code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _A : Optional[int] =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> List[Any]: def run_func(UpperCamelCase ): @wraps(UpperCamelCase ) def run_in_eager_mode(*UpperCamelCase , **UpperCamelCase ): return func(*UpperCamelCase , **UpperCamelCase ) @wraps(UpperCamelCase ) @tf.function(experimental_compile=UpperCamelCase ) def run_in_graph_mode(*UpperCamelCase , **UpperCamelCase ): return func(*UpperCamelCase , **UpperCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> ["tf.Tensor"]: lowerCamelCase__ : str = random.Random() lowerCamelCase__ : Any = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(UpperCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _lowercase ( _lowercase ): a = 42 a = 42 a = "TensorFlow" @property def lowerCamelCase_ ( self: Dict ): return tf.__version__ def lowerCamelCase_ ( self: str , UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: int ): # initialize GPU on separate process lowerCamelCase__ : str = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowerCamelCase__ : Tuple = self._prepare_inference_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_speed(_inference ) def lowerCamelCase_ ( self: Any , UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: int ): lowerCamelCase__ : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowerCamelCase__ : Dict = self._prepare_train_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_speed(_train ) def lowerCamelCase_ ( self: Dict , UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCamelCase__ ) lowerCamelCase__ : int = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowerCamelCase__ : Tuple = self._prepare_inference_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_memory(_inference ) def lowerCamelCase_ ( self: int , UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCamelCase__ ) lowerCamelCase__ : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowerCamelCase__ : List[Any] = self._prepare_train_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_memory(_train ) def lowerCamelCase_ ( self: str , UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: int ): lowerCamelCase__ : int = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) lowerCamelCase__ : List[str] = ( hasattr(UpperCamelCase__ , """architectures""" ) and isinstance(config.architectures , UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ : Optional[int] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ : Optional[Any] = __import__("""transformers""" , fromlist=[model_class] ) lowerCamelCase__ : List[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: lowerCamelCase__ : Union[str, Any] = TF_MODEL_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently lowerCamelCase__ : int = config.vocab_size if hasattr(UpperCamelCase__ , """vocab_size""" ) else config.encoder.vocab_size lowerCamelCase__ : int = random_input_ids(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , training=UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(UpperCamelCase__ , training=UpperCamelCase__ ) lowerCamelCase__ : Any = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: int ): lowerCamelCase__ : Tuple = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) lowerCamelCase__ : Any = ( hasattr(UpperCamelCase__ , """architectures""" ) and isinstance(config.architectures , UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ : Tuple = __import__("""transformers""" , fromlist=[model_class] ) lowerCamelCase__ : Optional[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : str = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: lowerCamelCase__ : List[str] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently lowerCamelCase__ : Tuple = config.vocab_size if hasattr(UpperCamelCase__ , """vocab_size""" ) else config.encoder.vocab_size lowerCamelCase__ : int = random_input_ids(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCamelCase__ : int = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ )[0] lowerCamelCase__ : Any = tf.gradients(UpperCamelCase__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCamelCase__ : Dict = model(UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ )[0] lowerCamelCase__ : Union[str, Any] = tf.gradients(UpperCamelCase__ , model.trainable_variables ) return gradients lowerCamelCase__ : List[Any] = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: int ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(UpperCamelCase__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCamelCase__ : Tuple = timeit.repeat( UpperCamelCase__ , repeat=self.args.repeat , number=10 , ) return min(UpperCamelCase__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: Callable[[], None] ): logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) lowerCamelCase__ : List[Any] = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) lowerCamelCase__ : str = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() lowerCamelCase__ : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCamelCase__ : int = nvml.nvmlDeviceGetMemoryInfo(UpperCamelCase__ ) lowerCamelCase__ : int = meminfo.used lowerCamelCase__ : int = Memory(UpperCamelCase__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) lowerCamelCase__ : List[Any] = None else: lowerCamelCase__ : List[str] = measure_peak_memory_cpu(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = Memory(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCamelCase__ : Dict = stop_memory_tracing(UpperCamelCase__ ) if memory is None: lowerCamelCase__ : Union[str, Any] = summary.total else: lowerCamelCase__ : List[str] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
41
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path A : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) A : List[str] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} A : Optional[int] = 'zero2' A : str = 'zero3' A : Tuple = [ZEROa, ZEROa] def __lowerCAmelCase ( a__ , a__ , a__ ) -> Tuple: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __a = parameterized.to_safe_name('''_'''.join(str(a__ ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test A : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A( a ): @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Any: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> int: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> str: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = True , _snake_case = True , _snake_case = True , ) -> Any: '''simple docstring''' __a = models[model] __a = self.run_trainer( stage=_snake_case , model_name=_snake_case , eval_steps=_snake_case , num_train_epochs=1 , distributed=_snake_case , fpaa=_snake_case , ) self.do_checks(_snake_case ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = 1 , _snake_case = True , _snake_case = True , ) -> Union[str, Any]: '''simple docstring''' __a = self.get_auto_remove_tmp_dir('''./xxx''' , after=_snake_case ) __a = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __a = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __a = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __a = self.get_launcher(_snake_case ) __a = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case=False ) -> List[str]: '''simple docstring''' __a = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
6
0
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
42
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A( a , a , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = '''sample''' snake_case_ = 1E-2 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = 4 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes ).to(_snake_case ) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __a = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a , __a = self.prepare_init_args_and_inputs_for_common() __a = self.model_class(**_snake_case ) model.to(_snake_case ) assert not model.is_gradient_checkpointing and model.training __a = model(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __a = torch.randn_like(_snake_case ) __a = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __a = self.model_class(**_snake_case ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_snake_case ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __a = model_a(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __a = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __a = dict(model.named_parameters() ) __a = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a , __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_snake_case ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __a = model.to(_snake_case ) model.eval() if torch_device == "mps": __a = torch.manual_seed(0 ) else: __a = torch.Generator(device=_snake_case ).manual_seed(0 ) __a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __a = image.to(_snake_case ) with torch.no_grad(): __a = model(_snake_case , sample_posterior=_snake_case , generator=_snake_case ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __a = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": __a = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __a = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1E-2 ) ) @slow class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_snake_case ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , _snake_case=(4, 3, 512, 512) , _snake_case=False ) -> Any: '''simple docstring''' __a = torch.floataa if fpaa else torch.floataa __a = torch.from_numpy(load_hf_numpy(self.get_file_format(_snake_case , _snake_case ) ) ).to(_snake_case ).to(_snake_case ) return image def SCREAMING_SNAKE_CASE_ ( self , _snake_case="CompVis/stable-diffusion-v1-4" , _snake_case=False ) -> Optional[Any]: '''simple docstring''' __a = '''fp16''' if fpaa else None __a = torch.floataa if fpaa else torch.floataa __a = AutoencoderKL.from_pretrained( _snake_case , subfolder='''vae''' , torch_dtype=_snake_case , revision=_snake_case , ) model.to(_snake_case ).eval() return model def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> Tuple: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(_snake_case ) return torch.Generator(device=_snake_case ).manual_seed(_snake_case ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , fpaa=_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) with torch.no_grad(): __a = model(_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model.encode(_snake_case ).latent_dist __a = dist.sample(generator=_snake_case ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __a = sample[0, -1, -3:, -3:].flatten().cpu() __a = torch.tensor(_snake_case ) __a = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(_snake_case , _snake_case , atol=_snake_case )
6
0
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' _validate_point(SCREAMING_SNAKE_CASE ) _validate_point(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if point: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for item in point: if not isinstance(SCREAMING_SNAKE_CASE , (int, float) ): __UpperCamelCase :Optional[int] = ( '''Expected a list of numbers as input, found ''' f"""{type(SCREAMING_SNAKE_CASE ).__name__}""" ) raise TypeError(SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :List[str] = f"""Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE ).__name__}""" raise TypeError(SCREAMING_SNAKE_CASE ) else: raise ValueError('''Missing an input''' ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' _validate_point(SCREAMING_SNAKE_CASE ) _validate_point(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A : str = logging.get_logger(__name__) class __A( a ): def __init__( self , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = [] __a = [] __a = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __a = parent.find_all(child.name , recursive=_snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_snake_case ) else next(i for i, s in enumerate(_snake_case , 1 ) if s is child ) ) __a = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = BeautifulSoup(_snake_case , '''html.parser''' ) __a = [] __a = [] __a = [] for element in html_code.descendants: if type(_snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __a = html.unescape(_snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(_snake_case ) __a , __a = self.xpath_soup(_snake_case ) stringaxtag_seq.append(_snake_case ) stringaxsubs_seq.append(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = '''''' for tagname, subs in zip(_snake_case , _snake_case ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , _snake_case ) -> BatchFeature: '''simple docstring''' __a = False # Check that strings has a valid type if isinstance(_snake_case , _snake_case ): __a = True elif isinstance(_snake_case , (list, tuple) ): if len(_snake_case ) == 0 or isinstance(html_strings[0] , _snake_case ): __a = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_snake_case )}.""" ) __a = bool(isinstance(_snake_case , (list, tuple) ) and (isinstance(html_strings[0] , _snake_case )) ) if not is_batched: __a = [html_strings] # Get nodes + xpaths __a = [] __a = [] for html_string in html_strings: __a , __a , __a = self.get_three_from_single(_snake_case ) nodes.append(_snake_case ) __a = [] for node, tag_list, sub_list in zip(_snake_case , _snake_case , _snake_case ): __a = self.construct_xpath(_snake_case , _snake_case ) xpath_strings.append(_snake_case ) xpaths.append(_snake_case ) # return as Dict __a = {'''nodes''': nodes, '''xpaths''': xpaths} __a = BatchFeature(data=_snake_case , tensor_type=_snake_case ) return encoded_inputs
6
0
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _a : str = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : str ,_lowerCamelCase : Dict ,_lowerCamelCase : str=None ) -> List[str]: # Initialise PyTorch model _lowerCAmelCase : str = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : int = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : str = finetuning_task _lowerCAmelCase : Optional[int] = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Any = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Optional[int] = finetuning_task _lowerCAmelCase : List[str] = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : List[str] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : str = os.path.join(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Any = os.path.join(_lowerCamelCase ,_lowerCamelCase ) print(f"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() ,_lowerCamelCase ) print(f"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _a : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) _a : List[Any] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
44
def __lowerCAmelCase ( a__ , a__ ) -> float: def get_matched_characters(a__ , a__ ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a__ ) __a = F"""{_stra[0:_stra.index(a__ )]} {_stra[_stra.index(a__ ) + 1:]}""" return "".join(a__ ) # matching characters __a = get_matched_characters(a__ , a__ ) __a = get_matched_characters(a__ , a__ ) __a = len(a__ ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(a__ , a__ ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(a__ ) + match_count / len(a__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
6
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowercase_ = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowercase_ = "UperNetConfig" class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a , _a , _a = 0 , _a = False , _a = 1 , ): super().__init__() __a = nn.Convad( in_channels=_a , out_channels=_a , kernel_size=_a , padding=_a , bias=_a , dilation=_a , ) __a = nn.BatchNormad(_a ) __a = nn.ReLU() def __UpperCAmelCase ( self , _a ): __a = self.conv(_a ) __a = self.batch_norm(_a ) __a = self.activation(_a ) return output class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a , _a ): super().__init__() __a = [ nn.AdaptiveAvgPoolad(_a ), UperNetConvModule(_a , _a , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_a ) , _a ) def __UpperCAmelCase ( self , _a ): __a = input for layer in self.layers: __a = layer(_a ) return hidden_state class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a , _a , _a ): super().__init__() __a = pool_scales __a = align_corners __a = in_channels __a = channels __a = [] for i, pool_scale in enumerate(_a ): __a = UperNetPyramidPoolingBlock(pool_scale=_a , in_channels=_a , channels=_a ) self.blocks.append(_a ) self.add_module(str(_a ) , _a ) def __UpperCAmelCase ( self , _a ): __a = [] for ppm in self.blocks: __a = ppm(_a ) __a = nn.functional.interpolate( _a , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(_a ) return ppm_outs class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a ): super().__init__() __a = config __a = config.pool_scales # e.g. (1, 2, 3, 6) __a = in_channels __a = config.hidden_size __a = False __a = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module __a = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) __a = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module __a = nn.ModuleList() __a = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer __a = UperNetConvModule(_a , self.channels , kernel_size=1 ) __a = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_a ) self.fpn_convs.append(_a ) __a = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def __UpperCAmelCase ( self ): self.apply(self._init_weights ) def __UpperCAmelCase ( self , _a ): if isinstance(_a , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __UpperCAmelCase ( self , _a ): __a = inputs[-1] __a = [x] psp_outs.extend(self.psp_modules(_a ) ) __a = torch.cat(_a , dim=1 ) __a = self.bottleneck(_a ) return output def __UpperCAmelCase ( self , _a ): # build laterals __a = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_a ) ) # build top-down path __a = len(_a ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __a = laterals[i - 1].shape[2:] __a = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_a , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs __a = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __a = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) __a = torch.cat(_a , dim=1 ) __a = self.fpn_bottleneck(_a ) __a = self.classifier(_a ) return output class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a = 2 , _a = 3 , _a = 1 ): super().__init__() __a = config __a = config.auxiliary_in_channels __a = config.auxiliary_channels __a = config.auxiliary_num_convs __a = config.auxiliary_concat_input __a = in_index __a = (kernel_size // 2) * dilation __a = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_a , padding=_a , dilation=_a ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_a , padding=_a , dilation=_a ) ) if self.num_convs == 0: __a = nn.Identity() else: __a = nn.Sequential(*_a ) if self.concat_input: __a = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_a , padding=kernel_size // 2 ) __a = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def __UpperCAmelCase ( self ): self.apply(self._init_weights ) def __UpperCAmelCase ( self , _a ): if isinstance(_a , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __UpperCAmelCase ( self , _a ): # just take the relevant feature maps __a = encoder_hidden_states[self.in_index] __a = self.convs(_a ) if self.concat_input: __a = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) __a = self.classifier(_a ) return output class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = UperNetConfig __UpperCAmelCase : Union[str, Any] = 'pixel_values' __UpperCAmelCase : Dict = True def __UpperCAmelCase ( self , _a ): if isinstance(_a , _a ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def __UpperCAmelCase ( self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def __UpperCAmelCase ( self , _a , _a=False ): if isinstance(_a , _a ): __a = value lowercase_ = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" lowercase_ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' , __SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a ): super().__init__(_a ) __a = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) __a = UperNetHead(_a , in_channels=self.backbone.channels ) __a = UperNetFCNHead(_a ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_a , config_class=_CONFIG_FOR_DOC ) def __UpperCAmelCase ( self , _a = None , _a = None , _a = None , _a = None , _a = None , ): __a = return_dict if return_dict is not None else self.config.use_return_dict __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = output_attentions if output_attentions is not None else self.config.output_attentions __a = self.backbone.forward_with_filtered_kwargs( _a , output_hidden_states=_a , output_attentions=_a ) __a = outputs.feature_maps __a = self.decode_head(_a ) __a = nn.functional.interpolate(_a , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_a ) __a = None if self.auxiliary_head is not None: __a = self.auxiliary_head(_a ) __a = nn.functional.interpolate( _a , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_a ) __a = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss __a = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) __a = loss_fct(_a , _a ) __a = loss_fct(_a , _a ) __a = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: __a = (logits,) + outputs[1:] else: __a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_a , logits=_a , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
45
def __lowerCAmelCase ( a__ ) -> str: __a = [] __a = set({'''(''', '''[''', '''{'''} ) __a = set({''')''', ''']''', '''}'''} ) __a = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(a__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(a__ ) == 0 or (len(a__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a__ ) == 0 def __lowerCAmelCase ( ) -> Dict: __a = input('''Enter sequence of brackets: ''' ) if is_balanced(a__ ): print(a__ , '''is balanced''' ) else: print(a__ , '''is not balanced''' ) if __name__ == "__main__": main()
6
0
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename SCREAMING_SNAKE_CASE__ = "http://www.mocksite.com/file1.txt" SCREAMING_SNAKE_CASE__ = "\"text\": [\"foo\", \"foo\"]" SCREAMING_SNAKE_CASE__ = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowercase : _SCREAMING_SNAKE_CASE = 200 _SCREAMING_SNAKE_CASE = {'Content-Length': '100'} _SCREAMING_SNAKE_CASE = {} def _snake_case ( self , **lowercase ) -> List[str]: return [bytes(lowercase , """utf-8""" )] def UpperCAmelCase__ ( *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' import requests monkeypatch.setattr(SCREAMING_SNAKE_CASE , """request""" , SCREAMING_SNAKE_CASE ) lowerCAmelCase = URL if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = url elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = [url] elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = {"""train""": url} lowerCAmelCase = """dummy""" lowerCAmelCase = """downloads""" lowerCAmelCase = tmp_path lowerCAmelCase = DownloadConfig( cache_dir=os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , use_etag=SCREAMING_SNAKE_CASE , ) lowerCAmelCase = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE , download_config=SCREAMING_SNAKE_CASE ) lowerCAmelCase = dl_manager.download(SCREAMING_SNAKE_CASE ) lowerCAmelCase = urls for downloaded_paths in [downloaded_paths]: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = [downloaded_paths] lowerCAmelCase = [urls] elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() lowerCAmelCase = downloaded_paths.values() lowerCAmelCase = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowerCAmelCase = Path(SCREAMING_SNAKE_CASE ) lowerCAmelCase = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowerCAmelCase = downloaded_path.read_text() assert content == CONTENT lowerCAmelCase = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() lowerCAmelCase = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase = str(SCREAMING_SNAKE_CASE ) if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = filename elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = [filename] elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = {"""train""": filename} lowerCAmelCase = """dummy""" lowerCAmelCase = xz_file.parent lowerCAmelCase = """extracted""" lowerCAmelCase = DownloadConfig( cache_dir=SCREAMING_SNAKE_CASE , use_etag=SCREAMING_SNAKE_CASE , ) lowerCAmelCase = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE , download_config=SCREAMING_SNAKE_CASE ) lowerCAmelCase = dl_manager.extract(SCREAMING_SNAKE_CASE ) lowerCAmelCase = paths for extracted_paths in [extracted_paths]: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = [extracted_paths] lowerCAmelCase = [paths] elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() lowerCAmelCase = extracted_paths.values() lowerCAmelCase = paths.values() assert extracted_paths for extracted_path, input_path in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] lowerCAmelCase = Path(SCREAMING_SNAKE_CASE ) lowerCAmelCase = extracted_path.parts assert parts[-1] == hash_url_to_filename(SCREAMING_SNAKE_CASE , etag=SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowerCAmelCase = extracted_path.read_text() lowerCAmelCase = text_file.read_text() assert extracted_file_content == expected_file_content def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(SCREAMING_SNAKE_CASE , start=1 ): lowerCAmelCase = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase = request.getfixturevalue(SCREAMING_SNAKE_CASE ) lowerCAmelCase = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase = request.getfixturevalue(SCREAMING_SNAKE_CASE ) lowerCAmelCase = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
46
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : str = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : str , _a : Any , _a : List[str]=13 , _a : Union[str, Any]=7 , _a : List[Any]=True , _a : Optional[int]=True , _a : Tuple=True , _a : Optional[Any]=True , _a : Optional[int]=99 , _a : str=24 , _a : str=2 , _a : Union[str, Any]=6 , _a : Union[str, Any]=37 , _a : Any="gelu" , _a : Any=0.1 , _a : List[Any]=0.1 , _a : List[str]=512 , _a : Tuple=16 , _a : List[str]=2 , _a : int=0.02 , _a : Optional[int]=3 , _a : Any=None , _a : int=1000 , ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =seq_length _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_input_mask _SCREAMING_SNAKE_CASE =use_token_type_ids _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =type_vocab_size _SCREAMING_SNAKE_CASE =type_sequence_label_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =scope _SCREAMING_SNAKE_CASE =range_bbox def A ( self : int ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _SCREAMING_SNAKE_CASE =bbox[i, j, 3] _SCREAMING_SNAKE_CASE =bbox[i, j, 1] _SCREAMING_SNAKE_CASE =t if bbox[i, j, 2] < bbox[i, j, 0]: _SCREAMING_SNAKE_CASE =bbox[i, j, 2] _SCREAMING_SNAKE_CASE =bbox[i, j, 0] _SCREAMING_SNAKE_CASE =t _SCREAMING_SNAKE_CASE =None if self.use_input_mask: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _SCREAMING_SNAKE_CASE =None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def A ( self : int , _a : Any , _a : str , _a : Union[str, Any] , _a : Any , _a : Tuple , _a : List[Any] , _a : Dict , ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =LiltModel(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , bbox=_a , attention_mask=_a , token_type_ids=_a ) _SCREAMING_SNAKE_CASE =model(_a , bbox=_a , token_type_ids=_a ) _SCREAMING_SNAKE_CASE =model(_a , bbox=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : Optional[int] , _a : Tuple , _a : List[str] , _a : Optional[Any] , _a : Any , _a : Tuple , _a : Any , _a : Optional[int] , ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =LiltForTokenClassification(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model( _a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Tuple , _a : str , _a : List[str] , _a : Optional[Any] , _a : Union[str, Any] , _a : Dict , _a : List[Any] , _a : str , ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =LiltForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model( _a , bbox=_a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Dict ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) =config_and_inputs _SCREAMING_SNAKE_CASE ={ 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class A__ ( A__ , A__ , A__ , unittest.TestCase ): A__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A__ = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) A__ = False A__ = False def A ( self : Tuple , _a : Union[str, Any] , _a : int , _a : List[Any] , _a : Optional[int] , _a : int ) -> Optional[Any]: '''simple docstring''' return True def A ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =LiltModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , hidden_size=37 ) def A ( self : Dict ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE =type self.model_tester.create_and_check_model(*_a ) def A ( self : int ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def A ( self : List[Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @slow def A ( self : Optional[int] ) -> Dict: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =LiltModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch @slow class A__ ( unittest.TestCase ): def A ( self : Dict ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(_a ) _SCREAMING_SNAKE_CASE =torch.tensor([[1, 2]] , device=_a ) _SCREAMING_SNAKE_CASE =torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_a ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(input_ids=_a , bbox=_a ) _SCREAMING_SNAKE_CASE =torch.Size([1, 2, 768] ) _SCREAMING_SNAKE_CASE =torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=_a , ) self.assertTrue(outputs.last_hidden_state.shape , _a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _a , atol=1e-3 ) )
47
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Dict = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available SCREAMING_SNAKE_CASE__ : Dict = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys SCREAMING_SNAKE_CASE__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def __snake_case ( _UpperCAmelCase ): if isinstance(_UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class _A : def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' pass def _lowerCamelCase ( self : Tuple): '''simple docstring''' pass def _lowerCamelCase ( self : Dict): '''simple docstring''' pass def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float): '''simple docstring''' __a = np.abs((a - b)).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , F'Difference between torch and flax is {diff} (>= {tol}).') def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim)) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {'''vision_model''': vision_model, '''text_model''': text_model} __a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {'''vision_model''': vision_model, '''text_model''': text_model} __a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE) __a = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = after_output[0] __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-3) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any]=None , **__SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {'''vision_model''': vision_model, '''text_model''': text_model} __a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' pt_model.to(__SCREAMING_SNAKE_CASE) pt_model.eval() # prepare inputs __a = inputs_dict __a = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): __a = pt_model(**__SCREAMING_SNAKE_CASE).to_tuple() __a = fx_model(**__SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE) , len(__SCREAMING_SNAKE_CASE) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4]): self.assert_almost_equals(__SCREAMING_SNAKE_CASE , pt_output.numpy() , 4E-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__SCREAMING_SNAKE_CASE) __a = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE , from_pt=__SCREAMING_SNAKE_CASE) __a = fx_model_loaded(**__SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE) , len(__SCREAMING_SNAKE_CASE) , '''Output lengths differ between Flax and PyTorch''') for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4]): self.assert_almost_equals(__SCREAMING_SNAKE_CASE , pt_output.numpy() , 4E-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__SCREAMING_SNAKE_CASE) __a = VisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE , from_flax=__SCREAMING_SNAKE_CASE) pt_model_loaded.to(__SCREAMING_SNAKE_CASE) pt_model_loaded.eval() with torch.no_grad(): __a = pt_model_loaded(**__SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE) , len(__SCREAMING_SNAKE_CASE) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4]): self.assert_almost_equals(__SCREAMING_SNAKE_CASE , pt_output_loaded.numpy() , 4E-2) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = VisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __SCREAMING_SNAKE_CASE) __a = fx_state self.check_pt_flax_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = VisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = load_flax_weights_in_pytorch_model(__SCREAMING_SNAKE_CASE , fx_model.params) self.check_pt_flax_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_save_load(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__SCREAMING_SNAKE_CASE) @is_pt_flax_cross_test def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.prepare_config_and_inputs() __a = config_inputs_dict.pop('''vision_config''') __a = config_inputs_dict.pop('''text_config''') __a = config_inputs_dict self.check_equivalence_pt_to_flax(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) self.check_equivalence_flax_to_pt(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Dict): '''simple docstring''' __a , __a = self.get_pretrained_model_and_inputs() __a = model_a(**__SCREAMING_SNAKE_CASE) __a = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__SCREAMING_SNAKE_CASE) __a = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model_a(**__SCREAMING_SNAKE_CASE) __a = after_outputs[0] __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) @require_flax class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__SCREAMING_SNAKE_CASE , text_from_pt=__SCREAMING_SNAKE_CASE , ) __a = 13 __a = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = FlaxViTModel(__SCREAMING_SNAKE_CASE) __a = FlaxBertModel(__SCREAMING_SNAKE_CASE) return vision_model, text_model def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = FlaxViTModelTester(self) __a = FlaxBertModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a = vision_config_and_inputs __a , __a , __a , __a = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__SCREAMING_SNAKE_CASE , text_from_pt=__SCREAMING_SNAKE_CASE , ) __a = 13 __a = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a = FlaxCLIPVisionModel(__SCREAMING_SNAKE_CASE) __a = FlaxBertModel(__SCREAMING_SNAKE_CASE) return vision_model, text_model def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = FlaxCLIPVisionModelTester(self) __a = FlaxBertModelTester(self) __a = clip_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a = vision_config_and_inputs __a , __a , __a , __a = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0) __a = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''') __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') __a = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='''np''') __a = model(**__SCREAMING_SNAKE_CASE) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __a = np.array([[1.2_28_47_27, 0.3_10_41_22]]) self.assertTrue(np.allclose(outputs.logits_per_image , __SCREAMING_SNAKE_CASE , atol=1E-3))
49
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
6
0
from scipy.stats import pearsonr import datasets _UpperCAmelCase : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ _UpperCAmelCase : Union[str, Any] = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ _UpperCAmelCase : List[Any] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def A_ ( self : Any ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def A_ ( self : int , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Any=False ) -> str: if return_pvalue: lowerCamelCase__ : int = pearsonr(UpperCAmelCase , UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
50
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class __A( a ): snake_case_ = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''text''': Value('''string''' )} ) snake_case_ = Features({} ) snake_case_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
6
0
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller snake_case_ : Optional[Any] = 3 def A (__A : int ) -> int: """simple docstring""" print('''Generating primitive root of p''' ) while True: UpperCAmelCase_ = random.randrange(3 , __A ) if pow(__A , 2 , __A ) == 1: continue if pow(__A , __A , __A ) == 1: continue return g def A (__A : int ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: """simple docstring""" print('''Generating prime p...''' ) UpperCAmelCase_ = rabin_miller.generate_large_prime(__A ) # select large prime number. UpperCAmelCase_ = primitive_root(__A ) # one primitive root on modulo p. UpperCAmelCase_ = random.randrange(3 , __A ) # private_key -> have to be greater than 2 for safety. UpperCAmelCase_ = cryptomath.find_mod_inverse(pow(__A , __A , __A ) , __A ) UpperCAmelCase_ = (key_size, e_a, e_a, p) UpperCAmelCase_ = (key_size, d) return public_key, private_key def A (__A : str , __A : int ) -> None: """simple docstring""" if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('''\nWARNING:''' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() UpperCAmelCase_ , UpperCAmelCase_ = generate_key(__A ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , '''w''' ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , '''w''' ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def A () -> None: """simple docstring""" print('''Making key files...''' ) make_key_files('''elgamal''' , 2048 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
