational
519
+ fraction whose denominator is nonzero and it is therefore C∞ in both variables by theorem of
520
+ composition. As Ln(0, z) is realrooted in z with simple roots, ∂zLn
521
+
522
+ 0, λi(0)
523
+
524
+ ̸= 0 and by continuity
525
+ we can find small rectangles Di := [0, ǫ] × [λi(0) − δ, λi(0) + δ] such that Ln(x, z) is nonzero on
526
+ Di. A strong version of Picard’s theorem tells us that there is a maximal interval Imax
527
+ i
528
+ = [0, ηi
529
+ max[
530
+ (where ηi
531
+ max ∈
532
+ ¯
533
+ R+) for which the roots λi(x) (i = 1, 2...n) are the unique solutions of the initial
534
+ value ODE
535
+ dz
536
+ dx = Fn(x, z),
537
+ z(−1) = −i
538
+ Note that on Imax
539
+ i
540
+ , ∂zLn
541
+
542
+ x, λi(x)
543
+
544
+ ̸= 0 (the denominator is nonzero, so that the differential equa-
545
+ tion is well defined).
546
+ Let’s prove that Imax
547
+ i
548
+ = [0, +∞[ (for all i) and that there is explosion at +∞ (roots going to
549
+ infinity), the roots increasing constantly to +∞.
550
+ By Corollary 3.6, Fn(x, λi(x)) > 0 on Imax
551
+ i
552
+ .
553
+ According to Picard’s theorem, we either have
554
+ λi(x) →x→ηimax +∞ (explosion), or ηi
555
+ max is such that limx→ηimax Fn(x, λi(x)) is not well defined
556
+ (we leave the domain of definition).
557
+ Now, explosion can’t happen if ηi
558
+ max < +∞. Indeed, we have using the hypergeometric expansion
559
+ above
560
+ n
561
+
562
+ i=1
563
+ λi(x) = −n!
564
+ �n(n + 1)
565
+ 2
566
+ 1
567
+ n! −
568
+ x
569
+ (n − 1)!
570
+
571
+ = n
572
+
573
+ − n + 1
574
+ 2
575
+ + x
576
+
577
+ so the sum of roots is bounded above for x < ηi
578
+ max and there can be no explosion (necessarily to+∞
579
+ by monotonicity).
580
+ We can leave the domain of definition only if limx→ηimax ∂zLn
581
+
582
+ x, λi(x)
583
+
584
+ = 0. If this is the case
585
+ and if by contradiction ηi
586
+ max < +∞, ∂zLn(ηi
587
+ max, z) would be of degree n in z.
588
+ Therefore it
589
+ means that limx→ηimax λi(x) = µ where µ is a root of ∂zLn(ηi
590
+ max, z).
591
+ But then it means that
592
+ we can extend by continuity λi(x) at x = ηi
593
+ max with λi(ηi
594
+ max) = µ. We check by continuity that
595
+ Ln
596
+
597
+ ηi
598
+ max, λi(ηi
599
+ max)
600
+
601
+ = ∂zLn
602
+
603
+ ηi
604
+ max, λi(ηi
605
+ max)
606
+
607
+ = 0 so that in fact λi(ηi
608
+ max) is a real double root in z
609
+ of Ln
610
+
611
+ ηi
612
+ max, z
613
+
614
+ . Using Lemma 3.8, as there is a root of ∂xLn(x, z) between any two roots of Ln(x, z)
615
+ in z by interlacing, it follows that necessarily ∂xLn
616
+
617
+ ηi
618
+ max, λi(ηmax)
619
+
620
+ = 0. But this is impossible
621
+ according to Lemma 4.5. Therefore, we have necessarily ηi
622
+ max = +∞ for all i = 1...n.
623
+ Furthermore, assume by contradiction that there is no explosion for some index i at +∞. As λi(x)
624
+ is monotonous for x ∈ [0, +∞[, then we have necessarily that limx→+∞ λi(x) = µ exists and is
625
+ finite. By continuity we have Ln(x, µ) ∼x→∞ (−1)nxn, and ∂xLn(x, µ) ∼x→∞ n(−1)nxn−1, as well
626
+ as ∂zLn(x, µ) ∼x→∞ (−1)n−1xn−1 using
627
+ L(z)
628
+ n (x) =
629
+ n
630
+
631
+ k=0
632
+ (−1)k �n
633
+ j=k+1(z + j)
634
+ (n − k)!
635
+ xk
636
+ so that
637
+ dλi(x)
638
+ dx
639
+ →x→+∞ n
640
+ and clearly we would have λi(x) → +∞, which is a contradiction.
641
+
642
+ SPECIAL POLYNOMIALS AND NEW REAL-ROOTEDNESS RESULTS
643
+ 7
644
+
645
+
646
+ 4. Gegenbauer polynomials
647
+ Let G(z)
648
+ n (x) be the Gegenbauer polynomial with complex parameter z. It is a polynomial in R[x, z].
649
+ Theorem 4.1. For fixed x0 ∈ [−1, 1], G(z)
650
+ n (x0) is a real-rooted polynomial in z of degree at most n
651
+ (exactly n except for x0 = 0). Furthermore, its roots in z then they are increasing for x ∈ [−1, 0[,
652
+ and decreasing for x ∈]0, 1], with an explosion to infinity at 0.
653
+ Proof. As the Gegenbauer polynomials are even or odd in x, that is G(z)
654
+ n (−x) = (−1)nG(z)
655
+ n (x), it is
656
+ enough to prove our statement for x ∈ [−1, 0[. We prove it in an incremental way moving x from
657
+ −1 to 0. Let’s recall the hypergeometric expression:
658
+ G(z)
659
+ n (x) =
660
+ n−1
661
+
662
+ l=0
663
+ (2z + l)
664
+ n
665
+
666
+ k=0
667
+ (−1)k
668
+ 1
669
+ k!(n − k)!
670
+ �k−1
671
+ i=0 (2z + n + i)
672
+ �k−1
673
+ i=0 (z + 1/2 + i)2k (1 − x)k
674
+ =
675
+ n
676
+
677
+ k=0
678
+ (−1)k 2n�n
679
+ k
680
+
681
+ n!
682
+ �n+k−1
683
+ i=0
684
+ (z + i/2)
685
+ �k−1
686
+ i=0 (z + (2i + 1)/2)
687
+ (1 − x)k
688
+ =
689
+ n
690
+
691
+ k=0
692
+ 2n�n
693
+ k
694
+
695
+ n!
696
+ n+k−1
697
+
698
+ i=2k
699
+ (z + i/2)
700
+ k−1
701
+
702
+ i=0
703
+ (z + i)(x − 1)k
704
+ We will henceforth write Gn(x, z) as it is clear from the previous expression that it is indeed a
705
+ bivariate polynomial and not a rational fraction in z.
706
+ We start dealing with the extreme boundary. We have
707
+ (2)
708
+ Gn(x, z) = (−1)nGn(−x, z) =
709
+ n
710
+
711
+ k=0
712
+ 2n�n
713
+ k
714
+
715
+ n!
716
+ (−1)n+k
717
+ n+k−1
718
+
719
+ i=2k
720
+ (z + i/2)
721
+ k−1
722
+
723
+ i=0
724
+ (z + i)(x + 1)k
725
+ So that Gn(−1, z) = (−1)n 2n
726
+ n!
727
+ �n−1
728
+ i=0 (z +i/2), which is clearly realrooted in z with simple roots. We
729
+ can also check this property for x = 0:
730
+ Gn(0, z) =
731
+ Γ(n/2 + z)
732
+ Γ(z)Γ(n/2 + 1) =
733
+ 1
734
+ (n/2)!
735
+ j=n/2−1
736
+
737
+ j=0
738
+ (z + j)
739
+ when n is even
740
+ Gn(0, z) = 0
741
+ when n is odd
742
+ Also, each bivariate polynomial in the sum is of degree n in z so the sum is of degree at most n in
743
+ z. It is in fact of degree exactly n for x ̸= 0 by inspection of the coefficient of zn in the sum, which
744
+ is equal to
745
+ (−1)n 2n
746
+ n!
747
+ n
748
+
749
+ k=0
750
+ �n
751
+ k
752
+
753
+ (−1)k(1 + x)k = (−1)n 2n
754
+ n!
755
+
756
+ 1 − (1 + x)
757
+ �n = (−1)n 2n
758
+ n! (−x)n = (2x)n
759
+ n!
760
+ Notice that we can write, if n is even,
761
+ Gn(x, z) =
762
+ � n/2−1
763
+
764
+ j=0
765
+ (z + j)
766
+
767
+ ˜
768
+ Gn(x, z)
769
+ and if n is odd,
770
+ Gn(x, z) =
771
+ � (n−1)/2
772
+
773
+ j=0
774
+ (z + j)
775
+
776
+ ˜
777
+ Gn(x, z)
778
+
779
+ 8
780
+ AURELIEN GRIBINSKI EPFL
781
+ So that in all cases for x ̸= 0, we can write
782
+ Gn(x, z) =
783
+ � ⌈n/2⌉−1
784
+
785
+ j=0
786
+ (z + j)
787
+
788
+ ˜
789
+ Gn(x, z)
790
+ =
791
+ � ⌈n/2⌉−1
792
+
793
+ j=0
794
+ (z − µj)
795
+ �(2x)n
796
+ n!
797
+ ⌊n/2⌋
798
+
799
+ i=1
800
+
801
+ z − λi(x)
802
+
803
+ where µj = −j and the λi(x) are a priori complex roots defined only forx ̸= 0. But it simplifies
804
+ greatly for x = −1:
805
+ ˜
806
+ Gn(x, z)|x=−1 = 2n
807
+ n! (−1)n
808
+ ⌊n/2⌋
809
+
810
+ i=1
811
+ (z + 1/2 + i − 1)
812
+ so that λi(−1) = −1/2−(i−1) for i = 1, 2...⌊n/2⌋ are all real and distinct. That is, approximately
813
+ half of the roots in z, depending on the oddness, are constant when x is moving. We can therefore
814
+ investigate instead the evolution of the roots of Ln(x, z) to avoid considering roots that remain
815
+ constant (and real). First, let’s explain why roots will be indeed smooth and real for x close to −1.
816
+ Corollary 4.2 (Local realrootedness).
817
+ ˜
818
+ Gn(x, z) is real rooted of degree ⌊n/2⌋ in z with simple roots
819
+ in a neighborhood of x = −1.
820
+ Proof. We have
821
+ ˜
822
+ Gn(x, z)|x=−1 = 2n
823
+ n! (−1)n
824
+ ⌊n/2⌋
825
+
826
+ i=1
827
+ (z + 1/2 + i − 1)
828
+ which has ⌈n/2⌉ simple roots in z, so we just have to apply Lemma 2.1 with a = −1.
829
+
830
+ Lemma 4.3 (Local increasing property). The roots of ˜
831
+ Gn(x, z) in z are all strictly increasing when
832
+ x is, in a neighborhood of x = −1.
833
+ To prove this, we need some information on the derivatives with respect to x of the roots in the
834
+ neighborhood of −1.
835
+ Lemma 4.4. If we denote by λi(x) the roots of ˜
836
+ Gn(x, z) in decreasing order, then dlλi(x)
837
+ dxl
838
+ |x=−1 = 0
839
+ for 1 ≤ l < i, and diλi(x)
840
+ dxi
841
+ |x=−1 > 0.
842
+ Proof. Using Equation 2 we get that
843
+ ∂l
844
+ xGn(x, z)|x=−1 = l!2n�n
845
+ l
846
+
847
+ n!
848
+ (−1)n+l
849
+ n+l−1
850
+
851
+ j=2l
852
+ (z + j/2)
853
+ l−1
854
+
855
+ j=0
856
+ (z + j)
857
+ So that
858
+ ∂l
859
+ x ˜
860
+ Gn(x, z)|x=−1 = 2n�n
861
+ l
862
+
863
+ l!
864
+ n!
865
+ (−1)n+l
866
+ ⌈n/2⌉−1
867
+
868
+ j=l
869
+ (z + 1/2 + j)
870
+ n+l−1
871
+
872
+ j=n+1
873
+ (z + j/2)
874
+ So we see that
875
+ ∂l
876
+ x ˜
877
+ Gn(x, z)
878
+
879
+ − 1, λi(−1)
880
+
881
+ = 0 for i ≥ l + 1
882
+ and
883
+ (−1)n+i∂i
884
+ x ˜
885
+ Gn(x, z)
886
+
887
+ − 1, λi(−1)
888
+
889
+ = 2n�n
890
+ i
891
+
892
+ i!
893
+ n!
894
+ ⌈n/2⌉−1
895
+
896
+ j=i
897
+
898
+ j − (i − 1)
899
+ � n+i−1
900
+
901
+ j=n+1
902
+
903
+ (j − 1)/2 − (i − 1)
904
+
905
+ > 0
906
+ as i ≤ ⌊n/2⌋.
