code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import os import numpy import onnx def lowerCAmelCase (__A , __A): """simple docstring""" _a = a.name _a = b.name _a = '''''' _a = '''''' _a = a == b _a = name_a _a = name_b return res def lowerCAmelCase (__A , __A , __A): """simple docstring""" for i, input_name in enumerate(node_proto.input): if input_name == name: node_proto.input.insert(a__ , a__) node_proto.input.pop(i + 1) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__) _graph_replace_input_with(node_proto.attribute[1].g , a__ , a__) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__) def lowerCAmelCase (__A , __A , __A): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(a__ , a__ , a__) def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = list(model.graph.initializer) _a = list(model_without_ext.graph.initializer) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _a = inits[i].name _a = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i]) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a__ , a__) def lowerCAmelCase (__A): """simple docstring""" _a = os.path.dirname(a__) _a = os.path.basename(a__) _a = onnx.load(os.path.join(a__ , a__)) _a = list(model.graph.initializer) _a = set() _a = {} _a = [] _a = 0 for i in range(len(a__)): if i in dup_set: continue for j in range(i + 1 , len(a__)): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j]): dup_set.add(a__) dup_set.add(a__) _a = inits[j].data_type _a = numpy.prod(inits[j].dims) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , a__) total_reduced_size += mem_size _a = inits[i].name _a = inits[j].name if name_i in dup_map: dup_map[name_i].append(a__) else: _a = [name_j] ind_to_replace.append((j, i)) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''') _a = sorted(a__) _remove_dup_initializers_from_model(a__ , a__ , a__) _a = '''optimized_''' + model_file_name _a = os.path.join(a__ , a__) onnx.save(a__ , a__) return new_model
211
def __lowerCAmelCase ( a__ , a__ , a__ ) -> list: __a = len(a__ ) __a = [[0] * n for i in range(a__ )] for i in range(a__ ): __a = y_points[i] for i in range(2 , a__ ): for j in range(a__ , a__ ): __a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
6
0
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Any = VQModel _UpperCAmelCase : Tuple = '''sample''' @property def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : int=(3_2, 3_2)): __lowerCamelCase : Any = 4 __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Tuple = floats_tensor((batch_size, num_channels) + sizes).to(_snake_case) return {"sample": image} @property def lowerCAmelCase ( self : int): return (3, 3_2, 3_2) @property def lowerCAmelCase ( self : List[Any]): return (3, 3_2, 3_2) def lowerCAmelCase ( self : int): __lowerCamelCase : List[Any] = { 'block_out_channels': [3_2, 6_4], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } __lowerCamelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self : Union[str, Any]): pass def lowerCAmelCase ( self : Optional[int]): pass def lowerCAmelCase ( self : str): __lowerCamelCase , __lowerCamelCase : str = VQModel.from_pretrained('fusing/vqgan-dummy' ,output_loading_info=_snake_case) self.assertIsNotNone(_snake_case) self.assertEqual(len(loading_info['missing_keys']) ,0) model.to(_snake_case) __lowerCamelCase : str = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def lowerCAmelCase ( self : int): __lowerCamelCase : Union[str, Any] = VQModel.from_pretrained('fusing/vqgan-dummy') model.to(_snake_case).eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) __lowerCamelCase : Optional[int] = torch.randn(1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size) __lowerCamelCase : List[Any] = image.to(_snake_case) with torch.no_grad(): __lowerCamelCase : Optional[Any] = model(_snake_case).sample __lowerCamelCase : Dict = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __lowerCamelCase : Any = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143]) # fmt: on self.assertTrue(torch.allclose(_snake_case ,_snake_case ,atol=1E-3))
73
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def __lowerCAmelCase ( a__ , a__ , a__ ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] __a = (low + high) // 2 __a , __a , __a = max_subarray(a__ , a__ , a__ ) __a , __a , __a = max_subarray(a__ , mid + 1 , a__ ) __a , __a , __a = max_cross_sum(a__ , a__ , a__ , a__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> tuple[int, int, float]: __a , __a = float('''-inf''' ), -1 __a , __a = float('''-inf''' ), -1 __a = 0 for i in range(a__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __a = summ __a = i __a = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __a = summ __a = i return max_left, max_right, (left_sum + right_sum) def __lowerCAmelCase ( a__ ) -> float: __a = [randint(1 , a__ ) for _ in range(a__ )] __a = time.time() max_subarray(a__ , 0 , input_size - 1 ) __a = time.time() return end - start def __lowerCAmelCase ( ) -> None: __a = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] __a = [time_max_subarray(a__ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(a__ , a__ ): print(a__ , '''\t\t''' , a__ ) plt.plot(a__ , a__ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
6
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin A__: Tuple = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class _a ( unittest.TestCase , UpperCamelCase__): """simple docstring""" def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: int = load_tool("text-question-answering" ) self.tool.setup() UpperCamelCase__: Optional[Any] = load_tool("text-question-answering" , remote=_snake_case ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = self.tool(_snake_case , "What did Hugging Face do in April 2021?" ) self.assertEqual(_snake_case , "launched the BigScience Research Workshop" ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' UpperCamelCase__: List[str] = self.remote_tool(_snake_case , "What did Hugging Face do in April 2021?" ) self.assertEqual(_snake_case , "launched the BigScience Research Workshop" ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' UpperCamelCase__: List[Any] = self.tool(text=_snake_case , question="What did Hugging Face do in April 2021?" ) self.assertEqual(_snake_case , "launched the BigScience Research Workshop" ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: Optional[Any] = self.remote_tool(text=_snake_case , question="What did Hugging Face do in April 2021?" ) self.assertEqual(_snake_case , "launched the BigScience Research Workshop" )
149
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A( a , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __A( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = ort.SessionOptions() __a = False return options def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_snake_case , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
6
0
'''simple docstring''' def a ( __a ) -> int: '''simple docstring''' if collection == []: return [] # get some information about the collection UpperCamelCase__ :Optional[int] = len(a__ ) UpperCamelCase__ :List[str] = max(a__ ) UpperCamelCase__ :List[str] = min(a__ ) # create the counting array UpperCamelCase__ :Union[str, Any] = coll_max + 1 - coll_min UpperCamelCase__ :Union[str, Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , a__ ): UpperCamelCase__ :Optional[Any] = counting_arr[i] + counting_arr[i - 1] # create the output collection UpperCamelCase__ :Any = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , a__ ) ): UpperCamelCase__ :Tuple = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def a ( __a ) -> List[str]: '''simple docstring''' return "".join([chr(a__ ) for i in counting_sort([ord(a__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
97
from math import ceil def __lowerCAmelCase ( a__ = 1001 ) -> int: __a = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __a = 2 * i + 1 __a = 2 * i __a = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
6
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __A : Optional[int] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __A : Dict = TaTokenizerFast __A : Union[str, Any] = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __A : Any = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
138
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''ChineseCLIPImageProcessor''' snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> Tuple: '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) __a = self.image_processor def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: __a = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class
6
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): UpperCamelCase = '''encoder-decoder''' UpperCamelCase = True def __init__( self : Optional[Any] , **A : List[Any]) -> str: """simple docstring""" super().__init__(**_snake_case) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _UpperCAmelCase = kwargs.pop('encoder') _UpperCAmelCase = encoder_config.pop('model_type') _UpperCAmelCase = kwargs.pop('decoder') _UpperCAmelCase = decoder_config.pop('model_type') from ..auto.configuration_auto import AutoConfig _UpperCAmelCase = AutoConfig.for_model(_snake_case , **_snake_case) _UpperCAmelCase = AutoConfig.for_model(_snake_case , **_snake_case) _UpperCAmelCase = True @classmethod def _lowerCamelCase ( cls : int , A : Tuple , A : str , **A : Tuple) -> PretrainedConfig: """simple docstring""" logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config') _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_snake_case) def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = copy.deepcopy(self.__dict__) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output
339
from __future__ import annotations import typing from collections import Counter def __lowerCAmelCase ( a__ ) -> typing.Counter[int]: __a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): __a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): __a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCAmelCase ( a__ = 1000 ) -> int: __a = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
6
0
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __magic_name__( ): __lowerCAmelCase = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 2_0, '''a ''' * 3_0, '''b ''' * 7], } __lowerCAmelCase = Dataset.from_dict(a__) return dataset class a__ ( __A ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = get_dataset() __lowerCAmelCase = make_duplicate_clusters(_snake_case , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _snake_case (self ): __lowerCAmelCase = get_dataset() __lowerCAmelCase , __lowerCAmelCase = deduplicate_dataset(_snake_case ) self.assertEqual(len(_snake_case ) , 2 ) print(_snake_case ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , _snake_case )
174
# flake8: noqa # Lint as: python3 A : Optional[Any] = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
6
0
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCAmelCase_ ( _a): lowerCamelCase__ : Optional[Any] = 4_2 lowerCamelCase__ : str = 4_2 class UpperCAmelCase_ ( nn.Module): lowerCamelCase__ : List[Any] = 4_2 lowerCamelCase__ : Optional[Any] = (1_6, 3_2, 9_6, 2_5_6) lowerCamelCase__ : Tuple = jnp.floataa def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[Any] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase__ : str = [] for i in range(len(self.block_out_channels ) - 1 ): lowercase__ : Optional[Any] = self.block_out_channels[i] lowercase__ : Optional[int] = self.block_out_channels[i + 1] lowercase__ : Union[str, Any] = nn.Conv( _snake_case , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_snake_case ) lowercase__ : Any = nn.Conv( _snake_case , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_snake_case ) lowercase__ : Dict = blocks lowercase__ : Dict = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , a ) -> int: lowercase__ : Union[str, Any] = self.conv_in(_snake_case ) lowercase__ : int = nn.silu(_snake_case ) for block in self.blocks: lowercase__ : List[str] = block(_snake_case ) lowercase__ : Dict = nn.silu(_snake_case ) lowercase__ : List[str] = self.conv_out(_snake_case ) return embedding @flax_register_to_config class UpperCAmelCase_ ( nn.Module , _a , _a): lowerCamelCase__ : int = 3_2 lowerCamelCase__ : List[str] = 4 lowerCamelCase__ : List[Any] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCamelCase__ : int = False lowerCamelCase__ : int = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) lowerCamelCase__ : Union[str, Any] = 2 lowerCamelCase__ : Optional[Any] = 8 lowerCamelCase__ : List[str] = None lowerCamelCase__ : Any = 1_2_8_0 lowerCamelCase__ : Dict = 0.0 lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Union[str, Any] = jnp.floataa lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : List[Any] = "rgb" lowerCamelCase__ : Optional[int] = (1_6, 3_2, 9_6, 2_5_6) def _UpperCAmelCase ( self , a ) -> FrozenDict: lowercase__ : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) lowercase__ : Any = jnp.zeros(_snake_case , dtype=jnp.floataa ) lowercase__ : Optional[int] = jnp.ones((1,) , dtype=jnp.intaa ) lowercase__ : Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowercase__ : Any = (1, 3, self.sample_size * 8, self.sample_size * 8) lowercase__ : Tuple = jnp.zeros(_snake_case , dtype=jnp.floataa ) lowercase__ , lowercase__ : List[str] = jax.random.split(_snake_case ) lowercase__ : int = {'params': params_rng, 'dropout': dropout_rng} return self.init(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case )["params"] def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[str] = self.block_out_channels lowercase__ : Tuple = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowercase__ : Any = self.num_attention_heads or self.attention_head_dim # input lowercase__ : Optional[int] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowercase__ : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowercase__ : Any = FlaxTimestepEmbedding(_snake_case , dtype=self.dtype ) lowercase__ : Union[str, Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowercase__ : Tuple = self.only_cross_attention if isinstance(_snake_case , _snake_case ): lowercase__ : Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_snake_case , _snake_case ): lowercase__ : Optional[Any] = (num_attention_heads,) * len(self.down_block_types ) # down lowercase__ : Optional[Any] = [] lowercase__ : Optional[int] = [] lowercase__ : Tuple = block_out_channels[0] lowercase__ : Optional[int] = nn.Conv( _snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_snake_case ) for i, down_block_type in enumerate(self.down_block_types ): lowercase__ : Optional[Any] = output_channel lowercase__ : str = block_out_channels[i] lowercase__ : int = i == len(_snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowercase__ : str = FlaxCrossAttnDownBlockaD( in_channels=_snake_case , out_channels=_snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowercase__ : Any = FlaxDownBlockaD( in_channels=_snake_case , out_channels=_snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_snake_case ) for _ in range(self.layers_per_block ): lowercase__ : Dict = nn.Conv( _snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_snake_case ) if not is_final_block: lowercase__ : Any = nn.Conv( _snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_snake_case ) lowercase__ : Optional[Any] = down_blocks lowercase__ : Union[str, Any] = controlnet_down_blocks # mid lowercase__ : str = block_out_channels[-1] lowercase__ : Optional[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=_snake_case , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowercase__ : Tuple = nn.Conv( _snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , a , a , a , a , a = 1.0 , a = True , a = False , ) -> Union[FlaxControlNetOutput, Tuple]: lowercase__ : str = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowercase__ : Any = jnp.flip(_snake_case , axis=1 ) # 1. time if not isinstance(_snake_case , jnp.ndarray ): lowercase__ : str = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_snake_case , jnp.ndarray ) and len(timesteps.shape ) == 0: lowercase__ : Any = timesteps.astype(dtype=jnp.floataa ) lowercase__ : Dict = jnp.expand_dims(_snake_case , 0 ) lowercase__ : int = self.time_proj(_snake_case ) lowercase__ : str = self.time_embedding(_snake_case ) # 2. pre-process lowercase__ : Any = jnp.transpose(_snake_case , (0, 2, 3, 1) ) lowercase__ : List[Any] = self.conv_in(_snake_case ) lowercase__ : Any = jnp.transpose(_snake_case , (0, 2, 3, 1) ) lowercase__ : Tuple = self.controlnet_cond_embedding(_snake_case ) sample += controlnet_cond # 3. down lowercase__ : int = (sample,) for down_block in self.down_blocks: if isinstance(_snake_case , _snake_case ): lowercase__ , lowercase__ : int = down_block(_snake_case , _snake_case , _snake_case , deterministic=not train ) else: lowercase__ , lowercase__ : Tuple = down_block(_snake_case , _snake_case , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowercase__ : List[Any] = self.mid_block(_snake_case , _snake_case , _snake_case , deterministic=not train ) # 5. contronet blocks lowercase__ : Any = () for down_block_res_sample, controlnet_block in zip(_snake_case , self.controlnet_down_blocks ): lowercase__ : List[str] = controlnet_block(_snake_case ) controlnet_down_block_res_samples += (down_block_res_sample,) lowercase__ : Optional[Any] = controlnet_down_block_res_samples lowercase__ : Any = self.controlnet_mid_block(_snake_case ) # 6. scaling lowercase__ : List[str] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_snake_case , mid_block_res_sample=_snake_case )
77
from typing import Dict from .base import GenericTensor, Pipeline class __A( a ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: __a = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __a = truncation __a = tokenize_kwargs __a = {} if return_tensors is not None: __a = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE_ ( self , _snake_case , **_snake_case ) -> Dict[str, GenericTensor]: '''simple docstring''' __a = self.framework __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.model(**_snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=False ) -> Optional[int]: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' return super().__call__(*_snake_case , **_snake_case )
6
0
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=16 , a=2 , a=0.02 , a=4 , ) -> Tuple: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_choices def _UpperCamelCase ( self ) -> Any: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_attention_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCamelCase ( self ) -> Union[str, Any]: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def _UpperCamelCase ( self ) -> Dict: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = True snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCamelCase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = True lowerCAmelCase = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCamelCase ( self ) -> Tuple: snake_case_ = FlaxBertModelTester(self ) @slow def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = FlaxBertModel.from_pretrained('bert-base-cased' ) snake_case_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case )
178
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Optional[int] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class __A( a ): snake_case_ = '''levit''' def __init__( self , _snake_case=224 , _snake_case=3 , _snake_case=3 , _snake_case=2 , _snake_case=1 , _snake_case=16 , _snake_case=[128, 256, 384] , _snake_case=[4, 8, 12] , _snake_case=[4, 4, 4] , _snake_case=[16, 16, 16] , _snake_case=0 , _snake_case=[2, 2, 2] , _snake_case=[2, 2, 2] , _snake_case=0.02 , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = image_size __a = num_channels __a = kernel_size __a = stride __a = padding __a = hidden_sizes __a = num_attention_heads __a = depths __a = key_dim __a = drop_path_rate __a = patch_size __a = attention_ratio __a = mlp_ratio __a = initializer_range __a = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
6
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __a (lowerCamelCase ): def __init__( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_snake_case , scheduler=_snake_case ) @torch.no_grad() def __call__( self : Optional[Any] , __magic_name__ : List[str] = 1 , __magic_name__ : str = None , __magic_name__ : List[str] = 0.0 , __magic_name__ : str = 50 , __magic_name__ : Optional[int] = None , __magic_name__ : Union[str, Any] = "pil" , __magic_name__ : Optional[int] = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size , _snake_case ): UpperCAmelCase_ : Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCAmelCase_ : Optional[int] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_snake_case , _snake_case ) and len(_snake_case ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_snake_case )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCAmelCase_ : Optional[int] = randn_tensor(_snake_case , generator=_snake_case , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase_ : Union[str, Any] = self.unet(_snake_case , _snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCAmelCase_ : int = self.scheduler.step( _snake_case , _snake_case , _snake_case , eta=_snake_case , use_clipped_model_output=_snake_case , generator=_snake_case ).prev_sample UpperCAmelCase_ : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ : Tuple = self.numpy_to_pil(_snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case )
125
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : int = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __A( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' __a = TOKEN HfFolder.save_token(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case , repo_id='''test-model-flax''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case )
6
0
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> list: """simple docstring""" _UpperCamelCase = len(a__ ) _UpperCamelCase = [[0] * n for i in range(a__ )] for i in range(a__ ): _UpperCamelCase = y_points[i] for i in range(2, a__ ): for j in range(a__, a__ ): _UpperCamelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
194
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path A : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) A : List[str] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} A : Optional[int] = 'zero2' A : str = 'zero3' A : Tuple = [ZEROa, ZEROa] def __lowerCAmelCase ( a__ , a__ , a__ ) -> Tuple: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __a = parameterized.to_safe_name('''_'''.join(str(a__ ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test A : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A( a ): @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Any: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> int: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> str: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = True , _snake_case = True , _snake_case = True , ) -> Any: '''simple docstring''' __a = models[model] __a = self.run_trainer( stage=_snake_case , model_name=_snake_case , eval_steps=_snake_case , num_train_epochs=1 , distributed=_snake_case , fpaa=_snake_case , ) self.do_checks(_snake_case ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = 1 , _snake_case = True , _snake_case = True , ) -> Union[str, Any]: '''simple docstring''' __a = self.get_auto_remove_tmp_dir('''./xxx''' , after=_snake_case ) __a = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __a = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __a = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __a = self.get_launcher(_snake_case ) __a = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case=False ) -> List[str]: '''simple docstring''' __a = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
6
0
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __A : '''simple docstring''' @staticmethod def a__ (*A , **A ) -> Optional[int]: """simple docstring""" pass def lowerCAmelCase (__A): """simple docstring""" _a = hashlib.mda(image.tobytes()) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __A ( unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def a__ (self , A , A , A ) -> Tuple: """simple docstring""" _a = DepthEstimationPipeline(model=_snake_case , image_processor=_snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def a__ (self , A , A ) -> Optional[int]: """simple docstring""" _a = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _snake_case ) import datasets _a = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) _a = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , _snake_case , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def a__ (self ) -> List[Any]: """simple docstring""" pass @slow @require_torch def a__ (self ) -> List[str]: """simple docstring""" _a = '''Intel/dpt-large''' _a = pipeline('''depth-estimation''' , model=_snake_case ) _a = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) _a = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def a__ (self ) -> int: """simple docstring""" self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
211
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A( a , a , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = '''sample''' snake_case_ = 1E-2 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = 4 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes ).to(_snake_case ) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __a = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a , __a = self.prepare_init_args_and_inputs_for_common() __a = self.model_class(**_snake_case ) model.to(_snake_case ) assert not model.is_gradient_checkpointing and model.training __a = model(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __a = torch.randn_like(_snake_case ) __a = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __a = self.model_class(**_snake_case ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_snake_case ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __a = model_a(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __a = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __a = dict(model.named_parameters() ) __a = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a , __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_snake_case ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __a = model.to(_snake_case ) model.eval() if torch_device == "mps": __a = torch.manual_seed(0 ) else: __a = torch.Generator(device=_snake_case ).manual_seed(0 ) __a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __a = image.to(_snake_case ) with torch.no_grad(): __a = model(_snake_case , sample_posterior=_snake_case , generator=_snake_case ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __a = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": __a = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __a = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1E-2 ) ) @slow class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_snake_case ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , _snake_case=(4, 3, 512, 512) , _snake_case=False ) -> Any: '''simple docstring''' __a = torch.floataa if fpaa else torch.floataa __a = torch.from_numpy(load_hf_numpy(self.get_file_format(_snake_case , _snake_case ) ) ).to(_snake_case ).to(_snake_case ) return image def SCREAMING_SNAKE_CASE_ ( self , _snake_case="CompVis/stable-diffusion-v1-4" , _snake_case=False ) -> Optional[Any]: '''simple docstring''' __a = '''fp16''' if fpaa else None __a = torch.floataa if fpaa else torch.floataa __a = AutoencoderKL.from_pretrained( _snake_case , subfolder='''vae''' , torch_dtype=_snake_case , revision=_snake_case , ) model.to(_snake_case ).eval() return model def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> Tuple: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(_snake_case ) return torch.Generator(device=_snake_case ).manual_seed(_snake_case ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , fpaa=_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) with torch.no_grad(): __a = model(_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model.encode(_snake_case ).latent_dist __a = dist.sample(generator=_snake_case ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __a = sample[0, -1, -3:, -3:].flatten().cpu() __a = torch.tensor(_snake_case ) __a = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(_snake_case , _snake_case , atol=_snake_case )
6
0
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
73
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A : str = logging.get_logger(__name__) class __A( a ): def __init__( self , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = [] __a = [] __a = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __a = parent.find_all(child.name , recursive=_snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_snake_case ) else next(i for i, s in enumerate(_snake_case , 1 ) if s is child ) ) __a = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = BeautifulSoup(_snake_case , '''html.parser''' ) __a = [] __a = [] __a = [] for element in html_code.descendants: if type(_snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __a = html.unescape(_snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(_snake_case ) __a , __a = self.xpath_soup(_snake_case ) stringaxtag_seq.append(_snake_case ) stringaxsubs_seq.append(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = '''''' for tagname, subs in zip(_snake_case , _snake_case ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , _snake_case ) -> BatchFeature: '''simple docstring''' __a = False # Check that strings has a valid type if isinstance(_snake_case , _snake_case ): __a = True elif isinstance(_snake_case , (list, tuple) ): if len(_snake_case ) == 0 or isinstance(html_strings[0] , _snake_case ): __a = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_snake_case )}.""" ) __a = bool(isinstance(_snake_case , (list, tuple) ) and (isinstance(html_strings[0] , _snake_case )) ) if not is_batched: __a = [html_strings] # Get nodes + xpaths __a = [] __a = [] for html_string in html_strings: __a , __a , __a = self.get_three_from_single(_snake_case ) nodes.append(_snake_case ) __a = [] for node, tag_list, sub_list in zip(_snake_case , _snake_case , _snake_case ): __a = self.construct_xpath(_snake_case , _snake_case ) xpath_strings.append(_snake_case ) xpaths.append(_snake_case ) # return as Dict __a = {'''nodes''': nodes, '''xpaths''': xpaths} __a = BatchFeature(data=_snake_case , tensor_type=_snake_case ) return encoded_inputs
6
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A__: List[Any] = logging.get_logger(__name__) A__: int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__: Dict = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A__: Any = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A__: Tuple = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A__: Optional[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } A__: Tuple = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } A__: List[Any] = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } A__: Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A__: str = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A__: Union[str, Any] = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = DPRContextEncoderTokenizer class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = DPRQuestionEncoderTokenizer A__: Optional[Any] = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) A__: Optional[Any] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) A__: Tuple = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCamelCase__) class _a : """simple docstring""" def __call__( self: Tuple , __lowerCamelCase: int , __lowerCamelCase: Dict = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Union[str, Any] = False , __lowerCamelCase: str = False , __lowerCamelCase: Dict = None , __lowerCamelCase: str = None , __lowerCamelCase: List[str] = None , **__lowerCamelCase: int , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( _snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , return_tensors=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) elif titles is None or texts is None: UpperCamelCase__: List[Any] = titles if texts is None else texts return super().__call__( _snake_case , _snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , return_tensors=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) UpperCamelCase__: Optional[int] = titles if not isinstance(_snake_case , _snake_case ) else [titles] UpperCamelCase__: Optional[int] = texts if not isinstance(_snake_case , _snake_case ) else [texts] UpperCamelCase__: List[str] = len(_snake_case ) UpperCamelCase__: str = questions if not isinstance(_snake_case , _snake_case ) else [questions] * n_passages assert len(_snake_case ) == len( _snake_case ), F"There should be as many titles than texts but got {len(_snake_case )} titles and {len(_snake_case )} texts." UpperCamelCase__: List[str] = super().__call__(_snake_case , _snake_case , padding=_snake_case , truncation=_snake_case )["input_ids"] UpperCamelCase__: Dict = super().__call__(_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case )["input_ids"] UpperCamelCase__: Optional[int] = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_snake_case , _snake_case ) ] } if return_attention_mask is not False: UpperCamelCase__: str = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCamelCase__: Tuple = attention_mask return self.pad(_snake_case , padding=_snake_case , max_length=_snake_case , return_tensors=_snake_case ) def UpperCAmelCase_ ( self: Any , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: Tuple = 16 , __lowerCamelCase: Optional[Any] = 64 , __lowerCamelCase: Optional[Any] = 4 , ): '''simple docstring''' UpperCamelCase__: Any = reader_input["input_ids"] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__: Tuple = reader_output[:3] UpperCamelCase__: List[str] = len(_snake_case ) UpperCamelCase__: Dict = sorted(range(_snake_case ) , reverse=_snake_case , key=relevance_logits.__getitem__ ) UpperCamelCase__: int = [] for doc_id in sorted_docs: UpperCamelCase__: List[str] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCamelCase__: List[Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCamelCase__: Optional[int] = sequence_ids.index(self.pad_token_id ) else: UpperCamelCase__: Optional[Any] = len(_snake_case ) UpperCamelCase__: List[str] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_snake_case , top_spans=_snake_case , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_snake_case , start_index=_snake_case , end_index=_snake_case , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_snake_case ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase_ ( self: Optional[int] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: int , ): '''simple docstring''' UpperCamelCase__: List[Any] = [] for start_index, start_score in enumerate(_snake_case ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCamelCase__: Any = sorted(_snake_case , key=lambda __lowerCamelCase : x[1] , reverse=_snake_case ) UpperCamelCase__: Any = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"Wrong span indices: [{start_index}:{end_index}]" UpperCamelCase__: str = end_index - start_index + 1 assert length <= max_answer_length, F"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_snake_case ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase__) class _a ( UpperCamelCase__ , UpperCamelCase__): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = ["""input_ids""", """attention_mask"""] UpperCamelCase__ = DPRReaderTokenizer