51
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase ( a__ , a__ , a__=1024 , a__=1024 , a__=False , **a__ ) -> Optional[Any]: __a = AutoTokenizer.from_pretrained(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''train''' , **a__ ) __a = tok.pad_token_id def get_lens(a__ ): __a = tqdm( DataLoader(a__ , batch_size=512 , num_workers=8 , shuffle=a__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __a = [] for batch in dl: __a = batch['''input_ids'''].ne(a__ ).sum(1 ).tolist() __a = batch['''labels'''].ne(a__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(a__ , a__ ): max_lens.append(max(a__ , a__ ) ) else: max_lens.extend(a__ ) return max_lens __a = get_lens(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''val''' , **a__ ) __a = get_lens(a__ ) pickle_save(a__ , train_ds.len_file ) pickle_save(a__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
6
0
import numpy as np def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 1e-12 , _lowerCAmelCase = 100 , ) -> tuple[float, np.ndarray]: assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_lowerCAmelCase ) == np.iscomplexobj(_lowerCAmelCase ) UpperCamelCase : Optional[int] = np.iscomplexobj(_lowerCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_lowerCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. UpperCamelCase : str = False UpperCamelCase : int = 0 UpperCamelCase : Optional[int] = 0 UpperCamelCase : Tuple = 1e12 while not convergence: # Multiple matrix by the vector. UpperCamelCase : Any = np.dot(_lowerCAmelCase , _lowerCAmelCase ) # Normalize the resulting output vector. UpperCamelCase : List[str] = w / np.linalg.norm(_lowerCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) UpperCamelCase : List[str] = vector.conj().T if is_complex else vector.T UpperCamelCase : List[Any] = np.dot(_lowerCAmelCase , np.dot(_lowerCAmelCase , _lowerCAmelCase ) ) # Check convergence. UpperCamelCase : List[Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: UpperCamelCase : str = True UpperCamelCase : Union[str, Any] = lambda_ if is_complex: UpperCamelCase : Optional[Any] = np.real(lambda_ ) return lambda_, vector def A_ ( ) -> None: UpperCamelCase : Any = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) UpperCamelCase : str = np.array([41, 4, 20] ) UpperCamelCase : Optional[Any] = real_input_matrix.astype(np.complexaaa ) UpperCamelCase : Dict = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T UpperCamelCase : Optional[int] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": UpperCamelCase : int = real_input_matrix UpperCamelCase : Any = real_vector elif problem_type == "complex": UpperCamelCase : Union[str, Any] = complex_input_matrix UpperCamelCase : Tuple = complex_vector # Our implementation. UpperCamelCase , UpperCamelCase : List[Any] = power_iteration(_lowerCAmelCase , _lowerCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). UpperCamelCase , UpperCamelCase : Optional[int] = np.linalg.eigh(_lowerCAmelCase ) # Last eigenvalue is the maximum one. UpperCamelCase : Tuple = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. UpperCamelCase : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_lowerCAmelCase ) - np.abs(_lowerCAmelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
52
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 - _cos) / 2 __a = 1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 + _cos) / 2 __a = -1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = _sin / 2 __a = 0 __a = -ba __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 1 - alpha __a = -2 * _cos __a = 1 + alpha __a = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = 1 + alpha * big_a __a = -2 * _cos __a = 1 - alpha * big_a __a = 1 + alpha / big_a __a = -2 * _cos __a = 1 - alpha / big_a __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (pmc + aaa) __a = 2 * big_a * mpc __a = big_a * (pmc - aaa) __a = ppmc + aaa __a = -2 * pmpc __a = ppmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (ppmc + aaa) __a = -2 * big_a * pmpc __a = big_a * (ppmc - aaa) __a = pmc + aaa __a = 2 * mpc __a = pmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
6
0
'''simple docstring''' from __future__ import annotations def lowercase__ ( __lowercase : list[int | str] ) -> None: """simple docstring""" create_state_space_tree(__lowercase , [] , 0 , [0 for i in range(len(__lowercase ) )] ) def lowercase__ ( __lowercase : list[int | str] , __lowercase : list[int | str] , __lowercase : int , __lowercase : list[int] , ) -> None: """simple docstring""" if index == len(__lowercase ): print(__lowercase ) return for i in range(len(__lowercase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __UpperCamelCase = True create_state_space_tree(__lowercase , __lowercase , index + 1 , __lowercase ) current_sequence.pop() __UpperCamelCase = False a__ : list[int | str] =[3, 1, 2, 4] generate_all_permutations(sequence) a__ : list[int | str] =["A", "B", "C"] generate_all_permutations(sequence_a)
53
def __lowerCAmelCase ( a__ , a__ , a__ ) -> list: __a = len(a__ ) __a = [[0] * n for i in range(a__ )] for i in range(a__ ): __a = y_points[i] for i in range(2 , a__ ): for j in range(a__ , a__ ): __a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
6
0
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 for ch in input_str: __SCREAMING_SNAKE_CASE = ord(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = pow(2 , lowerCAmelCase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
54
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def __lowerCAmelCase ( a__ , a__ , a__ ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] __a = (low + high) // 2 __a , __a , __a = max_subarray(a__ , a__ , a__ ) __a , __a , __a = max_subarray(a__ , mid + 1 , a__ ) __a , __a , __a = max_cross_sum(a__ , a__ , a__ , a__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> tuple[int, int, float]: __a , __a = float('''-inf''' ), -1 __a , __a = float('''-inf''' ), -1 __a = 0 for i in range(a__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __a = summ __a = i __a = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __a = summ __a = i return max_left, max_right, (left_sum + right_sum) def __lowerCAmelCase ( a__ ) -> float: __a = [randint(1 , a__ ) for _ in range(a__ )] __a = time.time() max_subarray(a__ , 0 , input_size - 1 ) __a = time.time() return end - start def __lowerCAmelCase ( ) -> None: __a = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] __a = [time_max_subarray(a__ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(a__ , a__ ): print(a__ , '''\t\t''' , a__ ) plt.plot(a__ , a__ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
6
0
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class snake_case : """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowerCamelCase_ = len(UpperCamelCase ) - 1 def snake_case ( self , UpperCamelCase ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase_ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCamelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCamelCase ) , 5 ) == 1 return output_values def snake_case ( self , UpperCamelCase ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase_ = self.basis_function(UpperCamelCase ) lowerCamelCase_ = 0.0 lowerCamelCase_ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def snake_case ( self , UpperCamelCase = 0.01 ): """simple docstring""" from matplotlib import pyplot as plt # type: ignore lowerCamelCase_ = [] # x coordinates of points to plot lowerCamelCase_ = [] # y coordinates of points to plot lowerCamelCase_ = 0.0 while t <= 1: lowerCamelCase_ = self.bezier_curve_function(UpperCamelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowerCamelCase_ = [i[0] for i in self.list_of_points] lowerCamelCase_ = [i[1] for i in self.list_of_points] plt.plot( UpperCamelCase , UpperCamelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(UpperCamelCase , UpperCamelCase , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
55
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A( a , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __A( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = ort.SessionOptions() __a = False return options def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_snake_case , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
6
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class a : def __init__( self : List[Any] , lowercase_ : Any , lowercase_ : Optional[int]=2 , lowercase_ : List[Any]=True , lowercase_ : List[str]=False , lowercase_ : List[str]=10 , lowercase_ : Tuple=3 , lowercase_ : int=32 * 8 , lowercase_ : Optional[int]=32 * 8 , lowercase_ : str=4 , lowercase_ : Dict=64 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = is_training snake_case_ = use_auxiliary_loss snake_case_ = num_queries snake_case_ = num_channels snake_case_ = min_size snake_case_ = max_size snake_case_ = num_labels snake_case_ = hidden_dim snake_case_ = hidden_dim def A_ ( self : int ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowercase_ ) snake_case_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowercase_ ) snake_case_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowercase_ ) > 0.5 ).float() snake_case_ = (torch.rand((self.batch_size, self.num_labels) , device=lowercase_ ) > 0.5).long() snake_case_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A_ ( self : int ): snake_case_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) snake_case_ = self.num_queries snake_case_ = self.num_labels snake_case_ = [1, 1, 1, 1] snake_case_ = self.num_channels snake_case_ = 64 snake_case_ = 128 snake_case_ = self.hidden_dim snake_case_ = self.hidden_dim snake_case_ = self.hidden_dim return config def A_ ( self : Optional[Any] ): snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ = self.prepare_config_and_inputs() snake_case_ = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def A_ ( self : Any , lowercase_ : Optional[int] , lowercase_ : List[Any] ): snake_case_ = output.encoder_hidden_states snake_case_ = output.pixel_decoder_hidden_states snake_case_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowercase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase_ ) , config.decoder_layers ) def A_ ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : List[Any]=False ): with torch.no_grad(): snake_case_ = MaskaFormerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(pixel_values=lowercase_ , pixel_mask=lowercase_ ) snake_case_ = model(lowercase_ , output_hidden_states=lowercase_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowercase_ , lowercase_ ) def A_ ( self : Optional[Any] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : Dict ): snake_case_ = MaskaFormerForUniversalSegmentation(config=lowercase_ ) model.to(lowercase_ ) model.eval() def comm_check_on_output(lowercase_ : Tuple ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): snake_case_ = model(pixel_values=lowercase_ , pixel_mask=lowercase_ ) snake_case_ = model(lowercase_ ) comm_check_on_output(lowercase_ ) snake_case_ = model( pixel_values=lowercase_ , pixel_mask=lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ) comm_check_on_output(lowercase_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def A_ ( self : Optional[Any] ): snake_case_ = MaskaFormerModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def A_ ( self : int ): self.config_tester.run_common_tests() def A_ ( self : str ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_ ) def A_ ( self : Optional[int] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowercase_ ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def A_ ( self : Optional[Any] ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def A_ ( self : Optional[Any] ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def A_ ( self : Dict ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def A_ ( self : Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def A_ ( self : str ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A_ ( self : List[Any] ): pass def A_ ( self : Tuple ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowercase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) @slow def A_ ( self : Any ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: snake_case_ = MaskaFormerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def A_ ( self : List[str] ): snake_case_ = (self.model_tester.min_size,) * 2 snake_case_ = { '''pixel_values''': torch.randn((2, 3, *size) , device=lowercase_ ), '''mask_labels''': torch.randn((2, 10, *size) , device=lowercase_ ), '''class_labels''': torch.zeros(2 , 10 , device=lowercase_ ).long(), } snake_case_ = self.model_tester.get_config() snake_case_ = MaskaFormerForUniversalSegmentation(lowercase_ ).to(lowercase_ ) snake_case_ = model(**lowercase_ ) self.assertTrue(outputs.loss is not None ) def A_ ( self : Dict ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_ ) def A_ ( self : Union[str, Any] ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowercase_ ).to(lowercase_ ) snake_case_ = model(**lowercase_ , output_attentions=lowercase_ ) self.assertTrue(outputs.attentions is not None ) def A_ ( self : Optional[int] ): if not self.model_tester.is_training: return snake_case_ = self.all_model_classes[1] snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs() snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.train() snake_case_ = model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ).loss loss.backward() def A_ ( self : List[str] ): snake_case_ = self.all_model_classes[1] snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs() snake_case_ = True snake_case_ = True snake_case_ = model_class(lowercase_ ).to(lowercase_ ) model.train() snake_case_ = model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ) snake_case_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() snake_case_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() snake_case_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() snake_case_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowercase_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a : int = 1E-4 def __magic_name__ ( ) -> Dict: '''simple docstring''' snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class a ( unittest.TestCase ): @cached_property def A_ ( self : List[Any] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def A_ ( self : Union[str, Any] ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A_ ( self : Union[str, Any] ): snake_case_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowercase_ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) snake_case_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 384, 384) ) with torch.no_grad(): snake_case_ = model(**lowercase_ ) snake_case_ = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) snake_case_ = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) snake_case_ = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def A_ ( self : Dict ): snake_case_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowercase_ ).eval() snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) snake_case_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 384, 384) ) with torch.no_grad(): snake_case_ = model(**lowercase_ ) # masks_queries_logits snake_case_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) snake_case_ = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] snake_case_ = torch.tensor(lowercase_ ).to(lowercase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) # class_queries_logits snake_case_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) snake_case_ = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def A_ ( self : Optional[int] ): snake_case_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowercase_ ).eval() snake_case_ = self.default_image_processor snake_case_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) snake_case_ = inputs['''pixel_values'''].to(lowercase_ ) snake_case_ = [el.to(lowercase_ ) for el in inputs['''mask_labels''']] snake_case_ = [el.to(lowercase_ ) for el in inputs['''class_labels''']] with torch.no_grad(): snake_case_ = model(**lowercase_ ) self.assertTrue(outputs.loss is not None )
56
from math import ceil def __lowerCAmelCase ( a__ = 1001 ) -> int: __a = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __a = 2 * i + 1 __a = 2 * i __a = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
6
0
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _UpperCamelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self , __a ): super().__init__() __lowerCAmelCase = model __lowerCAmelCase = 2 __lowerCAmelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def snake_case ( self ): pass def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = LongformerModel.from_pretrained(_UpperCamelCase ) __lowerCAmelCase = LightningModel(_UpperCamelCase ) __lowerCAmelCase = torch.load(_UpperCamelCase , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model __lowerCAmelCase = LongformerForQuestionAnswering.from_pretrained(_UpperCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_UpperCamelCase ) print(f"Conversion successful. Model saved under {pytorch_dump_folder_path}" ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
57
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''ChineseCLIPImageProcessor''' snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> Tuple: '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) __a = self.image_processor def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: __a = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class
6
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowercase_ = re.compile(R"""\s+""") def lowerCamelCase ( __lowerCamelCase : str ) ->Optional[Any]: return {"hash": hashlib.mda(re.sub(__lowerCamelCase , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def lowerCamelCase ( __lowerCamelCase : Optional[int] ) ->Dict: _SCREAMING_SNAKE_CASE = [len(__lowerCamelCase ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(__lowerCamelCase ), "line_max": max(__lowerCamelCase )} def lowerCamelCase ( __lowerCamelCase : Any ) ->Any: _SCREAMING_SNAKE_CASE = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def lowerCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ) ->Union[str, Any]: if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def lowerCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]=5 ) ->str: _SCREAMING_SNAKE_CASE = ["""auto-generated""", """autogenerated""", """automatically generated"""] _SCREAMING_SNAKE_CASE = example["""content"""].splitlines() for _, line in zip(range(__lowerCamelCase ) , __lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]=5 , __lowerCamelCase : Union[str, Any]=0.05 ) ->Dict: _SCREAMING_SNAKE_CASE = ["""unit tests""", """test file""", """configuration file"""] _SCREAMING_SNAKE_CASE = example["""content"""].splitlines() _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 # first test for _, line in zip(range(__lowerCamelCase ) , __lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _SCREAMING_SNAKE_CASE = example["""content"""].count("""\n""" ) _SCREAMING_SNAKE_CASE = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase ( __lowerCamelCase : List[str] ) ->str: _SCREAMING_SNAKE_CASE = ["""def """, """class """, """for """, """while """] _SCREAMING_SNAKE_CASE = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int]=4 ) ->List[Any]: _SCREAMING_SNAKE_CASE = example["""content"""].splitlines() _SCREAMING_SNAKE_CASE = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase ( __lowerCamelCase : str ) ->str: _SCREAMING_SNAKE_CASE = tokenizer(example["""content"""] , truncation=__lowerCamelCase )["""input_ids"""] _SCREAMING_SNAKE_CASE = len(example["""content"""] ) / len(__lowerCamelCase ) return {"ratio": ratio} def lowerCamelCase ( __lowerCamelCase : List[Any] ) ->List[Any]: _SCREAMING_SNAKE_CASE = {} results.update(get_hash(__lowerCamelCase ) ) results.update(line_stats(__lowerCamelCase ) ) results.update(alpha_stats(__lowerCamelCase ) ) results.update(char_token_ratio(__lowerCamelCase ) ) results.update(is_autogenerated(__lowerCamelCase ) ) results.update(is_config_or_test(__lowerCamelCase ) ) results.update(has_no_keywords(__lowerCamelCase ) ) results.update(has_few_assignments(__lowerCamelCase ) ) return results def lowerCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : str ) ->Tuple: if not check_uniques(__lowerCamelCase , __lowerCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase ( __lowerCamelCase : Dict ) ->Optional[int]: with open(__lowerCamelCase , """rb""" ) as f_in: with gzip.open(str(__lowerCamelCase ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowerCamelCase , __lowerCamelCase ) os.unlink(__lowerCamelCase ) # Settings lowercase_ = HfArgumentParser(PreprocessingArguments) lowercase_ = parser.parse_args() if args.num_workers is None: lowercase_ = multiprocessing.cpu_count() lowercase_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowercase_ = time.time() lowercase_ = load_dataset(args.dataset_name, split="""train""") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing lowercase_ = time.time() lowercase_ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes lowercase_ = set(ds.unique("""hash""")) lowercase_ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics lowercase_ = time.time() lowercase_ = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowercase_ = time.time() lowercase_ , lowercase_ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file lowercase_ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) lowercase_ = output_dir / """data""" data_dir.mkdir(exist_ok=True) lowercase_ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowercase_ = str(data_dir / f"""file-{file_number+1:012}.json""") lowercase_ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
58
from __future__ import annotations import typing from collections import Counter def __lowerCAmelCase ( a__ ) -> typing.Counter[int]: __a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): __a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): __a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCAmelCase ( a__ = 1000 ) -> int: __a = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
6
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): snake_case : int = k_size // 2 snake_case , snake_case : Tuple = mgrid[0 - center : k_size - center, 0 - center : k_size - center] snake_case : Optional[int] = 1 / (2 * pi * sigma) * exp(-(square(__lowerCamelCase ) + square(__lowerCamelCase )) / (2 * square(__lowerCamelCase )) ) return g def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Dict ): snake_case , snake_case : List[str] = image.shape[0], image.shape[1] # dst image height and width snake_case : Union[str, Any] = height - k_size + 1 snake_case : Any = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows snake_case : Optional[int] = zeros((dst_height * dst_width, k_size * k_size) ) snake_case : List[str] = 0 for i, j in product(range(__lowerCamelCase ) , range(__lowerCamelCase ) ): snake_case : Tuple = ravel(image[i : i + k_size, j : j + k_size] ) snake_case : List[Any] = window row += 1 # turn the kernel into shape(k*k, 1) snake_case : Tuple = gen_gaussian_kernel(__lowerCamelCase , __lowerCamelCase ) snake_case : List[str] = ravel(__lowerCamelCase ) # reshape and get the dst image snake_case : int = dot(__lowerCamelCase , __lowerCamelCase ).reshape(__lowerCamelCase , __lowerCamelCase ).astype(__lowerCamelCase ) return dst if __name__ == "__main__": # read original image __lowerCamelCase = imread(R"""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __lowerCamelCase = gaussian_filter(gray, 3, sigma=1) __lowerCamelCase = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("""gaussian filter with 3x3 mask""", gaussianaxa) imshow("""gaussian filter with 5x5 mask""", gaussianaxa) waitKey()
59
# flake8: noqa # Lint as: python3 A : Optional[Any] = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
6
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case__ : Optional[int] = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
60
from typing import Dict from .base import GenericTensor, Pipeline class __A( a ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: __a = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __a = truncation __a = tokenize_kwargs __a = {} if return_tensors is not None: __a = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE_ ( self , _snake_case , **_snake_case ) -> Dict[str, GenericTensor]: '''simple docstring''' __a = self.framework __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.model(**_snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=False ) -> Optional[int]: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' return super().__call__(*_snake_case , **_snake_case )
6
0
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : List[Any] = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : int = latents.to(lowercase_ ) UpperCAmelCase_ : List[Any] = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Dict = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Tuple = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : int = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self._execution_device UpperCAmelCase_ : Dict = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[int] = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Any = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Optional[Any] = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Tuple = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : Any = self.scheduler.timesteps UpperCAmelCase_ : List[Any] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = variance_pred.chunk(2 ) UpperCAmelCase_ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : Dict = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Optional[Any] = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : Any = image * 0.5 + 0.5 UpperCAmelCase_ : Tuple = image.clamp(0 , 1 ) UpperCAmelCase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Tuple = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
61
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Optional[int] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class __A( a ): snake_case_ = '''levit''' def __init__( self , _snake_case=224 , _snake_case=3 , _snake_case=3 , _snake_case=2 , _snake_case=1 , _snake_case=16 , _snake_case=[128, 256, 384] , _snake_case=[4, 8, 12] , _snake_case=[4, 4, 4] , _snake_case=[16, 16, 16] , _snake_case=0 , _snake_case=[2, 2, 2] , _snake_case=[2, 2, 2] , _snake_case=0.02 , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = image_size __a = num_channels __a = kernel_size __a = stride __a = padding __a = hidden_sizes __a = num_attention_heads __a = depths __a = key_dim __a = drop_path_rate __a = patch_size __a = attention_ratio __a = mlp_ratio __a = initializer_range __a = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
6
0
from __future__ import annotations import math class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ ) -> None: __UpperCamelCase =size # approximate the overall size of segment tree with given value __UpperCamelCase =[0 for i in range(0 , 4 * size )] # create array to store lazy update __UpperCamelCase =[0 for i in range(0 , 4 * size )] __UpperCamelCase =[0 for i in range(0 , 4 * size )] # flag for lazy update def _a ( self , A_ ) -> int: return idx * 2 def _a ( self , A_ ) -> int: return idx * 2 + 1 def _a ( self , A_ , A_ , A_ , A_ ) -> None: if left_element == right_element: __UpperCamelCase =a[left_element - 1] else: __UpperCamelCase =(left_element + right_element) // 2 self.build(self.left(A_ ) , A_ , A_ , A_ ) self.build(self.right(A_ ) , mid + 1 , A_ , A_ ) __UpperCamelCase =max( self.segment_tree[self.left(A_ )] , self.segment_tree[self.right(A_ )] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> bool: if self.flag[idx] is True: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =False if left_element != right_element: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =self.lazy[idx] __UpperCamelCase =True __UpperCamelCase =True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __UpperCamelCase =val if left_element != right_element: __UpperCamelCase =val __UpperCamelCase =val __UpperCamelCase =True __UpperCamelCase =True return True __UpperCamelCase =(left_element + right_element) // 2 self.update(self.left(A_ ) , A_ , A_ , A_ , A_ , A_ ) self.update(self.right(A_ ) , mid + 1 , A_ , A_ , A_ , A_ ) __UpperCamelCase =max( self.segment_tree[self.left(A_ )] , self.segment_tree[self.right(A_ )] ) return True def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> int | float: if self.flag[idx] is True: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =False if left_element != right_element: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =self.lazy[idx] __UpperCamelCase =True __UpperCamelCase =True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __UpperCamelCase =(left_element + right_element) // 2 __UpperCamelCase =self.query(self.left(A_ ) , A_ , A_ , A_ , A_ ) __UpperCamelCase =self.query(self.right(A_ ) , mid + 1 , A_ , A_ , A_ ) return max(A_ , A_ ) def __str__( self ) -> str: return str([self.query(1 , 1 , self.size , A_ , A_ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _A = 15 _A = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
62
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : int = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __A( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' __a = TOKEN HfFolder.save_token(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case , repo_id='''test-model-flax''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case )
6
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =GPTSanJapaneseTokenizer __a =False __a ={'do_clean_text': False, 'add_prefix_space': False} def UpperCamelCase__ ( self : Union[str, Any] ): super().setUp() # fmt: off _a = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on _a = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(__a ) ) def UpperCamelCase__ ( self : Dict , **__a : str ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : str , __a : Any ): _a = "こんにちは、世界。 \nこんばんは、㔺界。😀" _a = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def UpperCamelCase__ ( self : Optional[Any] , __a : List[str] ): _a , _a = self.get_input_output_texts(__a ) _a = tokenizer.encode(__a , add_special_tokens=__a ) _a = tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) return text, ids def UpperCamelCase__ ( self : Any ): pass # TODO add if relevant def UpperCamelCase__ ( self : Tuple ): pass # TODO add if relevant def UpperCamelCase__ ( self : str ): pass # TODO add if relevant def UpperCamelCase__ ( self : Tuple ): _a = self.get_tokenizer() # Testing tokenization _a = "こんにちは、世界。 こんばんは、㔺界。" _a = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] _a = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens _a = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _a = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens _a = tokens + [tokenizer.unk_token] _a = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] _a = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , __a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.get_tokenizer() # Testing tokenization _a = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" _a = "こんにちは、、、、世界。こんばんは、、、、世界。" _a = tokenizer.encode(__a ) _a = tokenizer.decode(__a ) self.assertEqual(__a , __a ) @slow def UpperCamelCase__ ( self : List[Any] ): _a = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _a = "こんにちは、世界。" _a = "こんばんは、㔺界。😀" _a = "こんにちは、世界。こんばんは、世界。😀" _a = tokenizer.encode(prefix_text + input_text ) _a = tokenizer.encode("" , prefix_text=prefix_text + input_text ) _a = tokenizer.encode(__a , prefix_text=__a ) _a = tokenizer.decode(__a ) _a = tokenizer.decode(__a ) _a = tokenizer.decode(__a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) @slow def UpperCamelCase__ ( self : Any ): _a = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _a = "こんにちは、世界。" _a = "こんばんは、㔺界。😀" _a = len(tokenizer.encode(__a ) ) - 2 _a = len(tokenizer.encode(__a ) ) - 2 _a = [1] + [0] * (len_prefix + len_text + 1) _a = [1] * (len_prefix + len_text + 1) + [0] _a = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _a = tokenizer(prefix_text + input_text ).token_type_ids _a = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids _a = tokenizer(__a , prefix_text=__a ).token_type_ids self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def UpperCamelCase__ ( self : Dict ): _a = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _a = tokenizer.encode("あンいワ" ) _a = tokenizer.encode("" , prefix_text="あンいワ" ) _a = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(__a ) , tokenizer.decode(__a ) ) self.assertEqual(tokenizer.decode(__a ) , tokenizer.decode(__a ) ) self.assertNotEqual(__a , __a ) self.assertNotEqual(__a , __a ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase__ ( self : List[Any] ): _a = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _a = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] _a = tokenizer(__a , padding=__a ) _a = tokenizer.batch_encode_plus(__a , padding=__a ) # fmt: off _a = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] _a = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _a = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __a ) self.assertListEqual(x_token.token_type_ids , __a ) self.assertListEqual(x_token.attention_mask , __a ) self.assertListEqual(x_token_a.input_ids , __a ) self.assertListEqual(x_token_a.token_type_ids , __a ) self.assertListEqual(x_token_a.attention_mask , __a ) def UpperCamelCase__ ( self : List[str] ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def UpperCamelCase__ ( self : int ): # tokenizer has no padding token pass
63
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path A : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) A : List[str] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} A : Optional[int] = 'zero2' A : str = 'zero3' A : Tuple = [ZEROa, ZEROa] def __lowerCAmelCase ( a__ , a__ , a__ ) -> Tuple: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __a = parameterized.to_safe_name('''_'''.join(str(a__ ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test A : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A( a ): @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Any: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> int: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> str: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = True , _snake_case = True , _snake_case = True , ) -> Any: '''simple docstring''' __a = models[model] __a = self.run_trainer( stage=_snake_case , model_name=_snake_case , eval_steps=_snake_case , num_train_epochs=1 , distributed=_snake_case , fpaa=_snake_case , ) self.do_checks(_snake_case ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = 1 , _snake_case = True , _snake_case = True , ) -> Union[str, Any]: '''simple docstring''' __a = self.get_auto_remove_tmp_dir('''./xxx''' , after=_snake_case ) __a = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __a = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __a = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __a = self.get_launcher(_snake_case ) __a = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case=False ) -> List[str]: '''simple docstring''' __a = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
6
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: A_ = None A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A_ = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } A_ = { '''google/fnet-base''': 5_12, '''google/fnet-large''': 5_12, } A_ = '''▁''' class lowercase( __a ): '''simple docstring''' lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "token_type_ids"] lowercase__ = FNetTokenizer def __init__( self: List[str], a_: str=None, a_: Optional[Any]=None, a_: Tuple=False, a_: Any=True, a_: List[str]=True, a_: List[Any]="<unk>", a_: Optional[Any]="[SEP]", a_: Optional[int]="<pad>", a_: Optional[Any]="[CLS]", a_: int="[MASK]", **a_: Optional[Any], ): '''simple docstring''' _snake_case : str = ( AddedToken(a_, lstrip=a_, rstrip=a_, normalized=a_ ) if isinstance(a_, a_ ) else mask_token ) super().__init__( a_, tokenizer_file=a_, do_lower_case=a_, remove_space=a_, keep_accents=a_, unk_token=a_, sep_token=a_, pad_token=a_, cls_token=a_, mask_token=a_, **a_, ) _snake_case : Union[str, Any] = do_lower_case _snake_case : Dict = remove_space _snake_case : int = keep_accents _snake_case : Dict = vocab_file _snake_case : str = False if not self.vocab_file else True def UpperCamelCase_ ( self: Optional[Any], a_: List[int], a_: Optional[List[int]] = None ): '''simple docstring''' _snake_case : List[Any] = [self.sep_token_id] _snake_case : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self: Union[str, Any], a_: List[int], a_: Optional[List[int]] = None ): '''simple docstring''' _snake_case : Any = [self.sep_token_id] _snake_case : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self: List[str], a_: str, a_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _snake_case : List[Any] = os.path.join( a_, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file, a_ ) return (out_vocab_file,)
64
