code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
def a_ ( __lowercase : Any ) -> List[str]: if not head: return True # split the list to two parts _snake_case , _snake_case = head.next, head while fast and fast.next: _snake_case = fast.next.next _snake_case = slow.next _snake_case = slow.next _snake_case = None # Don't forget here! But forget still works! # reverse the second part _snake_case = None while second: _snake_case = second.next _snake_case = node _snake_case = second _snake_case = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _snake_case = node.next _snake_case = head.next return True def a_ ( __lowercase : List[str] ) -> Tuple: if not head or not head.next: return True # 1. Get the midpoint (slow) _snake_case = _snake_case = _snake_case = head while fast and fast.next: _snake_case , _snake_case = fast.next.next, slow.next # 2. Push the second half into the stack _snake_case = [slow.val] while slow.next: _snake_case = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _snake_case = cur.next return True def a_ ( __lowercase : Any ) -> List[Any]: if not head or not head.next: return True _snake_case = {} _snake_case = 0 while head: if head.val in d: d[head.val].append(__lowercase ) else: _snake_case = [pos] _snake_case = head.next pos += 1 _snake_case = pos - 1 _snake_case = 0 for v in d.values(): if len(__lowercase ) % 2 != 0: middle += 1 else: _snake_case = 0 for i in range(0 , len(__lowercase ) ): if v[i] + v[len(__lowercase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
686
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[str] , lowercase : Collection[float] | None = None ): '''simple docstring''' if components is None: _snake_case = [] _snake_case = list(lowercase ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(self.__components ) def __str__( self : Dict ): '''simple docstring''' return "(" + ",".join(map(lowercase , self.__components ) ) + ")" def __add__( self : Tuple , lowercase : Vector ): '''simple docstring''' _snake_case = len(self ) if size == len(lowercase ): _snake_case = [self.__components[i] + other.component(lowercase ) for i in range(lowercase )] return Vector(lowercase ) else: raise Exception('must have the same size' ) def __sub__( self : str , lowercase : Vector ): '''simple docstring''' _snake_case = len(self ) if size == len(lowercase ): _snake_case = [self.__components[i] - other.component(lowercase ) for i in range(lowercase )] return Vector(lowercase ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : Dict , lowercase : float ): '''simple docstring''' ... @overload def __mul__( self : Tuple , lowercase : Vector ): '''simple docstring''' ... def __mul__( self : Optional[int] , lowercase : float | Vector ): '''simple docstring''' if isinstance(lowercase , (float, int) ): _snake_case = [c * other for c in self.__components] return Vector(lowercase ) elif isinstance(lowercase , lowercase ) and len(self ) == len(lowercase ): _snake_case = len(self ) _snake_case = [self.__components[i] * other.component(lowercase ) for i in range(lowercase )] return sum(lowercase ) else: # error case raise Exception('invalid operand!' ) def A ( self : List[Any] ): '''simple docstring''' return Vector(self.__components ) def A ( self : int , lowercase : int ): '''simple docstring''' if isinstance(lowercase , lowercase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def A ( self : int , lowercase : int , lowercase : float ): '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) _snake_case = value def A ( self : Union[str, Any] ): '''simple docstring''' if len(self.__components ) == 0: raise Exception('Vector is empty' ) _snake_case = [c**2 for c in self.__components] return math.sqrt(sum(lowercase ) ) def A ( self : Dict , lowercase : Vector , lowercase : bool = False ): '''simple docstring''' _snake_case = self * other _snake_case = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def a_ ( __lowercase : int ) -> Vector: assert isinstance(__lowercase , __lowercase ) return Vector([0] * dimension ) def a_ ( __lowercase : int , __lowercase : int ) -> Vector: assert isinstance(__lowercase , __lowercase ) and (isinstance(__lowercase , __lowercase )) _snake_case = [0] * dimension _snake_case = 1 return Vector(__lowercase ) def a_ ( __lowercase : float , __lowercase : Vector , __lowercase : Vector ) -> Vector: assert ( isinstance(__lowercase , __lowercase ) and isinstance(__lowercase , __lowercase ) and (isinstance(__lowercase , (int, float) )) ) return x * scalar + y def a_ ( __lowercase : int , __lowercase : int , __lowercase : int ) -> Vector: random.seed(__lowercase ) _snake_case = [random.randint(__lowercase , __lowercase ) for _ in range(__lowercase )] return Vector(__lowercase ) class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Dict , lowercase : list[list[float]] , lowercase : int , lowercase : int ): '''simple docstring''' _snake_case = matrix _snake_case = w _snake_case = h def __str__( self : List[Any] ): '''simple docstring''' _snake_case = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : int , lowercase : Matrix ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _snake_case = [] for i in range(self.__height ): _snake_case = [ self.__matrix[i][j] + other.component(lowercase , lowercase ) for j in range(self.__width ) ] matrix.append(lowercase ) return Matrix(lowercase , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : str , lowercase : Matrix ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _snake_case = [] for i in range(self.__height ): _snake_case = [ self.__matrix[i][j] - other.component(lowercase , lowercase ) for j in range(self.__width ) ] matrix.append(lowercase ) return Matrix(lowercase , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : Any , lowercase : float ): '''simple docstring''' ... @overload def __mul__( self : int , lowercase : Vector ): '''simple docstring''' ... def __mul__( self : Tuple , lowercase : float | Vector ): '''simple docstring''' if isinstance(lowercase , lowercase ): # matrix-vector if len(lowercase ) == self.__width: _snake_case = zero_vector(self.__height ) for i in range(self.__height ): _snake_case = [ self.__matrix[i][j] * other.component(lowercase ) for j in range(self.__width ) ] ans.change_component(lowercase , sum(lowercase ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(lowercase , (int, float) ): # matrix-scalar _snake_case = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowercase , self.__width , self.__height ) return None def A ( self : Optional[Any] ): '''simple docstring''' return self.__height def A ( self : Any ): '''simple docstring''' return self.__width def A ( self : Optional[Any] , lowercase : int , lowercase : int ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def A ( self : Dict , lowercase : int , lowercase : int , lowercase : float ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: _snake_case = value else: raise Exception('change_component: indices out of bounds' ) def A ( self : List[Any] , lowercase : int , lowercase : int ): '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) _snake_case = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowercase ) ): _snake_case = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowercase , self.__width - 1 , self.__height - 1 ).determinant() def A ( self : Tuple , lowercase : int , lowercase : int ): '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowercase , lowercase ) else: raise Exception('Indices out of bounds' ) def A ( self : Tuple ): '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _snake_case = [ self.__matrix[0][y] * self.cofactor(0 , lowercase ) for y in range(self.__width ) ] return sum(lowercase ) def a_ ( __lowercase : int ) -> Matrix: _snake_case = [[0] * n for _ in range(__lowercase )] return Matrix(__lowercase , __lowercase , __lowercase ) def a_ ( __lowercase : int , __lowercase : int , __lowercase : int , __lowercase : int ) -> Matrix: random.seed(__lowercase ) _snake_case = [ [random.randint(__lowercase , __lowercase ) for _ in range(__lowercase )] for _ in range(__lowercase ) ] return Matrix(__lowercase , __lowercase , __lowercase )
686
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
1
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def a_ ( __lowercase : int ) -> Any: _snake_case = [False] * len(__lowercase ) _snake_case = [-1] * len(__lowercase ) def dfs(__lowercase : int , __lowercase : List[Any] ): _snake_case = True _snake_case = c for u in graph[v]: if not visited[u]: dfs(__lowercase , 1 - c ) for i in range(len(__lowercase ) ): if not visited[i]: dfs(__lowercase , 0 ) for i in range(len(__lowercase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _lowerCamelCase : Dict = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
686
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
1
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = "linear" _UpperCAmelCase : Tuple = "cosine" _UpperCAmelCase : int = "cosine_with_restarts" _UpperCAmelCase : Dict = "polynomial" _UpperCAmelCase : str = "constant" _UpperCAmelCase : int = "constant_with_warmup" _UpperCAmelCase : List[str] = "piecewise_constant" def a_ ( __lowercase : Optimizer , __lowercase : int = -1 ) -> List[str]: return LambdaLR(__lowercase , lambda __lowercase : 1 , last_epoch=__lowercase ) def a_ ( __lowercase : Optimizer , __lowercase : int , __lowercase : int = -1 ) -> Dict: def lr_lambda(__lowercase : int ): if current_step < num_warmup_steps: return float(__lowercase ) / float(max(1.0 , __lowercase ) ) return 1.0 return LambdaLR(__lowercase , __lowercase , last_epoch=__lowercase ) def a_ ( __lowercase : Optimizer , __lowercase : str , __lowercase : int = -1 ) -> Dict: _snake_case = {} _snake_case = step_rules.split(',' ) for rule_str in rule_list[:-1]: _snake_case , _snake_case = rule_str.split(':' ) _snake_case = int(__lowercase ) _snake_case = float(__lowercase ) _snake_case = value _snake_case = float(rule_list[-1] ) def create_rules_function(__lowercase : List[str] , __lowercase : List[Any] ): def rule_func(__lowercase : int ) -> float: _snake_case = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__lowercase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _snake_case = create_rules_function(__lowercase , __lowercase ) return LambdaLR(__lowercase , __lowercase , last_epoch=__lowercase ) def a_ ( __lowercase : List[Any] , __lowercase : Tuple , __lowercase : List[Any] , __lowercase : str=-1 ) -> List[Any]: def lr_lambda(__lowercase : int ): if current_step < num_warmup_steps: return float(__lowercase ) / float(max(1 , __lowercase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__lowercase , __lowercase , __lowercase ) def a_ ( __lowercase : Optimizer , __lowercase : int , __lowercase : int , __lowercase : float = 0.5 , __lowercase : int = -1 ) -> Union[str, Any]: def lr_lambda(__lowercase : List[str] ): if current_step < num_warmup_steps: return float(__lowercase ) / float(max(1 , __lowercase ) ) _snake_case = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__lowercase ) * 2.0 * progress )) ) return LambdaLR(__lowercase , __lowercase , __lowercase ) def a_ ( __lowercase : Optimizer , __lowercase : int , __lowercase : int , __lowercase : int = 1 , __lowercase : int = -1 ) -> Dict: def lr_lambda(__lowercase : str ): if current_step < num_warmup_steps: return float(__lowercase ) / float(max(1 , __lowercase ) ) _snake_case = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__lowercase ) * progress) % 1.0) )) ) return LambdaLR(__lowercase , __lowercase , __lowercase ) def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple , __lowercase : Any=1E-7 , __lowercase : List[str]=1.0 , __lowercase : List[Any]=-1 ) -> Optional[int]: _snake_case = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(__lowercase : int ): if current_step < num_warmup_steps: return float(__lowercase ) / float(max(1 , __lowercase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _snake_case = lr_init - lr_end _snake_case = num_training_steps - num_warmup_steps _snake_case = 1 - (current_step - num_warmup_steps) / decay_steps _snake_case = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__lowercase , __lowercase , __lowercase ) _lowerCamelCase : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def a_ ( __lowercase : Union[str, SchedulerType] , __lowercase : Optimizer , __lowercase : Optional[str] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : int = 1 , __lowercase : float = 1.0 , __lowercase : int = -1 , ) -> Tuple: _snake_case = SchedulerType(__lowercase ) _snake_case = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__lowercase , last_epoch=__lowercase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__lowercase , step_rules=__lowercase , last_epoch=__lowercase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__lowercase , num_warmup_steps=__lowercase , last_epoch=__lowercase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __lowercase , num_warmup_steps=__lowercase , num_training_steps=__lowercase , num_cycles=__lowercase , last_epoch=__lowercase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __lowercase , num_warmup_steps=__lowercase , num_training_steps=__lowercase , power=__lowercase , last_epoch=__lowercase , ) return schedule_func( __lowercase , num_warmup_steps=__lowercase , num_training_steps=__lowercase , last_epoch=__lowercase )
