diff --git "a/NtE0T4oBgHgl3EQfTQBT/content/tmp_files/load_file.txt" "b/NtE0T4oBgHgl3EQfTQBT/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/NtE0T4oBgHgl3EQfTQBT/content/tmp_files/load_file.txt" @@ -0,0 +1,1060 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf,len=1059 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='02233v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='OA] 5 Jan 2023 THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK GRAPH ALGEBRAS JEFFREY L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BOERSEMA AND SARAH L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BROWNE AND ELIZABETH GILLASPY Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For each odd integer n ≥ 3, we construct a rank-3 graph Λn with involution γn whose real C∗-algebra C∗ R (Λn, γn) is stably isomorphic to the exotic Cuntz algebra E R n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' This construction is optimal, as we prove that a rank-2 graph with involution (Λ, γ) can never satisfy C∗ R (Λ, γ) ∼ME E R n, and the first author reached the same conclusion for rank-1 graphs (directed graphs) in [Boe17, Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Our construction relies on a rank-1 graph with involution (Λ, γ) whose real C∗-algebra C∗ R (Λ, γ) is stably isomorphic to the suspension SR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In the Appendix, we show that the i-fold suspension SiR is stably isomorphic to a graph algebra iff −2 ≤ i ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Introduction For every odd integer n ≥ 3, the (complex) Cuntz algebra On has two real forms: the real Cuntz algebra O R n and the exotic Cuntz algebra En.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' While the existence of En follows from the classification of simple purely infinite real C∗-algebras [Boe06, BRS11], the non-constructive nature of the existence portion of this classification theorem [Boe06, Theorem 1] means that we know very little about En beyond its K-theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In particular, until now there has been no construction or representation of En in terms of familiar C∗-algebraic objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In this paper, we give an explicit realization of the stabilized exotic Cuntz algebras KR ⊗R En as higher-rank graph algebras associated to rank-3 graphs with involution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Given the extensive literature on the properties of higher-rank graph C∗-algebras, we anticipate that this concrete description will facilitate an improved understanding of these elusive algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Higher-rank graphs, or k-graphs, are a k-dimensional generalization of directed graphs which were introduced by Kumjian and Pask in [KP00].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Many of the properties of (complex) directed graph C∗-algebras, such as their K-theory [RS04] and their ideal structure [BHRS02, HS04], are visible from the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' While the structure of k-graph C∗-algebras is more intricate than that of graph C∗-algebras, k-graph C∗-algebras also encompass a broader range of examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Indeed [RSS15], every complex UCT Kirchberg algebra is a direct limit of 2-graph C∗-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The real C∗-algebra C∗ R(Λ, γ) of a higher-rank graph with involution (Λ, γ) was recently introduced by the first and third authors in [BG22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In that paper, the authors also generalized the work of [Eva08] and [Boe17] to describe a spectral sequence which converges to the CR K-theory of these real C∗-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The main result (Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='3) of the present paper, that the exotic Cuntz algebra is stably isomorphic to the C∗-algebra of a 3-graph with involution, is the best possible in terms of the rank of Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In [Boe17], the first author made an extensive analysis of the K-theory of the real C∗-algebra C∗ R(Λ, γ) of a rank-1 graph (directed graph) with involution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 1 In particular, [Boe17, Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='3] establishes that the exotic Cuntz algebra cannot be isomorphic or stably isomorphic to the real C∗-algebra C∗ R(Λ) of a directed graph Λ, or to the real C∗- algebra C∗ R(Λ, γ) of a graph with involution, since KO7(En) = Z2 but KO7(C∗ R(Λ, γ)) is always torsion-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1 below uses the K-theory spectral sequence for real higher- rank graph C∗-algebras ([BG22, Section 3]) to show that En ̸∼ME C∗ R(Λ, γ)) for any rank-2 1This class of C∗-algebras includes the real C∗-algebras C∗ R (Λ) of a directed graph, introduced in [Boe14], as C∗ R (Λ) ∼= C∗ R (Λ, γtriv).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 1 2 JEFFREY L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BOERSEMA AND SARAH L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BROWNE AND ELIZABETH GILLASPY graph with involution (Λ, γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' However, we construct in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='3 a family of rank-3 graphs with involution (Λn, γn) such that C∗ R(Λn, γn) ∼= En ⊗R KR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Our construction combines the directed graphs with involution (En, γn) of [Boe17, Exam- ple 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2], which satisfy C∗ R(En, γn) ∼ME S6En, with a directed graph with involution (Λ, γ) such that (Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1) C∗ R(Λ, γ) is a real Kirchberg algebra which is KK-equivalent to the suspension algebra SR ∼= C0((0, 1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' To be precise, the 3-graph Λn which gives C∗ R(Λn, γn) ∼= En ⊗R KR is a product graph, Λn = En × Λ × Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Prompted by the graph with involution of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1, we consider in Section 5 the question of which suspensions SiR are KK-equivalent to the real C∗-algebra of a graph with involution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For −2 ≤ i ≤ 1 we exhibit an example of a graph with involution (Λ, γ) such that C∗ R(Λ, γ) is KK-equivalent to SiR, and we show in Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2 that SiR ̸∼KK C∗ R(Λ, γ) if 2 ≤ i ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' (However, we can realize these suspensions as 2-graph or 3-graph algebras, by taking products of the graphs which do realize suspensions of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=') Many key questions remain open for further investigation about the class of real C∗- algebras that can be obtained using higher-rank graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For example, it is still unknown whether or not En itself can be realized as a rank-k graph-with-involution algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Similarly, it remains unknown which real Kirchberg algebras can be realized by higher-rank graphs with involution (as opposed to inductive limits of such objects);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' we would particularly like to find a K-theoretic characterization of such algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Acknowledgments: E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' was partially supported by NSF grant 1800749.