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A( a , a , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = '''sample''' snake_case_ = 1E-2 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = 4 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes ).to(_snake_case ) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __a = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a , __a = self.prepare_init_args_and_inputs_for_common() __a = self.model_class(**_snake_case ) model.to(_snake_case ) assert not model.is_gradient_checkpointing and model.training __a = model(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __a = torch.randn_like(_snake_case ) __a = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __a = self.model_class(**_snake_case ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_snake_case ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __a = model_a(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __a = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __a = dict(model.named_parameters() ) __a = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a , __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_snake_case ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __a = model.to(_snake_case ) model.eval() if torch_device == "mps": __a = torch.manual_seed(0 ) else: __a = torch.Generator(device=_snake_case ).manual_seed(0 ) __a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __a = image.to(_snake_case ) with torch.no_grad(): __a = model(_snake_case , sample_posterior=_snake_case , generator=_snake_case ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __a = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": __a = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __a = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1E-2 ) ) @slow class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_snake_case ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , _snake_case=(4, 3, 512, 512) , _snake_case=False ) -> Any: '''simple docstring''' __a = torch.floataa if fpaa else torch.floataa __a = torch.from_numpy(load_hf_numpy(self.get_file_format(_snake_case , _snake_case ) ) ).to(_snake_case ).to(_snake_case ) return image def SCREAMING_SNAKE_CASE_ ( self , _snake_case="CompVis/stable-diffusion-v1-4" , _snake_case=False ) -> Optional[Any]: '''simple docstring''' __a = '''fp16''' if fpaa else None __a = torch.floataa if fpaa else torch.floataa __a = AutoencoderKL.from_pretrained( _snake_case , subfolder='''vae''' , torch_dtype=_snake_case , revision=_snake_case , ) model.to(_snake_case ).eval() return model def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> Tuple: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(_snake_case ) return torch.Generator(device=_snake_case ).manual_seed(_snake_case ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , fpaa=_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) with torch.no_grad(): __a = model(_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model.encode(_snake_case ).latent_dist __a = dist.sample(generator=_snake_case ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __a = sample[0, -1, -3:, -3:].flatten().cpu() __a = torch.tensor(_snake_case ) __a = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(_snake_case , _snake_case , atol=_snake_case )
6
0
def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' UpperCAmelCase__ = credit_card_number UpperCAmelCase__ = 0 UpperCAmelCase__ = len(__A ) - 2 for i in range(__A, -1, -2 ): # double the value of every second digit UpperCAmelCase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCAmelCase__ = cc_number[:i] + str(__A ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A ) - 1, -1, -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' UpperCAmelCase__ = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(__A ) <= 16: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(__A ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(__A ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
65
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A : str = logging.get_logger(__name__) class __A( a ): def __init__( self , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = [] __a = [] __a = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __a = parent.find_all(child.name , recursive=_snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_snake_case ) else next(i for i, s in enumerate(_snake_case , 1 ) if s is child ) ) __a = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = BeautifulSoup(_snake_case , '''html.parser''' ) __a = [] __a = [] __a = [] for element in html_code.descendants: if type(_snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __a = html.unescape(_snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(_snake_case ) __a , __a = self.xpath_soup(_snake_case ) stringaxtag_seq.append(_snake_case ) stringaxsubs_seq.append(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = '''''' for tagname, subs in zip(_snake_case , _snake_case ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , _snake_case ) -> BatchFeature: '''simple docstring''' __a = False # Check that strings has a valid type if isinstance(_snake_case , _snake_case ): __a = True elif isinstance(_snake_case , (list, tuple) ): if len(_snake_case ) == 0 or isinstance(html_strings[0] , _snake_case ): __a = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_snake_case )}.""" ) __a = bool(isinstance(_snake_case , (list, tuple) ) and (isinstance(html_strings[0] , _snake_case )) ) if not is_batched: __a = [html_strings] # Get nodes + xpaths __a = [] __a = [] for html_string in html_strings: __a , __a , __a = self.get_three_from_single(_snake_case ) nodes.append(_snake_case ) __a = [] for node, tag_list, sub_list in zip(_snake_case , _snake_case , _snake_case ): __a = self.construct_xpath(_snake_case , _snake_case ) xpath_strings.append(_snake_case ) xpaths.append(_snake_case ) # return as Dict __a = {'''nodes''': nodes, '''xpaths''': xpaths} __a = BatchFeature(data=_snake_case , tensor_type=_snake_case ) return encoded_inputs
6
0
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :int = XCLIPTextConfig() # derive patch size from model name snake_case_ :Union[str, Any] = model_name.find("""patch""" ) snake_case_ :List[str] = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) snake_case_ :Any = XCLIPVisionConfig(patch_size=_lowercase, num_frames=_lowercase ) if "large" in model_name: snake_case_ :Optional[Any] = 768 snake_case_ :Union[str, Any] = 3072 snake_case_ :Any = 12 snake_case_ :Any = 1024 snake_case_ :str = 4096 snake_case_ :Union[str, Any] = 16 snake_case_ :Union[str, Any] = 24 snake_case_ :Tuple = 768 snake_case_ :Any = 3072 if model_name == "xclip-large-patch14-16-frames": snake_case_ :Any = 336 snake_case_ :Any = XCLIPConfig.from_text_vision_configs(_lowercase, _lowercase ) if "large" in model_name: snake_case_ :List[Any] = 768 return config def A_ ( _lowercase ): '''simple docstring''' if name == "token_embedding.weight": snake_case_ :Optional[Any] = name.replace("""token_embedding.weight""", """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": snake_case_ :Tuple = name.replace("""positional_embedding""", """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: snake_case_ :Dict = name.replace("""ln_1""", """layer_norm1""" ) if "ln_2" in name: snake_case_ :str = name.replace("""ln_2""", """layer_norm2""" ) if "c_fc" in name: snake_case_ :str = name.replace("""c_fc""", """fc1""" ) if "c_proj" in name: snake_case_ :int = name.replace("""c_proj""", """fc2""" ) if name.startswith("""transformer.resblocks""" ): snake_case_ :Union[str, Any] = name.replace("""transformer.resblocks""", """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: snake_case_ :Union[str, Any] = name.replace("""attn.out_proj""", """self_attn.out_proj""" ) if "ln_final" in name: snake_case_ :Union[str, Any] = name.replace("""ln_final""", """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": snake_case_ :Any = name.replace("""visual.class_embedding""", """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": snake_case_ :Optional[int] = name.replace("""visual.positional_embedding""", """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): snake_case_ :Union[str, Any] = name.replace("""visual.transformer.resblocks""", """vision_model.encoder.layers""" ) if "visual.conv1" in name: snake_case_ :int = name.replace("""visual.conv1""", """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: snake_case_ :Any = name.replace("""visual.ln_pre""", """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: snake_case_ :str = name.replace("""visual.ln_post""", """vision_model.post_layernorm""" ) if "visual.proj" in name: snake_case_ :Union[str, Any] = name.replace("""visual.proj""", """visual_projection.weight""" ) if "text_projection" in name: snake_case_ :Dict = name.replace("""text_projection""", """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: snake_case_ :List[str] = name.replace("""prompts_visual_proj""", """prompts_visual_projection""" ) if "prompts_visual_ln" in name: snake_case_ :Dict = name.replace("""prompts_visual_ln""", """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": snake_case_ :str = name.replace("""positional""", """position""" ) if name.startswith("""mit.resblocks""" ): snake_case_ :Dict = name.replace("""mit.resblocks""", """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): snake_case_ :Union[str, Any] = name.replace("""prompts_generator.norm""", """prompts_generator.layernorm""" ) return name def A_ ( _lowercase, _lowercase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case_ :Dict = orig_state_dict.pop(_lowercase ) if "attn.in_proj" in key: snake_case_ :Optional[Any] = key.split(""".""" ) if key.startswith("""visual""" ): snake_case_ :Any = key_split[3] snake_case_ :Optional[Any] = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: snake_case_ :str = val[ :dim, : ] snake_case_ :Optional[int] = val[ dim : dim * 2, : ] snake_case_ :Union[str, Any] = val[ -dim:, : ] else: snake_case_ :Dict = val[ :dim ] snake_case_ :Optional[int] = val[ dim : dim * 2 ] snake_case_ :Optional[int] = val[ -dim: ] else: if "weight" in key: snake_case_ :Optional[Any] = val[ :dim, : ] snake_case_ :List[str] = val[ dim : dim * 2, : ] snake_case_ :Dict = val[ -dim:, : ] else: snake_case_ :Union[str, Any] = val[:dim] snake_case_ :Union[str, Any] = val[ dim : dim * 2 ] snake_case_ :Union[str, Any] = val[-dim:] elif key.startswith("""mit""" ): snake_case_ :Tuple = key_split[2] snake_case_ :Union[str, Any] = config.vision_config.mit_hidden_size if "weight" in key: snake_case_ :Optional[int] = val[:dim, :] snake_case_ :Optional[int] = val[dim : dim * 2, :] snake_case_ :str = val[-dim:, :] else: snake_case_ :str = val[:dim] snake_case_ :Any = val[dim : dim * 2] snake_case_ :int = val[-dim:] else: snake_case_ :Tuple = key_split[2] snake_case_ :Any = config.text_config.hidden_size if "weight" in key: snake_case_ :Dict = val[:dim, :] snake_case_ :Dict = val[ dim : dim * 2, : ] snake_case_ :List[str] = val[-dim:, :] else: snake_case_ :Any = val[:dim] snake_case_ :Tuple = val[ dim : dim * 2 ] snake_case_ :List[str] = val[-dim:] else: snake_case_ :Optional[int] = rename_key(_lowercase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: snake_case_ :Optional[Any] = val.T snake_case_ :Tuple = val return orig_state_dict def A_ ( _lowercase ): '''simple docstring''' if num_frames == 8: snake_case_ :str = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: snake_case_ :int = """eating_spaghetti.npy""" elif num_frames == 32: snake_case_ :List[str] = """eating_spaghetti_32_frames.npy""" snake_case_ :int = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename=_lowercase, repo_type="""dataset""", ) snake_case_ :Union[str, Any] = np.load(_lowercase ) return list(_lowercase ) def A_ ( _lowercase, _lowercase=None, _lowercase=False ): '''simple docstring''' snake_case_ :List[Any] = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } snake_case_ :Optional[int] = model_to_url[model_name] snake_case_ :int = 8 if "16-frames" in model_name: snake_case_ :List[Any] = 16 elif "shot" in model_name: snake_case_ :Dict = 32 snake_case_ :Optional[int] = get_xclip_config(_lowercase, _lowercase ) snake_case_ :Optional[Any] = XCLIPModel(_lowercase ) model.eval() if "drive" in checkpoint_url: snake_case_ :List[str] = """pytorch_model.bin""" gdown.cached_download(_lowercase, _lowercase, quiet=_lowercase ) snake_case_ :List[Any] = torch.load(_lowercase, map_location="""cpu""" )["""model"""] else: snake_case_ :Tuple = torch.hub.load_state_dict_from_url(_lowercase )["""model"""] snake_case_ :Union[str, Any] = convert_state_dict(_lowercase, _lowercase ) snake_case_ :str = XCLIPModel(_lowercase ) snake_case_, snake_case_ :Optional[int] = model.load_state_dict(_lowercase, strict=_lowercase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() snake_case_ :List[str] = 336 if model_name == """xclip-large-patch14-16-frames""" else 224 snake_case_ :List[Any] = VideoMAEImageProcessor(size=_lowercase ) snake_case_ :Any = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) snake_case_ :str = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) snake_case_ :Optional[Any] = XCLIPProcessor(image_processor=_lowercase, tokenizer=_lowercase ) snake_case_ :Optional[int] = prepare_video(_lowercase ) snake_case_ :Optional[Any] = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""], videos=_lowercase, return_tensors="""pt""", padding=_lowercase ) print("""Shape of pixel values:""", inputs.pixel_values.shape ) with torch.no_grad(): snake_case_ :List[Any] = model(**_lowercase ) # Verify outputs snake_case_ :List[Any] = outputs.logits_per_video snake_case_ :Any = logits_per_video.softmax(dim=1 ) print("""Probs:""", _lowercase ) # kinetics-400 if model_name == "xclip-base-patch32": snake_case_ :Union[str, Any] = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": snake_case_ :str = torch.tensor([[7.09_99e-04, 9.98_83e-01, 4.55_80e-04]] ) elif model_name == "xclip-base-patch16": snake_case_ :Tuple = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": snake_case_ :Any = torch.tensor([[7.69_37e-04, 9.97_28e-01, 1.94_73e-03]] ) elif model_name == "xclip-large-patch14": snake_case_ :str = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": snake_case_ :Tuple = torch.tensor([[3.38_77e-04, 9.99_37e-01, 2.88_88e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": snake_case_ :List[Any] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": snake_case_ :Union[str, Any] = torch.tensor([[3.85_54e-04, 9.99_29e-01, 3.27_54e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": snake_case_ :List[Any] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": snake_case_ :Dict = torch.tensor([[7.18_90e-06, 9.99_94e-01, 5.65_59e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": snake_case_ :Union[str, Any] = torch.tensor([[1.03_20e-05, 9.99_93e-01, 6.24_35e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": snake_case_ :str = torch.tensor([[4.13_77e-06, 9.99_90e-01, 9.83_86e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": snake_case_ :str = torch.tensor([[4.13_47e-05, 9.99_62e-01, 3.34_11e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": snake_case_ :int = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": snake_case_ :Optional[int] = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": snake_case_ :Any = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": snake_case_ :Tuple = torch.tensor([[9.82_19e-04, 9.95_93e-01, 3.08_63e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": snake_case_ :Union[str, Any] = torch.tensor([[3.50_82e-04, 9.97_85e-01, 1.79_66e-03]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(_lowercase, _lowercase, atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(_lowercase, organization="""nielsr""" ) processor.push_to_hub(_lowercase, organization="""nielsr""" ) slow_tokenizer.push_to_hub(_lowercase, organization="""nielsr""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __a = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
66
def __lowerCAmelCase ( a__ , a__ ) -> float: def get_matched_characters(a__ , a__ ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a__ ) __a = F"""{_stra[0:_stra.index(a__ )]} {_stra[_stra.index(a__ ) + 1:]}""" return "".join(a__ ) # matching characters __a = get_matched_characters(a__ , a__ ) __a = get_matched_characters(a__ , a__ ) __a = len(a__ ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(a__ , a__ ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(a__ ) + match_count / len(a__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
6
0
'''simple docstring''' def __lowerCAmelCase ( ) -> int: return [ a * b * (10_00 - a - b) for a in range(1 , 9_99 ) for b in range(UpperCamelCase__ , 9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'{solution() = }')
67
def __lowerCAmelCase ( a__ ) -> str: __a = [] __a = set({'''(''', '''[''', '''{'''} ) __a = set({''')''', ''']''', '''}'''} ) __a = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(a__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(a__ ) == 0 or (len(a__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a__ ) == 0 def __lowerCAmelCase ( ) -> Dict: __a = input('''Enter sequence of brackets: ''' ) if is_balanced(a__ ): print(a__ , '''is balanced''' ) else: print(a__ , '''is not balanced''' ) if __name__ == "__main__": main()
6
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'altclip_text_model' def __init__( self , lowercase=250002 , lowercase=1024 , lowercase=24 , lowercase=16 , lowercase=4096 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=514 , lowercase=1 , lowercase=0.02 , lowercase=0.02 , lowercase=1e-05 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=True , lowercase=768 , **lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = initializer_factor A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = project_dim class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'altclip_vision_model' def __init__( self , lowercase=768 , lowercase=3072 , lowercase=512 , lowercase=12 , lowercase=12 , lowercase=3 , lowercase=224 , lowercase=32 , lowercase="quick_gelu" , lowercase=1e-5 , lowercase=0.0 , lowercase=0.02 , lowercase=1.0 , **lowercase , ) -> Tuple: '''simple docstring''' super().__init__(**lowercase ) A__ = hidden_size A__ = intermediate_size A__ = projection_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = initializer_factor A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def UpperCamelCase ( cls , lowercase , **lowercase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowercase ) A__ , A__ = cls.get_config_dict(lowercase , **lowercase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": A__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowercase , **lowercase ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'altclip' __lowerCamelCase = True def __init__( self , lowercase=None , lowercase=None , lowercase=768 , lowercase=2.6592 , **lowercase ) -> List[str]: '''simple docstring''' A__ = kwargs.pop("text_config_dict" , lowercase ) A__ = kwargs.pop("vision_config_dict" , lowercase ) super().__init__(**lowercase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: A__ = {} # This is the complete result when using `text_config_dict`. A__ = AltCLIPTextConfig(**lowercase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: A__ = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: A__ = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(lowercase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: A__ = {} # This is the complete result when using `vision_config_dict`. A__ = AltCLIPVisionConfig(**lowercase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: A__ = { str(lowercase ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: A__ = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: A__ = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(lowercase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: A__ = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: A__ = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) A__ = AltCLIPTextConfig(**lowercase ) A__ = AltCLIPVisionConfig(**lowercase ) A__ = projection_dim A__ = logit_scale_init_value A__ = 1.0 @classmethod def UpperCamelCase ( cls , lowercase , lowercase , **lowercase ) -> Union[str, Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = copy.deepcopy(self.__dict__ ) A__ = self.text_config.to_dict() A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
68
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : str = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = dataset snake_case_ = process snake_case_ = params def __len__( self) -> Optional[Any]: return len(self.dataset) def __getitem__( self, lowerCAmelCase__) -> Optional[int]: snake_case_ = self.dataset[i] snake_case_ = self.process(lowerCAmelCase__, **self.params) return processed class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=None) -> Optional[Any]: snake_case_ = loader snake_case_ = infer snake_case_ = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether snake_case_ = None snake_case_ = loader_batch_size # Internal bookkeeping snake_case_ = None snake_case_ = None def __len__( self) -> str: return len(self.loader) def __iter__( self) -> List[Any]: snake_case_ = iter(self.loader) return self def a_ ( self) -> Dict: if isinstance(self._loader_batch_data, torch.Tensor): # Batch data is simple tensor, just fetch the slice snake_case_ = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) snake_case_ = {} for k, element in self._loader_batch_data.items(): if isinstance(lowerCAmelCase__, lowerCAmelCase__): # Convert ModelOutput to tuple first snake_case_ = element.to_tuple() if isinstance(element[0], torch.Tensor): snake_case_ = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0], np.ndarray): snake_case_ = tuple(np.expand_dims(el[self._loader_batch_index], 0) for el in element) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCAmelCase__, lowerCAmelCase__): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0], torch.Tensor): snake_case_ = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0], np.ndarray): snake_case_ = tuple(np.expand_dims(el[self._loader_batch_index], 0) for el in element) continue if element is None: # This can happen for optional data that get passed around snake_case_ = None elif isinstance(element[self._loader_batch_index], torch.Tensor): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers snake_case_ = element[self._loader_batch_index].unsqueeze(0) elif isinstance(element[self._loader_batch_index], np.ndarray): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers snake_case_ = np.expand_dims(element[self._loader_batch_index], 0) else: # This is typically a list, so no need to `unsqueeze`. snake_case_ = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 snake_case_ = self._loader_batch_data.__class__(lowerCAmelCase__) self._loader_batch_index += 1 return result def a_ ( self) -> Optional[int]: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch snake_case_ = next(self.iterator) snake_case_ = self.infer(lowerCAmelCase__, **self.params) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowerCAmelCase__, torch.Tensor): snake_case_ = processed else: snake_case_ = list(processed.keys())[0] snake_case_ = processed[key] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = len(lowerCAmelCase__) else: snake_case_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. snake_case_ = observed_batch_size # Setting internal index to unwrap the batch snake_case_ = processed snake_case_ = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=None) -> Any: super().__init__(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) def __iter__( self) -> str: snake_case_ = iter(self.loader) snake_case_ = None return self def a_ ( self) -> Optional[int]: if self.subiterator is None: snake_case_ = self.infer(next(self.iterator), **self.params) try: # Try to return next item snake_case_ = next(self.subiterator) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators snake_case_ = self.infer(next(self.iterator), **self.params) snake_case_ = next(self.subiterator) return processed class UpperCamelCase ( lowerCAmelCase__ ): def __iter__( self) -> Any: snake_case_ = iter(self.loader) return self def a_ ( self) -> Tuple: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. snake_case_ = False snake_case_ = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: snake_case_ = self.loader_batch_item() snake_case_ = item.pop('is_last') accumulator.append(lowerCAmelCase__) if is_last: return accumulator while not is_last: snake_case_ = self.infer(next(self.iterator), **self.params) if self.loader_batch_size is not None: if isinstance(lowerCAmelCase__, torch.Tensor): snake_case_ = processed else: snake_case_ = list(processed.keys())[0] snake_case_ = processed[key] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = len(lowerCAmelCase__) else: snake_case_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. snake_case_ = observed_batch_size snake_case_ = processed snake_case_ = 0 while self._loader_batch_index < self.loader_batch_size: snake_case_ = self.loader_batch_item() snake_case_ = item.pop('is_last') accumulator.append(lowerCAmelCase__) if is_last: return accumulator else: snake_case_ = processed snake_case_ = item.pop('is_last') accumulator.append(lowerCAmelCase__) return accumulator class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = dataset snake_case_ = key def __len__( self) -> str: return len(self.dataset) def __getitem__( self, lowerCAmelCase__) -> List[Any]: return self.dataset[i][self.key] class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[str]: snake_case_ = dataset snake_case_ = keya snake_case_ = keya def __len__( self) -> str: return len(self.dataset) def __getitem__( self, lowerCAmelCase__) -> Any: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
69
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Dict = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : int =logging.get_logger(__name__) A__ : List[Any] ={ '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class UpperCAmelCase ( snake_case_ ): _lowercase: Optional[int] = '''data2vec-text''' def __init__( self : str , __snake_case : Optional[int]=3_05_22 , __snake_case : str=7_68 , __snake_case : Union[str, Any]=12 , __snake_case : Dict=12 , __snake_case : Union[str, Any]=30_72 , __snake_case : Any="gelu" , __snake_case : List[Any]=0.1 , __snake_case : str=0.1 , __snake_case : List[str]=5_12 , __snake_case : List[str]=2 , __snake_case : List[Any]=0.02 , __snake_case : Tuple=1E-1_2 , __snake_case : Tuple=1 , __snake_case : List[str]=0 , __snake_case : List[Any]=2 , __snake_case : Union[str, Any]="absolute" , __snake_case : Optional[Any]=True , __snake_case : Union[str, Any]=None , **__snake_case : List[str] , ) -> int: super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout class UpperCAmelCase ( snake_case_ ): @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
70
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ :Tuple = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Union[str, Any] = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys A_ :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
71
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
6
0
"""simple docstring""" import unittest import numpy as np def snake_case_ ( A_ : np.ndarray, A_ : np.ndarray, A_ : np.ndarray, A_ : np.ndarray | None = None, ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = np.shape(A_ ) _lowerCamelCase : List[str] = np.shape(A_ ) _lowerCamelCase : List[str] = np.shape(A_ ) if shape_a[0] != shape_b[0]: _lowerCamelCase : Tuple = ( '''Expected the same number of rows for A and B. ''' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(A_ ) if shape_b[1] != shape_c[1]: _lowerCamelCase : Tuple = ( '''Expected the same number of columns for B and C. ''' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(A_ ) _lowerCamelCase : List[str] = pseudo_inv if a_inv is None: try: _lowerCamelCase : Any = np.linalg.inv(A_ ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _lowerCamelCase : List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) _lowerCamelCase : List[str] = np.array([[2, 1], [6, 3]] ) _lowerCamelCase : List[Any] = schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = np.block([[a, b], [b.T, c]] ) _lowerCamelCase : Tuple = np.linalg.det(__lowerCAmelCase ) _lowerCamelCase : List[str] = np.linalg.det(__lowerCAmelCase ) _lowerCamelCase : Any = np.linalg.det(__lowerCAmelCase ) self.assertAlmostEqual(__lowerCAmelCase , det_a * det_s ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _lowerCamelCase : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) _lowerCamelCase : int = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__lowerCAmelCase ): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _lowerCamelCase : List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) _lowerCamelCase : Union[str, Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__lowerCAmelCase ): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
72
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class __A( a ): snake_case_ = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''text''': Value('''string''' )} ) snake_case_ = Features({} ) snake_case_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
6
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a ={ """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
73
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase ( a__ , a__ , a__=1024 , a__=1024 , a__=False , **a__ ) -> Optional[Any]: __a = AutoTokenizer.from_pretrained(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''train''' , **a__ ) __a = tok.pad_token_id def get_lens(a__ ): __a = tqdm( DataLoader(a__ , batch_size=512 , num_workers=8 , shuffle=a__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __a = [] for batch in dl: __a = batch['''input_ids'''].ne(a__ ).sum(1 ).tolist() __a = batch['''labels'''].ne(a__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(a__ , a__ ): max_lens.append(max(a__ , a__ ) ) else: max_lens.extend(a__ ) return max_lens __a = get_lens(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''val''' , **a__ ) __a = get_lens(a__ ) pickle_save(a__ , train_ds.len_file ) pickle_save(a__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
6
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _lowercase = logging.get_logger(__name__) @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : int ,**A_ : Any ) -> Any: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: A = deprecated_arg[3:] A = not kwargs.pop(A_ ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) A = kwargs.pop('tpu_name' ,self.tpu_name ) A = kwargs.pop('device_idx' ,self.device_idx ) A = kwargs.pop('eager_mode' ,self.eager_mode ) A = kwargs.pop('use_xla' ,self.use_xla ) super().__init__(**A_ ) _lowerCamelCase: str = field( default=_lowercase , metadata={'''help''': '''Name of TPU'''} , ) _lowerCamelCase: int = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) _lowerCamelCase: bool = field(default=_lowercase , metadata={'''help''': '''Benchmark models in eager model.'''} ) _lowerCamelCase: bool = field( default=_lowercase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self ,['tf'] ) A = None if self.tpu: try: if self.tpu_name: A = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: A = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: A = None return tpu @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self ,['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) A = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,'GPU' ) A = tf.distribute.OneDeviceStrategy(device=F'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([] ,'GPU' ) # disable GPU A = tf.distribute.OneDeviceStrategy(device=F'/cpu:{self.device_idx}' ) return strategy @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> bool: requires_backends(self ,['tf'] ) return self._setup_tpu is not None @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> "tf.distribute.Strategy": requires_backends(self ,['tf'] ) return self._setup_strategy @property def _SCREAMING_SNAKE_CASE ( self : int ) -> str: requires_backends(self ,['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: requires_backends(self ,['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _SCREAMING_SNAKE_CASE ( self : str ) -> bool: return self.n_gpu > 0
74
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 - _cos) / 2 __a = 1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 + _cos) / 2 __a = -1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = _sin / 2 __a = 0 __a = -ba __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 1 - alpha __a = -2 * _cos __a = 1 + alpha __a = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = 1 + alpha * big_a __a = -2 * _cos __a = 1 - alpha * big_a __a = 1 + alpha / big_a __a = -2 * _cos __a = 1 - alpha / big_a __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (pmc + aaa) __a = 2 * big_a * mpc __a = big_a * (pmc - aaa) __a = ppmc + aaa __a = -2 * pmpc __a = ppmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (ppmc + aaa) __a = -2 * big_a * pmpc __a = big_a * (ppmc - aaa) __a = pmc + aaa __a = 2 * mpc __a = pmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
6
0
'''simple docstring''' import math def a_ ( __snake_case : list , __snake_case : int = 0 , __snake_case : int = 0 ) -> list: """simple docstring""" lowerCamelCase_ =end or len(__snake_case ) for i in range(__snake_case , __snake_case ): lowerCamelCase_ =i lowerCamelCase_ =array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCamelCase_ =array[temp_index - 1] temp_index -= 1 lowerCamelCase_ =temp_index_value return array def a_ ( __snake_case : list , __snake_case : int , __snake_case : int ) -> None: # Max Heap """simple docstring""" lowerCamelCase_ =index lowerCamelCase_ =2 * index + 1 # Left Node lowerCamelCase_ =2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCamelCase_ =left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCamelCase_ =right_index if largest != index: lowerCamelCase_, lowerCamelCase_ =array[largest], array[index] heapify(__snake_case , __snake_case , __snake_case ) def a_ ( __snake_case : list ) -> list: """simple docstring""" lowerCamelCase_ =len(__snake_case ) for i in range(n // 2 , -1 , -1 ): heapify(__snake_case , __snake_case , __snake_case ) for i in range(n - 1 , 0 , -1 ): lowerCamelCase_, lowerCamelCase_ =array[0], array[i] heapify(__snake_case , 0 , __snake_case ) return array def a_ ( __snake_case : list , __snake_case : int , __snake_case : int , __snake_case : int ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a_ ( __snake_case : list , __snake_case : int , __snake_case : int , __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =low lowerCamelCase_ =high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCamelCase_, lowerCamelCase_ =array[j], array[i] i += 1 def a_ ( __snake_case : list ) -> list: """simple docstring""" if len(__snake_case ) == 0: return array lowerCamelCase_ =2 * math.ceil(math.loga(len(__snake_case ) ) ) lowerCamelCase_ =16 return intro_sort(__snake_case , 0 , len(__snake_case ) , __snake_case , __snake_case ) def a_ ( __snake_case : list , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(__snake_case ) max_depth -= 1 lowerCamelCase_ =median_of_a(__snake_case , __snake_case , start + ((end - start) // 2) + 1 , end - 1 ) lowerCamelCase_ =partition(__snake_case , __snake_case , __snake_case , __snake_case ) intro_sort(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) lowerCamelCase_ =p return insertion_sort(__snake_case , __snake_case , __snake_case ) if __name__ == "__main__": import doctest doctest.testmod() a_ : Optional[Any] = input("""Enter numbers separated by a comma : """).strip() a_ : List[Any] = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
75
def __lowerCAmelCase ( a__ , a__ , a__ ) -> list: __a = len(a__ ) __a = [[0] * n for i in range(a__ )] for i in range(a__ ): __a = y_points[i] for i in range(2 , a__ ): for j in range(a__ , a__ ): __a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
6
0
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a_ = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) a_ = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } a_ = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) a_ = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) a_ = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' a_ = '' a_ = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase__ ( _a , _a): assert ReadMe.from_string(_a , _a).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase__ ( _a , _a): with pytest.raises(_a , match=re.escape(expected_error.format(path="root"))): SCREAMING_SNAKE_CASE : str = ReadMe.from_string(_a , _a) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _a , _a): with pytest.raises(_a , match=re.escape(expected_error.format(path="root"))): ReadMe.from_string(_a , _a) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _a): ReadMe.from_string(_a , _a , suppress_parsing_errors=_a) @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase__ ( _a , _a): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : Optional[int] = Path(_a) / "README.md" with open(_a , "w+") as readme_file: readme_file.write(_a) SCREAMING_SNAKE_CASE : Optional[Any] = ReadMe.from_readme(_a , _a).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase__ ( _a , _a): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : List[str] = Path(_a) / "README.md" with open(_a , "w+") as readme_file: readme_file.write(_a) SCREAMING_SNAKE_CASE : Optional[Any] = expected_error.format(path=_a) with pytest.raises(_a , match=re.escape(_a)): SCREAMING_SNAKE_CASE : Optional[int] = ReadMe.from_readme(_a , _a) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _a , _a): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : Any = Path(_a) / "README.md" with open(_a , "w+") as readme_file: readme_file.write(_a) SCREAMING_SNAKE_CASE : Dict = expected_error.format(path=_a) with pytest.raises(_a , match=re.escape(_a)): ReadMe.from_readme(_a , _a) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _a): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : int = Path(_a) / "README.md" with open(_a , "w+") as readme_file: readme_file.write(_a) ReadMe.from_readme(_a , _a , suppress_parsing_errors=_a)