686
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : Dict , lowercase : List[str]=99 , lowercase : Optional[Any]=13 , lowercase : Union[str, Any]=16 , lowercase : Optional[int]=7 , lowercase : str=True , lowercase : Optional[int]=True , lowercase : List[str]=True , lowercase : Dict=False , lowercase : List[str]=True , lowercase : Any=2 , lowercase : Optional[int]=32 , lowercase : Optional[Any]=4 , lowercase : Union[str, Any]=4 , lowercase : Any=30 , lowercase : Optional[Any]=0 , lowercase : List[str]=1 , lowercase : Union[str, Any]=2 , lowercase : List[Any]=None , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = decoder_seq_length # For common tests _snake_case = self.decoder_seq_length _snake_case = is_training _snake_case = use_attention_mask _snake_case = use_labels _snake_case = vocab_size _snake_case = d_model _snake_case = d_model _snake_case = decoder_layers _snake_case = decoder_layers _snake_case = decoder_ffn_dim _snake_case = decoder_attention_heads _snake_case = decoder_attention_heads _snake_case = eos_token_id _snake_case = bos_token_id _snake_case = pad_token_id _snake_case = decoder_start_token_id _snake_case = use_cache _snake_case = max_position_embeddings _snake_case = None _snake_case = decoder_seq_length _snake_case = 2 _snake_case = 1 def A ( self : Tuple ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _snake_case = None if self.use_attention_mask: _snake_case = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _snake_case = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def A ( self : List[Any] , lowercase : Optional[Any] , lowercase : int , lowercase : List[Any] , lowercase : Optional[Any] , ): '''simple docstring''' _snake_case = True _snake_case = TrOCRDecoder(config=lowercase ).to(lowercase ).eval() _snake_case = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _snake_case = model(lowercase , use_cache=lowercase ) _snake_case = model(lowercase ) _snake_case = model(lowercase , use_cache=lowercase ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) + 1 ) _snake_case = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) _snake_case = model(lowercase )['last_hidden_state'] _snake_case = model(lowercase , past_key_values=lowercase )['last_hidden_state'] # select random slice _snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() _snake_case = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _snake_case = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowercase , lowercase , atol=1E-3 ) def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _UpperCAmelCase : Optional[Any] = (TrOCRForCausalLM,) if is_torch_available() else () _UpperCAmelCase : Union[str, Any] = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = False def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TrOCRStandaloneDecoderModelTester(self , is_training=lowercase ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : int ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowercase ) def A ( self : Any ): '''simple docstring''' return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def A ( self : str ): '''simple docstring''' pass
686
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : str = "pegasus" _UpperCAmelCase : Union[str, Any] = ["past_key_values"] _UpperCAmelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , lowercase : Optional[Any]=50_265 , lowercase : Tuple=1_024 , lowercase : List[str]=12 , lowercase : List[str]=4_096 , lowercase : str=16 , lowercase : List[str]=12 , lowercase : List[str]=4_096 , lowercase : Optional[Any]=16 , lowercase : Tuple=0.0 , lowercase : Union[str, Any]=0.0 , lowercase : Union[str, Any]=True , lowercase : Any=True , lowercase : Union[str, Any]="gelu" , lowercase : str=1_024 , lowercase : int=0.1 , lowercase : str=0.0 , lowercase : Optional[Any]=0.0 , lowercase : Optional[int]=0.02 , lowercase : List[Any]=0 , lowercase : Union[str, Any]=False , lowercase : List[str]=0 , lowercase : List[str]=1 , lowercase : List[Any]=1 , **lowercase : Any , ): '''simple docstring''' _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = d_model _snake_case = encoder_ffn_dim _snake_case = encoder_layers _snake_case = encoder_attention_heads _snake_case = decoder_ffn_dim _snake_case = decoder_layers _snake_case = decoder_attention_heads _snake_case = dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = activation_function _snake_case = init_std _snake_case = encoder_layerdrop _snake_case = decoder_layerdrop _snake_case = use_cache _snake_case = encoder_layers _snake_case = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) @property def A ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def A ( self : List[str] ): '''simple docstring''' return self.d_model
686
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
1
from collections import defaultdict def a_ ( __lowercase : int ) -> int: _snake_case = 1 _snake_case = True for v in tree[start]: if v not in visited: ret += dfs(__lowercase ) if ret % 2 == 0: cuts.append(__lowercase ) return ret def a_ ( ) -> List[Any]: dfs(1 ) if __name__ == "__main__": _lowerCamelCase , _lowerCamelCase : int = 10, 9 _lowerCamelCase : List[str] = defaultdict(list) _lowerCamelCase : dict[int, bool] = {} _lowerCamelCase : list[int] = [] _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def a_ ( ) -> Dict: _snake_case = 10 _snake_case = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) _snake_case = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__lowercase ) ), } , features=__lowercase , ) return dataset @pytest.fixture(scope='session' ) def a_ ( __lowercase : List[str] , __lowercase : Any ) -> Dict: _snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__lowercase ) return filename # FILE_CONTENT + files _lowerCamelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope='session' ) def a_ ( __lowercase : Any ) -> Any: _snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt' _snake_case = FILE_CONTENT with open(__lowercase , 'w' ) as f: f.write(__lowercase ) return filename @pytest.fixture(scope='session' ) def a_ ( __lowercase : Dict ) -> List[str]: import bza _snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' _snake_case = bytes(__lowercase , 'utf-8' ) with bza.open(__lowercase , 'wb' ) as f: f.write(__lowercase ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : int ) -> Optional[Any]: import gzip _snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) _snake_case = bytes(__lowercase , 'utf-8' ) with gzip.open(__lowercase , 'wb' ) as f: f.write(__lowercase ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : List[str] ) -> Union[str, Any]: if datasets.config.LZ4_AVAILABLE: import lza.frame _snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' _snake_case = bytes(__lowercase , 'utf-8' ) with lza.frame.open(__lowercase , 'wb' ) as f: f.write(__lowercase ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : List[str] , __lowercase : Tuple ) -> Any: if datasets.config.PY7ZR_AVAILABLE: import pyazr _snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__lowercase , 'w' ) as archive: archive.write(__lowercase , arcname=os.path.basename(__lowercase ) ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : List[str] , __lowercase : List[str] ) -> Optional[Any]: import tarfile _snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__lowercase , 'w' ) as f: f.add(__lowercase , arcname=os.path.basename(__lowercase ) ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : List[Any] ) -> Union[str, Any]: import lzma _snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' _snake_case = bytes(__lowercase , 'utf-8' ) with lzma.open(__lowercase , 'wb' ) as f: f.write(__lowercase ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Any , __lowercase : str ) -> Dict: import zipfile _snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__lowercase , 'w' ) as f: f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Optional[int] ) -> List[Any]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' _snake_case = bytes(__lowercase , 'utf-8' ) with zstd.open(__lowercase , 'wb' ) as f: f.write(__lowercase ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : List[Any] ) -> str: _snake_case = tmp_path_factory.mktemp('data' ) / 'file.xml' _snake_case = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__lowercase , 'w' ) as f: f.write(__lowercase ) return filename _lowerCamelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] _lowerCamelCase : str = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] _lowerCamelCase : Tuple = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } _lowerCamelCase : str = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] _lowerCamelCase : str = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope='session' ) def a_ ( ) -> int: return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def a_ ( __lowercase : List[Any] ) -> List[str]: _snake_case = datasets.Dataset.from_dict(__lowercase ) _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__lowercase ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Union[str, Any] ) -> Dict: _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__lowercase ) ) as con: _snake_case = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : str ) -> Dict: _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__lowercase , 'w' , newline='' ) as f: _snake_case = csv.DictWriter(__lowercase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__lowercase ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Optional[Any] ) -> Optional[Any]: _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__lowercase , 'w' , newline='' ) as f: _snake_case = csv.DictWriter(__lowercase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__lowercase ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Dict , __lowercase : Dict ) -> Dict: import bza _snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__lowercase , 'rb' ) as f: _snake_case = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__lowercase , 'wb' ) as f: f.write(__lowercase ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Dict ) -> Optional[int]: _snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__lowercase , 'w' ) as f: f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Dict , __lowercase : Optional[Any] , __lowercase : Any ) -> Optional[int]: _snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__lowercase , 'w' ) as f: f.write(__lowercase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__lowercase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : int , __lowercase : Optional[Any] , __lowercase : str ) -> List[Any]: _snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__lowercase , 'w' ) as f: f.write(__lowercase , arcname=os.path.join('main_dir' , os.path.basename(__lowercase ) ) ) f.write(__lowercase , arcname=os.path.join('main_dir' , os.path.basename(__lowercase ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Optional[int] ) -> Optional[int]: _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) _snake_case = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__lowercase , 'wb' ) as f: _snake_case = pq.ParquetWriter(__lowercase , schema=__lowercase ) _snake_case = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__lowercase ) )] for k in DATA[0]} , schema=__lowercase ) writer.write_table(__lowercase ) writer.close() return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : List[str] ) -> Optional[int]: _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _snake_case = {'data': DATA} with open(__lowercase , 'w' ) as f: json.dump(__lowercase , __lowercase ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : str ) -> List[str]: _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _snake_case = {'data': DATA_DICT_OF_LISTS} with open(__lowercase , 'w' ) as f: json.dump(__lowercase , __lowercase ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : int ) -> List[str]: _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__lowercase , 'w' ) as f: for item in DATA: f.write(json.dumps(__lowercase ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : str ) -> Tuple: _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__lowercase , 'w' ) as f: for item in DATA: f.write(json.dumps(__lowercase ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Dict ) -> List[Any]: _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__lowercase , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__lowercase ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : List[Any] ) -> List[Any]: _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__lowercase , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__lowercase ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : List[Any] , __lowercase : str ) -> List[Any]: import gzip _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__lowercase , 'rb' ) as orig_file: with gzip.open(__lowercase , 'wb' ) as zipped_file: zipped_file.writelines(__lowercase ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Any , __lowercase : Dict ) -> List[Any]: import gzip _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__lowercase , 'rb' ) as orig_file: with gzip.open(__lowercase , 'wb' ) as zipped_file: zipped_file.writelines(__lowercase ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : int , __lowercase : Dict , __lowercase : Any ) -> Optional[int]: _snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__lowercase , 'w' ) as f: f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : int , __lowercase : List[str] , __lowercase : Tuple , __lowercase : int ) -> Any: _snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__lowercase , 'w' ) as f: f.write(__lowercase , arcname=os.path.join('nested' , os.path.basename(__lowercase ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Union[str, Any] , __lowercase : List[str] , __lowercase : Union[str, Any] ) -> Dict: _snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__lowercase , 'w' ) as f: f.write(__lowercase , arcname=os.path.join('main_dir' , os.path.basename(__lowercase ) ) ) f.write(__lowercase , arcname=os.path.join('main_dir' , os.path.basename(__lowercase ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Union[str, Any] , __lowercase : Tuple , __lowercase : int ) -> Any: _snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__lowercase , 'w' ) as f: f.add(__lowercase , arcname=os.path.basename(__lowercase ) ) f.add(__lowercase , arcname=os.path.basename(__lowercase ) ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : int , __lowercase : Union[str, Any] , __lowercase : List[Any] , __lowercase : Any ) -> str: _snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__lowercase , 'w' ) as f: f.add(__lowercase , arcname=os.path.join('nested' , os.path.basename(__lowercase ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : int ) -> Any: _snake_case = ['0', '1', '2', '3'] _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__lowercase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Tuple ) -> Tuple: _snake_case = ['0', '1', '2', '3'] _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__lowercase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Dict ) -> Optional[Any]: _snake_case = ['0', '1', '2', '3'] _snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__lowercase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Tuple , __lowercase : List[Any] , __lowercase : List[Any] ) -> List[Any]: _snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__lowercase , 'w' ) as f: f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Optional[int] , __lowercase : List[str] , __lowercase : Optional[int] ) -> int: _snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__lowercase , 'w' ) as f: f.write(__lowercase , arcname=os.path.join('main_dir' , os.path.basename(__lowercase ) ) ) f.write(__lowercase , arcname=os.path.join('main_dir' , os.path.basename(__lowercase ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Optional[Any] ) -> List[Any]: _snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__lowercase , 'w' ) as f: f.write(__lowercase , arcname=os.path.basename('unsupported.ext' ) ) f.write(__lowercase , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : int ) -> Any: _snake_case = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) _snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__lowercase , 'w' , encoding='utf-8' ) as f: f.write(__lowercase ) return path @pytest.fixture(scope='session' ) def a_ ( ) -> Dict: return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def a_ ( ) -> int: return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def a_ ( __lowercase : str , __lowercase : str ) -> Dict: _snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__lowercase , 'w' ) as f: f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) f.write(__lowercase , arcname=os.path.basename(__lowercase ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def a_ ( __lowercase : Union[str, Any] ) -> int: _snake_case = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
686
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( __lowercase : List[Any] , __lowercase : Optional[int] ) -> Tuple: assert isinstance(__lowercase , __lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[Any] , __lowercase : Union[str, Any] ) -> Union[str, Any]: _snake_case = tmp_path / 'cache' _snake_case = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case = ParquetDatasetReader(__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def a_ ( __lowercase : Optional[Any] , __lowercase : int , __lowercase : List[str] ) -> List[str]: _snake_case = tmp_path / 'cache' _snake_case = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _snake_case = features.copy() if features else default_expected_features _snake_case = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case = ParquetDatasetReader(__lowercase , features=__lowercase , cache_dir=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( __lowercase : Tuple , __lowercase : List[str] , __lowercase : List[str] ) -> Optional[int]: _snake_case = tmp_path / 'cache' _snake_case = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _snake_case = ParquetDatasetReader(__lowercase , cache_dir=__lowercase , split=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : List[str] ) -> Tuple: if issubclass(__lowercase , __lowercase ): _snake_case = parquet_path elif issubclass(__lowercase , __lowercase ): _snake_case = [parquet_path] _snake_case = tmp_path / 'cache' _snake_case = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _snake_case = ParquetDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Tuple=("train",) ) -> int: assert isinstance(__lowercase , __lowercase ) for split in splits: _snake_case = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def a_ ( __lowercase : str , __lowercase : Dict , __lowercase : str ) -> Any: _snake_case = tmp_path / 'cache' _snake_case = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case = ParquetDatasetReader( {'train': parquet_path} , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def a_ ( __lowercase : List[str] , __lowercase : Tuple , __lowercase : List[str] ) -> Any: _snake_case = tmp_path / 'cache' _snake_case = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _snake_case = features.copy() if features else default_expected_features _snake_case = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case = ParquetDatasetReader({'train': parquet_path} , features=__lowercase , cache_dir=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : Optional[int] ) -> List[str]: if split: _snake_case = {split: parquet_path} else: _snake_case = 'train' _snake_case = {'train': parquet_path, 'test': parquet_path} _snake_case = tmp_path / 'cache' _snake_case = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _snake_case = ParquetDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def a_ ( __lowercase : str , __lowercase : List[Any] ) -> Optional[int]: _snake_case = ParquetDatasetWriter(__lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 _snake_case = pq.ParquetFile(tmp_path / 'foo.parquet' ) _snake_case = pf.read() assert dataset.data.table == output_table def a_ ( __lowercase : Optional[int] , __lowercase : Dict ) -> List[Any]: _snake_case = str(shared_datadir / 'test_image_rgb.jpg' ) _snake_case = {'image': [image_path]} _snake_case = Features({'image': Image()} ) _snake_case = Dataset.from_dict(__lowercase , features=__lowercase ) _snake_case = ParquetDatasetWriter(__lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 _snake_case = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features _snake_case = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=__lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def a_ ( __lowercase : Union[str, Any] , __lowercase : int ) -> Optional[int]: assert get_writer_batch_size(__lowercase ) == expected
686
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : List[str] = {'''vocab_file''': '''spiece.model'''} _lowerCamelCase : Dict = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } _lowerCamelCase : Tuple = {'''bert_for_seq_generation''': 512} class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES _UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[int] = [] _UpperCAmelCase : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowercase : List[Any] , lowercase : Optional[int]="<s>" , lowercase : List[str]="</s>" , lowercase : Optional[int]="<unk>" , lowercase : Optional[Any]="<pad>" , lowercase : Any="<::::>" , lowercase : Optional[Dict[str, Any]] = None , **lowercase : Tuple , ): '''simple docstring''' _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , pad_token=lowercase , sep_token=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) _snake_case = vocab_file _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) @property def A ( self : List[str] ): '''simple docstring''' return self.sp_model.get_piece_size() def A ( self : int ): '''simple docstring''' _snake_case = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): '''simple docstring''' _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self : List[Any] , lowercase : Tuple ): '''simple docstring''' _snake_case = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _snake_case = {} _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : List[str] , lowercase : str ): '''simple docstring''' return self.sp_model.encode(lowercase , out_type=lowercase ) def A ( self : List[Any] , lowercase : Optional[int] ): '''simple docstring''' return self.sp_model.piece_to_id(lowercase ) def A ( self : Tuple , lowercase : str ): '''simple docstring''' _snake_case = self.sp_model.IdToPiece(lowercase ) return token def A ( self : Dict , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = [] _snake_case = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token _snake_case = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def A ( self : str , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowercase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , 'wb' ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
686
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "lilt" def __init__( self : Optional[int] , lowercase : List[str]=30_522 , lowercase : Tuple=768 , lowercase : Union[str, Any]=12 , lowercase : int=12 , lowercase : List[str]=3_072 , lowercase : List[Any]="gelu" , lowercase : List[Any]=0.1 , lowercase : Dict=0.1 , lowercase : Any=512 , lowercase : List[str]=2 , lowercase : Tuple=0.02 , lowercase : Dict=1E-12 , lowercase : Tuple=0 , lowercase : List[Any]="absolute" , lowercase : Dict=None , lowercase : Dict=4 , lowercase : Tuple=1_024 , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , **lowercase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = classifier_dropout _snake_case = channel_shrink_ratio _snake_case = max_ad_position_embeddings
686
