code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , lowercase : Any , lowercase : Any=7 , lowercase : Any=3 , lowercase : str=18 , lowercase : Union[str, Any]=30 , lowercase : List[Any]=400 , lowercase : Tuple=True , lowercase : str=None , lowercase : Optional[Any]=True , lowercase : List[str]=[0.5, 0.5, 0.5] , lowercase : List[str]=[0.5, 0.5, 0.5] , ): '''simple docstring''' _snake_case = size if size is not None else {'height': 18, 'width': 18} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = image_size _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = do_normalize _snake_case = image_mean _snake_case = image_std def A ( self : List[Any] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : int = DPTImageProcessor if is_vision_available() else None def A ( self : Any ): '''simple docstring''' _snake_case = DPTImageProcessingTester(self ) @property def A ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A ( self : int ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , 'image_mean' ) ) self.assertTrue(hasattr(lowercase , 'image_std' ) ) self.assertTrue(hasattr(lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase , 'do_resize' ) ) self.assertTrue(hasattr(lowercase , 'size' ) ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) _snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def A ( self : Any ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def A ( self : str ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
686
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
1
_lowerCamelCase : dict[tuple[int, int, int], int] = {} def a_ ( __lowercase : int , __lowercase : int , __lowercase : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _snake_case = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _snake_case = _calculate(days - 1 , __lowercase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _snake_case = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _snake_case = _calculate(days - 1 , __lowercase , 0 ) _snake_case = state_late + state_absent + state_ontime _snake_case = prizestrings return prizestrings def a_ ( __lowercase : int = 30 ) -> int: return _calculate(__lowercase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
686
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = (UniPCMultistepScheduler,) _UpperCAmelCase : str = (("num_inference_steps", 2_5),) def A ( self : Dict , **lowercase : List[str] ): '''simple docstring''' _snake_case = { 'num_train_timesteps': 1_000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**lowercase ) return config def A ( self : int , lowercase : int=0 , **lowercase : Optional[Any] ): '''simple docstring''' _snake_case = dict(self.forward_default_kwargs ) _snake_case = kwargs.pop('num_inference_steps' , lowercase ) _snake_case = self.dummy_sample _snake_case = 0.1 * sample _snake_case = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case = self.get_scheduler_config(**lowercase ) _snake_case = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals _snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) _snake_case = scheduler_class.from_pretrained(lowercase ) new_scheduler.set_timesteps(lowercase ) # copy over dummy past residuals _snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case , _snake_case = sample, sample for t in range(lowercase , time_step + scheduler.config.solver_order + 1 ): _snake_case = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample _snake_case = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : Any , lowercase : Tuple=0 , **lowercase : List[str] ): '''simple docstring''' _snake_case = dict(self.forward_default_kwargs ) _snake_case = kwargs.pop('num_inference_steps' , lowercase ) _snake_case = self.dummy_sample _snake_case = 0.1 * sample _snake_case = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case = self.get_scheduler_config() _snake_case = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals (must be after setting timesteps) _snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) _snake_case = scheduler_class.from_pretrained(lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase ) # copy over dummy past residual (must be after setting timesteps) _snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample _snake_case = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : int , lowercase : Optional[Any]=None , **lowercase : Optional[int] ): '''simple docstring''' if scheduler is None: _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config(**lowercase ) _snake_case = scheduler_class(**lowercase ) _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config(**lowercase ) _snake_case = scheduler_class(**lowercase ) _snake_case = 10 _snake_case = self.dummy_model() _snake_case = self.dummy_sample_deter scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): _snake_case = model(lowercase , lowercase ) _snake_case = scheduler.step(lowercase , lowercase , lowercase ).prev_sample return sample def A ( self : Tuple ): '''simple docstring''' _snake_case = dict(self.forward_default_kwargs ) _snake_case = kwargs.pop('num_inference_steps' , lowercase ) for scheduler_class in self.scheduler_classes: _snake_case = self.get_scheduler_config() _snake_case = scheduler_class(**lowercase ) _snake_case = self.dummy_sample _snake_case = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase , 'set_timesteps' ): scheduler.set_timesteps(lowercase ) elif num_inference_steps is not None and not hasattr(lowercase , 'set_timesteps' ): _snake_case = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case = [residual + 0.2, residual + 0.15, residual + 0.10] _snake_case = dummy_past_residuals[: scheduler.config.solver_order] _snake_case = scheduler.timesteps[5] _snake_case = scheduler.timesteps[6] _snake_case = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample _snake_case = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = UniPCMultistepScheduler(**self.get_scheduler_config() ) _snake_case = self.full_loop(scheduler=lowercase ) _snake_case = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 _snake_case = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _snake_case = DEISMultistepScheduler.from_config(scheduler.config ) _snake_case = DPMSolverMultistepScheduler.from_config(scheduler.config ) _snake_case = UniPCMultistepScheduler.from_config(scheduler.config ) _snake_case = self.full_loop(scheduler=lowercase ) _snake_case = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def A ( self : List[Any] ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=lowercase ) def A ( self : int ): '''simple docstring''' self.check_over_configs(thresholding=lowercase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase , prediction_type=lowercase , sample_max_value=lowercase , solver_order=lowercase , solver_type=lowercase , ) def A ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase ) def A ( self : List[str] ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , ) _snake_case = self.full_loop( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , ) assert not torch.isnan(lowercase ).any(), "Samples have nan numbers" def A ( self : str ): '''simple docstring''' self.check_over_configs(lower_order_final=lowercase ) self.check_over_configs(lower_order_final=lowercase ) def A ( self : str ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=lowercase , time_step=0 ) def A ( self : List[str] ): '''simple docstring''' _snake_case = self.full_loop() _snake_case = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def A ( self : int ): '''simple docstring''' _snake_case = self.full_loop(prediction_type='v_prediction' ) _snake_case = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.1014 ) < 1E-3 def A ( self : Any ): '''simple docstring''' _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config(thresholding=lowercase , dynamic_thresholding_ratio=0 ) _snake_case = scheduler_class(**lowercase ) _snake_case = 10 _snake_case = self.dummy_model() _snake_case = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): _snake_case = model(lowercase , lowercase ) _snake_case = scheduler.step(lowercase , lowercase , lowercase ).prev_sample assert sample.dtype == torch.floataa def A ( self : List[str] , **lowercase : Union[str, Any] ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _snake_case = self.get_scheduler_config(**lowercase ) _snake_case = scheduler_class(**lowercase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
686
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
1
def a_ ( __lowercase : int ) -> Dict: _snake_case = 1 _snake_case = 2 while i * i <= n: _snake_case = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def a_ ( ) -> List[Any]: _snake_case = 1 _snake_case = 1 while True: i += 1 t_num += i if count_divisors(__lowercase ) > 500: break return t_num if __name__ == "__main__": print(solution())
686
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase : List[str] = 16 _lowerCamelCase : List[Any] = 32 def a_ ( __lowercase : Accelerator , __lowercase : int = 16 ) -> int: _snake_case = AutoTokenizer.from_pretrained('bert-base-cased' ) _snake_case = load_dataset('glue' , 'mrpc' ) def tokenize_function(__lowercase : List[Any] ): # max_length=None => use the model max length (it's actually the default) _snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _snake_case = datasets.map( __lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__lowercase : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. _snake_case = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _snake_case = 16 elif accelerator.mixed_precision != "no": _snake_case = 8 else: _snake_case = None return tokenizer.pad( __lowercase , padding='longest' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='pt' , ) # Instantiate dataloaders. _snake_case = DataLoader( tokenized_datasets['train'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase ) _snake_case = DataLoader( tokenized_datasets['validation'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase : Tuple = mocked_dataloaders # noqa: F811 def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Optional[Any]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowercase ) == "1": _snake_case = 2 # New Code # _snake_case = int(args.gradient_accumulation_steps ) _snake_case = int(args.local_sgd_steps ) # Initialize accelerator _snake_case = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case = config['lr'] _snake_case = int(config['num_epochs'] ) _snake_case = int(config['seed'] ) _snake_case = int(config['batch_size'] ) _snake_case = evaluate.load('glue' , 'mrpc' ) set_seed(__lowercase ) _snake_case , _snake_case = get_dataloaders(__lowercase , __lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case = model.to(accelerator.device ) # Instantiate optimizer _snake_case = AdamW(params=model.parameters() , lr=__lowercase ) # Instantiate scheduler _snake_case = get_linear_schedule_with_warmup( optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Now we train the model for epoch in range(__lowercase ): model.train() with LocalSGD( accelerator=__lowercase , model=__lowercase , local_sgd_steps=__lowercase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowercase ): _snake_case = model(**__lowercase ) _snake_case = output.loss accelerator.backward(__lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case = model(**__lowercase ) _snake_case = outputs.logits.argmax(dim=-1 ) _snake_case , _snake_case = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__lowercase , references=__lowercase , ) _snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __lowercase ) def a_ ( ) -> List[str]: _snake_case = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=__lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=__lowercase , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _snake_case = parser.parse_args() _snake_case = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__lowercase , __lowercase ) if __name__ == "__main__": main()
686
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
1
from __future__ import annotations from random import random from typing import Generic, TypeVar _lowerCamelCase : List[str] = TypeVar('''KT''') _lowerCamelCase : Optional[int] = TypeVar('''VT''') class SCREAMING_SNAKE_CASE__ ( Generic[KT, VT] ): '''simple docstring''' def __init__( self : int , lowercase : KT | str = "root" , lowercase : VT | None = None ): '''simple docstring''' _snake_case = key _snake_case = value _snake_case = [] def __repr__( self : Any ): '''simple docstring''' return f'''Node({self.key}: {self.value})''' @property def A ( self : Tuple ): '''simple docstring''' return len(self.forward ) class SCREAMING_SNAKE_CASE__ ( Generic[KT, VT] ): '''simple docstring''' def __init__( self : Any , lowercase : float = 0.5 , lowercase : int = 16 ): '''simple docstring''' _snake_case = Node[KT, VT]() _snake_case = 0 _snake_case = p _snake_case = max_level def __str__( self : Dict ): '''simple docstring''' _snake_case = list(self ) if len(lowercase ) == 0: return f'''SkipList(level={self.level})''' _snake_case = max((len(str(lowercase ) ) for item in items) , default=4 ) _snake_case = max(lowercase , 4 ) + 4 _snake_case = self.head _snake_case = [] _snake_case = node.forward.copy() lines.append(f'''[{node.key}]'''.ljust(lowercase , '-' ) + '* ' * len(lowercase ) ) lines.append(' ' * label_size + '| ' * len(lowercase ) ) while len(node.forward ) != 0: _snake_case = node.forward[0] lines.append( f'''[{node.key}]'''.ljust(lowercase , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(lowercase ) ) _snake_case = node.forward lines.append('None'.ljust(lowercase ) + '* ' * len(lowercase ) ) return f'''SkipList(level={self.level})\n''' + "\n".join(lowercase ) def __iter__( self : Optional[int] ): '''simple docstring''' _snake_case = self.head while len(node.forward ) != 0: yield node.forward[0].key _snake_case = node.forward[0] def A ( self : List[Any] ): '''simple docstring''' _snake_case = 1 while random() < self.p and level < self.max_level: level += 1 return level def A ( self : Optional[int] , lowercase : int ): '''simple docstring''' _snake_case = [] _snake_case = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: _snake_case = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(lowercase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def A ( self : str , lowercase : KT ): '''simple docstring''' _snake_case , _snake_case = self._locate_node(lowercase ) if node is not None: for i, update_node in enumerate(lowercase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: _snake_case = node.forward[i] else: _snake_case = update_node.forward[:i] def A ( self : Any , lowercase : KT , lowercase : VT ): '''simple docstring''' _snake_case , _snake_case = self._locate_node(lowercase ) if node is not None: _snake_case = value else: _snake_case = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , lowercase ): update_vector.append(self.head ) _snake_case = level _snake_case = Node(lowercase , lowercase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(lowercase ) else: _snake_case = new_node def A ( self : List[str] , lowercase : VT ): '''simple docstring''' _snake_case , _snake_case = self._locate_node(lowercase ) if node is not None: return node.value return None def a_ ( ) -> Any: _snake_case = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) _snake_case = skip_list.head _snake_case = {} while node.level != 0: _snake_case = node.forward[0] _snake_case = node.value assert len(__lowercase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def a_ ( ) -> int: _snake_case = SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) _snake_case = skip_list.head _snake_case = {} while node.level != 0: _snake_case = node.forward[0] _snake_case = node.value if len(__lowercase ) != 4: print() assert len(__lowercase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def a_ ( ) -> List[str]: _snake_case = SkipList() assert skip_list.find('Some key' ) is None def a_ ( ) -> Optional[Any]: _snake_case = SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def a_ ( ) -> str: _snake_case = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def a_ ( ) -> Any: _snake_case = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def a_ ( ) -> Any: _snake_case = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def a_ ( ) -> Optional[int]: _snake_case = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 142 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(__lowercase : str ): yield node.key for forward_node in node.forward: yield from traverse_keys(__lowercase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def a_ ( ) -> str: def is_sorted(__lowercase : Any ): return all(next_item >= item for item, next_item in zip(__lowercase , lst[1:] ) ) _snake_case = SkipList() for i in range(10 ): skip_list.insert(__lowercase , __lowercase ) assert is_sorted(list(__lowercase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(__lowercase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(__lowercase ) ) def a_ ( ) -> List[Any]: for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def a_ ( ) -> Optional[int]: _snake_case = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
686
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , lowercase : int , lowercase : Optional[int]=7 , lowercase : List[str]=3 , lowercase : Any=30 , lowercase : Any=400 , lowercase : Any=True , lowercase : str=None , lowercase : Union[str, Any]=True , lowercase : List[str]=[0.5, 0.5, 0.5] , lowercase : int=[0.5, 0.5, 0.5] , lowercase : Union[str, Any]=True , lowercase : List[Any]=1 / 255 , lowercase : List[Any]=True , ): '''simple docstring''' _snake_case = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = do_normalize _snake_case = image_mean _snake_case = image_std _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_pad def A ( self : List[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A ( self : Optional[int] , lowercase : List[Any] , lowercase : List[str]=False ): '''simple docstring''' if not batched: _snake_case = image_inputs[0] if isinstance(lowercase , Image.Image ): _snake_case , _snake_case = image.size else: _snake_case , _snake_case = image.shape[1], image.shape[2] if w < h: _snake_case = int(self.size['shortest_edge'] * h / w ) _snake_case = self.size['shortest_edge'] elif w > h: _snake_case = self.size['shortest_edge'] _snake_case = int(self.size['shortest_edge'] * w / h ) else: _snake_case = self.size['shortest_edge'] _snake_case = self.size['shortest_edge'] else: _snake_case = [] for image in image_inputs: _snake_case , _snake_case = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case = max(lowercase , key=lambda lowercase : item[0] )[0] _snake_case = max(lowercase , key=lambda lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = ConditionalDetrImageProcessor if is_vision_available() else None def A ( self : Dict ): '''simple docstring''' _snake_case = ConditionalDetrImageProcessingTester(self ) @property def A ( self : str ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A ( self : int ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , 'image_mean' ) ) self.assertTrue(hasattr(lowercase , 'image_std' ) ) self.assertTrue(hasattr(lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase , 'do_resize' ) ) self.assertTrue(hasattr(lowercase , 'size' ) ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad , lowercase ) _snake_case = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , lowercase ) def A ( self : Any ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) _snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : List[str] ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A ( self : int ): '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _snake_case = json.loads(f.read() ) _snake_case = {'image_id': 39_769, 'annotations': target} # encode them _snake_case = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) _snake_case = image_processing(images=lowercase , annotations=lowercase , return_tensors='pt' ) # verify pixel values _snake_case = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase ) _snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase , atol=1E-4 ) ) # verify area _snake_case = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase ) ) # verify boxes _snake_case = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase ) _snake_case = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase , atol=1E-3 ) ) # verify image_id _snake_case = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase ) ) # verify is_crowd _snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase ) ) # verify class_labels _snake_case = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase ) ) # verify orig_size _snake_case = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase ) ) # verify size _snake_case = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase ) ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _snake_case = json.loads(f.read() ) _snake_case = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} _snake_case = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _snake_case = ConditionalDetrImageProcessor(format='coco_panoptic' ) _snake_case = image_processing(images=lowercase , annotations=lowercase , masks_path=lowercase , return_tensors='pt' ) # verify pixel values _snake_case = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase ) _snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase , atol=1E-4 ) ) # verify area _snake_case = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase ) ) # verify boxes _snake_case = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase ) _snake_case = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase , atol=1E-3 ) ) # verify image_id _snake_case = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase ) ) # verify is_crowd _snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase ) ) # verify class_labels _snake_case = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase ) ) # verify masks _snake_case = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase ) # verify orig_size _snake_case = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase ) ) # verify size _snake_case = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase ) )
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
1
from collections import deque class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : str , lowercase : str , lowercase : int , lowercase : int ): '''simple docstring''' _snake_case = process_name # process name _snake_case = arrival_time # arrival time of the process # completion time of finished process or last interrupted time _snake_case = arrival_time _snake_case = burst_time # remaining burst time _snake_case = 0 # total time of the process wait in ready queue _snake_case = 0 # time from arrival time to completion time class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Tuple , lowercase : int , lowercase : list[int] , lowercase : deque[Process] , lowercase : int , ): '''simple docstring''' _snake_case = number_of_queues # time slice of queues that round robin algorithm applied _snake_case = time_slices # unfinished process is in this ready_queue _snake_case = queue # current time _snake_case = current_time # finished process is in this sequence queue _snake_case = deque() def A ( self : Tuple ): '''simple docstring''' _snake_case = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def A ( self : Tuple , lowercase : list[Process] ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def A ( self : int , lowercase : list[Process] ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def A ( self : Union[str, Any] , lowercase : list[Process] ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def A ( self : Dict , lowercase : deque[Process] ): '''simple docstring''' return [q.burst_time for q in queue] def A ( self : Dict , lowercase : Process ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def A ( self : List[Any] , lowercase : deque[Process] ): '''simple docstring''' _snake_case = deque() # sequence deque of finished process while len(lowercase ) != 0: _snake_case = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 _snake_case = 0 # set the process's turnaround time because it is finished _snake_case = self.current_time - cp.arrival_time # set the completion time _snake_case = self.current_time # add the process to queue that has finished queue finished.append(lowercase ) self.finish_queue.extend(lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def A ( self : Optional[Any] , lowercase : deque[Process] , lowercase : int ): '''simple docstring''' _snake_case = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(lowercase ) ): _snake_case = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time _snake_case = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished _snake_case = 0 # set the finish time _snake_case = self.current_time # update the process' turnaround time because it is finished _snake_case = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(lowercase ) self.finish_queue.extend(lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def A ( self : Optional[Any] ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): _snake_case , _snake_case = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowerCamelCase : Union[str, Any] = Process('''P1''', 0, 53) _lowerCamelCase : Optional[int] = Process('''P2''', 0, 17) _lowerCamelCase : Optional[int] = Process('''P3''', 0, 68) _lowerCamelCase : str = Process('''P4''', 0, 24) _lowerCamelCase : List[str] = 3 _lowerCamelCase : Dict = [17, 25] _lowerCamelCase : List[str] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) _lowerCamelCase : Optional[Any] = Process('''P1''', 0, 53) _lowerCamelCase : Tuple = Process('''P2''', 0, 17) _lowerCamelCase : Any = Process('''P3''', 0, 68) _lowerCamelCase : Any = Process('''P4''', 0, 24) _lowerCamelCase : int = 3 _lowerCamelCase : Tuple = [17, 25] _lowerCamelCase : Optional[Any] = deque([Pa, Pa, Pa, Pa]) _lowerCamelCase : Optional[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowerCamelCase : Any = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
686
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
1
import unittest from knapsack import greedy_knapsack as kp class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = [10, 20, 30, 40, 50, 60] _snake_case = [2, 4, 6, 8, 10, 12] _snake_case = 100 self.assertEqual(kp.calc_profit(lowercase , lowercase , lowercase ) , 210 ) def A ( self : int ): '''simple docstring''' self.assertRaisesRegex(lowercase , 'max_weight must greater than zero.' ) def A ( self : str ): '''simple docstring''' self.assertRaisesRegex(lowercase , 'Weight can not be negative.' ) def A ( self : Union[str, Any] ): '''simple docstring''' self.assertRaisesRegex(lowercase , 'Profit can not be negative.' ) def A ( self : Union[str, Any] ): '''simple docstring''' self.assertRaisesRegex(lowercase , 'max_weight must greater than zero.' ) def A ( self : Optional[int] ): '''simple docstring''' self.assertRaisesRegex( lowercase , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
686
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Optional[int] , lowercase : List[str] , lowercase : Dict=13 , lowercase : Optional[int]=10 , lowercase : List[Any]=3 , lowercase : Tuple=2 , lowercase : Union[str, Any]=2 , lowercase : int=True , lowercase : List[str]=True , lowercase : List[Any]=32 , lowercase : Optional[int]=5 , lowercase : str=4 , lowercase : Optional[int]=37 , lowercase : Optional[int]="gelu" , lowercase : Optional[int]=0.1 , lowercase : List[Any]=0.1 , lowercase : Any=10 , lowercase : List[Any]=0.02 , lowercase : Union[str, Any]="divided_space_time" , lowercase : List[Any]=None , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = patch_size _snake_case = num_frames _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = attention_type _snake_case = initializer_range _snake_case = scope _snake_case = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _snake_case = (image_size // patch_size) ** 2 _snake_case = (num_frames) * self.num_patches_per_frame + 1 def A ( self : Tuple ): '''simple docstring''' _snake_case = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels def A ( self : Tuple ): '''simple docstring''' _snake_case = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _snake_case = self.num_labels return config def A ( self : Dict , lowercase : Dict , lowercase : List[Any] , lowercase : List[str] ): '''simple docstring''' _snake_case = TimesformerModel(config=lowercase ) model.to(lowercase ) model.eval() _snake_case = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Optional[int] , lowercase : str , lowercase : int , lowercase : int ): '''simple docstring''' _snake_case = TimesformerForVideoClassification(lowercase ) model.to(lowercase ) model.eval() _snake_case = model(lowercase ) # verify the logits shape _snake_case = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : str = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () _UpperCAmelCase : Any = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Dict = False _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' _snake_case = TimesformerModelTester(self ) _snake_case = ConfigTester( self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def A ( self : int , lowercase : Optional[Any] , lowercase : int , lowercase : Optional[Any]=False ): '''simple docstring''' _snake_case = copy.deepcopy(lowercase ) if return_labels: if model_class in get_values(lowercase ): _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def A ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase ) def A ( self : Any ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowercase ) @slow def A ( self : List[Any] ): '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TimesformerModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def A ( self : List[Any] ): '''simple docstring''' if not self.has_attentions: pass else: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True for model_class in self.all_model_classes: _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.num_frames _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowercase , lowercase ) ) _snake_case = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowercase , lowercase ) ) _snake_case = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _snake_case = len(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + 1 , len(lowercase ) ) _snake_case = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def A ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Optional[int] ): _snake_case = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowercase , lowercase ) ) _snake_case = outputs.hidden_states _snake_case = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase ) , lowercase ) _snake_case = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowercase , lowercase , lowercase ) def a_ ( ) -> Union[str, Any]: _snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _snake_case = np.load(__lowercase ) return list(__lowercase ) @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def A ( self : Optional[int] ): '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def A ( self : int ): '''simple docstring''' _snake_case = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( lowercase ) _snake_case = self.default_image_processor _snake_case = prepare_video() _snake_case = image_processor(video[:8] , return_tensors='pt' ).to(lowercase ) # forward pass with torch.no_grad(): _snake_case = model(**lowercase ) # verify the logits _snake_case = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowercase ) _snake_case = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) )