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Preliminaries 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Higher-rank graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [KP00, Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1] A higher-rank graph of rank k, or a k-graph, is a countable small category Λ equipped with a degree functor d: Λ → Nk such that, if a morphism λ ∈ Λ satisfies d(λ) = m + n, then there exist unique morphisms µ, ν ∈ Λ such that λ = µν, d(µ) = m and d(ν) = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Write ei for the standard ith basis vector of Nk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The morphisms of degree ei can be advantageously viewed as the “edges of color i” in Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In this perspective, if e is an edge of color i and f is an edge of color j, their composition ef ∈ Λ satisfies d(ef) = ei + ej = ej + ei, so we must be able to rewrite ef = f ′e′ for some morphisms e′, f ′ ∈ Λ with d(f ′) = ej and d(e′) = ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Indeed, by [HRSW13, Theorems 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='4 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='5], a k-graph can be equivalently thought of as arising from a directed graph G, with k colors of edges and with a factorization rule on multicolored paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' That is, given any two colors (“red��� and “blue”) and any two vertices v, w in G, the factorization rule identifies each red-blue path ef from v to w with an equivalent blue-red path f ′e′ from v to w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We would like the quotient of the space G∗ of directed paths in G by the equivalence relation ∼ generated by the factorization rule to be a k-graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For this to occur, the factorization rule must also satisfy certain consistency conditions which ensure that, for each path in G∗, its equivalence class under ∼ corresponds to a k-dimensional hyper-rectangle;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' see [EFG+21, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='3] for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' As our work in this paper does not depend on these consistency conditions, we will not reproduce them here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' That said, we remark that in THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK GRAPH ALGEBRAS 3 a rank-1 graph, the factorization rule is nonexistent, and so a 1-graph is precisely the space of paths of a directed graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Let Λ be a k-graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Given n ∈ Nk and objects v, w ∈ Λ, we write (1) Λn = {λ ∈ Λ : d(λ) = n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' By the factorization rule, for every λ ∈ Λ, there are unique v, w ∈ Λ0 with vλ = λw = vλw = λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' That is, we can identify Λ0 with the objects of Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' If λ = vλw, we write v = r(λ) and w = s(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Thus, expanding on Equation (1), we have vΛn = {λ ∈ Λ : r(λ) = v and d(λ) = n} Λnw = {λ ∈ Λ : s(λ) = w and d(λ) = n}, (2) as well as the obvious variations such as vΛnw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' A k-graph Λ has k adjacency matrices Mi ∈ MΛ0(N), which are given by (3) Mi(v, w) = #vΛeiw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In the graphical picture, λ ∈ Λ(n1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=',nk) means that λ represents the ∼-equivalence class of a path with ni edges of color i, for each 1 ≤ i ≤ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' That is, Λ0 consists of the length-0 paths, ie, the vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Then Mi(v, w) is the number of edges of color i from vertex w to vertex v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' If Λ1 is a k1-graph and Λ2 is a k2-graph, then [KP00, Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='8] their (Cartesian) product Λ1 ×Λ2 is a (k1 +k2)-graph;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' the degree functor is given by d(λ1, λ2) = (d(λ1), d(λ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We have (Λ1 × Λ2)0 = Λ0 1 × Λ0 2 and s(λ1 × λ2) = (s(λ1), s(λ2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In this paper we will focus on k-graphs which are row-finite and source-free (or have no sources).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We say a k-graph Λ is row-finite if |vΛn| < ∞ for all n ∈ Nk and v ∈ Λ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The k-graph has no sources if vΛn ̸= ∅ for all v, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' It is straightforward to check that if Λ1, Λ2 are row-finite and source-free, then so is Λ1 × Λ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For a row-finite source-free k-graph Λ, its (complex) C∗-algebra is the universal C∗-algebra generated by a Cuntz–Krieger Λ-family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [KP00, Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='5] Given a row-finite source-free k-graph Λ, a Cuntz–Krieger Λ-family is a collection {tλ}λ∈Λ of partial isometries in a C∗-algebra A which satisfy the fol- lowing conditions: (CK1) For each v ∈ Λ0, tv is a projection, and tvtw = δv,wtv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' (CK2) For each λ ∈ Λ, t∗ λtλ = ts(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' (CK3) For each λ, µ ∈ Λ, tλtµ = tλµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' (CK4) For each v ∈ Λ0 and each n ∈ Nk, tv = � λ∈vΛn tλt∗ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We define C∗(Λ) to be the universal (complex) C∗-algebra generated by a Cuntz–Krieger family, in the sense that for any Cuntz–Krieger Λ-family {tλ}λ∈Λ, there is a surjective ∗- homomorphism C∗(Λ) → C∗({tλ}λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We write {sλ}λ∈Λ for the generators of C∗(Λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' By using the Cuntz–Krieger relations, one can compute that C∗(Λ) = span{sλs∗ µ : s(λ) = s(µ)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='5(iv) of [KP00] also establishes that C∗(Λ1 × Λ2) ∼= C∗(Λ1) ⊗ C∗(Λ2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' the isomorphism takes s(λ1,λ2) to sλ1 ⊗ sλ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We will use one more ingredient – an involution – to construct the real C∗-algebras asso- ciated to higher-rank graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' An involution γ on a k-graph Λ is a degree-preserving functor γ : Λ → Λ which satisfies γ ◦ γ = id Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 4 JEFFREY L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BOERSEMA AND SARAH L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BROWNE AND ELIZABETH GILLASPY As established in [BG22, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='4], the real C∗-algebra associated to a k-graph Λ and an involution γ : Λ → Λ is (4) C∗ R(Λ, γ) = spanR{zsλs∗ µ + zsγ(λ)s∗ γ(µ) | z ∈ C, λ, µ ∈ Λ}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Equivalently, we have C∗ R(Λ, γ) = {a ∈ C∗(Λ) | �γ(a) = a∗}, where �γ is the antimultiplicative C∗-involution uniquely determined by �γ(sλ) = s∗ γ(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For any involution γ on Λ, we have C∗(Λ) ∼= C ⊗R C∗ R(Λ, γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' CRT K-theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In our work, we will use the full united K-theory K CRT(A) (introduced in [Boe02]) as well as the abbreviated variation K CR(A) which contains just the real and complex parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Theorem 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2 of [BRS11] shows that the category of real purely infinite simple C∗-algebras, whose complexifications are simple and in the UCT class, is classified up to isomorphism by either of these invariants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We tend to use K CR(A) since it is simpler and usually sufficient, but we will also need to use K CRT(A) on occasion since that is the context in which we have the K¨unneth formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Specifically, recall that for a real C∗-algebra A, K CR(A) = {KO∗(A), KU∗(A)} K