149
def __lowerCAmelCase ( a__ , a__ ) -> float: def get_matched_characters(a__ , a__ ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a__ ) __a = F"""{_stra[0:_stra.index(a__ )]} {_stra[_stra.index(a__ ) + 1:]}""" return "".join(a__ ) # matching characters __a = get_matched_characters(a__ , a__ ) __a = get_matched_characters(a__ , a__ ) __a = len(a__ ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(a__ , a__ ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(a__ ) + match_count / len(a__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
97
def __lowerCAmelCase ( a__ ) -> str: __a = [] __a = set({'''(''', '''[''', '''{'''} ) __a = set({''')''', ''']''', '''}'''} ) __a = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(a__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(a__ ) == 0 or (len(a__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a__ ) == 0 def __lowerCAmelCase ( ) -> Dict: __a = input('''Enter sequence of brackets: ''' ) if is_balanced(a__ ): print(a__ , '''is balanced''' ) else: print(a__ , '''is not balanced''' ) if __name__ == "__main__": main()
6
0
from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> tuple: '''simple docstring''' lowerCAmelCase : int = namedtuple('result', 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage', power / current ) elif current == 0: return result('current', power / voltage ) elif power == 0: return result('power', float(round(abs(voltage * current ), 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
138
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : str = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self : Any , A : int , A : Any = True , A : int = None , A : Dict = 32 , A : Optional[Any] = True , A : Tuple = 1 / 2_55 , A : str = True , A : List[Any] = True , A : List[Any] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , A : Tuple = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , A : Union[str, Any] = True , A : int=7 , A : int=30 , A : Union[str, Any]=4_00 , A : Tuple=3 , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = do_resize _UpperCAmelCase = size if size is not None else {'shortest_edge': 2_88} _UpperCAmelCase = size_divisor _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_pad _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _lowerCamelCase ( self : Any , A : Any , A : str=False) -> str: """simple docstring""" if not batched: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = image_inputs[0] if isinstance(_snake_case , Image.Image): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] _UpperCAmelCase = size / min(_snake_case , _snake_case) if h < w: _UpperCAmelCase , _UpperCAmelCase = size, scale * w else: _UpperCAmelCase , _UpperCAmelCase = scale * h, size _UpperCAmelCase = int((13_33 / 8_00) * size) if max(_snake_case , _snake_case) > max_size: _UpperCAmelCase = max_size / max(_snake_case , _snake_case) _UpperCAmelCase = newh * scale _UpperCAmelCase = neww * scale _UpperCAmelCase , _UpperCAmelCase = int(newh + 0.5), int(neww + 0.5) _UpperCAmelCase , _UpperCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) _UpperCAmelCase = max(_snake_case , key=lambda A: item[0])[0] _UpperCAmelCase = max(_snake_case , key=lambda A: item[1])[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCAmelCase = BridgeTowerImageProcessingTester(self) @property def _lowerCamelCase ( self : Dict) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_snake_case , 'image_mean')) self.assertTrue(hasattr(_snake_case , 'image_std')) self.assertTrue(hasattr(_snake_case , 'do_normalize')) self.assertTrue(hasattr(_snake_case , 'do_resize')) self.assertTrue(hasattr(_snake_case , 'size')) self.assertTrue(hasattr(_snake_case , 'size_divisor')) def _lowerCamelCase ( self : List[Any]) -> str: """simple docstring""" pass def _lowerCamelCase ( self : Tuple) -> List[str]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_snake_case) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_snake_case , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_snake_case , batched=_snake_case) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_snake_case) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_snake_case , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_snake_case , batched=_snake_case) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_snake_case) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_snake_case , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_snake_case , batched=_snake_case) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
339
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Dict = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' from itertools import product def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = sides_number __lowerCAmelCase = max_face_number * dice_number __lowerCAmelCase = [0] * (max_total + 1) __lowerCAmelCase = 1 __lowerCAmelCase = range(a__, max_face_number + 1) for dice_numbers in product(a__, repeat=a__): __lowerCAmelCase = sum(a__) totals_frequencies[total] += 1 return totals_frequencies def __magic_name__( ): __lowerCAmelCase = total_frequency_distribution( sides_number=4, dice_number=9) __lowerCAmelCase = total_frequency_distribution( sides_number=6, dice_number=6) __lowerCAmelCase = 0 __lowerCAmelCase = 9 __lowerCAmelCase = 4 * 9 __lowerCAmelCase = 6 for peter_total in range(a__, max_peter_total + 1): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total]) __lowerCAmelCase = (4**9) * (6**6) __lowerCAmelCase = peter_wins_count / total_games_number __lowerCAmelCase = round(a__, ndigits=7) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
174
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCAmelCase_ ( _a): lowerCamelCase__ : List[str] = "facebook/bart-large-mnli" lowerCamelCase__ : Union[str, Any] = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) lowerCamelCase__ : Any = "text_classifier" lowerCamelCase__ : List[Any] = AutoTokenizer lowerCamelCase__ : List[str] = AutoModelForSequenceClassification lowerCamelCase__ : Optional[Any] = ["text", ["text"]] lowerCamelCase__ : Dict = ["text"] def _UpperCAmelCase ( self ) -> Optional[int]: super().setup() lowercase__ : Optional[Any] = self.model.config lowercase__ : List[Any] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): lowercase__ : Optional[Any] = int(_snake_case ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def _UpperCAmelCase ( self , a , a ) -> Tuple: lowercase__ : Optional[int] = labels return self.pre_processor( [text] * len(_snake_case ) , [f"""This example is {label}""" for label in labels] , return_tensors='pt' , padding='max_length' , ) def _UpperCAmelCase ( self , a ) -> str: lowercase__ : int = outputs.logits lowercase__ : List[str] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
77
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
6
0
def __UpperCAmelCase ( a_ = 10_00): snake_case_ = 3 snake_case_ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'{solution() = }')
178
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class __A( a ): snake_case_ = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''text''': Value('''string''' )} ) snake_case_ = Features({} ) snake_case_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
6
0
'''simple docstring''' from math import ceil def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any] = 1001 ) -> int: UpperCAmelCase_ : Any = 1 for i in range(1, int(ceil(n / 2.0 ) ) ): UpperCAmelCase_ : Tuple = 2 * i + 1 UpperCAmelCase_ : Optional[int] = 2 * i UpperCAmelCase_ : int = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: snake_case_ : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
125
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase ( a__ , a__ , a__=1024 , a__=1024 , a__=False , **a__ ) -> Optional[Any]: __a = AutoTokenizer.from_pretrained(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''train''' , **a__ ) __a = tok.pad_token_id def get_lens(a__ ): __a = tqdm( DataLoader(a__ , batch_size=512 , num_workers=8 , shuffle=a__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __a = [] for batch in dl: __a = batch['''input_ids'''].ne(a__ ).sum(1 ).tolist() __a = batch['''labels'''].ne(a__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(a__ , a__ ): max_lens.append(max(a__ , a__ ) ) else: max_lens.extend(a__ ) return max_lens __a = get_lens(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''val''' , **a__ ) __a = get_lens(a__ ) pickle_save(a__ , train_ds.len_file ) pickle_save(a__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
6
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'xlm-roberta' def __init__( self , __a=3_05_22 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=2 , __a=0.02 , __a=1e-12 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , __a=None , **__a , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = classifier_dropout class _UpperCAmelCase( lowerCamelCase ): @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
194
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 - _cos) / 2 __a = 1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 + _cos) / 2 __a = -1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = _sin / 2 __a = 0 __a = -ba __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 1 - alpha __a = -2 * _cos __a = 1 + alpha __a = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = 1 + alpha * big_a __a = -2 * _cos __a = 1 - alpha * big_a __a = 1 + alpha / big_a __a = -2 * _cos __a = 1 - alpha / big_a __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (pmc + aaa) __a = 2 * big_a * mpc __a = big_a * (pmc - aaa) __a = ppmc + aaa __a = -2 * pmpc __a = ppmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (ppmc + aaa) __a = -2 * big_a * pmpc __a = big_a * (ppmc - aaa) __a = pmc + aaa __a = 2 * mpc __a = pmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
6
0
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
211
def __lowerCAmelCase ( a__ , a__ , a__ ) -> list: __a = len(a__ ) __a = [[0] * n for i in range(a__ )] for i in range(a__ ): __a = y_points[i] for i in range(2 , a__ ): for j in range(a__ , a__ ): __a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
6
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: __lowerCamelCase : Any = botoa.client('iam' ) __lowerCamelCase : Union[str, Any] = { 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=a__ , AssumeRolePolicyDocument=json.dumps(a__ , indent=2 ) ) __lowerCamelCase : Any = { 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=a__ , PolicyName=F"{role_name}_policy_permission" , PolicyDocument=json.dumps(a__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"role {role_name} already exists. Using existing one" ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]: __lowerCamelCase : Tuple = botoa.client('iam' ) return iam_client.get_role(RoleName=a__ )["Role"]["Arn"] def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: __lowerCamelCase : Optional[int] = _ask_options( 'How do you want to authorize?' , ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] , a__ , ) __lowerCamelCase : int = None if credentials_configuration == 0: __lowerCamelCase : List[Any] = _ask_field('Enter your AWS Profile name: [default] ' , default='default' ) __lowerCamelCase : Optional[int] = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) __lowerCamelCase : Any = _ask_field('AWS Access Key ID: ' ) __lowerCamelCase : Tuple = aws_access_key_id __lowerCamelCase : List[Any] = _ask_field('AWS Secret Access Key: ' ) __lowerCamelCase : str = aws_secret_access_key __lowerCamelCase : Any = _ask_field('Enter your AWS Region: [us-east-1]' , default='us-east-1' ) __lowerCamelCase : List[Any] = aws_region __lowerCamelCase : Tuple = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' , ['Provide IAM Role name', 'Create new IAM role using credentials'] , a__ , ) if role_management == 0: __lowerCamelCase : Tuple = _ask_field('Enter your IAM role name: ' ) else: __lowerCamelCase : Optional[Any] = 'accelerate_sagemaker_execution_role' print(F"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(a__ ) __lowerCamelCase : Optional[Any] = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' , _convert_yes_no_to_bool , default=a__ , error_message='Please enter yes or no.' , ) __lowerCamelCase : List[str] = None if is_custom_docker_image: __lowerCamelCase : Tuple = _ask_field('Enter your Docker image: ' , lambda lowerCamelCase__ : str(a__ ).lower() ) __lowerCamelCase : Union[str, Any] = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' , _convert_yes_no_to_bool , default=a__ , error_message='Please enter yes or no.' , ) __lowerCamelCase : Union[str, Any] = None if is_sagemaker_inputs_enabled: __lowerCamelCase : List[Any] = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' , lambda lowerCamelCase__ : str(a__ ).lower() , ) __lowerCamelCase : int = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' , _convert_yes_no_to_bool , default=a__ , error_message='Please enter yes or no.' , ) __lowerCamelCase : Any = None if is_sagemaker_metrics_enabled: __lowerCamelCase : Tuple = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' , lambda lowerCamelCase__ : str(a__ ).lower() , ) __lowerCamelCase : Dict = _ask_options( 'What is the distributed mode?' , ['No distributed training', 'Data parallelism'] , _convert_sagemaker_distributed_mode , ) __lowerCamelCase : str = {} __lowerCamelCase : Optional[int] = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' , _convert_yes_no_to_bool , default=a__ , error_message='Please enter yes or no.' , ) if use_dynamo: __lowerCamelCase : List[str] = 'dynamo_' __lowerCamelCase : Union[str, Any] = _ask_options( 'Which dynamo backend would you like to use?' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __lowerCamelCase : Tuple = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' , _convert_yes_no_to_bool , default=a__ , error_message='Please enter yes or no.' , ) if use_custom_options: __lowerCamelCase : Optional[Any] = _ask_options( 'Which mode do you want to use?' , a__ , lambda lowerCamelCase__ : TORCH_DYNAMO_MODES[int(a__ )] , default='default' , ) __lowerCamelCase : Optional[int] = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' , _convert_yes_no_to_bool , default=a__ , error_message='Please enter yes or no.' , ) __lowerCamelCase : Optional[Any] = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' , _convert_yes_no_to_bool , default=a__ , error_message='Please enter yes or no.' , ) __lowerCamelCase : Optional[Any] = 'Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: __lowerCamelCase : str = _ask_options( a__ , a__ , lambda lowerCamelCase__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(a__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __lowerCamelCase : Union[str, Any] = _ask_field(a__ , lambda lowerCamelCase__ : str(a__ ).lower() , default='ml.p3.2xlarge' ) __lowerCamelCase : List[str] = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __lowerCamelCase : str = _ask_field( 'How many machines do you want use? [1]: ' , a__ , default=1 , ) __lowerCamelCase : List[str] = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' , ['no', 'fp16', 'bf16', 'fp8'] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=a__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=a__ , use_cpu=a__ , dynamo_config=a__ , eca_instance_type=a__ , profile=a__ , region=a__ , iam_role_name=a__ , mixed_precision=a__ , num_machines=a__ , sagemaker_inputs_file=a__ , sagemaker_metrics_file=a__ , )
73
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def __lowerCAmelCase ( a__ , a__ , a__ ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] __a = (low + high) // 2 __a , __a , __a = max_subarray(a__ , a__ , a__ ) __a , __a , __a = max_subarray(a__ , mid + 1 , a__ ) __a , __a , __a = max_cross_sum(a__ , a__ , a__ , a__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> tuple[int, int, float]: __a , __a = float('''-inf''' ), -1 __a , __a = float('''-inf''' ), -1 __a = 0 for i in range(a__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __a = summ __a = i __a = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __a = summ __a = i return max_left, max_right, (left_sum + right_sum) def __lowerCAmelCase ( a__ ) -> float: __a = [randint(1 , a__ ) for _ in range(a__ )] __a = time.time() max_subarray(a__ , 0 , input_size - 1 ) __a = time.time() return end - start def __lowerCAmelCase ( ) -> None: __a = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] __a = [time_max_subarray(a__ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(a__ , a__ ): print(a__ , '''\t\t''' , a__ ) plt.plot(a__ , a__ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
6
0
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake A__: Any = numpy.array([0, 0]) A__: int = numpy.array([0.5, 0.8_660_254]) A__: int = numpy.array([1, 0]) A__: Optional[int] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCAmelCase_ ( A_ ,A_): UpperCamelCase__: Optional[int] = initial_vectors for _ in range(a__): UpperCamelCase__: Union[str, Any] = iteration_step(a__) return vectors def lowerCAmelCase_ ( A_): UpperCamelCase__: List[str] = [] for i, start_vector in enumerate(vectors[:-1]): UpperCamelCase__: Any = vectors[i + 1] new_vectors.append(a__) UpperCamelCase__: List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 ,60)) new_vectors.append(start_vector + difference_vector * 2 / 3) new_vectors.append(vectors[-1]) return new_vectors def lowerCAmelCase_ ( A_ ,A_): UpperCamelCase__: Tuple = numpy.radians(a__) UpperCamelCase__ , UpperCamelCase__: Dict = numpy.cos(a__), numpy.sin(a__) UpperCamelCase__: Tuple = numpy.array(((c, -s), (s, c))) return numpy.dot(a__ ,a__) def lowerCAmelCase_ ( A_): UpperCamelCase__: List[str] = plt.gca() axes.set_aspect("equal") # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCamelCase__ , UpperCamelCase__: Optional[int] = zip(*a__) plt.plot(a__ ,a__) plt.show() if __name__ == "__main__": import doctest doctest.testmod() A__: Dict = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
149
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A( a , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __A( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = ort.SessionOptions() __a = False return options def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_snake_case , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
6
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = tempfile.mkdtemp() UpperCamelCase__ :int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] UpperCamelCase__ :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCamelCase__ :Dict = { '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], '''do_convert_rgb''': True, } UpperCamelCase__ :Optional[Any] = os.path.join(self.tmpdirname , _snake_case ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_snake_case , _snake_case ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **_snake_case ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_snake_case ) def lowerCAmelCase__ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase__ :Optional[int] = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.get_tokenizer() UpperCamelCase__ :List[str] = self.get_rust_tokenizer() UpperCamelCase__ :Optional[int] = self.get_image_processor() UpperCamelCase__ :Union[str, Any] = ChineseCLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase__ :Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_snake_case ) UpperCamelCase__ :str = ChineseCLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase__ :Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _snake_case ) self.assertIsInstance(processor_fast.tokenizer , _snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _snake_case ) self.assertIsInstance(processor_fast.image_processor , _snake_case ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ :Tuple = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) UpperCamelCase__ :str = self.get_image_processor(do_normalize=_snake_case ) UpperCamelCase__ :Optional[int] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=_snake_case ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = self.get_image_processor() UpperCamelCase__ :List[str] = self.get_tokenizer() UpperCamelCase__ :int = ChineseCLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) UpperCamelCase__ :Tuple = self.prepare_image_inputs() UpperCamelCase__ :List[str] = image_processor(_snake_case , return_tensors='''np''' ) UpperCamelCase__ :int = processor(images=_snake_case , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self.get_image_processor() UpperCamelCase__ :Tuple = self.get_tokenizer() UpperCamelCase__ :str = ChineseCLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) UpperCamelCase__ :Any = '''Alexandra,T-shirt的价格是15便士。''' UpperCamelCase__ :Union[str, Any] = processor(text=_snake_case ) UpperCamelCase__ :Optional[Any] = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.get_image_processor() UpperCamelCase__ :Optional[int] = self.get_tokenizer() UpperCamelCase__ :List[str] = ChineseCLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) UpperCamelCase__ :Any = '''Alexandra,T-shirt的价格是15便士。''' UpperCamelCase__ :List[Any] = self.prepare_image_inputs() UpperCamelCase__ :List[str] = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.get_image_processor() UpperCamelCase__ :List[str] = self.get_tokenizer() UpperCamelCase__ :Union[str, Any] = ChineseCLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) UpperCamelCase__ :str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ :Union[str, Any] = processor.batch_decode(_snake_case ) UpperCamelCase__ :Optional[int] = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.get_image_processor() UpperCamelCase__ :Union[str, Any] = self.get_tokenizer() UpperCamelCase__ :Dict = ChineseCLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) UpperCamelCase__ :str = '''Alexandra,T-shirt的价格是15便士。''' UpperCamelCase__ :Tuple = self.prepare_image_inputs() UpperCamelCase__ :int = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
97
from math import ceil def __lowerCAmelCase ( a__ = 1001 ) -> int: __a = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __a = 2 * i + 1 __a = 2 * i __a = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
6
0
import math import flax.linen as nn import jax.numpy as jnp def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = 1, _UpperCAmelCase = 1, _UpperCAmelCase = 1.0e4, _UpperCAmelCase = False, _UpperCAmelCase = 1.0, ) -> jnp.ndarray: '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"Embedding dimension {embedding_dim} should be even" lowerCAmelCase : Any = float(embedding_dim // 2 ) lowerCAmelCase : Union[str, Any] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowerCAmelCase : List[str] = min_timescale * jnp.exp(jnp.arange(a__, dtype=jnp.floataa ) * -log_timescale_increment ) lowerCAmelCase : Any = jnp.expand_dims(a__, 1 ) * jnp.expand_dims(a__, 0 ) # scale embeddings lowerCAmelCase : List[Any] = scale * emb if flip_sin_to_cos: lowerCAmelCase : Optional[Any] = jnp.concatenate([jnp.cos(a__ ), jnp.sin(a__ )], axis=1 ) else: lowerCAmelCase : Tuple = jnp.concatenate([jnp.sin(a__ ), jnp.cos(a__ )], axis=1 ) lowerCAmelCase : List[Any] = jnp.reshape(a__, [jnp.shape(a__ )[0], embedding_dim] ) return signal class __A ( nn.Module ): lowerCAmelCase_ : Optional[Any] = 32 lowerCAmelCase_ : Tuple = jnp.floataa @nn.compact def __call__( self : Optional[Any] , UpperCAmelCase_ : Tuple ): lowerCAmelCase : int = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(_snake_case ) lowerCAmelCase : str = nn.silu(_snake_case ) lowerCAmelCase : List[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(_snake_case ) return temb class __A ( nn.Module ): lowerCAmelCase_ : Any = 32 lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[Any] = 1 @nn.compact def __call__( self : Optional[Any] , UpperCAmelCase_ : int ): return get_sinusoidal_embeddings( _snake_case , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
138
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''ChineseCLIPImageProcessor''' snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> Tuple: '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) __a = self.image_processor def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: __a = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class
6
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCAmelCase ( A ): UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''ChineseCLIPImageProcessor''' UpperCamelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Union[str, Any] , A : Union[str, Any]=None , A : List[Any]=None , **A : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _snake_case , ) _UpperCAmelCase = kwargs.pop('feature_extractor') _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(_snake_case , _snake_case) _UpperCAmelCase = self.image_processor def __call__( self : int , A : List[Any]=None , A : List[Any]=None , A : Optional[Any]=None , **A : Tuple) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: _UpperCAmelCase = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case) if images is not None: _UpperCAmelCase = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case) if text is not None and images is not None: _UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case) , tensor_type=_snake_case) def _lowerCamelCase ( self : Tuple , *A : List[str] , **A : List[str]) -> str: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case) def _lowerCamelCase ( self : Union[str, Any] , *A : Optional[Any] , **A : Optional[int]) -> Dict: """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case) @property def _lowerCamelCase ( self : List[Any]) -> Any: """simple docstring""" _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def _lowerCamelCase ( self : str) -> Optional[Any]: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _snake_case , ) return self.image_processor_class
339
from __future__ import annotations import typing from collections import Counter def __lowerCAmelCase ( a__ ) -> typing.Counter[int]: __a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): __a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): __a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCAmelCase ( a__ = 1000 ) -> int: __a = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
6
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : List[str] = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) _UpperCAmelCase : List[Any] = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) _UpperCAmelCase : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) _UpperCAmelCase : Optional[int] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) _UpperCAmelCase : Optional[Any] = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) _UpperCAmelCase : Any = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) _UpperCAmelCase : Optional[Any] = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) _UpperCAmelCase : List[Any] = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) _UpperCAmelCase : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) _UpperCAmelCase : Optional[int] = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) _UpperCAmelCase : Optional[Any] = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) _UpperCAmelCase : Union[str, Any] = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) _UpperCAmelCase : Tuple = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) _UpperCAmelCase : List[Any] = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) _UpperCAmelCase : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _UpperCAmelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _UpperCAmelCase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _UpperCAmelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _UpperCAmelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _UpperCAmelCase : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _UpperCAmelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _UpperCAmelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _UpperCAmelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _UpperCAmelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _UpperCAmelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _UpperCAmelCase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _UpperCAmelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _UpperCAmelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class a__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCamelCase : Any = FLAX_MODEL_MAPPING _UpperCAmelCase : Union[str, Any] = auto_class_update(FlaxAutoModel) class a__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCamelCase : str = FLAX_MODEL_FOR_PRETRAINING_MAPPING _UpperCAmelCase : List[str] = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class a__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCamelCase : Optional[int] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _UpperCAmelCase : Dict = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class a__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCamelCase : List[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING _UpperCAmelCase : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class a__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCamelCase : Tuple = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : List[Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class a__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCamelCase : int = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _UpperCAmelCase : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class a__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCamelCase : int = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _UpperCAmelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class a__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCamelCase : Optional[Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _UpperCAmelCase : int = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class a__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCamelCase : str = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _UpperCAmelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class a__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCamelCase : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _UpperCAmelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class a__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCamelCase : List[str] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _UpperCAmelCase : Tuple = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class a__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCamelCase : str = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _UpperCAmelCase : str = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class a__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCamelCase : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _UpperCAmelCase : str = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
174
# flake8: noqa # Lint as: python3 A : Optional[Any] = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
6
0
"""simple docstring""" class UpperCAmelCase_ : def __init__( self , a , a ) -> Optional[int]: lowercase__ : str = name lowercase__ : List[str] = val def __str__( self ) -> List[Any]: return f"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self , a ) -> Optional[Any]: return self.val < other.val class UpperCAmelCase_ : def __init__( self , a ) -> List[str]: lowercase__ : List[str] = {} lowercase__ : List[Any] = {} lowercase__ : Optional[Any] = self.build_heap(_snake_case ) def __getitem__( self , a ) -> Any: return self.get_value(_snake_case ) def _UpperCAmelCase ( self , a ) -> Tuple: return (idx - 1) // 2 def _UpperCAmelCase ( self , a ) -> List[str]: return idx * 2 + 1 def _UpperCAmelCase ( self , a ) -> Tuple: return idx * 2 + 2 def _UpperCAmelCase ( self , a ) -> str: return self.heap_dict[key] def _UpperCAmelCase ( self , a ) -> Dict: lowercase__ : Any = len(_snake_case ) - 1 lowercase__ : Union[str, Any] = self.get_parent_idx(_snake_case ) for idx, i in enumerate(_snake_case ): lowercase__ : str = idx lowercase__ : Optional[Any] = i.val for i in range(_snake_case , -1 , -1 ): self.sift_down(_snake_case , _snake_case ) return array def _UpperCAmelCase ( self , a , a ) -> List[Any]: while True: lowercase__ : Tuple = self.get_left_child_idx(_snake_case ) # noqa: E741 lowercase__ : int = self.get_right_child_idx(_snake_case ) lowercase__ : str = idx if l < len(_snake_case ) and array[l] < array[idx]: lowercase__ : Optional[int] = l if r < len(_snake_case ) and array[r] < array[smallest]: lowercase__ : List[str] = r if smallest != idx: lowercase__ , lowercase__ : List[Any] = array[smallest], array[idx] ( ( lowercase__ ) , ( lowercase__ ) , ) : str = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowercase__ : Dict = smallest else: break def _UpperCAmelCase ( self , a ) -> Union[str, Any]: lowercase__ : Dict = self.get_parent_idx(_snake_case ) while p >= 0 and self.heap[p] > self.heap[idx]: lowercase__ , lowercase__ : Optional[int] = self.heap[idx], self.heap[p] lowercase__ , lowercase__ : List[str] = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowercase__ : Optional[int] = p lowercase__ : List[str] = self.get_parent_idx(_snake_case ) def _UpperCAmelCase ( self ) -> Optional[Any]: return self.heap[0] def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ , lowercase__ : List[str] = self.heap[-1], self.heap[0] lowercase__ , lowercase__ : List[Any] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowercase__ : Any = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def _UpperCAmelCase ( self , a ) -> str: self.heap.append(_snake_case ) lowercase__ : Optional[int] = len(self.heap ) - 1 lowercase__ : Any = node.val self.sift_up(len(self.heap ) - 1 ) def _UpperCAmelCase ( self ) -> int: return len(self.heap ) == 0 def _UpperCAmelCase ( self , a , a ) -> Optional[Any]: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowercase__ : Union[str, Any] = new_value lowercase__ : List[str] = new_value self.sift_up(self.idx_of_element[node] ) _UpperCamelCase : Union[str, Any] = Node("R", -1) _UpperCamelCase : Union[str, Any] = Node("B", 6) _UpperCamelCase : List[Any] = Node("A", 3) _UpperCamelCase : List[Any] = Node("X", 1) _UpperCamelCase : Union[str, Any] = Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _UpperCamelCase : Union[str, Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
77
from typing import Dict from .base import GenericTensor, Pipeline class __A( a ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: __a = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __a = truncation __a = tokenize_kwargs __a = {} if return_tensors is not None: __a = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE_ ( self , _snake_case , **_snake_case ) -> Dict[str, GenericTensor]: '''simple docstring''' __a = self.framework __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.model(**_snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=False ) -> Optional[int]: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' return super().__call__(*_snake_case , **_snake_case )