907
+
908
+ SPECIAL POLYNOMIALS AND NEW REAL-ROOTEDNESS RESULTS
909
+ 9
910
+ Now we have ˜
911
+ Gn
912
+
913
+ x, λi(x)
914
+
915
+ = 0 for all i, by definition, so differentiating with respect to x, we get:
916
+ dλi(x)
917
+ dx
918
+ = −∂x ˜
919
+ Gn
920
+ ∂z ˜
921
+ Gn
922
+
923
+ x, λi(x)
924
+
925
+ Note that the denominator is nonzero as the roots in z are simple at −1 ( so they won’t be roots
926
+ of the derivative in z). Using Leibniz’s formula and induction on l, we get for i > l ≥ 1,
927
+ dlλi(x)
928
+ dxl
929
+ |x=−1
930
+ = 0
931
+ And
932
+ diλi(x)
933
+ dxi
934
+ |x=−1
935
+ = −∂i
936
+ x ˜
937
+ Gn
938
+ ∂z ˜
939
+ Gn
940
+
941
+ − 1, λi(−1)
942
+
943
+ Now, we have ˜
944
+ Gn(x, z)|x=−1 = (−1)n 2n
945
+ n!
946
+ �⌈n/2⌉−1
947
+ j=0
948
+ (z + 1/2 + j) so that
949
+ ∂z ˜
950
+ Gn(x, z)
951
+
952
+ −1, λi(−1)
953
+
954
+ = (−1)n 2n
955
+ n!
956
+ ⌈n/2⌉−1
957
+
958
+ j=0,j̸=i−1
959
+
960
+ j−(i−1)
961
+
962
+ = (−1)n 2n
963
+ n! (−1)i−1
964
+ i−2
965
+
966
+ j=0
967
+
968
+ (i−1)−j
969
+ � ⌈n/2⌉−1
970
+
971
+ j=i
972
+
973
+ j−(i−1)
974
+
975
+ and it follows that (−1)n+i−1∂z ˜
976
+ Gn(x, z)
977
+
978
+ − 1, λi(−1)
979
+
980
+ > 0. Therefore
981
+ diλi(x)
982
+ dxi
983
+ |x=−1
984
+ > 0
985
+ as claimed.
986
+
987
+ Then Lemma 4.3 follows easily by Taylor expansion of the roots in x around 0 , as by some
988
+ asymptotic expansion at x = −1,
989
+ λi(x) = λi(−1) + (x + 1)i
990
+ i!
991
+ diλi(x)
992
+ dxi
993
+ |x=−1
994
+ + o((x + 1)i)
995
+ We have proved the ”initial condition” : now we need to look at the evolution of roots from a
996
+ differential equation point of view. First, let’s prove some intermediate results.
997
+ Lemma 4.5 (Simple roots). Assume λi(x) is real for x ∈] − 1, bi[, bi ≤ 0 ( such a bi > −1 exists
998
+ according to the previous local existence). Then ∂x ˜
999
+ Gn(x, λi(x)) and a fortiori ∂xGn(x, λi(x)) ( for
1000
+ i = 1, 2...⌊n/2⌋) can’t be zero for x ∈] − 1, bi[. Therefore it has a constant sign on this interval.
1001
+ Equivalently, Gn−1(x, λi(x)) can’t be zero either: that is we can’t have a nontrivial shared root for
1002
+ Gn−1(x, z) and Gn(x, z).
1003
+ Proof. We have ∂xGn(x, λi(x)) = �⌈n/2⌉−1
1004
+ j=0
1005
+
1006
+ λi(x) + j
1007
+
1008
+ ∂x ˜
1009
+ Gn
1010
+
1011
+ x, λi(x)
1012
+
1013
+ . We can’t use directly the
1014
+ results on the monotonicity of the roots of Gegenbauer polynomials when the paremeter is mov-
1015
+ ing, or the simplicity of the roots in x, because the parameter here is negative and orthogonal-
1016
+ ity results don’t apply. Let’s assume by contradiction that ∂x ˜
1017
+ Gn(x0, λi(x0)) = 0, and therefore
1018
+ ∂xGn(x0, λi(x0)) = 0 for some i and x0 ∈] − 1, bi[. As ∂xGn(x, λi(x)) is nonzero in a neighborhood
1019
+ of x = −1, x > −1(local monotonicity), then we can assume x0 is the smallest x > −1 such that
1020
+ ∂xGn(x, λi(x)) = 0. Therefore on ] − 1, x0], λi(x) is strictly increasing in x because
1021
+ dλi(x)
1022
+ dx
1023
+ = −∂x ˜
1024
+ Gn
1025
+ ∂z ˜
1026
+ Gn
1027
+
1028
+ x, λi(x)
1029
+
1030
+ As λi(−1) ≥ −(n − 1)/2 for all i, then (n + 2λi(x0) − 1) > 0, and using the differential equation
1031
+ (1 − x2
1032
+ 0)∂xGn(x0, λi(x0)) = −nxGn(x0, λi(x0)) + (n + 2λi(x0) − 1)Gn−1(x, λi(x0))
1033
+
1034
+ 10
1035
+ AURELIEN GRIBINSKI EPFL
1036
+ and the fact that Gn(x0, λi(x0)) = 0 (by definition), it would lead us to Gn−1(x0, λi(x0)) = 0. Then,
1037
+ using the recurrence relation (we have a fortiori 2n + 2λi(x0) > 0)
1038
+ n + 1
1039
+ 2n + 2λi(x0)Gn+1(x0, λi(x0)) = xGn(x, λi(x)) − n + 2λi(x0) − 1
1040
+ 2n + 2λi(x0) Gn−1(x0, λi(x0))
1041
+ we get successively by induction that Gn+k(x0, λi(x0)) = 0 for all k ∈ N, and using again the
1042
+ differential equation we get that ∂xGn+k(x0, λi(x0)) = 0 for all k ∈ N. But we have
1043
+ ∂xGn+k(x0, λi(x0)) = 2λi(x0)Gn+k−1(x0, λi(x0) + 1)
1044
+ so that Gn+k−1(x0), λi(x0) + 1) = 0 for all k ∈ N. Then it is easy to show by induction that
1045
+ Gn+k−1(x0, λi(x0) + j) = 0 for all j ∈ N, and for j larger than (n − 1)/2, the parameter is
1046
+ positive, and we are brought back to classical Gegenbauer polynomials. This means that successive
1047
+ Gegenbauer polynomials with parameter λi(x0)+j have a root in common, so that their derivatives
1048
+ share these roots too, which is absurd as their roots are simple by orthogonality. We conclude that
1049
+ ∂xGn(x, λi(x)) has a constant sign for all x ∈] − 1, bi[.
1050
+
1051
+ Theorem 4.6 (Interlacing roots, degree). Consider an interval I = [−1, b[ such that ˜
1052
+ Gn(x, z) has
1053
+ simple real roots in z on I, then the same will be true of ˜Gn−1(x, z) and their roots interlace.
1054
+ Proof. Let’s write
1055
+ ˜
1056
+ Gn(x, z) = (2x)n
1057
+ n!
1058
+ ⌊n/2⌋
1059
+
1060
+ i=1
1061
+
1062
+ z − λn
1063
+ i (x)
1064
+
1065
+ ˜Gn−1(x, z) = (2x)n−1
1066
+ (n − 1)!
1067
+ ⌊(n−1)/2⌋
1068
+
1069
+ i=1
1070
+
1071
+ z − λn−1
1072
+ i
1073
+ (x)
1074
+
1075
+ and show that for all x ∈ I, all i ≤ ⌊(n − 1)/2⌋, λn
1076
+ i (x) > λn−1
1077
+ i
1078
+ (x) > λn
1079
+ i+1(x). We first check the
1080
+ property locally, that is a neighborhood of −1, above −1. We have
1081
+ diλn
1082
+ i (x)
1083
+ dxi
1084
+ |x=−1
1085
+ = −∂i
1086
+ x ˜
1087
+ Gn
1088
+ ∂z ˜
1089
+ Gn
1090
+
1091
+ − 1, λi(−1)
1092
+ ��
1093
+ = −
1094
+ (−1)n+i 2n(n
1095
+ i)i!
1096
+ n!
1097
+ �⌈n/2⌉−1
1098
+ j=i
1099
+
1100
+ j − (i − 1)
1101
+ � �n+i−1
1102
+ j=n+1
1103
+
1104
+ (j − 1)/2 − (i − 1)
1105
+
1106
+ 2n
1107
+ n! (−1)n+i−1 �i−2
1108
+ j=0
1109
+
1110
+ (i − 1) − j
1111
+ � �⌈n/2⌉−1
1112
+ j=i
1113
+
1114
+ j − (i − 1)
1115
+
1116
+ =
1117
+ �n
1118
+ i
1119
+
1120
+ i! �n+i−1
1121
+ j=n+1
1122
+
1123
+ (j − 1)/2 − (i − 1)
1124
+
1125
+ �i−2
1126
+ j=0
1127
+
1128
+ (i − 1) − j
1129
+
1130
+ =
1131
+ n
1132
+ n − i
1133
+
1134
+ (n + i − 1)/2 − (i − 1)
1135
+
1136
+
1137
+ (n − 1)/2 − (i − 1)
1138
+
1139
+ �n − 1
1140
+ i
1141
+
1142
+ i!
1143
+ �n+i−2
1144
+ j=n
1145
+
1146
+ (j − 1)/2 − (i − 1)
1147
+
1148
+ �i−2
1149
+ j=0
1150
+
1151
+ (i − 1) − j
1152
+
1153
+ =
1154
+ n
1155
+ n − i
1156
+
1157
+ (n + i − 1)/2 − (i − 1)
1158
+
1159
+
1160
+ (n − 1)/2 − (i − 1)
1161
+
1162
+ diλn−1
1163
+ i
1164
+ (x)
1165
+ dxi
1166
+ |x=−1
1167
+ As
1168
+ n
1169
+ n−i
1170
+
1171
+ (n+i−1)/2−(i−1)
1172
+
1173
+
1174
+ (n−1)/2−(i−1)
1175
+
1176
+ > 1, we conclude that for all i, diλn
1177
+ i (x)
1178
+ dxi
1179
+ |x=−1 > diλn−1
1180
+ i
1181
+ (x)
1182
+ dxi
1183
+ |x=−1.
1184
+ As λn
1185
+ i (−1) = λn−1
1186
+ i
1187
+ (−1) = λi(−1) = −1/2 − (i − 1), we can do a Taylor expansion around x = −1:
1188
+ λn
1189
+ i (x) = λi(−1) + (x + 1)i
1190
+ i!
1191
+ diλn
1192
+ i (x)
1193
+ dxi
1194
+ |x=−1
1195
+ + o((x + 1)i)
1196
+ λn−1
1197
+ i
1198
+ (x) = λi(−1) + (x + 1)i
1199
+ i!
1200
+ diλn−1
1201
+ i
1202
+ (x)
1203
+ dxi
1204
+ |x=−1
1205
+ + o((x + 1)i)
1206
+ It is then clear that in a neighborhood of −1 and above −1, λn
1207
+ i (x) > λn−1
1208
+ i
1209
+ (x). As λn−1
1210
+ i
1211
+ (−1) −
1212
+ λn
1213
+ i+1(−1) = 1, we also get λn−1
1214
+ i
1215
+ (x) > λn
1216
+ i+1(x) in a neighborhood of −1. Now as for all i λn
1217
+ i (x), λn−1
1218
+ i
1219
+ (x), λn
1220
+ i+1(x)
1221
+ are continuous functions of x, if by contradiction such inequalities where to fail for some x ∈ I,
1222
+ then there would exist x0 such that λn
1223
+ i (x0) = λn−1
1224
+ i
1225
+ (x0) or λn−1
1226
+ i
1227
+ (x0) = λn
1228
+ i+1(x0).But then this would
1229
+
1230
+ SPECIAL POLYNOMIALS AND NEW REAL-ROOTEDNESS RESULTS
1231
+ 11
1232
+ mean that λn−1
1233
+ i
1234
+ (x0) is a root of Gn(x0, z) and Gn−1(x0, z), which is impossible by Lemma 4.5.
1235
+ Therefore we conclude that the inequality
1236
+ λn
1237
+ i (x) > λn−1
1238
+ i
1239
+ (x) > λn
1240
+ i+1(x)
1241
+ holds for allx ∈ I and i ≤ ⌊(n − 1)/2⌋. Notice that according to n, the polynomial ˜Gn(x, z) can be
1242
+ of the same degree than ˜Gn−1(x, z), or of degree one more.
1243
+
1244
+ Theorem 4.7 (Interlacing roots, derivative). Consider an interval I = [−1, b[ such that ˜Gn(x, z)
1245
+ has simple real roots in z on I, then the same will be true of ∂x ˜Gn(x, z) and the roots of the two
1246
+ polynomials interlace.