CRT(A) = {KO∗(A), KU∗(A), KT∗(A)} where KO∗(A) is the standard 8-periodic real K-theory for a real C∗-algebra and KU∗(A) = K∗(C ⊗C A) is the 2-periodic K-theory of the complexification of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Meanwhile KT∗(A) is the 4-periodic self-conjugate K-theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' These invariants also include the additional CR and CRT -module structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In particular for K CR(A) there are natural transformations ri : KUi(A) → KOi(A) induced by the standard inclusion C → M2(R) ci : KOi(A) → KUi(A) induced by the standard inclusion R → C ψi : KUi(A) → KUi(A) induced by conjugation C → C ηi : KOi(A) → KOi+1(A) induced by multiplication by η ∈ KO1(R) = Z2 ξi : KOi(A) → KOi+1(A) induced by multiplication by ξ ∈ KO4(R) = Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' This additional structure tends to aid in the computations of KO∗(A) because the natural transformations satisfy the relations rc = 2 cr = 1 + ψ 2η = 0 rψ = r ψ2 = id η3 = 0 ψc = c ψβU = −βUψ ξ = rβ2 Uc and they fit into a long exact sequence (5) · · rβ−1 U −−−→ KOi(A) η−→ KOi+1(A) c−→ KUi+1(A) rβ−1 U −−−→ KOi−1(A) η−→ · · · These two invariants K CR(A) and K CRT(A) contain the same information by results of [Hew96] (summarized, for example, in [BRS11, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' K-theory for higher-rank graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For the real C∗-algebra C∗ R(Λ, γ) of a higher- rank graph with involution, [BG22, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='10] establishes the existence of a spectral sequence {Er, dr} of CR-modules that converges to K CR(C∗ R(Λ, γ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The complex part of this spectral sequence (Er p,q) U coincides with the Evans spectral sequence [Eva08] and converges to KU∗(C∗ R(Λ, γ)) = K∗(C∗(Λ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The real part of this spectral sequence (Er p,q) O converges to KO∗(C∗ R(Λ, γ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK GRAPH ALGEBRAS 5 The E2 page of the spectral sequence arises from the homology of a certain chain complex C based on the combinatorial information of Λ and γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We will use the spectral sequence only in the rank-1 and rank-2 cases, where these chain complexes have the following straightforward descriptions which we recall from [BG22, Theorems 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='14 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' First let Λ0 f be the set of vertices fixed by the involution γ and let Λ0 g ⊔ Λ0 h be any partition of Λ0\\Λ0 f satisfying γ(Λ0 g) = Λ0 h and γ(Λ0 h) = Λ0 g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Then let A = K CR(R)Λ0 f ⊕ K CR(C)Λ0 g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For a rank-1 graph with involution the chain complex C is given by 0 → A ∂1 −→ A → 0, where ∂1 = ρ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For a rank-2 graph with involution the chain complex C is given by 0 → A ∂2 −→ A2 ∂1 −→ A → 0, where ∂1 = � ρ1 ρ2� and ∂2 = � −ρ2 ρ1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Here the maps ρi are determined by the adjacency structure of Λ as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For 1 ≤ i ≤ k, the complex part (ρi) U 0 : ZΛ0 → ZΛ0 is represented by the matrix Bi = I − Mt i , where Mi is the adjacency matrix of the graph Λ for the edges of degree ei, and (ρi) U 1 = 0 for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The real parts of this map (ρi) O j , for 0 ≤ j ≤ 7, can similarly be determined for each i by some variations of Bi as shown in Table 3 of [BG22] and Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='4 of [Boe17], which we also reproduce here as Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='complex part ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='\uf8eb ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='\uf8ed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='\uf8f6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='\uf8f8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='f | ⊕ Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='g| ⊕ Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='h → Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='f| ⊕ Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='g| ⊕ Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='h ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='real part ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2B12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B22 + B23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='f| ⊕ Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='g| → Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='f| ⊕ Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='g| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='f | ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='→ Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='f| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B22 − B23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='|Λf| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⊕ Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='g| → Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='|Λf| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⊕ Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='g| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2B21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B22 + B23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='f| ⊕ Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='g| → Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='f| ⊕ Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='g| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B22 − B23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='g| → Z|Λ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='g| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Chain complex maps for real K-theory For reference, the groups of K CR(R) and K CR(C) are shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The natural trans- formations η, c, r, and ψ that are part of the structure of united K-theory are uniquely determined from these groups and the long exact sequence (5);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' they are also shown in Ta- bles 1 and 2 of [BG22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In particular we note that for KO∗(R), the map ηi is non-trivial exactly for i = 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 6 JEFFREY L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BOERSEMA AND SARAH L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BROWNE AND ELIZABETH GILLASPY 0 1 2 3 4 5 6 7 KO∗(R) Z Z2 Z2 0 Z 0 0 0 KU∗(R) Z 0 Z 0 Z 0 Z 0 0 1 2 3 4 5 6 7 KO∗(C) Z 0 Z 0 Z 0 Z 0 KU∗(C) Z2 0 Z2 0 Z2 0 Z2 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Non-Existence of a Rank-2 Graph with Involution Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Let n be an odd integer, n ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' There does not exist a (row-finite, source- free) rank-2 graph with involution (Λ, γ) such that K CR(C∗ R(Λ, γ)) ∼= K CR(En).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Suppose that (Λ, γ) is a row-finite, source-free rank-2 graph with involution and that K CR(C∗ R(Λ, γ)) ∼= K CR(En).