6
0
class UpperCamelCase_ : '''simple docstring''' def __init__( self , a = "" , a = False ) -> None: snake_case_ = {} # A node will be a leaf if the tree contains its word snake_case_ = is_leaf snake_case_ = prefix def _UpperCamelCase ( self , a ) -> tuple[str, str, str]: snake_case_ = 0 for q, w in zip(self.prefix , _snake_case ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _UpperCamelCase ( self , a ) -> None: for word in words: self.insert(_snake_case ) def _UpperCamelCase ( self , a ) -> None: if self.prefix == word: snake_case_ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: snake_case_ = RadixNode(prefix=_snake_case , is_leaf=_snake_case ) else: snake_case_ = self.nodes[word[0]] snake_case_ , snake_case_ , snake_case_ = incoming_node.match( _snake_case ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_snake_case ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: snake_case_ = remaining_prefix snake_case_ = self.nodes[matching_string[0]] snake_case_ = RadixNode(_snake_case , _snake_case ) snake_case_ = aux_node if remaining_word == "": snake_case_ = True else: self.nodes[matching_string[0]].insert(_snake_case ) def _UpperCamelCase ( self , a ) -> bool: snake_case_ = self.nodes.get(word[0] , _snake_case ) if not incoming_node: return False else: snake_case_ , snake_case_ , snake_case_ = incoming_node.match( _snake_case ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_snake_case ) def _UpperCamelCase ( self , a ) -> bool: snake_case_ = self.nodes.get(word[0] , _snake_case ) if not incoming_node: return False else: snake_case_ , snake_case_ , snake_case_ = incoming_node.match( _snake_case ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_snake_case ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: snake_case_ = list(self.nodes.values() )[0] snake_case_ = merging_node.is_leaf self.prefix += merging_node.prefix snake_case_ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: snake_case_ = False # If there is 1 edge, we merge it with its child else: snake_case_ = list(incoming_node.nodes.values() )[0] snake_case_ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix snake_case_ = merging_node.nodes return True def _UpperCamelCase ( self , a = 0 ) -> None: if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __UpperCAmelCase ( ): snake_case_ = 'banana bananas bandana band apple all beast'.split() snake_case_ = RadixNode() root.insert_many(a__) assert all(root.find(a__) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ): assert test_trie() def __UpperCAmelCase ( ): snake_case_ = RadixNode() snake_case_ = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(a__) print('Words:' , a__) print('Tree:') root.print_tree() if __name__ == "__main__": main()
178
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Optional[int] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class __A( a ): snake_case_ = '''levit''' def __init__( self , _snake_case=224 , _snake_case=3 , _snake_case=3 , _snake_case=2 , _snake_case=1 , _snake_case=16 , _snake_case=[128, 256, 384] , _snake_case=[4, 8, 12] , _snake_case=[4, 4, 4] , _snake_case=[16, 16, 16] , _snake_case=0 , _snake_case=[2, 2, 2] , _snake_case=[2, 2, 2] , _snake_case=0.02 , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = image_size __a = num_channels __a = kernel_size __a = stride __a = padding __a = hidden_sizes __a = num_attention_heads __a = depths __a = key_dim __a = drop_path_rate __a = patch_size __a = attention_ratio __a = mlp_ratio __a = initializer_range __a = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
6
0
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str: UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Any = set({'''(''', '''[''', '''{'''} ) UpperCAmelCase_ : str = set({''')''', ''']''', '''}'''} ) UpperCAmelCase_ : Union[str, Any] = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(a__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(a__ ) == 0 or (len(a__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a__ ) == 0 def lowerCamelCase_ ( ) -> Dict: UpperCAmelCase_ : List[Any] = input('''Enter sequence of brackets: ''' ) if is_balanced(a__ ): print(a__, '''is balanced''' ) else: print(a__, '''is not balanced''' ) if __name__ == "__main__": main()
125
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : int = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __A( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' __a = TOKEN HfFolder.save_token(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case , repo_id='''test-model-flax''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case )
6
0
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''', [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''', ['''default''', 0, 1_00 * 2**20, 9_00 * 2**20] ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config, '''IN_MEMORY_MAX_SIZE''', a__ ) _UpperCamelCase = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: _UpperCamelCase = dataset_size < in_memory_max_size else: _UpperCamelCase = False _UpperCamelCase = is_small_dataset(a__ ) assert result == expected
194
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path A : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) A : List[str] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} A : Optional[int] = 'zero2' A : str = 'zero3' A : Tuple = [ZEROa, ZEROa] def __lowerCAmelCase ( a__ , a__ , a__ ) -> Tuple: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __a = parameterized.to_safe_name('''_'''.join(str(a__ ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test A : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A( a ): @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Any: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> int: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> str: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = True , _snake_case = True , _snake_case = True , ) -> Any: '''simple docstring''' __a = models[model] __a = self.run_trainer( stage=_snake_case , model_name=_snake_case , eval_steps=_snake_case , num_train_epochs=1 , distributed=_snake_case , fpaa=_snake_case , ) self.do_checks(_snake_case ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = 1 , _snake_case = True , _snake_case = True , ) -> Union[str, Any]: '''simple docstring''' __a = self.get_auto_remove_tmp_dir('''./xxx''' , after=_snake_case ) __a = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __a = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __a = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __a = self.get_launcher(_snake_case ) __a = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case=False ) -> List[str]: '''simple docstring''' __a = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
6
0
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def lowerCAmelCase (__A): """simple docstring""" _a , _a , _a = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def lowerCAmelCase (__A): """simple docstring""" return (gray > 127) & (gray <= 255) def lowerCAmelCase (__A , __A): """simple docstring""" _a = np.zeros_like(a__) _a = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1)) # Copy image to padded image _a = image # Iterate over image & apply kernel for x in range(image.shape[1]): for y in range(image.shape[0]): _a = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() _a = int(summation > 0) return output if __name__ == "__main__": # read original image lowercase_ = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' lowercase_ = np.array(Image.open(lena_path)) # kernel to be applied lowercase_ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowercase_ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowercase_ = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
211
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A( a , a , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = '''sample''' snake_case_ = 1E-2 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = 4 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes ).to(_snake_case ) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __a = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a , __a = self.prepare_init_args_and_inputs_for_common() __a = self.model_class(**_snake_case ) model.to(_snake_case ) assert not model.is_gradient_checkpointing and model.training __a = model(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __a = torch.randn_like(_snake_case ) __a = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __a = self.model_class(**_snake_case ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_snake_case ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __a = model_a(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __a = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __a = dict(model.named_parameters() ) __a = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a , __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_snake_case ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __a = model.to(_snake_case ) model.eval() if torch_device == "mps": __a = torch.manual_seed(0 ) else: __a = torch.Generator(device=_snake_case ).manual_seed(0 ) __a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __a = image.to(_snake_case ) with torch.no_grad(): __a = model(_snake_case , sample_posterior=_snake_case , generator=_snake_case ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __a = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": __a = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __a = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1E-2 ) ) @slow class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_snake_case ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , _snake_case=(4, 3, 512, 512) , _snake_case=False ) -> Any: '''simple docstring''' __a = torch.floataa if fpaa else torch.floataa __a = torch.from_numpy(load_hf_numpy(self.get_file_format(_snake_case , _snake_case ) ) ).to(_snake_case ).to(_snake_case ) return image def SCREAMING_SNAKE_CASE_ ( self , _snake_case="CompVis/stable-diffusion-v1-4" , _snake_case=False ) -> Optional[Any]: '''simple docstring''' __a = '''fp16''' if fpaa else None __a = torch.floataa if fpaa else torch.floataa __a = AutoencoderKL.from_pretrained( _snake_case , subfolder='''vae''' , torch_dtype=_snake_case , revision=_snake_case , ) model.to(_snake_case ).eval() return model def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> Tuple: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(_snake_case ) return torch.Generator(device=_snake_case ).manual_seed(_snake_case ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , fpaa=_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) with torch.no_grad(): __a = model(_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model.encode(_snake_case ).latent_dist __a = dist.sample(generator=_snake_case ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __a = sample[0, -1, -3:, -3:].flatten().cpu() __a = torch.tensor(_snake_case ) __a = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(_snake_case , _snake_case , atol=_snake_case )
6
0
import argparse a ='docs/source/_static/js/custom.js' def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Union[str, Any]: with open(a__ , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Union[str, Any] = f.readlines() __lowerCamelCase : Any = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __lowerCamelCase : Tuple = F"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F" \"v{version}\": \"v{version}\",\n" with open(a__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a__ ) if __name__ == "__main__": a =argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") a =parser.parse_args() update_custom_js(args.version)
73
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A : str = logging.get_logger(__name__) class __A( a ): def __init__( self , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = [] __a = [] __a = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __a = parent.find_all(child.name , recursive=_snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_snake_case ) else next(i for i, s in enumerate(_snake_case , 1 ) if s is child ) ) __a = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = BeautifulSoup(_snake_case , '''html.parser''' ) __a = [] __a = [] __a = [] for element in html_code.descendants: if type(_snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __a = html.unescape(_snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(_snake_case ) __a , __a = self.xpath_soup(_snake_case ) stringaxtag_seq.append(_snake_case ) stringaxsubs_seq.append(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = '''''' for tagname, subs in zip(_snake_case , _snake_case ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , _snake_case ) -> BatchFeature: '''simple docstring''' __a = False # Check that strings has a valid type if isinstance(_snake_case , _snake_case ): __a = True elif isinstance(_snake_case , (list, tuple) ): if len(_snake_case ) == 0 or isinstance(html_strings[0] , _snake_case ): __a = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_snake_case )}.""" ) __a = bool(isinstance(_snake_case , (list, tuple) ) and (isinstance(html_strings[0] , _snake_case )) ) if not is_batched: __a = [html_strings] # Get nodes + xpaths __a = [] __a = [] for html_string in html_strings: __a , __a , __a = self.get_three_from_single(_snake_case ) nodes.append(_snake_case ) __a = [] for node, tag_list, sub_list in zip(_snake_case , _snake_case , _snake_case ): __a = self.construct_xpath(_snake_case , _snake_case ) xpath_strings.append(_snake_case ) xpaths.append(_snake_case ) # return as Dict __a = {'''nodes''': nodes, '''xpaths''': xpaths} __a = BatchFeature(data=_snake_case , tensor_type=_snake_case ) return encoded_inputs
6
0
from __future__ import annotations def lowerCAmelCase_ ( A_ ,A_): UpperCamelCase__: str = [] create_all_state(1 ,a__ ,a__ ,[] ,a__) return result def lowerCAmelCase_ ( A_ ,A_ ,A_ ,A_ ,A_ ,): if level == 0: total_list.append(current_list[:]) return for i in range(a__ ,total_number - level + 2): current_list.append(a__) create_all_state(i + 1 ,a__ ,level - 1 ,a__ ,a__) current_list.pop() def lowerCAmelCase_ ( A_): for i in total_list: print(*a__) if __name__ == "__main__": A__: Union[str, Any] = 4 A__: Optional[int] = 2 A__: Dict = generate_all_combinations(n, k) print_all_state(total_list)
149
def __lowerCAmelCase ( a__ , a__ ) -> float: def get_matched_characters(a__ , a__ ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a__ ) __a = F"""{_stra[0:_stra.index(a__ )]} {_stra[_stra.index(a__ ) + 1:]}""" return "".join(a__ ) # matching characters __a = get_matched_characters(a__ , a__ ) __a = get_matched_characters(a__ , a__ ) __a = len(a__ ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(a__ , a__ ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(a__ ) + match_count / len(a__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
6
0
'''simple docstring''' from sklearn.metrics import recall_score import datasets __snake_case = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' __snake_case = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' __snake_case = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=1 , UpperCamelCase_="binary" , UpperCamelCase_=None , UpperCamelCase_="warn" , ): '''simple docstring''' UpperCamelCase__ :List[Any] = recall_score( _snake_case , _snake_case , labels=_snake_case , pos_label=_snake_case , average=_snake_case , sample_weight=_snake_case , zero_division=_snake_case , ) return {"recall": float(_snake_case ) if score.size == 1 else score}
97
def __lowerCAmelCase ( a__ ) -> str: __a = [] __a = set({'''(''', '''[''', '''{'''} ) __a = set({''')''', ''']''', '''}'''} ) __a = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(a__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(a__ ) == 0 or (len(a__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a__ ) == 0 def __lowerCAmelCase ( ) -> Dict: __a = input('''Enter sequence of brackets: ''' ) if is_balanced(a__ ): print(a__ , '''is balanced''' ) else: print(a__ , '''is not balanced''' ) if __name__ == "__main__": main()
6
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2], unknown_args[1::2] )} def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Union[str, Any] = ArgumentParser( 'HuggingFace Datasets CLI tool', usage='datasets-cli <command> [<args>]', allow_abbrev=a__ ) lowerCAmelCase : str = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(a__ ) EnvironmentCommand.register_subcommand(a__ ) TestCommand.register_subcommand(a__ ) RunBeamCommand.register_subcommand(a__ ) DummyDataCommand.register_subcommand(a__ ) # Parse args lowerCAmelCase , lowerCAmelCase : Any = parser.parse_known_args() if not hasattr(a__, 'func' ): parser.print_help() exit(1 ) lowerCAmelCase : Tuple = parse_unknown_args(a__ ) # Run lowerCAmelCase : List[str] = args.func(a__, **a__ ) service.run() if __name__ == "__main__": main()
138
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : str = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase__ = TypeVar("T") UpperCAmelCase__ = Union[List[T], Tuple[T, ...]] UpperCAmelCase__ = Union[T, List[T], Dict[str, T]] UpperCAmelCase__ = Union[str, bytes, os.PathLike]
339
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Dict = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : List[str] = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
174
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : str = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[Any] = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
77
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
6
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = '''rwkv''' lowerCAmelCase = {'''max_position_embeddings''': '''context_length'''} def __init__( self , a=5_02_77 , a=10_24 , a=40_96 , a=32 , a=None , a=None , a=1E-5 , a=0 , a=0 , a=6 , a=False , a=True , **a , ) -> List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
178
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class __A( a ): snake_case_ = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''text''': Value('''string''' )} ) snake_case_ = Features({} ) snake_case_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
6
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Dict = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase_ : Optional[Any] = tau * frequency / samplerate UpperCAmelCase_ : Tuple = sin(a__ ) UpperCAmelCase_ : Union[str, Any] = cos(a__ ) UpperCAmelCase_ : int = _sin / (2 * q_factor) UpperCAmelCase_ : str = (1 - _cos) / 2 UpperCAmelCase_ : List[str] = 1 - _cos UpperCAmelCase_ : Tuple = 1 + alpha UpperCAmelCase_ : int = -2 * _cos UpperCAmelCase_ : str = 1 - alpha UpperCAmelCase_ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase_ : Any = tau * frequency / samplerate UpperCAmelCase_ : Tuple = sin(a__ ) UpperCAmelCase_ : int = cos(a__ ) UpperCAmelCase_ : Any = _sin / (2 * q_factor) UpperCAmelCase_ : Optional[Any] = (1 + _cos) / 2 UpperCAmelCase_ : str = -1 - _cos UpperCAmelCase_ : Tuple = 1 + alpha UpperCAmelCase_ : Optional[int] = -2 * _cos UpperCAmelCase_ : Any = 1 - alpha UpperCAmelCase_ : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Dict = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase_ : str = tau * frequency / samplerate UpperCAmelCase_ : Tuple = sin(a__ ) UpperCAmelCase_ : Tuple = cos(a__ ) UpperCAmelCase_ : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : List[Any] = _sin / 2 UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Any = -ba UpperCAmelCase_ : Optional[Any] = 1 + alpha UpperCAmelCase_ : List[str] = -2 * _cos UpperCAmelCase_ : int = 1 - alpha UpperCAmelCase_ : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Dict = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase_ : Dict = tau * frequency / samplerate UpperCAmelCase_ : int = sin(a__ ) UpperCAmelCase_ : int = cos(a__ ) UpperCAmelCase_ : Union[str, Any] = _sin / (2 * q_factor) UpperCAmelCase_ : List[str] = 1 - alpha UpperCAmelCase_ : Dict = -2 * _cos UpperCAmelCase_ : Any = 1 + alpha UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba], [ba, ba, ba] ) return filt def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : List[str] = 1 / sqrt(2 ), ) -> IIRFilter: UpperCAmelCase_ : Optional[Any] = tau * frequency / samplerate UpperCAmelCase_ : Tuple = sin(a__ ) UpperCAmelCase_ : List[Any] = cos(a__ ) UpperCAmelCase_ : List[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : int = 10 ** (gain_db / 40) UpperCAmelCase_ : List[str] = 1 + alpha * big_a UpperCAmelCase_ : str = -2 * _cos UpperCAmelCase_ : Optional[int] = 1 - alpha * big_a UpperCAmelCase_ : Optional[int] = 1 + alpha / big_a UpperCAmelCase_ : Optional[Any] = -2 * _cos UpperCAmelCase_ : List[Any] = 1 - alpha / big_a UpperCAmelCase_ : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int = 1 / sqrt(2 ), ) -> IIRFilter: UpperCAmelCase_ : List[Any] = tau * frequency / samplerate UpperCAmelCase_ : int = sin(a__ ) UpperCAmelCase_ : str = cos(a__ ) UpperCAmelCase_ : Dict = _sin / (2 * q_factor) UpperCAmelCase_ : int = 10 ** (gain_db / 40) UpperCAmelCase_ : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : Any = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : Union[str, Any] = 2 * sqrt(a__ ) * alpha UpperCAmelCase_ : Tuple = big_a * (pmc + aaa) UpperCAmelCase_ : List[Any] = 2 * big_a * mpc UpperCAmelCase_ : Any = big_a * (pmc - aaa) UpperCAmelCase_ : Any = ppmc + aaa UpperCAmelCase_ : Optional[int] = -2 * pmpc UpperCAmelCase_ : Optional[int] = ppmc - aaa UpperCAmelCase_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Dict = 1 / sqrt(2 ), ) -> IIRFilter: UpperCAmelCase_ : int = tau * frequency / samplerate UpperCAmelCase_ : Dict = sin(a__ ) UpperCAmelCase_ : List[Any] = cos(a__ ) UpperCAmelCase_ : Tuple = _sin / (2 * q_factor) UpperCAmelCase_ : str = 10 ** (gain_db / 40) UpperCAmelCase_ : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : Tuple = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : Tuple = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : List[Any] = 2 * sqrt(a__ ) * alpha UpperCAmelCase_ : Optional[int] = big_a * (ppmc + aaa) UpperCAmelCase_ : Optional[int] = -2 * big_a * pmpc UpperCAmelCase_ : str = big_a * (ppmc - aaa) UpperCAmelCase_ : Optional[int] = pmc + aaa UpperCAmelCase_ : str = 2 * mpc UpperCAmelCase_ : List[str] = pmc - aaa UpperCAmelCase_ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt
125
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase ( a__ , a__ , a__=1024 , a__=1024 , a__=False , **a__ ) -> Optional[Any]: __a = AutoTokenizer.from_pretrained(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''train''' , **a__ ) __a = tok.pad_token_id def get_lens(a__ ): __a = tqdm( DataLoader(a__ , batch_size=512 , num_workers=8 , shuffle=a__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __a = [] for batch in dl: __a = batch['''input_ids'''].ne(a__ ).sum(1 ).tolist() __a = batch['''labels'''].ne(a__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(a__ , a__ ): max_lens.append(max(a__ , a__ ) ) else: max_lens.extend(a__ ) return max_lens __a = get_lens(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''val''' , **a__ ) __a = get_lens(a__ ) pickle_save(a__ , train_ds.len_file ) pickle_save(a__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
6
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _a = logging.get_logger(__name__) if is_vision_available(): import PIL class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = None , __a = True , __a = 1 / 2_55 , __a = True , __a = None , __a = None , __a = True , **__a , ) -> None: '''simple docstring''' super().__init__(**_snake_case) _UpperCamelCase = size if size is not None else {'''shortest_edge''': 2_24} _UpperCamelCase = get_size_dict(_snake_case , default_to_square=_snake_case) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(_snake_case , default_to_square=_snake_case , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCamelCase = do_convert_rgb def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BICUBIC , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(_snake_case , default_to_square=_snake_case) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''') _UpperCamelCase = get_resize_output_image_size(_snake_case , size=size['''shortest_edge'''] , default_to_square=_snake_case) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(_snake_case) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(_snake_case , size=(size['''height'''], size['''width''']) , data_format=_snake_case , **_snake_case) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> Tuple: '''simple docstring''' return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> PIL.Image.Image: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_snake_case , param_name='''size''' , default_to_square=_snake_case) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(_snake_case , param_name='''crop_size''' , default_to_square=_snake_case) _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCamelCase = make_list_of_images(_snake_case) if not valid_images(_snake_case): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCamelCase = [convert_to_rgb(_snake_case) for image in images] # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_snake_case) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=_snake_case , size=_snake_case) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_snake_case , scale=_snake_case) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case) for image in images] _UpperCamelCase = [to_channel_dimension_format(_snake_case , _snake_case) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case)
194
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 - _cos) / 2 __a = 1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 + _cos) / 2 __a = -1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = _sin / 2 __a = 0 __a = -ba __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 1 - alpha __a = -2 * _cos __a = 1 + alpha __a = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = 1 + alpha * big_a __a = -2 * _cos __a = 1 - alpha * big_a __a = 1 + alpha / big_a __a = -2 * _cos __a = 1 - alpha / big_a __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (pmc + aaa) __a = 2 * big_a * mpc __a = big_a * (pmc - aaa) __a = ppmc + aaa __a = -2 * pmpc __a = ppmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (ppmc + aaa) __a = -2 * big_a * pmpc __a = big_a * (ppmc - aaa) __a = pmc + aaa __a = 2 * mpc __a = pmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
6
0
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase (__A): """simple docstring""" if num <= 0: _a = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(a__) _a = [True] * (num + 1) _a = [] _a = 2 _a = int(math.sqrt(a__)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a__) # Set multiples of start be False for i in range(start * start , num + 1 , a__): if sieve[i] is True: _a = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(a__) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
211
def __lowerCAmelCase ( a__ , a__ , a__ ) -> list: __a = len(a__ ) __a = [[0] * n for i in range(a__ )] for i in range(a__ ): __a = y_points[i] for i in range(2 , a__ ): for j in range(a__ , a__ ): __a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
6
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a =['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] a ={'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a =logging.get_logger(__name__) a =' Hello world! cécé herlolip' a =[ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : List[str] = dct.pop(a__ ) __lowerCamelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]: __lowerCamelCase : List[Any] = torch.load(a__ , map_location='cpu' ) __lowerCamelCase : Tuple = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : List[Any] = emb.weight.shape __lowerCamelCase : Any = nn.Linear(a__ , a__ , bias=a__ ) __lowerCamelCase : Any = emb.weight.data return lin_layer @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> List[str]: if not os.path.exists(a__ ): __lowerCamelCase : Dict = torch.hub.load('pytorch/fairseq' , a__ ).eval() else: __lowerCamelCase : int = load_xsum_checkpoint(a__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: __lowerCamelCase : List[str] = checkpoint_path.replace('.' , '-' ) __lowerCamelCase : Dict = BartConfig.from_pretrained(a__ ) __lowerCamelCase : Any = bart.encode(a__ ).unsqueeze(0 ) __lowerCamelCase : List[str] = BartTokenizer.from_pretrained(a__ ).encode(a__ , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(a__ , a__ ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": __lowerCamelCase : List[str] = bart.state_dict() remove_ignore_keys_(a__ ) __lowerCamelCase : List[str] = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(a__ , a__ , a__ ) __lowerCamelCase : List[str] = BartForSequenceClassification(a__ ).eval() model.load_state_dict(a__ ) __lowerCamelCase : List[str] = bart.predict('mnli' , a__ , return_logits=a__ ) __lowerCamelCase : Optional[int] = model(a__ )[0] # logits else: # no classification heads to worry about __lowerCamelCase : str = bart.model.state_dict() remove_ignore_keys_(a__ ) __lowerCamelCase : List[str] = state_dict['decoder.embed_tokens.weight'] __lowerCamelCase : str = bart.extract_features(a__ ) if hf_checkpoint_name == "facebook/bart-large": __lowerCamelCase : List[Any] = BartModel(a__ ).eval() model.load_state_dict(a__ ) __lowerCamelCase : List[Any] = model(a__ ).model[0] else: __lowerCamelCase : Optional[int] = BartForConditionalGeneration(a__ ).eval() # an existing summarization ckpt model.model.load_state_dict(a__ ) if hasattr(a__ , 'lm_head' ): __lowerCamelCase : Tuple = make_linear_from_emb(model.model.shared ) __lowerCamelCase : Optional[int] = model.model(a__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) if __name__ == "__main__": a =argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a =parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
73
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def __lowerCAmelCase ( a__ , a__ , a__ ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] __a = (low + high) // 2 __a , __a , __a = max_subarray(a__ , a__ , a__ ) __a , __a , __a = max_subarray(a__ , mid + 1 , a__ ) __a , __a , __a = max_cross_sum(a__ , a__ , a__ , a__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> tuple[int, int, float]: __a , __a = float('''-inf''' ), -1 __a , __a = float('''-inf''' ), -1 __a = 0 for i in range(a__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __a = summ __a = i __a = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __a = summ __a = i return max_left, max_right, (left_sum + right_sum) def __lowerCAmelCase ( a__ ) -> float: __a = [randint(1 , a__ ) for _ in range(a__ )] __a = time.time() max_subarray(a__ , 0 , input_size - 1 ) __a = time.time() return end - start def __lowerCAmelCase ( ) -> None: __a = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] __a = [time_max_subarray(a__ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(a__ , a__ ): print(a__ , '''\t\t''' , a__ ) plt.plot(a__ , a__ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
6
0
def lowerCAmelCase_ ( A_): if not nums: # Makes sure that the list is not empty raise ValueError("List is empty") UpperCamelCase__: Optional[int] = sum(a__) / len(a__) # Calculate the average return sum(abs(x - average) for x in nums) / len(a__) if __name__ == "__main__": import doctest doctest.testmod()
149
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A( a , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __A( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = ort.SessionOptions() __a = False return options def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_snake_case , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
97
from math import ceil def __lowerCAmelCase ( a__ = 1001 ) -> int: __a = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __a = 2 * i + 1 __a = 2 * i __a = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
6