1247
+ Proof. We bring ourselves back to a variant of the previous theorem by using the equality
1248
+ ∂xGn(x, z) = 2zGn−1(x, z + 1)
1249
+ As
1250
+ ∂xGn(x, z) =
1251
+ � ⌈n/2⌉−1
1252
+
1253
+ j=0
1254
+ (z + j)
1255
+
1256
+ ∂x ˜Gn(x, z)
1257
+ Gn−1(x, z + 1) =
1258
+ � ⌈(n−1)/2⌉−1
1259
+
1260
+ j=0
1261
+ (z + j + 1)
1262
+
1263
+ ˜Gn−1(x, z + 1)
1264
+ We get
1265
+ ∂x ˜Gn(x, z) =
1266
+ �⌈(n−1)/2⌉−1
1267
+ j=0
1268
+ (z + j + 1)
1269
+ �⌈n/2⌉−1
1270
+ j=0
1271
+ (z + j)
1272
+ 2z ˜Gn−1(x, z + 1)
1273
+ And
1274
+ ∂x ˜Gn(x, z) = 2(z + n/2) ˜Gn−1(x, z + 1)
1275
+ if n is even
1276
+ ∂x ˜
1277
+ Gn(x, z) = 2 ˜Gn−1(x, z + 1)
1278
+ if n is odd
1279
+ So as −n/2 < mini,x λi(x) for all i and x, it amounts to proving that
1280
+ ˜
1281
+ Gn−1(x, z + 1) and ˜
1282
+ Gn(x, z)
1283
+ interlace.
1284
+ We want to show that for all x ∈ I, with x > −1, all i ≤ ⌊(n − 1)/2⌋, λn
1285
+ i (x) >
1286
+ λn−1
1287
+ i
1288
+ (x) − 1 > λn
1289
+ i+1(x).
1290
+ First we check this in a neighborhood of −1.
1291
+ We can check that the
1292
+ inequality λn
1293
+ i (x) > λn−1
1294
+ i
1295
+ (x) − 1 is going to be true in a neighborhood of −1 as λn
1296
+ i (−1) = λn−1
1297
+ i
1298
+ (−1).
1299
+ So the nontrivial one is the other one, λn−1
1300
+ i
1301
+ (x) − 1 > λn
1302
+ i+1(x) for x > −1. We have equality at the
1303
+ origin as λn
1304
+ i (−1) = λn−1
1305
+ i
1306
+ (−1) := λi(−1) and λi(−1) − 1 = λi+1(−1). Then we look at the Taylor
1307
+ expansions around x = −1:
1308
+ λn−1
1309
+ i
1310
+ (x) − 1 = λi+1(−1) + (x + 1)i
1311
+ i!
1312
+ diλn−1
1313
+ i
1314
+ (x)
1315
+ dxi
1316
+ |x=−1
1317
+ + o((x + 1)i)
1318
+ λn
1319
+ i+1(x) = λi+1(−1) + (x + 1)i+1
1320
+ (i + 1)!
1321
+ di+1λn
1322
+ i+1(x)
1323
+ dxi+1
1324
+ |x=−1
1325
+ + o((x + 1)i+1)
1326
+ It is clear then that locally λn−1
1327
+ i
1328
+ (x) − 1 > λn
1329
+ i+1(x) as (x + 1)i+1 << (x + 1)i. We extend the
1330
+ inequality to the whole interval I by noticing again that if the inequalities where not valid anymore,
1331
+ then there would have to be some equality λn
1332
+ i (x) = λn−1
1333
+ i
1334
+ (x) − 1 or λn−1
1335
+ i
1336
+ (x) − 1 = λn
1337
+ i+1(x), which
1338
+ would mean ∂x ˜
1339
+ Gn(x, λn−1
1340
+ i
1341
+ (x)) = 0 and as ˜
1342
+ Gn(x, λn−1
1343
+ i
1344
+ (x)) = 0, we would again get a contradiction
1345
+ by Lemma 4.5.
1346
+
1347
+ Lemma 4.8 (Global extension through ODE). The local property is in fact true over the whole
1348
+ interval:
1349
+ ˜
1350
+ Gn(x, z) is real rooted in z with simple (distinct) roots for for x ∈ [−1, 0[ , and they are
1351
+ all increasing to +∞ when x goes to zero.
1352
+
1353
+ 12
1354
+ AURELIEN GRIBINSKI EPFL
1355
+ Proof. Denote by Fn(x, z) := − ∂x ˜
1356
+ Gn
1357
+ ∂z ˜
1358
+ Gn
1359
+
1360
+ x, z
1361
+
1362
+ . Consider a rectangular domain D such that ∂z ˜
1363
+ Gn(x, z)
1364
+ is nonzero on the domain.
1365
+ Fn is continuous in x and z in the the domain D.
1366
+ Indeed, it is a
1367
+ rational fraction whose denominator is nonzero and it is therefore C∞ in both variables by theorem
1368
+ of composition. As ˜
1369
+ Gn(−1, z) is realrooted in z with simple roots, ∂z ˜
1370
+ Gn(−1, λi(−1)) ̸= 0 and by
1371
+ continuity we can find small rectangles Di := [−1, −1 + ǫ] × [λi(−1) − δ, λi(−1) + δ] such that
1372
+ ∂z ˜
1373
+ Gn(x, z) is nonzero on Di. A strong version of Picard’s theorem tells us that there is a maximal
1374
+ interval Imax
1375
+ i
1376
+ = [−1, ηi
1377
+ max[ for which the roots λi(x) (i = 1, 2...⌊n/2⌋) are the unique solutions of
1378
+ the initial value ODE
1379
+ dz
1380
+ dx = Fn(x, z),
1381
+ z(−1) = −1/2 − (i − 1)
1382
+ Note that on Imax
1383
+ i
1384
+ , ∂z ˜
1385
+ Gn(x, λi(x)) ̸= 0 (the denominator is nonzero, so that the differential equa-
1386
+ tion is well defined). Let’s prove that Imax
1387
+ i
1388
+ = [−1, 0[ (for all i) and that there is explosion at 0
1389
+ (roots going to infinity), the roots increasing constantly to +∞. The local Lemma 4.3 tell us that
1390
+ on a neighborhood of −1, Fn(x, λi(x)) > 0, and as by Lemma 4.5, the numerator is of constant
1391
+ sign and the denominator doesn’t vanish, then Fn(x, λi(x)) > 0 on Imax
1392
+ i
1393
+ .
1394
+ According to Picard’s theorem, we either have λi(x) →x→ηimax +∞ (explosion), or ηi
1395
+ max is such
1396
+ that lim Fn(x, λi(x)) is not well defined (we leave the domain of definition).
1397
+ Now, explosion can’t happen if ηi
1398
+ max < 0. Indeed, we have that
1399
+
1400
+ i
1401
+ λi(x) +
1402
+
1403
+ j
1404
+ µj = −Pn−1(x)
1405
+ (2x)n
1406
+ n!
1407
+ where Pn−1(x) is a polynomial of degree n − 1 as well as the coefficient of zn−1 in the expansion
1408
+ of Gn(x, z). So the sum of roots is bounded above by a constant, so there can be no explosion
1409
+ (necessarily to+∞ by monotonicity).
1410
+ We can leave the domain of definition only if limx→ηimax ∂z ˜
1411
+ Gn
1412
+
1413
+ x, λi(x)
1414
+
1415
+ = 0. If this is the case and
1416
+ if by contradiction ηi
1417
+ max < 0, we have seen that ∂z ˜
1418
+ Gn(ηi
1419
+ max, z) would be of degree exactly ⌊n/2⌋ − 1
1420
+ in z. Therefore it means that limx→ηimax λi(x) = µ where µ is a root of ∂z ˜
1421
+ Gn(ηi
1422
+ max, z). But then
1423
+ it means that we can extend by continuity λi(x) at x = ηi
1424
+ max with λi(ηmax) = µ. We check by
1425
+ continuity that ˜
1426
+ Gn
1427
+
1428
+ ηi
1429
+ max, λi(ηmax)
1430
+
1431
+ = ∂z ˜
1432
+ Gn
1433
+
1434
+ ηi
1435
+ max, λi(ηmax)
1436
+
1437
+ = 0 so that in fact λi(ηmax) is a real
1438
+ double root in z of ˜
1439
+ Gn
1440
+
1441
+ ηi
1442
+ max, z
1443
+
1444
+ . Using Lemma 4.7, as there is a root of ∂x ˜
1445
+ Gn(x, z) between any two
1446
+ roots of ˜
1447
+ Gn(x, z) in z by interlacing, it follows that necessarily ∂x ˜
1448
+ Gn
1449
+
1450
+ ηi
1451
+ max, λi(ηmax)
1452
+
1453
+ = 0. But this
1454
+ is impossible according to Lemma 4.5. Therefore, we have necessarily ηi
1455
+ max = 0 for all i = 1...⌊n/2⌋.
1456
+ Furthermore, assume by contradiction that there is no explosion for some index i at 0. As λi(x) is
1457
+ monotonous for x ∈] − 1, 0[, then we have necessarily that limx→0 λi(x) = µ exists and is finite. By
1458
+ continuity we have ˜
1459
+ Gn(0, µ) = 0. Let’s distinguish according to the parity of n. If n is even, we
1460
+ have ˜
1461
+ Gn(0, z) =
1462
+ Gn(0,z)
1463
+ �n/2−1
1464
+ j=0
1465
+ (z+j) =
1466
+ 1
1467
+ (n/2)! for all z, which shows the contradiction right away. If n is odd,
1468
+ then ∂z ˜
1469
+ Gn
1470
+
1471
+ x, λi(x)
1472
+
1473
+ = xQn
1474
+
1475
+ x, λi(x)
1476
+
1477
+ where Qn(0, z) = 2(−1)⌊n/2⌋
1478
+ (n−1)/2! . For x ∈ [−1, 0], xFn(x, λi(x)) is
1479
+ therefore bounded above as a continuous function on a compact. It is always nonpostive, and the
1480
+ maximum can’t be zero because it would mean that for an x ∈ [−1, 0], ∂xLn
1481
+
1482
+ x, λi(x)
1483
+
1484
+ = 0, which
1485
+ is impossible according to Lemma 4.5. Therefore it is always smaller than −K < 0.
1486
+ dλi(x)
1487
+ dx
1488
+ = 1
1489
+ xxFn(x, λi(x)) > −K
1490
+ x
1491
+ λi(x) − λi(−1) > −K log(|x|)
1492
+
1493
+ SPECIAL POLYNOMIALS AND NEW REAL-ROOTEDNESS RESULTS
1494
+ 13
1495
+ It would follow that λi(x) →x→0 +∞ which is contrary to the assumptions.
1496
+ We conclude that there is explosion for all i = 1...⌊n/2⌋.
1497
+
1498
+
1499
+ 5. Applications to realrootedness in x
1500
+ We start by recalling a well-known monotonicity result. In all the following we will consider z > 0.
1501
+ Lemma 5.1 (Monotonicity of the roots with respect to the parameter, from [1]). If xi(z) are
1502
+ the roots of L(z)
1503
+ n (x) (Laguerre), then
1504
+ d
1505
+ dzxi(z) ≥ 0, i ≤ n. Also, the positive roots yi of G(z)
1506
+ n (x)
1507
+ (Gegenbauer) are such that
1508
+ d
1509
+ dzyi(z) ≥ 0 and the negative symmetric such that
1510
+ d
1511
+ dzyi(z) ≤ 0.
1512
+ Lemma 5.2. For a fixed z, we have that the roots of ∂zLn(x, z) in x (of degree n − 1) are real and
1513
+ interlace those of Ln(x, z).
1514
+ Proof.
1515
+ Ln(x, z) =
1516
+ n
1517
+
1518
+ k=0
1519
+ (−1)k �n
1520
+ j=k+1(z + j)
1521
+ (n − k)!
1522
+ xk
1523
+ (3)
1524
+ From this expression it follows that ∂zLn(x, z) is of degree n − 1 in x.
1525
+ d
1526
+ dz xi = −∂zLn
1527
+ ∂xLn
1528
+ (xi(z), z)
1529
+ ∂zLn(xi(z), z) = −∂xLn(xi(z), z) d
1530
+ dz xi
1531
+ (4)
1532
+ ∂xLn(xi(z), z) changes sign when we increment i because Ln(xi(z), z) = 0 so the derivative changes
1533
+ sign when we go from one root to the next. As
1534
+ d
1535
+ dzxi ≥ 0, We get that ∂zLn(x, z) changes sign
1536
+ n − 1 times and therefore we have n − 1 real zeros between zeros of Ln. Therefore all the zeros of
1537
+ ∂zLn(x, z) have been found and are interlacing with the zeros of Ln(x, z).