686
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = {'''vocab_file''': '''vocab.txt'''} _lowerCamelCase : Tuple = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } _lowerCamelCase : Optional[int] = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } _lowerCamelCase : List[Any] = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = VOCAB_FILES_NAMES _UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Optional[Any] = ConvBertTokenizer def __init__( self : List[str] , lowercase : Optional[Any]=None , lowercase : List[Any]=None , lowercase : Optional[Any]=True , lowercase : Optional[int]="[UNK]" , lowercase : str="[SEP]" , lowercase : Union[str, Any]="[PAD]" , lowercase : Union[str, Any]="[CLS]" , lowercase : Tuple="[MASK]" , lowercase : List[str]=True , lowercase : str=None , **lowercase : Union[str, Any] , ): '''simple docstring''' super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) _snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase ) != tokenize_chinese_chars ): _snake_case = getattr(lowercase , normalizer_state.pop('type' ) ) _snake_case = do_lower_case _snake_case = strip_accents _snake_case = tokenize_chinese_chars _snake_case = normalizer_class(**lowercase ) _snake_case = do_lower_case def A ( self : List[str] , lowercase : Tuple , lowercase : List[str]=None ): '''simple docstring''' _snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : Optional[int] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Union[str, Any] , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' _snake_case = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
686
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : int = BlenderbotConfig _UpperCAmelCase : Optional[Any] = {} _UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Dict , lowercase : int , lowercase : str=13 , lowercase : Optional[int]=7 , lowercase : Union[str, Any]=True , lowercase : str=False , lowercase : str=99 , lowercase : str=32 , lowercase : int=2 , lowercase : Optional[Any]=4 , lowercase : int=37 , lowercase : Any=0.1 , lowercase : List[str]=0.1 , lowercase : Union[str, Any]=20 , lowercase : List[Any]=2 , lowercase : Tuple=1 , lowercase : List[Any]=0 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id def A ( self : Dict ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _snake_case = prepare_blenderbot_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def A ( self : Union[str, Any] , lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' _snake_case = TFBlenderbotModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = inputs_dict['head_mask'] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : Union[str, Any] , __lowercase : Any , __lowercase : List[str] , __lowercase : Optional[Any]=None , __lowercase : Tuple=None , __lowercase : int=None , __lowercase : Optional[int]=None , __lowercase : int=None , ) -> List[Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : int = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () _UpperCAmelCase : int = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : List[Any] = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : Dict = True _UpperCAmelCase : Tuple = False _UpperCAmelCase : List[Any] = False def A ( self : str ): '''simple docstring''' _snake_case = TFBlenderbotModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : int = ["My friends are cool but they eat too many carbs."] _UpperCAmelCase : int = "facebook/blenderbot-400M-distill" @cached_property def A ( self : Optional[Any] ): '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def A ( self : List[Any] ): '''simple docstring''' _snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def A ( self : str ): '''simple docstring''' _snake_case = self.tokenizer(self.src_text , return_tensors='tf' ) _snake_case = self.model.generate( model_inputs.input_ids , ) _snake_case = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
686
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
1
import argparse import copy def a_ ( __lowercase : Optional[int] ) -> str: _snake_case = {} with open(__lowercase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _snake_case = [] _list.append([line.split()[1], line.split()[2]] ) _snake_case = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _snake_case = [] _list.append([line.split()[0], line.split()[2]] ) _snake_case = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def a_ ( __lowercase : Optional[int] , __lowercase : Dict ) -> Optional[int]: with open(__lowercase ) as f: _snake_case = f.read(1 ) _snake_case = start_node _snake_case = [] _snake_case = start_node _snake_case = 0 while visiting not in first_solution: _snake_case = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__lowercase ) and k[0] not in first_solution: _snake_case = k[1] _snake_case = k[0] first_solution.append(__lowercase ) _snake_case = distance_of_first_solution + int(__lowercase ) _snake_case = best_node first_solution.append(__lowercase ) _snake_case = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _snake_case = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def a_ ( __lowercase : List[str] , __lowercase : List[str] ) -> Optional[int]: _snake_case = [] for n in solution[1:-1]: _snake_case = solution.index(__lowercase ) for kn in solution[1:-1]: _snake_case = solution.index(__lowercase ) if n == kn: continue _snake_case = copy.deepcopy(__lowercase ) _snake_case = kn _snake_case = n _snake_case = 0 for k in _tmp[:-1]: _snake_case = _tmp[_tmp.index(__lowercase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _snake_case = distance + int(i[1] ) _tmp.append(__lowercase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _snake_case = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __lowercase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def a_ ( __lowercase : str , __lowercase : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : str , __lowercase : List[Any] ) -> Optional[int]: _snake_case = 1 _snake_case = first_solution _snake_case = [] _snake_case = distance_of_first_solution _snake_case = solution while count <= iters: _snake_case = find_neighborhood(__lowercase , __lowercase ) _snake_case = 0 _snake_case = neighborhood[index_of_best_solution] _snake_case = len(__lowercase ) - 1 _snake_case = False while not found: _snake_case = 0 while i < len(__lowercase ): if best_solution[i] != solution[i]: _snake_case = best_solution[i] _snake_case = solution[i] break _snake_case = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _snake_case = True _snake_case = best_solution[:-1] _snake_case = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _snake_case = cost _snake_case = solution else: _snake_case = index_of_best_solution + 1 _snake_case = neighborhood[index_of_best_solution] if len(__lowercase ) >= size: tabu_list.pop(0 ) _snake_case = count + 1 return best_solution_ever, best_cost def a_ ( __lowercase : Optional[Any]=None ) -> List[str]: _snake_case = generate_neighbours(args.File ) _snake_case , _snake_case = generate_first_solution( args.File , __lowercase ) _snake_case , _snake_case = tabu_search( __lowercase , __lowercase , __lowercase , args.Iterations , args.Size , ) print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
686
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
def a_ ( __lowercase : dict ) -> set: _snake_case = set() # edges = list of graph's edges _snake_case = get_edges(__lowercase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _snake_case , _snake_case = edges.pop() chosen_vertices.add(__lowercase ) chosen_vertices.add(__lowercase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__lowercase ) return chosen_vertices def a_ ( __lowercase : dict ) -> set: _snake_case = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
686
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
1
import math def a_ ( __lowercase : int , __lowercase : List[str] ) -> Tuple: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__lowercase ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _lowerCamelCase : Optional[Any] = '''Enter the base and the power separated by a comma: ''' _lowerCamelCase , _lowerCamelCase : Optional[Any] = map(int, input(prompt).split(''',''')) _lowerCamelCase , _lowerCamelCase : Tuple = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. _lowerCamelCase : Optional[int] = res(xa, ya) _lowerCamelCase : List[str] = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
686
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
1
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def a_ ( __lowercase : Tuple ) -> List[Any]: _snake_case = fname.split(os.path.sep )[-1] return re.search(r'^(.*)_\d+\.jpg$' , __lowercase ).groups()[0] class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[str] , lowercase : int , lowercase : str=None , lowercase : Optional[int]=None ): '''simple docstring''' _snake_case = file_names _snake_case = image_transform _snake_case = label_to_id def __len__( self : List[Any] ): '''simple docstring''' return len(self.file_names ) def __getitem__( self : int , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = self.file_names[idx] _snake_case = PIL.Image.open(lowercase ) _snake_case = raw_image.convert('RGB' ) if self.image_transform is not None: _snake_case = self.image_transform(lowercase ) _snake_case = extract_label(lowercase ) if self.label_to_id is not None: _snake_case = self.label_to_id[label] return {"image": image, "label": label} def a_ ( __lowercase : int , __lowercase : int ) -> List[Any]: # Initialize accelerator if args.with_tracking: _snake_case = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: _snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case = config['lr'] _snake_case = int(config['num_epochs'] ) _snake_case = int(config['seed'] ) _snake_case = int(config['batch_size'] ) _snake_case = config['image_size'] if not isinstance(__lowercase , (list, tuple) ): _snake_case = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": _snake_case = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): _snake_case = int(args.checkpointing_steps ) else: raise ValueError( f'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: _snake_case = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: _snake_case = os.path.split(__lowercase )[-1].split('.' )[0] accelerator.init_trackers(__lowercase , __lowercase ) # Grab all the image filenames _snake_case = [os.path.join(args.data_dir , __lowercase ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences _snake_case = [extract_label(__lowercase ) for fname in file_names] _snake_case = list(set(__lowercase ) ) id_to_label.sort() _snake_case = {lbl: i for i, lbl in enumerate(__lowercase )} # Set the seed before splitting the data. np.random.seed(__lowercase ) torch.manual_seed(__lowercase ) torch.cuda.manual_seed_all(__lowercase ) # Split our filenames between train and validation _snake_case = np.random.permutation(len(__lowercase ) ) _snake_case = int(0.8 * len(__lowercase ) ) _snake_case = random_perm[:cut] _snake_case = random_perm[cut:] # For training we use a simple RandomResizedCrop _snake_case = Compose([RandomResizedCrop(__lowercase , scale=(0.5, 1.0) ), ToTensor()] ) _snake_case = PetsDataset( [file_names[i] for i in train_split] , image_transform=__lowercase , label_to_id=__lowercase ) # For evaluation, we use a deterministic Resize _snake_case = Compose([Resize(__lowercase ), ToTensor()] ) _snake_case = PetsDataset([file_names[i] for i in eval_split] , image_transform=__lowercase , label_to_id=__lowercase ) # Instantiate dataloaders. _snake_case = DataLoader(__lowercase , shuffle=__lowercase , batch_size=__lowercase , num_workers=4 ) _snake_case = DataLoader(__lowercase , shuffle=__lowercase , batch_size=__lowercase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case = create_model('resnet50d' , pretrained=__lowercase , num_classes=len(__lowercase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): _snake_case = False for param in model.get_classifier().parameters(): _snake_case = True # We normalize the batches of images to be a bit faster. _snake_case = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) _snake_case = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer _snake_case = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler _snake_case = OneCycleLR(optimizer=__lowercase , max_lr=__lowercase , epochs=__lowercase , steps_per_epoch=len(__lowercase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # We need to keep track of how many total steps we have iterated over _snake_case = 0 # We also need to keep track of the starting epoch so files are named properly _snake_case = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) _snake_case = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint _snake_case = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) _snake_case = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` _snake_case = os.path.splitext(__lowercase )[0] if "epoch" in training_difference: _snake_case = int(training_difference.replace('epoch_' , '' ) ) + 1 _snake_case = None else: _snake_case = int(training_difference.replace('step_' , '' ) ) _snake_case = resume_step // len(__lowercase ) resume_step -= starting_epoch * len(__lowercase ) # Now we train the model for epoch in range(__lowercase , __lowercase ): model.train() if args.with_tracking: _snake_case = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step _snake_case = accelerator.skip_first_batches(__lowercase , __lowercase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader _snake_case = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. _snake_case = {k: v.to(accelerator.device ) for k, v in batch.items()} _snake_case = (batch['image'] - mean) / std _snake_case = model(__lowercase ) _snake_case = torch.nn.functional.cross_entropy(__lowercase , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__lowercase , __lowercase ): _snake_case = f'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: _snake_case = os.path.join(args.output_dir , __lowercase ) accelerator.save_state(__lowercase ) model.eval() _snake_case = 0 _snake_case = 0 for step, batch in enumerate(__lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. _snake_case = {k: v.to(accelerator.device ) for k, v in batch.items()} _snake_case = (batch['image'] - mean) / std with torch.no_grad(): _snake_case = model(__lowercase ) _snake_case = outputs.argmax(dim=-1 ) _snake_case , _snake_case = accelerator.gather_for_metrics((predictions, batch['label']) ) _snake_case = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() _snake_case = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(__lowercase ), 'epoch': epoch, } , step=__lowercase , ) if checkpointing_steps == "epoch": _snake_case = f'''epoch_{epoch}''' if args.output_dir is not None: _snake_case = os.path.join(args.output_dir , __lowercase ) accelerator.save_state(__lowercase ) if args.with_tracking: accelerator.end_training() def a_ ( ) -> List[Any]: _snake_case = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=__lowercase , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=__lowercase , default=__lowercase , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=__lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=__lowercase , default=__lowercase , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=__lowercase , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) _snake_case = parser.parse_args() _snake_case = {'lr': 3E-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(__lowercase , __lowercase ) if __name__ == "__main__": main()
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
1
import os def a_ ( __lowercase : str = "matrix.txt" ) -> int: with open(os.path.join(os.path.dirname(__lowercase ) , __lowercase ) ) as in_file: _snake_case = in_file.read() _snake_case = [[int(__lowercase ) for cell in row.split(',' )] for row in data.strip().splitlines()] _snake_case = [[0 for cell in row] for row in grid] _snake_case = len(grid[0] ) _snake_case = [[0 for i in range(__lowercase )] for j in range(__lowercase )] _snake_case = grid[0][0] for i in range(1 , __lowercase ): _snake_case = grid[0][i] + dp[0][i - 1] for i in range(1 , __lowercase ): _snake_case = grid[i][0] + dp[i - 1][0] for i in range(1 , __lowercase ): for j in range(1 , __lowercase ): _snake_case = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'{solution() = }')
686
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Dict = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : str = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Tuple = XLNetTokenizer _UpperCAmelCase : Dict = XLNetTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : int = True def A ( self : Any ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _snake_case = XLNetTokenizer(lowercase , keep_accents=lowercase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Tuple ): '''simple docstring''' _snake_case = '<s>' _snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<eod>' ) self.assertEqual(len(lowercase ) , 1_006 ) def A ( self : Tuple ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def A ( self : List[str] ): '''simple docstring''' _snake_case = XLNetTokenizer(lowercase , keep_accents=lowercase ) _snake_case = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [285, 46, 10, 170, 382] ) _snake_case = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _snake_case = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual(lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _snake_case = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = XLNetTokenizer(lowercase , do_lower_case=lowercase ) _snake_case = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + '', 'i', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['▁he', 'll', 'o'] ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = XLNetTokenizer(lowercase , do_lower_case=lowercase ) _snake_case = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) @slow def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = XLNetTokenizer.from_pretrained('xlnet-base-cased' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=lowercase ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowercase ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = {'input_ids': [[17, 21_442, 270, 17, 10, 14_645, 318, 34, 17, 4_546, 3_145, 787, 13, 7_752, 22_018, 23, 21, 17, 4_546, 3_145, 787, 13, 3_352, 14_431, 13, 5_500, 11, 1_176, 580, 13, 16_819, 4_797, 23, 17, 10, 17_135, 658, 19, 457, 7_932, 13, 184, 19, 3_154, 17_135, 6_468, 19, 1_404, 12_269, 19, 4_229, 5_356, 16_264, 46, 19, 17, 20_545, 10_395, 9, 9, 9, 11, 28, 6_421, 9_531, 20_729, 17, 10, 353, 17_022, 11, 21, 6_421, 9_531, 16_949, 17, 10, 11_509, 753, 11, 33, 95, 2_421, 7_385, 956, 14_431, 2_626, 25, 842, 7_385, 4_836, 21, 1_429, 2_272, 9_855, 3_120, 161, 24_738, 19, 13_203, 658, 218, 787, 21, 430, 18_482, 847, 2_637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22_178, 27, 1_064, 22, 956, 13, 11_101, 1_429, 5_854, 24_313, 18_953, 40, 422, 24_366, 68, 1_758, 37, 10_483, 14_257, 31, 207, 263, 21, 203, 3_773, 25, 71, 9_735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2_049, 3_442, 17, 13_894, 3_380, 23, 95, 18, 17_634, 2_288, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name='xlnet-base-cased' , revision='c841166438c31ec7ca9a106dee7bb312b73ae511' , )
686
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Dict = DanceDiffusionPipeline _UpperCAmelCase : List[Any] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase : List[str] = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase : Any = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase : str = False _UpperCAmelCase : str = False def A ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowercase , use_timestep_embedding=lowercase , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) _snake_case = IPNDMScheduler() _snake_case = { 'unet': unet, 'scheduler': scheduler, } return components def A ( self : Tuple , lowercase : List[str] , lowercase : Tuple=0 ): '''simple docstring''' if str(lowercase ).startswith('mps' ): _snake_case = torch.manual_seed(lowercase ) else: _snake_case = torch.Generator(device=lowercase ).manual_seed(lowercase ) _snake_case = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def A ( self : List[str] ): '''simple docstring''' _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = DanceDiffusionPipeline(**lowercase ) _snake_case = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs(lowercase ) _snake_case = pipe(**lowercase ) _snake_case = output.audios _snake_case = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _snake_case = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def A ( self : List[Any] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def A ( self : int ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def A ( self : Tuple ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def A ( self : int ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def A ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): '''simple docstring''' _snake_case = torch_device _snake_case = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _snake_case = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = torch.manual_seed(0 ) _snake_case = pipe(generator=lowercase , num_inference_steps=100 , audio_length_in_s=4.096 ) _snake_case = output.audios _snake_case = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _snake_case = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : Dict ): '''simple docstring''' _snake_case = torch_device _snake_case = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) _snake_case = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = torch.manual_seed(0 ) _snake_case = pipe(generator=lowercase , num_inference_steps=100 , audio_length_in_s=4.096 ) _snake_case = output.audios _snake_case = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _snake_case = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
686
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : str ): '''simple docstring''' debug_launcher(test_script.main ) def A ( self : Any ): '''simple docstring''' debug_launcher(test_ops.main )
686
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
1
def a_ ( ) -> int: return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(__lowercase , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
686
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
1
import datasets from .evaluate import evaluate _lowerCamelCase : List[str] = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' _lowerCamelCase : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' _lowerCamelCase : Dict = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def A ( self : str , lowercase : Optional[int] , lowercase : int ): '''simple docstring''' _snake_case = {prediction['id']: prediction['prediction_text'] for prediction in predictions} _snake_case = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] _snake_case = evaluate(dataset=lowercase , predictions=lowercase ) return score
686
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
1
def a_ ( __lowercase : int , __lowercase : int ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def a_ ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
686
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[str] = "lxmert" _UpperCAmelCase : Optional[Any] = {} def __init__( self : Optional[int] , lowercase : int=30_522 , lowercase : Optional[Any]=768 , lowercase : Optional[Any]=12 , lowercase : Optional[int]=9_500 , lowercase : Optional[Any]=1_600 , lowercase : Optional[Any]=400 , lowercase : Union[str, Any]=3_072 , lowercase : Tuple="gelu" , lowercase : Union[str, Any]=0.1 , lowercase : Optional[int]=0.1 , lowercase : int=512 , lowercase : Optional[int]=2 , lowercase : Tuple=0.02 , lowercase : List[Any]=1E-12 , lowercase : Any=9 , lowercase : List[str]=5 , lowercase : Any=5 , lowercase : Optional[Any]=2_048 , lowercase : int=4 , lowercase : Dict=6.67 , lowercase : Any=True , lowercase : Dict=True , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]=True , lowercase : Any=True , lowercase : List[str]=True , **lowercase : Dict , ): '''simple docstring''' _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = num_qa_labels _snake_case = num_object_labels _snake_case = num_attr_labels _snake_case = l_layers _snake_case = x_layers _snake_case = r_layers _snake_case = visual_feat_dim _snake_case = visual_pos_dim _snake_case = visual_loss_normalizer _snake_case = task_matched _snake_case = task_mask_lm _snake_case = task_obj_predict _snake_case = task_qa _snake_case = visual_obj_loss _snake_case = visual_attr_loss _snake_case = visual_feat_loss _snake_case = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**lowercase )
686
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
1
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def a_ ( __lowercase : str , __lowercase : str ) -> Union[str, Any]: _snake_case = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1_024, 'hidden_size': 768, 'max_length': 512, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1_024, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1E-5, 'token_type_vocab_size': 2, } _snake_case = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py _snake_case = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=__lowercase , output_all_encodings=__lowercase , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , __lowercase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later _snake_case = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab _snake_case = os.path.join(get_home_dir() , 'models' ) _snake_case = _load_vocab(__lowercase , __lowercase , __lowercase , cls=__lowercase ) _snake_case = nlp.model.BERTModel( __lowercase , len(__lowercase ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=__lowercase , use_token_type_embed=__lowercase , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=__lowercase , use_decoder=__lowercase , ) original_bort.load_parameters(__lowercase , cast_dtype=__lowercase , ignore_extra=__lowercase ) _snake_case = original_bort._collect_params_with_prefix() # Build our config 🤗 _snake_case = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.0_2, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(__lowercase ), } _snake_case = BertConfig.from_dict(__lowercase ) _snake_case = BertForMaskedLM(__lowercase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__lowercase : str ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__lowercase : Optional[int] , __lowercase : Optional[int] ): _snake_case = hf_param.shape _snake_case = to_torch(params[gluon_param] ) _snake_case = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param _snake_case = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) _snake_case = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) _snake_case = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) _snake_case = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) _snake_case = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): _snake_case = hf_bort_model.bert.encoder.layer[i] # self attention _snake_case = layer.attention.self _snake_case = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) _snake_case = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) _snake_case = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) _snake_case = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) _snake_case = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) _snake_case = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output _snake_case = layer.attention.output _snake_case = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) _snake_case = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) _snake_case = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) _snake_case = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate _snake_case = layer.intermediate _snake_case = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) _snake_case = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output _snake_case = layer.output _snake_case = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) _snake_case = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) _snake_case = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) _snake_case = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models _snake_case = RobertaTokenizer.from_pretrained('roberta-base' ) _snake_case = tokenizer.encode_plus(__lowercase )['input_ids'] # Get gluon output _snake_case = mx.nd.array([input_ids] ) _snake_case = original_bort(inputs=__lowercase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__lowercase ) _snake_case = BertModel.from_pretrained(__lowercase ) hf_bort_model.eval() _snake_case = tokenizer.encode_plus(__lowercase , return_tensors='pt' ) _snake_case = hf_bort_model(**__lowercase )[0] _snake_case = output_gluon[0].asnumpy() _snake_case = output_hf[0].detach().numpy() _snake_case = np.max(np.abs(hf_layer - gluon_layer ) ).item() _snake_case = np.allclose(__lowercase , __lowercase , atol=1E-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , __lowercase ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCamelCase : Dict = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