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : int , lowercase : Dict=13 , lowercase : List[str]=3 , lowercase : Optional[int]=224 , lowercase : List[Any]=30 , lowercase : Tuple=400 , lowercase : Tuple=True , lowercase : List[str]=None , lowercase : Optional[int]=True , lowercase : Dict=[0.5, 0.5, 0.5] , lowercase : Union[str, Any]=[0.5, 0.5, 0.5] , ): '''simple docstring''' _snake_case = size if size is not None else {'height': 18, 'width': 18} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = image_size _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = do_normalize _snake_case = image_mean _snake_case = image_std def A ( self : Optional[int] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None def A ( self : Any ): '''simple docstring''' _snake_case = EfficientFormerImageProcessorTester(self ) @property def A ( self : Dict ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def A ( self : int ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , 'image_mean' ) ) self.assertTrue(hasattr(lowercase , 'image_std' ) ) self.assertTrue(hasattr(lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase , 'do_resize' ) ) self.assertTrue(hasattr(lowercase , 'size' ) ) def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input _snake_case = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched _snake_case = image_processor(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input _snake_case = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched _snake_case = image_processor(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def A ( self : Dict ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input _snake_case = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched _snake_case = image_processor(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , )
686
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
1
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _lowerCamelCase : Dict = trt.Logger(trt.Logger.WARNING) _lowerCamelCase : int = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _lowerCamelCase : List[str] = logging.getLogger(__name__) _lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) _lowerCamelCase : Any = parser.parse_args() if args.tokenizer_name: _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) _lowerCamelCase : int = args.per_device_eval_batch_size _lowerCamelCase : List[str] = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _lowerCamelCase : Optional[Any] = True _lowerCamelCase : int = '''temp_engine/bert-fp32.engine''' if args.fpaa: _lowerCamelCase : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: _lowerCamelCase : Any = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') _lowerCamelCase : Dict = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _lowerCamelCase : int = [network.get_input(i) for i in range(network.num_inputs)] _lowerCamelCase : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _lowerCamelCase : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _lowerCamelCase : Any = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _lowerCamelCase : Any = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def a_ ( __lowercase : List[str] , __lowercase : Any , __lowercase : Dict , __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : Dict , __lowercase : Any , __lowercase : Union[str, Any] ) -> Any: _snake_case = np.asarray(inputs['input_ids'] , dtype=np.intaa ) _snake_case = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) _snake_case = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __lowercase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __lowercase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __lowercase ) # start time _snake_case = time.time() # Run inference context.execute_async( bindings=[int(__lowercase ) for d_inp in d_inputs] + [int(__lowercase ), int(__lowercase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__lowercase , __lowercase , __lowercase ) cuda.memcpy_dtoh_async(__lowercase , __lowercase , __lowercase ) # Synchronize the stream and take time stream.synchronize() # end time _snake_case = time.time() _snake_case = end_time - start_time _snake_case = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _lowerCamelCase : Optional[Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowerCamelCase : Any = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _lowerCamelCase : Any = raw_datasets['''validation'''].column_names _lowerCamelCase : Tuple = '''question''' if '''question''' in column_names else column_names[0] _lowerCamelCase : Any = '''context''' if '''context''' in column_names else column_names[1] _lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _lowerCamelCase : Any = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) _lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def a_ ( __lowercase : int ) -> str: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace _snake_case = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _snake_case = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=__lowercase , stride=args.doc_stride , return_overflowing_tokens=__lowercase , return_offsets_mapping=__lowercase , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _snake_case = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _snake_case = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _snake_case = tokenized_examples.sequence_ids(__lowercase ) _snake_case = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _snake_case = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _snake_case = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples _lowerCamelCase : Any = raw_datasets['''validation'''] # Validation Feature Creation _lowerCamelCase : List[Any] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) _lowerCamelCase : int = default_data_collator _lowerCamelCase : Any = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) _lowerCamelCase : Optional[int] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def a_ ( __lowercase : Dict , __lowercase : Any , __lowercase : List[Any] , __lowercase : Tuple="eval" ) -> List[str]: # Post-processing: we match the start logits and end logits to answers in the original context. _snake_case = postprocess_qa_predictions( examples=__lowercase , features=__lowercase , predictions=__lowercase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__lowercase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: _snake_case = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: _snake_case = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] _snake_case = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__lowercase , label_ids=__lowercase ) _lowerCamelCase : Optional[int] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def a_ ( __lowercase : Any ) -> List[Any]: return trt.volume(engine.get_binding_shape(__lowercase ) ) * engine.get_binding_dtype(__lowercase ).itemsize # Allocate device memory for inputs and outputs. _lowerCamelCase : Dict = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _lowerCamelCase : Any = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _lowerCamelCase : Optional[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _lowerCamelCase : Optional[int] = cuda.mem_alloc(h_outputa.nbytes) _lowerCamelCase : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _lowerCamelCase : List[str] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') _lowerCamelCase : Tuple = 0.0 _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Tuple = timeit.default_timer() _lowerCamelCase : Optional[int] = None for step, batch in enumerate(eval_dataloader): _lowerCamelCase , _lowerCamelCase : Dict = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _lowerCamelCase , _lowerCamelCase : Optional[Any] = outputs _lowerCamelCase : Any = torch.tensor(start_logits) _lowerCamelCase : Union[str, Any] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _lowerCamelCase : Optional[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) _lowerCamelCase : Union[str, Any] = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) _lowerCamelCase : Any = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _lowerCamelCase : str = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: _lowerCamelCase : Optional[Any] = nested_truncate(all_preds, len(eval_dataset)) _lowerCamelCase : List[Any] = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1_000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1_000)) logger.info('''Total Number of Inference = %d''', niter) _lowerCamelCase : Tuple = post_processing_function(eval_examples, eval_dataset, all_preds) _lowerCamelCase : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
686
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : Dict = '''▁''' _lowerCamelCase : Optional[Any] = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _lowerCamelCase : List[str] = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } _lowerCamelCase : Any = { '''facebook/m2m100_418M''': 1_024, } # fmt: off _lowerCamelCase : Any = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = VOCAB_FILES_NAMES _UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Optional[int] = ["input_ids", "attention_mask"] _UpperCAmelCase : List[int] = [] _UpperCAmelCase : List[int] = [] def __init__( self : str , lowercase : Dict , lowercase : List[Any] , lowercase : int=None , lowercase : str=None , lowercase : Dict="<s>" , lowercase : List[str]="</s>" , lowercase : Optional[int]="</s>" , lowercase : Any="<pad>" , lowercase : List[str]="<unk>" , lowercase : Any="m2m100" , lowercase : Optional[Dict[str, Any]] = None , lowercase : int=8 , **lowercase : Optional[Any] , ): '''simple docstring''' _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs _snake_case = language_codes _snake_case = FAIRSEQ_LANGUAGE_CODES[language_codes] _snake_case = {lang_code: f'''__{lang_code}__''' for lang_code in fairseq_language_code} _snake_case = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowercase ) for lang_code in fairseq_language_code if self.get_lang_token(lowercase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowercase , tgt_lang=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , unk_token=lowercase , pad_token=lowercase , language_codes=lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=lowercase , **lowercase , ) _snake_case = vocab_file _snake_case = load_json(lowercase ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = spm_file _snake_case = load_spm(lowercase , self.sp_model_kwargs ) _snake_case = len(self.encoder ) _snake_case = { self.get_lang_token(lowercase ): self.encoder_size + i for i, lang_code in enumerate(lowercase ) } _snake_case = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowercase )} _snake_case = {v: k for k, v in self.lang_token_to_id.items()} _snake_case = src_lang if src_lang is not None else 'en' _snake_case = tgt_lang _snake_case = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _snake_case = num_madeup_words @property def A ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def A ( self : Any ): '''simple docstring''' return self._src_lang @src_lang.setter def A ( self : List[Any] , lowercase : str ): '''simple docstring''' _snake_case = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A ( self : Optional[Any] , lowercase : str ): '''simple docstring''' return self.sp_model.encode(lowercase , out_type=lowercase ) def A ( self : Any , lowercase : Optional[Any] ): '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowercase , self.encoder[self.unk_token] ) def A ( self : Dict , lowercase : int ): '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowercase , self.unk_token ) def A ( self : Optional[Any] , lowercase : Dict ): '''simple docstring''' _snake_case = [] _snake_case = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token _snake_case = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def A ( self : List[str] , lowercase : List[int] , lowercase : Optional[List[int]] = None , lowercase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) _snake_case = [1] * len(self.prefix_tokens ) _snake_case = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase )) + suffix_ones return prefix_ones + ([0] * len(lowercase )) + ([0] * len(lowercase )) + suffix_ones def A ( self : str , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A ( self : str ): '''simple docstring''' _snake_case = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): '''simple docstring''' _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self : Optional[Any] , lowercase : Dict ): '''simple docstring''' _snake_case = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _snake_case = {} _snake_case = load_spm(self.spm_file , self.sp_model_kwargs ) def A ( self : str , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' _snake_case = Path(lowercase ) if not save_dir.is_dir(): raise OSError(f'''{save_directory} should be a directory''' ) _snake_case = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) _snake_case = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowercase ) elif not os.path.isfile(self.spm_file ): with open(lowercase , 'wb' ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (str(lowercase ), str(lowercase )) def A ( self : int , lowercase : List[str] , lowercase : str = "en" , lowercase : Optional[List[str]] = None , lowercase : str = "ro" , **lowercase : Optional[int] , ): '''simple docstring''' _snake_case = src_lang _snake_case = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def A ( self : Optional[Any] , lowercase : Any , lowercase : Optional[str] , lowercase : Optional[str] , **lowercase : Dict ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _snake_case = src_lang _snake_case = self(lowercase , add_special_tokens=lowercase , **lowercase ) _snake_case = self.get_lang_id(lowercase ) _snake_case = tgt_lang_id return inputs def A ( self : Optional[Any] ): '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def A ( self : Any ): '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def A ( self : int , lowercase : str ): '''simple docstring''' _snake_case = self.get_lang_token(lowercase ) _snake_case = self.lang_token_to_id[lang_token] _snake_case = [self.cur_lang_id] _snake_case = [self.eos_token_id] def A ( self : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = self.get_lang_token(lowercase ) _snake_case = self.lang_token_to_id[lang_token] _snake_case = [self.cur_lang_id] _snake_case = [self.eos_token_id] def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' return self.lang_code_to_token[lang] def A ( self : List[Any] , lowercase : str ): '''simple docstring''' _snake_case = self.get_lang_token(lowercase ) return self.lang_token_to_id[lang_token] def a_ ( __lowercase : str , __lowercase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: _snake_case = sentencepiece.SentencePieceProcessor(**__lowercase ) spm.Load(str(__lowercase ) ) return spm def a_ ( __lowercase : str ) -> Union[Dict, List]: with open(__lowercase , 'r' ) as f: return json.load(__lowercase ) def a_ ( __lowercase : Optional[int] , __lowercase : str ) -> None: with open(__lowercase , 'w' ) as f: json.dump(__lowercase , __lowercase , indent=2 )