1538
+
1539
+ Theorem 5.3. ∂zLn(x, z) and more generally ∂k
1540
+ z Ln(x, z) for all k ≤ n are real-rooted in x, and they
1541
+ form an interlacing family of decreasing degree, in the sense that ∂k+1
1542
+ z
1543
+ Ln(x, z) interlaces ∂k
1544
+ z Ln(x, z)
1545
+ and the roots are monotonously increasing in z.
1546
+ Proof. We show inductively the following property: ∂k+1
1547
+ z
1548
+ Ln(x, z) is realrooted, the roots of ∂k+1
1549
+ z
1550
+ Ln(x, z)
1551
+ interlace the roots of ∂k
1552
+ z Ln(x, z) and are increasing in z. We start with the initial condition. Using
1553
+ 5.2, we get the real-rootedness and interlacing property for ∂zLn(x, z). Now we need to prove that
1554
+ the roots ˜xi(z) (i = 1...n − 1) of ∂zLn(x, z) also share the monotonicity property.
1555
+ ∂zLn( ˜xi(z), z) = 0
1556
+ Which lead to
1557
+ ∂zLn
1558
+ Ln
1559
+ ( ˜xi(z), z) = 0
1560
+ d(∂zLn
1561
+ Ln ( ˜xi(z), z)
1562
+
1563
+ dz
1564
+ = ∂x
1565
+ �∂zLn
1566
+ Ln
1567
+ ( ˜xi(z), z)
1568
+ �d ˜xi
1569
+ dz + ∂z
1570
+ �∂zLn
1571
+ Ln
1572
+ ( ˜xi(z), z)
1573
+
1574
+ = 0
1575
+ (5)
1576
+ We want to show that
1577
+ d ˜xi
1578
+ dz ≥ 0
1579
+ On the one hand,
1580
+ ∂zLn
1581
+ Ln
1582
+ ( ˜xi(z), z) =
1583
+ n
1584
+
1585
+ j=1
1586
+ ∂zLn
1587
+ ∂xLn
1588
+ (xj, z)
1589
+ 1
1590
+ ˜xi − xj
1591
+ So that
1592
+ ∂x
1593
+ �∂zLn
1594
+ Ln
1595
+ ( ˜xi(z), z)
1596
+
1597
+ = −
1598
+ n
1599
+
1600
+ j=1
1601
+ ∂zLn
1602
+ ∂xLn
1603
+ (xj, z)
1604
+ 1
1605
+ ( ˜xi − xj)2 =
1606
+ n
1607
+
1608
+ j=1
1609
+ dxj
1610
+ dz
1611
+ 1
1612
+ ( ˜xi − xj)2 ≥ 0
1613
+ (6)
1614
+
1615
+ 14
1616
+ AURELIEN GRIBINSKI EPFL
1617
+ On the other hand, using the real-rootedness in z, as ˜xi ∈ [0, +∞[ by the interlacing property, then
1618
+ ∂z
1619
+ �∂zLn
1620
+ Ln
1621
+ ( ˜xi(z), z)
1622
+
1623
+ ≤ 0
1624
+ using Laguerre inequality for realrooted polynomials, stating that ∂zzLnLn − (∂zLn)2 ≤ 0. We
1625
+ conclude by gathering the two inequalities.
1626
+ The induction is proven using exactly the same method, given that
1627
+ ∂z
1628
+ �∂k+1
1629
+ z
1630
+ Ln
1631
+ ∂kz Ln
1632
+
1633
+ ≤ 0
1634
+ Because ∂k
1635
+ z Ln(x, z) is realrooted in z as the derivative of a realrooted polynomial, and x in the
1636
+ appropriate interval.
1637
+
1638
+ Lemma 5.4. 0 is a root of ∂k
1639
+ z Gn(x, z) for all k ≤ n, when n is odd.
1640
+ Proof. It comes directly from the formula
1641
+ Gn(x, z) =
1642
+ ⌊n/2⌋
1643
+
1644
+ k=0
1645
+ (−1)k Γ(n − k + z)
1646
+ Γ(z)k!(n − 2k)!(2x)n−2k
1647
+
1648
+ Lemma 5.5. For a fixed z > 0, we have that the roots of ∂zGn(x, z) in x (of degree n) are real
1649
+ and the positive ones interlace those of Gn(x, z) by below (that is the largest root in module belongs
1650
+ to Gn(x, z)).
1651
+ Proof.
1652
+ Gn(x, z) =
1653
+ ⌊n/2⌋
1654
+
1655
+ k=0
1656
+ (−1)k Γ(n − k + z)
1657
+ Γ(z)k!(n − 2k)!(2x)n−2k
1658
+ (7)
1659
+ From this expression it follows that ∂zGn(x, z) is of degree n in x, as the coefficient of xn is 2n Γ(n+z)
1660
+ Γ(z)n! .
1661
+ Let’s denote the roots of Gn(x, z) by yi, then by differentiating the equality Gn(x, z) = 0 with
1662
+ respect to z we get
1663
+ d
1664
+ dz yi = −∂zGn
1665
+ ∂xGn
1666
+ (yi(z), z)
1667
+ ∂zGn(yi(z), z) = −∂xGn(yi(z), z) d
1668
+ dz yi
1669
+ (8)
1670
+ ∂xGn(yi(z), z) changes sign when we increment i because Gn(yi(z), z) = 0 so the derivative −∂xGn(yi(z), z)
1671
+ changes sign when we go from one root to the next (the roots are simple). Let’s distinguish between
1672
+ the even and odd cases. In the even case,
1673
+ d
1674
+ dzyi ≥ 0 when i = 1..n/2, and it gives us by the sign rule
1675
+ i = 1..n/2 − 1 positive roots. Now there is still one root missing, and we can check that the sign
1676
+ of ∂zGn(yn/2(z), z) is opposite to the sign of ∂zGn(0, z), and as ∂zGn(−yn/2(z), z) has the same
1677
+ sign by symmetry there has to be a root between both, and actually two, one positive and one
1678
+ negative by symmetry. We get n roots overall. In the odd case, 0 is a root, and we have again two
1679
+ roots missing. But if yl denotes the positive smallest root, then ∂zGn(yl(z), z) has the same sign as
1680
+ ∂zGn(−yl(z), z) and so as 0 is a root we need to have at least two other roots by some easy change
1681
+ of sign argument. Therefore all the zeros of ∂zGn(x, z) have been found and the positive ones are
1682
+ interlacing with the zeros of Gn(x, z).
1683
+
1684
+ Theorem 5.6. ∂zGn(x, z) and more generally ∂k
1685
+ z Gn(x, z) for all k ≤ n are real-rooted in x for
1686
+ z > 0, and the positive roots are monotonously increasing in z, and their symmetric negative
1687
+ counterpart monotonously decreasing in z.
1688
+
1689
+ SPECIAL POLYNOMIALS AND NEW REAL-ROOTEDNESS RESULTS
1690
+ 15
1691
+ Proof. We have
1692
+ Gn(−x, z) = (−1)nGn(x, z)
1693
+ ∂zGn(−x, z) = (−1)n∂zGn(x, z)
1694
+ (9)
1695
+ So that if we have a root ˜y of ∂zGn(x, z), then its symmetric −˜y will also be a root of ∂zGn(x, z). In
1696
+ other terms, ∂zGn(x, z) and more generally , ∂k
1697
+ z Gn(x, z) have symmetric roots. We show inductively
1698
+ the following property: ∂k+1
1699
+ z
1700
+ Gn(x, z) is realrooted, the positive roots of ∂k+1
1701
+ z
1702
+ Gn(x, z) interlace the
1703
+ positive roots of ∂k
1704
+ z Gn(x, z) and the positive roots are increasing with z. We start with the initial
1705
+ condition. Using 5.2, we get the real-rootedness and interlacing property for ∂zGn(x, z). Now we
1706
+ need to prove that the positive roots ˜yi(z) of ∂zGn(x, z) also share the monotonicity property.
1707
+ ∂zGn( ˜yi(z), z) = 0
1708
+ which leads to
1709
+ ∂zGn
1710
+ Ln
1711
+ ( ˜yi(z), z) = 0
1712
+ d(∂zGn
1713
+ Gn ( ˜yi(z), z)
1714
+
1715
+ dz
1716
+ = ∂x
1717
+ �∂zGn
1718
+ Gn
1719
+ ( ˜yi(z), z)
1720
+ �d ˜yi
1721
+ dz + ∂z
1722
+ �∂zGn
1723
+ Gn
1724
+ ( ˜yi(z), z)
1725
+
1726
+ = 0
1727
+ (10)
1728
+ We want to show that for the positive roots,
1729
+ d ˜yi
1730
+ dz ≥ 0
1731
+ On the one hand,
1732
+ ∂zGn
1733
+ Gn
1734
+ ( ˜yi(z), z) =
1735
+ n
1736
+
1737
+ j=1
1738
+ ∂zGn
1739
+ ∂xGn
1740
+ (yj, z)
1741
+ 1
1742
+ ˜yi − yj
1743
+ so that
1744
+ ∂x
1745
+ �∂zGn
1746
+ Ln
1747
+ ( ˜yi(z), z)
1748
+
1749
+ = −
1750
+ n
1751
+
1752
+ j=1
1753
+ ∂zGn
1754
+ ∂xGn
1755
+ (xj, z)
1756
+ 1
1757
+ ( ˜yi − yj)2 =
1758
+ n
1759
+
1760
+ j=1
1761
+ dyj
1762
+ dz
1763
+ 1
1764
+ ( ˜yi − yj)2
1765
+ (11)
1766
+ =
1767
+ ⌊n/2⌋
1768
+
1769
+ j=1
1770
+ dyj
1771
+ dz
1772
+
1773
+ 1
1774
+ ( ˜yi − yj)2 −
1775
+ 1
1776
+ ( ˜yi + yj)2
1777
+
1778
+ = 4˜yi
1779
+ ⌊n/2⌋
1780
+
1781
+ j=1
1782
+ dyj
1783
+ dz yj
1784
+ ( ˜yi − yj)2( ˜yi + yj)2
1785
+ (12)
1786
+ As we have ˜yi > 0 and dyi
1787
+ dz ≥ 0 as well as yj > 0 we get
1788
+ ∂x
1789
+ �∂zGn
1790
+ Ln
1791
+ ( ˜yi(z), z)
1792
+
1793
+ ≥ 0
1794
+ On the other hand, using the real-rootedness in z, as ˜yi ∈ [−1, 1] by the interlacing property, then
1795
+ ∂z
1796
+ �∂zGn
1797
+ Gn
1798
+ ( ˜yi(z), z)
1799
+
1800
+ ≤ 0
1801
+ using Laguerre inequality for realrooted polynomials, stating that ∂zzGnGn − (∂zGn)2 ≤ 0. We
1802
+ conclude by gathering the two inequalities.
1803
+ The induction is proven using exactly the same method, given that
1804
+ ∂z
1805
+ �∂k+1
1806
+ z
1807
+ Gn
1808
+ ∂kz Gn
1809
+
1810
+ ≤ 0
1811
+ Because ∂k
1812
+ z Gn(x, z) is realrooted in z as the derivative of a realrooted polynomial, and x in the
1813
+ appropriate interval ([−1, 1]).
1814
+
1815
+
1816
+ 16
1817
+ AURELIEN GRIBINSKI EPFL
1818
+ References
1819
+ [1] G. Szego. Orthogonal polynomials. AMS, Providence, RI MR 51 (1975): 8724.
1820
+
atAyT4oBgHgl3EQfv_nZ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
b9E1T4oBgHgl3EQfdgQp/content/tmp_files/2301.03195v1.pdf.txt ADDED
@@ -0,0 +1,1409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Thermodynamics
2
+ in Stochastic Conway’s Game of Life
3
+ Krzysztof Pomorski1A,2 and Dariusz Kotula1B
4
+ 1 Cracow University of Technology
5
+ A: Faculty of Electrical and Computer Engineering
6
+ B: Faculty of Computer Science and Telecommunications
7
+ 2 Quantum Hardware Systems (www.quantumhardwaresystems.com)
8
+ Abstract. Cellular automata can simulate many complex physical phenomena using the
9
+ power of simple rules. The presented methodological platform expresses the concept of pro-
10
+ grammable matter in which Newton’s laws of motion are one of examples. Energy has been
11
+ introduced as the equivalent of the ”Game of Life” mass, which can be treated as first level of
12
+ approximation. The temperature presence and propagation was calculated for various lattice
13
+ topology and boundary conditions by using the Shannon entropy measure. The conducted
14
+ study provides strong evidence that despite not fulfillment the principle of mass and energy
15
+ conservation, the entropy, mass distribution and temperatures approaches thermodynamic
16
+ equilibrium. In addition, the described cellular automata system transits from positive to a
17
+ negative temperatures that stabilizes and can be treated as a signature of system dynami-
18
+ cal equilibrium. Furthermore, the system dynamics was presented in case of few species of
19
+ cellular automata competing for maximum presence on given lattice with different boundary
20
+ conditions.