686
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
1
from datetime import datetime as dt import os from github import Github _lowerCamelCase : List[str] = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def a_ ( ) -> Dict: _snake_case = Github(os.environ['GITHUB_TOKEN'] ) _snake_case = g.get_repo('huggingface/transformers' ) _snake_case = repo.get_issues(state='open' ) for issue in open_issues: _snake_case = sorted([comment for comment in issue.get_comments()] , key=lambda __lowercase : i.created_at , reverse=__lowercase ) _snake_case = comments[0] if len(__lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
686
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
1
def a_ ( __lowercase : int ) -> "list[int]": if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) _snake_case = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 _snake_case = 1 if upper_limit > 0: _snake_case = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__lowercase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: _lowerCamelCase : Optional[Any] = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(F'The Catalan numbers from 0 through {N} are:') print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = filter(lambda __lowercase : p.requires_grad , model.parameters() ) _snake_case = sum([np.prod(p.size() ) for p in model_parameters] ) return params _lowerCamelCase : Tuple = logging.getLogger(__name__) def a_ ( __lowercase : str , __lowercase : Union[str, Any] ) -> Optional[int]: if metric == "rouge2": _snake_case = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _snake_case = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _snake_case = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _snake_case = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) _snake_case = ModelCheckpoint( dirpath=__lowercase , filename=__lowercase , monitor=f'''val_{metric}''' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def a_ ( __lowercase : Optional[Any] , __lowercase : Union[str, Any] ) -> Optional[int]: return EarlyStopping( monitor=f'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=__lowercase , verbose=__lowercase , ) class SCREAMING_SNAKE_CASE__ ( pl.Callback ): '''simple docstring''' def A ( self : Tuple , lowercase : int , lowercase : str ): '''simple docstring''' _snake_case = {f'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowercase ) @rank_zero_only def A ( self : Dict , lowercase : pl.Trainer , lowercase : pl.LightningModule , lowercase : str , lowercase : Optional[int]=True ): '''simple docstring''' logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _snake_case = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _snake_case = Path(pl_module.hparams.output_dir ) if type_path == "test": _snake_case = od / 'test_results.txt' _snake_case = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _snake_case = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' _snake_case = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=lowercase ) generations_file.parent.mkdir(exist_ok=lowercase ) with open(lowercase , 'a+' ) as writer: for key in sorted(lowercase ): if key in ["log", "progress_bar", "preds"]: continue _snake_case = metrics[key] if isinstance(lowercase , torch.Tensor ): _snake_case = val.item() _snake_case = f'''{key}: {val:.6f}\n''' writer.write(lowercase ) if not save_generations: return if "preds" in metrics: _snake_case = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(lowercase ) @rank_zero_only def A ( self : int , lowercase : str , lowercase : Tuple ): '''simple docstring''' try: _snake_case = pl_module.model.model.num_parameters() except AttributeError: _snake_case = pl_module.model.num_parameters() _snake_case = count_trainable_parameters(lowercase ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def A ( self : List[str] , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowercase , lowercase , 'test' ) @rank_zero_only def A ( self : Dict , lowercase : pl.Trainer , lowercase : Tuple ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
686
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[Any] , lowercase : Union[str, Any] , lowercase : Tuple=13 , lowercase : Optional[int]=10 , lowercase : Union[str, Any]=3 , lowercase : Any=2 , lowercase : Optional[int]=2 , lowercase : Dict=2 , lowercase : Any=True , lowercase : Optional[Any]=True , lowercase : Optional[int]=32 , lowercase : Dict=5 , lowercase : List[Any]=4 , lowercase : str=37 , lowercase : Union[str, Any]="gelu" , lowercase : Tuple=0.1 , lowercase : Optional[int]=0.1 , lowercase : Tuple=10 , lowercase : Dict=0.02 , lowercase : str=0.9 , lowercase : Optional[Any]=None , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = patch_size _snake_case = tubelet_size _snake_case = num_frames _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = mask_ratio _snake_case = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _snake_case = (image_size // patch_size) ** 2 _snake_case = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _snake_case = int(mask_ratio * self.seq_length ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def A ( self : Any ): '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) def A ( self : str , lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = VideoMAEModel(config=lowercase ) model.to(lowercase ) model.eval() _snake_case = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , lowercase : int , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case = VideoMAEForPreTraining(lowercase ) model.to(lowercase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _snake_case = torch.ones((self.num_masks,) ) _snake_case = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _snake_case = mask.expand(self.batch_size , -1 ).bool() _snake_case = model(lowercase , lowercase ) # model only returns predictions for masked patches _snake_case = mask.sum().item() _snake_case = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def A ( self : int ): '''simple docstring''' _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : int = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _UpperCAmelCase : List[Any] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[str] = False _UpperCAmelCase : Dict = False _UpperCAmelCase : List[Any] = False _UpperCAmelCase : int = False def A ( self : Dict ): '''simple docstring''' _snake_case = VideoMAEModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def A ( self : str , lowercase : Optional[Any] , lowercase : int , lowercase : Union[str, Any]=False ): '''simple docstring''' _snake_case = copy.deepcopy(lowercase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _snake_case = torch.ones((self.model_tester.num_masks,) ) _snake_case = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _snake_case = mask.expand(self.model_tester.batch_size , -1 ).bool() _snake_case = bool_masked_pos.to(lowercase ) if return_labels: if model_class in [ *get_values(lowercase ), ]: _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def A ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def A ( self : List[str] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : str ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase ) @slow def A ( self : Optional[Any] ): '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = VideoMAEModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' if not self.has_attentions: pass else: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True for model_class in self.all_model_classes: _snake_case = self.model_tester.seq_length - self.model_tester.num_masks _snake_case = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowercase , lowercase ) ) _snake_case = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowercase , lowercase ) ) _snake_case = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _snake_case = len(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + 1 , len(lowercase ) ) _snake_case = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def A ( self : Optional[Any] ): '''simple docstring''' def check_hidden_states_output(lowercase : str , lowercase : List[str] , lowercase : Dict ): _snake_case = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowercase , lowercase ) ) _snake_case = outputs.hidden_states _snake_case = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase ) , lowercase ) _snake_case = self.model_tester.seq_length - self.model_tester.num_masks _snake_case = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowercase , lowercase , lowercase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def A ( self : List[Any] ): '''simple docstring''' pass def a_ ( ) -> Dict: _snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _snake_case = np.load(__lowercase ) return list(__lowercase ) @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def A ( self : Tuple ): '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def A ( self : Dict ): '''simple docstring''' _snake_case = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( lowercase ) _snake_case = self.default_image_processor _snake_case = prepare_video() _snake_case = image_processor(lowercase , return_tensors='pt' ).to(lowercase ) # forward pass with torch.no_grad(): _snake_case = model(**lowercase ) # verify the logits _snake_case = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowercase ) _snake_case = torch.tensor([0.3669, -0.0688, -0.2421] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(lowercase ) _snake_case = self.default_image_processor _snake_case = prepare_video() _snake_case = image_processor(lowercase , return_tensors='pt' ).to(lowercase ) # add boolean mask, indicating which patches to mask _snake_case = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _snake_case = torch.load(lowercase ) # forward pass with torch.no_grad(): _snake_case = model(**lowercase ) # verify the logits _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=lowercase ) self.assertEqual(outputs.logits.shape , lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowercase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _snake_case = torch.tensor([0.5142] , device=lowercase ) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _snake_case = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=lowercase ).to( lowercase ) with torch.no_grad(): _snake_case = model(**lowercase ) _snake_case = torch.tensor(torch.tensor([0.6469] ) , device=lowercase ) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1E-4 ) )
686
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Any , lowercase : int , lowercase : int , lowercase : int , lowercase : Union[str, Any]=0.0 , lowercase : Optional[int] = None , lowercase : str = "geglu" , lowercase : Optional[int] = None , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = True , lowercase : str = "layer_norm" , lowercase : bool = False , ): '''simple docstring''' super().__init__() _snake_case = only_cross_attention _snake_case = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' _snake_case = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _snake_case = AdaLayerNorm(lowercase , lowercase ) elif self.use_ada_layer_norm_zero: _snake_case = AdaLayerNormZero(lowercase , lowercase ) else: _snake_case = nn.LayerNorm(lowercase , elementwise_affine=lowercase ) _snake_case = Attention( query_dim=lowercase , heads=lowercase , dim_head=lowercase , dropout=lowercase , bias=lowercase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=lowercase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _snake_case = ( AdaLayerNorm(lowercase , lowercase ) if self.use_ada_layer_norm else nn.LayerNorm(lowercase , elementwise_affine=lowercase ) ) _snake_case = Attention( query_dim=lowercase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=lowercase , dim_head=lowercase , dropout=lowercase , bias=lowercase , upcast_attention=lowercase , ) # is self-attn if encoder_hidden_states is none else: _snake_case = None _snake_case = None # 3. Feed-forward _snake_case = nn.LayerNorm(lowercase , elementwise_affine=lowercase ) _snake_case = FeedForward(lowercase , dropout=lowercase , activation_fn=lowercase , final_dropout=lowercase ) # let chunk size default to None _snake_case = None _snake_case = 0 def A ( self : int , lowercase : Optional[int] , lowercase : int ): '''simple docstring''' _snake_case = chunk_size _snake_case = dim def A ( self : Any , lowercase : torch.FloatTensor , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Dict[str, Any] = None , lowercase : Optional[torch.LongTensor] = None , ): '''simple docstring''' if self.use_ada_layer_norm: _snake_case = self.norma(lowercase , lowercase ) elif self.use_ada_layer_norm_zero: _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.norma( lowercase , lowercase , lowercase , hidden_dtype=hidden_states.dtype ) else: _snake_case = self.norma(lowercase ) _snake_case = cross_attention_kwargs if cross_attention_kwargs is not None else {} _snake_case = self.attna( lowercase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=lowercase , **lowercase , ) if self.use_ada_layer_norm_zero: _snake_case = gate_msa.unsqueeze(1 ) * attn_output _snake_case = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _snake_case = ( self.norma(lowercase , lowercase ) if self.use_ada_layer_norm else self.norma(lowercase ) ) _snake_case = self.attna( lowercase , encoder_hidden_states=lowercase , attention_mask=lowercase , **lowercase , ) _snake_case = attn_output + hidden_states # 3. Feed-forward _snake_case = self.norma(lowercase ) if self.use_ada_layer_norm_zero: _snake_case = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) _snake_case = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _snake_case = torch.cat( [self.ff(lowercase ) for hid_slice in norm_hidden_states.chunk(lowercase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _snake_case = self.ff(lowercase ) if self.use_ada_layer_norm_zero: _snake_case = gate_mlp.unsqueeze(1 ) * ff_output _snake_case = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowercase : int , lowercase : Optional[int] = None , lowercase : int = 4 , lowercase : float = 0.0 , lowercase : str = "geglu" , lowercase : bool = False , ): '''simple docstring''' super().__init__() _snake_case = int(dim * mult ) _snake_case = dim_out if dim_out is not None else dim if activation_fn == "gelu": _snake_case = GELU(lowercase , lowercase ) if activation_fn == "gelu-approximate": _snake_case = GELU(lowercase , lowercase , approximate='tanh' ) elif activation_fn == "geglu": _snake_case = GEGLU(lowercase , lowercase ) elif activation_fn == "geglu-approximate": _snake_case = ApproximateGELU(lowercase , lowercase ) _snake_case = nn.ModuleList([] ) # project in self.net.append(lowercase ) # project dropout self.net.append(nn.Dropout(lowercase ) ) # project out self.net.append(nn.Linear(lowercase , lowercase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(lowercase ) ) def A ( self : Optional[Any] , lowercase : Union[str, Any] ): '''simple docstring''' for module in self.net: _snake_case = module(lowercase ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : str = "none" ): '''simple docstring''' super().__init__() _snake_case = nn.Linear(lowercase , lowercase ) _snake_case = approximate def A ( self : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(lowercase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def A ( self : List[Any] , lowercase : List[Any] ): '''simple docstring''' _snake_case = self.proj(lowercase ) _snake_case = self.gelu(lowercase ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int , lowercase : int ): '''simple docstring''' super().__init__() _snake_case = nn.Linear(lowercase , dim_out * 2 ) def A ( self : str , lowercase : int ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(lowercase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def A ( self : List[Any] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case = self.proj(lowercase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(lowercase ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , lowercase : int , lowercase : int ): '''simple docstring''' super().__init__() _snake_case = nn.Linear(lowercase , lowercase ) def A ( self : Tuple , lowercase : Dict ): '''simple docstring''' _snake_case = self.proj(lowercase ) return x * torch.sigmoid(1.702 * x ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : List[Any] , lowercase : List[str] ): '''simple docstring''' super().__init__() _snake_case = nn.Embedding(lowercase , lowercase ) _snake_case = nn.SiLU() _snake_case = nn.Linear(lowercase , embedding_dim * 2 ) _snake_case = nn.LayerNorm(lowercase , elementwise_affine=lowercase ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = self.linear(self.silu(self.emb(lowercase ) ) ) _snake_case , _snake_case = torch.chunk(lowercase , 2 ) _snake_case = self.norm(lowercase ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowercase : Any , lowercase : str ): '''simple docstring''' super().__init__() _snake_case = CombinedTimestepLabelEmbeddings(lowercase , lowercase ) _snake_case = nn.SiLU() _snake_case = nn.Linear(lowercase , 6 * embedding_dim , bias=lowercase ) _snake_case = nn.LayerNorm(lowercase , elementwise_affine=lowercase , eps=1E-6 ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any , lowercase : Tuple , lowercase : Dict=None ): '''simple docstring''' _snake_case = self.linear(self.silu(self.emb(lowercase , lowercase , hidden_dtype=lowercase ) ) ) _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = emb.chunk(6 , dim=1 ) _snake_case = self.norm(lowercase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowercase : int , lowercase : int , lowercase : int , lowercase : Optional[str] = None , lowercase : float = 1E-5 ): '''simple docstring''' super().__init__() _snake_case = num_groups _snake_case = eps if act_fn is None: _snake_case = None else: _snake_case = get_activation(lowercase ) _snake_case = nn.Linear(lowercase , out_dim * 2 ) def A ( self : Optional[Any] , lowercase : Tuple , lowercase : List[Any] ): '''simple docstring''' if self.act: _snake_case = self.act(lowercase ) _snake_case = self.linear(lowercase ) _snake_case = emb[:, :, None, None] _snake_case , _snake_case = emb.chunk(2 , dim=1 ) _snake_case = F.group_norm(lowercase , self.num_groups , eps=self.eps ) _snake_case = x * (1 + scale) + shift return x
686
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
1
from typing import Any class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[Any] , lowercase : Any ): '''simple docstring''' _snake_case = data _snake_case = None def __repr__( self : Optional[int] ): '''simple docstring''' return f'''Node({self.data})''' class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Tuple ): '''simple docstring''' _snake_case = None def __iter__( self : List[str] ): '''simple docstring''' _snake_case = self.head while node: yield node.data _snake_case = node.next def __len__( self : Optional[Any] ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : Optional[int] ): '''simple docstring''' return "->".join([str(lowercase ) for item in self] ) def __getitem__( self : Any , lowercase : int ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : str , lowercase : int , lowercase : Any ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) _snake_case = self.head for _ in range(lowercase ): _snake_case = current.next _snake_case = data def A ( self : Union[str, Any] , lowercase : Any ): '''simple docstring''' self.insert_nth(len(self ) , lowercase ) def A ( self : int , lowercase : Any ): '''simple docstring''' self.insert_nth(0 , lowercase ) def A ( self : int , lowercase : int , lowercase : Any ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) _snake_case = Node(lowercase ) if self.head is None: _snake_case = new_node elif index == 0: _snake_case = self.head # link new_node to head _snake_case = new_node else: _snake_case = self.head for _ in range(index - 1 ): _snake_case = temp.next _snake_case = temp.next _snake_case = new_node def A ( self : List[str] ): # print every node data '''simple docstring''' print(self ) def A ( self : Tuple ): '''simple docstring''' return self.delete_nth(0 ) def A ( self : Optional[int] ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def A ( self : Optional[int] , lowercase : int = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) _snake_case = self.head # default first node if index == 0: _snake_case = self.head.next else: _snake_case = self.head for _ in range(index - 1 ): _snake_case = temp.next _snake_case = temp.next _snake_case = temp.next.next return delete_node.data def A ( self : str ): '''simple docstring''' return self.head is None def A ( self : str ): '''simple docstring''' _snake_case = None _snake_case = self.head while current: # Store the current node's next node. _snake_case = current.next # Make the current node's next point backwards _snake_case = prev # Make the previous node be the current node _snake_case = current # Make the current node the next node (to progress iteration) _snake_case = next_node # Return prev in order to put the head at the end _snake_case = prev def a_ ( ) -> None: _snake_case = LinkedList() assert linked_list.is_empty() is True assert str(__lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__lowercase ) == i linked_list.insert_nth(__lowercase , i + 1 ) assert str(__lowercase ) == "->".join(str(__lowercase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__lowercase ) == "->".join(str(__lowercase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__lowercase ) == 9 assert str(__lowercase ) == "->".join(str(__lowercase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): _snake_case = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(__lowercase ) == "->".join(str(__lowercase ) for i in range(-8 , 1 ) ) def a_ ( ) -> None: _snake_case = [ -9, 100, Node(77_345_112 ), 'dlrow olleH', 7, 5_555, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] _snake_case = LinkedList() for i in test_input: linked_list.insert_tail(__lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _snake_case = linked_list.delete_head() assert result == -9 assert ( str(__lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _snake_case = linked_list.delete_tail() assert result == 1_2.2 assert ( str(__lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _snake_case = linked_list.delete_nth(10 ) assert result is None assert ( str(__lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(__lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__lowercase ) assert ( str(__lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a_ ( ) -> Any: from doctest import testmod testmod() _snake_case = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(__lowercase ) print('\nReading/changing Node data using indexing:' ) print(f'''Element at Position 1: {linked_list[1]}''' ) _snake_case = input('Enter New Value: ' ).strip() print('New list:' ) print(__lowercase ) print(f'''length of linked_list is : {len(__lowercase )}''' ) if __name__ == "__main__": main()
686
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def a_ ( __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : Dict ) -> List[str]: # Initialise PyTorch model _snake_case = BertConfig.from_json_file(__lowercase ) print(f'''Building PyTorch model from configuration: {config}''' ) _snake_case = BertForPreTraining(__lowercase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCamelCase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
686
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : List[Any] , lowercase : Union[str, Any]=7 , lowercase : str=3 , lowercase : Dict=18 , lowercase : Optional[Any]=30 , lowercase : List[Any]=400 , lowercase : int=True , lowercase : Optional[Any]=None , lowercase : int=True , ): '''simple docstring''' _snake_case = size if size is not None else {'height': 18, 'width': 18} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = image_size _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = apply_ocr def A ( self : Union[str, Any] ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Any = LayoutLMvaImageProcessor if is_pytesseract_available() else None def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = LayoutLMvaImageProcessingTester(self ) @property def A ( self : Optional[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[str] ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , 'do_resize' ) ) self.assertTrue(hasattr(lowercase , 'size' ) ) self.assertTrue(hasattr(lowercase , 'apply_ocr' ) ) def A ( self : int ): '''simple docstring''' _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) _snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , lowercase ) self.assertIsInstance(encoding.boxes , lowercase ) # Test batched _snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def A ( self : str ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset _snake_case = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) _snake_case = Image.open(ds[0]['file'] ).convert('RGB' ) _snake_case = image_processing(lowercase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _snake_case = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 _snake_case = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowercase ) self.assertListEqual(encoding.boxes , lowercase ) # with apply_OCR = False _snake_case = LayoutLMvaImageProcessor(apply_ocr=lowercase ) _snake_case = image_processing(lowercase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
686
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = LEDTokenizer _UpperCAmelCase : List[Any] = LEDTokenizerFast _UpperCAmelCase : str = True def A ( self : Optional[Any] ): '''simple docstring''' super().setUp() _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowercase , range(len(lowercase ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase ) ) def A ( self : Optional[Any] , **lowercase : str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : List[Any] , **lowercase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def A ( self : List[str] ): '''simple docstring''' return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def A ( self : Optional[int] ): '''simple docstring''' return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def A ( self : Dict ): '''simple docstring''' _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowercase , max_length=len(lowercase ) , padding=lowercase , return_tensors='pt' ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _snake_case = batch.input_ids.tolist()[0] self.assertListEqual(lowercase , lowercase ) @require_torch def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors='pt' ) self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('labels' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) @require_torch def A ( self : List[Any] ): '''simple docstring''' _snake_case = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(text_target=lowercase , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def A ( self : Any ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer( ['I am a small frog' * 1_024, 'I am a small frog'] , padding=lowercase , truncation=lowercase , return_tensors='pt' ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = ['A long paragraph for summarization.'] _snake_case = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowercase , return_tensors='pt' ) _snake_case = tokenizer(text_target=lowercase , return_tensors='pt' ) _snake_case = inputs['input_ids'] _snake_case = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def A ( self : Dict ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = ['Summary of the text.', 'Another summary.'] _snake_case = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _snake_case = tokenizer(lowercase , padding=lowercase ) _snake_case = [[0] * len(lowercase ) for x in encoded_output['input_ids']] _snake_case = tokenizer.pad(lowercase ) self.assertSequenceEqual(outputs['global_attention_mask'] , lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) _snake_case = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) _snake_case = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
686
