diff --git "a/LtFOT4oBgHgl3EQf0TSa/content/tmp_files/load_file.txt" "b/LtFOT4oBgHgl3EQf0TSa/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/LtFOT4oBgHgl3EQf0TSa/content/tmp_files/load_file.txt" @@ -0,0 +1,1208 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf,len=1207 +page_content='ERA-Solver: Error-Robust Adams Solver for Fast Sampling of Diffusion Probabilistic Models Shengmeng Li 1 Luping Liu 2 Zenghao Chai 3 Runnan Li 1 Xu Tan 3 Abstract Though denoising diffusion probabilistic models (DDPMs) have achieved remarkable generation results, the low sampling efficiency of DDPMs still limits further applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' Since DDPMs can be formulated as diffusion ordinary differ- ential equations (ODEs), various fast sampling methods can be derived from solving diffusion ODEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' However, we notice that previous sam- pling methods with fixed analytical form are not robust with the error in the noise estimated from pretrained diffusion models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' In this work, we construct an error-robust Adams solver (ERA- Solver), which utilizes the implicit Adams nu- merical method that consists of a predictor and a corrector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' Different from the traditional predictor based on explicit Adams methods, we leverage a Lagrange interpolation function as the predictor, which is further enhanced with an error-robust strategy to adaptively select the Lagrange bases with lower error in the estimated noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' Exper- iments on Cifar10, LSUN-Church, and LSUN- Bedroom datasets demonstrate that our proposed ERA-Solver achieves 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content='14, 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content='42, and 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content='69 Fenchel Inception Distance (FID) for image generation, with only 10 network evaluations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' Introduction In recent years, denoising diffusion probabilistic models (DDPMs) (Ho et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=', 2020) have been proven to have poten- tial in data generation tasks such as text-to-image genera- tion(Poole et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' Gu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' Kim & Ye, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=', 2022), speech synthesis(Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' Lam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' Leng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=', 2022), and molecular conformation formation(Hoogeboom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' Jing et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' Wu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' They build a diffusion process to add noise into the sample and a denoising process to remove noise from the sample gradually.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' Compared with 1Microsoft Cloud+AI 2Zhejiang University 3Microsoft Re- search Asia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtFOT4oBgHgl3EQf0TSa/content/2301.12935v1.pdf'} +page_content=' Correspondence to: Xu Tan