686
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _lowerCamelCase : int = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') _lowerCamelCase : List[Any] = F'https://www.google.com/search?q={query}&num=100' _lowerCamelCase : int = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: _lowerCamelCase : int = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: _lowerCamelCase : Any = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
686
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Any = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : Union[str, Any] = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } _lowerCamelCase : List[str] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } _lowerCamelCase : List[str] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : int = BertTokenizer def __init__( self : Tuple , lowercase : List[Any]=None , lowercase : str=None , lowercase : List[Any]=True , lowercase : str="[UNK]" , lowercase : str="[SEP]" , lowercase : Any="[PAD]" , lowercase : List[str]="[CLS]" , lowercase : Dict="[MASK]" , lowercase : int=True , lowercase : Union[str, Any]=None , **lowercase : int , ): '''simple docstring''' super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) _snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase ) != tokenize_chinese_chars ): _snake_case = getattr(lowercase , normalizer_state.pop('type' ) ) _snake_case = do_lower_case _snake_case = strip_accents _snake_case = tokenize_chinese_chars _snake_case = normalizer_class(**lowercase ) _snake_case = do_lower_case def A ( self : Optional[Any] , lowercase : Union[str, Any] , lowercase : Dict=None ): '''simple docstring''' _snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : Tuple , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : str , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' _snake_case = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
686
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
1
def a_ ( __lowercase : str ) -> str: _snake_case = 0 # if input_string is "aba" than new_input_string become "a|b|a" _snake_case = '' _snake_case = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowercase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _snake_case , _snake_case = 0, 0 # length[i] shows the length of palindromic substring with center i _snake_case = [1 for i in range(len(__lowercase ) )] # for each character in new_string find corresponding palindromic string _snake_case = 0 for j in range(len(__lowercase ) ): _snake_case = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowercase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _snake_case = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _snake_case = j - k + 1 # noqa: E741 _snake_case = j + k - 1 # update max_length and start position if max_length < length[j]: _snake_case = length[j] _snake_case = j # create that string _snake_case = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
686
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
1
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) _lowerCamelCase : Optional[Any] = logging.getLogger(__name__) _lowerCamelCase : Union[str, Any] = tf.data.AUTOTUNE def a_ ( ) -> List[Any]: _snake_case = argparse.ArgumentParser(description='Train a masked language model on TPU.' ) parser.add_argument( '--pretrained_model_config' , type=__lowercase , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , ) parser.add_argument( '--tokenizer' , type=__lowercase , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , ) parser.add_argument( '--per_replica_batch_size' , type=__lowercase , default=8 , help='Batch size per TPU core.' , ) parser.add_argument( '--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , ) parser.add_argument( '--tpu_name' , type=__lowercase , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , ) parser.add_argument( '--tpu_zone' , type=__lowercase , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , ) parser.add_argument( '--gcp_project' , type=__lowercase , help='Google cloud project name. Only used for non-Colab TPU nodes.' ) parser.add_argument( '--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , ) parser.add_argument( '--train_dataset' , type=__lowercase , help='Path to training dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--shuffle_buffer_size' , type=__lowercase , default=2**18 , help='Size of the shuffle buffer (in samples)' , ) parser.add_argument( '--eval_dataset' , type=__lowercase , help='Path to evaluation dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--num_epochs' , type=__lowercase , default=1 , help='Number of epochs to train for.' , ) parser.add_argument( '--learning_rate' , type=__lowercase , default=1E-4 , help='Learning rate to use for training.' , ) parser.add_argument( '--weight_decay_rate' , type=__lowercase , default=1E-3 , help='Weight decay rate to use for training.' , ) parser.add_argument( '--max_length' , type=__lowercase , default=512 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , ) parser.add_argument( '--mlm_probability' , type=__lowercase , default=0.1_5 , help='Fraction of tokens to mask during training.' , ) parser.add_argument('--output_dir' , type=__lowercase , required=__lowercase , help='Path to save model checkpoints to.' ) parser.add_argument('--hub_model_id' , type=__lowercase , help='Model ID to upload to on the Hugging Face Hub.' ) _snake_case = parser.parse_args() return args def a_ ( __lowercase : Dict ) -> List[str]: try: if args.tpu_name: _snake_case = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: _snake_case = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( 'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ' '--gcp_project. When running on a TPU VM, use --tpu_name local.' ) tf.config.experimental_connect_to_cluster(__lowercase ) tf.tpu.experimental.initialize_tpu_system(__lowercase ) return tpu def a_ ( __lowercase : Optional[int] ) -> str: _snake_case = 0 for file in file_list: _snake_case = file.split('/' )[-1] _snake_case = re.search(r'-\d+-(\d+)\.tfrecord' , __lowercase ).group(1 ) _snake_case = int(__lowercase ) num_samples += sample_count return num_samples def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any] , __lowercase : Dict , __lowercase : List[str] , __lowercase : Optional[Any] , __lowercase : List[str]=None ) -> Union[str, Any]: _snake_case = count_samples(__lowercase ) _snake_case = tf.data.Dataset.from_tensor_slices(__lowercase ) if shuffle: _snake_case = dataset.shuffle(len(__lowercase ) ) _snake_case = tf.data.TFRecordDataset(__lowercase , num_parallel_reads=__lowercase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here _snake_case = dataset.apply(tf.data.experimental.assert_cardinality(__lowercase ) ) _snake_case = dataset.map(__lowercase , num_parallel_calls=__lowercase ) if shuffle: assert shuffle_buffer_size is not None _snake_case = dataset.shuffle(args.shuffle_buffer_size ) _snake_case = dataset.batch(__lowercase , drop_remainder=__lowercase ) _snake_case = dataset.map(__lowercase , num_parallel_calls=__lowercase ) _snake_case = dataset.prefetch(__lowercase ) return dataset def a_ ( __lowercase : int ) -> List[Any]: if not args.no_tpu: _snake_case = initialize_tpu(__lowercase ) _snake_case = tf.distribute.TPUStrategy(__lowercase ) else: _snake_case = tf.distribute.OneDeviceStrategy(device='/gpu:0' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' ) _snake_case = AutoTokenizer.from_pretrained(args.tokenizer ) _snake_case = AutoConfig.from_pretrained(args.pretrained_model_config ) _snake_case = tokenizer.vocab_size _snake_case = tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) ) if not training_records: raise ValueError(f'''No .tfrecord files found in {args.train_dataset}.''' ) _snake_case = tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) ) if not eval_records: raise ValueError(f'''No .tfrecord files found in {args.eval_dataset}.''' ) _snake_case = count_samples(__lowercase ) _snake_case = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) _snake_case = steps_per_epoch * args.num_epochs with strategy.scope(): _snake_case = TFAutoModelForMaskedLM.from_config(__lowercase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built _snake_case , _snake_case = create_optimizer( num_train_steps=__lowercase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__lowercase , metrics=['accuracy'] ) def decode_fn(__lowercase : Optional[Any] ): _snake_case = { 'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), 'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(__lowercase , __lowercase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. _snake_case = DataCollatorForLanguageModeling( tokenizer=__lowercase , mlm_probability=args.mlm_probability , mlm=__lowercase , return_tensors='tf' ) def mask_with_collator(__lowercase : Optional[int] ): # TF really needs an isin() function _snake_case = ( ~tf.cast(batch['attention_mask'] , tf.bool ) | (batch['input_ids'] == tokenizer.cls_token_id) | (batch['input_ids'] == tokenizer.sep_token_id) ) _snake_case , _snake_case = data_collator.tf_mask_tokens( batch['input_ids'] , vocab_size=len(__lowercase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__lowercase , ) return batch _snake_case = args.per_replica_batch_size * strategy.num_replicas_in_sync _snake_case = prepare_dataset( __lowercase , decode_fn=__lowercase , mask_fn=__lowercase , batch_size=__lowercase , shuffle=__lowercase , shuffle_buffer_size=args.shuffle_buffer_size , ) _snake_case = prepare_dataset( __lowercase , decode_fn=__lowercase , mask_fn=__lowercase , batch_size=__lowercase , shuffle=__lowercase , ) _snake_case = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__lowercase ) ) model.fit( __lowercase , validation_data=__lowercase , epochs=args.num_epochs , callbacks=__lowercase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": _lowerCamelCase : List[Any] = parse_args() main(args)
686
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
1