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : List[str] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase : Tuple = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def a_ ( __lowercase : Any , __lowercase : int , __lowercase : List[Any] ) -> List[Any]: _snake_case = state_dict.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : int ) -> int: _snake_case = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _snake_case = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) _snake_case = value else: _snake_case = value return new_state_dict def a_ ( __lowercase : int , __lowercase : Any=False ) -> Optional[int]: _snake_case = '' if is_panoptic: _snake_case = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _snake_case = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:256, :] _snake_case = in_proj_bias[:256] _snake_case = in_proj_weight[256:512, :] _snake_case = in_proj_bias[256:512] _snake_case = in_proj_weight[-256:, :] _snake_case = in_proj_bias[-256:] def a_ ( ) -> Union[str, Any]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : int , __lowercase : List[str] ) -> Any: _snake_case = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _snake_case = 'resnet101' if "dc5" in model_name: _snake_case = True _snake_case = 'panoptic' in model_name if is_panoptic: _snake_case = 250 else: _snake_case = 91 _snake_case = 'huggingface/label-files' _snake_case = 'coco-detection-id2label.json' _snake_case = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} # load image processor _snake_case = 'coco_panoptic' if is_panoptic else 'coco_detection' _snake_case = ConditionalDetrImageProcessor(format=__lowercase ) # prepare image _snake_case = prepare_img() _snake_case = image_processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub _snake_case = torch.hub.load('DeppMeng/ConditionalDETR' , __lowercase , pretrained=__lowercase ).eval() _snake_case = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _snake_case = 'conditional_detr.' + src rename_key(__lowercase , __lowercase , __lowercase ) _snake_case = rename_backbone_keys(__lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowercase , is_panoptic=__lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _snake_case = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): _snake_case = state_dict.pop(__lowercase ) _snake_case = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: _snake_case = state_dict.pop(__lowercase ) _snake_case = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = ConditionalDetrForSegmentation(__lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() model.push_to_hub(repo_id=__lowercase , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion _snake_case = conditional_detr(__lowercase ) _snake_case = model(__lowercase ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1E-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) image_processor.save_pretrained(__lowercase ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
686
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
1
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : str , __lowercase : str ) -> List[str]: _snake_case = RobertaPreLayerNormConfig.from_pretrained( __lowercase , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict _snake_case = torch.load(hf_hub_download(repo_id=__lowercase , filename='pytorch_model.bin' ) ) _snake_case = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): _snake_case = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue _snake_case = tensor_value _snake_case = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__lowercase , config=__lowercase , state_dict=__lowercase ) model.save_pretrained(__lowercase ) # convert tokenizer _snake_case = AutoTokenizer.from_pretrained(__lowercase ) tokenizer.save_pretrained(__lowercase ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
686
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
1
def a_ ( __lowercase : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : Dict , __lowercase : List[Any] ) -> Any: if height >= 1: move_tower(height - 1 , __lowercase , __lowercase , __lowercase ) move_disk(__lowercase , __lowercase ) move_tower(height - 1 , __lowercase , __lowercase , __lowercase ) def a_ ( __lowercase : Optional[Any] , __lowercase : Dict ) -> Union[str, Any]: print('moving disk from' , __lowercase , 'to' , __lowercase ) def a_ ( ) -> Optional[int]: _snake_case = int(input('Height of hanoi: ' ).strip() ) move_tower(__lowercase , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
686
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel _lowerCamelCase : Optional[int] = False _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Dict = False if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') _lowerCamelCase : Dict = parser.parse_args() _lowerCamelCase : Optional[int] = { '''image_size''': '''sample_size''', '''num_res_blocks''': '''layers_per_block''', '''block_channels''': '''block_out_channels''', '''down_blocks''': '''down_block_types''', '''up_blocks''': '''up_block_types''', '''downscale_freq_shift''': '''freq_shift''', '''resnet_num_groups''': '''norm_num_groups''', '''resnet_act_fn''': '''act_fn''', '''resnet_eps''': '''norm_eps''', '''num_head_channels''': '''attention_head_dim''', } _lowerCamelCase : str = { '''time_steps''': '''time_proj''', '''mid''': '''mid_block''', '''downsample_blocks''': '''down_blocks''', '''upsample_blocks''': '''up_blocks''', } _lowerCamelCase : List[str] = '''''' if has_file(args.repo_path, '''config.json''') else '''unet''' with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: _lowerCamelCase : List[str] = reader.read() _lowerCamelCase : int = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): _lowerCamelCase : str = UNetaDModel(**config) else: _lowerCamelCase : Tuple = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel _lowerCamelCase : Dict = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) _lowerCamelCase : Any = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: _lowerCamelCase : Optional[Any] = config[key] del config[key] _lowerCamelCase : Tuple = [k.replace('''UNetRes''', '''''') for k in config['''down_block_types''']] _lowerCamelCase : int = [k.replace('''UNetRes''', '''''') for k in config['''up_block_types''']] if do_only_weights: _lowerCamelCase : int = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) _lowerCamelCase : Optional[Any] = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue _lowerCamelCase : Optional[Any] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: _lowerCamelCase : Tuple = param_value _lowerCamelCase : List[str] = True if not has_changed: _lowerCamelCase : str = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
686
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
import math import os import sys def a_ ( __lowercase : str ) -> str: _snake_case = '' try: with open(__lowercase , 'rb' ) as binary_file: _snake_case = binary_file.read() for dat in data: _snake_case = f'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def a_ ( __lowercase : dict[str, str] , __lowercase : str , __lowercase : int , __lowercase : str ) -> None: lexicon.pop(__lowercase ) _snake_case = last_match_id if math.loga(__lowercase ).is_integer(): for curr_key in lexicon: _snake_case = '0' + lexicon[curr_key] _snake_case = bin(__lowercase )[2:] def a_ ( __lowercase : str ) -> str: _snake_case = {'0': '0', '1': '1'} _snake_case , _snake_case = '', '' _snake_case = len(__lowercase ) for i in range(len(__lowercase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _snake_case = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__lowercase , __lowercase , __lowercase , __lowercase ) index += 1 _snake_case = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": _snake_case = lexicon[curr_string] result += last_match_id return result def a_ ( __lowercase : str , __lowercase : str ) -> str: _snake_case = os.path.getsize(__lowercase ) _snake_case = bin(__lowercase )[2:] _snake_case = len(__lowercase ) return "0" * (length_length - 1) + file_length_binary + compressed def a_ ( __lowercase : str , __lowercase : str ) -> None: _snake_case = 8 try: with open(__lowercase , 'wb' ) as opened_file: _snake_case = [ to_write[i : i + byte_length] for i in range(0 , len(__lowercase ) , __lowercase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__lowercase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def a_ ( __lowercase : str , __lowercase : str ) -> None: _snake_case = read_file_binary(__lowercase ) _snake_case = compress_data(__lowercase ) _snake_case = add_file_length(__lowercase , __lowercase ) write_file_binary(__lowercase , __lowercase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
686
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def a_ ( __lowercase : List[str] , __lowercase : int , __lowercase : str=None , __lowercase : Tuple=None ) -> List[Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Optional[Any] = OPTConfig _UpperCAmelCase : int = {} _UpperCAmelCase : Optional[int] = "gelu" def __init__( self : int , lowercase : List[str] , lowercase : Dict=13 , lowercase : int=7 , lowercase : int=True , lowercase : Union[str, Any]=False , lowercase : List[Any]=99 , lowercase : Tuple=16 , lowercase : Optional[int]=2 , lowercase : Tuple=4 , lowercase : Tuple=4 , lowercase : str="gelu" , lowercase : Optional[Any]=0.1 , lowercase : Optional[int]=0.1 , lowercase : Tuple=20 , lowercase : Optional[int]=2 , lowercase : Any=1 , lowercase : List[str]=0 , lowercase : List[Any]=16 , lowercase : Optional[int]=16 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = embed_dim _snake_case = word_embed_proj_dim _snake_case = False def A ( self : Optional[int] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _snake_case = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A ( self : Dict , lowercase : Optional[int] , lowercase : str ): '''simple docstring''' _snake_case = TFOPTModel(config=lowercase ) _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () _UpperCAmelCase : Any = (TFOPTForCausalLM,) if is_tf_available() else () _UpperCAmelCase : str = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : str = False _UpperCAmelCase : int = False _UpperCAmelCase : Dict = 1_0 def A ( self : str ): '''simple docstring''' _snake_case = TFOPTModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : int ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : int ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase : Dict , lowercase : int ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _snake_case = model_class(config=lowercase ) _snake_case = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _snake_case = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _snake_case = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _snake_case = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _snake_case = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _snake_case = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _snake_case = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _snake_case = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _snake_case = False self.assertTrue(lowercase ) def a_ ( __lowercase : Optional[Any] ) -> str: return tf.constant(__lowercase , dtype=tf.intaa ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[str] = 9_9 def A ( self : str ): '''simple docstring''' _snake_case = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _snake_case = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _snake_case = input_ids.shape[0] _snake_case = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def A ( self : Optional[int] ): '''simple docstring''' _snake_case = TFOPTModel.from_pretrained('facebook/opt-350m' ) _snake_case = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _snake_case = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _snake_case = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _snake_case = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _snake_case = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _snake_case = tf.function(lowercase , jit_compile=lowercase ) _snake_case = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[int] ): '''simple docstring''' super().setUp() _snake_case = 'facebook/opt-350m' def A ( self : Any ): '''simple docstring''' _snake_case = TFOPTForCausalLM.from_pretrained(self.path_model ) _snake_case = GPTaTokenizer.from_pretrained(self.path_model ) _snake_case = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _snake_case = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _snake_case = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _snake_case = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _snake_case = tf.function(lowercase , jit_compile=lowercase ) _snake_case = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @property def A ( self : Optional[int] ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = 'facebook/opt-125m' _snake_case = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _snake_case = [] _snake_case = GPTaTokenizer.from_pretrained(lowercase ) _snake_case = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _snake_case = tokenizer(lowercase , return_tensors='tf' ).input_ids _snake_case = model.generate(lowercase , max_length=10 ) _snake_case = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = 'facebook/opt-350m' _snake_case = GPTaTokenizer.from_pretrained(lowercase ) _snake_case = TFOPTForCausalLM.from_pretrained(lowercase ) _snake_case = 'left' # use different length sentences to test batching _snake_case = [ 'Hello, my dog is a little', 'Today, I', ] _snake_case = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _snake_case = inputs['input_ids'] _snake_case = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _snake_case = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _snake_case = model.generate(input_ids=lowercase ) _snake_case = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _snake_case = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _snake_case = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _snake_case = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _snake_case = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _snake_case = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _snake_case = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = 'facebook/opt-350m' _snake_case = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _snake_case = [] _snake_case = GPTaTokenizer.from_pretrained(lowercase ) _snake_case = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _snake_case = tokenizer(lowercase , return_tensors='tf' ).input_ids _snake_case = model.generate(lowercase , max_length=10 ) _snake_case = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
686
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def a_ ( __lowercase : Union[str, Any] , __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : int , __lowercase : List[Any]=True , __lowercase : str="pt" ) -> Union[str, Any]: _snake_case = {'add_prefix_space': True} if isinstance(__lowercase , __lowercase ) and not line.startswith(' ' ) else {} _snake_case = padding_side return tokenizer( [line] , max_length=__lowercase , padding='max_length' if pad_to_max_length else None , truncation=__lowercase , return_tensors=__lowercase , add_special_tokens=__lowercase , **__lowercase , ) def a_ ( __lowercase : Optional[Any] , __lowercase : Optional[Any] , __lowercase : Any=None , ) -> List[Any]: _snake_case = input_ids.ne(__lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Dict , lowercase : Tuple , lowercase : int , lowercase : Optional[int] , lowercase : List[Any]="train" , lowercase : Tuple=None , lowercase : Optional[Any]=None , lowercase : List[str]=None , lowercase : Dict="" , ): '''simple docstring''' super().__init__() _snake_case = Path(lowercase ).joinpath(type_path + '.source' ) _snake_case = Path(lowercase ).joinpath(type_path + '.target' ) _snake_case = self.get_char_lens(self.src_file ) _snake_case = max_source_length _snake_case = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' _snake_case = tokenizer _snake_case = prefix if n_obs is not None: _snake_case = self.src_lens[:n_obs] _snake_case = src_lang _snake_case = tgt_lang def __len__( self : Union[str, Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : Optional[int] , lowercase : int ): '''simple docstring''' _snake_case = index + 1 # linecache starts at 1 _snake_case = self.prefix + linecache.getline(str(self.src_file ) , lowercase ).rstrip('\n' ) _snake_case = linecache.getline(str(self.tgt_file ) , lowercase ).rstrip('\n' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _snake_case = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase ) else self.tokenizer ) _snake_case = self.tokenizer.generator if isinstance(self.tokenizer , lowercase ) else self.tokenizer _snake_case = encode_line(lowercase , lowercase , self.max_source_length , 'right' ) _snake_case = encode_line(lowercase , lowercase , self.max_target_length , 'right' ) _snake_case = source_inputs['input_ids'].squeeze() _snake_case = target_inputs['input_ids'].squeeze() _snake_case = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def A ( lowercase : Union[str, Any] ): '''simple docstring''' return [len(lowercase ) for x in Path(lowercase ).open().readlines()] def A ( self : Optional[Any] , lowercase : int ): '''simple docstring''' _snake_case = torch.stack([x['input_ids'] for x in batch] ) _snake_case = torch.stack([x['attention_mask'] for x in batch] ) _snake_case = torch.stack([x['decoder_input_ids'] for x in batch] ) _snake_case = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) _snake_case = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) _snake_case = trim_batch(lowercase , lowercase ) _snake_case , _snake_case = trim_batch(lowercase , lowercase , attention_mask=lowercase ) _snake_case = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch _lowerCamelCase : int = getLogger(__name__) def a_ ( __lowercase : List[List] ) -> Dict: return list(itertools.chain.from_iterable(__lowercase ) ) def a_ ( __lowercase : str ) -> None: _snake_case = get_git_info() save_json(__lowercase , os.path.join(__lowercase , 'git_log.json' ) ) def a_ ( __lowercase : Tuple , __lowercase : Any , __lowercase : Tuple=4 , **__lowercase : str ) -> str: with open(__lowercase , 'w' ) as f: json.dump(__lowercase , __lowercase , indent=__lowercase , **__lowercase ) def a_ ( __lowercase : Dict ) -> List[Any]: with open(__lowercase ) as f: return json.load(__lowercase ) def a_ ( ) -> Optional[Any]: _snake_case = git.Repo(search_parent_directories=__lowercase ) _snake_case = { 'repo_id': str(__lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def a_ ( __lowercase : Callable , __lowercase : Iterable ) -> List: return list(map(__lowercase , __lowercase ) ) def a_ ( __lowercase : List[Any] , __lowercase : str ) -> Any: with open(__lowercase , 'wb' ) as f: return pickle.dump(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Any: def remove_articles(__lowercase : Union[str, Any] ): return re.sub(r'\b(a|an|the)\b' , ' ' , __lowercase ) def white_space_fix(__lowercase : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(__lowercase : List[Any] ): _snake_case = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowercase : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowercase ) ) ) ) def a_ ( __lowercase : List[Any] , __lowercase : List[Any] ) -> Optional[Any]: _snake_case = normalize_answer(__lowercase ).split() _snake_case = normalize_answer(__lowercase ).split() _snake_case = Counter(__lowercase ) & Counter(__lowercase ) _snake_case = sum(common.values() ) if num_same == 0: return 0 _snake_case = 1.0 * num_same / len(__lowercase ) _snake_case = 1.0 * num_same / len(__lowercase ) _snake_case = (2 * precision * recall) / (precision + recall) return fa def a_ ( __lowercase : List[Any] , __lowercase : Dict ) -> int: return normalize_answer(__lowercase ) == normalize_answer(__lowercase ) def a_ ( __lowercase : List[str] , __lowercase : List[str] ) -> Dict: assert len(__lowercase ) == len(__lowercase ) _snake_case = 0 for hypo, pred in zip(__lowercase , __lowercase ): em += exact_match_score(__lowercase , __lowercase ) if len(__lowercase ) > 0: em /= len(__lowercase ) return {"em": em} def a_ ( __lowercase : Tuple ) -> Optional[int]: return model_prefix.startswith('rag' ) def a_ ( __lowercase : Dict , __lowercase : Optional[int] , __lowercase : List[Any] ) -> int: _snake_case = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _snake_case = 'dropout_rate' for p in extra_params: if getattr(__lowercase , __lowercase , __lowercase ): if not hasattr(__lowercase , __lowercase ) and not hasattr(__lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(__lowercase ) ) delattr(__lowercase , __lowercase ) continue _snake_case = p if hasattr(__lowercase , __lowercase ) else equivalent_param[p] setattr(__lowercase , __lowercase , getattr(__lowercase , __lowercase ) ) delattr(__lowercase , __lowercase ) return hparams, config
686
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
1
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
1
from __future__ import annotations def a_ ( __lowercase : list[int] ) -> bool: return len(set(__lowercase ) ) == len(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
686
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
1
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _lowerCamelCase : Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Any , lowercase : str = None , lowercase : uuid.UUID = None , lowercase : Union[str, Any]=None , lowercase : Any=None ): '''simple docstring''' if not conversation_id: _snake_case = uuid.uuida() if past_user_inputs is None: _snake_case = [] if generated_responses is None: _snake_case = [] _snake_case = conversation_id _snake_case = past_user_inputs _snake_case = generated_responses _snake_case = text def __eq__( self : List[str] , lowercase : int ): '''simple docstring''' if not isinstance(lowercase , lowercase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def A ( self : Tuple , lowercase : str , lowercase : bool = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' f'''with: "{text}".''' ) _snake_case = text else: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' f'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: _snake_case = text def A ( self : Tuple ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _snake_case = None def A ( self : List[Any] , lowercase : str ): '''simple docstring''' self.generated_responses.append(lowercase ) def A ( self : int ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : List[Any] ): '''simple docstring''' _snake_case = f'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): _snake_case = 'user' if is_user else 'bot' output += f'''{name} >> {text} \n''' return output @add_end_docstrings( UpperCAmelCase ,r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : int , *lowercase : List[Any] , **lowercase : Any ): '''simple docstring''' super().__init__(*lowercase , **lowercase ) if self.tokenizer.pad_token_id is None: _snake_case = self.tokenizer.eos_token def A ( self : Optional[Any] , lowercase : str=None , lowercase : Union[str, Any]=None , lowercase : List[Any]=None , **lowercase : List[str] ): '''simple docstring''' _snake_case = {} _snake_case = {} _snake_case = {} if min_length_for_response is not None: _snake_case = min_length_for_response if minimum_tokens is not None: _snake_case = minimum_tokens if "max_length" in generate_kwargs: _snake_case = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowercase ) return preprocess_params, forward_params, postprocess_params def __call__( self : Dict , lowercase : Union[Conversation, List[Conversation]] , lowercase : List[str]=0 , **lowercase : List[Any] ): '''simple docstring''' _snake_case = super().__call__(lowercase , num_workers=lowercase , **lowercase ) if isinstance(lowercase , lowercase ) and len(lowercase ) == 1: return outputs[0] return outputs def A ( self : List[str] , lowercase : Conversation , lowercase : int=32 ): '''simple docstring''' if not isinstance(lowercase , lowercase ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( f'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): _snake_case = self.tokenizer._build_conversation_input_ids(lowercase ) else: # If the tokenizer cannot handle conversations, we default to only the old version _snake_case = self._legacy_parse_and_tokenize(lowercase ) if self.framework == "pt": _snake_case = torch.LongTensor([input_ids] ) elif self.framework == "tf": _snake_case = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def A ( self : List[str] , lowercase : str , lowercase : Optional[int]=10 , **lowercase : Tuple ): '''simple docstring''' _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) _snake_case = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(f'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) _snake_case = max_length - minimum_tokens _snake_case = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: _snake_case = model_inputs['attention_mask'][:, -trim:] _snake_case = model_inputs.pop('conversation' ) _snake_case = max_length _snake_case = self.model.generate(**lowercase , **lowercase ) if self.model.config.is_encoder_decoder: _snake_case = 1 else: _snake_case = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def A ( self : Any , lowercase : List[str] , lowercase : Tuple=True ): '''simple docstring''' _snake_case = model_outputs['output_ids'] _snake_case = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase , ) _snake_case = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(lowercase ) return conversation def A ( self : Dict , lowercase : Conversation ): '''simple docstring''' _snake_case = self.tokenizer.eos_token_id _snake_case = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowercase , add_special_tokens=lowercase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowercase , add_special_tokens=lowercase ) ) if len(lowercase ) > self.tokenizer.model_max_length: _snake_case = input_ids[-self.tokenizer.model_max_length :] return input_ids
686
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
1
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : Any = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } _lowerCamelCase : Union[str, Any] = { '''allenai/led-base-16384''': 16_384, } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : int = LEDTokenizer _UpperCAmelCase : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self : str , lowercase : Union[str, Any]=None , lowercase : Tuple=None , lowercase : int=None , lowercase : Optional[int]="replace" , lowercase : Any="<s>" , lowercase : Optional[Any]="</s>" , lowercase : str="</s>" , lowercase : Optional[int]="<s>" , lowercase : Any="<unk>" , lowercase : Tuple="<pad>" , lowercase : str="<mask>" , lowercase : List[str]=False , lowercase : int=True , **lowercase : str , ): '''simple docstring''' super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) _snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase ) != add_prefix_space: _snake_case = getattr(lowercase , pre_tok_state.pop('type' ) ) _snake_case = add_prefix_space _snake_case = pre_tok_class(**lowercase ) _snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _snake_case = 'post_processor' _snake_case = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: _snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _snake_case = tuple(state['sep'] ) if "cls" in state: _snake_case = tuple(state['cls'] ) _snake_case = False if state.get('add_prefix_space' , lowercase ) != add_prefix_space: _snake_case = add_prefix_space _snake_case = True if state.get('trim_offsets' , lowercase ) != trim_offsets: _snake_case = trim_offsets _snake_case = True if changes_to_apply: _snake_case = getattr(lowercase , state.pop('type' ) ) _snake_case = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def A ( self : int ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def A ( self : Any , lowercase : List[Any] ): '''simple docstring''' _snake_case = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value _snake_case = value def A ( self : List[Any] , *lowercase : Optional[Any] , **lowercase : List[str] ): '''simple docstring''' _snake_case = kwargs.get('is_split_into_words' , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase , **lowercase ) def A ( self : Union[str, Any] , *lowercase : str , **lowercase : Optional[Any] ): '''simple docstring''' _snake_case = kwargs.get('is_split_into_words' , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase , **lowercase ) def A ( self : Any , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' _snake_case = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def A ( self : str , lowercase : Dict , lowercase : int=None ): '''simple docstring''' _snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : int , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A ( self : Optional[int] , lowercase : Union[Dict[str, EncodedInput], BatchEncoding] , lowercase : Optional[int] = None , lowercase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowercase : Optional[int] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = super()._pad( encoded_inputs=lowercase , max_length=lowercase , padding_strategy=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , ) # Load from model defaults if return_attention_mask is None: _snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase ) if needs_to_be_padded: _snake_case = len(lowercase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": _snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
686
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
1
def a_ ( __lowercase : list[int] , __lowercase : list[int] , __lowercase : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__lowercase ) ) def a_ ( __lowercase : list[list[int]] , __lowercase : int , __lowercase : list[int] , __lowercase : int ) -> bool: # Base Case if index == len(__lowercase ): return True # Recursive Step for i in range(__lowercase ): if valid_coloring(graph[index] , __lowercase , __lowercase ): # Color current vertex _snake_case = i # Validate coloring if util_color(__lowercase , __lowercase , __lowercase , index + 1 ): return True # Backtrack _snake_case = -1 return False def a_ ( __lowercase : list[list[int]] , __lowercase : int ) -> list[int]: _snake_case = [-1] * len(__lowercase ) if util_color(__lowercase , __lowercase , __lowercase , 0 ): return colored_vertices return []