21
+ 1
22
+ Introduction to Classical Conway’s Game of Life (CCGoL)
23
+ A cellular automaton is a system consisting of cells arranged most often on a one, two or three
24
+ dimensional regular lattice, which at a given moment are in one of M-th possible states expressing
25
+ M-valued logic. The dynamics of the model depends on the definition of individual cell states and
26
+ the rules of transitions between them [13]. One of the simplest examples is a one-dimensional cellular
27
+ automaton. Suppose that the cells placed on the lattice can be in one of two states, which are marked
28
+ with white (default assigned to dead state or logical zero) or black color (default assigned to alive
29
+ state or logical one). We define a rule that if a given cell is black, then the cell to the right of it will
30
+ change its state. This situation is depicted in a Figure 1. We can observe how the system changes
31
+ in the subsequent steps of the simulation. The parameter determining the change of the cell state
32
+ is the state of the left neighbour of a given cell. There are many other possibilities to choose such a
33
+ parameter, e.g. the condition of the state of both neighboring cells or having the nearest neighbors
34
+ with opposite states. In order to determine system dynamics, we must have a defined initial cellula
35
+ automata states (information about initial system dynamical state) and a specific set of deterministic
36
+ or probabilistic rules.
37
+ arXiv:2301.03195v1 [nlin.CG] 9 Jan 2023
38
+
39
+ Fig. 1: Evolution of a one-dimensional cellular automaton in successive cycles with left side partial
40
+ logical negation rule (if the state of nearest left cell is alive then given automata cell change its state
41
+ to opposite).
42
+ The Conway’s Game of Life [3] is an example of a cellular automaton with a deterministic rules. It
43
+ was proposed in 1970 by John Conway and cellular automaton system consists of cells located on
44
+ a two-dimensional lattice, which can be in one of two states: alive or dead. The rules specify the
45
+ required number of neighbors and cell states that are taken into account to determine their state in
46
+ the next cycle. Given the neighborhood through the 8 closest cells, we can write the 3 main rules of
47
+ the Classical Conway’s Game of Life (CCGoL):
48
+ 1. If a dead cell has exactly 3 neighbors, it comes alive in the next cycle.
49
+ 2. If a living cell has 2 or 3 neighbors, it survives in the next cycle.
50
+ 3. If a cell has a different number of neighbors than stated above, it will be dead in the next cycle.
51
+ The rules defined in this way allow for the generation of various types of structure topologies with
52
+ automaton state set to 1, as shown in Figure 2. The most common are ”unstable structures”, which
53
+ change in successive cycles, but do not return to their initial state. A single cell cannot survive on the
54
+ lattice, because it has less than 2 neighbors. Dead cell surrounded by alife cells cannot come to life,
55
+ because it has number of neighbors is different from 3. If the simulation is continuing sufficiently
56
+ long time, on the lattice usually remain structures that are unchanging in time - ”still lifes” (an
57
+ example is the ”block” shown in the Figure 2) or changing in time in periodic way, so they return to
58
+ their original shape after k cycles - ”oscillators” (an example is the ”blinker” shown in the Figure 2).
59
+ There are also structures that move in a certain direction - ”gliders” (Figure 3) that are analogical
60
+ to 1st Newton dynamics preserving momentum (speed and direction of propagation in this case),
61
+ leave a trace of ”blinkers” - ”star ships” and objects, which periodically eject ”gliders” - ”guns” [8].
62
+ Figure 4 shows one among many existing in the Conway’s Game of Life oscillators during successive
63
+ iterations of the system simulation.
64
+ The ”toad” oscillator has a period of 2, which means that it has continuous switching between 2
65
+ different fixed configurations. Each 2-dimensional discrete lattice field has a specified number that
66
+ indicates the number of neighbors of the given cell. If the number is green, the cell will be alive in
67
+ the next cycle. If the number is blue, that cell will be dead in the next cycle.
68
+
69
+ step 0
70
+ step 1
71
+ step 2
72
+ step 3Fig. 2: Evolution of various topologies of cellular automata structures in time with deterministic
73
+ rules of CCGoL. One can identify two dynamically unstable structures and two structures that have
74
+ dynamical stability with time.
75
+ (a)
76
+ (b)
77
+ (c)
78
+ (d)
79
+ (e)
80
+ Fig. 3: Evolution of the ”glider” configuration of cellular automata having propagation property with
81
+ time in deterministic CCGoL.
82
+ Fig. 4: Evolution of the ”toad” configuration of cellular automata being an oscillator in successive
83
+ cycles in CCGoL.
84
+
85
+ step 0
86
+ step 1
87
+ step 2
88
+ Unstable structure 1
89
+ Unstable structure 2
90
+ Still life "block"
91
+ Oscilator "blinker"3
92
+ 1
93
+ 2
94
+ 2
95
+ 3
96
+ 2
97
+ 2
98
+ 2
99
+ 3
100
+ 2
101
+ 3
102
+ 3
103
+ 2
104
+ 3
105
+ 3
106
+ 4
107
+ 3
108
+ 3
109
+ m
110
+ 2
111
+ 2
112
+ 2
113
+ 3
114
+ 2
115
+ 2
116
+ 2
117
+ 72
118
+ Introduction to Stochastic Classical Conway’s Game of Life (SCCGoL)
119
+ The Stochastic Classical Conway’s Game of Life (SCCGoL) was created by an addition of a cell spon-
120
+ taneous change probability to the rules that were initially deterministic, so stochastic determinism
121
+ was achieved. With a given prefixed spontaneous probability value, the state of the cell can change
122
+ regardless of the number of neighbors. Cell states have values between 0 and 1 and are called mass.
123
+ Due to the fact that SCCGoL have different rules from CCGoL, cells have almost never exactly two
124
+ or three neighbors. A condition for given cell to come to life from a dead cell state (creationism of
125
+ alife cell) is by having a number of neighbors in a certain range of values. Similar rules applies to
126
+ a living cell justifying its alife or dead state in next time iteration. By setting standard intervals of
127
+ allowed/forbidden number of neighbours values, in which cell is alife/dead and by adding the addi-
128
+ tional spontaneous rule probability for cell to change in the next iteration (probability of changing
129
+ the state of a cell regardless of the number of neighbors), we are able to create a simulator, where the
130
+ cells never die or it is very difficult from a probabilistic point of view for a given cell to stay alive.
131
+ If, maintaining standard neighbours condition for being dead/alife in previously defined intervals
132
+ and having a selected initial cell alife automata configuration, we can systematically increase the
133
+ spontaneous probability level from 0% to 100%, and we result in the graph as depicted in Figure
134
+ 5. Simulations were conducted for a lattice size 10 by 10 with the initial condition of a cellular
135
+ (a)
136
+ (b)
137
+ (c)
138
+ Fig. 5: (a) Schematic view of initial conditions in SCCGoL. (b-c) Dependence of automata population
139
+ average cycle lifetime (over 1000 trials) on probability of spontaneous change of cell state from life
140
+ to dead and reversely with preservation of standard rules in Conway’s Game of Life.
141
+ automaton 2 by 2 (Figure 5a) with limited maximum number of cycles set to 1000 in conducted
142
+ simulations. For a probability of changing the state of a cell regardless of the number of neighbors
143
+ equal to zero, there is full determinism, therefore it is a situation of CCGoL with changed numbers of
144
+ neighbors. As the probability increases (in range from 0 to 2%), the life expectancy of the population
145
+ decreases due to too few neighbors. Starting simulation from a probability level close to two percent
146
+
147
+ Life expectancy of the population
148
+ cycleofl
149
+ Aoverage denth
150
+ 240
151
+ 0
152
+ 0
153
+ 24
154
+ 4
155
+ 140
156
+ The probability of changing the stabe of a cell
157
+ regardless of the number of neighbors (%]Life expectancy of the population
158
+ Aaverage deeth cycle of the populatior
159
+ 10F
160
+ 102
161
+ 10~2
162
+ 10-
163
+ 100
164
+ 101
165
+ The probability pf changing the stabe of a cell
166
+ regardless of the number of neighbor's (%](probability of changing the state of a cell regardless of the number of neighbors), the average life
167
+ expectancy of the population begins to rise, which is caused by the more frequent appearances of
168
+ living cells. Conducting the simulation with a probability level above eighteen percent we observe
169
+ that the population practically never dies and keeps average cycle life time being at least 1000 or
170
+ more time iterations.
171
+ 3
172
+ Generalization of Stochastic Classical Conway’s Game of Life
173
+ (SCCGoL) to the case of N competing cellular automata species
174
+ The created simulation platform enables to create N different cellular automata species that com-
175
+ petes between themselves for the resources enabling them to replicate. The given automata species
176
+ has better replication properties within its own community and worse replication properties in case
177
+ of neighbors being of different species. Such situation is normally encountered in human population
178
+ when people of one homogenous identity prefer to collaborate more than in the case of people hav-
179
+ ing much different identity (being from different tribes). Due to that fact soft antagonistic relation
180
+ between different species is introduced indirectly by means of higher level of tolerance (or effective-
181
+ ness of replication) towards neighbors of own species than neighbors of other species (other different
182
+ species are treated in the same way). In real way this is an analogy of members collaboration of a
183
+ given nation or culture within given culture or community versus different culture or community.
184
+ Let us consider N = 4 (number of different automata species), so we have the following determined
185
+ formula for number of effective existing neighbors Neeffective,k for given k-th tribes as:
186
+ Neeffective,k = a1,kNe1 + a2,kNe2 + ... + ak,kNek + ... + ak,NNeN.
187
+ (1)
188
+ Previously defined replication rules promoting its own species can be formally expressed by following
189
+ condition (max(as,k) = ak,k and ak,k > as,k if s ̸= k). In the conducted simulations all tribes have
190
+ assigned the same value (a1,1 = a2,2 = a3,3 = a4,4 = 1
191
+ 2) and another same value for (a1,2 = a1,3 =
192
+ a1,4 = a2,1 = a2,3 = a2,4 = a3,1 = a3,2 = a3,4 = a4,1 = a4,2 = a4,3 =
193
+ 1
194
+ 3) what simply means
195
+ that automata tribes promotes its own tribe and only partly promotes other tribes with no special
196
+ distinction on which different tribe it is pointing to. Cellular automata species distribution for k-th
197
+ tribe across two-dimensional lattice is generated with use of a two-dimensional Gaussian distribution
198
+ given as follows:
199
+ f(x, y)k = Ake
200
+
201
+
202
+ (x−x0,k)2
203
+ 2σ2
204
+ x,k
205
+ +
206
+ (y−y0,k)2
207
+ 2σ2
208
+ y,k
209
+
210
+ ,
211
+ (2)
212
+ where f(x, y)k is a mass function depending on the cell coordinates, (x0,k; y0,k) the center of the
213
+ given cellular automaton species. Given parameters A0,k and σx,k, σy,k can control the mass of
214
+ species and spread across the ”Globe” as depicted in Figure 6. In the case of several species on
215
+ the lattice, SCCGoL simulation results promote the formation of new cells among the species that
216
+ has the most mass in the neighborhood as in accordance in the Figure 7. During life cycle always
217
+ newly formed cell has a mass that is more dependent on cells of the same species than other species
218
+ of its neighbors. We observed that automata species fight each other in order to spread across the
219
+ lattice and exclude other species what is an expression of some form of biological Darwinism being
220
+ a consequence of formula 1.
221
+
222
+ (a)
223
+ (b)
224
+ Fig. 6: (a) Case of mass distribution of cellular automata of one species using a two-dimensional
225
+ Gaussian function being isotropic. (b) Example of initial distribution of three cellular automata tribes
226
+ with the case of boundary existence between each separate tribe with a rule that one geometrical
227
+ place on the lattice is occupied by cellular automata of given species with dominant mass.