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For reference we reproduce the groups of K CR(En) here: 0 1 2 3 4 5 6 7 KO∗(En) Z2(n−1) Z2 Z2 0 Z(n−1)/2 0 Z2 Z2 KU∗(En) Zn−1 0 Zn−1 0 Zn−1 0 Zn−1 0 Note that since KU7(En) = 0 and since im η6 = ker c7 from the long exact sequence (5) relat- ing KO∗(A) and KU∗(A), we see immediately that η6: Z2 → Z2 must be an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Now, we consider only the real part of the spectral sequence from [BG22, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' This is a spectral sequence converging to KO∗(C∗ R(Λ, γ)), where the E2-page consists of the homology of the chain complex (6) 0 → A ∂2 −−→ A2 ∂1 −−→ A → 0 where A ∼= KO∗(R)Λ0 f ⊕ KO∗(C)Λ0 g as described in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In particular, the spectral sequence has three non-zero columns (for 0 ≤ p ≤ 2) and is periodic in q (with period 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Furthermore, a quick examination of the structure of A (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Figure 1) reveals that Ai = 0 for i = 3, 5, 7 and also that Ai is free for i = 0, 4, 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Consequently, E2 p,q = 0 for q = 3, 5, 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Moreover, since E2 2,q = ker ∂2 is a subgroup of Ai, we must have E2 2,q free for q = 0, 4, 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Indeed, E∞ 2,q = ker d2 2,q is a subgroup of E2 2,q, so E∞ 2,q must also be free for q = 0, 4, 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' On the other hand, KOi(C∗ R(Λ, γ)) is finite in all degrees, so it must be that E∞ 2,q = 0 for q = 0, 4, 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK GRAPH ALGEBRAS 7 From what we have said so far, the E∞ p,q page of the spectral sequence is as follows: .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 7 0 0 0 6 ∗ ∗ 0 5 0 0 0 4 ∗ ∗ 0 3 0 0 0 2 ∗ ∗ ∗ 1 ∗ ∗ ∗ 0 ∗ ∗ 0 q/p 0 1 2 This E∞ page identifies a filtration of KO∗(C∗ R(Λ, γ)), in which the subquotients of KOj(C∗ R(Λ, γ)) appear along the diagonal p + q = j of the E∞ page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' By hypothesis we have KO0(C∗ R(Λ, γ)) = Z2(n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' However, the only non-zero group along the diagonal p + q = 0 is E∞ 0,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Thus E∞ 0,0 = Z2(n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Similarly, since KO7(C∗ R(Λ, γ)) = Z2 and KO6(C∗ R(Λ, γ)) = Z2, we must have E∞ 1,6 = Z2 = E∞ 0,6: .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 7 0 0 0 6 Z2 Z2 0 5 0 0 0 4 ∗ ∗ 0 3 0 0 0 2 ∗ ∗ ∗ 1 ∗ ∗ ∗ 0 Z2(n−1) ∗ 0 q/p 0 1 2 Now, we consider the natural transformation η: A → A of degree 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Because A is a direct sum of copies of K CR(R) and K CR(C), which data already includes the map η, the natural transformation η : KO∗(C∗ R(Λ, γ)) → KO∗+1(C∗ R(Λ, γ)) exists at the level of the chain complex (6), passes to a map on the E2-page, then to a map on the E∞-page, and finally converges to the map η: KOi(C∗ R(Λ, γ)) → KOi+1(C∗ R(Λ, γ)) described in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' This means that the map η on KO∗(C∗ R(Λ, γ)) respects the filtration of KOi(C∗ R(Λ, γ)) associated with the spectral sequence;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' and the resulting maps on the subquotients are the same as that on the E∞ page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In particular, the diagonals of the E∞-page that yield KO6(C∗ R(Λ, γ)) and KO7(C∗ R(Λ, γ)) give the commutative diagram below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The vertical η maps on the left and right come from A as described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 0 � E∞ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='6 � η � KO6(C∗ R(Λ, γ)) � η � E∞ 1,5 � η � 0 0 � E∞ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='7 � KO7(C∗ R(Λ, γ)) � E∞ 1,6 � 0 ⇐⇒ 0 � Z2 � η � Z2 � η � 0 � η � 0 0 � 0 � Z2 � Z2 � 0 8 JEFFREY L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BOERSEMA AND SARAH L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BROWNE AND ELIZABETH GILLASPY Since the nonzero horizontal maps must be isomorphisms, the commutative diagram forces the vertical map η6: KO6(C∗ R(Λ, γ)) → KO7(C∗ R(Λ, γ)) in the center of the diagram to be zero, which contradicts the known value of η in KO∗(E R n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Existence of a Rank-3 Graph with Involution In this section, we will construct a 3-graph Λ with involution γ, by taking products of 1-graphs with involution, such that C∗ R(Λ, γ) is stably isomorphic to E R n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In what follows, we use the following convention for suspension of graded modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' If H = {Hi} is a Z-graded group, then ΣH is a Z-graded group with (ΣH)i = Hi+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Similarly, Σ−1H is a Z-graded group with (Σ−1H)i = Hi−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' This convention is consistent with K-theory and suspensions of C∗-algebras: K∗(SnA) = ΣnK∗(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For the proof of the following proposition, we will need a few more preliminaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For a graph Λ, a subset X ⊆ Λ0 is hereditary if whenever v ∈ X and vΛw ̸= ∅, then w ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' A cycle in Λ is a path e1e2 · · ·en with r(e1) = s(en) but, for all 1 ≤ i < n, we have s(ei) ̸= r(ei+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We say that a cycle has an entrance if there exists 1 ≤ j ≤ n and an edge f ̸= ej with r(f) = r(ej).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' If the only hereditary subsets of Λ0 are ∅ and Λ0, and every cycle in Λ has an entrance, then [Szy01, Theorem 12] C∗(Λ) is simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Furthermore, if every cycle in Λ has an entrance, then Λ is aperiodic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' There exists a 1-graph Λ and involution γ such that K CR(C∗ R(Λ, γ)) ∼= ΣK CR(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Furthermore, C∗ R(Λ, γ) is simple and purely infinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Let Λ be the 1-graph below (which extends infinitely in both directions) and let γ be the non-trivial involution, which fixes the vertices and edges of the infinite branch on the left and swaps the vertices and edges of the two infinite branches on the right in the obvious way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' (In fact γ is the only non-trivial involution on Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=') �❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� �❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� �❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� �❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� �⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� �⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� �⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='We begin by showing that C∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='R(Λ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' γ) is simple and purely infinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' It is straightforward to check that Λ has no nontrivial hereditary subsets, and that every cycle has an entrance, so simplicity of the complex algebra C∗(Λ) follows from [Szy01, Theorem 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Note further that for every vertex v ∈ Λ0, there is a vertex w with vΛw ̸= ∅ for some vertex w which supports a loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' As Λ is aperiodic, one easily checks that the conditions of [KP00, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='9] are satisfied, and so C∗(Λ) is purely infinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Consequently, [BRS11, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='9] implies that the real C∗-algebra C∗ R(Λ, γ) is also simple and purely infinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We now show that KU0(C∗ R(Λ, γ)) = 0 and KU1(C∗ R(Λ, γ)) = Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' (This is the same as calculating K∗(C∗(Λ)) and does not involve the involution γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=') Let M be the adjacency matrix for Λ (so Mv,w is the number of edges from w to v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Then KU0(C∗ R(Λ, γ)) ∼= coker (I − Mt), THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK GRAPH ALGEBRAS 9 which can be interpreted as saying that KU0(C∗ R(Λ, γ)) is generated by vertex projection classes [pv], which are subject only to relations of the form [pv] = � w∈Λ0 Mv,w[pw] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Let v be one of the vertices of Λ that has a loop, and let w ̸= v be the vertex for which there is an edge from w to v (in each case there is a unique such w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Then the formula above gives the relation [pv] = [pv] + [pw], which implies that [pw] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' If [pw] = 0 we will say that w is a zero vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Now if w is a zero vertex and there is only one edge to w, say from vertex u, then it follows that u is also a zero vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' More generally, if w is a zero vertex and all the edges to w are known to emanate from zero vertices except possibly one edge from vertex u, then it follows that u is also a zero vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Using these principles, it is now straightforward to work through the graph and to find that every vertex is a zero vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Hence KU0(C∗ R(Λ, γ)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We know that KU1(C∗ R(Λ, γ)) ∼= ker(I − Mt), which is to say that (7) KU1(C∗ R(Λ, γ)) ∼= NΛ := � α: Λ0 → Z | α(v) = � w∈Λ0 Mw,v α(w) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Let v be one of the vertices of Λ that has a loop, and let w ̸= v be the vertex for which there is an edge from v to w (in each case there is a unique such w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Then we have the relation α(v) = α(v) + α(w), which implies that α(w) = 0 for any α ∈ NΛ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' If α(w) = 0 for all α ∈ NΛ we will say that w is a null vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Now if w is a null vertex and there is only one edge emanating from w, say to vertex u, then it follows that u is also a null vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' More generally, if w is a null vertex and all the edges from w are known to point to null vertices except possibly one edge to vertex u, then u is also a null vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Using these principles, it is now straightforward to work through the graph and to find that every vertex is a null vertex, except for the six vertices labelled u, v, w, x, y, z shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='v• ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='u• ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❇ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� �❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='w•� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�② ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='② ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='② ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='② ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='② ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='② ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='② ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='② � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑤ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑤ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑤ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑤ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑤ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑤ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑤ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑤ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�④ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='④ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='④ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='④ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='④ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='④ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='④ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='④ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❈ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❈ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❈ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❈ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❈ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❈ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❈ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❈ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='x• ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❉ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❉ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❉ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❉ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❉ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❉ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❉ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❉ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❆ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='y• ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑥ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑥ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑥ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑥ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑥ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑥ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑥ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='z• ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑥ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑥ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑥ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑥ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑥ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑥ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑥ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑥ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� �⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='Using Equation (7) and the fact that the unlabeled vertices are null vertices,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' we see that any α ∈ NΛ must satisfy the equations 0 = α(u) + α(w) α(w) = α(v) + α(x) 0 = α(w) + α(x) α(x) = α(w) + α(y) 0 = α(x) + α(z) 10 JEFFREY L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BOERSEMA AND SARAH L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BROWNE AND ELIZABETH GILLASPY Solving this system over Z, we find that α(u) is a free variable and that α(v) = −2α(u), α(w) = −α(u), α(x) = α(u), α(y) = 2α(u), and α(z) = −α(u) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Thus NΛ ∼= Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Hence KU∗(C∗ R(Λ, γ)) = K∗(C∗(Λ)) = (0, Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Turning to the real K-theory, we now prove that KO∗(C∗ R(Λ, γ))) = (Z2, Z2, 0, Z, 0, 0, 0, Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' First, we show that the real and complex E2 = E∞ page of the Evans spectral sequence for C∗ R(Λ, γ) is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' E2 p,q (8) real part .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 7 0 0 6 0 Z 5 0 0 4 0 0 3 0 0 2 0 Z 1 Z2 0 0 Z2 0 q/p 0 1 complex part .