686
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def a_ ( __lowercase : Any , __lowercase : Optional[Any]=False ) -> str: try: _snake_case = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _snake_case = default else: # KEY is set, convert it to True or False. try: _snake_case = strtobool(__lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value _lowerCamelCase : Tuple = parse_flag_from_env('''RUN_SLOW''', default=False) def a_ ( __lowercase : Union[str, Any] ) -> Union[str, Any]: return unittest.skip('Test was skipped' )(__lowercase ) def a_ ( __lowercase : Any ) -> Tuple: return unittest.skipUnless(_run_slow_tests , 'test is slow' )(__lowercase ) def a_ ( __lowercase : int ) -> Dict: return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(__lowercase ) def a_ ( __lowercase : Union[str, Any] ) -> Any: return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(__lowercase ) def a_ ( __lowercase : Union[str, Any] ) -> Tuple: return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(__lowercase ) def a_ ( __lowercase : Optional[Any] ) -> Dict: return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(__lowercase ) def a_ ( __lowercase : Dict ) -> Optional[Any]: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(__lowercase ) def a_ ( __lowercase : List[Any] ) -> List[Any]: return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(__lowercase ) def a_ ( __lowercase : List[str] ) -> Tuple: return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(__lowercase ) def a_ ( __lowercase : Optional[Any] ) -> List[str]: return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(__lowercase ) def a_ ( __lowercase : List[str] ) -> Dict: return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(__lowercase ) def a_ ( __lowercase : List[Any] ) -> Optional[int]: return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(__lowercase ) def a_ ( __lowercase : str ) -> str: return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(__lowercase ) def a_ ( __lowercase : Optional[Any] ) -> List[Any]: return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(__lowercase ) def a_ ( __lowercase : Optional[Any] ) -> List[str]: return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(__lowercase ) def a_ ( __lowercase : Optional[int] ) -> int: return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(__lowercase ) def a_ ( __lowercase : Dict=None , __lowercase : List[str]=None ) -> List[Any]: if test_case is None: return partial(__lowercase , version=__lowercase ) return unittest.skipUnless(is_torch_version('>=' , __lowercase ) , f'''test requires torch version >= {version}''' )(__lowercase ) def a_ ( __lowercase : Union[str, Any] ) -> List[str]: return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(__lowercase ) def a_ ( __lowercase : Tuple ) -> Any: return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(__lowercase ) def a_ ( __lowercase : int ) -> List[Any]: return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(__lowercase ) _lowerCamelCase : Dict = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def a_ ( __lowercase : Any ) -> Tuple: return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(__lowercase ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Any = True @classmethod def A ( cls : int ): '''simple docstring''' _snake_case = tempfile.mkdtemp() @classmethod def A ( cls : int ): '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def A ( self : Optional[Any] ): '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[int] ): '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[int] , lowercase : Union[mock.Mock, List[mock.Mock]] ): '''simple docstring''' _snake_case = mocks if isinstance(lowercase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def a_ ( __lowercase : Tuple ) -> int: _snake_case = AcceleratorState() _snake_case = tensor[None].clone().to(state.device ) _snake_case = gather(__lowercase ).cpu() _snake_case = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __lowercase ): return False return True class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : str , lowercase : Optional[Any] , lowercase : List[str] , lowercase : Any ): '''simple docstring''' _snake_case = returncode _snake_case = stdout _snake_case = stderr async def a_ ( __lowercase : Any , __lowercase : int ) -> List[str]: while True: _snake_case = await stream.readline() if line: callback(__lowercase ) else: break async def a_ ( __lowercase : Optional[Any] , __lowercase : Union[str, Any]=None , __lowercase : Optional[Any]=None , __lowercase : int=None , __lowercase : Union[str, Any]=False , __lowercase : Dict=False ) -> _RunOutput: if echo: print('\nRunning: ' , ' '.join(__lowercase ) ) _snake_case = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowercase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowercase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _snake_case = [] _snake_case = [] def tee(__lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : List[Any]="" ): _snake_case = line.decode('utf-8' ).rstrip() sink.append(__lowercase ) if not quiet: print(__lowercase , __lowercase , file=__lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __lowercase : tee(__lowercase , __lowercase , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __lowercase : tee(__lowercase , __lowercase , sys.stderr , label='stderr:' ) ) ), ] , timeout=__lowercase , ) return _RunOutput(await p.wait() , __lowercase , __lowercase ) def a_ ( __lowercase : Tuple , __lowercase : Tuple=None , __lowercase : List[str]=None , __lowercase : Dict=180 , __lowercase : str=False , __lowercase : Optional[int]=True ) -> _RunOutput: _snake_case = asyncio.get_event_loop() _snake_case = loop.run_until_complete( _stream_subprocess(__lowercase , env=__lowercase , stdin=__lowercase , timeout=__lowercase , quiet=__lowercase , echo=__lowercase ) ) _snake_case = ' '.join(__lowercase ) if result.returncode > 0: _snake_case = '\n'.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) return result class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' pass def a_ ( __lowercase : List[str] , __lowercase : int=False ) -> List[str]: try: _snake_case = subprocess.check_output(__lowercase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__lowercase , 'decode' ): _snake_case = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{' '.join(__lowercase )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _lowerCamelCase : Tuple = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[str] , lowercase : int=False , lowercase : Optional[int]=False , lowercase : Any=6.0 , lowercase : List[str]=None , lowercase : Optional[Any]=False , lowercase : Union[str, Any]=False , lowercase : Optional[int]=None , lowercase : List[str]="fp4" , lowercase : int=False , **lowercase : Optional[Any] , ): '''simple docstring''' _snake_case = load_in_abit _snake_case = load_in_abit _snake_case = llm_inta_threshold _snake_case = llm_inta_skip_modules _snake_case = llm_inta_enable_fpaa_cpu_offload _snake_case = llm_inta_has_fpaa_weight _snake_case = bnb_abit_quant_type _snake_case = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _snake_case = torch.floataa elif isinstance(lowercase , lowercase ): _snake_case = getattr(lowercase , lowercase ) elif isinstance(lowercase , torch.dtype ): _snake_case = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def A ( self : Optional[int] ): '''simple docstring''' if not isinstance(self.llm_inta_threshold , lowercase ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowercase ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowercase ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , lowercase ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , lowercase ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , lowercase ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def A ( self : List[Any] ): '''simple docstring''' return self.load_in_abit or self.load_in_abit def A ( self : str ): '''simple docstring''' if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def A ( cls : Any , lowercase : Union[str, Any] , lowercase : Optional[int] , **lowercase : Optional[Any] ): '''simple docstring''' _snake_case = cls(**lowercase ) _snake_case = [] for key, value in kwargs.items(): if hasattr(lowercase , lowercase ): setattr(lowercase , lowercase , lowercase ) to_remove.append(lowercase ) for key in to_remove: kwargs.pop(lowercase , lowercase ) if return_unused_kwargs: return config, kwargs else: return config def A ( self : Union[str, Any] , lowercase : Union[str, os.PathLike] ): '''simple docstring''' with open(lowercase , 'w' , encoding='utf-8' ) as writer: _snake_case = self.to_dict() _snake_case = json.dumps(lowercase , indent=2 , sort_keys=lowercase ) + '\n' writer.write(lowercase ) def A ( self : Tuple ): '''simple docstring''' _snake_case = copy.deepcopy(self.__dict__ ) _snake_case = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self : Any ): '''simple docstring''' return f'''{self.__class__.__name__} {self.to_json_string()}''' def A ( self : Union[str, Any] , lowercase : bool = True ): '''simple docstring''' if use_diff is True: _snake_case = self.to_diff_dict() else: _snake_case = self.to_dict() return json.dumps(lowercase , indent=2 , sort_keys=lowercase ) + "\n" def A ( self : List[Any] ): '''simple docstring''' _snake_case = self.to_dict() # get the default config dict _snake_case = BitsAndBytesConfig().to_dict() _snake_case = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _snake_case = value return serializable_config_dict
686
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _lowerCamelCase : str = logging.get_logger('''transformers.models.encodec''') _lowerCamelCase : List[Any] = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } _lowerCamelCase : int = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } _lowerCamelCase : Any = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } _lowerCamelCase : Dict = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } _lowerCamelCase : List[Any] = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } _lowerCamelCase : List[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _lowerCamelCase : List[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Any = [] def a_ ( __lowercase : int , __lowercase : Any , __lowercase : Optional[Any] , __lowercase : List[Any] , __lowercase : Any ) -> str: for attribute in key.split('.' ): _snake_case = getattr(__lowercase , __lowercase ) if weight_type is not None: _snake_case = getattr(__lowercase , __lowercase ).shape else: _snake_case = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _snake_case = value elif weight_type == "weight_g": _snake_case = value elif weight_type == "weight_v": _snake_case = value elif weight_type == "bias": _snake_case = value elif weight_type == "running_mean": _snake_case = value elif weight_type == "running_var": _snake_case = value elif weight_type == "num_batches_tracked": _snake_case = value elif weight_type == "weight_ih_l0": _snake_case = value elif weight_type == "weight_hh_l0": _snake_case = value elif weight_type == "bias_ih_l0": _snake_case = value elif weight_type == "bias_hh_l0": _snake_case = value elif weight_type == "weight_ih_l1": _snake_case = value elif weight_type == "weight_hh_l1": _snake_case = value elif weight_type == "bias_ih_l1": _snake_case = value elif weight_type == "bias_hh_l1": _snake_case = value else: _snake_case = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def a_ ( __lowercase : List[str] , __lowercase : Tuple ) -> Dict: for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _snake_case , _snake_case = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Optional[Any] ) -> Optional[int]: _snake_case = [] if model_name == "encodec_24khz" or "encodec_32khz": _snake_case = MAPPING_24K elif model_name == "encodec_48khz": _snake_case = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(__lowercase , __lowercase ): logger.info(f'''{name} was ignored''' ) continue _snake_case = False for key, mapped_key in MAPPING.items(): if "*" in key: _snake_case , _snake_case = key.split('.*.' ) if prefix in name and suffix in name: _snake_case = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue _snake_case = True if "*" in mapped_key: _snake_case = name.split(__lowercase )[0].split('.' )[-2] _snake_case = mapped_key.replace('*' , __lowercase ) if "weight_g" in name: _snake_case = 'weight_g' elif "weight_v" in name: _snake_case = 'weight_v' elif "weight_ih_l0" in name: _snake_case = 'weight_ih_l0' elif "weight_hh_l0" in name: _snake_case = 'weight_hh_l0' elif "bias_ih_l0" in name: _snake_case = 'bias_ih_l0' elif "bias_hh_l0" in name: _snake_case = 'bias_hh_l0' elif "weight_ih_l1" in name: _snake_case = 'weight_ih_l1' elif "weight_hh_l1" in name: _snake_case = 'weight_hh_l1' elif "bias_ih_l1" in name: _snake_case = 'bias_ih_l1' elif "bias_hh_l1" in name: _snake_case = 'bias_hh_l1' elif "bias" in name: _snake_case = 'bias' elif "weight" in name: _snake_case = 'weight' elif "running_mean" in name: _snake_case = 'running_mean' elif "running_var" in name: _snake_case = 'running_var' elif "num_batches_tracked" in name: _snake_case = 'num_batches_tracked' else: _snake_case = None set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def a_ ( __lowercase : Optional[int] , __lowercase : List[str] , __lowercase : List[str] , __lowercase : List[str]=None , __lowercase : Dict=None , ) -> Dict: if config_path is not None: _snake_case = EncodecConfig.from_pretrained(__lowercase ) else: _snake_case = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _snake_case = [8, 5, 4, 4] _snake_case = [2.2] _snake_case = 64 _snake_case = 32_000 _snake_case = 2_048 _snake_case = False _snake_case = False _snake_case = False elif model_name == "encodec_48khz": _snake_case = [8, 5, 4, 2] _snake_case = [3.0, 6.0, 1_2.0, 2_4.0] _snake_case = 48_000 _snake_case = 2 _snake_case = False _snake_case = 'time_group_norm' _snake_case = True _snake_case = 1.0 _snake_case = 0.0_1 else: raise ValueError(f'''Unknown model name: {model_name}''' ) _snake_case = EncodecModel(__lowercase ) _snake_case = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__lowercase ) _snake_case = torch.load(__lowercase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _snake_case = original_checkpoint['best_state'] recursively_load_weights(__lowercase , __lowercase , __lowercase ) model.save_pretrained(__lowercase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(__lowercase ) model.push_to_hub(__lowercase ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
686
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] , lowercase : int , lowercase : int ): '''simple docstring''' _snake_case = jnp.ones((batch_size, length) ) / length return scores def A ( self : Dict ): '''simple docstring''' _snake_case = None _snake_case = 20 _snake_case = self._get_uniform_logits(batch_size=2 , length=lowercase ) # tweak scores to not be uniform anymore _snake_case = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _snake_case = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _snake_case = jax.nn.softmax(lowercase , axis=-1 ) _snake_case = FlaxTemperatureLogitsWarper(temperature=0.5 ) _snake_case = FlaxTemperatureLogitsWarper(temperature=1.3 ) _snake_case = jax.nn.softmax(temp_dist_warper_sharper(lowercase , scores.copy() , cur_len=lowercase ) , axis=-1 ) _snake_case = jax.nn.softmax(temp_dist_warper_smoother(lowercase , scores.copy() , cur_len=lowercase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = None _snake_case = 10 _snake_case = 2 # create ramp distribution _snake_case = np.broadcast_to(np.arange(lowercase )[None, :] , (batch_size, vocab_size) ).copy() _snake_case = ramp_logits[1:, : vocab_size // 2] + vocab_size _snake_case = FlaxTopKLogitsWarper(3 ) _snake_case = top_k_warp(lowercase , lowercase , cur_len=lowercase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case _snake_case = 5 _snake_case = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) _snake_case = np.broadcast_to(np.arange(lowercase )[None, :] , (batch_size, length) ).copy() _snake_case = top_k_warp_safety_check(lowercase , lowercase , cur_len=lowercase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = None _snake_case = 10 _snake_case = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _snake_case = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) _snake_case = FlaxTopPLogitsWarper(0.8 ) _snake_case = np.exp(top_p_warp(lowercase , lowercase , cur_len=lowercase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _snake_case = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-3 ) ) # check edge cases with negative and extreme logits _snake_case = np.broadcast_to(np.arange(lowercase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _snake_case = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept _snake_case = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) _snake_case = top_p_warp(lowercase , lowercase , cur_len=lowercase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = 20 _snake_case = 4 _snake_case = 0 _snake_case = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase ) # check that min length is applied at length 5 _snake_case = ids_tensor((batch_size, 20) , vocab_size=20 ) _snake_case = 5 _snake_case = self._get_uniform_logits(lowercase , lowercase ) _snake_case = min_dist_processor(lowercase , lowercase , cur_len=lowercase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 _snake_case = self._get_uniform_logits(lowercase , lowercase ) _snake_case = 15 _snake_case = min_dist_processor(lowercase , lowercase , cur_len=lowercase ) self.assertFalse(jnp.isinf(lowercase ).any() ) def A ( self : Any ): '''simple docstring''' _snake_case = 20 _snake_case = 4 _snake_case = 0 _snake_case = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase ) # check that all scores are -inf except the bos_token_id score _snake_case = ids_tensor((batch_size, 1) , vocab_size=20 ) _snake_case = 1 _snake_case = self._get_uniform_logits(lowercase , lowercase ) _snake_case = logits_processor(lowercase , lowercase , cur_len=lowercase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _snake_case = 3 _snake_case = self._get_uniform_logits(lowercase , lowercase ) _snake_case = logits_processor(lowercase , lowercase , cur_len=lowercase ) self.assertFalse(jnp.isinf(lowercase ).any() ) def A ( self : Tuple ): '''simple docstring''' _snake_case = 20 _snake_case = 4 _snake_case = 0 _snake_case = 5 _snake_case = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase , eos_token_id=lowercase ) # check that all scores are -inf except the eos_token_id when max_length is reached _snake_case = ids_tensor((batch_size, 4) , vocab_size=20 ) _snake_case = 4 _snake_case = self._get_uniform_logits(lowercase , lowercase ) _snake_case = logits_processor(lowercase , lowercase , cur_len=lowercase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _snake_case = 3 _snake_case = self._get_uniform_logits(lowercase , lowercase ) _snake_case = logits_processor(lowercase , lowercase , cur_len=lowercase ) self.assertFalse(jnp.isinf(lowercase ).any() ) def A ( self : str ): '''simple docstring''' _snake_case = 4 _snake_case = 10 _snake_case = 15 _snake_case = 2 _snake_case = 1 _snake_case = 15 # dummy input_ids and scores _snake_case = ids_tensor((batch_size, sequence_length) , lowercase ) _snake_case = input_ids.copy() _snake_case = self._get_uniform_logits(lowercase , lowercase ) _snake_case = scores.copy() # instantiate all dist processors _snake_case = FlaxTemperatureLogitsWarper(temperature=0.5 ) _snake_case = FlaxTopKLogitsWarper(3 ) _snake_case = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _snake_case = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase ) _snake_case = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase ) _snake_case = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase , eos_token_id=lowercase ) _snake_case = 10 # no processor list _snake_case = temp_dist_warp(lowercase , lowercase , cur_len=lowercase ) _snake_case = top_k_warp(lowercase , lowercase , cur_len=lowercase ) _snake_case = top_p_warp(lowercase , lowercase , cur_len=lowercase ) _snake_case = min_dist_proc(lowercase , lowercase , cur_len=lowercase ) _snake_case = bos_dist_proc(lowercase , lowercase , cur_len=lowercase ) _snake_case = eos_dist_proc(lowercase , lowercase , cur_len=lowercase ) # with processor list _snake_case = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _snake_case = processor(lowercase , lowercase , cur_len=lowercase ) # scores should be equal self.assertTrue(jnp.allclose(lowercase , lowercase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def A ( self : Any ): '''simple docstring''' _snake_case = 4 _snake_case = 10 _snake_case = 15 _snake_case = 2 _snake_case = 1 _snake_case = 15 # dummy input_ids and scores _snake_case = ids_tensor((batch_size, sequence_length) , lowercase ) _snake_case = input_ids.copy() _snake_case = self._get_uniform_logits(lowercase , lowercase ) _snake_case = scores.copy() # instantiate all dist processors _snake_case = FlaxTemperatureLogitsWarper(temperature=0.5 ) _snake_case = FlaxTopKLogitsWarper(3 ) _snake_case = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _snake_case = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase ) _snake_case = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase ) _snake_case = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase , eos_token_id=lowercase ) _snake_case = 10 # no processor list def run_no_processor_list(lowercase : Any , lowercase : Optional[int] , lowercase : List[Any] ): _snake_case = temp_dist_warp(lowercase , lowercase , cur_len=lowercase ) _snake_case = top_k_warp(lowercase , lowercase , cur_len=lowercase ) _snake_case = top_p_warp(lowercase , lowercase , cur_len=lowercase ) _snake_case = min_dist_proc(lowercase , lowercase , cur_len=lowercase ) _snake_case = bos_dist_proc(lowercase , lowercase , cur_len=lowercase ) _snake_case = eos_dist_proc(lowercase , lowercase , cur_len=lowercase ) return scores # with processor list def run_processor_list(lowercase : List[str] , lowercase : List[str] , lowercase : List[str] ): _snake_case = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _snake_case = processor(lowercase , lowercase , cur_len=lowercase ) return scores _snake_case = jax.jit(lowercase ) _snake_case = jax.jit(lowercase ) _snake_case = jitted_run_no_processor_list(lowercase , lowercase , lowercase ) _snake_case = jitted_run_processor_list(lowercase , lowercase , lowercase ) # scores should be equal self.assertTrue(jnp.allclose(lowercase , lowercase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
686
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
1
import os def a_ ( ) -> Optional[int]: with open(os.path.dirname(__lowercase ) + '/grid.txt' ) as f: _snake_case = [] # noqa: E741 for _ in range(20 ): l.append([int(__lowercase ) for x in f.readline().split()] ) _snake_case = 0 # right for i in range(20 ): for j in range(17 ): _snake_case = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: _snake_case = temp # down for i in range(17 ): for j in range(20 ): _snake_case = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: _snake_case = temp # diagonal 1 for i in range(17 ): for j in range(17 ): _snake_case = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: _snake_case = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): _snake_case = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: _snake_case = temp return maximum if __name__ == "__main__": print(solution())
686
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
1
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Any = LxmertTokenizer _UpperCAmelCase : Union[str, Any] = LxmertTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def A ( self : Any ): '''simple docstring''' super().setUp() _snake_case = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A ( self : List[Any] , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = 'UNwant\u00E9d,running' _snake_case = 'unwanted, running' return input_text, output_text def A ( self : Any ): '''simple docstring''' _snake_case = self.tokenizer_class(self.vocab_file ) _snake_case = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowercase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [7, 4, 5, 10, 8, 9] ) def A ( self : Optional[int] ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = 'I was born in 92000, and this is falsé.' _snake_case = tokenizer.tokenize(lowercase ) _snake_case = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) _snake_case = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowercase ) _snake_case = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase )
686
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
1
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _lowerCamelCase : List[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[str] ): '''simple docstring''' _snake_case = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _snake_case = torch.manual_seed(0 ) _snake_case = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _snake_case = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
686
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Dict = BloomTokenizerFast _UpperCAmelCase : Optional[Any] = BloomTokenizerFast _UpperCAmelCase : int = True _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : List[Any] = "tokenizer_file" _UpperCAmelCase : Tuple = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def A ( self : List[Any] ): '''simple docstring''' super().setUp() _snake_case = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[int] , **lowercase : Optional[int] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Dict ): '''simple docstring''' _snake_case = self.get_rust_tokenizer() _snake_case = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] _snake_case = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]] _snake_case = tokenizer.batch_encode_plus(lowercase )['input_ids'] self.assertListEqual(lowercase , lowercase ) _snake_case = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase ) def A ( self : Optional[int] , lowercase : Optional[int]=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _snake_case = 'This is a simple input' _snake_case = ['This is a simple input 1', 'This is a simple input 2'] _snake_case = ('This is a simple input', 'This is a pair') _snake_case = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(lowercase , max_length=lowercase ) tokenizer_r.encode_plus(lowercase , max_length=lowercase ) tokenizer_r.batch_encode_plus(lowercase , max_length=lowercase ) tokenizer_r.encode(lowercase , max_length=lowercase ) tokenizer_r.batch_encode_plus(lowercase , max_length=lowercase ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) _snake_case = None # Hotfixing padding = None self.assertRaises(lowercase , tokenizer_r.encode , lowercase , max_length=lowercase , padding='max_length' ) # Simple input self.assertRaises(lowercase , tokenizer_r.encode_plus , lowercase , max_length=lowercase , padding='max_length' ) # Simple input self.assertRaises( lowercase , tokenizer_r.batch_encode_plus , lowercase , max_length=lowercase , padding='max_length' , ) # Pair input self.assertRaises(lowercase , tokenizer_r.encode , lowercase , max_length=lowercase , padding='max_length' ) # Pair input self.assertRaises(lowercase , tokenizer_r.encode_plus , lowercase , max_length=lowercase , padding='max_length' ) # Pair input self.assertRaises( lowercase , tokenizer_r.batch_encode_plus , lowercase , max_length=lowercase , padding='max_length' , ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = self.get_rust_tokenizer() _snake_case = load_dataset('xnli' , 'all_languages' , split='test' , streaming=lowercase ) _snake_case = next(iter(lowercase ) )['premise'] # pick up one data _snake_case = list(sample_data.values() ) _snake_case = list(map(tokenizer.encode , lowercase ) ) _snake_case = [tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) for x in output_tokens] self.assertListEqual(lowercase , lowercase ) def A ( self : str ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
686