228
+ (a)
229
+ (b)
230
+ Fig. 7: Evolution of map distribution of 4 cellular automata populations of different species with 100
231
+ by 100 lattice size. One can spot effective tendency of each species to occupy maximum possibly
232
+ territory at the cost of other species in 4-species SCCGoL (SCCGoL4S) what can be understand as
233
+ occurrence of weak antagonistic relation
234
+ 4
235
+ Methodology of description of SCCGoL dynamics by tools of classical
236
+ statistical physics
237
+ Adding probability to the initially deterministic Game of Life and changing the interaction rules
238
+ between neighboring automata brought the necessity for a new quantity called mass that has con-
239
+ tinuous real values (other than 0 and 1 present in deterministic Game of Life). At this stage vividness
240
+ of the whole cellular automata population can be understood and approximated by the population
241
+ total energy (where simply mass is equal to energy). The level of the automata distribution order is
242
+ expressed by the entropy. Entropy was introduced by Rudolf Clausius in 1865 as a thermodynamic
243
+ state function [11]. If the entropy at the initial state and the entropy of the final state are devoted
244
+ by Si and Sf respectively, then we have:
245
+ Sf − Si =
246
+ � f
247
+ i
248
+ dE
249
+ T , dS
250
+ dE = 1
251
+ T
252
+ (3)
253
+
254
+ Very last formula gives definition of a temperature under assumption that energy and entropy is
255
+ defined that is the case. We use instead of thermodynamic entropy the Shannon entropy measure
256
+ given as:
257
+ SShannon = −
258
+
259
+ i,j
260
+ p(xi, yj) log p(xi, yj) = E [− log p(x, y)]
261
+ (4)
262
+ In order to calculate the probability in the equation 4, the SCCGoL simulation is repeated several
263
+ hundred times, so one determines an average population cell mass in successive cycles. The calcula-
264
+ tion of the temperature, which is a measure of thermal state was achieved with an equation 3 with
265
+ a changed form:
266
+ T(x, y, t) =
267
+ dE(x,y,t)
268
+ dt
269
+ dSShannon(x,y,t)
270
+ dt
271
+ =
272
+ dE(x, y, t)
273
+ dSShannon(x, y, t)
274
+ (5)
275
+ The temperature defined by last formula can be calculated by two different methods. The first
276
+ method relies on the calculation of the energy and entropy for the entire system, and then numerical
277
+ calculation of the derivative of energy in function of entropy. The second calculation approach is
278
+ to differentiate mass and entropy with respect to simulation time for each cell and as a result of
279
+ corresponding ratio we obtain a temperature map. The example of evolution of mass and entropy
280
+ for SCCGoL is depicted in Figure 8 and shows maximization and saturation of entropy, what is
281
+ confirmation of Second Thermodynamic Law that is valid in physical systems, while we are dealing
282
+ with cellular automata system. On another hand the mass of a system saturates and increases to
283
+ certain critical value as given in left part of Figure 8.
284
+ Fig. 8: Evolution of mass and entropy in successive cycles in SCCGoL manifesting maximization with
285
+ saturation and approaching stationary thermodynamical equilibrium with initial condition depicted
286
+ in Figure 9.
287
+ 5
288
+ Numerical analysis of SCCGoL dynamics with methodology of
289
+ classical statistical physics
290
+ Numerical simulations were carried out for 4 topologies cellular automata (case of Figures 9a, 11a,
291
+ 13a, 15a). We preinpose such a rule that given alive cell has 20% probability of changing its state
292
+ to dead state and that initially dead cell has 20% probability of changing its state to alive with
293
+ a mass choose randomly from an interval value in (0,0.5). Still given cell state is depended on its
294
+ neighbors, since it has 80% probability of changing its state due to state of neighbors. In order
295
+ to obtain cellular automata probability map dynamics, simulations average of cellular automata
296
+ positions was conducted. Figure 10 shows results that were obtained for a lattice size 100 by 100
297
+ with a one cell alive as initial lattice state (case of Figure 9a). With subsequent cycles, the cells
298
+
299
+ Mass
300
+ Entropy
301
+ 25000
302
+ 800
303
+ 20000
304
+ 600
305
+ 15000
306
+ 400
307
+ 10000
308
+ 200
309
+ 5000
310
+ 0
311
+ 0
312
+ 0
313
+ 25
314
+ 50
315
+ 75
316
+ 100
317
+ 125
318
+ 150
319
+ 175
320
+ 200
321
+ 0
322
+ 25
323
+ 50
324
+ 75
325
+ 100
326
+ 125
327
+ 150
328
+ 175
329
+ 200
330
+ Cycle
331
+ Cycle(a)
332
+ (b)
333
+ Fig. 9: Evolution of diffusion process in cellular automata system for a limited lattice size 100 by 100
334
+ in SCCGoL (averaged over 1000 trials). It shows final saturation of mass and entropy (as depicted
335
+ in Figure 8) what implies approaching thermodynamical equilibrium with characteristic fluctuations
336
+ of mass and entropy around effective stationary values.
337
+ occupy more and more space on the lattice, which can be seen as increase the mass of the entire
338
+ system (possible mass creationism is inherent feature of Conway’s Game of Life). The sum of the
339
+ masses of all cells in successive cycles is depicted in Figure 8 with a comparison of the entropy
340
+ change of the entire system. As we observe in Figure 10e, high entropy occurs at the edges of the
341
+ population, which is caused by the entropy wave that meets area with almost zero cell occurrence.
342
+ Before equilibrium is established, the entropy of the system slightly decreases due to the loss of this
343
+ extra entropy at the edges as can be seen in the right part of Figure 8. Having established those two
344
+ quantities, we conduct their differentiating with respect to time, and by formula 3 one can establish
345
+ the whole effective temperature of system by dividing change of mass at given time by change of
346
+ the entropy. Figure 10k shows the greater susceptibility of the entropy change to the constraints
347
+ associated with the limited size of the simulation lattice that is ended with impenetrable walls. The
348
+ dependence of mass derivative with respect to time simulation (case of Figure 10j) does not have
349
+ such large oscillations as in the case of entropy derivative with simulation simulation (case of Figure
350
+ 10k). The temperature calculated by such procedure gives values just above zero (slightly positive)
351
+ up to the 50’th cycle. We can see a large down peak caused by a slowdown in entropy increase.
352
+ From about the 75’th cycle, the temperature of the system goes from positive to negative values.
353
+ A Figure 10l) describes anomalous thermalization process in SCCGoL with a case of approaching
354
+ temperature and entropy equilibrium. Surprisingly, the thermodynamic equilibrium is achieved for
355
+ a case for negative temperatures. A second possible approach in determination the temperature is
356
+ by use the derivatives of the mass and entropy with respect to time of the individual cells and by
357
+ obtaining a temperature map of all cells. The temperature depicted in Figure 10i is mostly negative
358
+ and steady, what corresponds to a situation where mass and entropy have come to equilibrium. We
359
+ can distinguish two regions in the simulation, the first one with no temperature gradient and zero
360
+ negative temperature and the second region with non-zero temperature gradient that also include
361
+ positive temperatures. The place, where time derivatives of mass and entropy have noticeable values
362
+ is at the edges of automata population, where we observe slightly positive temperature, which
363
+ corresponds to the situation in Figure 10l before the 75’th cycle.
364
+
365
+ ■(a) Mass at t=4
366
+ (b) Mass at t=26
367
+ (c) Mass at t=92
368
+ (d) Entropy at t=4
369
+ (e) Entropy at t=26
370
+ (f) Entropy at t=92
371
+ (g) T(x,y,t=4)
372
+ (h) T(x,y,t=26)
373
+ (i) T(x,y,t=92)
374
+ (j) dm
375
+ dt with time
376
+ (k) dS
377
+ dt with time
378
+ (l) Temperature with time
379
+ Fig. 10: Dynamics of thermodynamical parameters (mass, entropy and temperature) with simula-
380
+ tion time in SCCGoL (lattice size 100 by 100) also given in Figure 8. Achieved thermodynamical
381
+ equilibrium is accompanied with final distribution of negative temperature (starting from positive
382
+ temperature distribution as in accordance with formula 3) as experimentally observed necessary
383
+ criteria for final thermodynamical stability. One can spot various similarities of statistical behaviour
384
+ of SCCGoL with physical systems described by classical thermodynamics (maximization and satu-
385
+ ration of entropy, decay of temperature gradients and final thermalization, uniform distribution of
386
+ mass and energy).
387
+
388
+ 0
389
+ 0.10
390
+ 20
391
+ 0.08
392
+ 40
393
+ 0.06
394
+ y
395
+ 60
396
+ 0.04
397
+ 80
398
+ 0.02
399
+ 0.00
400
+ 0
401
+ 20
402
+ 40
403
+ 60
404
+ 08
405
+ x0
406
+ 0.10
407
+ 20
408
+ 0.08
409
+ 40
410
+ 0.06
411
+ 60
412
+ 0.04
413
+ 80
414
+ 0.02
415
+ 0.00
416
+ 0
417
+ 20
418
+ 40
419
+ 60
420
+ 80
421
+ X0.10
422
+ 20
423
+ 0.08
424
+ 40
425
+ 0.06
426
+ 60
427
+ 0.04
428
+ 80
429
+ 0.02
430
+ 20
431
+ 40
432
+ 60
433
+ 80
434
+ X0
435
+ 5
436
+ 20
437
+ 4
438
+ 40
439
+ 3
440
+ y
441
+ 60
442
+ 2
443
+ 80
444
+ 1
445
+ 20
446
+ 40
447
+ 09
448
+ 0
449
+ 0
450
+ 80
451
+ x0
452
+ 8
453
+ 7
454
+ 20
455
+ 6
456
+ 40
457
+ 5
458
+ 4
459
+ 60
460
+ 3
461
+ 2
462
+ 80
463
+ 1
464
+ 20
465
+ 40
466
+ 60
467
+ 80
468
+ 0
469
+ X0
470
+ 7
471
+ 20
472
+ 6
473
+ 40
474
+ 5
475
+ 60
476
+ 4
477
+ 80
478
+ 3
479
+ 0
480
+ 20
481
+ 40
482
+ 60
483
+ 80
484
+ X0
485
+ 0.00
486
+ 20
487
+ -0.02
488
+ 40
489
+ -0.04
490
+ y
491
+ 60
492
+ -0.06
493
+ 80
494
+ -0.08
495
+ 0
496
+ 20
497
+ 40
498
+ 09
499
+ 80
500
+ x0
501
+ 0.00
502
+ 20
503
+ -0.02
504
+ -0.04
505
+ 40
506
+ y
507
+ -0.06
508
+ 60
509
+ -0.08
510
+ 80
511
+ -0.10
512
+ 0
513
+ 20
514
+ 40
515
+ 60
516
+ 80-0.02
517
+ 20
518
+ -0.04
519
+ 40
520
+ -0.06
521
+ 60
522
+ -0.08
523
+ 80
524
+ -0.10
525
+ 0
526
+ 20
527
+ 40
528
+ 60
529
+ 80
530
+ XMass derivative with respect to time
531
+ 15.0
532
+ 12.5
533
+ dm/dt
534
+ 14.0
535
+ 7.5
536
+ 5.D
537
+ 25
538
+ MAAy
539
+ 0.0
540
+ 2.5
541
+ 0
542
+ 21
543
+ 41
544
+ 140
545
+ 120
546
+ CycleEntropy derivative with respect to time
547
+ 40
548
+ 3P/SP
549
+ 240
550
+ 0-
551
+ 200
552
+ 21
553
+ 4
554
+ 140
555
+ 120
556
+ CycleTemperature
557
+ 0.5
558
+ Temperature
559
+ 0.D
560
+ 0.5
561
+ 1.0
562
+ 1.5
563
+ -2.0
564
+ 0
565
+ 21
566
+ 140
567
+ 120
568
+ Cycle6
569
+ Numerical study of one species cellular automata with various
570
+ boundary conditions
571
+ Next family of simulations were conducted with use of barriers impenetrable by cellular automata
572
+ cells via which cellular automata cannot interact with each other. We consider a single cellular
573
+ (a)
574
+ (b)
575
+ (c)
576
+ Fig. 11: Diffusion process in SCCGoLp20L100b100 (lattice size 100 by 100, 20% probability of
577
+ spontaneous change of cell state from life to dead and reversely with preservation of standard rules
578
+ in Conway’s Game of Life as also given in Figure 5) case of system of two weekly interconnected
579
+ chambers by means of two small holes in barrier. Two stages of diffusion can be spotted in mass and
580
+ entropy dynamics that has two consecutive processes: full diffusion in the left chamber is leading to
581
+ full diffusion in the right chamber. Further details of thermodynamical parameters space dependence
582
+ evolution with time are given by Figure 12.
583
+ automata (single automata seed) placed in empty chamber with impenetrable walls with two small
584
+ holes that link it to another empty chamber as depicted in the Figure 11a. We observe a diffusion of
585
+ cellular automata with simulation time that consists of two main processes: creation and diffusion
586
+ of cellular automata in the first chamber and diffusion of cellular automata from the first chamber
587
+ into second chamber accompanied with creation new automata in the second chamber. Those two
588
+ consequent processes are accompanied by effective slowdown in diffusion that is seen in left part
589
+ of Figure 11c. At the same time we observe slowdown in entropy increase as in an accordance
590
+ to the right part of Figure 11c. Once mass saturation was obtained in the simulation we observe
591
+ maximization and small drop in entropy that later stabilizes and saturates, as in the right part of
592
+ Figure 11c. Entropy unlike mass is characterized by a large variation of values in the middle of the
593
+ population and at the edges of the cellular automata population. In the situation with barrier (case of
594
+
595
+ Mass
596
+ Entropy
597
+ 25000
598
+ 1200
599
+ 1000
600
+ 20000
601
+ 800
602
+ 15000
603
+ 600
604
+ 10000
605
+ 400
606
+ 5000
607
+ 200
608
+ 0
609
+ 0
610
+ 0
611
+ 25
612
+ 50
613
+ 75
614
+ 100
615
+ 125
616
+ 150
617
+ 175
618
+ 200
619
+ 0
620
+ 25
621
+ 50
622
+ 75
623
+ 100
624
+ 125
625
+ 150
626
+ 175
627
+ 200
628
+ Cycle
629
+ Cycle(a) Mass at t=5
630
+ (b) Mass at t=70
631
+ (c) Mass at t=100
632
+ (d) Entropy at t=5
633
+ (e) Entropy at t=70
634
+ (f) Entropy at t=100
635
+ (g) T(x,y,t=5)
636
+ (h) T(x,y,t=70)
637
+ (i) T(x,y,t=100)
638
+ (j) dm
639
+ dt with time
640
+ (k) dS
641
+ dt with time
642
+ (l) Temperature with time
643
+ Fig. 12: Dynamics of thermodynamical parameters with simulation time in SCCGoLp20L100b100
644
+ with two weekly interconnected chambers by two small holes in barrier that were initially depicted
645
+ in Figure 11.