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 7 0 0 6 0 Z 5 0 0 4 0 Z 3 0 0 2 0 Z 1 0 0 0 0 Z q/p 0 1 (9) We have already discussed the complex part of this spectral sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For the real part we will only discuss the computations for the rows corresponding to j = −1, 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' As we will see, this is enough to determine KO∗(C∗ R(Λ, γ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The other rows can be computed using similar methods and we include them in the table above for completeness, but we will neither need nor discuss them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' First, the spectral sequence for a 1-graph with involution always vanishes in row j = −1, since the chain complex vanishes in that degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' To compute row j = 1 of the spectral sequence, we refer to [BG22, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='14] and Table 1 above, which indicates that E2 0,1 and E2 1,1 are the cokernel and kernel of the map (∂1)1 = I − Mt 11 : Z Λ0 f 2 → Z Λ0 f 2 where Λ0 f is the set of fixed vertices of (Λ, γ) and M11 is the restriction of the incidence matrix to those vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' So it suffices to consider the graph consisting of the fixed points of Λ, shown here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' � �❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ � �❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ x � �❆ ❆ ❆ ❆ ❆ ❆ ❆ ❆ y � �❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ � � �⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ � �⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ � �⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ � �⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ z � Using this graph, and the same sort of analysis that we did in the complex case, we find that coker (I − Mt 11) = Z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' More precisely, working modulo 2 we find that [pv] = 0 for all vertices in Λ0 f except those labeled x, y and z in the graph above and that [px] = [py] = [pz] ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We also find easily that ker(I − Mt 11) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Now, for j = 0, we need to find the cokernel and kernel of the map (∂1)0 which we will do using Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' First recall the partition Λ0 = Λ0 f ⊔ Λ0 g ⊔ Λ0 h where Λ0 f is the set of fixed THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK GRAPH ALGEBRAS 11 vertices (the branch on the left of Λ), Λ0 g is the set of vertices of the “upper right” branch of Λ, and Λ0 h is the set of vertices of the “lower right” branch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' With this structure on Λ, the (infinite) matrix B = I − Mt can be written in block form as B = I − Mt = \uf8eb \uf8ed B11 B12 B12 B21 B22 B23 B21 B23 B33 \uf8f6 \uf8f8 where, for example, B12 keeps track of edges from vertices in Λ0 f to vertices in Λ0 g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Using Table 1, we see that (∂1)0 : ZΛ0 f ⊕ ZΛ0 g → ZΛ0 f ⊕ ZΛ0 g is given by (∂1)0 = � B11 2B12 B21 B22 + B23 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We will use a new graph Λ′ to analyze this map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The graph Λ′, shown below, is obtained from Λ by keeping the vertices from Λ0 f and Λ0 g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For each edge in Λ from a vertex in Λ0 g to a vertex in Λ0 f, we create a corresponding edge in Λ′ and for each edge in Λ from a vertex in Λ0 f to a vertex in Λ0 g we create 2 corresponding edges in Λ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Also, for each edge from a vertex v = γ(u) ∈ Λ0 h to a vertex w ∈ Λ0 g we obtain an edge in Λ′ from u to w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' x � �❆ ❆ ❆ ❆ ❆ ❆ ❆ ❆ � ⑥⑥⑥⑥⑥⑥⑥⑥ z � �❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ � ⑥⑥⑥⑥⑥⑥⑥⑥ �❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ � �❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ � � � � y (2) � � w � � �⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ � �⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ � � � By construction the adjacency matrix M′ for the graph Λ′ satisfies I − (M′)t = � B11 2B12 B21 B22 + B23 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Therefore, we can use the graph Λ′ to find the cokernel and kernel of (∂1)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Using the same logic and terminology we used when calculating the complex K-theory, we see that w is a zero vertex because it emits an edge to a vertex v which supports a loop, and the edge from w to v is the only non-loop edge which points to v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Indeed, every vertex along the bottom row of the graph Λ′ except y is a zero vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The fact that these zero vertices (with the exception of w) only receive edges from one (potentially) nonzero vertex on the top row of Λ′ implies that every vertex in the top row except x and z are also zero vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Now, w is a zero vertex, but since there are two edges from y to w we obtain the relation [pw] = [pw] + 2[py] which implies that 2[py] = 0, but [py] ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Finally, from the relations [px] = −[py] and [pz] = [py] we conclude that coker (∂1)0 = Z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' To compute ker(∂1)0, we also proceed as in the computations for the complex case: All of the vertices in the bottom row of Λ′, save w, are null vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Moreover, if a null vertex v emits n edges to a single potentially non-null vertex u, we must have nα(u) = 0 for any α ∈ NΛ′, and as α(u) ∈ Z we conclude that u must also be null.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' It follows that w is null, as are all of the vertices in the top row of Λ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' That is, ker(∂1)0 = {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Now, with the three rows that we’ve identified, the spectral sequence (8) implies that KO0(C∗ R(Λ, γ)) ∼= KO1(C∗ R(Λ, γ)) ∼= Z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We claim that using this we can compute KOi(C∗ R(Λ, γ)) for 2 ≤ i ≤ 7 using the long exact sequence (5) and other aspects of CR-structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The fact that KU6(C∗ R(Λ, γ)) = KU0(C∗ R(Λ, γ)) = 0 implies that η0 is injective, and hence an 12 JEFFREY L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BOERSEMA AND SARAH L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BROWNE AND ELIZABETH GILLASPY isomorphism, and also that η−1 is surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Since KU2(C∗ R(Λ, γ)) = 0 it follows that η1 is surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Thus if KO2(C∗ R(Λ, γ)) has a non-zero element, then it would have to be in the image of η1 ◦ η0 ◦ η−1 = η3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' But η3 = 0 for all real C∗-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Thus KO2(C∗ R(Λ, γ)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Since KO2(C∗ R(Λ, γ)) = 0, the long exact sequence implies that c3: KO3(C∗ R(Λ, γ)) → KU3(C∗ R(Λ, γ)) = Z is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' This forces KO3(C∗ R(Λ, γ)) = Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Moreover, as im r1 = ker η1 = Z2 we must have r1 : Z → Z2 the unique nonzero map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Since im c3 ∼= ker r1, we conclude that c3 is multiplication by 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The relation rc = 2 then implies that r3 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Continuing this process using the long exact sequence, we compute that KO∗(C∗ R(Λ, γ))) = (Z2, Z2, 0, Z, 0, 0, 0, Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The module maps η, r, c, ψ are then completely determined by these groups and the long exact sequence (5);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' that is, K CR(C∗ R(Λ, γ)) and hence K CRT(C∗ R(Λ, γ)) coincide with ΣK CRT(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' □ Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Suppose that (Λ1, γ1) and (Λ2, γ2) are higher-rank graphs with involutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Then (Λ1 × Λ2, γ1 × γ2) is a higher-rank graph with involution and C∗ R(Λ1 × Λ2, γ1 × γ2) ∼= C∗ R(Λ1, γ1) ⊗R C∗ R(Λ2, γ2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Assume that Λ1 and Λ2 have rank k1 and k2 