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Any , lowercase : NestedDataStructureLike[PathLike] , lowercase : Optional[NamedSplit] = None , lowercase : Optional[Features] = None , lowercase : str = None , lowercase : bool = False , lowercase : bool = False , lowercase : Optional[str] = None , lowercase : Optional[int] = None , **lowercase : Tuple , ): '''simple docstring''' super().__init__( lowercase , split=lowercase , features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , streaming=lowercase , num_proc=lowercase , **lowercase , ) _snake_case = field _snake_case = path_or_paths if isinstance(lowercase , lowercase ) else {self.split: path_or_paths} _snake_case = Json( cache_dir=lowercase , data_files=lowercase , features=lowercase , field=lowercase , **lowercase , ) def A ( self : Tuple ): '''simple docstring''' if self.streaming: _snake_case = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _snake_case = None _snake_case = None _snake_case = None _snake_case = None self.builder.download_and_prepare( download_config=lowercase , download_mode=lowercase , verification_mode=lowercase , base_path=lowercase , num_proc=self.num_proc , ) _snake_case = self.builder.as_dataset( split=self.split , verification_mode=lowercase , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : int , lowercase : Dataset , lowercase : Union[PathLike, BinaryIO] , lowercase : Optional[int] = None , lowercase : Optional[int] = None , **lowercase : Any , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) _snake_case = dataset _snake_case = path_or_buf _snake_case = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case = num_proc _snake_case = 'utf-8' _snake_case = to_json_kwargs def A ( self : List[Any] ): '''simple docstring''' _snake_case = self.to_json_kwargs.pop('path_or_buf' , lowercase ) _snake_case = self.to_json_kwargs.pop('orient' , 'records' ) _snake_case = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False ) _snake_case = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True ) _snake_case = self.to_json_kwargs.pop('compression' , lowercase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , 'wb' , compression=lowercase ) as buffer: _snake_case = self._write(file_obj=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ' was passed. Please provide a local path instead.' ) _snake_case = self._write( file_obj=self.path_or_buf , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs ) return written def A ( self : Tuple , lowercase : Dict ): '''simple docstring''' _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = args _snake_case = query_table( table=self.dataset.data , key=slice(lowercase , offset + self.batch_size ) , indices=self.dataset._indices , ) _snake_case = batch.to_pandas().to_json( path_or_buf=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **lowercase ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def A ( self : Tuple , lowercase : BinaryIO , lowercase : Dict , lowercase : Dict , lowercase : str , **lowercase : Dict , ): '''simple docstring''' _snake_case = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): _snake_case = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowercase ) else: _snake_case , _snake_case = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowercase , lowercase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): written += file_obj.write(lowercase ) return written
686
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
0
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
0
from __future__ import annotations import numpy as np def _A ( _lowercase ) -> int: """simple docstring""" return np.maximum(0 , _lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline UpperCAmelCase_ = { """n_samples""": 6_4, """horizon""": 3_2, """num_inference_steps""": 2_0, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": UpperCAmelCase_ = """hopper-medium-v2""" UpperCAmelCase_ = gym.make(env_name) UpperCAmelCase_ = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) UpperCAmelCase_ = env.reset() UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 1_0_0_0 UpperCAmelCase_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy UpperCAmelCase_ = pipeline(obs, planning_horizon=3_2) # execute action in environment UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = env.step(denorm_actions) UpperCAmelCase_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' f' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) UpperCAmelCase_ = next_observation except KeyboardInterrupt: pass print(f'Total reward: {total_reward}')
2
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
0
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20]) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20]) def A_( A : str , A : List[Any] , A : Tuple): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , A) UpperCamelCase = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: UpperCamelCase = dataset_size < in_memory_max_size else: UpperCamelCase = False UpperCamelCase = is_small_dataset(A) assert result == expected
3
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
0
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : tuple , _UpperCAmelCase : Path , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=False , ): output_path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _UpperCAmelCase , _UpperCAmelCase , f=output_path.as_posix() , input_names=_UpperCAmelCase , output_names=_UpperCAmelCase , dynamic_axes=_UpperCAmelCase , do_constant_folding=_UpperCAmelCase , use_external_data_format=_UpperCAmelCase , enable_onnx_checker=_UpperCAmelCase , opset_version=_UpperCAmelCase , ) else: export( _UpperCAmelCase , _UpperCAmelCase , f=output_path.as_posix() , input_names=_UpperCAmelCase , output_names=_UpperCAmelCase , dynamic_axes=_UpperCAmelCase , do_constant_folding=_UpperCAmelCase , opset_version=_UpperCAmelCase , ) @torch.no_grad() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : bool = False ): lowerCAmelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowerCAmelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: lowerCAmelCase = 'cpu' lowerCAmelCase = Path(_UpperCAmelCase ) # VAE DECODER lowerCAmelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) lowerCAmelCase = vae_decoder.config.latent_channels # forward only through the decoder part lowerCAmelCase = vae_decoder.decode onnx_export( _UpperCAmelCase , model_args=( torch.randn(1 , _UpperCAmelCase , 25 , 25 ).to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=_UpperCAmelCase , ) del vae_decoder if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') __UpperCamelCase : int = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
4
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """asapp/sew-tiny-100k""": """https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json""", # See all SEW models at https://huggingface.co/models?filter=sew } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[int] = '''sew''' def __init__( self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase=2 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1e-5 , _lowercase="group" , _lowercase="gelu" , _lowercase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _lowercase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _lowercase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _lowercase=False , _lowercase=128 , _lowercase=16 , _lowercase=True , _lowercase=0.05 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=0 , _lowercase="mean" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=0 , _lowercase=1 , _lowercase=2 , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = feat_extract_norm _lowerCAmelCase = feat_extract_activation _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = conv_bias _lowerCAmelCase = num_conv_pos_embeddings _lowerCAmelCase = num_conv_pos_embedding_groups _lowerCAmelCase = len(self.conv_dim ) _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = squeeze_factor _lowerCAmelCase = hidden_act _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = feat_proj_dropout _lowerCAmelCase = final_dropout _lowerCAmelCase = layerdrop _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase = apply_spec_augment _lowerCAmelCase = mask_time_prob _lowerCAmelCase = mask_time_length _lowerCAmelCase = mask_time_min_masks _lowerCAmelCase = mask_feature_prob _lowerCAmelCase = mask_feature_length _lowerCAmelCase = mask_feature_min_masks # ctc loss _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # sequence classification _lowerCAmelCase = use_weighted_layer_sum _lowerCAmelCase = classifier_proj_size @property def _lowercase ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
5
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
0
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = emb.weight.shape SCREAMING_SNAKE_CASE__ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase__ , map_location="""cpu""" ) SCREAMING_SNAKE_CASE__ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] SCREAMING_SNAKE_CASE__ = mam_aaa["""model"""] remove_ignore_keys_(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] SCREAMING_SNAKE_CASE__ = MaMaaaConfig( vocab_size=UpperCamelCase__ , max_position_embeddings=1_024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) SCREAMING_SNAKE_CASE__ = state_dict["""decoder.embed_tokens.weight"""] SCREAMING_SNAKE_CASE__ = MaMaaaForConditionalGeneration(UpperCamelCase__ ) model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _lowerCamelCase = parser.parse_args() _lowerCamelCase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
6
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
0
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Tuple ): _A = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCAmelCase_ ( self : Tuple ): with self.assertRaises(_UpperCAmelCase ): _A = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def lowerCAmelCase_ ( self : str ): with self.assertRaises(_UpperCAmelCase ): _A = pa.array(TypedSequence([1, 2, 3] , try_type=Value('bool' ) , type=Value('int64' ) ) ) def lowerCAmelCase_ ( self : str ): _A = pa.array(TypedSequence([1, 2, 3] , type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCAmelCase_ ( self : Union[str, Any] ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _A = pa.array(TypedSequence(['foo', 'bar'] , type=Value('int64' ) ) ) def lowerCAmelCase_ ( self : int ): _A = pa.array(TypedSequence([1, 2, 3] , try_type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCAmelCase_ ( self : List[str] ): _A = pa.array(TypedSequence(['foo', 'bar'] , try_type=Value('int64' ) ) ) self.assertEqual(arr.type , pa.string() ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def lowerCAmelCase_ ( self : Optional[int] ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _A = pa.array(TypedSequence(['foo', 'bar'] , type=ArrayaD((1, 3) , 'int64' ) ) ) def lowerCAmelCase_ ( self : List[Any] ): _A = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def lowerCAmelCase_ ( self : Dict ): _A = pa.array(TypedSequence(['foo', 'bar'] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def lowerCAmelCase_ ( self : Union[str, Any] ): import PIL.Image _A = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' , side_effect=_UpperCAmelCase ) as mock_cast_to_python_objects: _A = pa.array(TypedSequence([{'path': None, 'bytes': b'image_bytes'}, pil_image] , type=Image() ) ) _A , _A = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' , _UpperCAmelCase ) self.assertFalse(kwargs['optimize_list_casting'] ) def _snake_case ( _snake_case : Any , _snake_case : int ) -> List[str]: '''simple docstring''' _A = pa.BufferReader(_snake_case ) if isinstance(_snake_case , pa.Buffer ) else pa.memory_map(_snake_case ) _A = pa.ipc.open_stream(_snake_case ) _A = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case ( _snake_case : Optional[Any] , _snake_case : Dict ) -> Optional[int]: '''simple docstring''' _A = pa.BufferOutputStream() _A = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case , schema=_snake_case , writer_batch_size=_snake_case ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _A = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _snake_case ( ) -> Dict: '''simple docstring''' _A = pa.BufferOutputStream() _A = Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=_snake_case , features=_snake_case ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata _A = pa.BufferReader(output.getvalue() ) _A = pa.ipc.open_stream(_snake_case ) _A = f.read_all() _A = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_snake_case ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) def _snake_case ( _snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _A = pa.BufferOutputStream() with ArrowWriter( stream=_snake_case , writer_batch_size=_snake_case , hash_salt='split_name' , check_duplicates=_snake_case , ) as writer: with pytest.raises(_snake_case ): writer.write({'col_1': 'foo', 'col_2': 1} , key=[1, 2] ) _A , _A = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def _snake_case ( _snake_case : str ) -> Dict: '''simple docstring''' _A = pa.BufferOutputStream() with ArrowWriter( stream=_snake_case , writer_batch_size=_snake_case , hash_salt='split_name' , check_duplicates=_snake_case , ) as writer: with pytest.raises(_snake_case ): writer.write({'col_1': 'foo', 'col_2': 1} , key=10 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=10 ) _A , _A = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def _snake_case ( _snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' _A = pa.BufferOutputStream() with ArrowWriter( stream=_snake_case , writer_batch_size=_snake_case , hash_salt='split_name' , check_duplicates=_snake_case , ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} , key=1 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=2 ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case ( _snake_case : int , _snake_case : Tuple ) -> List[Any]: '''simple docstring''' _A = pa.BufferOutputStream() _A = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case , schema=_snake_case , writer_batch_size=_snake_case ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _A = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ) -> Dict: '''simple docstring''' _A = pa.BufferOutputStream() _A = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case , schema=_snake_case , writer_batch_size=_snake_case ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _A = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _A = pa.BufferOutputStream() _A = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case , schema=_snake_case , writer_batch_size=_snake_case ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _A = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _snake_case ( ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = {'col_1': pa.string(), 'col_2': pa.intaa()} _A = os.path.join(_snake_case , 'test.arrow' ) with ArrowWriter(path=_snake_case , schema=pa.schema(_snake_case ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_snake_case , metadata=writer._schema.metadata ) _check_output(_snake_case , 1 ) def _snake_case ( _snake_case : Optional[int] ) -> Tuple: '''simple docstring''' if pa.types.is_list(_snake_case ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _snake_case ( _snake_case : Any , _snake_case : List[Any] ) -> Any: '''simple docstring''' if isinstance(lst[0] , _snake_case ): change_first_primitive_element_in_list(lst[0] , _snake_case ) else: _A = value @pytest.mark.parametrize('optimized_int_type, expected_dtype' , [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : Optional[int] ) -> Any: '''simple docstring''' _A = pa.array(TypedSequence(_snake_case , optimized_int_type=_snake_case ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype' , [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ] , ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _snake_case ( _snake_case : str , _snake_case : Any , _snake_case : Optional[Any] ) -> Optional[int]: '''simple docstring''' _A = pa.array(OptimizedTypedSequence(_snake_case , col=_snake_case ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications _A = copy.deepcopy(_snake_case ) _A = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_snake_case , _snake_case ) _A = pa.array(OptimizedTypedSequence(_snake_case , col=_snake_case ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception' , [False, True] ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] ) -> str: '''simple docstring''' _A = str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=_snake_case ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _snake_case ( _snake_case : int ) -> Any: '''simple docstring''' _A = 'mock://dataset-train.arrow' with ArrowWriter(path=_snake_case , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(_snake_case ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_snake_case ) def _snake_case ( ) -> Dict: '''simple docstring''' _A = pa.BufferOutputStream() with ParquetWriter(stream=_snake_case ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _A = pa.BufferReader(output.getvalue() ) _A = pq.read_table(_snake_case ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files' , [False, True] ) def _snake_case ( _snake_case : str , _snake_case : List[str] ) -> Dict: '''simple docstring''' import PIL.Image _A = str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_snake_case , format='png' ) _A = pa.BufferOutputStream() with ParquetWriter( stream=_snake_case , features=Features({'image': Image()} ) , embed_local_files=_snake_case ) as writer: writer.write({'image': image_path} ) writer.finalize() _A = pa.BufferReader(output.getvalue() ) _A = pq.read_table(_snake_case ) _A = pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'] , _snake_case ) with open(_snake_case , 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _snake_case ( ) -> int: '''simple docstring''' _A = pa.schema([pa.field('col_1' , pa.string() , nullable=_snake_case )] ) _A = pa.BufferOutputStream() with ArrowWriter(stream=_snake_case ) as writer: writer._build_writer(inferred_schema=_snake_case ) assert writer._schema == pa.schema([pa.field('col_1' , pa.string() )] )
7
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''image_processor''', '''tokenizer'''] lowerCAmelCase = '''LayoutLMv2ImageProcessor''' lowerCAmelCase = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __A : str = kwargs.pop('feature_extractor') __A : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(_UpperCAmelCase , _UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.') if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.') # first, apply the image processor __A : Dict = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Optional[int] = [text] # add batch dimension (as the image processor always adds a batch dimension) __A : Dict = features['words'] __A : Any = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __A : Dict = features.pop('pixel_values') if return_overflowing_tokens is True: __A : str = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping']) __A : str = images return encoded_inputs def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(_UpperCAmelCase) != len(_UpperCAmelCase): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F' {len(_UpperCAmelCase)} and {len(_UpperCAmelCase)}') return images_with_overflow def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
8
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
0
def A ( __UpperCamelCase ) -> tuple[int, int]: try: A__ = float(__UpperCamelCase ) except ValueError: raise ValueError('Please enter a valid number' ) A__ = decimal - int(__UpperCamelCase ) if fractional_part == 0: return int(__UpperCamelCase ), 1 else: A__ = len(str(__UpperCamelCase ).split('.' )[1] ) A__ = int(decimal * (10**number_of_frac_digits) ) A__ = 10**number_of_frac_digits A__ , A__ = denominator, numerator while True: A__ = dividend % divisor if remainder == 0: break A__ , A__ = divisor, remainder A__ , A__ = numerator / divisor, denominator / divisor return int(__UpperCamelCase ), int(__UpperCamelCase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
9
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
10
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
0
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return 10 - x * x def lowerCAmelCase (__A , __A): """simple docstring""" if equation(__A) * equation(__A) >= 0: raise ValueError('''Wrong space!''') _a = a while (b - a) >= 0.01: # Find middle point _a = (a + b) / 2 # Check if middle point is root if equation(__A) == 0.0: break # Decide the side to repeat the steps if equation(__A) * equation(__A) < 0: _a = c else: _a = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Tuple = CodeGenTokenizer __lowerCAmelCase : Optional[int] = CodeGenTokenizerFast __lowerCAmelCase : Any = True __lowerCAmelCase : Tuple = {'add_prefix_space': True} __lowerCAmelCase : str = False def lowercase__ ( self): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] lowercase__ : int = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_)))) lowercase__ : List[str] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase__ : Dict = {"""unk_token""": """<unk>"""} lowercase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_) + """\n""") with open(self.merges_file , """w""" , encoding="""utf-8""") as fp: fp.write("""\n""".join(SCREAMING_SNAKE_CASE_)) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' kwargs.update(self.special_tokens_map) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' kwargs.update(self.special_tokens_map) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = """lower newer""" lowercase__ : Optional[Any] = """lower newer""" return input_text, output_text def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) lowercase__ : List[Any] = """lower newer""" lowercase__ : str = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowercase__ : Dict = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokens + [tokenizer.unk_token] lowercase__ : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase__ : str = self.get_tokenizer() lowercase__ : List[str] = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = """lower newer""" # Testing tokenization lowercase__ : int = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_) lowercase__ : int = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # Testing conversion to ids without special tokens lowercase__ : str = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # Testing conversion to ids with special tokens lowercase__ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE_) lowercase__ : int = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # Testing the unknown token lowercase__ : Optional[int] = tokens + [rust_tokenizer.unk_token] lowercase__ : Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' pass def lowercase__ ( self , SCREAMING_SNAKE_CASE_=15): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) # Simple input lowercase__ : Optional[int] = """This is a simple input""" lowercase__ : Any = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase__ : Optional[Any] = ("""This is a simple input""", """This is a pair""") lowercase__ : int = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""") # Simple input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""") # Simple input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""" , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""") # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""") # Pair input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""" , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""") # Simple input lowercase__ : Dict = """This is a simple input""" lowercase__ : Optional[int] = ["""This is a simple input looooooooong""", """This is a simple input"""] lowercase__ : List[str] = ("""This is a simple input""", """This is a pair""") lowercase__ : Any = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] lowercase__ : Union[str, Any] = tokenizer.pad_token_id lowercase__ : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=30 , return_tensors="""np""") lowercase__ : Any = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncate=SCREAMING_SNAKE_CASE_ , return_tensors="""np""") lowercase__ : List[Any] = tokenizer(*SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=60 , return_tensors="""np""") lowercase__ : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncate=SCREAMING_SNAKE_CASE_ , return_tensors="""np""") # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30) self.assertTrue(pad_token_id in out_s["""input_ids"""]) self.assertTrue(0 in out_s["""attention_mask"""]) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0]) self.assertFalse(0 in out_sa["""attention_mask"""][0]) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1]) self.assertTrue(0 in out_sa["""attention_mask"""][1]) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60) self.assertTrue(pad_token_id in out_p["""input_ids"""]) self.assertTrue(0 in out_p["""attention_mask"""]) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0]) self.assertFalse(0 in out_pa["""attention_mask"""][0]) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1]) self.assertTrue(0 in out_pa["""attention_mask"""][1]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = """$$$""" lowercase__ : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=SCREAMING_SNAKE_CASE_ , add_bos_token=SCREAMING_SNAKE_CASE_) lowercase__ : Any = """This is a simple input""" lowercase__ : Dict = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase__ : Optional[Any] = tokenizer.bos_token_id lowercase__ : Any = tokenizer(SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer(SCREAMING_SNAKE_CASE_) self.assertEqual(out_s.input_ids[0] , SCREAMING_SNAKE_CASE_) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids)) lowercase__ : Any = tokenizer.decode(out_s.input_ids) lowercase__ : int = tokenizer.batch_decode(out_sa.input_ids) self.assertEqual(decode_s.split()[0] , SCREAMING_SNAKE_CASE_) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa)) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""") lowercase__ : Optional[Any] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" lowercase__ : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" lowercase__ : Tuple = tokenizer.encode(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>"""), """^'''""", """^\"\"\"""", """\n\n\n"""] lowercase__ : int = tokenizer.decode(SCREAMING_SNAKE_CASE_ , truncate_before_pattern=SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' pass
12
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
0
'''simple docstring''' import sys A__ : Tuple = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> int: __lowerCamelCase : Any = 1 for digit in s: product *= int(UpperCAmelCase_ ) return product def UpperCAmelCase__ ( UpperCAmelCase_ : str = N ) -> int: __lowerCamelCase : Dict = -sys.maxsize - 1 __lowerCamelCase : str = n[:13] __lowerCamelCase : List[Any] = 13 while cur_index < len(UpperCAmelCase_ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __lowerCamelCase : int = substr[1:] + n[cur_index] cur_index += 1 else: __lowerCamelCase : str = max(UpperCAmelCase_ , str_eval(UpperCAmelCase_ ) ) __lowerCamelCase : List[Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
13
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
0
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a__ = '''src/diffusers''' # Matches is_xxx_available() a__ = re.compile(R'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla a__ = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') a__ = ''' {0} = None ''' a__ = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' a__ = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def __UpperCAmelCase ( __a : Dict ) -> str: """simple docstring""" _a : Optional[Any] = _re_backend.findall(__a ) if len(__a ) == 0: return None return "_and_".join(__a ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" with open(os.path.join(__a ,'''__init__.py''' ) ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Get to the point we do the actual imports for type checking _a : List[Any] = 0 _a : Optional[int] = {} # Go through the end of the file while line_index < len(__a ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _a : Any = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 _a : List[str] = [] # Until we unindent, add backend objects to the list while line_index < len(__a ) and len(lines[line_index] ) > 1: _a : Optional[Any] = lines[line_index] _a : Any = _re_single_line_import.search(__a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__a ) > 0: _a : Dict = objects else: line_index += 1 return backend_specific_objects def __UpperCAmelCase ( __a : str ,__a : str ) -> str: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(__a ) elif name.islower(): return DUMMY_FUNCTION.format(__a ,__a ) else: return DUMMY_CLASS.format(__a ,__a ) def __UpperCAmelCase ( __a : List[Any]=None ) -> Tuple: """simple docstring""" if backend_specific_objects is None: _a : Optional[int] = read_init() # For special correspondence backend to module name as used in the function requires_modulename _a : Optional[Any] = {} for backend, objects in backend_specific_objects.items(): _a : Optional[int] = '''[''' + ''', '''.join(F"""\"{b}\"""" for b in backend.split('''_and_''' ) ) + ''']''' _a : Optional[Any] = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__a ,__a ) for o in objects] ) _a : Optional[Any] = dummy_file return dummy_files def __UpperCAmelCase ( __a : Union[str, Any]=False ) -> Optional[Any]: """simple docstring""" _a : Any = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _a : Dict = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. _a : Union[str, Any] = os.path.join(__a ,'''utils''' ) _a : List[Any] = { backend: os.path.join(__a ,F"""dummy_{short_names.get(__a ,__a )}_objects.py""" ) for backend in dummy_files.keys() } _a : List[Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__a ): with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Dict = f.read() else: _a : str = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"""Updating diffusers.utils.dummy_{short_names.get(__a ,__a )}_objects.py as the main """ '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F"""diffusers.utils.dummy_{short_names.get(__a ,__a )}_objects.py. Run `make fix-copies` """ '''to fix this.''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
14