76
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def __lowerCAmelCase ( a__ , a__ , a__ ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] __a = (low + high) // 2 __a , __a , __a = max_subarray(a__ , a__ , a__ ) __a , __a , __a = max_subarray(a__ , mid + 1 , a__ ) __a , __a , __a = max_cross_sum(a__ , a__ , a__ , a__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> tuple[int, int, float]: __a , __a = float('''-inf''' ), -1 __a , __a = float('''-inf''' ), -1 __a = 0 for i in range(a__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __a = summ __a = i __a = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __a = summ __a = i return max_left, max_right, (left_sum + right_sum) def __lowerCAmelCase ( a__ ) -> float: __a = [randint(1 , a__ ) for _ in range(a__ )] __a = time.time() max_subarray(a__ , 0 , input_size - 1 ) __a = time.time() return end - start def __lowerCAmelCase ( ) -> None: __a = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] __a = [time_max_subarray(a__ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(a__ , a__ ): print(a__ , '''\t\t''' , a__ ) plt.plot(a__ , a__ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
6
0
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np _UpperCamelCase : Any = re.compile(r"\b(a|an|the)\b", re.UNICODE) _UpperCamelCase : Union[str, Any] = None def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=_lowerCAmelCase , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=_lowerCAmelCase , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase__ : Optional[int] = bool(qa['answers']['text'] ) return qid_to_has_ans def a_ ( _lowerCAmelCase : Any ): '''simple docstring''' def remove_articles(_lowerCAmelCase : int ): return ARTICLES_REGEX.sub(' ' , _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : str ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : List[Any] ): lowercase__ : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' if not s: return [] return normalize_answer(_lowerCAmelCase ).split() def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): '''simple docstring''' return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : Dict = get_tokens(_lowerCAmelCase ) lowercase__ : List[str] = get_tokens(_lowerCAmelCase ) lowercase__ : List[Any] = collections.Counter(_lowerCAmelCase ) & collections.Counter(_lowerCAmelCase ) lowercase__ : int = sum(common.values() ) if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowercase__ : Any = 1.0 * num_same / len(_lowerCAmelCase ) lowercase__ : Dict = 1.0 * num_same / len(_lowerCAmelCase ) lowercase__ : Any = (2 * precision * recall) / (precision + recall) return fa def a_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = {} lowercase__ : Union[str, Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase__ : Any = qa['id'] lowercase__ : Union[str, Any] = [t for t in qa['answers']['text'] if normalize_answer(_lowerCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowercase__ : Dict = [''] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue lowercase__ : Optional[int] = preds[qid] # Take max over all gold answers lowercase__ : int = max(compute_exact(_lowerCAmelCase , _lowerCAmelCase ) for a in gold_answers ) lowercase__ : Optional[Any] = max(compute_fa(_lowerCAmelCase , _lowerCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : str = {} for qid, s in scores.items(): lowercase__ : int = na_probs[qid] > na_prob_thresh if pred_na: lowercase__ : Optional[Any] = float(not qid_to_has_ans[qid] ) else: lowercase__ : Optional[Any] = s return new_scores def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None ): '''simple docstring''' if not qid_list: lowercase__ : Optional[Any] = len(_lowerCAmelCase ) return collections.OrderedDict( [ ('exact', 1_0_0.0 * sum(exact_scores.values() ) / total), ('f1', 1_0_0.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: lowercase__ : Optional[Any] = len(_lowerCAmelCase ) return collections.OrderedDict( [ ('exact', 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' for k in new_eval: lowercase__ : int = new_eval[k] def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): '''simple docstring''' plt.step(_lowerCAmelCase , _lowerCAmelCase , color='b' , alpha=0.2 , where='post' ) plt.fill_between(_lowerCAmelCase , _lowerCAmelCase , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(_lowerCAmelCase ) plt.savefig(_lowerCAmelCase ) plt.clf() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ): '''simple docstring''' lowercase__ : Optional[int] = sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : na_probs[k] ) lowercase__ : Tuple = 0.0 lowercase__ : List[str] = 1.0 lowercase__ : List[str] = 0.0 lowercase__ : Union[str, Any] = [1.0] lowercase__ : List[Any] = [0.0] lowercase__ : Optional[int] = 0.0 for i, qid in enumerate(_lowerCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowercase__ : Tuple = true_pos / float(i + 1 ) lowercase__ : Union[str, Any] = true_pos / float(_lowerCAmelCase ) if i == len(_lowerCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_lowerCAmelCase ) recalls.append(_lowerCAmelCase ) if out_image: plot_pr_curve(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return {"ap": 1_0_0.0 * avg_prec} def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' if out_image_dir and not os.path.exists(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) lowercase__ : List[str] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowercase__ : Dict = make_precision_recall_eval( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , out_image=os.path.join(_lowerCAmelCase , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) lowercase__ : Tuple = make_precision_recall_eval( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , out_image=os.path.join(_lowerCAmelCase , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) lowercase__ : List[Any] = {k: float(_lowerCAmelCase ) for k, v in qid_to_has_ans.items()} lowercase__ : Any = make_precision_recall_eval( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , out_image=os.path.join(_lowerCAmelCase , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , 'pr_exact' ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , 'pr_f1' ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , 'pr_oracle' ) def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' if not qid_list: return lowercase__ : List[str] = [na_probs[k] for k in qid_list] lowercase__ : Tuple = np.ones_like(_lowerCAmelCase ) / float(len(_lowerCAmelCase ) ) plt.hist(_lowerCAmelCase , weights=_lowerCAmelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(_lowerCAmelCase , f"""na_prob_hist_{name}.png""" ) ) plt.clf() def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' lowercase__ : Tuple = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowercase__ : int = num_no_ans lowercase__ : Optional[int] = cur_score lowercase__ : Tuple = 0.0 lowercase__ : Dict = sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : na_probs[k] ) for i, qid in enumerate(_lowerCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: lowercase__ : Optional[int] = scores[qid] else: if preds[qid]: lowercase__ : List[Any] = -1 else: lowercase__ : Optional[int] = 0 cur_score += diff if cur_score > best_score: lowercase__ : Dict = cur_score lowercase__ : Optional[int] = na_probs[qid] return 1_0_0.0 * best_score / len(_lowerCAmelCase ), best_thresh def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ , lowercase__ : List[Any] = find_best_thresh(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ , lowercase__ : Dict = find_best_thresh(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Any = best_exact lowercase__ : Tuple = exact_thresh lowercase__ : Optional[Any] = best_fa lowercase__ : Any = fa_thresh def a_ ( ): '''simple docstring''' with open(OPTS.data_file ) as f: lowercase__ : List[Any] = json.load(_lowerCAmelCase ) lowercase__ : Union[str, Any] = dataset_json['data'] with open(OPTS.pred_file ) as f: lowercase__ : str = json.load(_lowerCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowercase__ : Union[str, Any] = json.load(_lowerCAmelCase ) else: lowercase__ : str = {k: 0.0 for k in preds} lowercase__ : int = make_qid_to_has_ans(_lowerCAmelCase ) # maps qid to True/False lowercase__ : List[str] = [k for k, v in qid_to_has_ans.items() if v] lowercase__ : Any = [k for k, v in qid_to_has_ans.items() if not v] lowercase__ , lowercase__ : Any = get_raw_scores(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Optional[Any] = apply_no_ans_threshold(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , OPTS.na_prob_thresh ) lowercase__ : Union[str, Any] = apply_no_ans_threshold(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , OPTS.na_prob_thresh ) lowercase__ : Tuple = make_eval_dict(_lowerCAmelCase , _lowerCAmelCase ) if has_ans_qids: lowercase__ : int = make_eval_dict(_lowerCAmelCase , _lowerCAmelCase , qid_list=_lowerCAmelCase ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , 'HasAns' ) if no_ans_qids: lowercase__ : Optional[Any] = make_eval_dict(_lowerCAmelCase , _lowerCAmelCase , qid_list=_lowerCAmelCase ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , OPTS.out_image_dir ) histogram_na_prob(_lowerCAmelCase , _lowerCAmelCase , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(_lowerCAmelCase , _lowerCAmelCase , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) else: print(json.dumps(_lowerCAmelCase , indent=2 ) ) if __name__ == "__main__": _UpperCamelCase : Optional[int] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
77
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A( a , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __A( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = ort.SessionOptions() __a = False return options def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_snake_case , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
6
0
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Optional[Any] , lowercase_ :int , lowercase_ :Tuple=13 , lowercase_ :Any=7 , lowercase_ :List[str]=True , lowercase_ :Optional[int]=True , lowercase_ :str=False , lowercase_ :Optional[int]=True , lowercase_ :Union[str, Any]=99 , lowercase_ :Optional[int]=32 , lowercase_ :int=5 , lowercase_ :int=4 , lowercase_ :Optional[int]=64 , lowercase_ :Union[str, Any]="gelu" , lowercase_ :Union[str, Any]=0.1 , lowercase_ :List[Any]=0.1 , lowercase_ :Union[str, Any]=5_12 , lowercase_ :Tuple=16 , lowercase_ :Union[str, Any]=2 , lowercase_ :Optional[Any]=0.02 , lowercase_ :Union[str, Any]=3 , lowercase_ :int=4 , lowercase_ :Any=None , lowercase_ :Any=2 , lowercase_ :List[Any]=2 , lowercase_ :Optional[Any]=2 , lowercase_ :Any=2 , lowercase_ :int=4 , lowercase_ :Optional[int]=1 , ) -> int: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = q_groups UpperCAmelCase = k_groups UpperCAmelCase = v_groups UpperCAmelCase = post_attention_groups UpperCAmelCase = intermediate_groups UpperCAmelCase = output_groups def UpperCAmelCase__ ( self :Optional[Any] ) -> Union[str, Any]: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self :Optional[int] ) -> Optional[Any]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :List[str] , lowercase_ :Optional[Any] , lowercase_ :Tuple , lowercase_ :Any , lowercase_ :Dict , lowercase_ :Tuple ) -> str: UpperCAmelCase = SqueezeBertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , lowercase_ ) UpperCAmelCase = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Optional[int] , lowercase_ :str , lowercase_ :Tuple , lowercase_ :List[Any] , lowercase_ :Dict , lowercase_ :Any ) -> int: UpperCAmelCase = SqueezeBertForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :List[Any] , lowercase_ :Optional[int] , lowercase_ :Union[str, Any] , lowercase_ :Optional[int] , lowercase_ :Dict , lowercase_ :List[str] ) -> Dict: UpperCAmelCase = SqueezeBertForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model( lowercase_ , attention_mask=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :str , lowercase_ :List[str] , lowercase_ :int , lowercase_ :str , lowercase_ :Optional[int] , lowercase_ :Union[str, Any] ) -> int: UpperCAmelCase = self.num_labels UpperCAmelCase = SqueezeBertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :List[str] , lowercase_ :Any , lowercase_ :Any , lowercase_ :Dict , lowercase_ :Optional[int] , lowercase_ :Tuple ) -> Any: UpperCAmelCase = self.num_labels UpperCAmelCase = SqueezeBertForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self :int , lowercase_ :Dict , lowercase_ :Any , lowercase_ :Tuple , lowercase_ :Optional[Any] , lowercase_ :int , lowercase_ :str ) -> int: UpperCAmelCase = self.num_choices UpperCAmelCase = SqueezeBertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( lowercase_ , attention_mask=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Tuple: UpperCAmelCase = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) = config_and_inputs UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCamelCase = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = False def UpperCAmelCase__ ( self :str ) -> Dict: UpperCAmelCase = SqueezeBertModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , dim=37 ) def UpperCAmelCase__ ( self :int ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self :List[str] ) -> Tuple: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowercase_ ) def UpperCAmelCase__ ( self :List[Any] ) -> Dict: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowercase_ ) def UpperCAmelCase__ ( self :str ) -> Union[str, Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowercase_ ) def UpperCAmelCase__ ( self :List[Any] ) -> Optional[Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowercase_ ) def UpperCAmelCase__ ( self :List[str] ) -> Any: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowercase_ ) @slow def UpperCAmelCase__ ( self :Dict ) -> List[str]: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = SqueezeBertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_sentencepiece @require_tokenizers @require_torch class A_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self :Tuple ) -> int: UpperCAmelCase = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) UpperCAmelCase = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) UpperCAmelCase = model(lowercase_ )[0] UpperCAmelCase = torch.Size((1, 3) ) self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-4 ) )
78
from math import ceil def __lowerCAmelCase ( a__ = 1001 ) -> int: __a = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __a = 2 * i + 1 __a = 2 * i __a = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''ChineseCLIPImageProcessor''' snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> Tuple: '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) __a = self.image_processor def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: __a = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class
6
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Any = logging.get_logger(__name__) a__ : int = '▁' a__ : Optional[int] = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } a__ : Optional[Any] = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } a__ : Union[str, Any] = { 'facebook/s2t-small-librispeech-asr': 1_0_2_4, } a__ : Union[str, Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] a__ : str = {'mustc': MUSTC_LANGS} class lowercase_ ( a__ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] __UpperCAmelCase = [] def __init__( self , a , a , a="<s>" , a="</s>" , a="<pad>" , a="<unk>" , a=False , a=False , a=None , a=None , a = None , **a , ): UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , pad_token=a , do_upper_case=a , do_lower_case=a , tgt_lang=a , lang_codes=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) UpperCamelCase__ = do_upper_case UpperCamelCase__ = do_lower_case UpperCamelCase__ = load_json(a ) UpperCamelCase__ = {v: k for k, v in self.encoder.items()} UpperCamelCase__ = spm_file UpperCamelCase__ = load_spm(a , self.sp_model_kwargs ) if lang_codes is not None: UpperCamelCase__ = lang_codes UpperCamelCase__ = LANGUAGES[lang_codes] UpperCamelCase__ = [f'''<lang:{lang}>''' for lang in self.langs] UpperCamelCase__ = {lang: self.sp_model.PieceToId(f'''<lang:{lang}>''' ) for lang in self.langs} UpperCamelCase__ = self.lang_tokens UpperCamelCase__ = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: UpperCamelCase__ = {} @property def __a ( self ): return len(self.encoder ) @property def __a ( self ): return self._tgt_lang @tgt_lang.setter def __a ( self , a ): UpperCamelCase__ = new_tgt_lang self.set_tgt_lang_special_tokens(a ) def __a ( self , a ): UpperCamelCase__ = self.lang_code_to_id[tgt_lang] UpperCamelCase__ = [lang_code_id] def __a ( self , a ): return self.sp_model.encode(a , out_type=a ) def __a ( self , a ): return self.encoder.get(a , self.encoder[self.unk_token] ) def __a ( self , a ): return self.decoder.get(a , self.unk_token ) def __a ( self , a ): UpperCamelCase__ = [] UpperCamelCase__ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: UpperCamelCase__ = self.sp_model.decode(a ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " UpperCamelCase__ = [] else: current_sub_tokens.append(a ) UpperCamelCase__ = self.sp_model.decode(a ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __a ( self , a , a=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __a ( self , a , a = None , a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) UpperCamelCase__ = [1] * len(self.prefix_tokens ) UpperCamelCase__ = [1] if token_ids_a is None: return prefix_ones + ([0] * len(a )) + suffix_ones return prefix_ones + ([0] * len(a )) + ([0] * len(a )) + suffix_ones def __a ( self ): UpperCamelCase__ = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , a ): UpperCamelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase__ = {} UpperCamelCase__ = load_spm(self.spm_file , self.sp_model_kwargs ) def __a ( self , a , a = None ): UpperCamelCase__ = Path(a ) assert save_dir.is_dir(), f'''{save_directory} should be a directory''' UpperCamelCase__ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) UpperCamelCase__ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , a ) if os.path.abspath(self.spm_file ) != os.path.abspath(a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , a ) elif not os.path.isfile(self.spm_file ): with open(a , "wb" ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(a ) return (str(a ), str(a )) def _UpperCamelCase ( __A , __A ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' UpperCamelCase__ = sentencepiece.SentencePieceProcessor(**__A ) spm.Load(str(__A ) ) return spm def _UpperCamelCase ( __A ) -> Union[Dict, List]: '''simple docstring''' with open(__A , "r" ) as f: return json.load(__A ) def _UpperCamelCase ( __A , __A ) -> None: '''simple docstring''' with open(__A , "w" ) as f: json.dump(__A , __A , indent=2 )
80
from __future__ import annotations import typing from collections import Counter def __lowerCAmelCase ( a__ ) -> typing.Counter[int]: __a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): __a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): __a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCAmelCase ( a__ = 1000 ) -> int: __a = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
6
0
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowerCamelCase_ : Dict = logging.get_logger(__name__) lowerCamelCase_ : int = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED lowerCamelCase_ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } lowerCamelCase_ : Optional[Any] = { """allenai/led-base-16384""": 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _A ( ): """simple docstring""" a =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) a =bs[:] a =0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 a =[chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _A ( lowercase ): """simple docstring""" a =set() a =word[0] for char in word[1:]: pairs.add((prev_char, char) ) a =char return pairs class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , __A , __A , __A="replace" , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A=False , **__A , ) -> List[Any]: a =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token a =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token a =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token a =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token a =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token a =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding='''utf-8''' ) as vocab_handle: a =json.load(__A ) a ={v: k for k, v in self.encoder.items()} a =errors # how to handle errors in decoding a =bytes_to_unicode() a ={v: k for k, v in self.byte_encoder.items()} with open(__A , encoding='''utf-8''' ) as merges_handle: a =merges_handle.read().split('''\n''' )[1:-1] a =[tuple(merge.split() ) for merge in bpe_merges] a =dict(zip(__A , range(len(__A ) ) ) ) a ={} a =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a =re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def SCREAMING_SNAKE_CASE ( self ) -> List[str]: return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Union[str, Any]: if token in self.cache: return self.cache[token] a =tuple(__A ) a =get_pairs(__A ) if not pairs: return token while True: a =min(__A , key=lambda __A : self.bpe_ranks.get(__A , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break a , a =bigram a =[] a =0 while i < len(__A ): try: a =word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a =j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a =tuple(__A ) a =new_word if len(__A ) == 1: break else: a =get_pairs(__A ) a =''' '''.join(__A ) a =word return word def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[Any]: a =[] for token in re.findall(self.pat , __A ): a =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(''' ''' ) ) return bpe_tokens def SCREAMING_SNAKE_CASE ( self , __A ) -> List[Any]: return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[int]: return self.decoder.get(__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Any: a =''''''.join(__A ) a =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return a =os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) a =os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + '''\n''' ) a =0 with open(__A , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) a =token_index writer.write(''' '''.join(__A ) + '''\n''' ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a =[self.cls_token_id] a =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: a =[self.sep_token_id] a =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE ( self , __A , __A=False , **__A ) -> str: a =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): a =''' ''' + text return (text, kwargs) def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = PaddingStrategy.DO_NOT_PAD , __A = None , __A = None , ) -> dict: a =super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: a ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a =len(encoded_inputs['''global_attention_mask'''] ) != len(__A ) if needs_to_be_padded: a =len(__A ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": a =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
81
# flake8: noqa # Lint as: python3 A : Optional[Any] = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
6
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = (PNDMScheduler,) __lowerCamelCase = (('''num_inference_steps''', 50),) def snake_case ( self , **_snake_case ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_snake_case ) return config def snake_case ( self , _snake_case=0 , **_snake_case ): """simple docstring""" _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("""num_inference_steps""" , _snake_case ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**_snake_case ) _lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) _lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[:] _lowerCAmelCase = scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowerCAmelCase = scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case ( self ): """simple docstring""" pass def snake_case ( self , _snake_case=0 , **_snake_case ): """simple docstring""" _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("""num_inference_steps""" , _snake_case ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) _lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[:] _lowerCAmelCase = scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowerCAmelCase = scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case ( self , **_snake_case ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_snake_case ) _lowerCAmelCase = scheduler_class(**_snake_case ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.prk_timesteps ): _lowerCAmelCase = model(_snake_case , _snake_case ) _lowerCAmelCase = scheduler.step_prk(_snake_case , _snake_case , _snake_case ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowerCAmelCase = model(_snake_case , _snake_case ) _lowerCAmelCase = scheduler.step_plms(_snake_case , _snake_case , _snake_case ).prev_sample return sample def snake_case ( self ): """simple docstring""" _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("""num_inference_steps""" , _snake_case ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_snake_case ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(_snake_case , """set_timesteps""" ): scheduler.set_timesteps(_snake_case ) elif num_inference_steps is not None and not hasattr(_snake_case , """set_timesteps""" ): _lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowerCAmelCase = dummy_past_residuals[:] _lowerCAmelCase = scheduler.step_prk(_snake_case , 0 , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = scheduler.step_prk(_snake_case , 1 , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _lowerCAmelCase = scheduler.step_plms(_snake_case , 0 , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = scheduler.step_plms(_snake_case , 1 , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_snake_case ) def snake_case ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_snake_case ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(steps_offset=1 ) _lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def snake_case ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_snake_case , beta_end=_snake_case ) def snake_case ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_snake_case ) def snake_case ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case ) def snake_case ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=_snake_case ) def snake_case ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = 27 for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowerCAmelCase = scheduler.step_prk(_snake_case , _snake_case , _snake_case ).prev_sample def snake_case ( self ): """simple docstring""" with self.assertRaises(_snake_case ): _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.sum(torch.abs(_snake_case ) ) _lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop(prediction_type="""v_prediction""" ) _lowerCAmelCase = torch.sum(torch.abs(_snake_case ) ) _lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop(set_alpha_to_one=_snake_case , beta_start=0.01 ) _lowerCAmelCase = torch.sum(torch.abs(_snake_case ) ) _lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop(set_alpha_to_one=_snake_case , beta_start=0.01 ) _lowerCAmelCase = torch.sum(torch.abs(_snake_case ) ) _lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
82
from typing import Dict from .base import GenericTensor, Pipeline class __A( a ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: __a = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __a = truncation __a = tokenize_kwargs __a = {} if return_tensors is not None: __a = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE_ ( self , _snake_case , **_snake_case ) -> Dict[str, GenericTensor]: '''simple docstring''' __a = self.framework __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.model(**_snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=False ) -> Optional[int]: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' return super().__call__(*_snake_case , **_snake_case )
6
0
'''simple docstring''' from __future__ import annotations def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : Dict = set(UpperCAmelCase_ ), [start] while stack: _UpperCamelCase : List[Any] = stack.pop() explored.add(UpperCAmelCase_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCAmelCase_ ) return explored snake_case_ : Optional[Any] = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
83
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Optional[int] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class __A( a ): snake_case_ = '''levit''' def __init__( self , _snake_case=224 , _snake_case=3 , _snake_case=3 , _snake_case=2 , _snake_case=1 , _snake_case=16 , _snake_case=[128, 256, 384] , _snake_case=[4, 8, 12] , _snake_case=[4, 4, 4] , _snake_case=[16, 16, 16] , _snake_case=0 , _snake_case=[2, 2, 2] , _snake_case=[2, 2, 2] , _snake_case=0.02 , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = image_size __a = num_channels __a = kernel_size __a = stride __a = padding __a = hidden_sizes __a = num_attention_heads __a = depths __a = key_dim __a = drop_path_rate __a = patch_size __a = attention_ratio __a = mlp_ratio __a = initializer_range __a = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
6
0
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __UpperCAmelCase = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __UpperCAmelCase = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') __UpperCAmelCase = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __UpperCAmelCase = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __UpperCAmelCase = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def _snake_case ( lowercase__ : Optional[int] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :List[Any] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , lowercase__ ) return [m.group(0 ) for m in matches] def _snake_case ( ) -> str: '''simple docstring''' lowerCAmelCase_ :List[str] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCAmelCase_ :Optional[Any] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. lowerCAmelCase_ :List[Any] = collections.defaultdict(lowercase__ ) lowerCAmelCase_ :Dict = collections.defaultdict(lowercase__ ) lowerCAmelCase_ :Union[str, Any] = collections.defaultdict(lowercase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowercase__ ): lowerCAmelCase_ :List[Any] = None if _re_tf_models.match(lowercase__ ) is not None: lowerCAmelCase_ :List[str] = tf_models lowerCAmelCase_ :Dict = _re_tf_models.match(lowercase__ ).groups()[0] elif _re_flax_models.match(lowercase__ ) is not None: lowerCAmelCase_ :Tuple = flax_models lowerCAmelCase_ :List[str] = _re_flax_models.match(lowercase__ ).groups()[0] elif _re_pt_models.match(lowercase__ ) is not None: lowerCAmelCase_ :List[Any] = pt_models lowerCAmelCase_ :str = _re_pt_models.match(lowercase__ ).groups()[0] if lookup_dict is not None: while len(lowercase__ ) > 0: if attr_name in model_prefix_to_model_type: lowerCAmelCase_ :List[Any] = True break # Try again after removing the last word in the name lowerCAmelCase_ :Optional[int] = """""".join(camel_case_split(lowercase__ )[:-1] ) lowerCAmelCase_ :Optional[Any] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) lowerCAmelCase_ :Dict = list(lowercase__ ) all_models.sort() lowerCAmelCase_ :str = {"""model_type""": all_models} lowerCAmelCase_ :Optional[int] = [pt_models[t] for t in all_models] lowerCAmelCase_ :Dict = [tf_models[t] for t in all_models] lowerCAmelCase_ :Optional[Any] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure lowerCAmelCase_ :Any = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: lowerCAmelCase_ :Any = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: lowerCAmelCase_ :List[str] = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: lowerCAmelCase_ :List[Any] = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. lowerCAmelCase_ :Union[str, Any] = """AutoTokenizer""" lowerCAmelCase_ :Union[str, Any] = [processors[t] for t in all_models] return pd.DataFrame(lowercase__ ) def _snake_case ( lowercase__ : Any ) -> str: '''simple docstring''' lowerCAmelCase_ :str = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: lowerCAmelCase_ :Dict = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] lowerCAmelCase_ :Dict = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(lowercase__ , lowercase__ , lowercase__ ): # The type of pipeline may not exist in this framework if not hasattr(lowercase__ , lowercase__ ): continue # First extract all model_names lowerCAmelCase_ :Optional[Any] = [] for name in getattr(lowercase__ , lowercase__ ).values(): if isinstance(lowercase__ , lowercase__ ): model_names.append(lowercase__ ) else: model_names.extend(list(lowercase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def _snake_case ( lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ :Union[str, Any] = get_frameworks_table() lowerCAmelCase_ :Optional[int] = Dataset.from_pandas(lowercase__ ) lowerCAmelCase_ :Any = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=lowercase__ ) lowerCAmelCase_ :List[str] = Dataset.from_json(lowercase__ ) lowerCAmelCase_ :int = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(lowercase__ ) ) } lowerCAmelCase_ :Dict = update_pipeline_and_auto_class_table(lowercase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. lowerCAmelCase_ :str = sorted(table.keys() ) lowerCAmelCase_ :List[str] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) lowerCAmelCase_ :List[str] = Dataset.from_pandas(lowercase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowercase__ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(lowercase__ , """pipeline_tags.json""" ) ) if commit_sha is not None: lowerCAmelCase_ :List[Any] = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: lowerCAmelCase_ :int = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=lowercase__ , repo_type="""dataset""" , token=lowercase__ , commit_message=lowercase__ , ) def _snake_case ( ) -> str: '''simple docstring''' lowerCAmelCase_ :Tuple = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} lowerCAmelCase_ :Optional[int] = transformers_module.pipelines.SUPPORTED_TASKS lowerCAmelCase_ :int = [] for key in pipeline_tasks: if key not in in_table: lowerCAmelCase_ :Any = pipeline_tasks[key]["""pt"""] if isinstance(lowercase__ , (list, tuple) ): lowerCAmelCase_ :int = model[0] lowerCAmelCase_ :List[Any] = model.__name__ if model not in in_table.values(): missing.append(lowercase__ ) if len(lowercase__ ) > 0: lowerCAmelCase_ :Optional[int] = """, """.join(lowercase__ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') __UpperCAmelCase = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
84
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : int = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __A( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' __a = TOKEN HfFolder.save_token(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case , repo_id='''test-model-flax''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case )
6
0
'''simple docstring''' def UpperCamelCase_( snake_case : int = 1_0_0_0 ): '''simple docstring''' snake_case_ = -1 snake_case_ = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c snake_case_ = (n * n - 2 * a * n) // (2 * n - 2 * a) snake_case_ = n - a - b if c * c == (a * a + b * b): snake_case_ = a * b * c if candidate >= product: snake_case_ = candidate return product if __name__ == "__main__": print(F"{solution() = }")
85
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path A : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) A : List[str] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} A : Optional[int] = 'zero2' A : str = 'zero3' A : Tuple = [ZEROa, ZEROa] def __lowerCAmelCase ( a__ , a__ , a__ ) -> Tuple: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __a = parameterized.to_safe_name('''_'''.join(str(a__ ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test A : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A( a ): @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Any: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> int: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> str: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = True , _snake_case = True , _snake_case = True , ) -> Any: '''simple docstring''' __a = models[model] __a = self.run_trainer( stage=_snake_case , model_name=_snake_case , eval_steps=_snake_case , num_train_epochs=1 , distributed=_snake_case , fpaa=_snake_case , ) self.do_checks(_snake_case ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = 1 , _snake_case = True , _snake_case = True , ) -> Union[str, Any]: '''simple docstring''' __a = self.get_auto_remove_tmp_dir('''./xxx''' , after=_snake_case ) __a = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __a = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __a = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __a = self.get_launcher(_snake_case ) __a = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case=False ) -> List[str]: '''simple docstring''' __a = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