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __A ( lowerCAmelCase ): lowerCAmelCase_ : Tuple = (PNDMScheduler,) lowerCAmelCase_ : Optional[int] = (("num_inference_steps", 50),) def lowercase__ ( self : List[str] , **UpperCAmelCase_ : List[Any] ): lowerCAmelCase : Optional[int] = { 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_snake_case ) return config def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple=0 , **UpperCAmelCase_ : int ): lowerCAmelCase : Union[str, Any] = dict(self.forward_default_kwargs ) lowerCAmelCase : Tuple = kwargs.pop('num_inference_steps' , _snake_case ) lowerCAmelCase : int = self.dummy_sample lowerCAmelCase : Tuple = 0.1 * sample lowerCAmelCase : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase : str = self.get_scheduler_config(**_snake_case ) lowerCAmelCase : Dict = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowerCAmelCase : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowerCAmelCase : Optional[Any] = scheduler_class.from_pretrained(_snake_case ) new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowerCAmelCase : int = dummy_past_residuals[:] lowerCAmelCase : List[Any] = scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase : Dict = new_scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase : Optional[int] = scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase : Optional[Any] = new_scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : str ): pass def lowercase__ ( self : int , UpperCAmelCase_ : str=0 , **UpperCAmelCase_ : List[str] ): lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase : Tuple = kwargs.pop('num_inference_steps' , _snake_case ) lowerCAmelCase : Optional[Any] = self.dummy_sample lowerCAmelCase : Union[str, Any] = 0.1 * sample lowerCAmelCase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase : List[str] = self.get_scheduler_config() lowerCAmelCase : Any = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase : List[str] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowerCAmelCase : List[Any] = scheduler_class.from_pretrained(_snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase : List[str] = dummy_past_residuals[:] lowerCAmelCase : int = scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase : str = new_scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase : Any = scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase : int = new_scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : List[Any] , **UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : str = self.get_scheduler_config(**_snake_case ) lowerCAmelCase : Dict = scheduler_class(**_snake_case ) lowerCAmelCase : Tuple = 10 lowerCAmelCase : int = self.dummy_model() lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.prk_timesteps ): lowerCAmelCase : Dict = model(_snake_case , _snake_case ) lowerCAmelCase : Tuple = scheduler.step_prk(_snake_case , _snake_case , _snake_case ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowerCAmelCase : Tuple = model(_snake_case , _snake_case ) lowerCAmelCase : List[str] = scheduler.step_plms(_snake_case , _snake_case , _snake_case ).prev_sample return sample def lowercase__ ( self : Dict ): lowerCAmelCase : str = dict(self.forward_default_kwargs ) lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' , _snake_case ) for scheduler_class in self.scheduler_classes: lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : List[Any] = scheduler_class(**_snake_case ) lowerCAmelCase : List[Any] = self.dummy_sample lowerCAmelCase : Any = 0.1 * sample if num_inference_steps is not None and hasattr(_snake_case , 'set_timesteps' ): scheduler.set_timesteps(_snake_case ) elif num_inference_steps is not None and not hasattr(_snake_case , 'set_timesteps' ): lowerCAmelCase : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase : int = dummy_past_residuals[:] lowerCAmelCase : List[str] = scheduler.step_prk(_snake_case , 0 , _snake_case , **_snake_case ).prev_sample lowerCAmelCase : int = scheduler.step_prk(_snake_case , 1 , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase : str = scheduler.step_plms(_snake_case , 0 , _snake_case , **_snake_case ).prev_sample lowerCAmelCase : Any = scheduler.step_plms(_snake_case , 1 , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : Union[str, Any] ): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_snake_case ) def lowercase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_snake_case ) lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : List[str] = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase : Optional[Any] = scheduler_class(**_snake_case ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def lowercase__ ( self : Dict ): for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=_snake_case , beta_end=_snake_case ) def lowercase__ ( self : int ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_snake_case ) def lowercase__ ( self : Optional[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case ) def lowercase__ ( self : List[Any] ): for t in [1, 5, 10]: self.check_over_forward(time_step=_snake_case ) def lowercase__ ( self : List[Any] ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_snake_case ) def lowercase__ ( self : Any ): lowerCAmelCase : List[Any] = 27 for scheduler_class in self.scheduler_classes: lowerCAmelCase : Dict = self.dummy_sample lowerCAmelCase : int = 0.1 * sample lowerCAmelCase : Optional[Any] = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowerCAmelCase : Tuple = scheduler.step_prk(_snake_case , _snake_case , _snake_case ).prev_sample def lowercase__ ( self : List[str] ): with self.assertRaises(_snake_case ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Any = scheduler_class(**_snake_case ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[int] = self.full_loop() lowerCAmelCase : Dict = torch.sum(torch.abs(_snake_case ) ) lowerCAmelCase : List[Any] = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = self.full_loop(prediction_type='v_prediction' ) lowerCAmelCase : List[Any] = torch.sum(torch.abs(_snake_case ) ) lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def lowercase__ ( self : List[str] ): lowerCAmelCase : List[Any] = self.full_loop(set_alpha_to_one=_snake_case , beta_start=0.01 ) lowerCAmelCase : Union[str, Any] = torch.sum(torch.abs(_snake_case ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.full_loop(set_alpha_to_one=_snake_case , beta_start=0.01 ) lowerCAmelCase : Dict = torch.sum(torch.abs(_snake_case ) ) lowerCAmelCase : int = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
138
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''ChineseCLIPImageProcessor''' snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> Tuple: '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) __a = self.image_processor def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: __a = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class
6
0
from __future__ import annotations def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Dict ) -> list[int]: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = len(a__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _UpperCAmelCase = i + 1 else: _UpperCAmelCase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
339
from __future__ import annotations import typing from collections import Counter def __lowerCAmelCase ( a__ ) -> typing.Counter[int]: __a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): __a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): __a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCAmelCase ( a__ = 1000 ) -> int: __a = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
6
0
'''simple docstring''' def __magic_name__( lowerCamelCase): return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def __magic_name__( lowerCamelCase): __lowerCAmelCase = credit_card_number __lowerCAmelCase = 0 __lowerCAmelCase = len(a__) - 2 for i in range(a__, -1, -2): # double the value of every second digit __lowerCAmelCase = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 __lowerCAmelCase = cc_number[:i] + str(a__) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(a__) - 1, -1, -2): total += int(cc_number[i]) return total % 1_0 == 0 def __magic_name__( lowerCamelCase): __lowerCAmelCase = F"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(F"""{error_message} it has nonnumerical characters.""") return False if not 1_3 <= len(a__) <= 1_6: print(F"""{error_message} of its length.""") return False if not validate_initial_digits(a__): print(F"""{error_message} of its first two digits.""") return False if not luhn_validation(a__): print(F"""{error_message} it fails the Luhn check.""") return False print(F"""{credit_card_number} is a valid credit card number.""") return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
174
# flake8: noqa # Lint as: python3 A : Optional[Any] = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
6
0
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : List[str] = logging.get_logger(__name__) _UpperCamelCase : Union[str, Any] = 'https://openaipublic.azureedge.net/jukebox/models/' _UpperCamelCase : int = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: lowercase__ : Optional[Any] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: lowercase__ : List[Any] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: lowercase__ : str = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: lowercase__ : int = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: lowercase__ : Optional[Any] = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: lowercase__ : Any = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowercase__ : Optional[int] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: lowercase__ : Tuple = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def a_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : str = {} import re lowercase__ : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) lowercase__ : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) lowercase__ : Any = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) lowercase__ : List[str] = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) lowercase__ : List[Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) lowercase__ : str = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) lowercase__ : Optional[Any] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) lowercase__ : Union[str, Any] = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) lowercase__ : Dict = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(a__ ): lowercase__ : Any = re_encoder_block_conv_in.match(a__ ) lowercase__ : Dict = regex_match.groups() lowercase__ : Any = int(groups[2] ) * 2 + int(groups[3] ) lowercase__ : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" lowercase__ : Union[str, Any] = re_encoder_block_conv_in.sub(a__ , a__ ) elif re_encoder_block_resnet.fullmatch(a__ ): lowercase__ : List[str] = re_encoder_block_resnet.match(a__ ) lowercase__ : Dict = regex_match.groups() lowercase__ : Any = int(groups[2] ) * 2 + int(groups[3] ) lowercase__ : Any = {'1': 1, '3': 2}[groups[-2]] lowercase__ : List[str] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" lowercase__ : List[Any] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowercase__ : str = prefix + resnet_block lowercase__ : int = re_encoder_block_resnet.sub(a__ , a__ ) elif re_encoder_block_proj_out.fullmatch(a__ ): lowercase__ : Tuple = re_encoder_block_proj_out.match(a__ ) lowercase__ : int = regex_match.groups() lowercase__ : List[Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" lowercase__ : Dict = re_encoder_block_proj_out.sub(a__ , a__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(a__ ): lowercase__ : Any = re_decoder_block_conv_out.match(a__ ) lowercase__ : Dict = regex_match.groups() lowercase__ : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowercase__ : Optional[int] = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" lowercase__ : List[str] = re_decoder_block_conv_out.sub(a__ , a__ ) elif re_decoder_block_resnet.fullmatch(a__ ): lowercase__ : str = re_decoder_block_resnet.match(a__ ) lowercase__ : Dict = regex_match.groups() lowercase__ : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowercase__ : List[Any] = {'1': 1, '3': 2}[groups[-2]] lowercase__ : Optional[int] = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" lowercase__ : Any = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowercase__ : int = prefix + resnet_block lowercase__ : Optional[int] = re_decoder_block_resnet.sub(a__ , a__ ) elif re_decoder_block_proj_in.fullmatch(a__ ): lowercase__ : Any = re_decoder_block_proj_in.match(a__ ) lowercase__ : Union[str, Any] = regex_match.groups() lowercase__ : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" lowercase__ : Any = re_decoder_block_proj_in.sub(a__ , a__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(a__ ): lowercase__ : Union[str, Any] = re_prior_cond_conv_out.match(a__ ) lowercase__ : int = regex_match.groups() lowercase__ : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowercase__ : Optional[int] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" lowercase__ : int = re_prior_cond_conv_out.sub(a__ , a__ ) elif re_prior_cond_resnet.fullmatch(a__ ): lowercase__ : List[str] = re_prior_cond_resnet.match(a__ ) lowercase__ : Union[str, Any] = regex_match.groups() lowercase__ : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowercase__ : List[str] = {'1': 1, '3': 2}[groups[-2]] lowercase__ : Tuple = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" lowercase__ : Tuple = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowercase__ : Optional[Any] = prefix + resnet_block lowercase__ : int = re_prior_cond_resnet.sub(a__ , a__ ) elif re_prior_cond_proj_in.fullmatch(a__ ): lowercase__ : Optional[int] = re_prior_cond_proj_in.match(a__ ) lowercase__ : List[Any] = regex_match.groups() lowercase__ : Any = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" lowercase__ : Any = re_prior_cond_proj_in.sub(a__ , a__ ) # keep original key else: lowercase__ : Dict = original_key lowercase__ : List[Any] = replace_key(a__ ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: lowercase__ : Any = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) lowercase__ : int = original_key lowercase__ : Union[str, Any] = original_key lowercase__ : List[Any] = value return new_dict @torch.no_grad() def a_ ( _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): lowercase__ : Union[str, Any] = requests.get(f"""{PREFIX}{file}""" , allow_redirects=a__ ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=a__ ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , 'wb' ).write(r.content ) lowercase__ : int = MODEL_MAPPING[model_name.split('/' )[-1]] lowercase__ : Tuple = JukeboxConfig.from_pretrained(a__ ) lowercase__ : Optional[Any] = JukeboxModel(a__ ) lowercase__ : Dict = [] lowercase__ : List[str] = {} for i, dict_name in enumerate(a__ ): lowercase__ : Optional[Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )['model'] lowercase__ : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): lowercase__ : Dict = old_dic[k] elif k.endswith('.w' ): lowercase__ : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowercase__ : List[Any] = old_dic[k] else: lowercase__ : str = old_dic[k] lowercase__ : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" lowercase__ : List[str] = fix_jukebox_keys(a__ , model.state_dict() , a__ , a__ ) weight_dict.append(a__ ) lowercase__ : int = weight_dict.pop(0 ) model.vqvae.load_state_dict(a__ ) for i in range(len(a__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(a__ ).mkdir(exist_ok=a__ ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(a__ , a__ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) return weight_dict if __name__ == "__main__": _UpperCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _UpperCamelCase : List[Any] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
77
from typing import Dict from .base import GenericTensor, Pipeline class __A( a ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: __a = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __a = truncation __a = tokenize_kwargs __a = {} if return_tensors is not None: __a = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE_ ( self , _snake_case , **_snake_case ) -> Dict[str, GenericTensor]: '''simple docstring''' __a = self.framework __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.model(**_snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=False ) -> Optional[int]: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' return super().__call__(*_snake_case , **_snake_case )
6
0
# flake8: noqa # Lint as: python3 lowercase = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
178
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Optional[int] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class __A( a ): snake_case_ = '''levit''' def __init__( self , _snake_case=224 , _snake_case=3 , _snake_case=3 , _snake_case=2 , _snake_case=1 , _snake_case=16 , _snake_case=[128, 256, 384] , _snake_case=[4, 8, 12] , _snake_case=[4, 4, 4] , _snake_case=[16, 16, 16] , _snake_case=0 , _snake_case=[2, 2, 2] , _snake_case=[2, 2, 2] , _snake_case=0.02 , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = image_size __a = num_channels __a = kernel_size __a = stride __a = padding __a = hidden_sizes __a = num_attention_heads __a = depths __a = key_dim __a = drop_path_rate __a = patch_size __a = attention_ratio __a = mlp_ratio __a = initializer_range __a = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
6
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __a (metaclass=lowerCamelCase ): __a : List[Any] = ["speech"] def __init__( self : Optional[int] , *__magic_name__ : Optional[Any] , **__magic_name__ : List[Any] ) -> Any: """simple docstring""" requires_backends(self , ['''speech'''] ) class __a (metaclass=lowerCamelCase ): __a : int = ["speech"] def __init__( self : Any , *__magic_name__ : List[str] , **__magic_name__ : List[Any] ) -> Dict: """simple docstring""" requires_backends(self , ['''speech'''] )
125
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : int = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __A( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' __a = TOKEN HfFolder.save_token(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case , repo_id='''test-model-flax''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case )
6
0
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = TaConfig.from_json_file(a__ ) print(F'''Building PyTorch model from configuration: {config}''' ) _UpperCamelCase = TaForConditionalGeneration(a__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(a__, a__, a__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(a__ ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _a = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
194
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path A : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) A : List[str] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} A : Optional[int] = 'zero2' A : str = 'zero3' A : Tuple = [ZEROa, ZEROa] def __lowerCAmelCase ( a__ , a__ , a__ ) -> Tuple: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __a = parameterized.to_safe_name('''_'''.join(str(a__ ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test A : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A( a ): @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Any: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> int: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> str: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = True , _snake_case = True , _snake_case = True , ) -> Any: '''simple docstring''' __a = models[model] __a = self.run_trainer( stage=_snake_case , model_name=_snake_case , eval_steps=_snake_case , num_train_epochs=1 , distributed=_snake_case , fpaa=_snake_case , ) self.do_checks(_snake_case ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = 1 , _snake_case = True , _snake_case = True , ) -> Union[str, Any]: '''simple docstring''' __a = self.get_auto_remove_tmp_dir('''./xxx''' , after=_snake_case ) __a = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __a = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __a = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __a = self.get_launcher(_snake_case ) __a = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case=False ) -> List[str]: '''simple docstring''' __a = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
6
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __A : '''simple docstring''' def __init__(self , A , A=12 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=512 , A=0.02 , A=0 , A=None , ) -> Dict: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_labels _a = vocab_size _a = hidden_size _a = projection_dim _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = dropout _a = attention_dropout _a = max_position_embeddings _a = initializer_range _a = scope _a = bos_token_id def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _a = input_mask.numpy() _a , _a = input_mask.shape _a = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_snake_case ): _a = 1 _a = 0 _a = self.get_config() return config, input_ids, tf.convert_to_tensor(_snake_case ) def a__ (self ) -> Any: """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = TFBlipTextModel(config=_snake_case ) _a = model(_snake_case , attention_mask=_snake_case , training=_snake_case ) _a = model(_snake_case , training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ (self ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = (TFBlipTextModel,) if is_tf_available() else () __lowerCamelCase : Tuple = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False def a__ (self ) -> Optional[int]: """simple docstring""" _a = BlipTextModelTester(self ) _a = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Tuple: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def a__ (self ) -> str: """simple docstring""" pass def a__ (self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def a__ (self ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def a__ (self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def a__ (self ) -> Dict: """simple docstring""" pass @slow def a__ (self ) -> str: """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFBlipTextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def a__ (self , A=True ) -> Optional[Any]: """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
211
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A( a , a , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = '''sample''' snake_case_ = 1E-2 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = 4 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes ).to(_snake_case ) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __a = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a , __a = self.prepare_init_args_and_inputs_for_common() __a = self.model_class(**_snake_case ) model.to(_snake_case ) assert not model.is_gradient_checkpointing and model.training __a = model(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __a = torch.randn_like(_snake_case ) __a = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __a = self.model_class(**_snake_case ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_snake_case ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __a = model_a(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __a = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __a = dict(model.named_parameters() ) __a = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a , __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_snake_case ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __a = model.to(_snake_case ) model.eval() if torch_device == "mps": __a = torch.manual_seed(0 ) else: __a = torch.Generator(device=_snake_case ).manual_seed(0 ) __a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __a = image.to(_snake_case ) with torch.no_grad(): __a = model(_snake_case , sample_posterior=_snake_case , generator=_snake_case ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __a = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": __a = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __a = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1E-2 ) ) @slow class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_snake_case ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , _snake_case=(4, 3, 512, 512) , _snake_case=False ) -> Any: '''simple docstring''' __a = torch.floataa if fpaa else torch.floataa __a = torch.from_numpy(load_hf_numpy(self.get_file_format(_snake_case , _snake_case ) ) ).to(_snake_case ).to(_snake_case ) return image def SCREAMING_SNAKE_CASE_ ( self , _snake_case="CompVis/stable-diffusion-v1-4" , _snake_case=False ) -> Optional[Any]: '''simple docstring''' __a = '''fp16''' if fpaa else None __a = torch.floataa if fpaa else torch.floataa __a = AutoencoderKL.from_pretrained( _snake_case , subfolder='''vae''' , torch_dtype=_snake_case , revision=_snake_case , ) model.to(_snake_case ).eval() return model def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> Tuple: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(_snake_case ) return torch.Generator(device=_snake_case ).manual_seed(_snake_case ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , fpaa=_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) with torch.no_grad(): __a = model(_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model.encode(_snake_case ).latent_dist __a = dist.sample(generator=_snake_case ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __a = sample[0, -1, -3:, -3:].flatten().cpu() __a = torch.tensor(_snake_case ) __a = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(_snake_case , _snake_case , atol=_snake_case )
6
0
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed a =os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) a ='sshleifer/student_marian_en_ro_6_1' a ='sshleifer/tiny-mbart' @require_torch class A_ ( SCREAMING_SNAKE_CASE ): def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Tuple=False ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : Optional[Any]=True ,SCREAMING_SNAKE_CASE__ : Any=True ,): __lowerCamelCase : Any = self.run_trainer( eval_steps=1 ,max_len=1_2 ,model_name=_snake_case ,num_train_epochs=1 ,distributed=_snake_case ,extra_args_str=_snake_case ,predict_with_generate=_snake_case ,do_train=_snake_case ,do_eval=_snake_case ,do_predict=_snake_case ,) __lowerCamelCase : List[str] = TrainerState.load_from_json(os.path.join(_snake_case ,'trainer_state.json')).log_history if not do_eval: return __lowerCamelCase : Tuple = [log for log in logs if 'eval_loss' in log.keys()] __lowerCamelCase : Tuple = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats __lowerCamelCase : Union[str, Any] = eval_metrics[-1] assert isinstance(last_step_stats['eval_bleu'] ,_snake_case) assert not math.isnan(float(last_step_stats['eval_loss'])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCAmelCase ( self : Any): self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCAmelCase ( self : str): self.run_seqaseq_quick(distributed=_snake_case) @require_torch_multi_gpu def lowerCAmelCase ( self : Optional[Any]): self.run_seqaseq_quick(distributed=_snake_case) @unittest.skip('Requires an update of the env running those tests') @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : List[Any]): self.run_seqaseq_quick(distributed=_snake_case ,extra_args_str='--sharded_ddp simple') @unittest.skip('Requires an update of the env running those tests') @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Optional[Any]): self.run_seqaseq_quick(distributed=_snake_case ,extra_args_str='--sharded_ddp simple --fp16') @unittest.skip('Requires an update of the env running those tests') @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : List[Any]): self.run_seqaseq_quick(distributed=_snake_case ,extra_args_str='--sharded_ddp zero_dp_2' ,predict_with_generate=_snake_case) @unittest.skip('Requires an update of the env running those tests') @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Tuple): self.run_seqaseq_quick( distributed=_snake_case ,extra_args_str='--sharded_ddp zero_dp_2 --fp16' ,predict_with_generate=_snake_case) @require_apex @require_torch_gpu def lowerCAmelCase ( self : str): self.run_seqaseq_quick(distributed=_snake_case ,extra_args_str='--fp16 --fp16_backend=apex') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_snake_case ,extra_args_str='--fp16 --fp16_backend=apex') @parameterized.expand(['base', 'low', 'high', 'mixed']) @require_torch_multi_gpu def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Tuple): __lowerCamelCase : int = { # test with the default log_level - should be info and thus log info once 'base': {'extra_args_str': '', 'n_matches': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes 'low': {'extra_args_str': '--log_level debug --log_level_replica debug', 'n_matches': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica 'high': {'extra_args_str': '--log_level error --log_level_replica debug', 'n_matches': 1}, # test with high log_level and log_level_replica - should be quiet on all processes 'mixed': {'extra_args_str': '--log_level error --log_level_replica error', 'n_matches': 0}, } __lowerCamelCase : str = experiments[experiment_id] __lowerCamelCase : int = {'distributed': True, 'predict_with_generate': False, 'do_eval': False, 'do_predict': False} __lowerCamelCase : Union[str, Any] = 'Running training' with CaptureStderr() as cl: self.run_seqaseq_quick(**_snake_case ,extra_args_str=data['extra_args_str']) __lowerCamelCase : List[Any] = len(re.findall(_snake_case ,cl.err)) self.assertEqual(_snake_case ,data['n_matches']) @slow def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : str = self.run_trainer( eval_steps=2 ,max_len=1_2_8 ,model_name=_snake_case ,learning_rate=3E-4 ,num_train_epochs=1_0 ,distributed=_snake_case ,) # Check metrics __lowerCamelCase : Optional[int] = TrainerState.load_from_json(os.path.join(_snake_case ,'trainer_state.json')).log_history __lowerCamelCase : Dict = [log for log in logs if 'eval_loss' in log.keys()] __lowerCamelCase : Optional[Any] = eval_metrics[0] __lowerCamelCase : Any = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['eval_bleu'] ,_snake_case) # test if do_predict saves generations and metrics __lowerCamelCase : Union[str, Any] = os.listdir(_snake_case) __lowerCamelCase : List[str] = {os.path.basename(_snake_case) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCAmelCase ( self : List[Any]): from transformers.training_args import OptimizerNames def train_and_return_metrics(SCREAMING_SNAKE_CASE__ : Any) -> Tuple[int, float]: __lowerCamelCase : List[str] = '--skip_memory_metrics 0' __lowerCamelCase : Dict = self.run_trainer( max_len=1_2_8 ,model_name=_snake_case ,learning_rate=3E-4 ,num_train_epochs=1 ,optim=_snake_case ,distributed=_snake_case ,extra_args_str=_snake_case ,do_eval=_snake_case ,do_predict=_snake_case ,n_gpus_to_use=1 ,) # Check metrics __lowerCamelCase : Optional[Any] = TrainerState.load_from_json(Path(_snake_case ,'trainer_state.json')).log_history __lowerCamelCase : str = int(logs[0]['train_mem_gpu_peaked_delta'] / 2**2_0) __lowerCamelCase : Any = int(logs[0]['train_mem_gpu_alloc_delta'] / 2**2_0) __lowerCamelCase : Union[str, Any] = logs[0]['train_loss'] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) __lowerCamelCase : Optional[int] = gpu_alloc_mem_orig - gpu_alloc_mem_bnb __lowerCamelCase : List[str] = gpu_peak_mem_orig + gpu_alloc_mem_orig __lowerCamelCase : Tuple = gpu_peak_mem_bnb + gpu_alloc_mem_bnb __lowerCamelCase : Tuple = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings __lowerCamelCase : Any = 1_2_0 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _snake_case ,_snake_case ,'should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got' F" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" F" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" ,) self.assertGreater( _snake_case ,_snake_case ,'should use ~150MB less total gpu memory with BNB, compared to without it for this model but got' F" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" F" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" ,) self.assertEqual( _snake_case ,_snake_case ,F"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Tuple = 3E-3 ,SCREAMING_SNAKE_CASE__ : Optional[int] = "adafactor" ,SCREAMING_SNAKE_CASE__ : Optional[int] = False ,SCREAMING_SNAKE_CASE__ : str = None ,SCREAMING_SNAKE_CASE__ : Dict = 0 ,SCREAMING_SNAKE_CASE__ : str = True ,SCREAMING_SNAKE_CASE__ : Tuple = True ,SCREAMING_SNAKE_CASE__ : Dict = True ,SCREAMING_SNAKE_CASE__ : List[str] = True ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,): __lowerCamelCase : Dict = self.test_file_dir / '../fixtures/tests_samples/wmt_en_ro' __lowerCamelCase : Dict = self.get_auto_remove_tmp_dir() __lowerCamelCase : Union[str, Any] = F"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_snake_case)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_snake_case)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() __lowerCamelCase : List[str] = F"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_snake_case)}\n ".split() __lowerCamelCase : int = '\n --do_predict\n '.split() __lowerCamelCase : Tuple = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: __lowerCamelCase : Any = get_gpu_count() __lowerCamelCase : Tuple = get_torch_dist_unique_port() __lowerCamelCase : List[Any] = F"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() __lowerCamelCase : Dict = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_snake_case ,env=self.get_env()) else: __lowerCamelCase : Union[str, Any] = ['run_translation.py'] + args with patch.object(_snake_case ,'argv' ,_snake_case): main() return output_dir
73
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A : str = logging.get_logger(__name__) class __A( a ): def __init__( self , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = [] __a = [] __a = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __a = parent.find_all(child.name , recursive=_snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_snake_case ) else next(i for i, s in enumerate(_snake_case , 1 ) if s is child ) ) __a = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = BeautifulSoup(_snake_case , '''html.parser''' ) __a = [] __a = [] __a = [] for element in html_code.descendants: if type(_snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __a = html.unescape(_snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(_snake_case ) __a , __a = self.xpath_soup(_snake_case ) stringaxtag_seq.append(_snake_case ) stringaxsubs_seq.append(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = '''''' for tagname, subs in zip(_snake_case , _snake_case ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , _snake_case ) -> BatchFeature: '''simple docstring''' __a = False # Check that strings has a valid type if isinstance(_snake_case , _snake_case ): __a = True elif isinstance(_snake_case , (list, tuple) ): if len(_snake_case ) == 0 or isinstance(html_strings[0] , _snake_case ): __a = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_snake_case )}.""" ) __a = bool(isinstance(_snake_case , (list, tuple) ) and (isinstance(html_strings[0] , _snake_case )) ) if not is_batched: __a = [html_strings] # Get nodes + xpaths __a = [] __a = [] for html_string in html_strings: __a , __a , __a = self.get_three_from_single(_snake_case ) nodes.append(_snake_case ) __a = [] for node, tag_list, sub_list in zip(_snake_case , _snake_case , _snake_case ): __a = self.construct_xpath(_snake_case , _snake_case ) xpath_strings.append(_snake_case ) xpaths.append(_snake_case ) # return as Dict __a = {'''nodes''': nodes, '''xpaths''': xpaths} __a = BatchFeature(data=_snake_case , tensor_type=_snake_case ) return encoded_inputs
6
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor A__: Tuple = logging.get_logger(__name__) class _a ( UpperCamelCase__): """simple docstring""" def __init__( self: Optional[Any] , *__lowerCamelCase: int , **__lowerCamelCase: Any ): '''simple docstring''' warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead." , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
149
def __lowerCAmelCase ( a__ , a__ ) -> float: def get_matched_characters(a__ , a__ ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a__ ) __a = F"""{_stra[0:_stra.index(a__ )]} {_stra[_stra.index(a__ ) + 1:]}""" return "".join(a__ ) # matching characters __a = get_matched_characters(a__ , a__ ) __a = get_matched_characters(a__ , a__ ) __a = len(a__ ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(a__ , a__ ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(a__ ) + match_count / len(a__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
6
0
'''simple docstring''' import sys __snake_case = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( __a ) -> int: '''simple docstring''' UpperCamelCase__ :str = 1 for digit in s: product *= int(a__ ) return product def a ( __a = N ) -> int: '''simple docstring''' UpperCamelCase__ :List[str] = -sys.maxsize - 1 UpperCamelCase__ :int = n[:13] UpperCamelCase__ :int = 13 while cur_index < len(a__ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): UpperCamelCase__ :List[str] = substr[1:] + n[cur_index] cur_index += 1 else: UpperCamelCase__ :Tuple = max(a__ , str_eval(a__ ) ) UpperCamelCase__ :List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
97
def __lowerCAmelCase ( a__ ) -> str: __a = [] __a = set({'''(''', '''[''', '''{'''} ) __a = set({''')''', ''']''', '''}'''} ) __a = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(a__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(a__ ) == 0 or (len(a__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a__ ) == 0 def __lowerCAmelCase ( ) -> Dict: __a = input('''Enter sequence of brackets: ''' ) if is_balanced(a__ ): print(a__ , '''is balanced''' ) else: print(a__ , '''is not balanced''' ) if __name__ == "__main__": main()
6