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser A : List[Any] = logging.getLogger(__name__) torch.set_grad_enabled(False) A : Any = 'cuda' if torch.cuda.is_available() else 'cpu' def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str=100 , __magic_name__ : Tuple=" " ) -> List[str]: """simple docstring""" lowercase__ = text.split(__magic_name__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__magic_name__ ) , __magic_name__ )] def UpperCamelCase ( __magic_name__ : dict ) -> dict: """simple docstring""" lowercase__ , lowercase__ = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(__magic_name__ ): titles.append(title if title is not None else """""" ) texts.append(__magic_name__ ) return {"title": titles, "text": texts} def UpperCamelCase ( __magic_name__ : dict , __magic_name__ : DPRContextEncoder , __magic_name__ : DPRContextEncoderTokenizerFast ) -> dict: """simple docstring""" lowercase__ = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=__magic_name__ , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] lowercase__ = ctx_encoder(input_ids.to(device=__magic_name__ ) , return_dict=__magic_name__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCamelCase ( __magic_name__ : "RagExampleArguments" , __magic_name__ : "ProcessingArguments" , __magic_name__ : "IndexHnswArguments" , ) -> int: """simple docstring""" logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ = dataset.map(__magic_name__ , batched=__magic_name__ , num_proc=processing_args.num_proc ) # And compute the embeddings lowercase__ = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__magic_name__ ) lowercase__ = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowercase__ = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space lowercase__ = dataset.map( partial(__magic_name__ , ctx_encoder=__magic_name__ , ctx_tokenizer=__magic_name__ ) , batched=__magic_name__ , batch_size=processing_args.batch_size , features=__magic_name__ , ) # And finally save your dataset lowercase__ = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(__magic_name__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=__magic_name__ ) # And save the index lowercase__ = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(__magic_name__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class A : '''simple docstring''' A__ = field( default=str(Path(UpperCAmelCase__ ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) A__ = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) A__ = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) A__ = field( default=str(Path(UpperCAmelCase__ ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class A : '''simple docstring''' A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) A__ = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class A : '''simple docstring''' A__ = field( default=7_68 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) A__ = field( default=1_28 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) A : Optional[int] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) A , A , A : Union[str, Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: A : Union[str, Any] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
15
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
0
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __a ( A__ : Tuple , A__ : Any , A__ : List[Any] , A__ : Any , A__ : Optional[int] ): # Load configuration defined in the metadata file with open(A__ ) as metadata_file: SCREAMING_SNAKE_CASE = json.load(A__ ) SCREAMING_SNAKE_CASE = LukeConfig(use_entity_aware_attention=A__ , **metadata["model_config"] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE = torch.load(A__ , map_location="cpu" ) # Load the entity vocab file SCREAMING_SNAKE_CASE = load_entity_vocab(A__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE = AddedToken("<ent>" , lstrip=A__ , rstrip=A__ ) SCREAMING_SNAKE_CASE = AddedToken("<ent2>" , lstrip=A__ , rstrip=A__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(A__ ) with open(os.path.join(A__ , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(A__ , A__ ) SCREAMING_SNAKE_CASE = LukeTokenizer.from_pretrained(A__ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE = state_dict["embeddings.word_embeddings.weight"] SCREAMING_SNAKE_CASE = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) SCREAMING_SNAKE_CASE = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE = F"encoder.layer.{layer_index}.attention.self." SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE = state_dict["entity_embeddings.entity_embeddings.weight"] SCREAMING_SNAKE_CASE = entity_emb[entity_vocab["[MASK]"]] SCREAMING_SNAKE_CASE = LukeModel(config=A__ ).eval() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.load_state_dict(A__ , strict=A__ ) if not (len(A__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F"Missing keys {', '.join(A__ )}. Expected only missing embeddings.position_ids" ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}" ) # Check outputs SCREAMING_SNAKE_CASE = LukeTokenizer.from_pretrained(A__ , task="entity_classification" ) SCREAMING_SNAKE_CASE = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) SCREAMING_SNAKE_CASE = (39, 42) SCREAMING_SNAKE_CASE = tokenizer(A__ , entity_spans=[span] , add_prefix_space=A__ , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model(**A__ ) # Verify word hidden states if model_size == "large": SCREAMING_SNAKE_CASE = torch.Size((1, 42, 1024) ) SCREAMING_SNAKE_CASE = torch.tensor( [[0.0_1_3_3, 0.0_8_6_5, 0.0_0_9_5], [0.3_0_9_3, -0.2_5_7_6, -0.7_4_1_8], [-0.1_7_2_0, -0.2_1_1_7, -0.2_8_6_9]] ) else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 42, 768) ) SCREAMING_SNAKE_CASE = torch.tensor([[0.0_0_3_7, 0.1_3_6_8, -0.0_0_9_1], [0.1_0_9_9, 0.3_3_2_9, -0.1_0_9_5], [0.0_7_6_5, 0.5_3_3_5, 0.1_1_7_9]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , A__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": SCREAMING_SNAKE_CASE = torch.Size((1, 1, 1024) ) SCREAMING_SNAKE_CASE = torch.tensor([[0.0_4_6_6, -0.0_1_0_6, -0.0_1_7_9]] ) else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 1, 768) ) SCREAMING_SNAKE_CASE = torch.tensor([[0.1_4_5_7, 0.1_0_4_4, 0.0_1_7_4]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , A__ , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(A__ ) ) model.save_pretrained(A__ ) def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = {} with open(A__ , "r" , encoding="utf-8" ) as f: for index, line in enumerate(A__ ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = line.rstrip().split("\t" ) SCREAMING_SNAKE_CASE = index return entity_vocab if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) __A : Optional[int] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
16
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : str = '''▁''' UpperCAmelCase_ : List[Any] = {'''vocab_file''': '''spiece.model'''} UpperCAmelCase_ : Any = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } UpperCAmelCase_ : int = { '''google/reformer-crime-and-punishment''': 524_288, } class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , __A : Tuple , __A : Dict="</s>" , __A : Any="<unk>" , __A : Any=[] , __A : Optional[Dict[str, Any]] = None , **__A : Tuple , ): __A : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__A , unk_token=__A , additional_special_tokens=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) __A : str = vocab_file __A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) @property def lowerCAmelCase_ ( self : Dict ): return self.sp_model.get_piece_size() def lowerCAmelCase_ ( self : Optional[Any] ): __A : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): __A : Dict = self.__dict__.copy() __A : Tuple = None return state def __setstate__( self : int , __A : List[Any] ): __A : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __A : Union[str, Any] = {} __A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self : str , __A : str ): return self.sp_model.encode(__A , out_type=__A ) def lowerCAmelCase_ ( self : Union[str, Any] , __A : str ): return self.sp_model.piece_to_id(__A ) def lowerCAmelCase_ ( self : Any , __A : List[str] ): if index < self.sp_model.get_piece_size(): __A : Any = self.sp_model.IdToPiece(__A ) return token def lowerCAmelCase_ ( self : Optional[Any] , __A : Tuple ): __A : Optional[Any] = [] __A : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__A ) + token __A : Union[str, Any] = [] else: current_sub_tokens.append(__A ) out_string += self.sp_model.decode(__A ) return out_string.strip() def lowerCAmelCase_ ( self : Tuple , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __A : str = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , """wb""" ) as fi: __A : Any = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
17
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<eop>", "<eod>"] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: _lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowerCAmelCase = 3 _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) _lowerCAmelCase = jieba _lowerCAmelCase = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _snake_case ( self ) -> Optional[int]: return len(self.sp_model ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , _lowerCAmelCase ) -> str: if self.remove_space: _lowerCAmelCase = " ".join(inputs.strip().split() ) else: _lowerCAmelCase = inputs _lowerCAmelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _lowerCAmelCase = unicodedata.normalize("NFKD" , _lowerCAmelCase ) _lowerCAmelCase = "".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase = outputs.lower() return outputs def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.preprocess_text(_lowerCAmelCase ) _lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) _lowerCAmelCase = [] for piece in pieces: if len(_lowerCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase = cur_pieces[1:] else: _lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCAmelCase ) else: new_pieces.append(_lowerCAmelCase ) return new_pieces def _snake_case ( self , _lowerCAmelCase ) -> str: return self.sp_model.PieceToId(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: return self.sp_model.IdToPiece(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip() return out_string def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] return ([0] * len(_lowerCAmelCase )) + [1, 1] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,) def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = super()._decode(*_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
18
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
0
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case ) -> Any: """simple docstring""" _enforce_args(__snake_case, __snake_case ) if n == 0: return 0 _UpperCamelCase = float('''-inf''' ) for i in range(1, n + 1 ): _UpperCamelCase = max( __snake_case, prices[i - 1] + naive_cut_rod_recursive(n - i, __snake_case ) ) return max_revue def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" _enforce_args(__snake_case, __snake_case ) _UpperCamelCase = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__snake_case, __snake_case, __snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> str: """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _UpperCamelCase = float('''-inf''' ) for i in range(1, n + 1 ): _UpperCamelCase = max( __snake_case, prices[i - 1] + _top_down_cut_rod_recursive(n - i, __snake_case, __snake_case ), ) _UpperCamelCase = max_revenue return max_rev[n] def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" _enforce_args(__snake_case, __snake_case ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _UpperCamelCase = [float('''-inf''' ) for _ in range(n + 1 )] _UpperCamelCase = 0 for i in range(1, n + 1 ): _UpperCamelCase = max_rev[i] for j in range(1, i + 1 ): _UpperCamelCase = max(__snake_case, prices[j - 1] + max_rev[i - j] ) _UpperCamelCase = max_revenue_i return max_rev[n] def lowerCamelCase__ ( __snake_case, __snake_case ) -> Dict: """simple docstring""" if n < 0: _UpperCamelCase = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(__snake_case ) if n > len(__snake_case ): _UpperCamelCase = ( '''Each integral piece of rod must have a corresponding price. ''' F'''Got n = {n} but length of prices = {len(__snake_case )}''' ) raise ValueError(__snake_case ) def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [6, 10, 12, 15, 20, 23] _UpperCamelCase = len(__snake_case ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _UpperCamelCase = 36 _UpperCamelCase = top_down_cut_rod(__snake_case, __snake_case ) _UpperCamelCase = bottom_up_cut_rod(__snake_case, __snake_case ) _UpperCamelCase = naive_cut_rod_recursive(__snake_case, __snake_case ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
19
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: str = logging.get_logger(__name__) _lowerCAmelCase: Optional[Any] = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class lowercase_ (lowercase__ ): snake_case ='ibert' def __init__( self , lowercase_=30522 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_="absolute" , lowercase_=False , lowercase_="none" , **lowercase_ , ) -> str: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_) a__ =vocab_size a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =hidden_act a__ =intermediate_size a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =initializer_range a__ =layer_norm_eps a__ =position_embedding_type a__ =quant_mode a__ =force_dequant class lowercase_ (lowercase__ ): @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ ={0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
20
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : List[str] =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __magic_name__ : Union[str, Any] =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: __magic_name__ : Optional[Any] ="""""" else: __magic_name__ : List[Any] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ : Tuple =state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) __magic_name__ : Optional[Any] =state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : Union[str, Any] =in_proj_weight[ : config.hidden_size, : ] __magic_name__ : Any =in_proj_bias[: config.hidden_size] __magic_name__ : Any =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ : Any =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ : Union[str, Any] =in_proj_weight[ -config.hidden_size :, : ] __magic_name__ : Any =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : int =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. __magic_name__ : List[Any] =[ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[Any] =dct.pop(lowerCamelCase ) __magic_name__ : List[str] =val def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : str =ViTMSNConfig() __magic_name__ : str =1000 __magic_name__ : Tuple ="""datasets/huggingface/label-files""" __magic_name__ : Union[str, Any] ="""imagenet-1k-id2label.json""" __magic_name__ : int =json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase ) , """r""" ) ) __magic_name__ : Dict ={int(lowerCamelCase ): v for k, v in idalabel.items()} __magic_name__ : int =idalabel __magic_name__ : List[Any] ={v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __magic_name__ : int =384 __magic_name__ : List[str] =1536 __magic_name__ : Optional[int] =6 elif "l16" in checkpoint_url: __magic_name__ : Tuple =1024 __magic_name__ : Dict =4096 __magic_name__ : Tuple =24 __magic_name__ : Tuple =16 __magic_name__ : List[str] =0.1 elif "b4" in checkpoint_url: __magic_name__ : str =4 elif "l7" in checkpoint_url: __magic_name__ : List[Any] =7 __magic_name__ : Dict =1024 __magic_name__ : Any =4096 __magic_name__ : Union[str, Any] =24 __magic_name__ : Tuple =16 __magic_name__ : Any =0.1 __magic_name__ : List[str] =ViTMSNModel(lowerCamelCase ) __magic_name__ : str =torch.hub.load_state_dict_from_url(lowerCamelCase , map_location="""cpu""" )["""target_encoder"""] __magic_name__ : Dict =ViTImageProcessor(size=config.image_size ) remove_projection_head(lowerCamelCase ) __magic_name__ : Dict =create_rename_keys(lowerCamelCase , base_model=lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_q_k_v(lowerCamelCase , lowerCamelCase , base_model=lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() __magic_name__ : List[Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" __magic_name__ : Dict =Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) __magic_name__ : Tuple =ViTImageProcessor( size=config.image_size , image_mean=lowerCamelCase , image_std=lowerCamelCase ) __magic_name__ : Tuple =image_processor(images=lowerCamelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) __magic_name__ : Dict =model(**lowerCamelCase ) __magic_name__ : List[Any] =outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __magic_name__ : Any =torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: __magic_name__ : Optional[int] =torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: __magic_name__ : Tuple =torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: __magic_name__ : Tuple =torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: __magic_name__ : List[Any] =torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , lowerCamelCase , atol=1E-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase_ : int = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
21
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
0
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _snake_case : Optional[int] = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _snake_case : Dict = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _snake_case : Optional[int] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def snake_case_ (UpperCamelCase : str ): '''simple docstring''' _a = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def snake_case_ (UpperCamelCase : tuple ): '''simple docstring''' return x[0] def snake_case_ (UpperCamelCase : str ): '''simple docstring''' _a = get_letter_count(UpperCamelCase ) _a = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(UpperCamelCase ) _a = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=UpperCamelCase ) _a = ''''''.join(freq_to_letter[freq] ) _a = list(freq_to_letter_str.items() ) freq_pairs.sort(key=UpperCamelCase , reverse=UpperCamelCase ) _a = [freq_pair[1] for freq_pair in freq_pairs] return "".join(UpperCamelCase ) def snake_case_ (UpperCamelCase : str ): '''simple docstring''' _a = get_frequency_order(UpperCamelCase ) _a = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
22
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=12 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0 , _UpperCAmelCase=None , ) -> Dict: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = projection_dim UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = dropout UpperCamelCase_ = attention_dropout UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = initializer_range UpperCamelCase_ = scope UpperCamelCase_ = bos_token_id def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCamelCase_ = input_mask.numpy() UpperCamelCase_ , UpperCamelCase_ = input_mask.shape UpperCamelCase_ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCAmelCase ): UpperCamelCase_ = 1 UpperCamelCase_ = 0 UpperCamelCase_ = self.get_config() return config, input_ids, tf.convert_to_tensor(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = TFBlipTextModel(config=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , training=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _a ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (TFBlipTextModel,) if is_tf_available() else () A_ = False A_ = False A_ = False def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = BlipTextModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _UpperCAmelCase ( self ) -> List[str]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> List[str]: pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCAmelCase ( self ) -> Dict: pass @slow def _UpperCAmelCase ( self ) -> int: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = TFBlipTextModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase=True ) -> List[Any]: super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCAmelCase )
23
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCAmelCase ( __lowerCAmelCase): def __init__( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> Optional[Any]: '''simple docstring''' __snake_case = path_or_paths __snake_case = split if split or isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else '''train''' __snake_case = features __snake_case = cache_dir __snake_case = keep_in_memory __snake_case = streaming __snake_case = num_proc __snake_case = kwargs @abstractmethod def lowerCAmelCase ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: '''simple docstring''' pass class lowerCAmelCase ( __lowerCAmelCase): def __init__( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: '''simple docstring''' __snake_case = features __snake_case = cache_dir __snake_case = keep_in_memory __snake_case = streaming __snake_case = num_proc __snake_case = kwargs @abstractmethod def lowerCAmelCase ( self ) -> Union[Dataset, IterableDataset]: '''simple docstring''' pass
24
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
0
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =42 class _UpperCamelCase ( __A , __A ): '''simple docstring''' @register_to_config def __init__( self : Any , a : int = 32 , a : int = 64 , a : int = 20 , a : int = 768 , a : int=77 , a : str=4 , a : float = 0.0 , a : str = "silu" , a : Optional[str] = None , a : Optional[str] = None , a : Optional[str] = "linear" , a : Optional[str] = "prd" , a : Optional[int] = None , a : Optional[int] = None , a : Optional[int] = None , ) -> int: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = attention_head_dim SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads * attention_head_dim SCREAMING_SNAKE_CASE : Any = additional_embeddings SCREAMING_SNAKE_CASE : int = time_embed_dim or inner_dim SCREAMING_SNAKE_CASE : List[Any] = embedding_proj_dim or embedding_dim SCREAMING_SNAKE_CASE : Any = clip_embed_dim or embedding_dim SCREAMING_SNAKE_CASE : Any = Timesteps(a , a , 0 ) SCREAMING_SNAKE_CASE : Dict = TimestepEmbedding(a , a , out_dim=a , act_fn=a ) SCREAMING_SNAKE_CASE : str = nn.Linear(a , a ) if embedding_proj_norm_type is None: SCREAMING_SNAKE_CASE : Dict = None elif embedding_proj_norm_type == "layer": SCREAMING_SNAKE_CASE : Tuple = nn.LayerNorm(a ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) SCREAMING_SNAKE_CASE : str = nn.Linear(a , a ) if encoder_hid_proj_type is None: SCREAMING_SNAKE_CASE : Tuple = None elif encoder_hid_proj_type == "linear": SCREAMING_SNAKE_CASE : Any = nn.Linear(a , a ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , a ) ) if added_emb_type == "prd": SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.zeros(1 , 1 , a ) ) elif added_emb_type is None: SCREAMING_SNAKE_CASE : Union[str, Any] = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) SCREAMING_SNAKE_CASE : Dict = nn.ModuleList( [ BasicTransformerBlock( a , a , a , dropout=a , activation_fn="gelu" , attention_bias=a , ) for d in range(a ) ] ) if norm_in_type == "layer": SCREAMING_SNAKE_CASE : Union[str, Any] = nn.LayerNorm(a ) elif norm_in_type is None: SCREAMING_SNAKE_CASE : Optional[int] = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.LayerNorm(a ) SCREAMING_SNAKE_CASE : Tuple = nn.Linear(a , a ) SCREAMING_SNAKE_CASE : Tuple = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0000.0 ) causal_attention_mask.triu_(1 ) SCREAMING_SNAKE_CASE : Dict = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , a , persistent=a ) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.zeros(1 , a ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.zeros(1 , a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, AttentionProcessor]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} def fn_recursive_add_processors(a : str , a : torch.nn.Module , a : Dict[str, AttentionProcessor] ): if hasattr(a , "set_processor" ): SCREAMING_SNAKE_CASE : int = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , a , a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(a , a , a ) return processors def __UpperCamelCase ( self : Tuple , a : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(a , a ) and len(a ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(a )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(a : str , a : torch.nn.Module , a : int ): if hasattr(a , "set_processor" ): if not isinstance(a , a ): module.set_processor(a ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , a , a ) for name, module in self.named_children(): fn_recursive_attn_processor(a , a , a ) def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" self.set_attn_processor(AttnProcessor() ) def __UpperCamelCase ( self : Optional[Any] , a : Union[str, Any] , a : Union[torch.Tensor, float, int] , a : torch.FloatTensor , a : Optional[torch.FloatTensor] = None , a : Optional[torch.BoolTensor] = None , a : bool = True , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = hidden_states.shape[0] SCREAMING_SNAKE_CASE : Any = timestep if not torch.is_tensor(a ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(a ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE : List[str] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE : Optional[int] = timesteps * torch.ones(a , dtype=timesteps.dtype , device=timesteps.device ) SCREAMING_SNAKE_CASE : Tuple = self.time_proj(a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. SCREAMING_SNAKE_CASE : List[Any] = timesteps_projected.to(dtype=self.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.time_embedding(a ) if self.embedding_proj_norm is not None: SCREAMING_SNAKE_CASE : List[Any] = self.embedding_proj_norm(a ) SCREAMING_SNAKE_CASE : str = self.embedding_proj(a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.encoder_hidden_states_proj(a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) SCREAMING_SNAKE_CASE : List[Any] = self.proj_in(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.positional_embedding.to(hidden_states.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = 0 if encoder_hidden_states is not None: additional_embeds.append(a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: SCREAMING_SNAKE_CASE : Optional[int] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: SCREAMING_SNAKE_CASE : List[Any] = hidden_states[:, None, :] SCREAMING_SNAKE_CASE : Optional[Any] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: SCREAMING_SNAKE_CASE : Any = self.prd_embedding.to(hidden_states.dtype ).expand(a , -1 , -1 ) additional_embeds.append(a ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat( a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens SCREAMING_SNAKE_CASE : str = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: SCREAMING_SNAKE_CASE : Any = F.pad( a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) SCREAMING_SNAKE_CASE : List[Any] = hidden_states + positional_embeddings if attention_mask is not None: SCREAMING_SNAKE_CASE : int = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 SCREAMING_SNAKE_CASE : Optional[int] = F.pad(a , (0, self.additional_embeddings) , value=0.0 ) SCREAMING_SNAKE_CASE : Optional[int] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) SCREAMING_SNAKE_CASE : Optional[int] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.norm_in(a ) for block in self.transformer_blocks: SCREAMING_SNAKE_CASE : str = block(a , attention_mask=a ) SCREAMING_SNAKE_CASE : List[str] = self.norm_out(a ) if self.prd_embedding is not None: SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states[:, -1] else: SCREAMING_SNAKE_CASE : Any = hidden_states[:, additional_embeddings_len:] SCREAMING_SNAKE_CASE : Union[str, Any] = self.proj_to_clip_embeddings(a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=a ) def __UpperCamelCase ( self : str , a : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
25