6
0
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowerCamelCase__ = getLogger(__name__) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 8 , _UpperCamelCase = 1024 , _UpperCamelCase="val" , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase="summarization" , _UpperCamelCase=None , _UpperCamelCase=1 , _UpperCamelCase = None , _UpperCamelCase="" , **_UpperCamelCase , ): __lowerCAmelCase : List[Any] = str(_UpperCamelCase ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=_UpperCamelCase ) __lowerCAmelCase : List[str] = Path(_UpperCamelCase ) __lowerCAmelCase : Any = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(_UpperCamelCase ) __lowerCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ).cuda() if fpaa: __lowerCAmelCase : Union[str, Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(_UpperCamelCase , _UpperCamelCase ) # update config with task specific params __lowerCAmelCase : str = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __lowerCAmelCase : Optional[int] = num_return_sequences __lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(_UpperCamelCase ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: __lowerCAmelCase : int = tokenizer.model_max_length if prefix is None: __lowerCAmelCase : Any = prefix or getattr(model.config , 'prefix' , '' ) or '' __lowerCAmelCase : str = SeqaSeqDataset( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , max_target_length=1024 , type_path=_UpperCamelCase , n_obs=_UpperCamelCase , prefix=_UpperCamelCase , **_UpperCamelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __lowerCAmelCase : Tuple = ds.make_sortish_sampler(_UpperCamelCase , distributed=_UpperCamelCase , add_extra_examples=_UpperCamelCase , shuffle=_UpperCamelCase ) __lowerCAmelCase : Dict = DataLoader(_UpperCamelCase , sampler=_UpperCamelCase , batch_size=_UpperCamelCase , collate_fn=ds.collate_fn ) __lowerCAmelCase : Tuple = [] for batch in tqdm(_UpperCamelCase ): __lowerCAmelCase : List[Any] = model.generate( input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=_UpperCamelCase , num_beams=_UpperCamelCase , **_UpperCamelCase , ) __lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) __lowerCAmelCase : Any = batch['ids'] if num_return_sequences > 1: __lowerCAmelCase : List[Any] = chunks(_UpperCamelCase , _UpperCamelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_UpperCamelCase ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(_UpperCamelCase , _UpperCamelCase ) return results, sampler.num_replicas def __lowerCAmelCase (): __lowerCAmelCase : str = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir' , type=_UpperCamelCase , help='like cnn_dm/test.source' ) parser.add_argument( '--model_name' , type=_UpperCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=_UpperCamelCase , help='where to save' , default='tmp_gen' ) parser.add_argument('--max_source_length' , type=_UpperCamelCase , default=_UpperCamelCase ) parser.add_argument( '--type_path' , type=_UpperCamelCase , default='test' , help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task' , type=_UpperCamelCase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=_UpperCamelCase , default=8 , required=_UpperCamelCase , help='batch size' ) parser.add_argument( '--local_rank' , type=_UpperCamelCase , default=-1 , required=_UpperCamelCase , help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs' , type=_UpperCamelCase , default=_UpperCamelCase , required=_UpperCamelCase , help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences' , type=_UpperCamelCase , default=1 , required=_UpperCamelCase , help='How many sequences to return' ) parser.add_argument( '--sync_timeout' , type=_UpperCamelCase , default=600 , required=_UpperCamelCase , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=_UpperCamelCase , default=_UpperCamelCase , required=_UpperCamelCase ) parser.add_argument('--tgt_lang' , type=_UpperCamelCase , default=_UpperCamelCase , required=_UpperCamelCase ) parser.add_argument( '--prefix' , type=_UpperCamelCase , required=_UpperCamelCase , default=_UpperCamelCase , help='will be added to the begininng of src examples' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--debug' , action='store_true' ) __lowerCAmelCase : Optional[int] = time.time() __lowerCAmelCase , __lowerCAmelCase : str = parser.parse_known_args() __lowerCAmelCase : Any = parse_numeric_n_bool_cl_kwargs(_UpperCamelCase ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) __lowerCAmelCase : List[Any] = Path(args.save_dir + '_tmp' ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) # this handles locking. __lowerCAmelCase : List[str] = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __lowerCAmelCase : Optional[int] = {} if args.src_lang is not None: __lowerCAmelCase : Tuple = args.src_lang if args.tgt_lang is not None: __lowerCAmelCase : Tuple = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase : str = eval_data_dir( args.data_dir , _UpperCamelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_UpperCamelCase , **_UpperCamelCase , ) if args.local_rank <= 0: __lowerCAmelCase : Optional[Any] = Path(args.save_dir ) save_dir.mkdir(exist_ok=_UpperCamelCase ) __lowerCAmelCase : List[str] = gather_results_from_each_node(_UpperCamelCase , _UpperCamelCase , args.sync_timeout ) __lowerCAmelCase : Optional[Any] = combine_partial_results(_UpperCamelCase ) if args.num_return_sequences > 1: __lowerCAmelCase : int = save_dir.joinpath('pseudolabel_results.json' ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(_UpperCamelCase , _UpperCamelCase ) return __lowerCAmelCase : Optional[int] = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(_UpperCamelCase ) as f: __lowerCAmelCase : Union[str, Any] = [x.rstrip() for x in f.readlines()][: len(_UpperCamelCase )] # Calculate metrics, save metrics, and save _generations.txt __lowerCAmelCase : Optional[Any] = 'translation' in args.task __lowerCAmelCase : Any = calculate_bleu if calc_bleu else calculate_rouge __lowerCAmelCase : Any = 'bleu' if calc_bleu else 'rouge' __lowerCAmelCase : Dict = score_fn(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : int = len(_UpperCamelCase ) __lowerCAmelCase : Tuple = time.time() - start_time __lowerCAmelCase : Tuple = round(runtime / metrics['n_obs'] , 4 ) __lowerCAmelCase : Optional[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics __lowerCAmelCase : List[str] = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(_UpperCamelCase , _UpperCamelCase , indent=_UpperCamelCase ) print(_UpperCamelCase ) write_txt_file(_UpperCamelCase , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(_UpperCamelCase , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(_UpperCamelCase ) def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Optional[int] = [] for partial_result in partial_results: records.extend(_UpperCamelCase ) __lowerCAmelCase : List[Any] = sorted(_UpperCamelCase , key=lambda _UpperCamelCase : x["id"] ) __lowerCAmelCase : Optional[int] = [x['pred'] for x in records] return preds def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): # WAIT FOR lots of .json files __lowerCAmelCase : Union[str, Any] = time.time() logger.info('waiting for all nodes to finish' ) __lowerCAmelCase : Tuple = None while (time.time() - start_wait) < timeout: __lowerCAmelCase : Dict = list(save_dir.glob('rank_*.json' ) ) if len(_UpperCamelCase ) < num_replicas: continue try: # make sure all json files are fully saved __lowerCAmelCase : List[str] = lmap(_UpperCamelCase , _UpperCamelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
86
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A( a , a , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = '''sample''' snake_case_ = 1E-2 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = 4 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes ).to(_snake_case ) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __a = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a , __a = self.prepare_init_args_and_inputs_for_common() __a = self.model_class(**_snake_case ) model.to(_snake_case ) assert not model.is_gradient_checkpointing and model.training __a = model(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __a = torch.randn_like(_snake_case ) __a = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __a = self.model_class(**_snake_case ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_snake_case ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __a = model_a(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __a = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __a = dict(model.named_parameters() ) __a = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a , __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_snake_case ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __a = model.to(_snake_case ) model.eval() if torch_device == "mps": __a = torch.manual_seed(0 ) else: __a = torch.Generator(device=_snake_case ).manual_seed(0 ) __a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __a = image.to(_snake_case ) with torch.no_grad(): __a = model(_snake_case , sample_posterior=_snake_case , generator=_snake_case ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __a = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": __a = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __a = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1E-2 ) ) @slow class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_snake_case ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , _snake_case=(4, 3, 512, 512) , _snake_case=False ) -> Any: '''simple docstring''' __a = torch.floataa if fpaa else torch.floataa __a = torch.from_numpy(load_hf_numpy(self.get_file_format(_snake_case , _snake_case ) ) ).to(_snake_case ).to(_snake_case ) return image def SCREAMING_SNAKE_CASE_ ( self , _snake_case="CompVis/stable-diffusion-v1-4" , _snake_case=False ) -> Optional[Any]: '''simple docstring''' __a = '''fp16''' if fpaa else None __a = torch.floataa if fpaa else torch.floataa __a = AutoencoderKL.from_pretrained( _snake_case , subfolder='''vae''' , torch_dtype=_snake_case , revision=_snake_case , ) model.to(_snake_case ).eval() return model def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> Tuple: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(_snake_case ) return torch.Generator(device=_snake_case ).manual_seed(_snake_case ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , fpaa=_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) with torch.no_grad(): __a = model(_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model.encode(_snake_case ).latent_dist __a = dist.sample(generator=_snake_case ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __a = sample[0, -1, -3:, -3:].flatten().cpu() __a = torch.tensor(_snake_case ) __a = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(_snake_case , _snake_case , atol=_snake_case )
6
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class snake_case_ ( __A ): __A : List[str] = "longformer" def __init__( self : Any , lowercase_ : Union[List[int], int] = 5_12 , lowercase_ : int = 2 , lowercase_ : int = 1 , lowercase_ : int = 0 , lowercase_ : int = 2 , lowercase_ : int = 3_05_22 , lowercase_ : int = 7_68 , lowercase_ : int = 12 , lowercase_ : int = 12 , lowercase_ : int = 30_72 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 5_12 , lowercase_ : int = 2 , lowercase_ : float = 0.02 , lowercase_ : float = 1E-12 , lowercase_ : bool = False , **lowercase_ : Dict , ) -> str: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) lowercase__ : List[Any] = attention_window lowercase__ : Any = sep_token_id lowercase__ : Dict = bos_token_id lowercase__ : Optional[Any] = eos_token_id lowercase__ : str = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Tuple = hidden_act lowercase__ : int = intermediate_size lowercase__ : str = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : List[Any] = type_vocab_size lowercase__ : Tuple = initializer_range lowercase__ : List[Any] = layer_norm_eps lowercase__ : Dict = onnx_export class snake_case_ ( __A ): def __init__( self : Optional[int] , lowercase_ : "PretrainedConfig" , lowercase_ : str = "default" , lowercase_ : "List[PatchingSpec]" = None ) -> int: super().__init__(lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Any = True @property def __UpperCamelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase__ : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase__ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def __UpperCamelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: lowercase__ : Optional[int] = super().outputs if self.task == "default": lowercase__ : Optional[Any] = {0: "batch"} return outputs @property def __UpperCamelCase ( self : Optional[int] ) -> float: return 1E-4 @property def __UpperCamelCase ( self : Union[str, Any] ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def __UpperCamelCase ( self : List[str] , lowercase_ : "PreTrainedTokenizerBase" , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: lowercase__ : Tuple = super().generate_dummy_inputs( preprocessor=lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowercase__ : Dict = torch.zeros_like(inputs["input_ids"] ) # make every second token global lowercase__ : str = 1 return inputs
87
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A : str = logging.get_logger(__name__) class __A( a ): def __init__( self , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = [] __a = [] __a = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __a = parent.find_all(child.name , recursive=_snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_snake_case ) else next(i for i, s in enumerate(_snake_case , 1 ) if s is child ) ) __a = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = BeautifulSoup(_snake_case , '''html.parser''' ) __a = [] __a = [] __a = [] for element in html_code.descendants: if type(_snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __a = html.unescape(_snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(_snake_case ) __a , __a = self.xpath_soup(_snake_case ) stringaxtag_seq.append(_snake_case ) stringaxsubs_seq.append(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = '''''' for tagname, subs in zip(_snake_case , _snake_case ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , _snake_case ) -> BatchFeature: '''simple docstring''' __a = False # Check that strings has a valid type if isinstance(_snake_case , _snake_case ): __a = True elif isinstance(_snake_case , (list, tuple) ): if len(_snake_case ) == 0 or isinstance(html_strings[0] , _snake_case ): __a = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_snake_case )}.""" ) __a = bool(isinstance(_snake_case , (list, tuple) ) and (isinstance(html_strings[0] , _snake_case )) ) if not is_batched: __a = [html_strings] # Get nodes + xpaths __a = [] __a = [] for html_string in html_strings: __a , __a , __a = self.get_three_from_single(_snake_case ) nodes.append(_snake_case ) __a = [] for node, tag_list, sub_list in zip(_snake_case , _snake_case , _snake_case ): __a = self.construct_xpath(_snake_case , _snake_case ) xpath_strings.append(_snake_case ) xpaths.append(_snake_case ) # return as Dict __a = {'''nodes''': nodes, '''xpaths''': xpaths} __a = BatchFeature(data=_snake_case , tensor_type=_snake_case ) return encoded_inputs
6
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : str = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
def __lowerCAmelCase ( a__ , a__ ) -> float: def get_matched_characters(a__ , a__ ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a__ ) __a = F"""{_stra[0:_stra.index(a__ )]} {_stra[_stra.index(a__ ) + 1:]}""" return "".join(a__ ) # matching characters __a = get_matched_characters(a__ , a__ ) __a = get_matched_characters(a__ , a__ ) __a = len(a__ ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(a__ , a__ ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(a__ ) + match_count / len(a__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
6
0
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __magic_name__ ( unittest.TestCase ): def __lowercase ( self : Any ): _a : str = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) ,1 ) self.assertEqual(x.component(2 ) ,3 ) _a : Union[str, Any] = Vector() def __lowercase ( self : int ): _a : List[Any] = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_UpperCAmelCase ) ,'(0,0,0,0,0,1)' ) def __lowercase ( self : Union[str, Any] ): _a : Tuple = Vector([1, 2, 3, 4] ) self.assertEqual(len(_UpperCAmelCase ) ,4 ) def __lowercase ( self : Optional[int] ): _a : Dict = Vector([1, 2] ) _a : Optional[Any] = Vector([1, 2, 3, 4, 5] ) _a : Tuple = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _a : Union[str, Any] = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() ,2.2_36 ,3 ) self.assertAlmostEqual(y.euclidean_length() ,7.4_16 ,3 ) self.assertEqual(z.euclidean_length() ,0 ) self.assertAlmostEqual(w.euclidean_length() ,7.6_16 ,3 ) def __lowercase ( self : Any ): _a : Dict = Vector([1, 2, 3] ) _a : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) ,2 ) self.assertEqual((x + y).component(1 ) ,3 ) self.assertEqual((x + y).component(2 ) ,4 ) def __lowercase ( self : Tuple ): _a : str = Vector([1, 2, 3] ) _a : int = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) ,0 ) self.assertEqual((x - y).component(1 ) ,1 ) self.assertEqual((x - y).component(2 ) ,2 ) def __lowercase ( self : Dict ): _a : Tuple = Vector([1, 2, 3] ) _a : int = Vector([2, -1, 4] ) # for test of dot product _a : Dict = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) ,'(3.0,6.0,9.0)' ) self.assertEqual((a * b) ,0 ) def __lowercase ( self : List[Any] ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) ,10 ) def __lowercase ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 ,1 ) ) ,'(0,1,0)' ) def __lowercase ( self : Optional[Any] ): _a : Optional[Any] = Vector([1, 2, 3] ) _a : Any = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 ,_UpperCAmelCase ,_UpperCAmelCase ) ) ,'(3,4,7)' ) def __lowercase ( self : Optional[Any] ): _a : Union[str, Any] = Vector([1, 0, 0, 0, 0, 0] ) _a : Union[str, Any] = x.copy() self.assertEqual(str(_UpperCAmelCase ) ,str(_UpperCAmelCase ) ) def __lowercase ( self : Tuple ): _a : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 ,0 ) x.change_component(1 ,1 ) self.assertEqual(str(_UpperCAmelCase ) ,'(0,1,0)' ) def __lowercase ( self : List[Any] ): _a : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' ,str(_UpperCAmelCase ) ) def __lowercase ( self : Dict ): _a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) _a : Optional[int] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] ,a.minor(_UpperCAmelCase ,_UpperCAmelCase ) ) def __lowercase ( self : List[str] ): _a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) _a : List[str] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] ,a.cofactor(_UpperCAmelCase ,_UpperCAmelCase ) ) def __lowercase ( self : List[str] ): _a : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) self.assertEqual(-5 ,a.determinant() ) def __lowercase ( self : List[str] ): _a : Union[str, Any] = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ,3 ,3 ) _a : Any = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' ,str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' ,str(a * 2 ) ) def __lowercase ( self : List[Any] ): _a : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) a.change_component(0 ,2 ,5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' ,str(_UpperCAmelCase ) ) def __lowercase ( self : List[str] ): _a : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) self.assertEqual(7 ,a.component(2 ,1 ) ,0.01 ) def __lowercase ( self : Tuple ): _a : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) _a : Dict = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] ,3 ,3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' ,str(a + b ) ) def __lowercase ( self : Dict ): _a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) _a : int = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] ,3 ,3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' ,str(a - b ) ) def __lowercase ( self : Dict ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' ,str(square_zero_matrix(5 ) ) ,) if __name__ == "__main__": unittest.main()
89
def __lowerCAmelCase ( a__ ) -> str: __a = [] __a = set({'''(''', '''[''', '''{'''} ) __a = set({''')''', ''']''', '''}'''} ) __a = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(a__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(a__ ) == 0 or (len(a__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a__ ) == 0 def __lowerCAmelCase ( ) -> Dict: __a = input('''Enter sequence of brackets: ''' ) if is_balanced(a__ ): print(a__ , '''is balanced''' ) else: print(a__ , '''is not balanced''' ) if __name__ == "__main__": main()
6
0
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> bool: """simple docstring""" __lowerCamelCase = [int(UpperCamelCase__ ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(UpperCamelCase__ ) == 4 and all(0 <= int(UpperCamelCase__ ) <= 254 for octet in octets ) if __name__ == "__main__": __A = input().strip() __A = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
90
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : str = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ : Tuple = 16 UpperCAmelCase_ : List[str] = 32 def _A (__a , __a = 16 ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE_ : Dict = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__a ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ : Any = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = datasets.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_ : str = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__a ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_ : Optional[int] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_ : Any = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_ : int = 8 else: SCREAMING_SNAKE_CASE_ : Optional[int] = None return tokenizer.pad( __a , padding='''longest''' , max_length=__a , pad_to_multiple_of=__a , return_tensors='''pt''' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ : Optional[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) SCREAMING_SNAKE_CASE_ : int = DataLoader( tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase_ : int = mocked_dataloaders # noqa: F811 def _A (__a , __a ) -> Optional[int]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __a ) == "1": SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: SCREAMING_SNAKE_CASE_ : Optional[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: SCREAMING_SNAKE_CASE_ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_ : Any = config['''lr'''] SCREAMING_SNAKE_CASE_ : int = int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE_ : Optional[int] = int(config['''seed'''] ) SCREAMING_SNAKE_CASE_ : Tuple = int(config['''batch_size'''] ) set_seed(__a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = get_dataloaders(__a , __a ) SCREAMING_SNAKE_CASE_ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_ : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_ : Optional[Any] = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_ : List[str] = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_ : List[Any] = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler SCREAMING_SNAKE_CASE_ : int = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=1_00 , num_training_steps=(len(__a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.prepare( __a , __a , __a , __a , __a ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.split(__a )[-1].split('''.''' )[0] accelerator.init_trackers(__a , __a ) # Now we train the model for epoch in range(__a ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: SCREAMING_SNAKE_CASE_ : Tuple = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_ : List[str] = model(**__a ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() SCREAMING_SNAKE_CASE_ : List[Any] = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : str = model(**__a ) SCREAMING_SNAKE_CASE_ : str = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__a , references=__a , ) SCREAMING_SNAKE_CASE_ : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , __a ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(__a ), '''epoch''': epoch, } , step=__a , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _A () -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__a , default=__a , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=__a , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() SCREAMING_SNAKE_CASE_ : Optional[int] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__a , __a ) if __name__ == "__main__": main()
91
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Dict = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE_ : list[int] ): if not nums: return 0 __lowerCAmelCase = nums[0] __lowerCAmelCase = 0 for num in nums[1:]: __lowerCAmelCase , __lowerCAmelCase = ( max_excluding + num, max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), ) return max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
92
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = KandinskyInpaintPipeline lowerCAmelCase_ = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] lowerCAmelCase_ = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] lowerCAmelCase_ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowerCAmelCase_ = False @property def _snake_case ( self ): """simple docstring""" return 32 @property def _snake_case ( self ): """simple docstring""" return 32 @property def _snake_case ( self ): """simple docstring""" return self.time_input_dim @property def _snake_case ( self ): """simple docstring""" return self.time_input_dim * 4 @property def _snake_case ( self ): """simple docstring""" return 1_00 @property def _snake_case ( self ): """simple docstring""" lowercase_ : Union[str, Any] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def _snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase_ : Optional[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) lowercase_ : int = MultilingualCLIP(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = text_encoder.eval() return text_encoder @property def _snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase_ : Any = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase_ : int = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def _snake_case ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase_ : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def _snake_case ( self ): """simple docstring""" lowercase_ : int = self.dummy_text_encoder lowercase_ : int = self.dummy_tokenizer lowercase_ : Tuple = self.dummy_unet lowercase_ : List[Any] = self.dummy_movq lowercase_ : Dict = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__SCREAMING_SNAKE_CASE , ) lowercase_ : List[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" lowercase_ : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__SCREAMING_SNAKE_CASE ) # create init_image lowercase_ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ : List[Any] = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((2_56, 2_56) ) # create mask lowercase_ : Tuple = np.ones((64, 64) , dtype=np.floataa ) lowercase_ : Optional[int] = 0 if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): lowercase_ : str = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: lowercase_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = '''cpu''' lowercase_ : Dict = self.get_dummy_components() lowercase_ : List[str] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) lowercase_ : List[Any] = output.images lowercase_ : str = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) , return_dict=__SCREAMING_SNAKE_CASE , )[0] lowercase_ : Optional[Any] = image[0, -3:, -3:, -1] lowercase_ : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) lowercase_ : Optional[int] = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def _snake_case ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) lowercase_ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase_ : str = np.ones((7_68, 7_68) , dtype=np.floataa ) lowercase_ : List[Any] = 0 lowercase_ : int = '''a hat''' lowercase_ : int = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) lowercase_ : Dict = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase_ , lowercase_ : Dict = pipe_prior( __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowercase_ : Dict = pipeline( __SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , image_embeds=__SCREAMING_SNAKE_CASE , negative_image_embeds=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='''np''' , ) lowercase_ : Tuple = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
93
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
6
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=12 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=0.02 , _lowerCamelCase=0 , _lowerCamelCase=None , ): a :str = parent a :Dict = batch_size a :List[Any] = seq_length a :int = is_training a :List[Any] = use_input_mask a :List[Any] = use_labels a :Optional[int] = vocab_size a :Any = hidden_size a :int = projection_dim a :List[Any] = num_hidden_layers a :Any = num_attention_heads a :Tuple = intermediate_size a :Tuple = dropout a :Tuple = attention_dropout a :Any = max_position_embeddings a :Optional[Any] = initializer_range a :List[Any] = scope a :Tuple = bos_token_id def SCREAMING_SNAKE_CASE__ ( self ): a :Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :List[Any] = None if self.use_input_mask: a :int = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: a :Union[str, Any] = input_mask.numpy() a , a :int = input_mask.shape a :str = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowerCamelCase ): a :List[Any] = 1 a :int = 0 a :Tuple = self.get_config() return config, input_ids, tf.convert_to_tensor(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[int] = TFBlipTextModel(config=_lowerCamelCase ) a :str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , training=_lowerCamelCase ) a :Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = self.prepare_config_and_inputs() a , a , a :Tuple = config_and_inputs a :Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = (TFBlipTextModel,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = BlipTextModelTester(self ) a :List[str] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): a :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a :Any = TFBlipTextModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_lowerCamelCase )
94
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class __A( a ): snake_case_ = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''text''': Value('''string''' )} ) snake_case_ = Features({} ) snake_case_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
6
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase : int = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
95
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase ( a__ , a__ , a__=1024 , a__=1024 , a__=False , **a__ ) -> Optional[Any]: __a = AutoTokenizer.from_pretrained(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''train''' , **a__ ) __a = tok.pad_token_id def get_lens(a__ ): __a = tqdm( DataLoader(a__ , batch_size=512 , num_workers=8 , shuffle=a__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __a = [] for batch in dl: __a = batch['''input_ids'''].ne(a__ ).sum(1 ).tolist() __a = batch['''labels'''].ne(a__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(a__ , a__ ): max_lens.append(max(a__ , a__ ) ) else: max_lens.extend(a__ ) return max_lens __a = get_lens(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''val''' , **a__ ) __a = get_lens(a__ ) pickle_save(a__ , train_ds.len_file ) pickle_save(a__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
6
0
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = CLIPConfig lowerCamelCase__ = ["""CLIPEncoderLayer"""] def __init__( self , lowercase ): super().__init__(lowercase ) _lowerCamelCase : List[str] = CLIPVisionModelWithProjection(config.vision_config ) _lowerCamelCase : List[Any] = nn.Linear(config.vision_config.projection_dim , 1 ) _lowerCamelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def A_ ( self , lowercase , lowercase , lowercase=0.5 , lowercase=0.5 ): _lowerCamelCase : Dict = self.vision_model(lowercase )[0] _lowerCamelCase : Any = self.p_head(lowercase ) _lowerCamelCase : str = nsfw_detected.flatten() _lowerCamelCase : int = nsfw_detected > p_threshold _lowerCamelCase : Union[str, Any] = nsfw_detected.tolist() if any(lowercase ): logger.warning( 'Potential NSFW content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, nsfw_detected_ in enumerate(lowercase ): if nsfw_detected_: _lowerCamelCase : Dict = np.zeros(images[idx].shape ) _lowerCamelCase : Dict = self.w_head(lowercase ) _lowerCamelCase : Tuple = watermark_detected.flatten() _lowerCamelCase : Dict = watermark_detected > w_threshold _lowerCamelCase : Dict = watermark_detected.tolist() if any(lowercase ): logger.warning( 'Potential watermarked content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, watermark_detected_ in enumerate(lowercase ): if watermark_detected_: _lowerCamelCase : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
96
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 - _cos) / 2 __a = 1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 + _cos) / 2 __a = -1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = _sin / 2 __a = 0 __a = -ba __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 1 - alpha __a = -2 * _cos __a = 1 + alpha __a = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = 1 + alpha * big_a __a = -2 * _cos __a = 1 - alpha * big_a __a = 1 + alpha / big_a __a = -2 * _cos __a = 1 - alpha / big_a __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (pmc + aaa) __a = 2 * big_a * mpc __a = big_a * (pmc - aaa) __a = ppmc + aaa __a = -2 * pmpc __a = ppmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (ppmc + aaa) __a = -2 * big_a * pmpc __a = big_a * (ppmc - aaa) __a = pmc + aaa __a = 2 * mpc __a = pmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
6
0
'''simple docstring''' import random def a ( __a , __a , __a ) -> Any: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = a[left_index] UpperCamelCase__ :Union[str, Any] = left_index + 1 for j in range(left_index + 1 , __a ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = a[i - 1], a[left_index] return i - 1 def a ( __a , __a , __a ) -> Optional[Any]: '''simple docstring''' if left < right: UpperCamelCase__ :Any = random.randint(__a , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :Any = partition(__a , __a , __a ) quick_sort_random( __a , __a , __a ) # recursive quicksort to the left of the pivot point quick_sort_random( __a , pivot_index + 1 , __a ) # recursive quicksort to the right of the pivot point def a ( ) -> str: '''simple docstring''' UpperCamelCase__ :Any = input('''Enter numbers separated by a comma:\n''' ).strip() UpperCamelCase__ :str = [int(__a ) for item in user_input.split(''',''' )] quick_sort_random(__a , 0 , len(__a ) ) print(__a ) if __name__ == "__main__": main()
97
def __lowerCAmelCase ( a__ , a__ , a__ ) -> list: __a = len(a__ ) __a = [[0] * n for i in range(a__ )] for i in range(a__ ): __a = y_points[i] for i in range(2 , a__ ): for j in range(a__ , a__ ): __a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
6
0
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def a_ ( lowerCamelCase = 2_0_0_0_0_0_0 ): UpperCAmelCase__ = [0] UpperCAmelCase__ = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target UpperCAmelCase__ = 0 # the area corresponding to the grid that gives the product closest to target UpperCAmelCase__ = 0 # an estimate of b, using the quadratic formula UpperCAmelCase__ = 42 # the largest integer less than b_estimate UpperCAmelCase__ = 42 # the largest integer less than b_estimate UpperCAmelCase__ = 42 # the triangle number corresponding to b_floor UpperCAmelCase__ = 42 # the triangle number corresponding to b_ceil UpperCAmelCase__ = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): UpperCAmelCase__ = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 UpperCAmelCase__ = floor(lowerCamelCase ) UpperCAmelCase__ = ceil(lowerCamelCase ) UpperCAmelCase__ = triangle_numbers[b_floor] UpperCAmelCase__ = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): UpperCAmelCase__ = triangle_b_first_guess * triangle_a UpperCAmelCase__ = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): UpperCAmelCase__ = triangle_b_second_guess * triangle_a UpperCAmelCase__ = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
98
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def __lowerCAmelCase ( a__ , a__ , a__ ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] __a = (low + high) // 2 __a , __a , __a = max_subarray(a__ , a__ , a__ ) __a , __a , __a = max_subarray(a__ , mid + 1 , a__ ) __a , __a , __a = max_cross_sum(a__ , a__ , a__ , a__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> tuple[int, int, float]: __a , __a = float('''-inf''' ), -1 __a , __a = float('''-inf''' ), -1 __a = 0 for i in range(a__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __a = summ __a = i __a = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __a = summ __a = i return max_left, max_right, (left_sum + right_sum) def __lowerCAmelCase ( a__ ) -> float: __a = [randint(1 , a__ ) for _ in range(a__ )] __a = time.time() max_subarray(a__ , 0 , input_size - 1 ) __a = time.time() return end - start def __lowerCAmelCase ( ) -> None: __a = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] __a = [time_max_subarray(a__ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(a__ , a__ ): print(a__ , '''\t\t''' , a__ ) plt.plot(a__ , a__ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