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : Optional[Any] = None lowerCAmelCase_ : int = None lowerCAmelCase_ : Union[str, Any] = None class __A ( lowerCAmelCase ): def __init__( self : Any , UpperCAmelCase_ : Dict=1 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : int="cls" , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Any=True , **UpperCAmelCase_ : Optional[int] , ): super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) lowerCAmelCase : Optional[int] = project_dim lowerCAmelCase : Union[str, Any] = pooler_fn lowerCAmelCase : List[Any] = learn_encoder lowerCAmelCase : Dict = use_attention_mask class __A ( lowerCAmelCase ): lowerCAmelCase_ : Tuple = [R"pooler", R"logit_scale"] lowerCAmelCase_ : List[str] = [R"position_ids", R"predictions.decoder.bias"] lowerCAmelCase_ : Tuple = "roberta" lowerCAmelCase_ : Optional[Any] = RobertaSeriesConfig def __init__( self : int , UpperCAmelCase_ : Optional[Any] ): super().__init__(_snake_case ) lowerCAmelCase : List[str] = XLMRobertaModel(_snake_case ) lowerCAmelCase : List[str] = nn.Linear(config.hidden_size , config.project_dim ) lowerCAmelCase : str = getattr(_snake_case , 'has_pre_transformation' , _snake_case ) if self.has_pre_transformation: lowerCAmelCase : int = nn.Linear(config.hidden_size , config.project_dim ) lowerCAmelCase : Any = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Any] = None , UpperCAmelCase_ : Optional[Any] = None , UpperCAmelCase_ : Any = None , UpperCAmelCase_ : Union[str, Any] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Union[str, Any] = None , UpperCAmelCase_ : Union[str, Any] = None , UpperCAmelCase_ : List[str] = None , UpperCAmelCase_ : Tuple = None , ): lowerCAmelCase : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase : Union[str, Any] = self.base_model( input_ids=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , position_ids=_snake_case , head_mask=_snake_case , inputs_embeds=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_attentions=_snake_case , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_snake_case , ) if self.has_pre_transformation: lowerCAmelCase : Optional[int] = outputs['hidden_states'][-2] lowerCAmelCase : Tuple = self.pre_LN(_snake_case ) lowerCAmelCase : Optional[Any] = self.transformation_pre(_snake_case ) return TransformationModelOutput( projection_state=_snake_case , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: lowerCAmelCase : Any = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_snake_case , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
138
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : str = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
def A ( _UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' return "".join([hex(a__ )[2:].zfill(2 ).upper() for byte in list(a__ )] ) def A ( _UpperCAmelCase : Union[str, Any] ) -> bytes: '''simple docstring''' # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(a__ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(a__ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(a__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
339
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Dict = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _UpperCAmelCase : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) _UpperCAmelCase : List[str] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} _UpperCAmelCase : Optional[int] = 'zero2' _UpperCAmelCase : str = 'zero3' _UpperCAmelCase : Tuple = [ZEROa, ZEROa] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __lowerCAmelCase = parameterized.to_safe_name('''_'''.join(str(a__) for x in param.args)) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test _UpperCAmelCase : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class a__ ( __A ): """simple docstring""" @parameterized.expand(_snake_case , name_func=_snake_case ) def _snake_case (self , __lowercase , __lowercase ): self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def _snake_case (self , __lowercase , __lowercase ): self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @parameterized.expand(_snake_case , name_func=_snake_case ) def _snake_case (self , __lowercase , __lowercase ): self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def _snake_case (self , __lowercase , __lowercase ): self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) def _snake_case (self , __lowercase ): pass def _snake_case (self , __lowercase , __lowercase , __lowercase = 10 , __lowercase = True , __lowercase = True , __lowercase = True , ): __lowerCAmelCase = models[model] __lowerCAmelCase = self.run_trainer( stage=_snake_case , model_name=_snake_case , eval_steps=_snake_case , num_train_epochs=1 , distributed=_snake_case , fpaa=_snake_case , ) self.do_checks(_snake_case ) return output_dir def _snake_case (self , __lowercase , __lowercase , __lowercase = 10 , __lowercase = 1 , __lowercase = True , __lowercase = True , ): __lowerCAmelCase = self.get_auto_remove_tmp_dir('''./xxx''' , after=_snake_case ) __lowerCAmelCase = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __lowerCAmelCase = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __lowerCAmelCase = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __lowerCAmelCase = self.get_launcher(_snake_case ) __lowerCAmelCase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_snake_case , env=self.get_env() ) return output_dir def _snake_case (self , __lowercase=False ): __lowerCAmelCase = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
174
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
"""simple docstring""" import enum import shutil import sys _UpperCamelCase : Dict = shutil.get_terminal_size() _UpperCamelCase : str = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class UpperCAmelCase_ ( enum.Enum): lowerCamelCase__ : Dict = 0 lowerCamelCase__ : Optional[int] = 1 def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]="" ): '''simple docstring''' sys.stdout.write(str(a__ ) + end ) sys.stdout.flush() def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict="" ): '''simple docstring''' forceWrite(f"""\u001b[{color}m{content}\u001b[0m""" , a__ ) def a_ ( ): '''simple docstring''' forceWrite('\r' ) def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] ): '''simple docstring''' forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def a_ ( ): '''simple docstring''' forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def a_ ( ): '''simple docstring''' reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
77
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
6
0
from __future__ import annotations import collections import pprint from pathlib import Path def __UpperCAmelCase ( a_): return "".join(sorted(a__)) def __UpperCAmelCase ( a_): return word_by_signature[signature(a__)] lowercase = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") lowercase = sorted({word.strip().lower() for word in data.splitlines()}) lowercase = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowercase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
178
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class __A( a ): snake_case_ = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''text''': Value('''string''' )} ) snake_case_ = Features({} ) snake_case_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
6
0
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Tuple=1E-12 ) -> Optional[int]: UpperCAmelCase_ : Dict = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(a__, axis=1 ), a_min=a__ ) ).T UpperCAmelCase_ : Dict = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(a__, axis=1 ), a_min=a__ ) ).T return jnp.matmul(a__, norm_emb_a.T ) class __a (nn.Module ): __a : Any = 42 __a : Dict = jnp.floataa def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = FlaxCLIPVisionModule(self.config.vision_config ) UpperCAmelCase_ : int = nn.Dense(self.config.projection_dim , use_bias=_snake_case , dtype=self.dtype ) UpperCAmelCase_ : List[Any] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) UpperCAmelCase_ : Optional[Any] = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCAmelCase_ : List[Any] = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) UpperCAmelCase_ : Any = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Any = self.vision_model(_snake_case )[1] UpperCAmelCase_ : List[str] = self.visual_projection(_snake_case ) UpperCAmelCase_ : Tuple = jax_cosine_distance(_snake_case , self.special_care_embeds ) UpperCAmelCase_ : List[Any] = jax_cosine_distance(_snake_case , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCAmelCase_ : Tuple = 0.0 UpperCAmelCase_ : List[Any] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCAmelCase_ : str = jnp.round(_snake_case , 3 ) UpperCAmelCase_ : int = jnp.any(special_scores > 0 , axis=1 , keepdims=_snake_case ) # Use a lower threshold if an image has any special care concept UpperCAmelCase_ : Any = is_special_care * 0.0_1 UpperCAmelCase_ : Union[str, Any] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCAmelCase_ : List[Any] = jnp.round(_snake_case , 3 ) UpperCAmelCase_ : Dict = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class __a (lowerCamelCase ): __a : int = CLIPConfig __a : Optional[Any] = "clip_input" __a : Optional[Any] = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Dict , __magic_name__ : Tuple , __magic_name__ : str = None , __magic_name__ : str = 0 , __magic_name__ : Union[str, Any] = jnp.floataa , __magic_name__ : Optional[int] = True , **__magic_name__ : Tuple , ) -> Union[str, Any]: """simple docstring""" if input_shape is None: UpperCAmelCase_ : str = (1, 2_24, 2_24, 3) UpperCAmelCase_ : Optional[Any] = self.module_class(config=_snake_case , dtype=_snake_case , **_snake_case ) super().__init__(_snake_case , _snake_case , input_shape=_snake_case , seed=_snake_case , dtype=_snake_case , _do_init=_do_init ) def UpperCAmelCase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : List[Any] = None ) -> FrozenDict: """simple docstring""" UpperCAmelCase_ : Tuple = jax.random.normal(_snake_case , _snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : str = jax.random.split(_snake_case ) UpperCAmelCase_ : str = {'''params''': params_rng, '''dropout''': dropout_rng} UpperCAmelCase_ : int = self.module.init(_snake_case , _snake_case )['''params'''] return random_params def __call__( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str = None , ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Dict = jnp.transpose(_snake_case , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(_snake_case , dtype=jnp.floataa ) , rngs={} , )
125
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase ( a__ , a__ , a__=1024 , a__=1024 , a__=False , **a__ ) -> Optional[Any]: __a = AutoTokenizer.from_pretrained(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''train''' , **a__ ) __a = tok.pad_token_id def get_lens(a__ ): __a = tqdm( DataLoader(a__ , batch_size=512 , num_workers=8 , shuffle=a__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __a = [] for batch in dl: __a = batch['''input_ids'''].ne(a__ ).sum(1 ).tolist() __a = batch['''labels'''].ne(a__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(a__ , a__ ): max_lens.append(max(a__ , a__ ) ) else: max_lens.extend(a__ ) return max_lens __a = get_lens(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''val''' , **a__ ) __a = get_lens(a__ ) pickle_save(a__ , train_ds.len_file ) pickle_save(a__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
6
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCAmelCase( unittest.TestCase ): def __init__( self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=4_00 , __a=True , __a=None , __a=True , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , ) -> Dict: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18} _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = LevitImageProcessor if is_vision_available() else None def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = LevitImageProcessingTester(self) @property def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_snake_case , '''image_mean''')) self.assertTrue(hasattr(_snake_case , '''image_std''')) self.assertTrue(hasattr(_snake_case , '''do_normalize''')) self.assertTrue(hasattr(_snake_case , '''do_resize''')) self.assertTrue(hasattr(_snake_case , '''do_center_crop''')) self.assertTrue(hasattr(_snake_case , '''size''')) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18}) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18}) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'''shortest_edge''': 42}) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84}) def UpperCAmelCase ( self) -> int: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(_snake_case , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(_snake_case , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(_snake_case , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
194
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 - _cos) / 2 __a = 1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 + _cos) / 2 __a = -1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = _sin / 2 __a = 0 __a = -ba __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 1 - alpha __a = -2 * _cos __a = 1 + alpha __a = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = 1 + alpha * big_a __a = -2 * _cos __a = 1 - alpha * big_a __a = 1 + alpha / big_a __a = -2 * _cos __a = 1 - alpha / big_a __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (pmc + aaa) __a = 2 * big_a * mpc __a = big_a * (pmc - aaa) __a = ppmc + aaa __a = -2 * pmpc __a = ppmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (ppmc + aaa) __a = -2 * big_a * pmpc __a = big_a * (ppmc - aaa) __a = pmc + aaa __a = 2 * mpc __a = pmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
6
0
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {'vocab_file': 'vocab.txt'} lowercase_ = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } lowercase_ = { 'facebook/esm2_t6_8M_UR50D': 1_024, 'facebook/esm2_t12_35M_UR50D': 1_024, } def lowerCAmelCase (__A): """simple docstring""" with open(a__ , '''r''') as f: _a = f.read().splitlines() return [l.strip() for l in lines] class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = ['input_ids', 'attention_mask'] def __init__(self , A , A="<unk>" , A="<cls>" , A="<pad>" , A="<mask>" , A="<eos>" , **A , ) -> str: """simple docstring""" super().__init__(**_snake_case ) _a = load_vocab_file(_snake_case ) _a = dict(enumerate(self.all_tokens ) ) _a = {tok: ind for ind, tok in enumerate(self.all_tokens )} _a = unk_token _a = cls_token _a = pad_token _a = mask_token _a = eos_token _a = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def a__ (self , A ) -> str: """simple docstring""" return self._id_to_token.get(_snake_case , self.unk_token ) def a__ (self , A ) -> int: """simple docstring""" return self._token_to_id.get(_snake_case , self._token_to_id.get(self.unk_token ) ) def a__ (self , A , **A ) -> Optional[int]: """simple docstring""" return text.split() def a__ (self , A=False ) -> str: """simple docstring""" return len(self._id_to_token ) def a__ (self ) -> Optional[Any]: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens )} def a__ (self , A ) -> int: """simple docstring""" return self._token_to_id.get(_snake_case , self._token_to_id.get(self.unk_token ) ) def a__ (self , A ) -> str: """simple docstring""" return self._id_to_token.get(_snake_case , self.unk_token ) def a__ (self , A , A = None ) -> List[int]: """simple docstring""" _a = [self.cls_token_id] _a = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def a__ (self , A , A = None , A = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] _a = [1] + ([0] * len(_snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(_snake_case ) + [1] return mask def a__ (self , A , A ) -> Optional[Any]: """simple docstring""" _a = os.path.join(_snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(_snake_case , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def a__ (self ) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=_snake_case ) def a__ (self , A , A = False ) -> int: """simple docstring""" return super()._add_tokens(_snake_case , special_tokens=_snake_case )
211
def __lowerCAmelCase ( a__ , a__ , a__ ) -> list: __a = len(a__ ) __a = [[0] * n for i in range(a__ )] for i in range(a__ ): __a = y_points[i] for i in range(2 , a__ ): for j in range(a__ , a__ ): __a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
6
0
from __future__ import annotations import typing from collections import Counter def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> typing.Counter[int]: __lowerCamelCase : Dict = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): __lowerCamelCase : str = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): __lowerCamelCase : Tuple = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 1_0_0_0 ) -> int: __lowerCamelCase : Optional[int] = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"""Perimeter {solution()} has maximum solutions""")
73
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def __lowerCAmelCase ( a__ , a__ , a__ ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] __a = (low + high) // 2 __a , __a , __a = max_subarray(a__ , a__ , a__ ) __a , __a , __a = max_subarray(a__ , mid + 1 , a__ ) __a , __a , __a = max_cross_sum(a__ , a__ , a__ , a__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> tuple[int, int, float]: __a , __a = float('''-inf''' ), -1 __a , __a = float('''-inf''' ), -1 __a = 0 for i in range(a__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __a = summ __a = i __a = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __a = summ __a = i return max_left, max_right, (left_sum + right_sum) def __lowerCAmelCase ( a__ ) -> float: __a = [randint(1 , a__ ) for _ in range(a__ )] __a = time.time() max_subarray(a__ , 0 , input_size - 1 ) __a = time.time() return end - start def __lowerCAmelCase ( ) -> None: __a = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] __a = [time_max_subarray(a__ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(a__ , a__ ): print(a__ , '''\t\t''' , a__ ) plt.plot(a__ , a__ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
6
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__: List[Any] = logging.get_logger(__name__) A__: Union[str, Any] = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """deformable_detr""" UpperCamelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self: Optional[Any] , __lowerCamelCase: Dict=True , __lowerCamelCase: Dict=None , __lowerCamelCase: Any=3 , __lowerCamelCase: Tuple=300 , __lowerCamelCase: int=1024 , __lowerCamelCase: List[str]=6 , __lowerCamelCase: str=1024 , __lowerCamelCase: Tuple=8 , __lowerCamelCase: str=6 , __lowerCamelCase: List[str]=1024 , __lowerCamelCase: Tuple=8 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Dict=True , __lowerCamelCase: List[Any]="relu" , __lowerCamelCase: List[str]=256 , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: int=0.02 , __lowerCamelCase: List[str]=1.0 , __lowerCamelCase: int=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]="sine" , __lowerCamelCase: Optional[Any]="resnet50" , __lowerCamelCase: Dict=True , __lowerCamelCase: Optional[Any]=False , __lowerCamelCase: Optional[int]=4 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: List[Any]=4 , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: Optional[Any]=300 , __lowerCamelCase: str=False , __lowerCamelCase: Any=1 , __lowerCamelCase: str=5 , __lowerCamelCase: Any=2 , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: str=1 , __lowerCamelCase: int=5 , __lowerCamelCase: List[Any]=2 , __lowerCamelCase: Any=0.1 , __lowerCamelCase: List[Any]=0.25 , __lowerCamelCase: Dict=False , **__lowerCamelCase: List[Any] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can\'t specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCamelCase__: int = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(_snake_case , _snake_case ): UpperCamelCase__: int = backbone_config.get("model_type" ) UpperCamelCase__: List[Any] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__: str = config_class.from_dict(_snake_case ) UpperCamelCase__: int = use_timm_backbone UpperCamelCase__: Optional[int] = backbone_config UpperCamelCase__: List[str] = num_channels UpperCamelCase__: Tuple = num_queries UpperCamelCase__: Optional[int] = max_position_embeddings UpperCamelCase__: Tuple = d_model UpperCamelCase__: Dict = encoder_ffn_dim UpperCamelCase__: Union[str, Any] = encoder_layers UpperCamelCase__: Tuple = encoder_attention_heads UpperCamelCase__: Optional[Any] = decoder_ffn_dim UpperCamelCase__: List[Any] = decoder_layers UpperCamelCase__: Any = decoder_attention_heads UpperCamelCase__: int = dropout UpperCamelCase__: str = attention_dropout UpperCamelCase__: Any = activation_dropout UpperCamelCase__: Dict = activation_function UpperCamelCase__: Union[str, Any] = init_std UpperCamelCase__: Tuple = init_xavier_std UpperCamelCase__: List[Any] = encoder_layerdrop UpperCamelCase__: int = auxiliary_loss UpperCamelCase__: str = position_embedding_type UpperCamelCase__: Dict = backbone UpperCamelCase__: Optional[Any] = use_pretrained_backbone UpperCamelCase__: List[Any] = dilation # deformable attributes UpperCamelCase__: List[str] = num_feature_levels UpperCamelCase__: Tuple = encoder_n_points UpperCamelCase__: Tuple = decoder_n_points UpperCamelCase__: str = two_stage UpperCamelCase__: str = two_stage_num_proposals UpperCamelCase__: Optional[Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher UpperCamelCase__: List[str] = class_cost UpperCamelCase__: List[Any] = bbox_cost UpperCamelCase__: List[Any] = giou_cost # Loss coefficients UpperCamelCase__: int = mask_loss_coefficient UpperCamelCase__: int = dice_loss_coefficient UpperCamelCase__: int = bbox_loss_coefficient UpperCamelCase__: List[str] = giou_loss_coefficient UpperCamelCase__: Optional[int] = eos_coefficient UpperCamelCase__: List[str] = focal_alpha UpperCamelCase__: str = disable_custom_kernels super().__init__(is_encoder_decoder=_snake_case , **_snake_case ) @property def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' return self.d_model def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: Tuple = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase__: int = self.backbone_config.to_dict() UpperCamelCase__: Optional[Any] = self.__class__.model_type return output
149
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A( a , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __A( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = ort.SessionOptions() __a = False return options def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_snake_case , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
6
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a ( __a , __a=0.9_9_9 , __a="cosine" , ) -> Optional[int]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__a ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__a ): return math.exp(t * -1_2.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCamelCase__ :Union[str, Any] = [] for i in range(a__ ): UpperCamelCase__ :int = i / num_diffusion_timesteps UpperCamelCase__ :List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a__ ) / alpha_bar_fn(a__ ) , a__ ) ) return torch.tensor(a__ , dtype=torch.floataa ) class lowercase ( A__ , A__ ): """simple docstring""" _a = [e.name for e in KarrasDiffusionSchedulers] _a = 2 @register_to_config def __init__( self , UpperCamelCase_ = 1000 , UpperCamelCase_ = 0.00085 , UpperCamelCase_ = 0.012 , UpperCamelCase_ = "linear" , UpperCamelCase_ = None , UpperCamelCase_ = "epsilon" , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = 1.0 , UpperCamelCase_ = "linspace" , UpperCamelCase_ = 0 , ): '''simple docstring''' if trained_betas is not None: UpperCamelCase__ :Optional[int] = torch.tensor(_snake_case , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCamelCase__ :Union[str, Any] = torch.linspace(_snake_case , _snake_case , _snake_case , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase__ :int = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _snake_case , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase__ :List[Any] = betas_for_alpha_bar(_snake_case , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": UpperCamelCase__ :Tuple = betas_for_alpha_bar(_snake_case , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) UpperCamelCase__ :Optional[int] = 1.0 - self.betas UpperCamelCase__ :List[str] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_snake_case , _snake_case , _snake_case ) UpperCamelCase__ :Tuple = use_karras_sigmas def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None ): '''simple docstring''' if schedule_timesteps is None: UpperCamelCase__ :Tuple = self.timesteps UpperCamelCase__ :Optional[int] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCamelCase__ :int = 1 if len(_snake_case ) > 1 else 0 else: UpperCamelCase__ :Optional[int] = timestep.cpu().item() if torch.is_tensor(_snake_case ) else timestep UpperCamelCase__ :Optional[int] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase__ ( self ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :str = self.index_for_timestep(_snake_case ) UpperCamelCase__ :int = self.sigmas[step_index] UpperCamelCase__ :Tuple = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , ): '''simple docstring''' UpperCamelCase__ :Tuple = num_inference_steps UpperCamelCase__ :Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCamelCase__ :Any = np.linspace(0 , num_train_timesteps - 1 , _snake_case , dtype=_snake_case )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCamelCase__ :Dict = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase__ :str = (np.arange(0 , _snake_case ) * step_ratio).round()[::-1].copy().astype(_snake_case ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCamelCase__ :Optional[Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase__ :Any = (np.arange(_snake_case , 0 , -step_ratio )).round().copy().astype(_snake_case ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) UpperCamelCase__ :Optional[Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCamelCase__ :str = np.log(_snake_case ) UpperCamelCase__ :int = np.interp(_snake_case , np.arange(0 , len(_snake_case ) ) , _snake_case ) if self.config.use_karras_sigmas: UpperCamelCase__ :int = self._convert_to_karras(in_sigmas=_snake_case , num_inference_steps=self.num_inference_steps ) UpperCamelCase__ :Dict = np.array([self._sigma_to_t(_snake_case , _snake_case ) for sigma in sigmas] ) UpperCamelCase__ :Union[str, Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCamelCase__ :Dict = torch.from_numpy(_snake_case ).to(device=_snake_case ) UpperCamelCase__ :Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) UpperCamelCase__ :str = torch.from_numpy(_snake_case ) UpperCamelCase__ :Dict = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_snake_case ).startswith('''mps''' ): # mps does not support float64 UpperCamelCase__ :List[str] = timesteps.to(_snake_case , dtype=torch.floataa ) else: UpperCamelCase__ :Optional[Any] = timesteps.to(device=_snake_case ) # empty dt and derivative UpperCamelCase__ :List[str] = None UpperCamelCase__ :Union[str, Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCamelCase__ :List[str] = defaultdict(_snake_case ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = np.log(_snake_case ) # get distribution UpperCamelCase__ :Dict = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range UpperCamelCase__ :Union[str, Any] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) UpperCamelCase__ :int = low_idx + 1 UpperCamelCase__ :Dict = log_sigmas[low_idx] UpperCamelCase__ :Any = log_sigmas[high_idx] # interpolate sigmas UpperCamelCase__ :int = (low - log_sigma) / (low - high) UpperCamelCase__ :List[str] = np.clip(_snake_case , 0 , 1 ) # transform interpolation to time range UpperCamelCase__ :int = (1 - w) * low_idx + w * high_idx UpperCamelCase__ :str = t.reshape(sigma.shape ) return t def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :str = in_sigmas[-1].item() UpperCamelCase__ :Tuple = in_sigmas[0].item() UpperCamelCase__ :Any = 7.0 # 7.0 is the value used in the paper UpperCamelCase__ :Union[str, Any] = np.linspace(0 , 1 , _snake_case ) UpperCamelCase__ :Any = sigma_min ** (1 / rho) UpperCamelCase__ :Dict = sigma_max ** (1 / rho) UpperCamelCase__ :str = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.dt is None def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self.index_for_timestep(_snake_case ) # advance index counter by 1 UpperCamelCase__ :List[Any] = timestep.cpu().item() if torch.is_tensor(_snake_case ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCamelCase__ :int = self.sigmas[step_index] UpperCamelCase__ :List[str] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method UpperCamelCase__ :List[str] = self.sigmas[step_index - 1] UpperCamelCase__ :Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Dict = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCamelCase__ :Dict = sigma_hat if self.state_in_first_order else sigma_next UpperCamelCase__ :str = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCamelCase__ :Tuple = sigma_hat if self.state_in_first_order else sigma_next UpperCamelCase__ :Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": UpperCamelCase__ :List[str] = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: UpperCamelCase__ :Optional[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCamelCase__ :List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCamelCase__ :List[Any] = sigma_next - sigma_hat # store for 2nd order step UpperCamelCase__ :Union[str, Any] = derivative UpperCamelCase__ :str = dt UpperCamelCase__ :Tuple = sample else: # 2. 2nd order / Heun's method UpperCamelCase__ :Union[str, Any] = (sample - pred_original_sample) / sigma_next UpperCamelCase__ :Optional[int] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample UpperCamelCase__ :Any = self.dt UpperCamelCase__ :Tuple = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" UpperCamelCase__ :Optional[int] = None UpperCamelCase__ :List[str] = None UpperCamelCase__ :int = None UpperCamelCase__ :List[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_snake_case ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_snake_case ): # mps does not support float64 UpperCamelCase__ :Tuple = self.timesteps.to(original_samples.device , dtype=torch.floataa ) UpperCamelCase__ :int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: UpperCamelCase__ :Optional[Any] = self.timesteps.to(original_samples.device ) UpperCamelCase__ :Any = timesteps.to(original_samples.device ) UpperCamelCase__ :Optional[Any] = [self.index_for_timestep(_snake_case , _snake_case ) for t in timesteps] UpperCamelCase__ :List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCamelCase__ :List[Any] = sigma.unsqueeze(-1 ) UpperCamelCase__ :Any = original_samples + noise * sigma return noisy_samples def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
97
from math import ceil def __lowerCAmelCase ( a__ = 1001 ) -> int: __a = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __a = 2 * i + 1 __a = 2 * i __a = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
6
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : Tuple = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
138
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''ChineseCLIPImageProcessor''' snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> Tuple: '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) __a = self.image_processor def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: __a = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class
6
0
from collections.abc import Generator def A ( ) -> Generator[int, None, None]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = 0, 1 while True: _UpperCAmelCase , _UpperCAmelCase = b, a + b yield b def A ( _UpperCAmelCase : List[str] = 1_000 ) -> int: '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = fibonacci_generator() while len(str(next(a__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
339
from __future__ import annotations import typing from collections import Counter def __lowerCAmelCase ( a__ ) -> typing.Counter[int]: __a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): __a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): __a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCAmelCase ( a__ = 1000 ) -> int: __a = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
6
0
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''') __lowerCAmelCase = str(bin(a__))[2:] # remove the leading "0b" __lowerCAmelCase = str(bin(a__))[2:] # remove the leading "0b" __lowerCAmelCase = max(len(a__), len(a__)) return "0b" + "".join( str(int(char_a != char_b)) for char_a, char_b in zip(a_binary.zfill(a__), b_binary.zfill(a__))) if __name__ == "__main__": import doctest doctest.testmod()
174
# flake8: noqa # Lint as: python3 A : Optional[Any] = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
6
0
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( _a , unittest.TestCase): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def _UpperCAmelCase ( self ) -> List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Union[str, Any] = ort.SessionOptions() lowercase__ : List[Any] = False return options def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) lowercase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) lowercase__ : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Dict = 'A red cat sitting on a park bench' lowercase__ : Any = np.random.RandomState(0 ) lowercase__ : List[str] = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=1_0 , generator=_snake_case , output_type='np' , ) lowercase__ : List[str] = output.images lowercase__ : List[str] = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) lowercase__ : Optional[Any] = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) lowercase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) lowercase__ : List[str] = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) lowercase__ : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=_snake_case , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Tuple = 'A red cat sitting on a park bench' lowercase__ : Any = np.random.RandomState(0 ) lowercase__ : Optional[int] = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=2_0 , generator=_snake_case , output_type='np' , ) lowercase__ : Dict = output.images lowercase__ : List[Any] = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) lowercase__ : int = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
77
from typing import Dict from .base import GenericTensor, Pipeline class __A( a ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: __a = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __a = truncation __a = tokenize_kwargs __a = {} if return_tensors is not None: __a = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE_ ( self , _snake_case , **_snake_case ) -> Dict[str, GenericTensor]: '''simple docstring''' __a = self.framework __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.model(**_snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=False ) -> Optional[int]: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' return super().__call__(*_snake_case , **_snake_case )
6
0
import datasets from .evaluate import evaluate lowercase = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' lowercase = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' lowercase = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): '''simple docstring''' def _UpperCamelCase ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def _UpperCamelCase ( self , a , a ) -> Optional[Any]: snake_case_ = {prediction['id']: prediction['prediction_text'] for prediction in predictions} snake_case_ = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] snake_case_ = evaluate(dataset=_snake_case , predictions=_snake_case ) return score