from __future__ import annotations class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Optional[Any] , lowercase : list[list[int]] ): '''simple docstring''' _snake_case = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(lowercase ) != 0: _snake_case = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowercase ) != cols: raise error for value in row: if not isinstance(lowercase , (int, float) ): raise error _snake_case = rows else: _snake_case = [] def A ( self : Any ): '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def A ( self : Tuple ): '''simple docstring''' return len(self.rows ) @property def A ( self : List[str] ): '''simple docstring''' return len(self.rows[0] ) @property def A ( self : int ): '''simple docstring''' return (self.num_rows, self.num_columns) @property def A ( self : List[str] ): '''simple docstring''' return self.order[0] == self.order[1] def A ( self : List[str] ): '''simple docstring''' _snake_case = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowercase ) def A ( self : Dict ): '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def A ( self : Optional[int] ): '''simple docstring''' return bool(self.determinant() ) def A ( self : Union[str, Any] , lowercase : int , lowercase : int ): '''simple docstring''' _snake_case = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowercase ).determinant() def A ( self : Optional[Any] , lowercase : int , lowercase : int ): '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(lowercase , lowercase ) return -1 * self.get_minor(lowercase , lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' return Matrix( [ [self.get_minor(lowercase , lowercase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def A ( self : List[str] ): '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def A ( self : Dict ): '''simple docstring''' _snake_case = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self : List[str] ): '''simple docstring''' return str(self.rows ) def __str__( self : str ): '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(lowercase ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def A ( self : List[Any] , lowercase : list[int] , lowercase : int | None = None ): '''simple docstring''' _snake_case = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(lowercase , lowercase ): raise type_error for value in row: if not isinstance(lowercase , (int, float) ): raise type_error if len(lowercase ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(lowercase ) else: _snake_case = self.rows[0:position] + [row] + self.rows[position:] def A ( self : Optional[Any] , lowercase : list[int] , lowercase : int | None = None ): '''simple docstring''' _snake_case = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(lowercase , lowercase ): raise type_error for value in column: if not isinstance(lowercase , (int, float) ): raise type_error if len(lowercase ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: _snake_case = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: _snake_case = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : List[Any] , lowercase : object ): '''simple docstring''' if not isinstance(lowercase , lowercase ): return NotImplemented return self.rows == other.rows def __ne__( self : Any , lowercase : object ): '''simple docstring''' return not self == other def __neg__( self : List[Any] ): '''simple docstring''' return self * -1 def __add__( self : str , lowercase : Matrix ): '''simple docstring''' if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Dict , lowercase : Matrix ): '''simple docstring''' if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Optional[int] , lowercase : Matrix | int | float ): '''simple docstring''' if isinstance(lowercase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowercase , lowercase ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(lowercase , lowercase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self : Any , lowercase : int ): '''simple docstring''' if not isinstance(lowercase , lowercase ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) _snake_case = self for _ in range(other - 1 ): result *= self return result @classmethod def A ( cls : Tuple , lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' return sum(row[i] * column[i] for i in range(len(lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
686
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
1
import torch from diffusers import StableDiffusionPipeline _lowerCamelCase : Optional[Any] = '''path-to-your-trained-model''' _lowerCamelCase : Dict = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') _lowerCamelCase : Dict = '''A photo of sks dog in a bucket''' _lowerCamelCase : Any = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
686
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
1
from __future__ import annotations from math import pi, sqrt def a_ ( __lowercase : float , __lowercase : float ) -> tuple: if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
686
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Tuple , lowercase : Tuple , lowercase : Union[str, Any]=2 , lowercase : int=True , lowercase : Union[str, Any]=False , lowercase : Any=10 , lowercase : List[Any]=3 , lowercase : str=32 * 8 , lowercase : Tuple=32 * 8 , lowercase : Dict=4 , lowercase : Optional[int]=64 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = hidden_dim _snake_case = hidden_dim def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowercase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowercase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowercase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=lowercase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A ( self : int ): '''simple docstring''' _snake_case = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _snake_case = self.num_queries _snake_case = self.num_labels _snake_case = [1, 1, 1, 1] _snake_case = self.num_channels _snake_case = 64 _snake_case = 128 _snake_case = self.hidden_dim _snake_case = self.hidden_dim _snake_case = self.hidden_dim return config def A ( self : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.prepare_config_and_inputs() _snake_case = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def A ( self : Tuple , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase ) , config.decoder_layers ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict=False ): '''simple docstring''' with torch.no_grad(): _snake_case = MaskaFormerModel(config=lowercase ) model.to(lowercase ) model.eval() _snake_case = model(pixel_values=lowercase , pixel_mask=lowercase ) _snake_case = model(lowercase , output_hidden_states=lowercase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowercase , lowercase ) def A ( self : Union[str, Any] , lowercase : List[str] , lowercase : Tuple , lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Tuple ): '''simple docstring''' _snake_case = MaskaFormerForUniversalSegmentation(config=lowercase ) model.to(lowercase ) model.eval() def comm_check_on_output(lowercase : Union[str, Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=lowercase , pixel_mask=lowercase ) _snake_case = model(lowercase ) comm_check_on_output(lowercase ) _snake_case = model( pixel_values=lowercase , pixel_mask=lowercase , mask_labels=lowercase , class_labels=lowercase ) comm_check_on_output(lowercase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Any = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _UpperCAmelCase : Dict = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Tuple = False _UpperCAmelCase : int = False def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = MaskaFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase ) def A ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowercase , **lowercase , output_hidden_states=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowercase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def A ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def A ( self : int ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def A ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def A ( self : Optional[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def A ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase ) @slow def A ( self : str ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _snake_case = MaskaFormerModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { 'pixel_values': torch.randn((2, 3, *size) , device=lowercase ), 'mask_labels': torch.randn((2, 10, *size) , device=lowercase ), 'class_labels': torch.zeros(2 , 10 , device=lowercase ).long(), } _snake_case = self.model_tester.get_config() _snake_case = MaskaFormerForUniversalSegmentation(lowercase ).to(lowercase ) _snake_case = model(**lowercase ) self.assertTrue(outputs.loss is not None ) def A ( self : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowercase , **lowercase , output_hidden_states=lowercase ) def A ( self : Any ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ).to(lowercase ) _snake_case = model(**lowercase , output_attentions=lowercase ) self.assertTrue(outputs.attentions is not None ) def A ( self : Tuple ): '''simple docstring''' if not self.model_tester.is_training: return _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(lowercase ) model.to(lowercase ) model.train() _snake_case = model(lowercase , mask_labels=lowercase , class_labels=lowercase ).loss loss.backward() def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(lowercase ).to(lowercase ) model.train() _snake_case = model(lowercase , mask_labels=lowercase , class_labels=lowercase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowercase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowerCamelCase : Tuple = 1E-4 def a_ ( ) -> List[str]: _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def A ( self : str ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A ( self : List[str] ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A ( self : Dict ): '''simple docstring''' _snake_case = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowercase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(lowercase , return_tensors='pt' ).to(lowercase ) _snake_case = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**lowercase ) _snake_case = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(lowercase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowercase , atol=lowercase ) ) _snake_case = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(lowercase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowercase , atol=lowercase ) ) _snake_case = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(lowercase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowercase , atol=lowercase ) ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowercase ).eval() _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(lowercase , return_tensors='pt' ).to(lowercase ) _snake_case = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**lowercase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _snake_case = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] _snake_case = torch.tensor(lowercase ).to(lowercase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase , atol=lowercase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase , atol=lowercase ) ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowercase ).eval() _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) _snake_case = inputs['pixel_values'].to(lowercase ) _snake_case = [el.to(lowercase ) for el in inputs['mask_labels']] _snake_case = [el.to(lowercase ) for el in inputs['class_labels']] with torch.no_grad(): _snake_case = model(**lowercase ) self.assertTrue(outputs.loss is not None )
686
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
1
import torch from diffusers import DiffusionPipeline class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] , lowercase : List[Any] ): '''simple docstring''' super().__init__() self.register_modules(unet=lowercase , scheduler=lowercase ) def __call__( self : Union[str, Any] ): '''simple docstring''' _snake_case = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) _snake_case = 1 _snake_case = self.unet(lowercase , lowercase ).sample _snake_case = self.scheduler.step(lowercase , lowercase , lowercase ).prev_sample _snake_case = scheduler_output - scheduler_output + torch.ones_like(lowercase ) return result
686