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger() @dataclass class _A : lowercase__: nn.Module lowercase__: List[nn.Module] = field(default_factory=__lowercase ) lowercase__: list = field(default_factory=__lowercase ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Tensor , __magic_name__ : Tensor ) -> List[Any]: """simple docstring""" __snake_case : Tuple = len(list(m.modules() ) ) == 1 or isinstance(__magic_name__ , nn.Convad ) or isinstance(__magic_name__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(__magic_name__ ) def __call__( self : Optional[int] , __magic_name__ : Tensor ) -> Any: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__magic_name__ ) [x.remove() for x in self.handles] return self @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" return list(filter(lambda __magic_name__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _A : lowercase__: nn.Module lowercase__: nn.Module lowercase__: int = 1 lowercase__: List = field(default_factory=__lowercase ) lowercase__: List = field(default_factory=__lowercase ) lowercase__: bool = True def __call__( self : Dict , __magic_name__ : Tensor ) -> List[str]: """simple docstring""" __snake_case : Any = Tracker(self.dest )(__magic_name__ ).parametrized __snake_case : Dict = Tracker(self.src )(__magic_name__ ).parametrized __snake_case : List[str] = list(filter(lambda __magic_name__ : type(__magic_name__ ) not in self.src_skip , __magic_name__ ) ) __snake_case : List[str] = list(filter(lambda __magic_name__ : type(__magic_name__ ) not in self.dest_skip , __magic_name__ ) ) if len(__magic_name__ ) != len(__magic_name__ ) and self.raise_if_mismatch: raise Exception( f'''Numbers of operations are different. Source module has {len(__magic_name__ )} operations while''' f''' destination module has {len(__magic_name__ )}.''' ) for dest_m, src_m in zip(__magic_name__ , __magic_name__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) class _A ( nn.Module ): def __init__( self : Dict , __magic_name__ : nn.Module ) -> Any: """simple docstring""" super().__init__() __snake_case : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), f'''Unexpected layer name {k}''' __snake_case : Optional[int] = len(__magic_name__ ) + 1 feature_blocks.append((f'''res{block_index}''', v) ) __snake_case : str = nn.ModuleDict(__magic_name__ ) def lowercase__ ( self : int , __magic_name__ : Tensor ) -> Tuple: """simple docstring""" return get_trunk_forward_outputs( __magic_name__ , out_feat_keys=__magic_name__ , feature_blocks=self._feature_blocks , ) class _A ( __lowercase ): def lowercase__ ( self : Any , __magic_name__ : str ) -> str: """simple docstring""" __snake_case : List[Any] = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : int , __magic_name__ : str ) -> Callable[[], Tuple[nn.Module, Dict]]: """simple docstring""" if x not in self: __snake_case : Tuple = self.convert_name_to_timm(__magic_name__ ) __snake_case : List[str] = partial(lambda: (timm.create_model(__magic_name__ , pretrained=__magic_name__ ).eval(), None) ) else: __snake_case : Tuple = super().__getitem__(__magic_name__ ) return val class _A ( __lowercase ): def __getitem__( self : Optional[Any] , __magic_name__ : str ) -> Callable[[], nn.Module]: """simple docstring""" if "seer" in x and "in1k" not in x: __snake_case : Any = RegNetModel else: __snake_case : Tuple = RegNetForImageClassification return val def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" for from_key, to_key in keys: __snake_case : int = from_state_dict[from_key].clone() print(F'''Copied key={from_key} to={to_key}''' ) return to_state_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ) -> Union[str, Any]: """simple docstring""" print(F'''Converting {name}...''' ) with torch.no_grad(): __snake_case , __snake_case : str = from_model_func() __snake_case : Optional[Any] = our_model_func(_lowerCamelCase ).eval() __snake_case : Dict = ModuleTransfer(src=_lowerCamelCase , dest=_lowerCamelCase , raise_if_mismatch=_lowerCamelCase ) __snake_case : Union[str, Any] = torch.randn((1, 3, 224, 224) ) module_transfer(_lowerCamelCase ) if from_state_dict is not None: __snake_case : Optional[Any] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __snake_case : Any = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] __snake_case : List[str] = manually_copy_vissl_head(_lowerCamelCase , our_model.state_dict() , _lowerCamelCase ) our_model.load_state_dict(_lowerCamelCase ) __snake_case : str = our_model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) __snake_case : Any = ( our_outputs.logits if isinstance(_lowerCamelCase , _lowerCamelCase ) else our_outputs.last_hidden_state ) __snake_case : List[str] = from_model(_lowerCamelCase ) __snake_case : List[Any] = from_output[-1] if type(_lowerCamelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __snake_case : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(_lowerCamelCase , _lowerCamelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=_lowerCamelCase , ) __snake_case : Optional[int] = 224 if """seer""" not in name else 384 # we can use the convnext one __snake_case : List[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=_lowerCamelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=_lowerCamelCase , ) print(F'''Pushed {name}''' ) def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = True ) -> List[str]: """simple docstring""" __snake_case : int = """imagenet-1k-id2label.json""" __snake_case : int = 1000 __snake_case : Any = (1, num_labels) __snake_case : Union[str, Any] = """huggingface/label-files""" __snake_case : List[str] = num_labels __snake_case : int = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) __snake_case : Optional[int] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : Optional[Any] = idalabel __snake_case : Any = {v: k for k, v in idalabel.items()} __snake_case : int = partial(_lowerCamelCase , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase ) __snake_case : Optional[Any] = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } __snake_case : List[str] = NameToOurModelFuncMap() __snake_case : List[str] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_lowerCamelCase , _lowerCamelCase ) -> Tuple[nn.Module, Dict]: __snake_case : List[str] = torch.hub.load_state_dict_from_url(_lowerCamelCase , model_dir=str(_lowerCamelCase ) , map_location="""cpu""" ) __snake_case : Optional[Any] = model_func() # check if we have a head, if yes add it __snake_case : str = files["""classy_state_dict"""]["""base_model"""]["""model"""] __snake_case : Any = model_state_dict["""trunk"""] model.load_state_dict(_lowerCamelCase ) return model.eval(), model_state_dict["heads"] # pretrained __snake_case : List[str] = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : List[str] = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : Tuple = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __snake_case : str = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __snake_case : Dict = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : List[Any] = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : Union[str, Any] = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __snake_case : str = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( _lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _lowerCamelCase , _lowerCamelCase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) return config, expected_shape if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
26
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
0
from __future__ import annotations def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> set[str]: """simple docstring""" _A, _A = set(_SCREAMING_SNAKE_CASE ), [start] while stack: _A = stack.pop() explored.add(_SCREAMING_SNAKE_CASE ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_SCREAMING_SNAKE_CASE ) return explored __A : Optional[int] = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
27
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
0
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class _a ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(A ): SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A, A ) SCREAMING_SNAKE_CASE : Tuple = FlaxAutoModel.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A, A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(A ): SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A, A ) SCREAMING_SNAKE_CASE : str = FlaxAutoModel.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A, A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained(A ) SCREAMING_SNAKE_CASE : List[str] = FlaxBertModel.from_pretrained(A ) SCREAMING_SNAKE_CASE : List[str] = tokenizer('Do you support jax jitted function?', return_tensors=TensorType.JAX ) @jax.jit def eval(**A ): return model(**A ) eval(**A ).block_until_ready() @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(A ) SCREAMING_SNAKE_CASE : int = FlaxRobertaModel.from_pretrained(A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer('Do you support jax jitted function?', return_tensors=TensorType.JAX ) @jax.jit def eval(**A ): return model(**A ) eval(**A ).block_until_ready() def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaisesRegex( A, 'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE : Optional[int] = FlaxAutoModel.from_pretrained('bert-base' ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaisesRegex( A, r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxAutoModel.from_pretrained(A, revision='aaaaaa' ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaisesRegex( A, 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack', ): SCREAMING_SNAKE_CASE : Optional[int] = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaisesRegex(A, 'Use `from_pt=True` to load this model' ): SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
28
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return base * power(lowerCAmelCase__ ,(exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") A_ = int(input("""Enter the base: """).strip()) A_ = int(input("""Enter the exponent: """).strip()) A_ = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents A_ = 1 / result print(f"{base} to the power of {exponent} is {result}")
29
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
0
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __a = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' __a = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' __a = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a( datasets.Metric ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) ,homepage='''https://github.com/hendrycks/math''' ,codebase_urls=['''https://github.com/hendrycks/math'''] ,) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ : List[Any] = 0.0 for i, j in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): n_correct += 1.0 if math_equivalence.is_equiv(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else 0.0 UpperCAmelCase_ : str = n_correct / len(_SCREAMING_SNAKE_CASE ) return { "accuracy": accuracy, }
30
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
0
def UpperCAmelCase_ ( __UpperCAmelCase : int = 50 ) -> int: SCREAMING_SNAKE_CASE_ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
31
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=2 , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=10 , _UpperCamelCase=3 , _UpperCamelCase=32 * 4 , _UpperCamelCase=32 * 6 , _UpperCamelCase=4 , _UpperCamelCase=32 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = is_training _UpperCAmelCase = use_auxiliary_loss _UpperCAmelCase = num_queries _UpperCAmelCase = num_channels _UpperCAmelCase = min_size _UpperCAmelCase = max_size _UpperCAmelCase = num_labels _UpperCAmelCase = mask_feature_size def UpperCamelCase( self ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCamelCase ) _UpperCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCamelCase ) _UpperCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCamelCase ) > 0.5 ).float() _UpperCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCamelCase ) > 0.5).long() _UpperCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCamelCase( self ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = output.encoder_hidden_states _UpperCAmelCase = output.pixel_decoder_hidden_states _UpperCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCamelCase ) , config.decoder_config.decoder_layers ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): with torch.no_grad(): _UpperCAmelCase = MaskFormerModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(pixel_values=_UpperCamelCase , pixel_mask=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , output_hidden_states=_UpperCamelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = MaskFormerForInstanceSegmentation(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() def comm_check_on_output(_UpperCamelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _UpperCAmelCase = model(pixel_values=_UpperCamelCase , pixel_mask=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase ) comm_check_on_output(_UpperCamelCase ) _UpperCAmelCase = model( pixel_values=_UpperCamelCase , pixel_mask=_UpperCamelCase , mask_labels=_UpperCamelCase , class_labels=_UpperCamelCase ) comm_check_on_output(_UpperCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : int = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __A : int = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __A : List[str] = False __A : Optional[Any] = False __A : Union[str, Any] = False __A : Optional[Any] = False def UpperCamelCase( self ): _UpperCAmelCase = MaskFormerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_UpperCamelCase , **_UpperCamelCase , output_hidden_states=_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_UpperCamelCase ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def UpperCamelCase( self ): pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def UpperCamelCase( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in ["facebook/maskformer-swin-small-coco"]: _UpperCAmelCase = MaskFormerModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = (self.model_tester.min_size,) * 2 _UpperCAmelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=_UpperCamelCase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_UpperCamelCase ), '''class_labels''': torch.zeros(2 , 10 , device=_UpperCamelCase ).long(), } _UpperCAmelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_UpperCamelCase ) _UpperCAmelCase = model(**_UpperCamelCase ) self.assertTrue(outputs.loss is not None ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_UpperCamelCase , **_UpperCamelCase , output_hidden_states=_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ).to(_UpperCamelCase ) _UpperCAmelCase = model(**_UpperCamelCase , output_attentions=_UpperCamelCase ) self.assertTrue(outputs.attentions is not None ) def UpperCamelCase( self ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _UpperCAmelCase = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() _UpperCAmelCase = model(_UpperCamelCase , mask_labels=_UpperCamelCase , class_labels=_UpperCamelCase ).loss loss.backward() def UpperCamelCase( self ): # only MaskFormerForInstanceSegmentation has the loss _UpperCAmelCase = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() _UpperCAmelCase = model(_UpperCamelCase , mask_labels=_UpperCamelCase , class_labels=_UpperCamelCase ) _UpperCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _UpperCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _UpperCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _UpperCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ = 1e-4 def A__ ( ) -> Dict: """simple docstring""" _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase( self ): return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def UpperCamelCase( self ): _UpperCAmelCase = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(_UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) _UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCamelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_UpperCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) _UpperCAmelCase = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_UpperCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) _UpperCAmelCase = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_UpperCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) def UpperCamelCase( self ): _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_UpperCamelCase ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) _UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCamelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) # masks_queries_logits _UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _UpperCAmelCase = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] _UpperCAmelCase = torch.tensor(_UpperCamelCase ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) # class_queries_logits _UpperCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _UpperCAmelCase = torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) def UpperCamelCase( self ): _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(_UpperCamelCase ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) _UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCamelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) # masks_queries_logits _UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _UpperCAmelCase = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _UpperCAmelCase = torch.tensor(_UpperCamelCase ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) # class_queries_logits _UpperCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _UpperCAmelCase = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) def UpperCamelCase( self ): _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_UpperCamelCase ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _UpperCAmelCase = inputs['''pixel_values'''].to(_UpperCamelCase ) _UpperCAmelCase = [el.to(_UpperCamelCase ) for el in inputs['''mask_labels''']] _UpperCAmelCase = [el.to(_UpperCamelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) self.assertTrue(outputs.loss is not None )
32
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Tuple = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:Optional[int]=0 ): snake_case__ = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(_a ) ) snake_case__ = np.random.RandomState(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) snake_case__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) snake_case__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) # warmup pass to apply optimizations snake_case__ = pipe(**self.get_dummy_inputs() ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) snake_case__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) snake_case__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) snake_case__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __magic_name__ (unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = ort.SessionOptions() snake_case__ = False return options def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) snake_case__ = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = '''A fantasy landscape, trending on artstation''' snake_case__ = np.random.RandomState(0 ) snake_case__ = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type='''np''' , ) snake_case__ = output.images snake_case__ = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) snake_case__ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) snake_case__ = init_image.resize((7_68, 5_12) ) snake_case__ = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = '''A fantasy landscape, trending on artstation''' snake_case__ = np.random.RandomState(0 ) snake_case__ = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_a , output_type='''np''' , ) snake_case__ = output.images snake_case__ = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) snake_case__ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
33
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) A_ = Features({'''text''': Value('''string''' )} ) A_ = Features({'''summary''': Value('''string''' )} ) A_ = "text" A_ = "summary" @property def UpperCAmelCase__ ( self) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
34
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
0
def a ( A__ ) -> str: '''simple docstring''' if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) SCREAMING_SNAKE_CASE__ : List[str] = '''''' while len(A__ ) % 3 != 0: SCREAMING_SNAKE_CASE__ : Optional[int] = '''0''' + bin_string SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ bin_string[index : index + 3] for index in range(len(A__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: SCREAMING_SNAKE_CASE__ : Dict = 0 for index, val in enumerate(A__ ): oct_val += int(2 ** (2 - index) * int(A__ ) ) oct_string += str(A__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
35
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
0
import warnings from ..trainer import Trainer from ..utils import logging __lowercase : str = logging.get_logger(__name__) class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_=None ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" ,SCREAMING_SNAKE_CASE_ ,) super().__init__(args=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ )
36
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : str = { """xlm-mlm-en-2048""": """https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json""", """xlm-mlm-ende-1024""": """https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json""", """xlm-mlm-enfr-1024""": """https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json""", """xlm-mlm-enro-1024""": """https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json""", """xlm-mlm-tlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json""", """xlm-mlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json""", """xlm-clm-enfr-1024""": """https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json""", """xlm-clm-ende-1024""": """https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json""", """xlm-mlm-17-1280""": """https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json""", """xlm-mlm-100-1280""": """https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json""", } class A__ ( A__ ): """simple docstring""" _lowercase = 'xlm' _lowercase = { 'hidden_size': 'emb_dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', 'n_words': 'vocab_size', # For backward compatibility } def __init__( self : Tuple , lowerCamelCase__ : List[Any]=30_145 , lowerCamelCase__ : Any=2_048 , lowerCamelCase__ : int=12 , lowerCamelCase__ : Dict=16 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : Dict=False , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : List[str]=1 , lowerCamelCase__ : str=True , lowerCamelCase__ : str=512 , lowerCamelCase__ : List[str]=2_048**-0.5 , lowerCamelCase__ : List[str]=1E-12 , lowerCamelCase__ : Any=0.02 , lowerCamelCase__ : Tuple=0 , lowerCamelCase__ : Any=1 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Optional[Any]=3 , lowerCamelCase__ : Optional[Any]=5 , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : Optional[Any]="first" , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : int=True , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : Tuple=5 , lowerCamelCase__ : Any=5 , lowerCamelCase__ : List[Any]=0 , lowerCamelCase__ : Optional[int]=0 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Tuple=0 , **lowerCamelCase__ : List[str] , ): a__ : List[str] = vocab_size a__ : str = emb_dim a__ : List[str] = n_layers a__ : Union[str, Any] = n_heads a__ : Any = dropout a__ : int = attention_dropout a__ : List[str] = gelu_activation a__ : Optional[Any] = sinusoidal_embeddings a__ : Optional[int] = causal a__ : Optional[int] = asm a__ : int = n_langs a__ : Tuple = use_lang_emb a__ : str = layer_norm_eps a__ : Tuple = bos_index a__ : int = eos_index a__ : Optional[int] = pad_index a__ : List[str] = unk_index a__ : List[Any] = mask_index a__ : List[str] = is_encoder a__ : List[Any] = max_position_embeddings a__ : Union[str, Any] = embed_init_std a__ : Tuple = init_std a__ : List[str] = summary_type a__ : List[str] = summary_use_proj a__ : Dict = summary_activation a__ : str = summary_proj_to_labels a__ : Dict = summary_first_dropout a__ : List[str] = start_n_top a__ : List[Any] = end_n_top a__ : Dict = mask_token_id a__ : Optional[Any] = lang_id if "n_words" in kwargs: a__ : Tuple = kwargs["n_words"] super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) class A__ ( A__ ): """simple docstring""" @property def _UpperCamelCase( self : Dict ): if self.task == "multiple-choice": a__ : str = {0: "batch", 1: "choice", 2: "sequence"} else: a__ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
37
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : int ) -> int: '''simple docstring''' snake_case__ : List[Any] = b.T snake_case__ : Union[str, Any] = np.sum(np.square(__magic_name__ ) , axis=1 ) snake_case__ : List[Any] = np.sum(np.square(__magic_name__ ) , axis=0 ) snake_case__ : Dict = np.matmul(__magic_name__ , __magic_name__ ) snake_case__ : List[str] = aa[:, None] - 2 * ab + ba[None, :] return d def UpperCamelCase__ ( __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[str] = x.reshape(-1 , 3 ) snake_case__ : Optional[int] = squared_euclidean_distance(__magic_name__ , __magic_name__ ) return np.argmin(__magic_name__ , axis=1 ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = ['''pixel_values'''] def __init__( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = True , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) snake_case__ : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case__ : Optional[Any] = get_size_dict(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = np.array(__SCREAMING_SNAKE_CASE ) if clusters is not None else None snake_case__ : Tuple = do_resize snake_case__ : int = size snake_case__ : int = resample snake_case__ : List[Any] = do_normalize snake_case__ : Any = do_color_quantize def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): snake_case__ : Any = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"Size dictionary must contain both height and width keys. Got {size.keys()}" ) return resize( __SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , ): snake_case__ : Any = rescale(image=__SCREAMING_SNAKE_CASE , scale=1 / 127.5 , data_format=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = image - 1 return image def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE , ): snake_case__ : str = do_resize if do_resize is not None else self.do_resize snake_case__ : List[str] = size if size is not None else self.size snake_case__ : int = get_size_dict(__SCREAMING_SNAKE_CASE ) snake_case__ : str = resample if resample is not None else self.resample snake_case__ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : Optional[Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ : Any = clusters if clusters is not None else self.clusters snake_case__ : List[Any] = np.array(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. snake_case__ : Union[str, Any] = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: snake_case__ : Union[str, Any] = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: snake_case__ : List[Any] = [self.normalize(image=__SCREAMING_SNAKE_CASE ) for image in images] if do_color_quantize: snake_case__ : int = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ : Optional[Any] = np.array(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = color_quantize(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ : List[Any] = images.shape[0] snake_case__ : List[str] = images.reshape(__SCREAMING_SNAKE_CASE , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ : Optional[int] = list(__SCREAMING_SNAKE_CASE ) else: snake_case__ : Dict = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] snake_case__ : Optional[int] = {"""input_ids""": images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
38
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
0
import argparse import struct import unittest class snake_case_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCamelCase : bytes ) ->None: snake_case_ = data # Initialize hash values snake_case_ = [ 0x6_a_0_9_e_6_6_7, 0xb_b_6_7_a_e_8_5, 0x3_c_6_e_f_3_7_2, 0xa_5_4_f_f_5_3_a, 0x5_1_0_e_5_2_7_f, 0x9_b_0_5_6_8_8_c, 0x1_f_8_3_d_9_a_b, 0x5_b_e_0_c_d_1_9, ] # Initialize round constants snake_case_ = [ 0x4_2_8_a_2_f_9_8, 0x7_1_3_7_4_4_9_1, 0xb_5_c_0_f_b_c_f, 0xe_9_b_5_d_b_a_5, 0x3_9_5_6_c_2_5_b, 0x5_9_f_1_1_1_f_1, 0x9_2_3_f_8_2_a_4, 0xa_b_1_c_5_e_d_5, 0xd_8_0_7_a_a_9_8, 0x1_2_8_3_5_b_0_1, 0x2_4_3_1_8_5_b_e, 0x5_5_0_c_7_d_c_3, 0x7_2_b_e_5_d_7_4, 0x8_0_d_e_b_1_f_e, 0x9_b_d_c_0_6_a_7, 0xc_1_9_b_f_1_7_4, 0xe_4_9_b_6_9_c_1, 0xe_f_b_e_4_7_8_6, 0x0_f_c_1_9_d_c_6, 0x2_4_0_c_a_1_c_c, 0x2_d_e_9_2_c_6_f, 0x4_a_7_4_8_4_a_a, 0x5_c_b_0_a_9_d_c, 0x7_6_f_9_8_8_d_a, 0x9_8_3_e_5_1_5_2, 0xa_8_3_1_c_6_6_d, 0xb_0_0_3_2_7_c_8, 0xb_f_5_9_7_f_c_7, 0xc_6_e_0_0_b_f_3, 0xd_5_a_7_9_1_4_7, 0x0_6_c_a_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_b_7_0_a_8_5, 0x2_e_1_b_2_1_3_8, 0x4_d_2_c_6_d_f_c, 0x5_3_3_8_0_d_1_3, 0x6_5_0_a_7_3_5_4, 0x7_6_6_a_0_a_b_b, 0x8_1_c_2_c_9_2_e, 0x9_2_7_2_2_c_8_5, 0xa_2_b_f_e_8_a_1, 0xa_8_1_a_6_6_4_b, 0xc_2_4_b_8_b_7_0, 0xc_7_6_c_5_1_a_3, 0xd_1_9_2_e_8_1_9, 0xd_6_9_9_0_6_2_4, 0xf_4_0_e_3_5_8_5, 0x1_0_6_a_a_0_7_0, 0x1_9_a_4_c_1_1_6, 0x1_e_3_7_6_c_0_8, 0x2_7_4_8_7_7_4_c, 0x3_4_b_0_b_c_b_5, 0x3_9_1_c_0_c_b_3, 0x4_e_d_8_a_a_4_a, 0x5_b_9_c_c_a_4_f, 0x6_8_2_e_6_f_f_3, 0x7_4_8_f_8_2_e_e, 0x7_8_a_5_6_3_6_f, 0x8_4_c_8_7_8_1_4, 0x8_c_c_7_0_2_0_8, 0x9_0_b_e_f_f_f_a, 0xa_4_5_0_6_c_e_b, 0xb_e_f_9_a_3_f_7, 0xc_6_7_1_7_8_f_2, ] snake_case_ = self.preprocessing(self.data ) self.final_hash() @staticmethod def snake_case__( _UpperCamelCase : bytes ) ->bytes: snake_case_ = B'''\x80''' + (B'''\x00''' * (6_3 - (len(_UpperCamelCase ) + 8) % 6_4)) snake_case_ = struct.pack('''>Q''' , (len(_UpperCamelCase ) * 8) ) return data + padding + big_endian_integer def snake_case__( self : Optional[Any] ) ->None: # Convert into blocks of 64 bytes snake_case_ = [ self.preprocessed_data[x : x + 6_4] for x in range(0 , len(self.preprocessed_data ) , 6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers snake_case_ = list(struct.unpack('''>16L''' , _UpperCamelCase ) ) # add 48 0-ed integers words += [0] * 4_8 snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ = self.hashes for index in range(0 , 6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array snake_case_ = ( self.ror(words[index - 1_5] , 7 ) ^ self.ror(words[index - 1_5] , 1_8 ) ^ (words[index - 1_5] >> 3) ) snake_case_ = ( self.ror(words[index - 2] , 1_7 ) ^ self.ror(words[index - 2] , 1_9 ) ^ (words[index - 2] >> 1_0) ) snake_case_ = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression snake_case_ = self.ror(_UpperCamelCase , 6 ) ^ self.ror(_UpperCamelCase , 1_1 ) ^ self.ror(_UpperCamelCase , 2_5 ) snake_case_ = (e & f) ^ ((~e & 0xf_f_f_f_f_f_f_f) & g) snake_case_ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 snake_case_ = self.ror(_UpperCamelCase , 2 ) ^ self.ror(_UpperCamelCase , 1_3 ) ^ self.ror(_UpperCamelCase , 2_2 ) snake_case_ = (a & b) ^ (a & c) ^ (b & c) snake_case_ = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) snake_case_ = [a, b, c, d, e, f, g, h] # Modify final values snake_case_ = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] snake_case_ = ''''''.join([hex(_UpperCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : int ) ->int: return 0xf_f_f_f_f_f_f_f & (value << (3_2 - rotations)) | (value >> rotations) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any ) ->None: import hashlib snake_case_ = bytes('''Test String''' , '''utf-8''' ) self.assertEqual(SHAaaa(_UpperCamelCase ).hash , hashlib.shaaaa(_UpperCamelCase ).hexdigest() ) def __SCREAMING_SNAKE_CASE (): import doctest doctest.testmod() snake_case_ = argparse.ArgumentParser() parser.add_argument( '''-s''' , '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument( '''-f''' , '''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) snake_case_ = parser.parse_args() snake_case_ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: snake_case_ = f.read() else: snake_case_ = bytes(SCREAMING_SNAKE_CASE__ , '''utf-8''' ) print(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash ) if __name__ == "__main__": main()
39
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
0