6
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
99
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A( a , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __A( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = ort.SessionOptions() __a = False return options def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_snake_case , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
6
0
"""simple docstring""" from __future__ import annotations import pandas as pd def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [0] * no_of_processes __SCREAMING_SNAKE_CASE = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = burst_time[i] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 9_9999_9999 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = False # Process until all processes are completed while complete != no_of_processes: for j in range(UpperCamelCase_ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __SCREAMING_SNAKE_CASE = remaining_time[j] __SCREAMING_SNAKE_CASE = j __SCREAMING_SNAKE_CASE = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __SCREAMING_SNAKE_CASE = remaining_time[short] if minm == 0: __SCREAMING_SNAKE_CASE = 9_9999_9999 if remaining_time[short] == 0: complete += 1 __SCREAMING_SNAKE_CASE = False # Find finish time of current process __SCREAMING_SNAKE_CASE = increment_time + 1 # Calculate waiting time __SCREAMING_SNAKE_CASE = finish_time - arrival_time[short] __SCREAMING_SNAKE_CASE = finar - burst_time[short] if waiting_time[short] < 0: __SCREAMING_SNAKE_CASE = 0 # Increment time increment_time += 1 return waiting_time def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [0] * no_of_processes for i in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = burst_time[i] + waiting_time[i] return turn_around_time def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 for i in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = total_waiting_time + waiting_time[i] __SCREAMING_SNAKE_CASE = total_turn_around_time + turn_around_time[i] print(f"Average waiting time = {total_waiting_time / no_of_processes:.5f}" ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("Enter how many process you want to analyze") __magic_name__ = int(input()) __magic_name__ = [0] * no_of_processes __magic_name__ = [0] * no_of_processes __magic_name__ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("Enter the arrival time and burst time for process:--" + str(i + 1)) __magic_name__, __magic_name__ = map(int, input().split()) __magic_name__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __magic_name__ = burst_time __magic_name__ = no_of_processes __magic_name__ = waiting_time __magic_name__ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __magic_name__ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ "Process", "BurstTime", "ArrivalTime", "WaitingTime", "TurnAroundTime", ], ) # Printing the dataFrame pd.set_option("display.max_rows", fcfs.shape[0] + 1) print(fcfs)
100
from math import ceil def __lowerCAmelCase ( a__ = 1001 ) -> int: __a = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __a = 2 * i + 1 __a = 2 * i __a = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
6
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ :str = logging.get_logger(__name__) lowercase__ :Tuple = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : str ='''megatron-bert''' def __init__( self ,A__=2_9_0_5_6 ,A__=1_0_2_4 ,A__=2_4 ,A__=1_6 ,A__=4_0_9_6 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=2 ,A__=0.02 ,A__=1E-12 ,A__=0 ,A__="absolute" ,A__=True ,**A__ ,): super().__init__(pad_token_id=A__ ,**A__) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = use_cache
101
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''ChineseCLIPImageProcessor''' snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> Tuple: '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) __a = self.image_processor def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: __a = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class
6
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='nllb-moe' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self , a_=12_81_12 , a_=10_24 , a_=12 , a_=40_96 , a_=16 , a_=12 , a_=40_96 , a_=16 , a_=0.05 , a_=0.05 , a_=True , a_=True , a_="relu" , a_=10_24 , a_=0.1 , a_=0.1 , a_=0.0 , a_=0.02 , a_=2 , a_=True , a_=False , a_="float32" , a_=False , a_=1_28 , a_=64 , a_=4 , a_=4 , a_=0.001 , a_=0.001 , a_="all" , a_=False , a_=False , a_=1.0 , a_=0.2 , a_=1 , a_=0 , a_=2 , a_=False , **a_ , ): '''simple docstring''' __snake_case : Optional[Any] = vocab_size __snake_case : int = max_position_embeddings __snake_case : int = d_model __snake_case : List[str] = encoder_ffn_dim __snake_case : Optional[Any] = encoder_layers __snake_case : Dict = encoder_attention_heads __snake_case : str = decoder_ffn_dim __snake_case : Dict = decoder_layers __snake_case : Union[str, Any] = decoder_attention_heads __snake_case : Optional[Any] = dropout __snake_case : Union[str, Any] = attention_dropout __snake_case : Union[str, Any] = activation_dropout __snake_case : List[Any] = activation_function __snake_case : int = init_std __snake_case : List[Any] = encoder_layerdrop __snake_case : Optional[Any] = decoder_layerdrop __snake_case : Tuple = use_cache __snake_case : Dict = encoder_layers __snake_case : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case : List[str] = router_z_loss_coef __snake_case : int = router_aux_loss_coef __snake_case : Union[str, Any] = decoder_sparse_step __snake_case : Tuple = encoder_sparse_step __snake_case : int = num_experts __snake_case : List[Any] = expert_capacity __snake_case : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) __snake_case : Optional[int] = router_dtype __snake_case : Tuple = router_ignore_padding_tokens __snake_case : List[Any] = batch_prioritized_routing __snake_case : Optional[int] = second_expert_policy __snake_case : Any = normalize_router_prob_before_dropping __snake_case : List[Any] = moe_eval_capacity_token_fraction __snake_case : Optional[int] = moe_token_dropout __snake_case : int = output_router_logits super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , **a_ , )
102
from __future__ import annotations import typing from collections import Counter def __lowerCAmelCase ( a__ ) -> typing.Counter[int]: __a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): __a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): __a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCAmelCase ( a__ = 1000 ) -> int: __a = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
6
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( UpperCamelCase_ ): _a = ['''image_processor''', '''tokenizer'''] _a = '''AutoImageProcessor''' _a = '''AutoTokenizer''' def __init__( self : Tuple , A_ : int , A_ : int): super().__init__(A_ , A_) lowerCAmelCase_ : Optional[int] = self.image_processor def __call__( self : List[str] , A_ : Tuple=None , A_ : List[Any]=None , A_ : Any=None , **A_ : List[str]): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''') if text is not None: lowerCAmelCase_ : List[Any] = self.tokenizer(A_ , return_tensors=A_ , **A_) if images is not None: lowerCAmelCase_ : List[Any] = self.image_processor(A_ , return_tensors=A_ , **A_) if text is not None and images is not None: lowerCAmelCase_ : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A_) , tensor_type=A_) def UpperCAmelCase__ ( self : Tuple , *A_ : Any , **A_ : int): return self.tokenizer.batch_decode(*A_ , **A_) def UpperCAmelCase__ ( self : str , *A_ : Optional[Any] , **A_ : Optional[Any]): return self.tokenizer.decode(*A_ , **A_) @property def UpperCAmelCase__ ( self : int): return ["input_ids", "attention_mask", "pixel_values"]
103
# flake8: noqa # Lint as: python3 A : Optional[Any] = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
6
0
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase__ = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase__ = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase__ = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase__ = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase__ = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase__ = '''''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _A ( A__ , A__ ): """simple docstring""" assert ReadMe.from_string(A__ , A__ ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _A ( A__ , A__ ): """simple docstring""" with pytest.raises(A__ , match=re.escape(expected_error.format(path='''root''' ) ) ): __lowercase = ReadMe.from_string(A__ , A__ ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _A ( A__ , A__ ): """simple docstring""" with pytest.raises(A__ , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(A__ , A__ ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _A ( A__ ): """simple docstring""" ReadMe.from_string(A__ , A__ , suppress_parsing_errors=A__ ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _A ( A__ , A__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = Path(A__ ) / '''README.md''' with open(A__ , '''w+''' ) as readme_file: readme_file.write(A__ ) __lowercase = ReadMe.from_readme(A__ , A__ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _A ( A__ , A__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = Path(A__ ) / '''README.md''' with open(A__ , '''w+''' ) as readme_file: readme_file.write(A__ ) __lowercase = expected_error.format(path=A__ ) with pytest.raises(A__ , match=re.escape(A__ ) ): __lowercase = ReadMe.from_readme(A__ , A__ ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _A ( A__ , A__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = Path(A__ ) / '''README.md''' with open(A__ , '''w+''' ) as readme_file: readme_file.write(A__ ) __lowercase = expected_error.format(path=A__ ) with pytest.raises(A__ , match=re.escape(A__ ) ): ReadMe.from_readme(A__ , A__ ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _A ( A__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = Path(A__ ) / '''README.md''' with open(A__ , '''w+''' ) as readme_file: readme_file.write(A__ ) ReadMe.from_readme(A__ , A__ , suppress_parsing_errors=A__ )
104
from typing import Dict from .base import GenericTensor, Pipeline class __A( a ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: __a = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __a = truncation __a = tokenize_kwargs __a = {} if return_tensors is not None: __a = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE_ ( self , _snake_case , **_snake_case ) -> Dict[str, GenericTensor]: '''simple docstring''' __a = self.framework __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.model(**_snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=False ) -> Optional[int]: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' return super().__call__(*_snake_case , **_snake_case )
6
0
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
105
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Optional[int] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class __A( a ): snake_case_ = '''levit''' def __init__( self , _snake_case=224 , _snake_case=3 , _snake_case=3 , _snake_case=2 , _snake_case=1 , _snake_case=16 , _snake_case=[128, 256, 384] , _snake_case=[4, 8, 12] , _snake_case=[4, 4, 4] , _snake_case=[16, 16, 16] , _snake_case=0 , _snake_case=[2, 2, 2] , _snake_case=[2, 2, 2] , _snake_case=0.02 , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = image_size __a = num_channels __a = kernel_size __a = stride __a = padding __a = hidden_sizes __a = num_attention_heads __a = depths __a = key_dim __a = drop_path_rate __a = patch_size __a = attention_ratio __a = mlp_ratio __a = initializer_range __a = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
6
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Optional[Any] = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : int = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __A( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' __a = TOKEN HfFolder.save_token(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case , repo_id='''test-model-flax''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case )
6
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __magic_name__ ( A : List[Any], A : List[str], A : Optional[Any] ): '''simple docstring''' if isinstance(A, torch.Tensor ): return image elif isinstance(A, PIL.Image.Image ): a = [image] if isinstance(image[0], PIL.Image.Image ): a = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] a = np.concatenate(A, axis=0 ) a = np.array(A ).astype(np.floataa ) / 2_55.0 a = image.transpose(0, 3, 1, 2 ) a = 2.0 * image - 1.0 a = torch.from_numpy(A ) elif isinstance(image[0], torch.Tensor ): a = torch.cat(A, dim=0 ) return image def __magic_name__ ( A : str, A : Optional[int], A : Tuple, A : Tuple=0.99_95 ): '''simple docstring''' if not isinstance(A, np.ndarray ): a = True a = va.device a = va.cpu().numpy() a = va.cpu().numpy() a = np.sum(va * va / (np.linalg.norm(A ) * np.linalg.norm(A )) ) if np.abs(A ) > DOT_THRESHOLD: a = (1 - t) * va + t * va else: a = np.arccos(A ) a = np.sin(A ) a = theta_a * t a = np.sin(A ) a = np.sin(theta_a - theta_t ) / sin_theta_a a = sin_theta_t / sin_theta_a a = sa * va + sa * va if inputs_are_torch: a = torch.from_numpy(A ).to(A ) return va def __magic_name__ ( A : int, A : Optional[int] ): '''simple docstring''' a = F.normalize(A, dim=-1 ) a = F.normalize(A, dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __magic_name__ ( A : List[str], A : str ): '''simple docstring''' for param in model.parameters(): a = value class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : AutoencoderKL , __lowerCamelCase : CLIPTextModel , __lowerCamelCase : CLIPModel , __lowerCamelCase : CLIPTokenizer , __lowerCamelCase : UNetaDConditionModel , __lowerCamelCase : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , __lowerCamelCase : CLIPFeatureExtractor , __lowerCamelCase : List[Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : Tuple=None , ) -> Optional[int]: super().__init__() self.register_modules( vae=__lowerCamelCase , text_encoder=__lowerCamelCase , clip_model=__lowerCamelCase , tokenizer=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase , feature_extractor=__lowerCamelCase , coca_model=__lowerCamelCase , coca_tokenizer=__lowerCamelCase , coca_transform=__lowerCamelCase , ) a = ( feature_extractor.size if isinstance(feature_extractor.size , __lowerCamelCase ) else feature_extractor.size["shortest_edge"] ) a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __lowerCamelCase ) set_requires_grad(self.clip_model , __lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Optional[Union[str, int]] = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCamelCase ) def __UpperCAmelCase ( self : Any ) -> List[Any]: self.enable_attention_slicing(__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: set_requires_grad(self.vae , __lowerCamelCase ) def __UpperCAmelCase ( self : int ) -> List[Any]: set_requires_grad(self.vae , __lowerCamelCase ) def __UpperCAmelCase ( self : int ) -> List[Any]: set_requires_grad(self.unet , __lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> str: set_requires_grad(self.unet , __lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : List[str] ) -> Optional[int]: # get the original timestep using init_timestep a = min(int(num_inference_steps * strength ) , __lowerCamelCase ) a = max(num_inference_steps - init_timestep , 0 ) a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str=None ) -> Dict: if not isinstance(__lowerCamelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(__lowerCamelCase )}""" ) a = image.to(device=__lowerCamelCase , dtype=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCamelCase ) ] a = torch.cat(__lowerCamelCase , dim=0 ) else: a = self.vae.encode(__lowerCamelCase ).latent_dist.sample(__lowerCamelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor a = 0.18_215 * init_latents a = init_latents.repeat_interleave(__lowerCamelCase , dim=0 ) a = randn_tensor(init_latents.shape , generator=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase ) # get latents a = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) a = init_latents return latents def __UpperCAmelCase ( self : str , __lowerCamelCase : Optional[int] ) -> int: a = self.coca_transform(__lowerCamelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def __UpperCAmelCase ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] ) -> Any: a = self.feature_extractor.preprocess(__lowerCamelCase ) a = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() a = self.clip_model.get_image_features(__lowerCamelCase ) a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__lowerCamelCase ) a = image_embeddings_clip.repeat_interleave(__lowerCamelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def __UpperCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , ) -> List[str]: a = latents.detach().requires_grad_() a = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) # predict the noise residual a = self.unet(__lowerCamelCase , __lowerCamelCase , encoder_hidden_states=__lowerCamelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): a = self.scheduler.alphas_cumprod[timestep] a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 a = torch.sqrt(__lowerCamelCase ) a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __lowerCamelCase ): a = self.scheduler.sigmas[index] a = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor a = 1 / 0.18_215 * sample a = self.vae.decode(__lowerCamelCase ).sample a = (image / 2 + 0.5).clamp(0 , 1 ) a = transforms.Resize(self.feature_extractor_size )(__lowerCamelCase ) a = self.normalize(__lowerCamelCase ).to(latents.dtype ) a = self.clip_model.get_image_features(__lowerCamelCase ) a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__lowerCamelCase ) a = spherical_dist_loss(__lowerCamelCase , __lowerCamelCase ).mean() * clip_guidance_scale a = -torch.autograd.grad(__lowerCamelCase , __lowerCamelCase )[0] if isinstance(self.scheduler , __lowerCamelCase ): a = latents.detach() + grads * (sigma**2) a = noise_pred_original else: a = noise_pred_original - torch.sqrt(__lowerCamelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Optional[int] , __lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image] , __lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image] , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[int] = 5_12 , __lowerCamelCase : Optional[int] = 5_12 , __lowerCamelCase : float = 0.6 , __lowerCamelCase : Optional[int] = 50 , __lowerCamelCase : Optional[float] = 7.5 , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[float] = 1_00 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : float = 0.8 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , ) -> Dict: if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(__lowerCamelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(__lowerCamelCase , torch.Generator ) and batch_size > 1: a = [generator] + [None] * (batch_size - 1) a = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] a = [x[0] for x in coca_is_none if x[1]] a = ", ".join(__lowerCamelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__lowerCamelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) a = self.get_image_description(__lowerCamelCase ) if style_prompt is None: if len(__lowerCamelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) a = self.get_image_description(__lowerCamelCase ) # get prompt text embeddings for content and style a = self.tokenizer( __lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=__lowerCamelCase , return_tensors="pt" , ) a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] a = self.tokenizer( __lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=__lowerCamelCase , return_tensors="pt" , ) a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] a = slerp(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # duplicate text embeddings for each generation per prompt a = text_embeddings.repeat_interleave(__lowerCamelCase , dim=0 ) # set timesteps a = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) a = {} if accepts_offset: a = 1 self.scheduler.set_timesteps(__lowerCamelCase , **__lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) a , a = self.get_timesteps(__lowerCamelCase , __lowerCamelCase , self.device ) a = timesteps[:1].repeat(__lowerCamelCase ) # Preprocess image a = preprocess(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) a = self.prepare_latents( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , text_embeddings.dtype , self.device , __lowerCamelCase ) a = preprocess(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) a = self.prepare_latents( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , text_embeddings.dtype , self.device , __lowerCamelCase ) a = slerp(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if clip_guidance_scale > 0: a = self.get_clip_image_embeddings(__lowerCamelCase , __lowerCamelCase ) a = self.get_clip_image_embeddings(__lowerCamelCase , __lowerCamelCase ) a = slerp( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: a = content_text_input.input_ids.shape[-1] a = self.tokenizer([""] , padding="max_length" , max_length=__lowerCamelCase , return_tensors="pt" ) a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt a = uncond_embeddings.repeat_interleave(__lowerCamelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps a = torch.randn(__lowerCamelCase , generator=__lowerCamelCase , device="cpu" , dtype=__lowerCamelCase ).to( self.device ) else: a = torch.randn(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a = {} if accepts_eta: a = eta # check if the scheduler accepts generator a = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: a = generator with self.progress_bar(total=__lowerCamelCase ): for i, t in enumerate(__lowerCamelCase ): # expand the latents if we are doing classifier free guidance a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) # predict the noise residual a = self.unet(__lowerCamelCase , __lowerCamelCase , encoder_hidden_states=__lowerCamelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: a , a = noise_pred.chunk(2 ) a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) a , a = self.cond_fn( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) # compute the previous noisy sample x_t -> x_t-1 a = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor a = 1 / 0.18_215 * latents a = self.vae.decode(__lowerCamelCase ).sample a = (image / 2 + 0.5).clamp(0 , 1 ) a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__lowerCamelCase , nsfw_content_detected=__lowerCamelCase )
107
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path A : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) A : List[str] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} A : Optional[int] = 'zero2' A : str = 'zero3' A : Tuple = [ZEROa, ZEROa] def __lowerCAmelCase ( a__ , a__ , a__ ) -> Tuple: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __a = parameterized.to_safe_name('''_'''.join(str(a__ ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test A : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A( a ): @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Any: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> int: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> str: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = True , _snake_case = True , _snake_case = True , ) -> Any: '''simple docstring''' __a = models[model] __a = self.run_trainer( stage=_snake_case , model_name=_snake_case , eval_steps=_snake_case , num_train_epochs=1 , distributed=_snake_case , fpaa=_snake_case , ) self.do_checks(_snake_case ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = 1 , _snake_case = True , _snake_case = True , ) -> Union[str, Any]: '''simple docstring''' __a = self.get_auto_remove_tmp_dir('''./xxx''' , after=_snake_case ) __a = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __a = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __a = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __a = self.get_launcher(_snake_case ) __a = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case=False ) -> List[str]: '''simple docstring''' __a = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
6
0
"""simple docstring""" import numpy as np def a__ ( SCREAMING_SNAKE_CASE : np.array ): '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
108
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A( a , a , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = '''sample''' snake_case_ = 1E-2 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = 4 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes ).to(_snake_case ) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __a = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a , __a = self.prepare_init_args_and_inputs_for_common() __a = self.model_class(**_snake_case ) model.to(_snake_case ) assert not model.is_gradient_checkpointing and model.training __a = model(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __a = torch.randn_like(_snake_case ) __a = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __a = self.model_class(**_snake_case ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_snake_case ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __a = model_a(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __a = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __a = dict(model.named_parameters() ) __a = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a , __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_snake_case ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __a = model.to(_snake_case ) model.eval() if torch_device == "mps": __a = torch.manual_seed(0 ) else: __a = torch.Generator(device=_snake_case ).manual_seed(0 ) __a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __a = image.to(_snake_case ) with torch.no_grad(): __a = model(_snake_case , sample_posterior=_snake_case , generator=_snake_case ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __a = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": __a = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __a = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1E-2 ) ) @slow class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_snake_case ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , _snake_case=(4, 3, 512, 512) , _snake_case=False ) -> Any: '''simple docstring''' __a = torch.floataa if fpaa else torch.floataa __a = torch.from_numpy(load_hf_numpy(self.get_file_format(_snake_case , _snake_case ) ) ).to(_snake_case ).to(_snake_case ) return image def SCREAMING_SNAKE_CASE_ ( self , _snake_case="CompVis/stable-diffusion-v1-4" , _snake_case=False ) -> Optional[Any]: '''simple docstring''' __a = '''fp16''' if fpaa else None __a = torch.floataa if fpaa else torch.floataa __a = AutoencoderKL.from_pretrained( _snake_case , subfolder='''vae''' , torch_dtype=_snake_case , revision=_snake_case , ) model.to(_snake_case ).eval() return model def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> Tuple: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(_snake_case ) return torch.Generator(device=_snake_case ).manual_seed(_snake_case ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , fpaa=_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) with torch.no_grad(): __a = model(_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model.encode(_snake_case ).latent_dist __a = dist.sample(generator=_snake_case ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __a = sample[0, -1, -3:, -3:].flatten().cpu() __a = torch.tensor(_snake_case ) __a = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(_snake_case , _snake_case , atol=_snake_case )
6
0
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan A: str = 637_8137.0 A: List[Any] = 635_6752.31_4245 A: Any = 6_3_7_8_1_3_7 def _snake_case ( UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): UpperCAmelCase : Optional[int] = (AXIS_A - AXIS_B) / AXIS_A UpperCAmelCase : Optional[int] = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) ) UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) ) UpperCAmelCase : List[Any] = radians(UpperCamelCase ) UpperCAmelCase : Dict = radians(UpperCamelCase ) # Equation UpperCAmelCase : Dict = sin((phi_a - phi_a) / 2 ) UpperCAmelCase : List[Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda UpperCAmelCase : List[str] = sqrt(sin_sq_phi + (cos(UpperCamelCase ) * cos(UpperCamelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
109
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A : str = logging.get_logger(__name__) class __A( a ): def __init__( self , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = [] __a = [] __a = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __a = parent.find_all(child.name , recursive=_snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_snake_case ) else next(i for i, s in enumerate(_snake_case , 1 ) if s is child ) ) __a = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = BeautifulSoup(_snake_case , '''html.parser''' ) __a = [] __a = [] __a = [] for element in html_code.descendants: if type(_snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __a = html.unescape(_snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(_snake_case ) __a , __a = self.xpath_soup(_snake_case ) stringaxtag_seq.append(_snake_case ) stringaxsubs_seq.append(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = '''''' for tagname, subs in zip(_snake_case , _snake_case ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , _snake_case ) -> BatchFeature: '''simple docstring''' __a = False # Check that strings has a valid type if isinstance(_snake_case , _snake_case ): __a = True elif isinstance(_snake_case , (list, tuple) ): if len(_snake_case ) == 0 or isinstance(html_strings[0] , _snake_case ): __a = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_snake_case )}.""" ) __a = bool(isinstance(_snake_case , (list, tuple) ) and (isinstance(html_strings[0] , _snake_case )) ) if not is_batched: __a = [html_strings] # Get nodes + xpaths __a = [] __a = [] for html_string in html_strings: __a , __a , __a = self.get_three_from_single(_snake_case ) nodes.append(_snake_case ) __a = [] for node, tag_list, sub_list in zip(_snake_case , _snake_case , _snake_case ): __a = self.construct_xpath(_snake_case , _snake_case ) xpath_strings.append(_snake_case ) xpaths.append(_snake_case ) # return as Dict __a = {'''nodes''': nodes, '''xpaths''': xpaths} __a = BatchFeature(data=_snake_case , tensor_type=_snake_case ) return encoded_inputs
6
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowercase__ = 1_92 lowercase__ = 7_68 lowercase__ = 12 lowercase__ = 3 lowercase__ = [8_00, 13_33] lowercase__ = False elif yolos_name == "yolos_s_dWr": lowercase__ = 3_30 lowercase__ = 14 lowercase__ = 6 lowercase__ = 13_20 elif "yolos_s" in yolos_name: lowercase__ = 3_84 lowercase__ = 15_36 lowercase__ = 12 lowercase__ = 6 elif "yolos_b" in yolos_name: lowercase__ = [8_00, 13_44] lowercase__ = 91 lowercase__ = '''huggingface/label-files''' lowercase__ = '''coco-detection-id2label.json''' lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowercase__ = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[: config.hidden_size, :] lowercase__ = in_proj_bias[: config.hidden_size] lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ = in_proj_weight[-config.hidden_size :, :] lowercase__ = in_proj_bias[-config.hidden_size :] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if "backbone" in name: lowercase__ = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: lowercase__ = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: lowercase__ = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: lowercase__ = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: lowercase__ = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowercase__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: lowercase__ = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: lowercase__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowercase__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: lowercase__ = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: lowercase__ = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: lowercase__ = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: lowercase__ = key.split('''.''' ) lowercase__ = int(key_split[2] ) lowercase__ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[ dim : dim * 2, : ] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] else: lowercase__ = val return orig_state_dict def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): """simple docstring""" lowercase__ = get_yolos_config(SCREAMING_SNAKE_CASE ) # load original state_dict lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] # load 🤗 model lowercase__ = YolosForObjectDetection(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by YolosImageProcessor lowercase__ = 8_00 if yolos_name != '''yolos_ti''' else 5_12 lowercase__ = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowercase__ = model(**SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = outputs.logits, outputs.pred_boxes lowercase__ , lowercase__ = None, None if yolos_name == "yolos_ti": lowercase__ = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) lowercase__ = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": lowercase__ = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) lowercase__ = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": lowercase__ = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) lowercase__ = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": lowercase__ = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) lowercase__ = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": lowercase__ = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) lowercase__ = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(f'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: lowercase__ = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) lowercase__ = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE , organization='''hustvl''' ) model.push_to_hub(SCREAMING_SNAKE_CASE , organization='''hustvl''' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
110
def __lowerCAmelCase ( a__ , a__ ) -> float: def get_matched_characters(a__ , a__ ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a__ ) __a = F"""{_stra[0:_stra.index(a__ )]} {_stra[_stra.index(a__ ) + 1:]}""" return "".join(a__ ) # matching characters __a = get_matched_characters(a__ , a__ ) __a = get_matched_characters(a__ , a__ ) __a = len(a__ ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(a__ , a__ ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(a__ ) + match_count / len(a__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
6
0
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a ( __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :Tuple = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def a ( __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :List[Any] = emb.weight.shape UpperCamelCase__ :List[Any] = nn.Linear(a__ , a__ , bias=a__ ) UpperCamelCase__ :Union[str, Any] = emb.weight.data return lin_layer def a ( __a , __a=None ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :List[Any] = {} for old_key in state_dict.keys(): UpperCamelCase__ :List[Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: UpperCamelCase__ :Optional[int] = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: UpperCamelCase__ :Any = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: UpperCamelCase__ :int = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: UpperCamelCase__ :Any = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: UpperCamelCase__ :Any = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: UpperCamelCase__ :List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: UpperCamelCase__ :List[str] = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: UpperCamelCase__ :Any = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) UpperCamelCase__ :Tuple = state_dict[old_key] return new_dict def a ( __a , __a , __a , __a , __a = WEIGHTS_NAME ) -> Any: '''simple docstring''' UpperCamelCase__ :str = [] UpperCamelCase__ :Tuple = 0 os.makedirs(a__ , exist_ok=a__ ) for expert in range(a__ ): UpperCamelCase__ :int = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(a__ ): UpperCamelCase__ :List[str] = torch.load(a__ )['''model'''] remove_ignore_keys_(a__ ) UpperCamelCase__ :List[str] = rename_fairseq_keys(a__ , a__ ) UpperCamelCase__ :Dict = os.path.join( a__ , weights_name.replace('''.bin''' , f'''-{len(a__ )+1:05d}-of-???.bin''' ) ) torch.save(a__ , a__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(a__ )[0]].dtype ) # Add the last block UpperCamelCase__ :int = os.path.join(a__ , weights_name.replace('''.bin''' , f'''-{len(a__ )+1:05d}-of-???.bin''' ) ) UpperCamelCase__ :int = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(a__ ) UpperCamelCase__ :Union[str, Any] = rename_fairseq_keys(a__ , a__ ) UpperCamelCase__ :int = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(a__ ) == 1: UpperCamelCase__ :List[str] = os.path.join(a__ , a__ ) torch.save(a__ , a__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(a__ , a__ ) # Otherwise, let's build the index UpperCamelCase__ :str = {} for idx, shard in enumerate(a__ ): UpperCamelCase__ :str = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(a__ ):05d}.bin''' ) UpperCamelCase__ :List[Any] = os.path.join(a__ , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(a__ , os.path.join(a__ , a__ ) ) for key in shard: UpperCamelCase__ :int = shard_file # Add the metadata UpperCamelCase__ :Optional[int] = {'''total_size''': total_size} UpperCamelCase__ :List[Any] = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(a__ , a__ ) , '''w''' , encoding='''utf-8''' ) as f: UpperCamelCase__ :Tuple = json.dumps(a__ , indent=2 , sort_keys=a__ ) + '''\n''' f.write(a__ ) return metadata, index if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) __snake_case = parser.parse_args() __snake_case = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __snake_case = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __snake_case = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