178
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Optional[int] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class __A( a ): snake_case_ = '''levit''' def __init__( self , _snake_case=224 , _snake_case=3 , _snake_case=3 , _snake_case=2 , _snake_case=1 , _snake_case=16 , _snake_case=[128, 256, 384] , _snake_case=[4, 8, 12] , _snake_case=[4, 4, 4] , _snake_case=[16, 16, 16] , _snake_case=0 , _snake_case=[2, 2, 2] , _snake_case=[2, 2, 2] , _snake_case=0.02 , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = image_size __a = num_channels __a = kernel_size __a = stride __a = padding __a = hidden_sizes __a = num_attention_heads __a = depths __a = key_dim __a = drop_path_rate __a = patch_size __a = attention_ratio __a = mlp_ratio __a = initializer_range __a = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
6
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart snake_case_ : List[str] = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } snake_case_ : Optional[Any] = { 'facebook/bart-base': 10_24, 'facebook/bart-large': 10_24, 'facebook/bart-large-mnli': 10_24, 'facebook/bart-large-cnn': 10_24, 'facebook/bart-large-xsum': 10_24, 'yjernite/bart_eli5': 10_24, } @lru_cache() def lowerCamelCase_ ( ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = ( list(range(ord('''!''' ), ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ), ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ), ord('''ÿ''' ) + 1 ) ) ) UpperCAmelCase_ : Optional[Any] = bs[:] UpperCAmelCase_ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(a__ ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ : Optional[Any] = [chr(a__ ) for n in cs] return dict(zip(a__, a__ ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: UpperCAmelCase_ : Dict = set() UpperCAmelCase_ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : str = char return pairs class __a (lowerCamelCase ): __a : int = VOCAB_FILES_NAMES __a : Any = PRETRAINED_VOCAB_FILES_MAP __a : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Dict = ["input_ids", "attention_mask"] def __init__( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Union[str, Any]="replace" , __magic_name__ : Optional[int]="<s>" , __magic_name__ : str="</s>" , __magic_name__ : Any="</s>" , __magic_name__ : Optional[Any]="<s>" , __magic_name__ : List[Any]="<unk>" , __magic_name__ : Union[str, Any]="<pad>" , __magic_name__ : int="<mask>" , __magic_name__ : int=False , **__magic_name__ : Optional[int] , ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else bos_token UpperCAmelCase_ : List[str] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else eos_token UpperCAmelCase_ : Any = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else sep_token UpperCAmelCase_ : Tuple = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else cls_token UpperCAmelCase_ : Tuple = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else unk_token UpperCAmelCase_ : str = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : Any = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token super().__init__( errors=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , add_prefix_space=_snake_case , **_snake_case , ) with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase_ : Any = json.load(_snake_case ) UpperCAmelCase_ : Optional[int] = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Any = errors # how to handle errors in decoding UpperCAmelCase_ : List[str] = bytes_to_unicode() UpperCAmelCase_ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(_snake_case , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase_ : Optional[Any] = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase_ : Optional[Any] = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ : int = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ : Optional[int] = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" return len(self.encoder ) def UpperCAmelCase__ ( self : int ) -> Tuple: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> int: """simple docstring""" if token in self.cache: return self.cache[token] UpperCAmelCase_ : Any = tuple(_snake_case ) UpperCAmelCase_ : Dict = get_pairs(_snake_case ) if not pairs: return token while True: UpperCAmelCase_ : Tuple = min(_snake_case , key=lambda __magic_name__ : self.bpe_ranks.get(_snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : str = bigram UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Union[str, Any] = 0 while i < len(_snake_case ): try: UpperCAmelCase_ : List[Any] = word.index(_snake_case , _snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : Any = j if word[i] == first and i < len(_snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : Tuple = tuple(_snake_case ) UpperCAmelCase_ : Optional[int] = new_word if len(_snake_case ) == 1: break else: UpperCAmelCase_ : Union[str, Any] = get_pairs(_snake_case ) UpperCAmelCase_ : Union[str, Any] = ''' '''.join(_snake_case ) UpperCAmelCase_ : List[Any] = word return word def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [] for token in re.findall(self.pat , _snake_case ): UpperCAmelCase_ : List[str] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_snake_case ).split(''' ''' ) ) return bpe_tokens def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[int] ) -> int: """simple docstring""" return self.encoder.get(_snake_case , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" return self.decoder.get(_snake_case ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = ''''''.join(_snake_case ) UpperCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : Optional[Any] = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : Tuple = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_snake_case , ensure_ascii=_snake_case ) + '''\n''' ) UpperCAmelCase_ : Tuple = 0 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __magic_name__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase_ : List[str] = token_index writer.write(''' '''.join(_snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] UpperCAmelCase_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[str] = None , __magic_name__ : Union[str, Any] = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Tuple = None ) -> List[int]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : Optional[int]=False , **__magic_name__ : Any ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : int = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_snake_case ) > 0 and not text[0].isspace()): UpperCAmelCase_ : Tuple = ''' ''' + text return (text, kwargs)
125
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : int = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __A( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' __a = TOKEN HfFolder.save_token(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case , repo_id='''test-model-flax''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case )
6
0
"""simple docstring""" import random class _UpperCAmelCase: @staticmethod def UpperCAmelCase ( __a) -> tuple[list[int], list[int]]: '''simple docstring''' _UpperCamelCase = [ord(_snake_case) for i in text] _UpperCamelCase = [] _UpperCamelCase = [] for i in plain: _UpperCamelCase = random.randint(1 , 3_00) _UpperCamelCase = (i + k) * k cipher.append(_snake_case) key.append(_snake_case) return cipher, key @staticmethod def UpperCAmelCase ( __a , __a) -> str: '''simple docstring''' _UpperCamelCase = [] for i in range(len(_snake_case)): _UpperCamelCase = int((cipher[i] - (key[i]) ** 2) / key[i]) plain.append(chr(_snake_case)) return "".join(_snake_case) if __name__ == "__main__": _a = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
194
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path A : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) A : List[str] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} A : Optional[int] = 'zero2' A : str = 'zero3' A : Tuple = [ZEROa, ZEROa] def __lowerCAmelCase ( a__ , a__ , a__ ) -> Tuple: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __a = parameterized.to_safe_name('''_'''.join(str(a__ ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test A : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A( a ): @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Any: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> int: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> str: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = True , _snake_case = True , _snake_case = True , ) -> Any: '''simple docstring''' __a = models[model] __a = self.run_trainer( stage=_snake_case , model_name=_snake_case , eval_steps=_snake_case , num_train_epochs=1 , distributed=_snake_case , fpaa=_snake_case , ) self.do_checks(_snake_case ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = 1 , _snake_case = True , _snake_case = True , ) -> Union[str, Any]: '''simple docstring''' __a = self.get_auto_remove_tmp_dir('''./xxx''' , after=_snake_case ) __a = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __a = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __a = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __a = self.get_launcher(_snake_case ) __a = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case=False ) -> List[str]: '''simple docstring''' __a = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
6
0
'''simple docstring''' from collections import defaultdict from math import gcd def lowerCAmelCase (__A = 1_500_000): """simple docstring""" _a = defaultdict(a__) _a = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , a__ , 2): if gcd(a__ , a__) > 1: continue _a = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(a__ , limit + 1 , a__): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1) if __name__ == "__main__": print(F"""{solution() = }""")
211
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A( a , a , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = '''sample''' snake_case_ = 1E-2 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = 4 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes ).to(_snake_case ) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __a = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a , __a = self.prepare_init_args_and_inputs_for_common() __a = self.model_class(**_snake_case ) model.to(_snake_case ) assert not model.is_gradient_checkpointing and model.training __a = model(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __a = torch.randn_like(_snake_case ) __a = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __a = self.model_class(**_snake_case ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_snake_case ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __a = model_a(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __a = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __a = dict(model.named_parameters() ) __a = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a , __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_snake_case ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __a = model.to(_snake_case ) model.eval() if torch_device == "mps": __a = torch.manual_seed(0 ) else: __a = torch.Generator(device=_snake_case ).manual_seed(0 ) __a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __a = image.to(_snake_case ) with torch.no_grad(): __a = model(_snake_case , sample_posterior=_snake_case , generator=_snake_case ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __a = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": __a = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __a = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1E-2 ) ) @slow class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_snake_case ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , _snake_case=(4, 3, 512, 512) , _snake_case=False ) -> Any: '''simple docstring''' __a = torch.floataa if fpaa else torch.floataa __a = torch.from_numpy(load_hf_numpy(self.get_file_format(_snake_case , _snake_case ) ) ).to(_snake_case ).to(_snake_case ) return image def SCREAMING_SNAKE_CASE_ ( self , _snake_case="CompVis/stable-diffusion-v1-4" , _snake_case=False ) -> Optional[Any]: '''simple docstring''' __a = '''fp16''' if fpaa else None __a = torch.floataa if fpaa else torch.floataa __a = AutoencoderKL.from_pretrained( _snake_case , subfolder='''vae''' , torch_dtype=_snake_case , revision=_snake_case , ) model.to(_snake_case ).eval() return model def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> Tuple: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(_snake_case ) return torch.Generator(device=_snake_case ).manual_seed(_snake_case ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , fpaa=_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) with torch.no_grad(): __a = model(_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model.encode(_snake_case ).latent_dist __a = dist.sample(generator=_snake_case ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __a = sample[0, -1, -3:, -3:].flatten().cpu() __a = torch.tensor(_snake_case ) __a = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(_snake_case , _snake_case , atol=_snake_case )
6
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a =logging.get_logger(__name__) a ={ 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = '''levit''' def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[str]=2_2_4 ,SCREAMING_SNAKE_CASE__ : Any=3 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=3 ,SCREAMING_SNAKE_CASE__ : Tuple=2 ,SCREAMING_SNAKE_CASE__ : Dict=1 ,SCREAMING_SNAKE_CASE__ : List[str]=1_6 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=[1_2_8, 2_5_6, 3_8_4] ,SCREAMING_SNAKE_CASE__ : Dict=[4, 8, 1_2] ,SCREAMING_SNAKE_CASE__ : str=[4, 4, 4] ,SCREAMING_SNAKE_CASE__ : Any=[1_6, 1_6, 1_6] ,SCREAMING_SNAKE_CASE__ : int=0 ,SCREAMING_SNAKE_CASE__ : List[str]=[2, 2, 2] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=[2, 2, 2] ,SCREAMING_SNAKE_CASE__ : str=0.02 ,**SCREAMING_SNAKE_CASE__ : Any ,): super().__init__(**_snake_case) __lowerCamelCase : Optional[Any] = image_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Optional[Any] = kernel_size __lowerCamelCase : Dict = stride __lowerCamelCase : str = padding __lowerCamelCase : Dict = hidden_sizes __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : int = depths __lowerCamelCase : Dict = key_dim __lowerCamelCase : Optional[Any] = drop_path_rate __lowerCamelCase : Union[str, Any] = patch_size __lowerCamelCase : str = attention_ratio __lowerCamelCase : Optional[Any] = mlp_ratio __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : List[Any] = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[Any] = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : Dict): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def lowerCAmelCase ( self : List[str]): return 1E-4
73
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A : str = logging.get_logger(__name__) class __A( a ): def __init__( self , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = [] __a = [] __a = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __a = parent.find_all(child.name , recursive=_snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_snake_case ) else next(i for i, s in enumerate(_snake_case , 1 ) if s is child ) ) __a = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = BeautifulSoup(_snake_case , '''html.parser''' ) __a = [] __a = [] __a = [] for element in html_code.descendants: if type(_snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __a = html.unescape(_snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(_snake_case ) __a , __a = self.xpath_soup(_snake_case ) stringaxtag_seq.append(_snake_case ) stringaxsubs_seq.append(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = '''''' for tagname, subs in zip(_snake_case , _snake_case ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , _snake_case ) -> BatchFeature: '''simple docstring''' __a = False # Check that strings has a valid type if isinstance(_snake_case , _snake_case ): __a = True elif isinstance(_snake_case , (list, tuple) ): if len(_snake_case ) == 0 or isinstance(html_strings[0] , _snake_case ): __a = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_snake_case )}.""" ) __a = bool(isinstance(_snake_case , (list, tuple) ) and (isinstance(html_strings[0] , _snake_case )) ) if not is_batched: __a = [html_strings] # Get nodes + xpaths __a = [] __a = [] for html_string in html_strings: __a , __a , __a = self.get_three_from_single(_snake_case ) nodes.append(_snake_case ) __a = [] for node, tag_list, sub_list in zip(_snake_case , _snake_case , _snake_case ): __a = self.construct_xpath(_snake_case , _snake_case ) xpath_strings.append(_snake_case ) xpaths.append(_snake_case ) # return as Dict __a = {'''nodes''': nodes, '''xpaths''': xpaths} __a = BatchFeature(data=_snake_case , tensor_type=_snake_case ) return encoded_inputs
6
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A__: int = logging.get_logger(__name__) def lowerCAmelCase_ ( A_): UpperCamelCase__: Any = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: UpperCamelCase__: Tuple = [1_44, 1_92, 2_40] UpperCamelCase__: Optional[Any] = [16, 32, 64, 96, 1_28, 1_60, 6_40] elif "mobilevit_xs" in mobilevit_name: UpperCamelCase__: Optional[Any] = [96, 1_20, 1_44] UpperCamelCase__: Tuple = [16, 32, 48, 64, 80, 96, 3_84] elif "mobilevit_xxs" in mobilevit_name: UpperCamelCase__: List[Any] = [64, 80, 96] UpperCamelCase__: List[Any] = [16, 16, 24, 48, 64, 80, 3_20] UpperCamelCase__: List[str] = 0.05 UpperCamelCase__: int = 2.0 if mobilevit_name.startswith("deeplabv3_"): UpperCamelCase__: int = 5_12 UpperCamelCase__: List[str] = 16 UpperCamelCase__: Tuple = 21 UpperCamelCase__: str = "pascal-voc-id2label.json" else: UpperCamelCase__: List[Any] = 10_00 UpperCamelCase__: str = "imagenet-1k-id2label.json" UpperCamelCase__: List[str] = "huggingface/label-files" UpperCamelCase__: Union[str, Any] = json.load(open(hf_hub_download(a__ ,a__ ,repo_type="dataset") ,"r")) UpperCamelCase__: Optional[Any] = {int(a__): v for k, v in idalabel.items()} UpperCamelCase__: Tuple = idalabel UpperCamelCase__: Optional[Any] = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( A_ ,A_=False): for i in range(1 ,6): if F"layer_{i}." in name: UpperCamelCase__: Optional[int] = name.replace(F"layer_{i}." ,F"encoder.layer.{i - 1}.") if "conv_1." in name: UpperCamelCase__: Dict = name.replace("conv_1." ,"conv_stem.") if ".block." in name: UpperCamelCase__: Optional[int] = name.replace(".block." ,".") if "exp_1x1" in name: UpperCamelCase__: List[str] = name.replace("exp_1x1" ,"expand_1x1") if "red_1x1" in name: UpperCamelCase__: Optional[int] = name.replace("red_1x1" ,"reduce_1x1") if ".local_rep.conv_3x3." in name: UpperCamelCase__: int = name.replace(".local_rep.conv_3x3." ,".conv_kxk.") if ".local_rep.conv_1x1." in name: UpperCamelCase__: str = name.replace(".local_rep.conv_1x1." ,".conv_1x1.") if ".norm." in name: UpperCamelCase__: List[str] = name.replace(".norm." ,".normalization.") if ".conv." in name: UpperCamelCase__: Dict = name.replace(".conv." ,".convolution.") if ".conv_proj." in name: UpperCamelCase__: List[str] = name.replace(".conv_proj." ,".conv_projection.") for i in range(0 ,2): for j in range(0 ,4): if F".{i}.{j}." in name: UpperCamelCase__: Optional[int] = name.replace(F".{i}.{j}." ,F".{i}.layer.{j}.") for i in range(2 ,6): for j in range(0 ,4): if F".{i}.{j}." in name: UpperCamelCase__: Tuple = name.replace(F".{i}.{j}." ,F".{i}.") if "expand_1x1" in name: UpperCamelCase__: List[Any] = name.replace("expand_1x1" ,"downsampling_layer.expand_1x1") if "conv_3x3" in name: UpperCamelCase__: Union[str, Any] = name.replace("conv_3x3" ,"downsampling_layer.conv_3x3") if "reduce_1x1" in name: UpperCamelCase__: str = name.replace("reduce_1x1" ,"downsampling_layer.reduce_1x1") for i in range(2 ,5): if F".global_rep.{i}.weight" in name: UpperCamelCase__: Any = name.replace(F".global_rep.{i}.weight" ,".layernorm.weight") if F".global_rep.{i}.bias" in name: UpperCamelCase__: str = name.replace(F".global_rep.{i}.bias" ,".layernorm.bias") if ".global_rep." in name: UpperCamelCase__: int = name.replace(".global_rep." ,".transformer.") if ".pre_norm_mha.0." in name: UpperCamelCase__: Optional[int] = name.replace(".pre_norm_mha.0." ,".layernorm_before.") if ".pre_norm_mha.1.out_proj." in name: UpperCamelCase__: Optional[Any] = name.replace(".pre_norm_mha.1.out_proj." ,".attention.output.dense.") if ".pre_norm_ffn.0." in name: UpperCamelCase__: Optional[int] = name.replace(".pre_norm_ffn.0." ,".layernorm_after.") if ".pre_norm_ffn.1." in name: UpperCamelCase__: List[str] = name.replace(".pre_norm_ffn.1." ,".intermediate.dense.") if ".pre_norm_ffn.4." in name: UpperCamelCase__: int = name.replace(".pre_norm_ffn.4." ,".output.dense.") if ".transformer." in name: UpperCamelCase__: List[Any] = name.replace(".transformer." ,".transformer.layer.") if ".aspp_layer." in name: UpperCamelCase__: Union[str, Any] = name.replace(".aspp_layer." ,".") if ".aspp_pool." in name: UpperCamelCase__: int = name.replace(".aspp_pool." ,".") if "seg_head." in name: UpperCamelCase__: int = name.replace("seg_head." ,"segmentation_head.") if "segmentation_head.classifier.classifier." in name: UpperCamelCase__: str = name.replace("segmentation_head.classifier.classifier." ,"segmentation_head.classifier.") if "classifier.fc." in name: UpperCamelCase__: Optional[Any] = name.replace("classifier.fc." ,"classifier.") elif (not base_model) and ("segmentation_head." not in name): UpperCamelCase__: List[Any] = "mobilevit." + name return name def lowerCAmelCase_ ( A_ ,A_ ,A_=False): if base_model: UpperCamelCase__: int = "" else: UpperCamelCase__: Union[str, Any] = "mobilevit." for key in orig_state_dict.copy().keys(): UpperCamelCase__: int = orig_state_dict.pop(a__) if key[:8] == "encoder.": UpperCamelCase__: Tuple = key[8:] if "qkv" in key: UpperCamelCase__: Dict = key.split(".") UpperCamelCase__: Tuple = int(key_split[0][6:]) - 1 UpperCamelCase__: Any = int(key_split[3]) UpperCamelCase__: List[Any] = model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}") UpperCamelCase__: List[Any] = layer.transformer.layer[transformer_num].attention.attention.all_head_size UpperCamelCase__: List[Any] = ( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: UpperCamelCase__: Optional[int] = val[:dim, :] UpperCamelCase__: Tuple = val[dim : dim * 2, :] UpperCamelCase__: List[str] = val[-dim:, :] else: UpperCamelCase__: int = val[:dim] UpperCamelCase__: Dict = val[dim : dim * 2] UpperCamelCase__: Dict = val[-dim:] else: UpperCamelCase__: str = val return orig_state_dict def lowerCAmelCase_ ( ): UpperCamelCase__: Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase__: str = Image.open(requests.get(a__ ,stream=a__).raw) return im @torch.no_grad() def lowerCAmelCase_ ( A_ ,A_ ,A_ ,A_=False): UpperCamelCase__: Union[str, Any] = get_mobilevit_config(a__) # load original state_dict UpperCamelCase__: int = torch.load(a__ ,map_location="cpu") # load 🤗 model if mobilevit_name.startswith("deeplabv3_"): UpperCamelCase__: str = MobileViTForSemanticSegmentation(a__).eval() else: UpperCamelCase__: Optional[Any] = MobileViTForImageClassification(a__).eval() UpperCamelCase__: Any = convert_state_dict(a__ ,a__) model.load_state_dict(a__) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCamelCase__: Dict = MobileViTImageProcessor(crop_size=config.image_size ,size=config.image_size + 32) UpperCamelCase__: Optional[int] = image_processor(images=prepare_img() ,return_tensors="pt") UpperCamelCase__: str = model(**a__) UpperCamelCase__: Tuple = outputs.logits if mobilevit_name.startswith("deeplabv3_"): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": UpperCamelCase__: Any = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xs": UpperCamelCase__: int = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xxs": UpperCamelCase__: int = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ]) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}") assert torch.allclose(logits[0, :3, :3, :3] ,a__ ,atol=1e-4) else: assert logits.shape == (1, 10_00) if mobilevit_name == "mobilevit_s": UpperCamelCase__: Optional[Any] = torch.tensor([-0.9866, 0.2392, -1.1241]) elif mobilevit_name == "mobilevit_xs": UpperCamelCase__: Union[str, Any] = torch.tensor([-2.4761, -0.9399, -1.9587]) elif mobilevit_name == "mobilevit_xxs": UpperCamelCase__: str = torch.tensor([-1.9364, -1.2327, -0.4653]) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}") assert torch.allclose(logits[0, :3] ,a__ ,atol=1e-4) Path(a__).mkdir(exist_ok=a__) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a__) print(F"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(a__) if push_to_hub: UpperCamelCase__: Optional[int] = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub...") UpperCamelCase__: Dict = model_mapping[mobilevit_name] image_processor.push_to_hub(a__ ,organization="apple") model.push_to_hub(a__ ,organization="apple") if __name__ == "__main__": A__: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A__: Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
149
def __lowerCAmelCase ( a__ , a__ ) -> float: def get_matched_characters(a__ , a__ ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a__ ) __a = F"""{_stra[0:_stra.index(a__ )]} {_stra[_stra.index(a__ ) + 1:]}""" return "".join(a__ ) # matching characters __a = get_matched_characters(a__ , a__ ) __a = get_matched_characters(a__ , a__ ) __a = len(a__ ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(a__ , a__ ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(a__ ) + match_count / len(a__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
6
0
import os # Precomputes a list of the 100 first triangular numbers lowercase_ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _snake_case( ) -> int: '''simple docstring''' A__ = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE__ ) ) A__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'words.txt' ) A__ = '' with open(SCREAMING_SNAKE_CASE__ ) as f: A__ = f.readline() A__ = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] A__ = [ word for word in [sum(ord(SCREAMING_SNAKE_CASE__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(solution())
7
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return EnvironmentCommand() class A ( _UpperCAmelCase ): """simple docstring""" @staticmethod def snake_case__ ( lowercase_ : ArgumentParser )-> Dict: '''simple docstring''' A__ = parser.add_parser('env' ) download_parser.set_defaults(func=lowercase_ ) def snake_case__ ( self : List[Any] )-> List[str]: '''simple docstring''' A__ = huggingface_hub.__version__ A__ = 'not installed' A__ = 'NA' if is_torch_available(): import torch A__ = torch.__version__ A__ = torch.cuda.is_available() A__ = 'not installed' if is_transformers_available(): import transformers A__ = transformers.__version__ A__ = 'not installed' if is_accelerate_available(): import accelerate A__ = accelerate.__version__ A__ = 'not installed' if is_xformers_available(): import xformers A__ = xformers.__version__ A__ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F'{pt_version} ({pt_cuda_available})', 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(lowercase_ ) ) return info @staticmethod def snake_case__ ( lowercase_ : int )-> Optional[Any]: '''simple docstring''' return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
7
1
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowercase_ = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) lowercase_ = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) lowercase_ = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) lowercase_ = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) lowercase_ = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) lowercase_ = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) lowercase_ = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def _snake_case( ) -> List[str]: '''simple docstring''' A__ , A__ = randrange(len(SCREAMING_SNAKE_CASE__ ) ), randrange(len(SCREAMING_SNAKE_CASE__ ) ) A__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] A__ , A__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _snake_case( SCREAMING_SNAKE_CASE__ : int = 100 ) -> str: '''simple docstring''' return (generate_random_hand() for _ in range(SCREAMING_SNAKE_CASE__ )) @pytest.mark.parametrize('hand, expected' , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: '''simple docstring''' assert PokerHand(SCREAMING_SNAKE_CASE__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> str: '''simple docstring''' assert PokerHand(SCREAMING_SNAKE_CASE__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: '''simple docstring''' A__ = PokerHand(SCREAMING_SNAKE_CASE__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> Tuple: '''simple docstring''' assert PokerHand(SCREAMING_SNAKE_CASE__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: '''simple docstring''' assert PokerHand(SCREAMING_SNAKE_CASE__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' assert PokerHand(SCREAMING_SNAKE_CASE__ ).compare_with(PokerHand(SCREAMING_SNAKE_CASE__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: '''simple docstring''' assert PokerHand(SCREAMING_SNAKE_CASE__ ).compare_with(PokerHand(SCREAMING_SNAKE_CASE__ ) ) == expected def _snake_case( ) -> Optional[int]: '''simple docstring''' A__ = [PokerHand(SCREAMING_SNAKE_CASE__ ) for hand in SORTED_HANDS] A__ = poker_hands.copy() shuffle(SCREAMING_SNAKE_CASE__ ) A__ = chain(sorted(SCREAMING_SNAKE_CASE__ ) ) for index, hand in enumerate(SCREAMING_SNAKE_CASE__ ): assert hand == poker_hands[index] def _snake_case( ) -> List[str]: '''simple docstring''' A__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=SCREAMING_SNAKE_CASE__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _snake_case( ) -> str: '''simple docstring''' A__ = PokerHand('2C 4S AS 3D 5C' ) A__ = True A__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _snake_case( ) -> List[str]: '''simple docstring''' A__ = 0 A__ = os.path.abspath(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ) A__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'poker_hands.txt' ) with open(SCREAMING_SNAKE_CASE__ ) as file_hand: for line in file_hand: A__ = line[:14].strip() A__ = line[15:].strip() A__ , A__ = PokerHand(SCREAMING_SNAKE_CASE__ ), PokerHand(SCREAMING_SNAKE_CASE__ ) A__ = player.compare_with(SCREAMING_SNAKE_CASE__ ) if output == "Win": answer += 1 assert answer == 376
7
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ReformerTokenizer lowerCamelCase = ReformerTokenizerFast lowerCamelCase = True lowerCamelCase = False lowerCamelCase = True def snake_case__ ( self : Any )-> str: '''simple docstring''' super().setUp() A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : Optional[int] )-> Optional[int]: '''simple docstring''' A__ = '<s>' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ ) def snake_case__ ( self : str )-> Tuple: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],'<unk>' ) self.assertEqual(vocab_keys[1],'<s>' ) self.assertEqual(vocab_keys[-1],'j' ) self.assertEqual(len(lowercase_ ),1_0_0_0 ) def snake_case__ ( self : Dict )-> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size,1_0_0_0 ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = 'I was born in 92000, and this is falsé.' A__ = tokenizer.tokenize(lowercase_ ) A__ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(lowercase_ ) A__ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) def snake_case__ ( self : int,lowercase_ : Optional[int]=1_5 )-> Optional[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A__ = self.rust_tokenizer_class.from_pretrained(lowercase_,**lowercase_ ) # Simple input A__ = 'This is a simple input' A__ = ['This is a simple input 1', 'This is a simple input 2'] A__ = ('This is a simple input', 'This is a pair') A__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' ) # Simple input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' ) # Simple input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' ) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' ) # Pair input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',) def snake_case__ ( self : List[Any] )-> Tuple: '''simple docstring''' pass def snake_case__ ( self : Dict )-> str: '''simple docstring''' A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ),[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2],) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ],) A__ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4],) A__ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ],) @cached_property def snake_case__ ( self : Optional[int] )-> Any: '''simple docstring''' return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' ) @slow def snake_case__ ( self : str )-> Tuple: '''simple docstring''' A__ = 'Hello World!' A__ = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7] self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) ) @slow def snake_case__ ( self : Optional[int] )-> str: '''simple docstring''' A__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) A__ = [ 1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 3_5, 2_8, 2_7_5, 3, 2_5_9, 2_9_7, 2_6_0, 8_4, 4, 3_5, 1_1_0, 4_4, 8, 2_5_9, 9_1, 2_6_8, 2_1, 1_1, 2_0_9, 2_7_4, 1_0_9, 2_6_6, 2_7_7, 1_1_7, 8_6, 9_3, 3_1_5, 2_5_8, 2_7_8, 2_5_8, 2_7_7, 2_5_8, 0, 2_5_8, 2_8_8, 2_5_8, 3_1_9, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 2_8_7, 2_5_8, 3_1_5, 2_5_8, 2_8_9, 2_5_8, 2_7_8, 9_9, 2_6_9, 2_6_6, 2_6_2, 8, 2_5_9, 2_4_1, 4, 2_1_7, 2_3_0, 2_6_8, 2_6_6, 5_5, 1_6_8, 1_0_6, 7_5, 1_9_3, 2_6_6, 2_2_3, 2_7, 4_9, 2_6, 2_8_2, 2_5, 2_6_4, 2_9_9, 1_9, 2_6, 0, 2_5_8, 2_7_7, 1_1_7, 8_6, 9_3, 1_7_6, 1_8_3, 2_7_0, 1_1, 2_6_2, 4_2, 6_1, 2_6_5, ] self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) ) @require_torch @slow def snake_case__ ( self : int )-> Any: '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence A__ = list(self.big_tokenizer.get_vocab().keys() )[:1_0] A__ = ' '.join(lowercase_ ) A__ = self.big_tokenizer.encode_plus(lowercase_,return_tensors='pt' ) A__ = self.big_tokenizer.batch_encode_plus([sequence, sequence],return_tensors='pt' ) A__ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) A__ = encoded_sequence['input_ids'].shape A__ = ReformerModel(lowercase_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase_ ) model(**lowercase_ ) @slow def snake_case__ ( self : int )-> Tuple: '''simple docstring''' A__ = {'input_ids': [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 A__ = [ 'This is a very simple sentence.', 'The quick brown fox jumps over the lazy dog.', ] self.tokenizer_integration_test_util( expected_encoding=lowercase_,model_name='google/reformer-crime-and-punishment',revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a',padding=lowercase_,sequences=lowercase_,)
7