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowerCamelCase : Tuple = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def a_ ( __lowercase : np.ndarray , __lowercase : float , __lowercase : int = 16_000 ) -> Union[str, Any]: _snake_case = int(round(sample_rate * max_length ) ) if len(__lowercase ) <= sample_length: return wav _snake_case = randint(0 , len(__lowercase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Optional[str] = field(default=UpperCAmelCase ,metadata={"help": "Name of a dataset from the datasets package"} ) _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase ,metadata={"help": "A file containing the training audio paths and labels."} ) _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase ,metadata={"help": "A file containing the validation audio paths and labels."} ) _UpperCAmelCase : str = field( default="train" ,metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } ,) _UpperCAmelCase : str = field( default="validation" ,metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } ,) _UpperCAmelCase : str = field( default="audio" ,metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} ,) _UpperCAmelCase : str = field( default="label" ,metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) _UpperCAmelCase : Optional[int] = field( default=UpperCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) _UpperCAmelCase : Optional[int] = field( default=UpperCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) _UpperCAmelCase : float = field( default=2_0 ,metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} ,) @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : str = field( default="facebook/wav2vec2-base" ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ,) _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase ,metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) _UpperCAmelCase : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase ,metadata={"help": "Name or path of preprocessor config."} ) _UpperCAmelCase : bool = field( default=UpperCAmelCase ,metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) _UpperCAmelCase : bool = field( default=UpperCAmelCase ,metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) _UpperCAmelCase : bool = field( default=UpperCAmelCase ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) _UpperCAmelCase : Optional[bool] = field( default=UpperCAmelCase ,metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) _UpperCAmelCase : bool = field( default=UpperCAmelCase ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,) def A ( self : List[str] ): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.' , lowercase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.' ) def a_ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case , _snake_case , _snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case , _snake_case , _snake_case = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification' , __lowercase , __lowercase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _snake_case = training_args.get_process_log_level() logger.setLevel(__lowercase ) transformers.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. _snake_case = DatasetDict() _snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' 'Make sure to set `--audio_column_name` to the correct audio column - one of ' f'''{', '.join(raw_datasets['train'].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' 'Make sure to set `--label_column_name` to the correct text column - one of ' f'''{', '.join(raw_datasets['train'].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _snake_case = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _snake_case = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _snake_case = feature_extractor.model_input_names[0] def train_transforms(__lowercase : Any ): _snake_case = [] for audio in batch[data_args.audio_column_name]: _snake_case = random_subsample( audio['array'] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__lowercase ) _snake_case = feature_extractor(__lowercase , sampling_rate=feature_extractor.sampling_rate ) _snake_case = {model_input_name: inputs.get(__lowercase )} _snake_case = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__lowercase : Tuple ): _snake_case = [audio['array'] for audio in batch[data_args.audio_column_name]] _snake_case = feature_extractor(__lowercase , sampling_rate=feature_extractor.sampling_rate ) _snake_case = {model_input_name: inputs.get(__lowercase )} _snake_case = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _snake_case = raw_datasets['train'].features[data_args.label_column_name].names _snake_case , _snake_case = {}, {} for i, label in enumerate(__lowercase ): _snake_case = str(__lowercase ) _snake_case = label # Load the accuracy metric from the datasets package _snake_case = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__lowercase : Optional[int] ): _snake_case = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=__lowercase , references=eval_pred.label_ids ) _snake_case = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowercase ) , labelaid=__lowercase , idalabel=__lowercase , finetuning_task='audio-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _snake_case = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__lowercase , output_all_columns=__lowercase ) if training_args.do_eval: if data_args.max_eval_samples is not None: _snake_case = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__lowercase , output_all_columns=__lowercase ) # Initialize our trainer _snake_case = Trainer( model=__lowercase , args=__lowercase , train_dataset=raw_datasets['train'] if training_args.do_train else None , eval_dataset=raw_datasets['eval'] if training_args.do_eval else None , compute_metrics=__lowercase , tokenizer=__lowercase , ) # Training if training_args.do_train: _snake_case = None if training_args.resume_from_checkpoint is not None: _snake_case = training_args.resume_from_checkpoint elif last_checkpoint is not None: _snake_case = last_checkpoint _snake_case = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _snake_case = trainer.evaluate() trainer.log_metrics('eval' , __lowercase ) trainer.save_metrics('eval' , __lowercase ) # Write model card and (optionally) push to hub _snake_case = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**__lowercase ) else: trainer.create_model_card(**__lowercase ) if __name__ == "__main__": main()
686
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : Any ) -> str: _snake_case = os.path.abspath(__lowercase ) logger.info(f'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model _snake_case = tf.train.list_variables(__lowercase ) _snake_case = [] _snake_case = [] _snake_case = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") _snake_case = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(f'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' _snake_case = name[1:] # figure out how many levels deep the name is _snake_case = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(__lowercase ) # read data _snake_case = tf.train.load_variable(__lowercase , __lowercase ) names.append('/'.join(__lowercase ) ) arrays.append(__lowercase ) logger.info(f'''Read a total of {len(__lowercase ):,} layers''' ) # Sanity check if len(set(__lowercase ) ) != 1: raise ValueError(f'''Found layer names with different depths (layer depth {list(set(__lowercase ) )})''' ) _snake_case = list(set(__lowercase ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(__lowercase , __lowercase ): _snake_case = full_name.split('/' ) _snake_case = model _snake_case = [] for i, m_name in enumerate(__lowercase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): _snake_case = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) _snake_case = getattr(__lowercase , 'embeddings' ) _snake_case = getattr(__lowercase , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) _snake_case = getattr(__lowercase , 'encoder' ) _snake_case = getattr(__lowercase , 'layer' ) _snake_case = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) _snake_case = getattr(__lowercase , 'pooler' ) _snake_case = getattr(__lowercase , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) _snake_case = getattr(__lowercase , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) _snake_case = getattr(__lowercase , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) _snake_case = getattr(__lowercase , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) _snake_case = getattr(__lowercase , 'token_type_embeddings' ) else: raise ValueError(f'''Unknown embedding layer with name {full_name}''' ) trace.append('weight' ) _snake_case = getattr(__lowercase , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) _snake_case = getattr(__lowercase , 'attention' ) _snake_case = getattr(__lowercase , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) _snake_case = getattr(__lowercase , 'attention' ) _snake_case = getattr(__lowercase , 'output' ) _snake_case = getattr(__lowercase , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) _snake_case = getattr(__lowercase , 'attention' ) _snake_case = getattr(__lowercase , 'output' ) _snake_case = getattr(__lowercase , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) _snake_case = getattr(__lowercase , 'output' ) _snake_case = getattr(__lowercase , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) _snake_case = getattr(__lowercase , 'output' ) _snake_case = getattr(__lowercase , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) _snake_case = getattr(__lowercase , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) _snake_case = getattr(__lowercase , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) _snake_case = getattr(__lowercase , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) _snake_case = getattr(__lowercase , 'intermediate' ) _snake_case = getattr(__lowercase , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) _snake_case = getattr(__lowercase , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) _snake_case = getattr(__lowercase , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) _snake_case = getattr(__lowercase , 'weight' ) else: logger.warning(f'''Ignored {m_name}''' ) # for certain layers reshape is necessary _snake_case = '.'.join(__lowercase ) if re.match(r'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , __lowercase ) or re.match( r'(\S+)\.attention\.output\.dense\.weight' , __lowercase ): _snake_case = array.reshape(pointer.data.shape ) if "kernel" in full_name: _snake_case = array.transpose() if pointer.shape == array.shape: _snake_case = torch.from_numpy(__lowercase ) else: raise ValueError( f'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' f''' {array.shape}''' ) logger.info(f'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Optional[int] ) -> Optional[Any]: # Instantiate model logger.info(f'''Loading model based on config from {config_path}...''' ) _snake_case = BertConfig.from_json_file(__lowercase ) _snake_case = BertModel(__lowercase ) # Load weights from checkpoint logger.info(f'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model logger.info(f'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) _lowerCamelCase : Any = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
686
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
1
# flake8: noqa # Lint as: python3 _lowerCamelCase : Dict = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
686
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
1
from __future__ import annotations import math def a_ ( __lowercase : int , __lowercase : int , __lowercase : bool , __lowercase : list[int] , __lowercase : float ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(__lowercase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __lowercase , __lowercase , __lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowercase , __lowercase , __lowercase ) , ) return min( minimax(depth + 1 , node_index * 2 , __lowercase , __lowercase , __lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowercase , __lowercase , __lowercase ) , ) def a_ ( ) -> None: _snake_case = [90, 23, 6, 33, 21, 65, 123, 34_423] _snake_case = math.log(len(__lowercase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , __lowercase , __lowercase , __lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def a_ ( __lowercase : int , __lowercase : Union[str, Any] , __lowercase : str ) -> int: # Initialise PyTorch model _snake_case = MobileBertConfig.from_json_file(__lowercase ) print(f'''Building PyTorch model from configuration: {config}''' ) _snake_case = MobileBertForPreTraining(__lowercase ) # Load weights from tf checkpoint _snake_case = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCamelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
686
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
1
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
from __future__ import annotations from math import pi def a_ ( __lowercase : float , __lowercase : float , __lowercase : float ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if inductance < 0: raise ValueError('Inductance cannot be negative' ) if frequency < 0: raise ValueError('Frequency cannot be negative' ) if reactance < 0: raise ValueError('Inductive reactance cannot be negative' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
686
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
1