97
def __lowerCAmelCase ( a__ ) -> str: __a = [] __a = set({'''(''', '''[''', '''{'''} ) __a = set({''')''', ''']''', '''}'''} ) __a = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(a__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(a__ ) == 0 or (len(a__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a__ ) == 0 def __lowerCAmelCase ( ) -> Dict: __a = input('''Enter sequence of brackets: ''' ) if is_balanced(a__ ): print(a__ , '''is balanced''' ) else: print(a__ , '''is not balanced''' ) if __name__ == "__main__": main()
6
0
import math import unittest def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> bool: '''simple docstring''' assert isinstance(a__, a__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(a__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __A ( unittest.TestCase ): def lowercase__ ( self : List[Any] ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def lowercase__ ( self : Optional[Any] ): with self.assertRaises(_snake_case ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
138
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : str = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( A ): UpperCamelCase = (CMStochasticIterativeScheduler,) UpperCamelCase = 1_0 def _lowerCamelCase ( self : int , **A : int) -> List[str]: """simple docstring""" _UpperCAmelCase = { 'num_train_timesteps': 2_01, 'sigma_min': 0.0_0_2, 'sigma_max': 8_0.0, } config.update(**_snake_case) return config def _lowerCamelCase ( self : Union[str, Any]) -> str: """simple docstring""" _UpperCAmelCase = 10 _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = self.scheduler_classes[0](**_snake_case) scheduler.set_timesteps(_snake_case) _UpperCAmelCase = scheduler.timesteps[0] _UpperCAmelCase = scheduler.timesteps[1] _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample _UpperCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _lowerCamelCase ( self : int) -> Union[str, Any]: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_snake_case) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_snake_case) def _lowerCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_snake_case) _UpperCAmelCase = 1 scheduler.set_timesteps(_snake_case) _UpperCAmelCase = scheduler.timesteps _UpperCAmelCase = torch.manual_seed(0) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_snake_case): # 1. scale model input _UpperCAmelCase = scheduler.scale_model_input(_snake_case , _snake_case) # 2. predict noise residual _UpperCAmelCase = model(_snake_case , _snake_case) # 3. predict previous sample x_t-1 _UpperCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , generator=_snake_case).prev_sample _UpperCAmelCase = pred_prev_sample _UpperCAmelCase = torch.sum(torch.abs(_snake_case)) _UpperCAmelCase = torch.mean(torch.abs(_snake_case)) assert abs(result_sum.item() - 1_9_2.7_6_1_4) < 1E-2 assert abs(result_mean.item() - 0.2_5_1_0) < 1E-3 def _lowerCamelCase ( self : str) -> Any: """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_snake_case) _UpperCAmelCase = [1_06, 0] scheduler.set_timesteps(timesteps=_snake_case) _UpperCAmelCase = scheduler.timesteps _UpperCAmelCase = torch.manual_seed(0) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _UpperCAmelCase = scheduler.scale_model_input(_snake_case , _snake_case) # 2. predict noise residual _UpperCAmelCase = model(_snake_case , _snake_case) # 3. predict previous sample x_t-1 _UpperCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , generator=_snake_case).prev_sample _UpperCAmelCase = pred_prev_sample _UpperCAmelCase = torch.sum(torch.abs(_snake_case)) _UpperCAmelCase = torch.mean(torch.abs(_snake_case)) assert abs(result_sum.item() - 3_4_7.6_3_5_7) < 1E-2 assert abs(result_mean.item() - 0.4_5_2_7) < 1E-3 def _lowerCamelCase ( self : Any) -> str: """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_snake_case) _UpperCAmelCase = [39, 30, 12, 15, 0] with self.assertRaises(_snake_case , msg='`timesteps` must be in descending order.'): scheduler.set_timesteps(timesteps=_snake_case) def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_snake_case) _UpperCAmelCase = [39, 30, 12, 1, 0] _UpperCAmelCase = len(_snake_case) with self.assertRaises(_snake_case , msg='Can only pass one of `num_inference_steps` or `timesteps`.'): scheduler.set_timesteps(num_inference_steps=_snake_case , timesteps=_snake_case) def _lowerCamelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_snake_case) _UpperCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _snake_case , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_snake_case)
339
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Dict = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCAmelCase = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } __lowerCAmelCase = F"""{src_lang}-{tgt_lang}""" __lowerCAmelCase = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(a__, exist_ok=a__) __lowerCAmelCase = os.path.join(a__, '''README.md''') print(F"""Generating {path}""") with open(a__, '''w''', encoding='''utf-8''') as f: f.write(a__) # make sure we are under the root of the project _UpperCAmelCase : int = Path(__file__).resolve().parent.parent.parent _UpperCAmelCase : Optional[Any] = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _UpperCAmelCase : Optional[Any] = model_name.split("""-""") _UpperCAmelCase : Union[str, Any] = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
174
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
"""simple docstring""" from math import sqrt def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( _lowerCAmelCase : Optional[Any] = 1_0001 ): '''simple docstring''' lowercase__ : Any = 0 lowercase__ : Union[str, Any] = 1 while count != nth and number < 3: number += 1 if is_prime(a__ ): count += 1 while count != nth: number += 2 if is_prime(a__ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
77
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
6
0
import unittest import numpy as np def __UpperCAmelCase ( a_ , a_ , a_ , a_ = None , ): snake_case_ = np.shape(a__) snake_case_ = np.shape(a__) snake_case_ = np.shape(a__) if shape_a[0] != shape_b[0]: snake_case_ = ( 'Expected the same number of rows for A and B. ' f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(a__) if shape_b[1] != shape_c[1]: snake_case_ = ( 'Expected the same number of columns for B and C. ' f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(a__) snake_case_ = pseudo_inv if a_inv is None: try: snake_case_ = np.linalg.inv(a__) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.') return mat_c - mat_b.T @ a_inv @ mat_b class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> None: snake_case_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case_ = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case_ = np.array([[2, 1], [6, 3]] ) snake_case_ = schur_complement(_snake_case , _snake_case , _snake_case ) snake_case_ = np.block([[a, b], [b.T, c]] ) snake_case_ = np.linalg.det(_snake_case ) snake_case_ = np.linalg.det(_snake_case ) snake_case_ = np.linalg.det(_snake_case ) self.assertAlmostEqual(_snake_case , det_a * det_s ) def _UpperCamelCase ( self ) -> None: snake_case_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case_ = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case_ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_snake_case ): schur_complement(_snake_case , _snake_case , _snake_case ) def _UpperCamelCase ( self ) -> None: snake_case_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case_ = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case_ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_snake_case ): schur_complement(_snake_case , _snake_case , _snake_case ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
178
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class __A( a ): snake_case_ = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''text''': Value('''string''' )} ) snake_case_ = Features({} ) snake_case_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
6
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Optional[int] = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } snake_case_ : Tuple = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } snake_case_ : int = '</w>' snake_case_ : Dict = '@@ ' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: UpperCAmelCase_ : Any = set() UpperCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : int = char return pairs # Speech2Text2 has no max input length snake_case_ : Optional[Any] = {'facebook/s2t-wav2vec2-large-en-de': 10_24} class __a (lowerCamelCase ): __a : List[Any] = VOCAB_FILES_NAMES __a : Dict = PRETRAINED_VOCAB_FILES_MAP __a : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Tuple = ["input_ids", "attention_mask"] def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : Union[str, Any]="<pad>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Tuple="<unk>" , __magic_name__ : str=False , __magic_name__ : int=None , **__magic_name__ : int , ) -> List[Any]: """simple docstring""" super().__init__( unk_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , pad_token=_snake_case , do_lower_case=_snake_case , **_snake_case , ) UpperCAmelCase_ : List[str] = do_lower_case with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase_ : Optional[int] = json.load(_snake_case ) UpperCAmelCase_ : List[Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) UpperCAmelCase_ : int = None UpperCAmelCase_ : Any = None else: with open(_snake_case , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase_ : List[Any] = merges_handle.read().split('''\n''' )[:-1] UpperCAmelCase_ : str = [tuple(merge.split()[:2] ) for merge in merges] UpperCAmelCase_ : List[Any] = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) UpperCAmelCase_ : Union[str, Any] = {} @property def UpperCAmelCase__ ( self : Dict ) -> int: """simple docstring""" return len(self.decoder ) def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self : str , __magic_name__ : List[Any] ) -> Any: """simple docstring""" UpperCAmelCase_ : int = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] UpperCAmelCase_ : Tuple = get_pairs(_snake_case ) if not pairs: return token while True: UpperCAmelCase_ : Tuple = min(_snake_case , key=lambda __magic_name__ : self.bpe_ranks.get(_snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = bigram UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Union[str, Any] = 0 while i < len(_snake_case ): try: UpperCAmelCase_ : Tuple = word.index(_snake_case , _snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : int = j if word[i] == first and i < len(_snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : Optional[Any] = tuple(_snake_case ) UpperCAmelCase_ : Union[str, Any] = new_word if len(_snake_case ) == 1: break else: UpperCAmelCase_ : List[Any] = get_pairs(_snake_case ) UpperCAmelCase_ : str = ''' '''.join(_snake_case ) if word == "\n " + BPE_TOKEN_MERGES: UpperCAmelCase_ : Optional[Any] = '''\n''' + BPE_TOKEN_MERGES if word.endswith(_snake_case ): UpperCAmelCase_ : List[Any] = word.replace(_snake_case , '''''' ) UpperCAmelCase_ : Dict = word.replace(''' ''' , _snake_case ) UpperCAmelCase_ : str = word return word def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Optional[int] ) -> Optional[Any]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: UpperCAmelCase_ : List[str] = text.lower() UpperCAmelCase_ : List[Any] = text.split() UpperCAmelCase_ : Any = [] for token in text: if token: split_tokens.extend(list(self.bpe(_snake_case ).split(''' ''' ) ) ) return split_tokens def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any] ) -> int: """simple docstring""" return self.encoder.get(_snake_case , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" UpperCAmelCase_ : Any = self.decoder.get(_snake_case , self.unk_token ) return result def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Optional[Any] ) -> str: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = ''' '''.join(_snake_case ) # make sure @@ tokens are concatenated UpperCAmelCase_ : int = ''''''.join(string.split(_snake_case ) ) return string def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Dict = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : str = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : Dict = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_snake_case , ensure_ascii=_snake_case ) + '''\n''' ) UpperCAmelCase_ : Dict = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __magic_name__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase_ : List[str] = token_index writer.write(''' '''.join(_snake_case ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
125
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase ( a__ , a__ , a__=1024 , a__=1024 , a__=False , **a__ ) -> Optional[Any]: __a = AutoTokenizer.from_pretrained(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''train''' , **a__ ) __a = tok.pad_token_id def get_lens(a__ ): __a = tqdm( DataLoader(a__ , batch_size=512 , num_workers=8 , shuffle=a__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __a = [] for batch in dl: __a = batch['''input_ids'''].ne(a__ ).sum(1 ).tolist() __a = batch['''labels'''].ne(a__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(a__ , a__ ): max_lens.append(max(a__ , a__ ) ) else: max_lens.extend(a__ ) return max_lens __a = get_lens(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''val''' , **a__ ) __a = get_lens(a__ ) pickle_save(a__ , train_ds.len_file ) pickle_save(a__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
6
0
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = CTRLTokenizer lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCamelCase = dict(zip(_snake_case , range(len(_snake_case)))) _UpperCamelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCamelCase = {'''unk_token''': '''<unk>'''} _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(_snake_case) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(_snake_case)) def UpperCAmelCase ( self , **__a) -> List[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def UpperCAmelCase ( self , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = '''adapt react readapt apt''' _UpperCamelCase = '''adapt react readapt apt''' return input_text, output_text def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) _UpperCamelCase = '''adapt react readapt apt''' _UpperCamelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCamelCase = tokenizer.tokenize(_snake_case) self.assertListEqual(_snake_case , _snake_case) _UpperCamelCase = tokens + [tokenizer.unk_token] _UpperCamelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , _snake_case)
194
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 - _cos) / 2 __a = 1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 + _cos) / 2 __a = -1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = _sin / 2 __a = 0 __a = -ba __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 1 - alpha __a = -2 * _cos __a = 1 + alpha __a = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = 1 + alpha * big_a __a = -2 * _cos __a = 1 - alpha * big_a __a = 1 + alpha / big_a __a = -2 * _cos __a = 1 - alpha / big_a __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (pmc + aaa) __a = 2 * big_a * mpc __a = big_a * (pmc - aaa) __a = ppmc + aaa __a = -2 * pmpc __a = ppmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (ppmc + aaa) __a = -2 * big_a * pmpc __a = big_a * (ppmc - aaa) __a = pmc + aaa __a = 2 * mpc __a = pmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
6
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class __A ( A ): '''simple docstring''' __lowerCamelCase : str = 'table-transformer' __lowerCamelCase : Tuple = ['past_key_values'] __lowerCamelCase : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__(self , A=True , A=None , A=3 , A=100 , A=6 , A=2_048 , A=8 , A=6 , A=2_048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_snake_case , _snake_case ): _a = backbone_config.get('''model_type''' ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(_snake_case ) # set timm attributes to None _a , _a , _a = None, None, None _a = use_timm_backbone _a = backbone_config _a = num_channels _a = num_queries _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = init_xavier_std _a = encoder_layerdrop _a = decoder_layerdrop _a = encoder_layers _a = auxiliary_loss _a = position_embedding_type _a = backbone _a = use_pretrained_backbone _a = dilation # Hungarian matcher _a = class_cost _a = bbox_cost _a = giou_cost # Loss coefficients _a = mask_loss_coefficient _a = dice_loss_coefficient _a = bbox_loss_coefficient _a = giou_loss_coefficient _a = eos_coefficient super().__init__(is_encoder_decoder=_snake_case , **_snake_case ) @property def a__ (self ) -> int: """simple docstring""" return self.encoder_attention_heads @property def a__ (self ) -> int: """simple docstring""" return self.d_model class __A ( A ): '''simple docstring''' __lowerCamelCase : Dict = version.parse('1.11' ) @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def a__ (self ) -> float: """simple docstring""" return 1E-5 @property def a__ (self ) -> int: """simple docstring""" return 12
211
def __lowerCAmelCase ( a__ , a__ , a__ ) -> list: __a = len(a__ ) __a = [[0] * n for i in range(a__ )] for i in range(a__ ): __a = y_points[i] for i in range(2 , a__ ): for j in range(a__ , a__ ): __a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
6
0
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Tuple): self.assertEqual(len(_snake_case) ,len(_snake_case)) for a, b in zip(_snake_case ,_snake_case): self.assertAlmostEqual(_snake_case ,_snake_case ,delta=_snake_case) def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : List[Any] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0])]) accumulator([tf.constant([-2.0, 1.0])]) accumulator([tf.constant([-1.0, 2.0])]) with self.assertRaises(_snake_case): accumulator([tf.constant([1.0, 1.0]), tf.constant([2.0, 2.0])]) self.assertEqual(accumulator.step ,3) self.assertEqual(len(accumulator.gradients) ,1) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() ,[-2.0, 5.0] ,tol=1E-2) accumulator.reset() self.assertEqual(accumulator.step ,0) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() ,[0.0, 0.0] ,tol=1E-2) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : List[str] = None ops.enable_eager_execution_internal() __lowerCamelCase : Any = tf.config.list_physical_devices('CPU') if len(_snake_case) == 1: tf.config.set_logical_device_configuration( physical_devices[0] ,[tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()]) __lowerCamelCase : List[str] = tf.config.list_logical_devices(device_type='CPU') __lowerCamelCase : Any = tf.distribute.MirroredStrategy(devices=devices[:2]) with strategy.scope(): __lowerCamelCase : Dict = GradientAccumulator() __lowerCamelCase : Tuple = tf.Variable([4.0, 3.0]) __lowerCamelCase , __lowerCamelCase : Optional[Any] = create_optimizer(5E-5 ,1_0 ,5) __lowerCamelCase : str = tf.Variable([0.0, 0.0] ,trainable=_snake_case) def accumulate_on_replica(SCREAMING_SNAKE_CASE__ : Optional[int]): accumulator([gradient]) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients ,[variable]))) @tf.function def accumulate(SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]): with strategy.scope(): __lowerCamelCase : Any = strategy.experimental_local_results(_snake_case) local_variables[0].assign(_snake_case) local_variables[1].assign(_snake_case) strategy.run(_snake_case ,args=(gradient_placeholder,)) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_snake_case) def _check_local_values(SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]): __lowerCamelCase : Tuple = strategy.experimental_local_results(accumulator._gradients[0]) self.assertListAlmostEqual(values[0].value() ,_snake_case ,tol=1E-2) self.assertListAlmostEqual(values[1].value() ,_snake_case ,tol=1E-2) accumulate([1.0, 2.0] ,[-1.0, 1.0]) accumulate([3.0, -1.0] ,[-1.0, -1.0]) accumulate([-2.0, 2.0] ,[3.0, -2.0]) self.assertEqual(accumulator.step ,3) _check_local_values([2.0, 3.0] ,[1.0, -2.0]) apply_grad() self.assertListAlmostEqual(variable.value() ,[4.0, 3.0] ,tol=1E-2) accumulator.reset() self.assertEqual(accumulator.step ,0) _check_local_values([0.0, 0.0] ,[0.0, 0.0])
73
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def __lowerCAmelCase ( a__ , a__ , a__ ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] __a = (low + high) // 2 __a , __a , __a = max_subarray(a__ , a__ , a__ ) __a , __a , __a = max_subarray(a__ , mid + 1 , a__ ) __a , __a , __a = max_cross_sum(a__ , a__ , a__ , a__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> tuple[int, int, float]: __a , __a = float('''-inf''' ), -1 __a , __a = float('''-inf''' ), -1 __a = 0 for i in range(a__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __a = summ __a = i __a = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __a = summ __a = i return max_left, max_right, (left_sum + right_sum) def __lowerCAmelCase ( a__ ) -> float: __a = [randint(1 , a__ ) for _ in range(a__ )] __a = time.time() max_subarray(a__ , 0 , input_size - 1 ) __a = time.time() return end - start def __lowerCAmelCase ( ) -> None: __a = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] __a = [time_max_subarray(a__ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(a__ , a__ ): print(a__ , '''\t\t''' , a__ ) plt.plot(a__ , a__ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
6
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__: Union[str, Any] = logging.get_logger(__name__) A__: List[str] = { 'google/vit-base-patch16-224': 'https://huggingface.co/vit-base-patch16-224/resolve/main/config.json', # See all ViT models at https://huggingface.co/models?filter=vit } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """vit""" def __init__( self: Optional[int] , __lowerCamelCase: Any=768 , __lowerCamelCase: int=12 , __lowerCamelCase: List[Any]=12 , __lowerCamelCase: int=3072 , __lowerCamelCase: List[Any]="gelu" , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: str=0.02 , __lowerCamelCase: Optional[int]=1e-12 , __lowerCamelCase: int=224 , __lowerCamelCase: Tuple=16 , __lowerCamelCase: List[Any]=3 , __lowerCamelCase: str=True , __lowerCamelCase: Dict=16 , **__lowerCamelCase: List[str] , ): '''simple docstring''' super().__init__(**_snake_case ) UpperCamelCase__: Any = hidden_size UpperCamelCase__: str = num_hidden_layers UpperCamelCase__: List[Any] = num_attention_heads UpperCamelCase__: Dict = intermediate_size UpperCamelCase__: List[Any] = hidden_act UpperCamelCase__: Tuple = hidden_dropout_prob UpperCamelCase__: List[str] = attention_probs_dropout_prob UpperCamelCase__: Optional[int] = initializer_range UpperCamelCase__: Tuple = layer_norm_eps UpperCamelCase__: List[Any] = image_size UpperCamelCase__: Union[str, Any] = patch_size UpperCamelCase__: Dict = num_channels UpperCamelCase__: int = qkv_bias UpperCamelCase__: List[Any] = encoder_stride class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = version.parse("""1.11""") @property def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' return 1e-4
149
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A( a , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __A( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = ort.SessionOptions() __a = False return options def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_snake_case , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
6
0
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = [10, 20, 30, 40, 50, 60] UpperCamelCase__ :Optional[Any] = [2, 4, 6, 8, 10, 12] UpperCamelCase__ :Union[str, Any] = 100 self.assertEqual(kp.calc_profit(_snake_case , _snake_case , _snake_case ) , 210 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertRaisesRegex(_snake_case , '''max_weight must greater than zero.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertRaisesRegex(_snake_case , '''Weight can not be negative.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertRaisesRegex(_snake_case , '''Profit can not be negative.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertRaisesRegex(_snake_case , '''max_weight must greater than zero.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertRaisesRegex( _snake_case , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
97
from math import ceil def __lowerCAmelCase ( a__ = 1001 ) -> int: __a = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __a = 2 * i + 1 __a = 2 * i __a = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
6
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Optional[int] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' f"{test_file} instead." ) lowerCAmelCase : str = components[-1] if not test_fn.endswith('py' ): raise ValueError(f"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith('test_modeling_' ): raise ValueError( f"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) lowerCAmelCase : int = components[:-1] + [test_fn.replace('.py', '' )] lowerCAmelCase : Optional[Any] = '.'.join(a__ ) return test_module_path def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Optional[Any] = get_module_path(a__ ) lowerCAmelCase : int = importlib.import_module(a__ ) return test_module def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Tuple = [] lowerCAmelCase : Optional[Any] = get_test_module(a__ ) for attr in dir(a__ ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(a__, a__ ) ) # sort with class names return sorted(a__, key=lambda _UpperCAmelCase : x.__name__ ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Optional[int] = get_test_module(a__ ) for attr in dir(a__ ): lowerCAmelCase : Optional[int] = getattr(a__, a__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCAmelCase : Any = getattr(a__, 'all_model_classes', [] ) if len(a__ ) > 0: test_classes.append(a__ ) # sort with class names return sorted(a__, key=lambda _UpperCAmelCase : x.__name__ ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Any = get_test_classes(a__ ) lowerCAmelCase : List[str] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(a__, key=lambda _UpperCAmelCase : x.__name__ ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowerCAmelCase : int = test_class() if hasattr(a__, 'setUp' ): test.setUp() lowerCAmelCase : Tuple = None if hasattr(a__, 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCAmelCase : Optional[Any] = test.model_tester.__class__ return model_tester def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : int = get_test_classes(a__ ) lowerCAmelCase : Union[str, Any] = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(a__ ) # sort with class names return sorted(a__, key=lambda _UpperCAmelCase : x.__name__ ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Dict = get_test_classes_for_model(a__, a__ ) lowerCAmelCase : Tuple = [] for test_class in test_classes: lowerCAmelCase : Optional[Any] = get_model_tester_from_test_class(a__ ) if tester_class is not None: tester_classes.append(a__ ) # sort with class names return sorted(a__, key=lambda _UpperCAmelCase : x.__name__ ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : List[str] = get_test_classes(a__ ) lowerCAmelCase : str = {test_class: get_model_tester_from_test_class(a__ ) for test_class in test_classes} return test_tester_mapping def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Dict = get_model_classes(a__ ) lowerCAmelCase : Tuple = { model_class: get_test_classes_for_model(a__, a__ ) for model_class in model_classes } return model_test_mapping def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : int = get_model_classes(a__ ) lowerCAmelCase : Optional[int] = { model_class: get_tester_classes_for_model(a__, a__ ) for model_class in model_classes } return model_to_tester_mapping def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if isinstance(a__, a__ ): return o elif isinstance(a__, a__ ): return o.__name__ elif isinstance(a__, (list, tuple) ): return [to_json(a__ ) for x in o] elif isinstance(a__, a__ ): return {to_json(a__ ): to_json(a__ ) for k, v in o.items()} else: return o
138
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''ChineseCLIPImageProcessor''' snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> Tuple: '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) __a = self.image_processor def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: __a = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class
6
0
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = AutoencoderKL UpperCamelCase = '''sample''' UpperCamelCase = 1e-2 @property def _lowerCamelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (32, 32) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes).to(_snake_case) return {"sample": image} @property def _lowerCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" return (3, 32, 32) @property def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" return (3, 32, 32) def _lowerCamelCase ( self : List[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" pass def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS') def _lowerCamelCase ( self : Tuple) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase = self.model_class(**_snake_case) model.to(_snake_case) assert not model.is_gradient_checkpointing and model.training _UpperCAmelCase = model(**_snake_case).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _UpperCAmelCase = torch.randn_like(_snake_case) _UpperCAmelCase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _UpperCAmelCase = self.model_class(**_snake_case) # clone model model_a.load_state_dict(model.state_dict()) model_a.to(_snake_case) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _UpperCAmelCase = model_a(**_snake_case).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _UpperCAmelCase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5) _UpperCAmelCase = dict(model.named_parameters()) _UpperCAmelCase = dict(model_a.named_parameters()) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5)) def _lowerCamelCase ( self : str) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=_snake_case) self.assertIsNotNone(_snake_case) self.assertEqual(len(loading_info['missing_keys']) , 0) model.to(_snake_case) _UpperCAmelCase = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def _lowerCamelCase ( self : Any) -> List[str]: """simple docstring""" _UpperCAmelCase = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy') _UpperCAmelCase = model.to(_snake_case) model.eval() if torch_device == "mps": _UpperCAmelCase = torch.manual_seed(0) else: _UpperCAmelCase = torch.Generator(device=_snake_case).manual_seed(0) _UpperCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0) , ) _UpperCAmelCase = image.to(_snake_case) with torch.no_grad(): _UpperCAmelCase = model(_snake_case , sample_posterior=_snake_case , generator=_snake_case).sample _UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _UpperCAmelCase = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ]) elif torch_device == "cpu": _UpperCAmelCase = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6]) else: _UpperCAmelCase = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5]) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1E-2)) @slow class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : str , A : Any , A : Union[str, Any]) -> Optional[Any]: """simple docstring""" return F"gaussian_noise_s={seed}_shape={'_'.join([str(_snake_case) for s in shape])}.npy" def _lowerCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Union[str, Any] , A : Tuple=0 , A : str=(4, 3, 5_12, 5_12) , A : Optional[int]=False) -> Any: """simple docstring""" _UpperCAmelCase = torch.floataa if fpaa else torch.floataa _UpperCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(_snake_case , _snake_case))).to(_snake_case).to(_snake_case) return image def _lowerCamelCase ( self : List[str] , A : Any="CompVis/stable-diffusion-v1-4" , A : List[Any]=False) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = 'fp16' if fpaa else None _UpperCAmelCase = torch.floataa if fpaa else torch.floataa _UpperCAmelCase = AutoencoderKL.from_pretrained( _snake_case , subfolder='vae' , torch_dtype=_snake_case , revision=_snake_case , ) model.to(_snake_case).eval() return model def _lowerCamelCase ( self : str , A : int=0) -> Tuple: """simple docstring""" if torch_device == "mps": return torch.manual_seed(_snake_case) return torch.Generator(device=_snake_case).manual_seed(_snake_case) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ]) def _lowerCamelCase ( self : Optional[Any] , A : Tuple , A : int , A : Optional[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.get_sd_vae_model() _UpperCAmelCase = self.get_sd_image(_snake_case) _UpperCAmelCase = self.get_generator(_snake_case) with torch.no_grad(): _UpperCAmelCase = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case).sample assert sample.shape == image.shape _UpperCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _UpperCAmelCase = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice) assert torch_all_close(_snake_case , _snake_case , atol=3E-3) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ]) @require_torch_gpu def _lowerCamelCase ( self : int , A : Union[str, Any] , A : Optional[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = self.get_sd_vae_model(fpaa=_snake_case) _UpperCAmelCase = self.get_sd_image(_snake_case , fpaa=_snake_case) _UpperCAmelCase = self.get_generator(_snake_case) with torch.no_grad(): _UpperCAmelCase = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case).sample assert sample.shape == image.shape _UpperCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _UpperCAmelCase = torch.tensor(_snake_case) assert torch_all_close(_snake_case , _snake_case , atol=1E-2) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ]) def _lowerCamelCase ( self : int , A : Tuple , A : List[str] , A : Any) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_sd_vae_model() _UpperCAmelCase = self.get_sd_image(_snake_case) with torch.no_grad(): _UpperCAmelCase = model(_snake_case).sample assert sample.shape == image.shape _UpperCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _UpperCAmelCase = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice) assert torch_all_close(_snake_case , _snake_case , atol=3E-3) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ]) @require_torch_gpu def _lowerCamelCase ( self : Tuple , A : Optional[Any] , A : Tuple) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_sd_vae_model() _UpperCAmelCase = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64)) with torch.no_grad(): _UpperCAmelCase = model.decode(_snake_case).sample assert list(sample.shape) == [3, 3, 5_12, 5_12] _UpperCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu() _UpperCAmelCase = torch.tensor(_snake_case) assert torch_all_close(_snake_case , _snake_case , atol=1E-3) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ]) @require_torch_gpu def _lowerCamelCase ( self : Tuple , A : str , A : int) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.get_sd_vae_model(fpaa=_snake_case) _UpperCAmelCase = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case) with torch.no_grad(): _UpperCAmelCase = model.decode(_snake_case).sample assert list(sample.shape) == [3, 3, 5_12, 5_12] _UpperCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _UpperCAmelCase = torch.tensor(_snake_case) assert torch_all_close(_snake_case , _snake_case , atol=5E-3) @parameterized.expand([(13,), (16,), (27,)]) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.') def _lowerCamelCase ( self : str , A : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.get_sd_vae_model(fpaa=_snake_case) _UpperCAmelCase = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case) with torch.no_grad(): _UpperCAmelCase = model.decode(_snake_case).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _UpperCAmelCase = model.decode(_snake_case).sample assert list(sample.shape) == [3, 3, 5_12, 5_12] assert torch_all_close(_snake_case , _snake_case , atol=1E-1) @parameterized.expand([(13,), (16,), (37,)]) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.') def _lowerCamelCase ( self : Tuple , A : Optional[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.get_sd_vae_model() _UpperCAmelCase = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64)) with torch.no_grad(): _UpperCAmelCase = model.decode(_snake_case).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _UpperCAmelCase = model.decode(_snake_case).sample assert list(sample.shape) == [3, 3, 5_12, 5_12] assert torch_all_close(_snake_case , _snake_case , atol=1E-2) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ]) def _lowerCamelCase ( self : Optional[int] , A : int , A : List[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_sd_vae_model() _UpperCAmelCase = self.get_sd_image(_snake_case) _UpperCAmelCase = self.get_generator(_snake_case) with torch.no_grad(): _UpperCAmelCase = model.encode(_snake_case).latent_dist _UpperCAmelCase = dist.sample(generator=_snake_case) assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _UpperCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu() _UpperCAmelCase = torch.tensor(_snake_case) _UpperCAmelCase = 3E-3 if torch_device != 'mps' else 1E-2 assert torch_all_close(_snake_case , _snake_case , atol=_snake_case)