646
+
647
+ 0
648
+ 0.14
649
+ 20
650
+ 0.12
651
+ 0.10
652
+ 40
653
+ 0.08
654
+ y
655
+ 60
656
+ 0.06
657
+ 0.04
658
+ 80
659
+ 0.02
660
+ 40
661
+ 60
662
+ 0.00
663
+ 20
664
+ 80
665
+ x0.175
666
+ 20
667
+ 0.150
668
+ 0.125
669
+ 40
670
+ 0.100
671
+ 60
672
+ 0.075
673
+ 0.050
674
+ 80
675
+ 0.025
676
+ 000'0
677
+ 20
678
+ 40
679
+ 60
680
+ 800.200
681
+ 0.175
682
+ 20
683
+ -0.150
684
+ 40
685
+ 0.125
686
+ 0.100
687
+ 60
688
+ 0.075
689
+ 0.050
690
+ 80
691
+ 0.025
692
+ 000'0
693
+ 600
694
+ 20
695
+ 40
696
+ 60
697
+ 80
698
+ 0
699
+ 20
700
+ 40
701
+ 60
702
+ 8020
703
+ 40
704
+ 60
705
+ 80
706
+ 0
707
+ 20
708
+ 40
709
+ 8020
710
+ 40
711
+ 60
712
+ 80
713
+ 20
714
+ 40
715
+ 500
716
+ 0.025
717
+ 20
718
+ 0.000
719
+ 0.025
720
+ 40
721
+ y
722
+ 0.050
723
+ 60
724
+ 0.075
725
+ 0.100
726
+ 80
727
+ 0.125
728
+ 0
729
+ 20
730
+ 40
731
+ 60
732
+ 80
733
+ x0.00
734
+ 0.02
735
+ 20
736
+ 0.04
737
+ 0.06
738
+ 40
739
+ 0.08
740
+ 60
741
+ 0.10
742
+ 0.12
743
+ 80
744
+ 0.14
745
+ 0.16
746
+ 90
747
+ 60
748
+ 800.000
749
+ 0.025
750
+ 20
751
+ 0.050
752
+ 40
753
+ 0.075
754
+ 0.100
755
+ 60
756
+ 0.125
757
+ 80
758
+ 0.150
759
+ 0.175
760
+ 80vass derivative with resoect to time
761
+ 15
762
+ 1
763
+ dm/dt
764
+ 0
765
+ 25
766
+ 54
767
+ S
768
+ 14D
769
+ 125
770
+ 150
771
+ 175
772
+ CycleEntropy derivative with respect to time
773
+ 500
774
+ 310
775
+ p/Sp
776
+ 240
777
+ 10
778
+ 0-
779
+ 100
780
+ 200
781
+ 0
782
+ 25
783
+ 50
784
+ 75
785
+ 140
786
+ 125
787
+ 150
788
+ 175
789
+ CycleTemperature
790
+ 3.D
791
+ 25
792
+ 2D
793
+ 15
794
+ LD
795
+ 0.5
796
+ 0.0
797
+ 0.5
798
+ 1.0
799
+ 0
800
+ 25
801
+ 50
802
+ 75
803
+ 140
804
+ 125
805
+ 150
806
+ 175
807
+ CycleFigure 12e) this is particularly evident after the cells pass through the gaps. This particular process
808
+ is due to the logarithm function dependence of Von Neumann entropy, which tends to negative
809
+ infinity for arguments going to zero from the right. Observed criteria of an equilibrium is fact that
810
+ mass and entropy have steady values and that temperature have negative value in thermodynamical
811
+ equilibrium. Almost always before the equilibrium moment is achieved, time derivatives of mass and
812
+ entropy have positive values, and still the temperature is positive. From the moment the equilibrium
813
+ is achieved, we are dealing with small fluctuations of entropy and temperature. We observe the
814
+ correlation stating that slight increase in mass results in slight decrease in entropy and vice versa. In
815
+ an analogical way to the system with one barrier, simulations were conducted on the system with two
816
+ barriers and the initial structure as depicted in Figure 13a. We consider a single cellular automata
817
+ (a)
818
+ (b)
819
+ (c)
820
+ Fig. 13: Dynamics of diffusion process for a system SCCGoLp20L100b100 with two barriers with
821
+ two small holes in each barrier (generalization of situation from Figure 12) creating three weakly
822
+ interconnected chambers perturbed by mutual interactions mediated by holes. Monotonicity in in-
823
+ crease of entropy is twice shortly interrupted by small decline, what is associated with automata cells
824
+ ”colliding” with barriers and experiencing short lasting slowing down in its propagation. Details on
825
+ space depended thermodynamical parameter evolution with time are given by Figure 14.
826
+ placed in empty chamber with impenetrable walls with two small holes that link it to the second
827
+ empty chamber, which is connected to a third empty chamber by impenetrable walls with two small
828
+ holes as depicted in the Figure 13a. We observe a diffusion of cellular automata with simulation time
829
+ that consists of three main processes: creation and diffusion of cellular automata in the first chamber,
830
+ diffusion of cellular automata from the first chamber into second chamber accompanied with creation
831
+ new automata in the second chamber and diffusion of cellular automata from the second chamber
832
+ into third chamber accompanied with creation new automata in the third chamber. Twice cells try
833
+
834
+ Mass
835
+ Entropy
836
+ 1200
837
+ 25000
838
+ 1000
839
+ 20000
840
+ 800
841
+ 15000
842
+ 600
843
+ 10000
844
+ 400
845
+ 5000
846
+ 200
847
+ 0
848
+ 0
849
+ 25
850
+ 50
851
+ 75
852
+ 100
853
+ 125
854
+ 150
855
+ 175
856
+ 200
857
+ 0
858
+ 25
859
+ 50
860
+ 75
861
+ 100
862
+ 125
863
+ 150
864
+ 175
865
+ 200
866
+ Cycle
867
+ Cycleto reach impenetrable barriers, we observe small drops in entropy. After the second time entropy
868
+ stabilizes and saturates, as in the right part of Figure 13c. In a system with two barriers, it lasts
869
+ longer for mass and entropy to reach equilibrium than in the case of a system with only one barrier.
870
+ As depicted in Figure 14k, due to the cells approaching the barriers and losing the extra entropy at
871
+ the edges of the population, we observe significant fluctuations in the time derivative of the entropy.
872
+ This results in large peaks seen in the Figure 14l.
873
+
874
+ (a) Mass at t=30
875
+ (b) Mass at t=70
876
+ (c) Mass at t=110
877
+ (d) Entropy at t=30
878
+ (e) Entropy at t=70
879
+ (f) Entropy at t=110
880
+ (g) T(x,y,t=30)
881
+ (h) T(x,y,t=70)
882
+ (i) T(x,y,t=110)
883
+ (j) dm
884
+ dt with time
885
+ (k) dS
886
+ dt with time
887
+ (l) Temperature with time
888
+ Fig. 14: Space depended dynamics of thermodynamical parameters with simulation time in SCC-
889
+ GoLp20L100b100 with three weekly interconnected chambers by four small holes also depicted in
890
+ Figure 13.
891
+
892
+ 0
893
+ 0.175
894
+ 0.150
895
+ 20
896
+ 0.125
897
+ 40
898
+ 0.100
899
+ y
900
+ 60
901
+ 0.075
902
+ 0.050
903
+ 80
904
+ 0.025
905
+ 0.000
906
+ 0
907
+ 20
908
+ 40
909
+ 09
910
+ 08
911
+ x0.175
912
+ 20
913
+ 0.150
914
+ 0.125
915
+ 40
916
+ 0.100
917
+ 60
918
+ 0.075
919
+ 0.050
920
+ 80
921
+ 0.025
922
+ 0.000
923
+ 0
924
+ 20
925
+ 40
926
+ 60
927
+ 80
928
+ X0.175
929
+ 20
930
+ 0.150
931
+ 0.125
932
+ 40
933
+ 0.100
934
+ 60
935
+ 0.075
936
+ 0.050
937
+ 80
938
+ 0.025
939
+ 0.000
940
+ 20
941
+ 40
942
+ 60
943
+ 80
944
+ X0
945
+ 6
946
+ 20
947
+ 5
948
+ 40
949
+ 4
950
+ 3
951
+ 60
952
+ 2
953
+ 80
954
+ 1
955
+ 20
956
+ 40
957
+ 60
958
+ 80
959
+ 0
960
+ X0
961
+ 6
962
+ 20
963
+ 5
964
+ 40
965
+ 4
966
+ 3
967
+ 60
968
+ 2
969
+ 80
970
+ 1
971
+ 0
972
+ 20
973
+ 40
974
+ 60
975
+ 80
976
+ Xh
977
+ 20
978
+ 5
979
+ 40
980
+ 4
981
+ 60
982
+ 3
983
+ 80
984
+ 0
985
+ 20
986
+ 40
987
+ 60
988
+ 80
989
+ X0
990
+ 0.00
991
+ -0.02
992
+ 20
993
+ -0.04
994
+ -0.06
995
+ 40
996
+ -0.08
997
+ 60
998
+ -0.10
999
+ -0.12
1000
+ 80
1001
+ -0.14
1002
+ -0.16
1003
+ 0
1004
+ 20
1005
+ 40
1006
+ 60
1007
+ 80
1008
+ x0.00
1009
+ -0.02
1010
+ 20
1011
+ -0.04
1012
+ 40
1013
+ -0.06
1014
+ -0.08
1015
+ 60
1016
+ -0.10
1017
+ -0.12
1018
+ 80
1019
+ -0.14
1020
+ 0
1021
+ 20
1022
+ 40
1023
+ 60
1024
+ 80
1025
+ X0.00
1026
+ -0.02
1027
+ 20
1028
+ -0.04
1029
+ 0.06
1030
+ 40
1031
+ -0.08
1032
+ 60
1033
+ -0.10
1034
+ -0.12
1035
+ 80
1036
+ -0.14
1037
+ 0.16
1038
+ 0
1039
+ 20
1040
+ 40
1041
+ 60
1042
+ 80vass derivative with resoect to time
1043
+ 15
1044
+ dm/dt
1045
+ 25
1046
+ 54
1047
+ 75
1048
+ 140
1049
+ 125
1050
+ 150
1051
+ 175
1052
+ CycleEntropy derivative with respect to time
1053
+ D
1054
+ P/SP
1055
+ 24D
1056
+ 200
1057
+ 0
1058
+ 25
1059
+ 50
1060
+ 14D
1061
+ 125
1062
+ 150
1063
+ 175
1064
+ CycleTemperature
1065
+ t0
1066
+ Temperature
1067
+ 0.2
1068
+ 0.0
1069
+ -0.2
1070
+ 0.4
1071
+ 0.6
1072
+ 0.8
1073
+ 1.0
1074
+ 0
1075
+ 25
1076
+ 50
1077
+ 75
1078
+ 140
1079
+ 125
1080
+ 150
1081
+ 175
1082
+ Cycle7
1083
+ Numerical study of two species cellular automata in perturbative
1084
+ interaction by narrow constriction
1085
+ Further simulations for the case of two species cellular automata were carried out for a system divided
1086
+ into two reservoirs separated by two impenetrable barriers with one small hole (case of Figure 15a)
1087
+ that implies perturbative interaction between tribes. In the left upper corner of the first part of
1088
+ the system there have been located cells of the first cellular automata tribe. At a closer distance
1089
+ to the hole in impenetrable wall, but in the second right reservoir there have been located cells of
1090
+ the second cellular automata tribe. As depicted in Figure 15c, we observe similar final masses and
1091
+ their dynamics in case of both tribes, but in accordance to Figure 15d, different entropy dynamics.