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' From [KP00, Proposi- tion 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='8] the product Λ1 × Λ2 is a graph of rank k1 + k2, with degree functor d(λ1, λ2) = d(λ1) + d(λ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Furthermore, there is an involution γ on Λ1 × Λ2 defined by γ(λ1, λ2) = (γ1(λ1), γ2(λ2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' From [KP00, Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='5], there is an isomorphism φ: C∗(Λ1 × Λ2) → C∗(Λ1) ⊗ C∗(Λ2) defined by φ(s(λ1,λ2)) = sλ1 ⊗sλ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' To finish the proof, we need only show that φ preserves the real structures (4) of C∗(Λ1 × Λ2) and C∗(Λ1) ⊗ C∗(Λ2) which are induced by the graphical involutions γi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' This is straightforward: φ(�γ(s(λ1,λ2)) = φ(s∗ (γ1(λ1),γ2(λ2)))) = s∗ γ1(λ1) ⊗ s∗ γ2(λ2) = �γ1(sλ1) ⊗ �γ2(sλ2) = � γ1 ⊗ γ2(sλ1 ⊗ sλ2) = � γ1 ⊗ γ2(φ(s(λ1,λ2))) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' □ Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Let n be an odd integer, n ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' There exists a rank-3 graph with invo- lution (Λn, γn) such that C∗ R(Λn, γn) ∼= K R ⊗R E R n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Furthermore, there exists a projection p ∈ C∗ R(Λn, γn) such that pC∗ R(Λn, γn)p ∼= E R n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Let (Λ, γ) be the 1-graph given by Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1 and let (En, γn) be the finite 1- graph with involution from Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2 of [Boe17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Then both C∗ R(Λ, γ) and C∗ R(En, γn) are simple and purely infinite and we have K CR(C∗ R(Λ, γ)) ∼= ΣK CR(R) and K CR(C∗ R(En, γn)) ∼= Σ6K CR(En) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' This implies by [BRS11, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1] that K CRT(C∗ R(Λ, γ)) ∼= ΣK CRT(R) and K CRT(C∗ R(En, γn)) ∼= Σ6K CRT(En) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Let (Λn, γn) be the product rank-3 graph with involution (Λn, γn) = (Λ, γ) × (Λ, γ) × (En, γn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK GRAPH ALGEBRAS 13 Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2 then implies that C∗ R(Λn, γn) ∼= C∗ R(Λ, γ) ⊗R C∗ R(Λ, γ) ⊗R C∗ R(En, γn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Now, K CRT(C∗ R(Λ, γ)) is a free CRT -module, since it is isomorphic to a suspension of K CRT(R) (see [Boe02, Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Therefore the K¨unneth formula for the K-theory of real C∗- algebras (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='5 and Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2 of [Boe02]) gives K CRT(C∗ R(Λn, γn)) ∼= K CRT(C∗ R(Λ, γ)) ⊗CRT K CRT(C∗ R(Λ, γ)) ⊗CRT K CRT(C∗ R(En, γn)) ∼= Σ2K CRT(R) ⊗CRT Σ6K CRT(En) ∼= K CRT(En) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Note that C∗ R(Λn, γn) is a stable, simple, purely infinite, real C∗-algebra, thanks to Propo- sition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1 and [Boe17, Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We also know that KR ⊗R En is a a stable, simple, purely infinite, real C∗-algebra, because its complexification K ⊗ On is simple and purely infinite (see Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='9 of [BRS11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Thus the first statement of the theorem follows by the classification of real Kirchberg algebras, [BRS11, Theorem 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2, Part (1)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' To prove the second statement, by [BRS11, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='13] there is a projection p ∈ C∗ R(Λn, γn) such that [p] is a generator of KO0(C∗ R(Λn, γn)) = Z2(n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Then K CR(pC∗ R(Λn, γn)p) ∼= K CR(C∗ R(Λn, γn)) ∼= K CR(En) (where the first isomorphism is by [Boe06, Proposition 9]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Furthermore the class of the identity [p] ∈ KO0(pC∗ R(Λ, γ)p) ∼= Z2(n−1) corresponds under this isomorphism to the class of the identity [1] ∈ KO0(En) ∼= Z2(n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Therefore by [BRS11, Theorem 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2, Part (2)], we have pC∗ R(Λ, γ)p ∼= En.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' □ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Appendix – real Kirchberg suspension algebras In the previous section, we introduced a graph with involution for which K CR(C∗(Λ, γ)) ∼= ΣK CR(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' We consider this algebra as a sort of real Kirchberg suspension, since it is a real purely infinite simple stable nuclear C∗-algebra satisfying the UCT, and with the same KK- type as the suspension algebra SR ∼= C0((0, 1), R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' By repeatedly taking the product of this graph with itself, which corresponds to repeatedly tensoring this algebra with itself, we can obtain a higher-rank graph, the real C∗-algebra of which is a real Kirchberg algebra with the same KK-type as SiR for any i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' These tensor products will be higher-rank graph algebras of rank i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' It is natural to ask which of these suspensions can be obtained from a 1-graph with involution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In this section, we will answer this question completely, providing a full characterization of the integers i (mod 8) for which there exists a 1-graph with involution (Λ, γ) such that K CR(C∗(Λ, γ)) ∼= ΣiK CR(R) ∼= K CR(SiR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For the positive results, we will exhibit directly the appropriate graph or graph with involution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For each i = {−2, −1, 0, 1} there exists a 1-graph with involution (Λ, γ) such that K CR(C∗(Λ, γ)) ∼= ΣiK CR(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Furthermore, C∗ R(Λ, γ) is simple and purely infinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Sketch of proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For each i we show below a graph or graph with involution that satisfies K CR(C∗(Λ, γ)) ∼= ΣiK CR(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The K-theory calculations, not shown, are carried out using the same techniques as in the proof of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 14 JEFFREY L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BOERSEMA AND SARAH L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' BROWNE AND ELIZABETH GILLASPY i = −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The graph Λ is shown below;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' we equip it with the non-trivial involution γ which interchanges the right-hand branches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' � ❅ ❅ ❅ ❅ ❅ ❅ ❅ �⑦⑦⑦⑦⑦⑦⑦ � � ❅ ❅ ❅ ❅ ❅ ❅ ❅ �⑦⑦⑦⑦⑦⑦⑦ � � ❅ ❅ ❅ ❅ ❅ ❅ ❅ �⑦⑦⑦⑦⑦⑦⑦ � � �⑦⑦⑦⑦⑦⑦⑦ � ❅ ❅ ❅ ❅ ❅ ❅ ❅ � �⑦⑦⑦⑦⑦⑦⑦ � ❅ ❅ ❅ ❅ ❅ ❅ ❅ � �⑦⑦⑦⑦⑦⑦⑦ � ❅ ❅ ❅ ❅ ❅ ❅ ❅ � � � • � • � • � � � • � � � • � • � �⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ � �❅ ❅ ❅ ❅ ❅ ❅ ❅ � • � • � • � � � ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ �❅❅❅❅❅❅❅ � � ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ �❅❅❅❅❅❅❅ � � ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ �❅❅❅❅❅❅❅ � i = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The graph Λ is shown below, with trivial involution γ = id .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' �❅ ❅ ❅ ❅ ❅ ❅ ❅ � �❅ ❅ ❅ ❅ ❅ ❅ ❅ � �❅ ❅ ❅ ❅ ❅ ❅ ❅ � �❅ ❅ ❅ ❅ ❅ ❅ ❅ � �⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ � �⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ � �⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ � �⑦ ⑦ ⑦ ⑦ ⑦ ⑦ ⑦ � � � i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The graph Λ is shown below, with trivial involution γ = id .