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = "▁" lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} lowercase_ = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } lowercase_ = {"vinai/bartpho-syllable": 1024} class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['input_ids', 'attention_mask'] def __init__( self : Any,lowercase_ : Union[str, Any],lowercase_ : List[Any],lowercase_ : Optional[int]="<s>",lowercase_ : List[Any]="</s>",lowercase_ : Any="</s>",lowercase_ : Tuple="<s>",lowercase_ : Optional[int]="<unk>",lowercase_ : str="<pad>",lowercase_ : Any="<mask>",lowercase_ : Optional[Dict[str, Any]] = None,**lowercase_ : Optional[Any],)-> None: '''simple docstring''' A__ = AddedToken(lowercase_,lstrip=lowercase_,rstrip=lowercase_ ) if isinstance(lowercase_,lowercase_ ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_,eos_token=lowercase_,unk_token=lowercase_,sep_token=lowercase_,cls_token=lowercase_,pad_token=lowercase_,mask_token=lowercase_,sp_model_kwargs=self.sp_model_kwargs,**lowercase_,) A__ = vocab_file A__ = monolingual_vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility A__ = {} A__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowercase_ ) not in self.fairseq_tokens_to_ids: A__ = cnt cnt += 1 with open(lowercase_,'r',encoding='utf-8' ) as f: for line in f.readlines(): A__ = line.strip().split()[0] A__ = len(self.fairseq_tokens_to_ids ) if str(lowercase_ ) not in self.fairseq_tokens_to_ids: A__ = len(self.fairseq_tokens_to_ids ) A__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Optional[int] )-> Optional[int]: '''simple docstring''' A__ = self.__dict__.copy() A__ = None A__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any],lowercase_ : Optional[int] )-> str: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self,'sp_model_kwargs' ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case__ ( self : Optional[Any],lowercase_ : List[int],lowercase_ : Optional[List[int]] = None )-> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self : int,lowercase_ : List[int],lowercase_ : Optional[List[int]] = None,lowercase_ : bool = False )-> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_,token_ids_a=lowercase_,already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def snake_case__ ( self : Any,lowercase_ : List[int],lowercase_ : Optional[List[int]] = None )-> List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case__ ( self : List[Any] )-> str: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def snake_case__ ( self : int )-> Union[str, Any]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case__ ( self : Dict,lowercase_ : str )-> List[str]: '''simple docstring''' return self.sp_model.encode(lowercase_,out_type=lowercase_ ) def snake_case__ ( self : List[str],lowercase_ : int )-> Optional[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case__ ( self : Dict,lowercase_ : str )-> List[Any]: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def snake_case__ ( self : List[Any],lowercase_ : List[str] )-> str: '''simple docstring''' A__ = ''.join(lowercase_ ).replace(lowercase_,' ' ).strip() return out_string def snake_case__ ( self : List[str],lowercase_ : str,lowercase_ : Optional[str] = None )-> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowercase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A__ = os.path.join( lowercase_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join( lowercase_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'],) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_,'wb' ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowercase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file,lowercase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowercase_,'w',encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'{str(lowercase_ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
7
def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , ) -> float: '''simple docstring''' A__ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: A__ = 1 - (matter_density + radiation_density + dark_energy) A__ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) A__ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowercase_ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
7
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowercase_ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowercase_ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowercase_ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): """simple docstring""" def snake_case__ ( self : Tuple )-> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string',id='token' ),id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string',id='token' ),id='sequence' ),id='references' ), } ),) def snake_case__ ( self : Any,lowercase_ : List[List[List[str]]],lowercase_ : List[List[str]],lowercase_ : int = 1,lowercase_ : int = 4,)-> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowercase_,hypotheses=lowercase_,min_len=lowercase_,max_len=lowercase_ ) }
7
from typing import Union import fire import torch from tqdm import tqdm def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str = "cpu" , SCREAMING_SNAKE_CASE__ : Union[str, None] = None ) -> None: '''simple docstring''' A__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location=SCREAMING_SNAKE_CASE__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) A__ = v.half() if save_path is None: # overwrite src_path A__ = src_path torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": fire.Fire(convert)
7
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'marian' lowerCamelCase = ['past_key_values'] lowerCamelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str,lowercase_ : Dict=5_8_1_0_1,lowercase_ : List[str]=None,lowercase_ : int=1_0_2_4,lowercase_ : Optional[Any]=1_2,lowercase_ : List[Any]=4_0_9_6,lowercase_ : Optional[Any]=1_6,lowercase_ : Dict=1_2,lowercase_ : Any=4_0_9_6,lowercase_ : Dict=1_6,lowercase_ : str=0.0,lowercase_ : int=0.0,lowercase_ : int=True,lowercase_ : List[str]=True,lowercase_ : str="gelu",lowercase_ : Optional[int]=1_0_2_4,lowercase_ : Dict=0.1,lowercase_ : List[Any]=0.0,lowercase_ : List[Any]=0.0,lowercase_ : int=0.02,lowercase_ : Any=5_8_1_0_0,lowercase_ : str=False,lowercase_ : Optional[Any]=5_8_1_0_0,lowercase_ : Optional[Any]=0,lowercase_ : Union[str, Any]=0,lowercase_ : int=True,**lowercase_ : Tuple,)-> List[Any]: '''simple docstring''' A__ = vocab_size A__ = decoder_vocab_size or vocab_size A__ = max_position_embeddings A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = use_cache A__ = encoder_layers A__ = scale_embedding # scale factor will be sqrt(d_model) if True A__ = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase_,eos_token_id=lowercase_,is_encoder_decoder=lowercase_,decoder_start_token_id=lowercase_,forced_eos_token_id=lowercase_,**lowercase_,) class A ( _UpperCAmelCase ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def snake_case__ ( self : int )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A__ = {0: 'batch'} A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A__ = {0: 'batch', 1: 'decoder_sequence'} A__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_,direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A__ , A__ = self.num_layers for i in range(lowercase_ ): A__ = {0: 'batch', 2: 'past_sequence + sequence'} A__ = {0: 'batch', 2: 'past_sequence + sequence'} else: A__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def snake_case__ ( self : str )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = super().outputs else: A__ = super(lowercase_,self ).outputs if self.use_past: A__ , A__ = self.num_layers for i in range(lowercase_ ): A__ = {0: 'batch', 2: 'past_sequence + sequence'} A__ = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def snake_case__ ( self : List[Any],lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase_,lowercase_,lowercase_,lowercase_,lowercase_ ) # Generate decoder inputs A__ = seq_length if not self.use_past else 1 A__ = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase_,lowercase_,lowercase_,lowercase_,lowercase_ ) A__ = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} A__ = dict(**lowercase_,**lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A__ , A__ = common_inputs['input_ids'].shape A__ = common_inputs['decoder_input_ids'].shape[1] A__ , A__ = self.num_attention_heads A__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A__ = decoder_seq_length + 3 A__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A__ = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowercase_,lowercase_ )],dim=1 ) A__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A__ , A__ = self.num_layers A__ = min(lowercase_,lowercase_ ) A__ = max(lowercase_,lowercase_ ) - min_num_layers A__ = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowercase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), ) ) # TODO: test this. A__ = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowercase_,lowercase_ ): common_inputs["past_key_values"].append((torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) ) return common_inputs def snake_case__ ( self : Dict,lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase_,lowercase_,lowercase_,lowercase_,lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A__ , A__ = common_inputs['input_ids'].shape # Not using the same length for past_key_values A__ = seqlen + 2 A__ , A__ = self.num_layers A__ , A__ = self.num_attention_heads A__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A__ = common_inputs['attention_mask'].dtype A__ = torch.cat( [common_inputs['attention_mask'], torch.ones(lowercase_,lowercase_,dtype=lowercase_ )],dim=1 ) A__ = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(lowercase_ ) ] return common_inputs def snake_case__ ( self : Tuple,lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = compute_effective_axis_dimension( lowercase_,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ = tokenizer.num_special_tokens_to_add(lowercase_ ) A__ = compute_effective_axis_dimension( lowercase_,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence A__ = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A__ = dict(tokenizer(lowercase_,return_tensors=lowercase_ ) ) return common_inputs def snake_case__ ( self : Optional[int],lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) else: A__ = self._generate_dummy_inputs_for_causal_lm( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) return common_inputs def snake_case__ ( self : str,lowercase_ : Any,lowercase_ : Union[str, Any],lowercase_ : List[str],lowercase_ : Optional[Any] )-> Any: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = super()._flatten_past_key_values_(lowercase_,lowercase_,lowercase_,lowercase_ ) else: A__ = super(lowercase_,self )._flatten_past_key_values_( lowercase_,lowercase_,lowercase_,lowercase_ ) @property def snake_case__ ( self : str )-> float: '''simple docstring''' return 1E-4
7
import os # Precomputes a list of the 100 first triangular numbers lowercase_ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _snake_case( ) -> int: '''simple docstring''' A__ = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE__ ) ) A__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'words.txt' ) A__ = '' with open(SCREAMING_SNAKE_CASE__ ) as f: A__ = f.readline() A__ = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] A__ = [ word for word in [sum(ord(SCREAMING_SNAKE_CASE__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(solution())
7
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : """simple docstring""" def __init__( self : str,lowercase_ : str,lowercase_ : Tuple=1_3,lowercase_ : List[Any]=3_2,lowercase_ : Union[str, Any]=3,lowercase_ : Dict=4,lowercase_ : Dict=[1_0, 2_0, 3_0, 4_0],lowercase_ : Any=[2, 2, 3, 2],lowercase_ : str=True,lowercase_ : Optional[Any]=True,lowercase_ : Optional[Any]=3_7,lowercase_ : Optional[int]="gelu",lowercase_ : Optional[Any]=1_0,lowercase_ : Dict=0.02,lowercase_ : Dict=["stage2", "stage3", "stage4"],lowercase_ : Union[str, Any]=3,lowercase_ : Optional[Any]=None,)-> Optional[int]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_stages A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = intermediate_size A__ = hidden_act A__ = type_sequence_label_size A__ = initializer_range A__ = out_features A__ = num_labels A__ = scope A__ = num_stages def snake_case__ ( self : Tuple )-> Optional[Any]: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Dict )-> Union[str, Any]: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels,num_stages=self.num_stages,hidden_sizes=self.hidden_sizes,depths=self.depths,is_training=self.is_training,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,out_features=self.out_features,) def snake_case__ ( self : Tuple )-> Union[str, Any]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config(),hidden_size=5_1_2,pool_scales=[1, 2, 3, 6],use_auxiliary_head=lowercase_,auxiliary_loss_weight=0.4,auxiliary_in_channels=4_0,auxiliary_channels=2_5_6,auxiliary_num_convs=1,auxiliary_concat_input=lowercase_,loss_ignore_index=2_5_5,num_labels=self.num_labels,) def snake_case__ ( self : Optional[Any],lowercase_ : Dict,lowercase_ : int,lowercase_ : Optional[int] )-> Dict: '''simple docstring''' A__ = UperNetForSemanticSegmentation(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_ ) self.parent.assertEqual( result.logits.shape,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def snake_case__ ( self : int )-> Dict: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCamelCase = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : Optional[Any] )-> List[Any]: '''simple docstring''' A__ = UperNetModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,has_text_modality=lowercase_,hidden_size=3_7 ) def snake_case__ ( self : Optional[Any] )-> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : int )-> Tuple: '''simple docstring''' return def snake_case__ ( self : List[str] )-> List[str]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1],lowercase_ ) def snake_case__ ( self : List[str] )-> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def snake_case__ ( self : Any )-> List[Any]: '''simple docstring''' pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def snake_case__ ( self : str )-> int: '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def snake_case__ ( self : int )-> Any: '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def snake_case__ ( self : Union[str, Any] )-> Dict: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case__ ( self : Union[str, Any] )-> Tuple: '''simple docstring''' pass def snake_case__ ( self : int )-> Any: '''simple docstring''' def check_hidden_states_output(lowercase_ : str,lowercase_ : Union[str, Any],lowercase_ : Any ): A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_,lowercase_ ) ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(lowercase_ ),expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[self.model_tester.image_size // 4, self.model_tester.image_size // 4],) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(lowercase_,lowercase_,lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(lowercase_,lowercase_,lowercase_ ) def snake_case__ ( self : Optional[Any] )-> Union[str, Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = _config_zero_init(lowercase_ ) A__ = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: A__ = model_class(config=lowercase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(),[0.0, 1.0],msg=F'Parameter {name} of model {model_class} seems not properly initialized',) @unittest.skip(reason='UperNet does not have tied weights' ) def snake_case__ ( self : Tuple )-> Optional[int]: '''simple docstring''' pass @slow def snake_case__ ( self : Dict )-> Dict: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = UperNetForSemanticSegmentation.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _snake_case( ) -> int: '''simple docstring''' A__ = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) A__ = Image.open(SCREAMING_SNAKE_CASE__ ).convert('RGB' ) return image @require_torch @require_vision @slow class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Optional[int] )-> List[Any]: '''simple docstring''' A__ = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) A__ = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowercase_ ) A__ = prepare_img() A__ = processor(images=lowercase_,return_tensors='pt' ).to(lowercase_ ) with torch.no_grad(): A__ = model(**lowercase_ ) A__ = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape,lowercase_ ) A__ = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3],lowercase_,atol=1E-4 ) ) def snake_case__ ( self : Any )-> Any: '''simple docstring''' A__ = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) A__ = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowercase_ ) A__ = prepare_img() A__ = processor(images=lowercase_,return_tensors='pt' ).to(lowercase_ ) with torch.no_grad(): A__ = model(**lowercase_ ) A__ = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape,lowercase_ ) A__ = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3],lowercase_,atol=1E-4 ) )
7
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowercase_ = False @skip_mps class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = StableDiffusionAttendAndExcitePipeline lowerCamelCase = False lowerCamelCase = TEXT_TO_IMAGE_PARAMS lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def snake_case__ ( cls : Any )-> Optional[Any]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowercase_ ) @classmethod def snake_case__ ( cls : Optional[Any] )-> Dict: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowercase_ ) def snake_case__ ( self : List[str] )-> int: '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4),layers_per_block=1,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),cross_attention_dim=3_2,attention_head_dim=(2, 4),use_linear_projection=lowercase_,) A__ = DDIMScheduler( beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,) A__ = CLIPTextModel(lowercase_ ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def snake_case__ ( self : Tuple,lowercase_ : str,lowercase_ : List[Any]=0 )-> int: '''simple docstring''' if str(lowercase_ ).startswith('mps' ): A__ = torch.manual_seed(lowercase_ ) else: A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = A__ = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def snake_case__ ( self : List[str] )-> Optional[Any]: '''simple docstring''' A__ = 'cpu' A__ = self.get_dummy_components() A__ = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) A__ = self.get_dummy_inputs(lowercase_ ) A__ = pipe(**lowercase_ ).images A__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 6_4, 6_4, 3) ) A__ = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) A__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase_,1E-3 ) def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def snake_case__ ( self : str )-> int: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case__ ( self : str )-> Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2,expected_max_diff=7E-4 ) def snake_case__ ( self : Optional[Any] )-> int: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def snake_case__ ( self : Dict )-> Any: '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class A ( unittest.TestCase ): """simple docstring""" @classmethod def snake_case__ ( cls : Any )-> Optional[int]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowercase_ ) @classmethod def snake_case__ ( cls : int )-> List[Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowercase_ ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Union[str, Any] )-> List[Any]: '''simple docstring''' A__ = torch.manual_seed(5_1 ) A__ = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4',safety_checker=lowercase_,torch_dtype=torch.floataa ) pipe.to('cuda' ) A__ = 'a painting of an elephant with glasses' A__ = [5, 7] A__ = pipe( prompt=lowercase_,token_indices=lowercase_,guidance_scale=7.5,generator=lowercase_,num_inference_steps=5,max_iter_to_alter=5,output_type='numpy',).images[0] A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
7
1
def _snake_case( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int: '''simple docstring''' A__ = -1 A__ = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c A__ = (n * n - 2 * a * n) // (2 * n - 2 * a) A__ = n - a - b if c * c == (a * a + b * b): A__ = a * b * c if candidate >= product: A__ = candidate return product if __name__ == "__main__": print(f"""{solution() = }""")
7
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowercase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : tuple , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , ) -> Union[str, Any]: '''simple docstring''' output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) else: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False ) -> Tuple: '''simple docstring''' A__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A__ = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A__ = 'cpu' A__ = Path(SCREAMING_SNAKE_CASE__ ) # VAE DECODER A__ = AutoencoderKL.from_pretrained(model_path + '/vae' ) A__ = vae_decoder.config.latent_channels # forward only through the decoder part A__ = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE__ , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE__ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE__ , ) del vae_decoder if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowercase_ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
7
1
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class A : """simple docstring""" lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = True lowerCamelCase = None lowerCamelCase = 1 lowerCamelCase = None lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None def snake_case__ ( self : Any )-> "DownloadConfig": '''simple docstring''' return self.__class__(**{k: copy.deepcopy(lowercase_ ) for k, v in self.__dict__.items()} )
7
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = (DPMSolverSinglestepScheduler,) lowerCamelCase = (('num_inference_steps', 25),) def snake_case__ ( self : Tuple,**lowercase_ : Dict )-> Optional[int]: '''simple docstring''' A__ = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**lowercase_ ) return config def snake_case__ ( self : str,lowercase_ : Optional[Any]=0,**lowercase_ : Any )-> List[Any]: '''simple docstring''' A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('num_inference_steps',lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) A__ = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ , A__ = sample, sample for t in range(lowercase_,time_step + scheduler.config.solver_order + 1 ): A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self : List[str] )-> List[Any]: '''simple docstring''' pass def snake_case__ ( self : Tuple,lowercase_ : Union[str, Any]=0,**lowercase_ : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('num_inference_steps',lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) A__ = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int]=None,**lowercase_ : int )-> int: '''simple docstring''' if scheduler is None: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) A__ = 1_0 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample return sample def snake_case__ ( self : Any )-> str: '''simple docstring''' A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) A__ = 5_0 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_574 ) < 1E-3 def snake_case__ ( self : Optional[Any] )-> List[Any]: '''simple docstring''' for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase_ ) def snake_case__ ( self : int )-> Optional[Any]: '''simple docstring''' A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) A__ = self.full_loop(scheduler=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 A__ = DEISMultistepScheduler.from_config(scheduler.config ) A__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) A__ = UniPCMultistepScheduler.from_config(scheduler.config ) A__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A__ = self.full_loop(scheduler=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def snake_case__ ( self : Tuple )-> Any: '''simple docstring''' self.check_over_configs(thresholding=lowercase_ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase_,prediction_type=lowercase_,sample_max_value=lowercase_,algorithm_type='dpmsolver++',solver_order=lowercase_,solver_type=lowercase_,) def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def snake_case__ ( self : Dict )-> List[Any]: '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,) A__ = self.full_loop( solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,) assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers" def snake_case__ ( self : Optional[int] )-> Tuple: '''simple docstring''' self.check_over_configs(lower_order_final=lowercase_ ) self.check_over_configs(lower_order_final=lowercase_ ) def snake_case__ ( self : Tuple )-> Optional[int]: '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' self.check_over_configs(variance_type=lowercase_ ) self.check_over_configs(variance_type='learned_range' ) def snake_case__ ( self : str )-> Any: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=lowercase_,time_step=0 ) def snake_case__ ( self : Tuple )-> Tuple: '''simple docstring''' A__ = self.full_loop() A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def snake_case__ ( self : Any )-> Union[str, Any]: '''simple docstring''' A__ = self.full_loop(use_karras_sigmas=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_248 ) < 1E-3 def snake_case__ ( self : Union[str, Any] )-> Tuple: '''simple docstring''' A__ = self.full_loop(prediction_type='v_prediction' ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.1_453 ) < 1E-3 def snake_case__ ( self : Tuple )-> int: '''simple docstring''' A__ = self.full_loop(prediction_type='v_prediction',use_karras_sigmas=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.0_649 ) < 1E-3 def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(thresholding=lowercase_,dynamic_thresholding_ratio=0 ) A__ = scheduler_class(**lowercase_ ) A__ = 1_0 A__ = self.dummy_model() A__ = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample assert sample.dtype == torch.floataa
7
1
def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , ) -> float: '''simple docstring''' A__ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: A__ = 1 - (matter_density + radiation_density + dark_energy) A__ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) A__ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowercase_ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
7
class A : """simple docstring""" def __init__( self : Any,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : List[str] )-> List[Any]: '''simple docstring''' A__ = name A__ = value A__ = weight def __repr__( self : int )-> Tuple: '''simple docstring''' return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def snake_case__ ( self : Any )-> str: '''simple docstring''' return self.value def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' return self.name def snake_case__ ( self : Any )-> Dict: '''simple docstring''' return self.weight def snake_case__ ( self : Union[str, Any] )-> Optional[Any]: '''simple docstring''' return self.value / self.weight def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: '''simple docstring''' A__ = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Any: '''simple docstring''' A__ = sorted(SCREAMING_SNAKE_CASE__ , key=SCREAMING_SNAKE_CASE__ , reverse=SCREAMING_SNAKE_CASE__ ) A__ = [] A__ , A__ = 0.0, 0.0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _snake_case( ) -> Any: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
7
1
def _snake_case( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] ) -> tuple[float, float]: '''simple docstring''' if not len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients A__ , A__ , A__ = equationa A__ , A__ , A__ = equationa # Calculate the determinants of the matrices A__ = aa * ba - aa * ba A__ = ca * ba - ca * ba A__ = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: A__ = determinant_x / determinant A__ = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
7
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class A ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'resnet' lowerCamelCase = ['basic', 'bottleneck'] def __init__( self : Optional[Any],lowercase_ : int=3,lowercase_ : List[str]=6_4,lowercase_ : int=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8],lowercase_ : Tuple=[3, 4, 6, 3],lowercase_ : Union[str, Any]="bottleneck",lowercase_ : List[str]="relu",lowercase_ : Tuple=False,lowercase_ : List[str]=None,lowercase_ : List[Any]=None,**lowercase_ : str,)-> Optional[Any]: '''simple docstring''' super().__init__(**lowercase_ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) A__ = num_channels A__ = embedding_size A__ = hidden_sizes A__ = depths A__ = layer_type A__ = hidden_act A__ = downsample_in_first_stage A__ = ['stem'] + [F'stage{idx}' for idx in range(1,len(lowercase_ ) + 1 )] A__ , A__ = get_aligned_output_features_output_indices( out_features=lowercase_,out_indices=lowercase_,stage_names=self.stage_names ) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = version.parse('1.11' ) @property def snake_case__ ( self : List[Any] )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case__ ( self : Any )-> float: '''simple docstring''' return 1E-3
7
1
def _snake_case( SCREAMING_SNAKE_CASE__ : int = 4000000 ) -> int: '''simple docstring''' A__ = [0, 1] A__ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 A__ = 0 for j in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
7
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 't5' lowerCamelCase = ['past_key_values'] lowerCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Union[str, Any],lowercase_ : int=3_2_1_2_8,lowercase_ : int=5_1_2,lowercase_ : List[str]=6_4,lowercase_ : Tuple=2_0_4_8,lowercase_ : Any=6,lowercase_ : List[str]=None,lowercase_ : Union[str, Any]=8,lowercase_ : int=3_2,lowercase_ : Dict=1_2_8,lowercase_ : Optional[int]=0.1,lowercase_ : List[str]=1E-6,lowercase_ : Tuple=1.0,lowercase_ : Any="relu",lowercase_ : Union[str, Any]=True,lowercase_ : Optional[Any]=True,lowercase_ : int=0,lowercase_ : str=1,**lowercase_ : str,)-> Any: '''simple docstring''' A__ = vocab_size A__ = d_model A__ = d_kv A__ = d_ff A__ = num_layers A__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A__ = num_heads A__ = relative_attention_num_buckets A__ = relative_attention_max_distance A__ = dropout_rate A__ = layer_norm_epsilon A__ = initializer_factor A__ = feed_forward_proj A__ = use_cache A__ = self.feed_forward_proj.split('-' ) A__ = act_info[-1] A__ = act_info[0] == 'gated' if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": A__ = 'gelu_new' super().__init__( pad_token_id=lowercase_,eos_token_id=lowercase_,is_encoder_decoder=lowercase_,**lowercase_,) class A ( _UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self : Tuple )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' A__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: A__ = 'past_encoder_sequence + sequence' A__ = {0: 'batch'} A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A__ = {0: 'batch', 1: 'decoder_sequence'} A__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_,direction='inputs' ) return common_inputs @property def snake_case__ ( self : Any )-> int: '''simple docstring''' return 1_3
7
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'xlm-roberta-xl' def __init__( self : int,lowercase_ : List[str]=2_5_0_8_8_0,lowercase_ : Dict=2_5_6_0,lowercase_ : Tuple=3_6,lowercase_ : str=3_2,lowercase_ : Any=1_0_2_4_0,lowercase_ : Optional[int]="gelu",lowercase_ : Union[str, Any]=0.1,lowercase_ : List[Any]=0.1,lowercase_ : Optional[int]=5_1_4,lowercase_ : List[Any]=1,lowercase_ : Optional[Any]=0.02,lowercase_ : Union[str, Any]=1E-05,lowercase_ : Dict=1,lowercase_ : Dict=0,lowercase_ : int=2,lowercase_ : Dict="absolute",lowercase_ : Dict=True,lowercase_ : Dict=None,**lowercase_ : int,)-> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,**lowercase_ ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class A ( _UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self : List[str] )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
7
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: A__ = mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: A__ = max( mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - wt[i - 1] ) + val[i - 1] , ) A__ = val return f[i][j] def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: '''simple docstring''' A__ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: A__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: A__ = dp[i - 1][w_] return dp[n][w_], dp def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ) -> Union[str, Any]: '''simple docstring''' if not (isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) A__ = len(SCREAMING_SNAKE_CASE__ ) if num_items != len(SCREAMING_SNAKE_CASE__ ): A__ = ( 'The number of weights must be the same as the number of values.\n' f'But got {num_items} weights and {len(SCREAMING_SNAKE_CASE__ )} values' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): if not isinstance(wt[i] , SCREAMING_SNAKE_CASE__ ): A__ = ( 'All weights must be integers but got weight of ' f'type {type(wt[i] )} at index {i}' ) raise TypeError(SCREAMING_SNAKE_CASE__ ) A__ , A__ = knapsack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = set() _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return optimal_val, example_optional_set def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : set ) -> Optional[int]: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: optimal_set.add(SCREAMING_SNAKE_CASE__ ) _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , j - wt[i - 1] , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase_ = [3, 2, 4, 4] lowercase_ = [4, 3, 2, 3] lowercase_ = 4 lowercase_ = 6 lowercase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowercase_ , lowercase_ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowercase_ , lowercase_ = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
7
1
from pathlib import Path import fire def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: '''simple docstring''' A__ = Path(SCREAMING_SNAKE_CASE__ ) A__ = Path(SCREAMING_SNAKE_CASE__ ) dest_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) for path in src_dir.iterdir(): A__ = [x.rstrip() for x in list(path.open().readlines() )][:n] A__ = dest_dir.joinpath(path.name ) print(SCREAMING_SNAKE_CASE__ ) dest_path.open('w' ).write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": fire.Fire(minify)
7