1092
+ Very last is due to the distance of the cellular automata tribes from the small hole in impenetrable
1093
+ wall: a tribe located further from that hole needs more time to propagate and occupy its natural
1094
+ neighborhood and first left chamber of the system, and thus this tribe has a lower probability of
1095
+ taking over the territory of the other tribe. However the noticeable fact is that mass and entropy
1096
+ of both tribes achieves equilibrium and finally tribes end up in bit same geometrical and dynamical
1097
+ situation. As depicted in Figure 15f, the right tribe closer to the small hole occupies its nearest
1098
+ neighborhood territory more quickly, resulting in an attempt to occupy a rival tribe territory. As
1099
+ depicted in Figure 16 we observe large oscillations in the time derivatives of mass and entropy of
1100
+ both cellular automata tribes. In contrast to previously conducted simulations, the temperature of
1101
+ the system after reaching equilibrium is not only characterized by negative values. Tribes existential
1102
+ competition is the reason of occurrence of both positive and negative temperatures.
1103
+
1104
+ (a)
1105
+ (b)
1106
+ (c)
1107
+ (d)
1108
+ (e) Mass at t=3
1109
+ (f) Mass at t=34
1110
+ (g) Mass at t=200
1111
+ Fig. 15: Diffusion process in case of system with two cellular automata tribes weekly interacting
1112
+ with each other via a small hole in double barrier as depicted in (a), where initial configuration
1113
+ is presented. After long thermodynamic equilibrium is achieved as given by (b) so two cellular
1114
+ automata tribes coexist in two different geometrical domains effectively geographically separated.
1115
+ In case of both tribes mass and entropy saturates having tendency to oscillate in thermodynamical
1116
+ equilibrium.
1117
+
1118
+ Mass of the first tribe
1119
+ Mass of the second tribe
1120
+ 140
1121
+ 140
1122
+ 120
1123
+ 120
1124
+ 100
1125
+ 100
1126
+ 80
1127
+ 80
1128
+ 60
1129
+ 60
1130
+ 40
1131
+ 40
1132
+ 20
1133
+ 20
1134
+ 0-
1135
+ +0
1136
+ 25
1137
+ 50
1138
+ 75
1139
+ 100
1140
+ 125
1141
+ 150
1142
+ 175
1143
+ 200
1144
+ 0
1145
+ 25
1146
+ 50
1147
+ 75
1148
+ 100
1149
+ 125
1150
+ 150
1151
+ 175
1152
+ 200
1153
+ Cycle
1154
+ CycleEntropy of the first tribe
1155
+ Entropy of the second tribe
1156
+ 7000
1157
+ 8000
1158
+ 6000
1159
+ 5000
1160
+ 6000
1161
+ 4000
1162
+ 4000
1163
+ 000m
1164
+ 2000
1165
+ 2000
1166
+ 1000
1167
+ 0
1168
+ 0
1169
+ 25
1170
+ 50
1171
+ 75
1172
+ 100
1173
+ 125
1174
+ 150
1175
+ 175
1176
+ 200
1177
+ 0
1178
+ 25
1179
+ 50
1180
+ 75
1181
+ 100
1182
+ 125
1183
+ 150
1184
+ 175
1185
+ 200
1186
+ Cycle
1187
+ Cycle0
1188
+ 10
1189
+ 20
1190
+ y
1191
+ 30
1192
+ 40
1193
+ 0
1194
+ 10
1195
+ 20
1196
+ 30
1197
+ 40
1198
+ x0
1199
+ 10
1200
+ 20
1201
+ y
1202
+ 30
1203
+ 40
1204
+ 0
1205
+ 10
1206
+ 20
1207
+ 30
1208
+ 40
1209
+ x0
1210
+ 10
1211
+ 20
1212
+ 30
1213
+ 40
1214
+ 0
1215
+ 10
1216
+ 20
1217
+ 30
1218
+ 40(a) dm
1219
+ dt with time for first and second automata tribe
1220
+ (b) dS
1221
+ dt with time for first and second automata tribe
1222
+ (c) Temperature with time for first and second automata tribe
1223
+ Fig. 16: Dynamics of thermodynamical variables for the case of two competing cellular automata
1224
+ tribes (first tribe is placed on the left and second tribe is placed on the right).
1225
+
1226
+ Derivative of mass with resoect to time of the first tribe
1227
+ Derivative of mass with resoect to time of the second tribe
1228
+ 5
1229
+ 3
1230
+ 4
1231
+ 2
1232
+ 3
1233
+ 2
1234
+ 0
1235
+ +
1236
+ -1
1237
+ -1
1238
+ 25
1239
+ 50
1240
+ 75
1241
+ 100
1242
+ 125
1243
+ 150
1244
+ 175
1245
+ 200
1246
+ 0
1247
+ 25
1248
+ 50
1249
+ 75
1250
+ 100
1251
+ 125
1252
+ 150
1253
+ 175
1254
+ 200
1255
+ Cycle
1256
+ CycleDerivative of entropy with respect to time of the first tribe
1257
+ Derivative ofentropy with respect to time of the second tribe
1258
+ 400
1259
+ 300
1260
+ 200
1261
+ 200
1262
+ 100
1263
+ 0
1264
+ 0
1265
+ -200
1266
+ -100
1267
+ -400
1268
+ -200
1269
+ 0
1270
+ 25
1271
+ 50
1272
+ 75
1273
+ 100
1274
+ 125
1275
+ 150
1276
+ 175
1277
+ 200
1278
+ 0
1279
+ 25
1280
+ 50
1281
+ 75
1282
+ 100
1283
+ 125
1284
+ 150
1285
+ 175
1286
+ 200
1287
+ Cycle
1288
+ CycleTemperature of the first tribe
1289
+ Temperature of the second tribe
1290
+ 1.4
1291
+ 2
1292
+ 1.2
1293
+ 0
1294
+ 1.0
1295
+ -2
1296
+ 0.8
1297
+ -4
1298
+ 0.6
1299
+ -6
1300
+ 0.4
1301
+ -8
1302
+ 0.2
1303
+ -10
1304
+ 0.0
1305
+ -12
1306
+ 0.2
1307
+ -14
1308
+ 0
1309
+ 25
1310
+ 50
1311
+ 75
1312
+ 100
1313
+ 125
1314
+ 150
1315
+ 175
1316
+ 200
1317
+ 0
1318
+ 25
1319
+ 50
1320
+ 75
1321
+ 100
1322
+ 125
1323
+ 150
1324
+ 175
1325
+ 200
1326
+ Cycle
1327
+ Cycle8
1328
+ Conclusions and future perspectives
1329
+ Cellular automata can simulate many complex physical phenomena using the power of simple rules
1330
+ as it was shown in the case of cellular automata diffusion dynamics confirmed by various simulations
1331
+ for one and many automata species. Certain type of automata Darwinism was spotted by studying 4
1332
+ automata species dynamics as given by Fig.7. The SCCGoL dynamics study provides strong evidence
1333
+ that despite the fact that the principle of conservation of mass is not fulfilled, since we have creation-
1334
+ ism and annihilation of automata, the entropy and temperature comes to equilibrium. In conducted
1335
+ various simulations of Stochastic Conway’s Game of Life dynamics we report transition from positive
1336
+ to negative values of temperatures and we are aware that there is maximum level of mass and energy
1337
+ density allowed for cellular automata, since otherwise they would die due to overpopulation. The fact
1338
+ that the temperature can be negative is known in condensed matter physics, but with assumption
1339
+ that the energy is top-bounded. In most ”normal” situations this is impossible, but in a rare cases
1340
+ in solid state physics approximately it can be achieved by inverting the population state. Obviously
1341
+ there is a such limitation on top-bounded energy value (mass density value) in Stochastic Conway’s
1342
+ Game of Life. Therefore, it is still consistent with thermodynamics methodology, as it was pointed
1343
+ by professor Adam Bednorz (Faculty of Physics, University of Warsaw).
1344
+ Following conclusions were derived basing on conducted simulations and described methodology:
1345
+ 1. Identification of thermodynamically defined temperature as proper measure of system evolution
1346
+ with ’-’ sign (case of Figures 10, 12, 14).
1347
+ 2. Identification of mass as effective energy of system (in first approximation) (case of Figures 8,
1348
+ 11, 13, 15).
1349
+ 3. Identification of Shannon Entropy as effective system entropy (in first approximation) (case of
1350
+ Figures 8, 11, 13, 15).
1351
+ 4. Generalization of Stochastic Conway Game of Life of N tribes (approximated analogy to N-body
1352
+ Quantum Physics can be conceptionally drawn) as depicted in Figures 7, 15.
1353
+ 5. Confirmation validity of second law of thermodynamics in SCCGoL (entropy maximises and
1354
+ saturates, case of Figures 8, 11, 13).
1355
+ 6. Identification of short lasting Shannon entropy peak that later minimizes and saturates in SGoL
1356
+ (case of Figures 8, 11). Monotonicity in increase of entropy is twice shortly interrupted by small
1357
+ decline, what is associated with automata cells ”colliding” with barriers and experiencing short
1358
+ lasting slowing down in its propagation (case of Figure 13).
1359
+ Conducted analysis of Stochastic Game of Life allows to treat such system as mathematical object
1360
+ well described by methodology of classical statistical physics. Obtained numerical results by various
1361
+ simulations suggest that we shall introduce another definition of temperature in Stochastic Conway’s
1362
+ Game of Life system by adding ’minus’ sign to temperature known in statistical physics, so we obtain
1363
+ the following formula:
1364
+ TemperatureConway−P omorski−Kotula = −dE
1365
+ dS
1366
+ (6)
1367
+ TemperatureStatisticalP hysics = +dE
1368
+ dS
1369
+ Having such a definition of Conway-Pomorski-Kotula temperature we can use tools of statistical
1370
+ physics in Stochastic Game of Life preserving most classical physics thermodynamical intuition about
1371
+ various situations we can come across. There are well-known inherent analogous between classical
1372
+ statistical physics [12][7][2][5][4] and quantum mechanics [1]. Therefore further research perspectives
1373
+ in study of Stochastic Classical Conway’s Game of Life assume the usage of quantum mechanics
1374
+
1375
+ being able to simulate classical statistical physics (as expressed by epidemic model or stochastic
1376
+ finite-state machine) as explicitly represented by tight-binding model [9][10] or Schroedinger model
1377
+ directly proposing structures implemented in semiconductor single-electron devices. Noticeable var-
1378
+ ious obtained map of probability of Stochastic Conway’s Game of Life can be parameterized by
1379
+ non-linear Schrodinger equation and especially by Ginzburg-Landau model [6], what can be the
1380
+ base for quantization of Stochastic Classical Conway’s Game of Life.
1381
+ 9
1382
+ Acknowledgment
1383
+ We would like to express our acknowledgment to professor Adam Bednorz (University of Warsaw),
1384
+ Adam Chochla (Cracow University of Technology) and to doctor Lukasz Stepien (The Pedagogical
1385
+ University in Cracow). The consultations with them on manuscript has allowed to improve it. The
1386
+ Authors have no conflict of interests and equally contributed to this work with 50 percent of contri-
1387
+ bution on each side. First Author proposed methodological and conceptual framework for this work,
1388
+ while Second Author conducted all numerical simulations. The interpretations of obtained results is
1389
+ equally assigned to each Author.
1390
+ References
1391
+ 1. Baez, J.C., Pollard, B.S.: Quantropy. arXiv:1311.0813 (2013)
1392
+ 2. Feynman, R.P.: Statistical mechanics. Westview (1972)
1393
+ 3. Gardner, M.: Mathematical games - the fantastic combinations of john conway’s new solitaire game
1394
+ ”life”. Scientific American (1970)
1395
+ 4. Huang, K.: Statistical mechanics. John Wiley & Sons (1963)
1396
+ 5. Huang, K.: Introduction to statistical physics. CRC Press (2001)
1397
+ 6. Kotula, D., Pomorski, K.: Thermodynamics of Stochastic Conway Game of Life. ShanghaiAI Lectures,
1398
+ https://youtu.be/kLOB9VlF-R4 (2022)
1399
+ 7. Mishin, Y.: Thermodynamic theory of equilibrium fluctuations. Elsevier (2015)
1400
+ 8. Peitgen, H.O., J¨urgens, H., Saupe, D.: Chaos and Fractals. Springer (1983)
1401
+ 9. Pomorski, K.: Equivalence between classical epidemic model and quantum tight-binding model. Springer
1402
+ (2022)
1403
+ 10. Pomorski, K.: Equivalence between finite state stochastic machine, non-dissipative and dissipative tight-
1404
+ binding and schroedinger model. arXiv:2208.09758 (2022)
1405
+ 11. Shannon, C.: A mathematical theory of communication. Bell System Technical Journal (1948)
1406
+ 12. Velazquez Abad, L.: Principles of classical statistical mechanics: A perspective from the notion of com-
1407
+ plementarity. Annals of Physics 327(6), 1682–1693 (2012)
1408
+ 13. Wolfram, S.: Statistical mechanics of cellular automata. Reviews of Modern Physics 55 (1983)
1409
+