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' �⑦⑦⑦⑦⑦⑦⑦ � � ❅ ❅ ❅ ❅ ❅ ❅ ❅ �⑦⑦⑦⑦⑦⑦⑦ � � ❅ ❅ ❅ ❅ ❅ ❅ ❅ �⑦⑦⑦⑦⑦⑦⑦ � � ❅ ❅ ❅ ❅ ❅ ❅ ❅ �⑦⑦⑦⑦⑦⑦⑦ � � ❅ ❅ ❅ ❅ ❅ ❅ ❅ � • � • � • � • � � i = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The graph Λ is shown below with non-trivial involution γ, as in Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' �❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� �❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� �❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� �❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='�❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='❅ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� �⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� �⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� �⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='⑦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='For the i = −2 graph,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' one can determine all of the groups KOi(C∗ R(Λ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' γ)) from the associated spectral sequence,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' except for KO2(C∗ R(Λ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' γ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' In that case, the spectral sequence KO2(C∗ R(Λ, γ)) has the filtration 0 → Z → KO2(C∗ R(Λ, γ)) → Z2 → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Although this filtration by itself does not determine KO2(C∗ R(Λ, γ)), the long exact sequence (5) forces KO2(C∗ R(Λ, γ)) = Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Moreover, the module maps r, c, η, ψ are uniquely determined by (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' □ THE STABLE EXOTIC CUNTZ ALGEBRAS ARE HIGHER-RANK GRAPH ALGEBRAS 15 Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' For 2 ≤ i ≤ 5, there does not exist a 1-graph (Λ, γ) with involution such that K CR(C∗ R(Λ, γ)) ∼= ΣiK CR(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Suppose that (Λ, γ) is a graph with involution and K CR(C∗ R(Λ, γ)) ∼= ΣiK CR(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' The real Pimsner-Voiculescu sequence (or equivalently, the real Evans spectral sequence) for K CR(C∗(Λ, γ)) implies that KO−1(C∗ R(Λ, γ)) and KO−3(C∗ R(Λ, γ)) are free abelian groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' But recall that KO1(R) ∼= KO2(R) ∼= Z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Thus the group (Σ2KO(R))−1 = KO1(R) has torsion, implying that K CR(C∗ R(Λ, γ)) ≇ Σ2KO CR(R), hence i ̸= 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Similarly, the groups (Σ3KO(R))−1, (Σ4KO(R))−3, and (Σ5KO(R))−3 have torsion, showing that i ̸= 3, 4, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' □ References [BG22] Jeffrey L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Boersema and Elizabeth Gillaspy, K-theory for real k-graph C∗-algebras, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' K- Theory 7 (2022), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 2, 395–440.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [BHRS02] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Bates, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Hong, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Raeburn, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Szyma´nski, The ideal structure of the C∗-algebras of infinite graphs, Illinois J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 46 (2002), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 4, 1159–1176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [Boe02] Jeffrey L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Boersema, Real C∗-algebras, united K-theory, and the K¨unneth formula, K-Theory 26 (2002), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 4, 345–402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [Boe06] , The range of united K-theory, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 235 (2006), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 2, 701–718.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [Boe14] , The K-theory of real graph C∗-algebras, Rocky Mountain J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 44 (2014), 397–417.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [Boe17] , The real C∗-algebra of a graph with involution, M¨unster J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 10 (2017), 485–521.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [BRS11] Jeffrey L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Boersema, Efren Ruiz, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Stacey, The classification of real purely infinite simple C∗-algebras, Doc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 16 (2011), 619–655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' MR 2837543 [EFG+21] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Eckhardt, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Fieldhouse, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Gent, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Gillaspy, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Gonzales, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Pask, Moves on k-graphs preserving Morita equivalence, Canad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' (2021), to appear, arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='13441.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [Eva08] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Evans, On the K-theory of higher rank graph C∗-algebras, New York J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 14 (2008), 1–31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [Hew96] Beatrice Hewitt, On the homotopical classification of KO-module spectra, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' thesis, Univer- sity of Illinois at Chicago, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [HRSW13] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Hazlewood, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Raeburn, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Sims, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Webster, Remarks on some fundamental results about higher-rank graphs and their C∗-algebras, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Edinb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' (2) 56 (2013), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 2, 575–597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [HS04] Jeong Hee Hong and Wojciech Szyma´nski, The primitive ideal space of the C∗-algebras of infinite graphs, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Japan 56 (2004), 45–64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [KP00] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Kumjian and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Pask, Higher rank graph C∗-algebras, New York J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 6 (2000), 1–20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [RS04] Iain Raeburn and Wojciech Szyma´nski, Cuntz-Krieger algebras of infinite graphs and matrices, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 356 (2004), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 1, 39–59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [RSS15] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Ruiz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Sims, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Sørensen, UCT-Kirchberg algebras have nuclear dimension one, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 279 (2015), 1–28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' [Szy01] Wojciech Szyma´nski, Simplicity of Cuntz-Krieger algebras of infinite matrices, Pacific J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 199 (2001), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'} +page_content=' 1, 249–256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtE0T4oBgHgl3EQfTQBT/content/2301.02233v1.pdf'}