339
from __future__ import annotations import typing from collections import Counter def __lowerCAmelCase ( a__ ) -> typing.Counter[int]: __a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): __a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): __a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCAmelCase ( a__ = 1000 ) -> int: __a = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
6
0
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=1_0_2_4, lowerCamelCase=1_0_2_4, lowerCamelCase=False, **lowerCamelCase): __lowerCAmelCase = AutoTokenizer.from_pretrained(a__) __lowerCAmelCase = SeqaSeqDataset(a__, a__, a__, a__, type_path='''train''', **a__) __lowerCAmelCase = tok.pad_token_id def get_lens(lowerCamelCase): __lowerCAmelCase = tqdm( DataLoader(a__, batch_size=5_1_2, num_workers=8, shuffle=a__, collate_fn=ds.collate_fn), desc=str(ds.len_file), ) __lowerCAmelCase = [] for batch in dl: __lowerCAmelCase = batch['''input_ids'''].ne(a__).sum(1).tolist() __lowerCAmelCase = batch['''labels'''].ne(a__).sum(1).tolist() if consider_target: for src, tgt in zip(a__, a__): max_lens.append(max(a__, a__)) else: max_lens.extend(a__) return max_lens __lowerCAmelCase = get_lens(a__) __lowerCAmelCase = SeqaSeqDataset(a__, a__, a__, a__, type_path='''val''', **a__) __lowerCAmelCase = get_lens(a__) pickle_save(a__, train_ds.len_file) pickle_save(a__, val_ds.len_file) if __name__ == "__main__": fire.Fire(save_len_file)
174
# flake8: noqa # Lint as: python3 A : Optional[Any] = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
6
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCamelCase : List[Any] = logging.get_logger(__name__) _UpperCamelCase : Tuple = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class UpperCAmelCase_ ( _a , _a): lowerCamelCase__ : Any = "resnet" lowerCamelCase__ : Union[str, Any] = ["basic", "bottleneck"] def __init__( self , a=3 , a=6_4 , a=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , a=[3, 4, 6, 3] , a="bottleneck" , a="relu" , a=False , a=None , a=None , **a , ) -> Optional[Any]: super().__init__(**_snake_case ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) lowercase__ : int = num_channels lowercase__ : str = embedding_size lowercase__ : Union[str, Any] = hidden_sizes lowercase__ : List[Any] = depths lowercase__ : int = layer_type lowercase__ : Union[str, Any] = hidden_act lowercase__ : Dict = downsample_in_first_stage lowercase__ : int = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(_snake_case ) + 1 )] lowercase__ , lowercase__ : Any = get_aligned_output_features_output_indices( out_features=_snake_case , out_indices=_snake_case , stage_names=self.stage_names ) class UpperCAmelCase_ ( _a): lowerCamelCase__ : int = version.parse("1.11") @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-3
77
from typing import Dict from .base import GenericTensor, Pipeline class __A( a ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: __a = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __a = truncation __a = tokenize_kwargs __a = {} if return_tensors is not None: __a = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE_ ( self , _snake_case , **_snake_case ) -> Dict[str, GenericTensor]: '''simple docstring''' __a = self.framework __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.model(**_snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=False ) -> Optional[int]: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' return super().__call__(*_snake_case , **_snake_case )
6
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __UpperCAmelCase ( a_ , a_ , a_): # Initialise PyTorch model snake_case_ = AlbertConfig.from_json_file(a__) print(f'''Building PyTorch model from configuration: {config}''') snake_case_ = AlbertForPreTraining(a__) # Load weights from tf checkpoint load_tf_weights_in_albert(a__ , a__ , a__) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , a__) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
178
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Optional[int] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class __A( a ): snake_case_ = '''levit''' def __init__( self , _snake_case=224 , _snake_case=3 , _snake_case=3 , _snake_case=2 , _snake_case=1 , _snake_case=16 , _snake_case=[128, 256, 384] , _snake_case=[4, 8, 12] , _snake_case=[4, 4, 4] , _snake_case=[16, 16, 16] , _snake_case=0 , _snake_case=[2, 2, 2] , _snake_case=[2, 2, 2] , _snake_case=0.02 , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = image_size __a = num_channels __a = kernel_size __a = stride __a = padding __a = hidden_sizes __a = num_attention_heads __a = depths __a = key_dim __a = drop_path_rate __a = patch_size __a = attention_ratio __a = mlp_ratio __a = initializer_range __a = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
6
0
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str = 1000 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = 1, 1 UpperCAmelCase_ : Optional[Any] = 2 while True: UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : List[Any] = fa + fa UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = fa, f index += 1 for _ in str(a__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
125
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : int = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __A( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' __a = TOKEN HfFolder.save_token(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case , repo_id='''test-model-flax''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case )
6
0
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase__ ( __snake_case, __snake_case ) -> str | Literal[False]: """simple docstring""" _UpperCamelCase = list(a__ ) _UpperCamelCase = list(a__ ) _UpperCamelCase = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count += 1 _UpperCamelCase = '''_''' if count > 1: return False else: return "".join(a__ ) def lowerCamelCase__ ( __snake_case ) -> list[str]: """simple docstring""" _UpperCamelCase = [] while True: _UpperCamelCase = ['''$'''] * len(a__ ) _UpperCamelCase = [] for i in range(len(a__ ) ): for j in range(i + 1, len(a__ ) ): _UpperCamelCase = compare_string(binary[i], binary[j] ) if k is False: _UpperCamelCase = '''*''' _UpperCamelCase = '''*''' temp.append('''X''' ) for i in range(len(a__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a__ ) == 0: return pi _UpperCamelCase = list(set(a__ ) ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> list[str]: """simple docstring""" _UpperCamelCase = [] for minterm in minterms: _UpperCamelCase = '''''' for _ in range(a__ ): _UpperCamelCase = str(minterm % 2 ) + string minterm //= 2 temp.append(a__ ) return temp def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> bool: """simple docstring""" _UpperCamelCase = list(a__ ) _UpperCamelCase = list(a__ ) _UpperCamelCase = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase__ ( __snake_case, __snake_case ) -> list[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = [0] * len(a__ ) for i in range(len(chart[0] ) ): _UpperCamelCase = 0 _UpperCamelCase = -1 for j in range(len(a__ ) ): if chart[j][i] == 1: count += 1 _UpperCamelCase = j if count == 1: _UpperCamelCase = 1 for i in range(len(a__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a__ ) ): _UpperCamelCase = 0 temp.append(prime_implicants[i] ) while True: _UpperCamelCase = 0 _UpperCamelCase = -1 _UpperCamelCase = 0 for i in range(len(a__ ) ): _UpperCamelCase = chart[i].count(1 ) if count_n > max_n: _UpperCamelCase = count_n _UpperCamelCase = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a__ ) ): _UpperCamelCase = 0 def lowerCamelCase__ ( __snake_case, __snake_case ) -> list[list[int]]: """simple docstring""" _UpperCamelCase = [[0 for x in range(len(a__ ) )] for x in range(len(a__ ) )] for i in range(len(a__ ) ): _UpperCamelCase = prime_implicants[i].count('''_''' ) for j in range(len(a__ ) ): if is_for_table(prime_implicants[i], binary[j], a__ ): _UpperCamelCase = 1 return chart def lowerCamelCase__ ( ) -> None: """simple docstring""" _UpperCamelCase = int(input('''Enter the no. of variables\n''' ) ) _UpperCamelCase = [ float(a__ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] _UpperCamelCase = decimal_to_binary(a__, a__ ) _UpperCamelCase = check(a__ ) print('''Prime Implicants are:''' ) print(a__ ) _UpperCamelCase = prime_implicant_chart(a__, a__ ) _UpperCamelCase = selection(a__, a__ ) print('''Essential Prime Implicants are:''' ) print(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
194
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path A : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) A : List[str] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} A : Optional[int] = 'zero2' A : str = 'zero3' A : Tuple = [ZEROa, ZEROa] def __lowerCAmelCase ( a__ , a__ , a__ ) -> Tuple: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __a = parameterized.to_safe_name('''_'''.join(str(a__ ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test A : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A( a ): @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Any: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> int: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> str: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = True , _snake_case = True , _snake_case = True , ) -> Any: '''simple docstring''' __a = models[model] __a = self.run_trainer( stage=_snake_case , model_name=_snake_case , eval_steps=_snake_case , num_train_epochs=1 , distributed=_snake_case , fpaa=_snake_case , ) self.do_checks(_snake_case ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = 1 , _snake_case = True , _snake_case = True , ) -> Union[str, Any]: '''simple docstring''' __a = self.get_auto_remove_tmp_dir('''./xxx''' , after=_snake_case ) __a = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __a = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __a = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __a = self.get_launcher(_snake_case ) __a = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case=False ) -> List[str]: '''simple docstring''' __a = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
6
0
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase (__A , __A = True , __A = math.inf , __A = -math.inf , __A = math.inf , __A = -math.inf , __A = False , __A = 100 , __A = 0.01 , __A = 1 , ): """simple docstring""" _a = False _a = search_prob _a = start_temperate _a = [] _a = 0 _a = None while not search_end: _a = current_state.score() if best_state is None or current_score > best_state.score(): _a = current_state scores.append(a__) iterations += 1 _a = None _a = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _a = random.randint(0 , len(a__) - 1) # picking a random neighbor _a = neighbors.pop(a__) _a = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _a = change * -1 # in case we are finding minimum if change > 0: # improves the solution _a = picked_neighbor else: _a = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _a = picked_neighbor _a = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _a = True else: _a = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a__) , a__) plt.xlabel('''Iterations''') plt.ylabel('''Function values''') plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase (__A , __A): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowercase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowercase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCAmelCase (__A , __A): """simple docstring""" return (3 * x**2) - (6 * y) lowercase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" ) lowercase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" )
211
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A( a , a , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = '''sample''' snake_case_ = 1E-2 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = 4 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes ).to(_snake_case ) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __a = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a , __a = self.prepare_init_args_and_inputs_for_common() __a = self.model_class(**_snake_case ) model.to(_snake_case ) assert not model.is_gradient_checkpointing and model.training __a = model(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __a = torch.randn_like(_snake_case ) __a = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __a = self.model_class(**_snake_case ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_snake_case ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __a = model_a(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __a = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __a = dict(model.named_parameters() ) __a = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a , __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_snake_case ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __a = model.to(_snake_case ) model.eval() if torch_device == "mps": __a = torch.manual_seed(0 ) else: __a = torch.Generator(device=_snake_case ).manual_seed(0 ) __a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __a = image.to(_snake_case ) with torch.no_grad(): __a = model(_snake_case , sample_posterior=_snake_case , generator=_snake_case ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __a = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": __a = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __a = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1E-2 ) ) @slow class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_snake_case ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , _snake_case=(4, 3, 512, 512) , _snake_case=False ) -> Any: '''simple docstring''' __a = torch.floataa if fpaa else torch.floataa __a = torch.from_numpy(load_hf_numpy(self.get_file_format(_snake_case , _snake_case ) ) ).to(_snake_case ).to(_snake_case ) return image def SCREAMING_SNAKE_CASE_ ( self , _snake_case="CompVis/stable-diffusion-v1-4" , _snake_case=False ) -> Optional[Any]: '''simple docstring''' __a = '''fp16''' if fpaa else None __a = torch.floataa if fpaa else torch.floataa __a = AutoencoderKL.from_pretrained( _snake_case , subfolder='''vae''' , torch_dtype=_snake_case , revision=_snake_case , ) model.to(_snake_case ).eval() return model def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> Tuple: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(_snake_case ) return torch.Generator(device=_snake_case ).manual_seed(_snake_case ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , fpaa=_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) with torch.no_grad(): __a = model(_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model.encode(_snake_case ).latent_dist __a = dist.sample(generator=_snake_case ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __a = sample[0, -1, -3:, -3:].flatten().cpu() __a = torch.tensor(_snake_case ) __a = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(_snake_case , _snake_case , atol=_snake_case )
6
0
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: __lowerCamelCase : Optional[Any] = multiprocessing.Manager() __lowerCamelCase : str = manager.list() __lowerCamelCase : str = multiprocessing.Process(target=a__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil __lowerCamelCase : Optional[Any] = shutil.rmtree __lowerCamelCase : Union[str, Any] = os.rmdir __lowerCamelCase : Optional[int] = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: __lowerCamelCase : Tuple = {} with swallow_io(): with time_limit(a__ ): exec(a__ , a__ ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(F"failed: {e}" ) # Needed for cleaning up. __lowerCamelCase : int = rmtree __lowerCamelCase : Optional[Any] = rmdir __lowerCamelCase : str = chdir @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: def signal_handler(lowerCamelCase__ , lowerCamelCase__ ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , a__ ) signal.signal(signal.SIGALRM , a__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: __lowerCamelCase : str = WriteOnlyStringIO() with contextlib.redirect_stdout(a__ ): with contextlib.redirect_stderr(a__ ): with redirect_stdin(a__ ): yield @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: with tempfile.TemporaryDirectory() as dirname: with chdir(a__ ): yield dirname class A_ ( SCREAMING_SNAKE_CASE ): pass class A_ ( io.StringIO ): def lowerCAmelCase ( self : Any ,*SCREAMING_SNAKE_CASE__ : Optional[Any] ,**SCREAMING_SNAKE_CASE__ : List[str]): raise OSError def lowerCAmelCase ( self : List[str] ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : str): raise OSError def lowerCAmelCase ( self : int ,*SCREAMING_SNAKE_CASE__ : List[str] ,**SCREAMING_SNAKE_CASE__ : int): raise OSError def lowerCAmelCase ( self : Dict ,*SCREAMING_SNAKE_CASE__ : Optional[Any] ,**SCREAMING_SNAKE_CASE__ : Optional[Any]): return False class A_ ( contextlib._RedirectStream ): # type: ignore _UpperCAmelCase : Optional[Any] = '''stdin''' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[Any]: if root == ".": yield return __lowerCamelCase : Optional[Any] = os.getcwd() os.chdir(a__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(a__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__=None ) -> Union[str, Any]: if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins __lowerCamelCase : Optional[Any] = None __lowerCamelCase : List[str] = None import os __lowerCamelCase : str = '1' __lowerCamelCase : Optional[int] = None __lowerCamelCase : Optional[int] = None __lowerCamelCase : Dict = None __lowerCamelCase : str = None __lowerCamelCase : Any = None __lowerCamelCase : Any = None __lowerCamelCase : Optional[Any] = None __lowerCamelCase : Any = None __lowerCamelCase : str = None __lowerCamelCase : str = None __lowerCamelCase : List[str] = None __lowerCamelCase : List[str] = None __lowerCamelCase : Dict = None __lowerCamelCase : int = None __lowerCamelCase : Optional[int] = None __lowerCamelCase : Optional[int] = None __lowerCamelCase : Union[str, Any] = None __lowerCamelCase : int = None __lowerCamelCase : int = None __lowerCamelCase : Tuple = None __lowerCamelCase : List[str] = None __lowerCamelCase : List[Any] = None __lowerCamelCase : Dict = None __lowerCamelCase : List[Any] = None __lowerCamelCase : List[str] = None __lowerCamelCase : List[Any] = None __lowerCamelCase : List[Any] = None import shutil __lowerCamelCase : Optional[int] = None __lowerCamelCase : Optional[int] = None __lowerCamelCase : List[Any] = None import subprocess __lowerCamelCase : Any = None # type: ignore __lowerCamelCase : Optional[Any] = None import sys __lowerCamelCase : str = None __lowerCamelCase : Dict = None __lowerCamelCase : List[str] = None __lowerCamelCase : int = None __lowerCamelCase : Optional[Any] = None
73
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A : str = logging.get_logger(__name__) class __A( a ): def __init__( self , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = [] __a = [] __a = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __a = parent.find_all(child.name , recursive=_snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_snake_case ) else next(i for i, s in enumerate(_snake_case , 1 ) if s is child ) ) __a = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = BeautifulSoup(_snake_case , '''html.parser''' ) __a = [] __a = [] __a = [] for element in html_code.descendants: if type(_snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __a = html.unescape(_snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(_snake_case ) __a , __a = self.xpath_soup(_snake_case ) stringaxtag_seq.append(_snake_case ) stringaxsubs_seq.append(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = '''''' for tagname, subs in zip(_snake_case , _snake_case ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , _snake_case ) -> BatchFeature: '''simple docstring''' __a = False # Check that strings has a valid type if isinstance(_snake_case , _snake_case ): __a = True elif isinstance(_snake_case , (list, tuple) ): if len(_snake_case ) == 0 or isinstance(html_strings[0] , _snake_case ): __a = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_snake_case )}.""" ) __a = bool(isinstance(_snake_case , (list, tuple) ) and (isinstance(html_strings[0] , _snake_case )) ) if not is_batched: __a = [html_strings] # Get nodes + xpaths __a = [] __a = [] for html_string in html_strings: __a , __a , __a = self.get_three_from_single(_snake_case ) nodes.append(_snake_case ) __a = [] for node, tag_list, sub_list in zip(_snake_case , _snake_case , _snake_case ): __a = self.construct_xpath(_snake_case , _snake_case ) xpath_strings.append(_snake_case ) xpaths.append(_snake_case ) # return as Dict __a = {'''nodes''': nodes, '''xpaths''': xpaths} __a = BatchFeature(data=_snake_case , tensor_type=_snake_case ) return encoded_inputs
6
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) A__: Dict = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Any = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys A__: int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
149
def __lowerCAmelCase ( a__ , a__ ) -> float: def get_matched_characters(a__ , a__ ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a__ ) __a = F"""{_stra[0:_stra.index(a__ )]} {_stra[_stra.index(a__ ) + 1:]}""" return "".join(a__ ) # matching characters __a = get_matched_characters(a__ , a__ ) __a = get_matched_characters(a__ , a__ ) __a = len(a__ ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(a__ , a__ ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(a__ ) + match_count / len(a__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
6
0
'''simple docstring''' import random def a ( __a ) -> bool: '''simple docstring''' UpperCamelCase__ :Optional[int] = num - 1 UpperCamelCase__ :Union[str, Any] = 0 while s % 2 == 0: UpperCamelCase__ :Dict = s // 2 t += 1 for _ in range(5 ): UpperCamelCase__ :Optional[int] = random.randrange(2 , num - 1 ) UpperCamelCase__ :Union[str, Any] = pow(a__ , a__ , a__ ) if v != 1: UpperCamelCase__ :int = 0 while v != (num - 1): if i == t - 1: return False else: UpperCamelCase__ :Any = i + 1 UpperCamelCase__ :Optional[int] = (v**2) % num return True def a ( __a ) -> bool: '''simple docstring''' if num < 2: return False UpperCamelCase__ :str = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(a__ ) def a ( __a = 1024 ) -> int: '''simple docstring''' while True: UpperCamelCase__ :Dict = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(a__ ): return num if __name__ == "__main__": __snake_case = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
97
def __lowerCAmelCase ( a__ ) -> str: __a = [] __a = set({'''(''', '''[''', '''{'''} ) __a = set({''')''', ''']''', '''}'''} ) __a = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(a__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(a__ ) == 0 or (len(a__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a__ ) == 0 def __lowerCAmelCase ( ) -> Dict: __a = input('''Enter sequence of brackets: ''' ) if is_balanced(a__ ): print(a__ , '''is balanced''' ) else: print(a__ , '''is not balanced''' ) if __name__ == "__main__": main()
6
0
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if gpta_config_file == "": lowerCAmelCase : Tuple = GPTaConfig() else: lowerCAmelCase : Tuple = GPTaConfig.from_json_file(a__ ) lowerCAmelCase : List[Any] = GPTaModel(a__ ) # Load weights from numpy load_tf_weights_in_gpta(a__, a__, a__ ) # Save pytorch-model lowerCAmelCase : Union[str, Any] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCAmelCase : List[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict(), a__ ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(a__, 'w', encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) __A : Tuple = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
138
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : str = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( A ): UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''BlipImageProcessor''' UpperCamelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : str , A : int , A : List[str]) -> Dict: """simple docstring""" _UpperCAmelCase = False super().__init__(_snake_case , _snake_case) _UpperCAmelCase = self.image_processor def __call__( self : Any , A : Any = None , A : Optional[int] = None , A : List[Any] = True , A : Union[str, Any] = False , A : Union[str, Any] = None , A : Optional[Any] = None , A : int = 0 , A : Tuple = None , A : Union[str, Any] = None , A : Optional[int] = False , A : Dict = False , A : List[str] = False , A : int = False , A : Dict = False , A : Optional[Any] = True , A : List[str] = None , **A : Optional[Any] , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.') # Get only text if images is None: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_token_type_ids=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) return text_encoding # add pixel_values _UpperCAmelCase = self.image_processor(_snake_case , return_tensors=_snake_case) if text is not None: _UpperCAmelCase = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_token_type_ids=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(_snake_case) return encoding_image_processor def _lowerCamelCase ( self : Optional[Any] , *A : Any , **A : int) -> int: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case) def _lowerCamelCase ( self : List[Any] , *A : Union[str, Any] , **A : str) -> Optional[int]: """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case) @property def _lowerCamelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
339
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Dict = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __magic_name__( lowerCamelCase): monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''', set()) @pytest.fixture def __magic_name__( lowerCamelCase): class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = metric_id class a__ : """simple docstring""" __UpperCamelCase : Dict = [MetricMock(__A ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def _snake_case (self ): return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''', HfhMock()) @pytest.mark.parametrize( '''func, args''', [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))]) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): if "tmp_path" in args: __lowerCAmelCase = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args) with pytest.warns(a__, match='''https://huggingface.co/docs/evaluate'''): func(*a__)
174
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class UpperCAmelCase_ : lowerCamelCase__ : Optional[int] = 4_2 lowerCamelCase__ : List[str] = None lowerCamelCase__ : Optional[int] = None def a_ ( ): '''simple docstring''' lowercase__ : Any = Node(1 ) lowercase__ : int = Node(2 ) lowercase__ : Optional[int] = Node(3 ) lowercase__ : Dict = Node(4 ) lowercase__ : Optional[int] = Node(5 ) return tree def a_ ( _lowerCAmelCase : int ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a_ ( _lowerCAmelCase : Optional[int] ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a_ ( _lowerCAmelCase : List[Any] ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : List[Any] = [] if root is None: return output lowercase__ : Any = deque([root] ) while process_queue: lowercase__ : List[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : Any = [] def populate_output(_lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(a__ , a__ ) return output def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Dict = [] def populate_output(_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(a__ , a__ ) return output def a_ ( _lowerCAmelCase : Optional[int] ): '''simple docstring''' if root is None: return [] lowercase__ : Union[str, Any] = [] lowercase__ : List[str] = 0 lowercase__ : List[Any] = height(a__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(a__ , a__ ) ) lowercase__ : Optional[Any] = 1 else: output.append(get_nodes_from_right_to_left(a__ , a__ ) ) lowercase__ : Tuple = 0 return output def a_ ( ): # Main function for testing. '''simple docstring''' lowercase__ : int = make_tree() print(f"""In-order Traversal: {inorder(a__ )}""" ) print(f"""Pre-order Traversal: {preorder(a__ )}""" ) print(f"""Post-order Traversal: {postorder(a__ )}""" , '\n' ) print(f"""Height of Tree: {height(a__ )}""" , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(a__ ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(a__ ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(a__ , level=a__ ) ) print('\nZigZag order Traversal: ' ) print(zigzag(a__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
77
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
6
0
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCamelCase_ : '''simple docstring''' def __init__( self , a=2 , a=3 , a=64 , a=None ) -> Union[str, Any]: snake_case_ = np.random.default_rng(_snake_case ) snake_case_ = length snake_case_ = rng.normal(size=(length,) ).astype(np.floataa ) snake_case_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Tuple: return self.length def __getitem__( self , a ) -> Union[str, Any]: return {"x": self.x[i], "y": self.y[i]} class UpperCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self , a=0 , a=0 , a=False ) -> Any: super().__init__() snake_case_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case_ = True def _UpperCamelCase ( self , a=None ) -> Tuple: if self.first_batch: print(F'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) snake_case_ = False return x * self.a[0] + self.b[0] class UpperCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self , a=0 , a=0 , a=False ) -> Dict: super().__init__() snake_case_ = torch.nn.Parameter(torch.tensor(_snake_case ).float() ) snake_case_ = torch.nn.Parameter(torch.tensor(_snake_case ).float() ) snake_case_ = True def _UpperCamelCase ( self , a=None ) -> List[Any]: if self.first_batch: print(F'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) snake_case_ = False return x * self.a + self.b def __UpperCAmelCase ( a_ , a_ = 16): from datasets import load_dataset from transformers import AutoTokenizer snake_case_ = AutoTokenizer.from_pretrained('bert-base-cased') snake_case_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} snake_case_ = load_dataset('csv' , data_files=a__) snake_case_ = datasets['train'].unique('label') snake_case_ = {v: i for i, v in enumerate(a__)} def tokenize_function(a_): # max_length=None => use the model max length (it's actually the default) snake_case_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=a__ , max_length=a__ , padding='max_length') if "label" in examples: snake_case_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case_ = datasets.map( a__ , batched=a__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(a_): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a__ , padding='max_length' , max_length=1_28 , return_tensors='pt') return tokenizer.pad(a__ , padding='longest' , return_tensors='pt') # Instantiate dataloaders. snake_case_ = DataLoader(tokenized_datasets['train'] , shuffle=a__ , collate_fn=a__ , batch_size=2) snake_case_ = DataLoader(tokenized_datasets['validation'] , shuffle=a__ , collate_fn=a__ , batch_size=1) return train_dataloader, eval_dataloader
178
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class __A( a ): snake_case_ = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''text''': Value('''string''' )} ) snake_case_ = Features({} ) snake_case_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
6
0
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: snake_case_ : Optional[Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __a (unittest.TestCase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=7 , __magic_name__ : List[str]=3 , __magic_name__ : Dict=18 , __magic_name__ : Union[str, Any]=30 , __magic_name__ : int=4_00 , __magic_name__ : Any=None , __magic_name__ : str=True , __magic_name__ : int=True , __magic_name__ : Tuple=None , ) -> Tuple: """simple docstring""" UpperCAmelCase_ : str = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : str = batch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : List[str] = image_size UpperCAmelCase_ : Optional[int] = min_resolution UpperCAmelCase_ : str = max_resolution UpperCAmelCase_ : int = size UpperCAmelCase_ : Optional[int] = do_normalize UpperCAmelCase_ : str = do_convert_rgb UpperCAmelCase_ : int = [5_12, 10_24, 20_48, 40_96] UpperCAmelCase_ : Any = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" UpperCAmelCase_ : int = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' UpperCAmelCase_ : List[Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class __a (lowerCamelCase , unittest.TestCase ): __a : Optional[int] = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = PixaStructImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(_snake_case , '''do_convert_rgb''' ) ) def UpperCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ : Dict = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase_ : Union[str, Any] = 20_48 UpperCAmelCase_ : Union[str, Any] = image_processor(_snake_case , return_tensors='''pt''' , max_patches=_snake_case ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6 ) , atol=1E-3 , rtol=1E-3 ) ) def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : List[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : Optional[Any] = image_processor( _snake_case , return_tensors='''pt''' , max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input UpperCAmelCase_ : Union[str, Any] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase_ : Dict = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_snake_case ): UpperCAmelCase_ : List[str] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_snake_case ).flattened_patches UpperCAmelCase_ : Optional[int] = '''Hello''' UpperCAmelCase_ : str = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_snake_case , header_text=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : Tuple = image_processor( _snake_case , return_tensors='''pt''' , max_patches=_snake_case , header_text=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) UpperCAmelCase_ : Tuple = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : Tuple = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : Dict = image_processor( _snake_case , return_tensors='''pt''' , max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self : List[str] ) -> Any: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Dict = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : Tuple = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : Tuple = image_processor( _snake_case , return_tensors='''pt''' , max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class __a (lowerCamelCase , unittest.TestCase ): __a : int = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[str] = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase_ : List[Any] = 3 @property def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(_snake_case , '''do_convert_rgb''' ) ) def UpperCAmelCase__ ( self : Any ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : Tuple = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : Tuple = image_processor( _snake_case , return_tensors='''pt''' , max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
125
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase ( a__ , a__ , a__=1024 , a__=1024 , a__=False , **a__ ) -> Optional[Any]: __a = AutoTokenizer.from_pretrained(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''train''' , **a__ ) __a = tok.pad_token_id def get_lens(a__ ): __a = tqdm( DataLoader(a__ , batch_size=512 , num_workers=8 , shuffle=a__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __a = [] for batch in dl: __a = batch['''input_ids'''].ne(a__ ).sum(1 ).tolist() __a = batch['''labels'''].ne(a__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(a__ , a__ ): max_lens.append(max(a__ , a__ ) ) else: max_lens.extend(a__ ) return max_lens __a = get_lens(a__ ) __a = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path='''val''' , **a__ ) __a = get_lens(a__ ) pickle_save(a__ , train_ds.len_file ) pickle_save(a__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
6
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
194
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 - _cos) / 2 __a = 1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 + _cos) / 2 __a = -1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = _sin / 2 __a = 0 __a = -ba __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 1 - alpha __a = -2 * _cos __a = 1 + alpha __a = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = 1 + alpha * big_a __a = -2 * _cos __a = 1 - alpha * big_a __a = 1 + alpha / big_a __a = -2 * _cos __a = 1 - alpha / big_a __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (pmc + aaa) __a = 2 * big_a * mpc __a = big_a * (pmc - aaa) __a = ppmc + aaa __a = -2 * pmpc __a = ppmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (ppmc + aaa) __a = -2 * big_a * pmpc __a = big_a * (ppmc - aaa) __a = pmc + aaa __a = 2 * mpc __a = pmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
6
0