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = AlbertTokenizer lowerCamelCase = AlbertTokenizerFast lowerCamelCase = True lowerCamelCase = True lowerCamelCase = True def snake_case__ ( self : Dict )-> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ = AlbertTokenizer(lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : List[str],lowercase_ : str )-> Any: '''simple docstring''' A__ = 'this is a test' A__ = 'this is a test' return input_text, output_text def snake_case__ ( self : List[Any] )-> Optional[int]: '''simple docstring''' A__ = '<pad>' A__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ ) def snake_case__ ( self : List[str] )-> str: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],'<pad>' ) self.assertEqual(vocab_keys[1],'<unk>' ) self.assertEqual(vocab_keys[-1],'▁eloquent' ) self.assertEqual(len(lowercase_ ),3_0_0_0_0 ) def snake_case__ ( self : int )-> List[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size,3_0_0_0_0 ) def snake_case__ ( self : Union[str, Any] )-> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = 'I was born in 92000, and this is falsé.' A__ = tokenizer.tokenize(lowercase_ ) A__ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(lowercase_ ) A__ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) def snake_case__ ( self : int )-> int: '''simple docstring''' A__ = AlbertTokenizer(lowercase_,keep_accents=lowercase_ ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_,['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ),[4_8, 2_5, 2_1, 1_2_8_9] ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) A__ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual(lowercase_,[3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] ) A__ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'],) def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' A__ = AlbertTokenizer(lowercase_ ) A__ = tokenizer.encode('sequence builders' ) A__ = tokenizer.encode('multi-sequence build' ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase_ ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase_,lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' A__ = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_,model_name='albert-base-v2',revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e',)
7
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowercase_ = { "allenai/led-base-16384": 16384, } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = LEDTokenizer lowerCamelCase = ['input_ids', 'attention_mask'] def __init__( self : List[Any],lowercase_ : Dict=None,lowercase_ : Optional[int]=None,lowercase_ : Any=None,lowercase_ : Optional[int]="replace",lowercase_ : List[Any]="<s>",lowercase_ : int="</s>",lowercase_ : List[str]="</s>",lowercase_ : str="<s>",lowercase_ : str="<unk>",lowercase_ : Dict="<pad>",lowercase_ : str="<mask>",lowercase_ : List[Any]=False,lowercase_ : Tuple=True,**lowercase_ : Optional[Any],)-> str: '''simple docstring''' super().__init__( lowercase_,lowercase_,tokenizer_file=lowercase_,errors=lowercase_,bos_token=lowercase_,eos_token=lowercase_,sep_token=lowercase_,cls_token=lowercase_,unk_token=lowercase_,pad_token=lowercase_,mask_token=lowercase_,add_prefix_space=lowercase_,trim_offsets=lowercase_,**lowercase_,) A__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space',lowercase_ ) != add_prefix_space: A__ = getattr(lowercase_,pre_tok_state.pop('type' ) ) A__ = add_prefix_space A__ = pre_tok_class(**lowercase_ ) A__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A__ = 'post_processor' A__ = getattr(self.backend_tokenizer,lowercase_,lowercase_ ) if tokenizer_component_instance: A__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A__ = tuple(state['sep'] ) if "cls" in state: A__ = tuple(state['cls'] ) A__ = False if state.get('add_prefix_space',lowercase_ ) != add_prefix_space: A__ = add_prefix_space A__ = True if state.get('trim_offsets',lowercase_ ) != trim_offsets: A__ = trim_offsets A__ = True if changes_to_apply: A__ = getattr(lowercase_,state.pop('type' ) ) A__ = component_class(**lowercase_ ) setattr(self.backend_tokenizer,lowercase_,lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def snake_case__ ( self : Any )-> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def snake_case__ ( self : Tuple,lowercase_ : Tuple )-> Tuple: '''simple docstring''' A__ = AddedToken(lowercase_,lstrip=lowercase_,rstrip=lowercase_ ) if isinstance(lowercase_,lowercase_ ) else value A__ = value def snake_case__ ( self : Union[str, Any],*lowercase_ : Union[str, Any],**lowercase_ : List[Any] )-> BatchEncoding: '''simple docstring''' A__ = kwargs.get('is_split_into_words',lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_,**lowercase_ ) def snake_case__ ( self : List[Any],*lowercase_ : int,**lowercase_ : List[Any] )-> BatchEncoding: '''simple docstring''' A__ = kwargs.get('is_split_into_words',lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_,**lowercase_ ) def snake_case__ ( self : Union[str, Any],lowercase_ : str,lowercase_ : Optional[str] = None )-> Tuple[str]: '''simple docstring''' A__ = self._tokenizer.model.save(lowercase_,name=lowercase_ ) return tuple(lowercase_ ) def snake_case__ ( self : List[str],lowercase_ : str,lowercase_ : Any=None )-> Union[str, Any]: '''simple docstring''' A__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case__ ( self : Optional[Any],lowercase_ : List[int],lowercase_ : Optional[List[int]] = None )-> List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self : str,lowercase_ : Union[Dict[str, EncodedInput], BatchEncoding],lowercase_ : Optional[int] = None,lowercase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,lowercase_ : Optional[int] = None,lowercase_ : Optional[bool] = None,)-> dict: '''simple docstring''' A__ = super()._pad( encoded_inputs=lowercase_,max_length=lowercase_,padding_strategy=lowercase_,pad_to_multiple_of=lowercase_,return_attention_mask=lowercase_,) # Load from model defaults if return_attention_mask is None: A__ = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: A__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. A__ = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: A__ = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` A__ = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": A__ = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
7
from typing import Dict from .base import GenericTensor, Pipeline class A ( _UpperCAmelCase ): """simple docstring""" def snake_case__ ( self : int,lowercase_ : Dict=None,lowercase_ : Tuple=None,lowercase_ : List[Any]=None,**lowercase_ : Any )-> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: A__ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) A__ = truncation A__ = tokenize_kwargs A__ = {} if return_tensors is not None: A__ = return_tensors return preprocess_params, {}, postprocess_params def snake_case__ ( self : Dict,lowercase_ : List[Any],**lowercase_ : Tuple )-> Dict[str, GenericTensor]: '''simple docstring''' A__ = self.framework A__ = self.tokenizer(lowercase_,return_tensors=lowercase_,**lowercase_ ) return model_inputs def snake_case__ ( self : Tuple,lowercase_ : int )-> Optional[Any]: '''simple docstring''' A__ = self.model(**lowercase_ ) return model_outputs def snake_case__ ( self : Tuple,lowercase_ : Tuple,lowercase_ : List[str]=False )-> Any: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[Any],*lowercase_ : int,**lowercase_ : Optional[Any] )-> int: '''simple docstring''' return super().__call__(*lowercase_,**lowercase_ )
7
1
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: A__ = mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: A__ = max( mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - wt[i - 1] ) + val[i - 1] , ) A__ = val return f[i][j] def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: '''simple docstring''' A__ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: A__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: A__ = dp[i - 1][w_] return dp[n][w_], dp def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ) -> Union[str, Any]: '''simple docstring''' if not (isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) A__ = len(SCREAMING_SNAKE_CASE__ ) if num_items != len(SCREAMING_SNAKE_CASE__ ): A__ = ( 'The number of weights must be the same as the number of values.\n' f'But got {num_items} weights and {len(SCREAMING_SNAKE_CASE__ )} values' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): if not isinstance(wt[i] , SCREAMING_SNAKE_CASE__ ): A__ = ( 'All weights must be integers but got weight of ' f'type {type(wt[i] )} at index {i}' ) raise TypeError(SCREAMING_SNAKE_CASE__ ) A__ , A__ = knapsack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = set() _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return optimal_val, example_optional_set def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : set ) -> Optional[int]: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: optimal_set.add(SCREAMING_SNAKE_CASE__ ) _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , j - wt[i - 1] , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase_ = [3, 2, 4, 4] lowercase_ = [4, 3, 2, 3] lowercase_ = 4 lowercase_ = 6 lowercase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowercase_ , lowercase_ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowercase_ , lowercase_ = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
7
from timeit import timeit def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) A__ = 0 while number: number &= number - 1 result += 1 return result def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) A__ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _snake_case( ) -> None: '''simple docstring''' def do_benchmark(SCREAMING_SNAKE_CASE__ : int ) -> None: A__ = 'import __main__ as z' print(f'Benchmark when {number = }:' ) print(f'{get_set_bits_count_using_modulo_operator(SCREAMING_SNAKE_CASE__ ) = }' ) A__ = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=SCREAMING_SNAKE_CASE__ ) print(f'timeit() runs in {timing} seconds' ) print(f'{get_set_bits_count_using_brian_kernighans_algorithm(SCREAMING_SNAKE_CASE__ ) = }' ) A__ = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=SCREAMING_SNAKE_CASE__ , ) print(f'timeit() runs in {timing} seconds' ) for number in (25, 37, 58, 0): do_benchmark(SCREAMING_SNAKE_CASE__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
7
1
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" lowercase_ = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" lowercase_ = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): """simple docstring""" def snake_case__ ( self : Optional[int] )-> List[str]: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,homepage='http://www.cs.umd.edu/~snover/tercom/',inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'predictions': datasets.Value('string',id='sequence' ), 'references': datasets.Sequence(datasets.Value('string',id='sequence' ),id='references' ), } ),codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'],reference_urls=[ 'https://github.com/jhclark/tercom', ],) def snake_case__ ( self : int,lowercase_ : Any,lowercase_ : Optional[Any],lowercase_ : bool = False,lowercase_ : bool = False,lowercase_ : bool = False,lowercase_ : bool = False,)-> Optional[Any]: '''simple docstring''' A__ = len(references[0] ) if any(len(lowercase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) A__ = [[refs[i] for refs in references] for i in range(lowercase_ )] A__ = TER( normalized=lowercase_,no_punct=lowercase_,asian_support=lowercase_,case_sensitive=lowercase_,) A__ = sb_ter.corpus_score(lowercase_,lowercase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
7
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> int: '''simple docstring''' A__ = 384 A__ = 7 if "tiny" in model_name: A__ = 96 A__ = (2, 2, 6, 2) A__ = (3, 6, 12, 24) elif "small" in model_name: A__ = 96 A__ = (2, 2, 18, 2) A__ = (3, 6, 12, 24) elif "base" in model_name: A__ = 128 A__ = (2, 2, 18, 2) A__ = (4, 8, 16, 32) A__ = 12 A__ = 512 elif "large" in model_name: A__ = 192 A__ = (2, 2, 18, 2) A__ = (6, 12, 24, 48) A__ = 12 A__ = 768 # set label information A__ = 150 A__ = 'huggingface/label-files' A__ = 'ade20k-id2label.json' A__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) A__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} A__ = {v: k for k, v in idalabel.items()} A__ = SwinConfig( embed_dim=SCREAMING_SNAKE_CASE__ , depths=SCREAMING_SNAKE_CASE__ , num_heads=SCREAMING_SNAKE_CASE__ , window_size=SCREAMING_SNAKE_CASE__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) A__ = UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE__ , auxiliary_in_channels=SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , ) return config def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: '''simple docstring''' A__ = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]: '''simple docstring''' A__ = dct.pop(SCREAMING_SNAKE_CASE__ ) A__ = val def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: '''simple docstring''' A__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A__ = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' ) A__ = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:dim, :] A__ = in_proj_bias[: dim] A__ = in_proj_weight[ dim : dim * 2, : ] A__ = in_proj_bias[ dim : dim * 2 ] A__ = in_proj_weight[ -dim :, : ] A__ = in_proj_bias[-dim :] # fmt: on def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' A__ , A__ = x.shape A__ = x.reshape(SCREAMING_SNAKE_CASE__ , 4 , in_channel // 4 ) A__ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return x def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]: '''simple docstring''' A__ , A__ = x.shape A__ = x.reshape(SCREAMING_SNAKE_CASE__ , in_channel // 4 , 4 ) A__ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return x def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: '''simple docstring''' A__ = x.shape[0] A__ = x.reshape(4 , in_channel // 4 ) A__ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE__ ) return x def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: '''simple docstring''' A__ = x.shape[0] A__ = x.reshape(in_channel // 4 , 4 ) A__ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE__ ) return x def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } A__ = model_name_to_url[model_name] A__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='cpu' , file_name=SCREAMING_SNAKE_CASE__ )[ 'state_dict' ] for name, param in state_dict.items(): print(SCREAMING_SNAKE_CASE__ , param.shape ) A__ = get_upernet_config(SCREAMING_SNAKE_CASE__ ) A__ = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A__ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "bn" in key: A__ = key.replace('bn' , 'batch_norm' ) A__ = val # rename keys A__ = create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_q_k_v(SCREAMING_SNAKE_CASE__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: A__ = reverse_correct_unfold_reduction_order(SCREAMING_SNAKE_CASE__ ) if "norm" in key: A__ = reverse_correct_unfold_norm_order(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # verify on image A__ = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' A__ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('RGB' ) A__ = SegformerImageProcessor() A__ = processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values with torch.no_grad(): A__ = model(SCREAMING_SNAKE_CASE__ ) A__ = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": A__ = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": A__ = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": A__ = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": A__ = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowercase_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
7
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'biogpt' def __init__( self : str,lowercase_ : Union[str, Any]=4_2_3_8_4,lowercase_ : List[str]=1_0_2_4,lowercase_ : Dict=2_4,lowercase_ : str=1_6,lowercase_ : Dict=4_0_9_6,lowercase_ : Optional[Any]="gelu",lowercase_ : List[str]=0.1,lowercase_ : List[Any]=0.1,lowercase_ : List[str]=1_0_2_4,lowercase_ : Optional[Any]=0.02,lowercase_ : str=1E-12,lowercase_ : List[Any]=True,lowercase_ : Dict=True,lowercase_ : Union[str, Any]=0.0,lowercase_ : Optional[Any]=0.0,lowercase_ : Union[str, Any]=1,lowercase_ : List[Any]=0,lowercase_ : Dict=2,**lowercase_ : List[str],)-> Dict: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = scale_embedding A__ = use_cache A__ = layerdrop A__ = activation_dropout super().__init__(pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,**lowercase_ )
7
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowercase_ = "true" def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=82 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 ) -> Optional[Any]: '''simple docstring''' set_seed(42 ) A__ = RegressionModel() A__ = deepcopy(SCREAMING_SNAKE_CASE__ ) A__ = RegressionDataset(length=SCREAMING_SNAKE_CASE__ ) A__ = DataLoader(SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) model.to(accelerator.device ) A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model, ddp_model, dataloader def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> int: '''simple docstring''' A__ = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) A__ = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(SCREAMING_SNAKE_CASE__ : List[Any] ): A__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs with accelerator.main_process_first(): A__ = dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) A__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE__ : Dict ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=16 ) def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> str: '''simple docstring''' A__ = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE__ , split_batches=SCREAMING_SNAKE_CASE__ ) A__ = get_dataloader(SCREAMING_SNAKE_CASE__ , not dispatch_batches ) A__ = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ ) A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: '''simple docstring''' A__ = [] for batch in dataloader: A__ , A__ = batch.values() with torch.no_grad(): A__ = model(SCREAMING_SNAKE_CASE__ ) A__ , A__ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) A__ , A__ = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE__ ) targs.append(SCREAMING_SNAKE_CASE__ ) A__ , A__ = torch.cat(SCREAMING_SNAKE_CASE__ ), torch.cat(SCREAMING_SNAKE_CASE__ ) return logits, targs def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int=82 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=16 ) -> List[Any]: '''simple docstring''' A__ , A__ , A__ = get_basic_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ , A__ = generate_predictions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert ( len(SCREAMING_SNAKE_CASE__ ) == num_samples ), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE__ )}' def _snake_case( SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False ) -> str: '''simple docstring''' A__ = evaluate.load('glue' , 'mrpc' ) A__ , A__ = get_mrpc_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # First do baseline A__ , A__ , A__ = setup['no'] model.to(SCREAMING_SNAKE_CASE__ ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE__ ) with torch.inference_mode(): A__ = model(**SCREAMING_SNAKE_CASE__ ) A__ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=batch['labels'] ) A__ = metric.compute() # Then do distributed A__ , A__ , A__ = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): A__ = model(**SCREAMING_SNAKE_CASE__ ) A__ = outputs.logits.argmax(dim=-1 ) A__ = batch['labels'] A__ , A__ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ ) A__ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def _snake_case( ) -> Optional[Any]: '''simple docstring''' A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ ) if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(SCREAMING_SNAKE_CASE__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) A__ = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE__ , 512 ) accelerator.state._reset_state() def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
7
1
import argparse from collections import defaultdict def _snake_case( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ = f'{file}_{class_name}_{test_name}' done_test[_id] += 1 with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: A__ = f.readlines() A__ = f'class {class_name}(' A__ = f'{4 * " "}def {test_name}(' A__ = f'{8 * " "}{correct_line.split()[0]}' A__ = f'{16 * " "}{correct_line.split()[0]}' A__ = False A__ = False A__ = False A__ = False A__ = 0 A__ = 0 A__ = [] for line in lines: if line.startswith(SCREAMING_SNAKE_CASE__ ): A__ = True elif in_class and line.startswith(SCREAMING_SNAKE_CASE__ ): A__ = True elif in_class and in_func and (line.startswith(SCREAMING_SNAKE_CASE__ ) or line.startswith(SCREAMING_SNAKE_CASE__ )): A__ = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: A__ = True if in_class and in_func and in_line: if ")" not in line: continue else: A__ = True if in_class and in_func and in_line and insert_line: new_lines.append(f'{spaces * " "}{correct_line}' ) A__ = A__ = A__ = A__ = False else: new_lines.append(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: for line in new_lines: f.write(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any]=None ) -> Tuple: '''simple docstring''' if fail is not None: with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: A__ = {l.strip() for l in f.readlines()} else: A__ = None with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: A__ = f.readlines() A__ = defaultdict(SCREAMING_SNAKE_CASE__ ) for line in correct_lines: A__ , A__ , A__ , A__ = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) lowercase_ = parser.parse_args() main(args.correct_filename, args.fail_filename)
7
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ = 0 A__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None A__ = sorted_collection[point] if current_item == item: return point else: if point < left: A__ = left A__ = point elif point > right: A__ = right A__ = point else: if item < current_item: A__ = point - 1 else: A__ = point + 1 return None def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif point > right: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point - 1 ) else: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point + 1 , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: '''simple docstring''' if collection != sorted(SCREAMING_SNAKE_CASE__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys lowercase_ = 0 if debug == 1: lowercase_ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") lowercase_ = 67 lowercase_ = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
7
1
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class A ( _UpperCAmelCase ): """simple docstring""" def snake_case__ ( self : Optional[Any] )-> List[Any]: '''simple docstring''' A__ = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type,pa.intaa() ) def snake_case__ ( self : Tuple )-> Optional[Any]: '''simple docstring''' with self.assertRaises(lowercase_ ): A__ = pa.array(TypedSequence([1, 2, 3] ),type=pa.intaa() ) def snake_case__ ( self : Union[str, Any] )-> List[Any]: '''simple docstring''' with self.assertRaises(lowercase_ ): A__ = pa.array(TypedSequence([1, 2, 3],try_type=Value('bool' ),type=Value('int64' ) ) ) def snake_case__ ( self : Union[str, Any] )-> Dict: '''simple docstring''' A__ = pa.array(TypedSequence([1, 2, 3],type=Value('int32' ) ) ) self.assertEqual(arr.type,pa.intaa() ) def snake_case__ ( self : List[str] )-> Dict: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): A__ = pa.array(TypedSequence(['foo', 'bar'],type=Value('int64' ) ) ) def snake_case__ ( self : Optional[int] )-> Union[str, Any]: '''simple docstring''' A__ = pa.array(TypedSequence([1, 2, 3],try_type=Value('int32' ) ) ) self.assertEqual(arr.type,pa.intaa() ) def snake_case__ ( self : Tuple )-> Union[str, Any]: '''simple docstring''' A__ = pa.array(TypedSequence(['foo', 'bar'],try_type=Value('int64' ) ) ) self.assertEqual(arr.type,pa.string() ) def snake_case__ ( self : Optional[int] )-> Tuple: '''simple docstring''' A__ = pa.array(TypedSequence([[[1, 2, 3]]],type=ArrayaD((1, 3),'int64' ) ) ) self.assertEqual(arr.type,ArrayaDExtensionType((1, 3),'int64' ) ) def snake_case__ ( self : Optional[Any] )-> Optional[int]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): A__ = pa.array(TypedSequence(['foo', 'bar'],type=ArrayaD((1, 3),'int64' ) ) ) def snake_case__ ( self : Optional[int] )-> List[str]: '''simple docstring''' A__ = pa.array(TypedSequence([[[1, 2, 3]]],try_type=ArrayaD((1, 3),'int64' ) ) ) self.assertEqual(arr.type,ArrayaDExtensionType((1, 3),'int64' ) ) def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' A__ = pa.array(TypedSequence(['foo', 'bar'],try_type=ArrayaD((1, 3),'int64' ) ) ) self.assertEqual(arr.type,pa.string() ) @require_pil def snake_case__ ( self : int )-> Union[str, Any]: '''simple docstring''' import PIL.Image A__ = PIL.Image.fromarray(np.arange(1_0,dtype=np.uinta ).reshape(2,5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects',side_effect=lowercase_ ) as mock_cast_to_python_objects: A__ = pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image],type=Image() ) ) A__ , A__ = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting',lowercase_ ) self.assertFalse(kwargs['optimize_list_casting'] ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: '''simple docstring''' A__ = pa.BufferReader(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , pa.Buffer ) else pa.memory_map(SCREAMING_SNAKE_CASE__ ) A__ = pa.ipc.open_stream(SCREAMING_SNAKE_CASE__ ) A__ = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: '''simple docstring''' A__ = pa.BufferOutputStream() A__ = pa.schema(SCREAMING_SNAKE_CASE__ ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ , schema=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A__ = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _snake_case( ) -> List[Any]: '''simple docstring''' A__ = pa.BufferOutputStream() A__ = Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata A__ = pa.BufferReader(output.getvalue() ) A__ = pa.ipc.open_stream(SCREAMING_SNAKE_CASE__ ) A__ = f.read_all() A__ = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> str: '''simple docstring''' A__ = pa.BufferOutputStream() with ArrowWriter( stream=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ , hash_salt='split_name' , check_duplicates=SCREAMING_SNAKE_CASE__ , ) as writer: with pytest.raises(SCREAMING_SNAKE_CASE__ ): writer.write({'col_1': 'foo', 'col_2': 1} , key=[1, 2] ) A__ , A__ = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: '''simple docstring''' A__ = pa.BufferOutputStream() with ArrowWriter( stream=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ , hash_salt='split_name' , check_duplicates=SCREAMING_SNAKE_CASE__ , ) as writer: with pytest.raises(SCREAMING_SNAKE_CASE__ ): writer.write({'col_1': 'foo', 'col_2': 1} , key=10 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=10 ) A__ , A__ = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]: '''simple docstring''' A__ = pa.BufferOutputStream() with ArrowWriter( stream=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ , hash_salt='split_name' , check_duplicates=SCREAMING_SNAKE_CASE__ , ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} , key=1 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=2 ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> Tuple: '''simple docstring''' A__ = pa.BufferOutputStream() A__ = pa.schema(SCREAMING_SNAKE_CASE__ ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ , schema=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A__ = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ = pa.BufferOutputStream() A__ = pa.schema(SCREAMING_SNAKE_CASE__ ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ , schema=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A__ = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: '''simple docstring''' A__ = pa.BufferOutputStream() A__ = pa.schema(SCREAMING_SNAKE_CASE__ ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ , schema=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A__ = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _snake_case( ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: A__ = {'col_1': pa.string(), 'col_2': pa.intaa()} A__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'test.arrow' ) with ArrowWriter(path=SCREAMING_SNAKE_CASE__ , schema=pa.schema(SCREAMING_SNAKE_CASE__ ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE__ , metadata=writer._schema.metadata ) _check_output(SCREAMING_SNAKE_CASE__ , 1 ) def _snake_case( SCREAMING_SNAKE_CASE__ : Dict ) -> Any: '''simple docstring''' if pa.types.is_list(SCREAMING_SNAKE_CASE__ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> Dict: '''simple docstring''' if isinstance(lst[0] , SCREAMING_SNAKE_CASE__ ): change_first_primitive_element_in_list(lst[0] , SCREAMING_SNAKE_CASE__ ) else: A__ = value @pytest.mark.parametrize('optimized_int_type, expected_dtype' , [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: '''simple docstring''' A__ = pa.array(TypedSequence(SCREAMING_SNAKE_CASE__ , optimized_int_type=SCREAMING_SNAKE_CASE__ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype' , [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ] , ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A__ = pa.array(OptimizedTypedSequence(SCREAMING_SNAKE_CASE__ , col=SCREAMING_SNAKE_CASE__ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications A__ = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) A__ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = pa.array(OptimizedTypedSequence(SCREAMING_SNAKE_CASE__ , col=SCREAMING_SNAKE_CASE__ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception' , [False, True] ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: '''simple docstring''' A__ = str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=SCREAMING_SNAKE_CASE__ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> Dict: '''simple docstring''' A__ = 'mock://dataset-train.arrow' with ArrowWriter(path=SCREAMING_SNAKE_CASE__ , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(SCREAMING_SNAKE_CASE__ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> int: '''simple docstring''' A__ = pa.BufferOutputStream() with ParquetWriter(stream=SCREAMING_SNAKE_CASE__ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 A__ = pa.BufferReader(output.getvalue() ) A__ = pq.read_table(SCREAMING_SNAKE_CASE__ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files' , [False, True] ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: '''simple docstring''' import PIL.Image A__ = str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(SCREAMING_SNAKE_CASE__ , format='png' ) A__ = pa.BufferOutputStream() with ParquetWriter( stream=SCREAMING_SNAKE_CASE__ , features=Features({'image': Image()} ) , embed_local_files=SCREAMING_SNAKE_CASE__ ) as writer: writer.write({'image': image_path} ) writer.finalize() A__ = pa.BufferReader(output.getvalue() ) A__ = pq.read_table(SCREAMING_SNAKE_CASE__ ) A__ = pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'] , SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _snake_case( ) -> Union[str, Any]: '''simple docstring''' A__ = pa.schema([pa.field('col_1' , pa.string() , nullable=SCREAMING_SNAKE_CASE__ )] ) A__ = pa.BufferOutputStream() with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ ) as writer: writer._build_writer(inferred_schema=SCREAMING_SNAKE_CASE__ ) assert writer._schema == pa.schema([pa.field('col_1' , pa.string() )] )
7
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: '''simple docstring''' return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def _snake_case( ) -> Dict: '''simple docstring''' A__ = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=SCREAMING_SNAKE_CASE__ ) A__ = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) TestCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) # Parse args A__ , A__ = parser.parse_known_args() if not hasattr(SCREAMING_SNAKE_CASE__ , 'func' ): parser.print_help() exit(1 ) A__ = parse_unknown_args(SCREAMING_SNAKE_CASE__ ) # Run A__ = args.func(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) service.run() if __name__ == "__main__": main()
7
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Dict )-> str: '''simple docstring''' A__ = torch.nn.Linear(1_0,1_0 ) A__ = torch.optim.SGD(model.parameters(),0.1 ) A__ = Accelerator() A__ = accelerator.prepare(lowercase_ ) try: pickle.loads(pickle.dumps(lowercase_ ) ) except Exception as e: self.fail(F'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
7
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : """simple docstring""" def __init__( self : Union[str, Any],lowercase_ : Any,lowercase_ : Union[str, Any]=1_3,lowercase_ : Tuple=3_0,lowercase_ : List[Any]=2,lowercase_ : Optional[int]=3,lowercase_ : Union[str, Any]=True,lowercase_ : Tuple=True,lowercase_ : Any=3_2,lowercase_ : List[str]=2,lowercase_ : Optional[int]=4,lowercase_ : Union[str, Any]=3_7,lowercase_ : Tuple="gelu",lowercase_ : str=0.1,lowercase_ : Tuple=0.1,lowercase_ : Union[str, Any]=1_0,lowercase_ : int=0.02,lowercase_ : List[Any]=3,lowercase_ : Any=None,)-> Dict: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A__ = (image_size // patch_size) ** 2 A__ = num_patches + 1 def snake_case__ ( self : int )-> List[str]: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Tuple )-> List[Any]: '''simple docstring''' return ViTConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=lowercase_,initializer_range=self.initializer_range,) def snake_case__ ( self : List[str],lowercase_ : int,lowercase_ : Union[str, Any],lowercase_ : Tuple )-> Optional[Any]: '''simple docstring''' A__ = TFViTModel(config=lowercase_ ) A__ = model(lowercase_,training=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. A__ = self.image_size // 2 A__ = pixel_values[:, :, :image_size, :image_size] A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ ) A__ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, seq_length, self.hidden_size) ) def snake_case__ ( self : List[Any],lowercase_ : List[Any],lowercase_ : List[Any],lowercase_ : List[Any] )-> Dict: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFViTForImageClassification(lowercase_ ) A__ = model(lowercase_,labels=lowercase_,training=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. A__ = self.image_size // 2 A__ = pixel_values[:, :, :image_size, :image_size] A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images A__ = 1 A__ = TFViTForImageClassification(lowercase_ ) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : int )-> List[Any]: '''simple docstring''' A__ = TFViTModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,has_text_modality=lowercase_,hidden_size=3_7 ) def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def snake_case__ ( self : Optional[Any] )-> str: '''simple docstring''' pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def snake_case__ ( self : Any )-> int: '''simple docstring''' pass def snake_case__ ( self : str )-> Dict: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings(),(tf.keras.layers.Layer) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_,tf.keras.layers.Layer ) ) def snake_case__ ( self : int )-> List[str]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) A__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1],lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : Optional[Any] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' A__ = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(lowercase_ ) def _snake_case( ) -> str: '''simple docstring''' A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self : List[Any] )-> str: '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def snake_case__ ( self : Any )-> Dict: '''simple docstring''' A__ = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=lowercase_,return_tensors='tf' ) # forward pass A__ = model(**lowercase_ ) # verify the logits A__ = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,lowercase_ ) A__ = tf.constant([-0.2_744, 0.8_215, -0.0_836] ) tf.debugging.assert_near(outputs.logits[0, :3],lowercase_,atol=1E-4 )
7
1