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Dict = DownBlockaD # noqa F405 _UpperCAmelCase : Union[str, Any] = "down" def A ( self : Any ): '''simple docstring''' _snake_case = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 _UpperCAmelCase : Union[str, Any] = "down" def A ( self : List[Any] ): '''simple docstring''' _snake_case = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = AttnDownBlockaD # noqa F405 _UpperCAmelCase : Optional[int] = "down" def A ( self : str ): '''simple docstring''' _snake_case = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[str] = CrossAttnDownBlockaD # noqa F405 _UpperCAmelCase : Any = "down" def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict def A ( self : List[str] ): '''simple docstring''' _snake_case = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = SimpleCrossAttnDownBlockaD # noqa F405 _UpperCAmelCase : Any = "down" @property def A ( self : Optional[int] ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=lowercase ) def A ( self : int ): '''simple docstring''' _snake_case , _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def A ( self : Any ): '''simple docstring''' _snake_case = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = SkipDownBlockaD # noqa F405 _UpperCAmelCase : Optional[Any] = "down" @property def A ( self : str ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=lowercase ) def A ( self : int ): '''simple docstring''' _snake_case = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : str = AttnSkipDownBlockaD # noqa F405 _UpperCAmelCase : Optional[int] = "down" @property def A ( self : Optional[Any] ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Any = DownEncoderBlockaD # noqa F405 _UpperCAmelCase : Optional[int] = "down" @property def A ( self : Optional[Any] ): '''simple docstring''' return super().get_dummy_input(include_temb=lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = { 'in_channels': 32, 'out_channels': 32, } _snake_case = self.dummy_input return init_dict, inputs_dict def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Dict = AttnDownEncoderBlockaD # noqa F405 _UpperCAmelCase : Optional[int] = "down" @property def A ( self : Optional[Any] ): '''simple docstring''' return super().get_dummy_input(include_temb=lowercase ) def A ( self : Tuple ): '''simple docstring''' _snake_case = { 'in_channels': 32, 'out_channels': 32, } _snake_case = self.dummy_input return init_dict, inputs_dict def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Any = UNetMidBlockaD # noqa F405 _UpperCAmelCase : str = "mid" def A ( self : List[str] ): '''simple docstring''' _snake_case = { 'in_channels': 32, 'temb_channels': 128, } _snake_case = self.dummy_input return init_dict, inputs_dict def A ( self : Dict ): '''simple docstring''' _snake_case = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : int = UNetMidBlockaDCrossAttn # noqa F405 _UpperCAmelCase : Dict = "mid" def A ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict def A ( self : Tuple ): '''simple docstring''' _snake_case = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Dict = UNetMidBlockaDSimpleCrossAttn # noqa F405 _UpperCAmelCase : Any = "mid" @property def A ( self : Any ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=lowercase ) def A ( self : int ): '''simple docstring''' _snake_case , _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict def A ( self : List[str] ): '''simple docstring''' _snake_case = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[int] = UpBlockaD # noqa F405 _UpperCAmelCase : Optional[int] = "up" @property def A ( self : Optional[Any] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[str] = ResnetUpsampleBlockaD # noqa F405 _UpperCAmelCase : str = "up" @property def A ( self : Optional[Any] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Any = CrossAttnUpBlockaD # noqa F405 _UpperCAmelCase : Optional[Any] = "up" @property def A ( self : Any ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def A ( self : Any ): '''simple docstring''' _snake_case , _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict def A ( self : str ): '''simple docstring''' _snake_case = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Dict = SimpleCrossAttnUpBlockaD # noqa F405 _UpperCAmelCase : Optional[int] = "up" @property def A ( self : Any ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowercase , include_encoder_hidden_states=lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case , _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict def A ( self : Tuple ): '''simple docstring''' _snake_case = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Tuple = AttnUpBlockaD # noqa F405 _UpperCAmelCase : int = "up" @property def A ( self : Optional[int] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = SkipUpBlockaD # noqa F405 _UpperCAmelCase : int = "up" @property def A ( self : str ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = AttnSkipUpBlockaD # noqa F405 _UpperCAmelCase : Union[str, Any] = "up" @property def A ( self : Tuple ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[str] = UpDecoderBlockaD # noqa F405 _UpperCAmelCase : List[str] = "up" @property def A ( self : Dict ): '''simple docstring''' return super().get_dummy_input(include_temb=lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = {'in_channels': 32, 'out_channels': 32} _snake_case = self.dummy_input return init_dict, inputs_dict def A ( self : Tuple ): '''simple docstring''' _snake_case = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = AttnUpDecoderBlockaD # noqa F405 _UpperCAmelCase : List[str] = "up" @property def A ( self : Dict ): '''simple docstring''' return super().get_dummy_input(include_temb=lowercase ) def A ( self : int ): '''simple docstring''' _snake_case = {'in_channels': 32, 'out_channels': 32} _snake_case = self.dummy_input return init_dict, inputs_dict def A ( self : Dict ): '''simple docstring''' _snake_case = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(lowercase )
686
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _lowerCamelCase : Tuple = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def a_ ( __lowercase : Optional[int] ) -> Union[str, Any]: _snake_case = torch.load(__lowercase , map_location='cpu' ) return sd def a_ ( __lowercase : Union[str, Any] , __lowercase : Any , __lowercase : Union[str, Any]=rename_keys_prefix ) -> Union[str, Any]: _snake_case = OrderedDict() _snake_case = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _snake_case = key for name_pair in rename_keys_prefix: _snake_case = new_key.replace(name_pair[0] , name_pair[1] ) _snake_case = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _snake_case = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def a_ ( __lowercase : Dict , __lowercase : Optional[Any] ) -> List[Any]: assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: _snake_case = 'pretraining' if "vcr" in checkpoint_path: _snake_case = {'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: _snake_case = {'visual_embedding_dim': 2_048} elif "vqa" in checkpoint_path: _snake_case = {'visual_embedding_dim': 2_048} elif "nlvr" in checkpoint_path: _snake_case = {'visual_embedding_dim': 1_024} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: _snake_case = {'visual_embedding_dim': 512} _snake_case = 'multichoice' elif "vqa_advanced" in checkpoint_path: _snake_case = {'visual_embedding_dim': 2_048} _snake_case = 'vqa_advanced' elif "vqa" in checkpoint_path: _snake_case = {'visual_embedding_dim': 2_048, 'num_labels': 3_129} _snake_case = 'vqa' elif "nlvr" in checkpoint_path: _snake_case = { 'visual_embedding_dim': 1_024, 'num_labels': 2, } _snake_case = 'nlvr' _snake_case = VisualBertConfig(**__lowercase ) # Load State Dict _snake_case = load_state_dict(__lowercase ) _snake_case = get_new_dict(__lowercase , __lowercase ) if model_type == "pretraining": _snake_case = VisualBertForPreTraining(__lowercase ) elif model_type == "vqa": _snake_case = VisualBertForQuestionAnswering(__lowercase ) elif model_type == "nlvr": _snake_case = VisualBertForVisualReasoning(__lowercase ) elif model_type == "multichoice": _snake_case = VisualBertForMultipleChoice(__lowercase ) model.load_state_dict(__lowercase ) # Save Checkpoints Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _lowerCamelCase : int = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
686
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase : Tuple = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : str , *lowercase : Dict , **lowercase : int ): '''simple docstring''' super().__init__(*lowercase , **lowercase ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A ( self : Optional[Any] , lowercase : Union[str, Any]=None ): '''simple docstring''' _snake_case = {} if top_k is not None: _snake_case = top_k return {}, {}, postprocess_params def __call__( self : Dict , lowercase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase : Union[str, Any] ): '''simple docstring''' return super().__call__(lowercase , **lowercase ) def A ( self : Dict , lowercase : List[Any] ): '''simple docstring''' _snake_case = load_image(lowercase ) _snake_case = self.image_processor(images=lowercase , return_tensors=self.framework ) return model_inputs def A ( self : Any , lowercase : Dict ): '''simple docstring''' _snake_case = self.model(**lowercase ) return model_outputs def A ( self : Dict , lowercase : Union[str, Any] , lowercase : Dict=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: _snake_case = self.model.config.num_labels if self.framework == "pt": _snake_case = model_outputs.logits.softmax(-1 )[0] _snake_case , _snake_case = probs.topk(lowercase ) elif self.framework == "tf": _snake_case = stable_softmax(model_outputs.logits , axis=-1 )[0] _snake_case = tf.math.top_k(lowercase , k=lowercase ) _snake_case , _snake_case = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) _snake_case = scores.tolist() _snake_case = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase , lowercase )]
686
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _lowerCamelCase : Union[str, Any] = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _lowerCamelCase : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a_ ( __lowercase : str ) -> str: if "://" in dataset_path: _snake_case = dataset_path.split('://' )[1] return dataset_path def a_ ( __lowercase : fsspec.AbstractFileSystem ) -> bool: if fs is not None and fs.protocol != "file": return True else: return False def a_ ( __lowercase : fsspec.AbstractFileSystem , __lowercase : str , __lowercase : str ) -> str: _snake_case = not is_remote_filesystem(__lowercase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__lowercase ) , fs._strip_protocol(__lowercase ) ) else: fs.mv(__lowercase , __lowercase , recursive=__lowercase ) def a_ ( ) -> None: if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _snake_case = None _snake_case = None _snake_case = threading.Lock()
686
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
1
import pytest _lowerCamelCase : Dict = '''__dummy_dataset1__''' _lowerCamelCase : Optional[int] = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def a_ ( ) -> List[str]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def a_ ( ) -> Tuple: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def a_ ( __lowercase : List[str] , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] ) -> Optional[int]: _snake_case = dataset_loading_script_name _snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=__lowercase ) _snake_case = script_dir / f'''{script_name}.py''' with open(__lowercase , 'w' ) as f: f.write(__lowercase ) return str(__lowercase )
686
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
1
from statistics import mean, stdev def a_ ( __lowercase : list , __lowercase : int = 3 ) -> list: _snake_case = min(__lowercase ) _snake_case = max(__lowercase ) # normalize data return [round((x - x_min) / (x_max - x_min) , __lowercase ) for x in data] def a_ ( __lowercase : list , __lowercase : int = 3 ) -> list: _snake_case = mean(__lowercase ) _snake_case = stdev(__lowercase ) # standardize data return [round((x - mu) / (sigma) , __lowercase ) for x in data]
686
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _lowerCamelCase : Dict = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: _lowerCamelCase : Tuple = json.load(f) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[str] , lowercase : Optional[int] ): '''simple docstring''' return FSMTTokenizer.from_pretrained(lowercase ) def A ( self : Dict , lowercase : Any ): '''simple docstring''' _snake_case = FSMTForConditionalGeneration.from_pretrained(lowercase ).to(lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def A ( self : Optional[int] , lowercase : Any , lowercase : int ): '''simple docstring''' _snake_case = f'''facebook/wmt19-{pair}''' _snake_case = self.get_tokenizer(lowercase ) _snake_case = self.get_model(lowercase ) _snake_case = bleu_data[pair]['src'] _snake_case = bleu_data[pair]['tgt'] _snake_case = tokenizer(lowercase , return_tensors='pt' , truncation=lowercase , padding='longest' ).to(lowercase ) _snake_case = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _snake_case = tokenizer.batch_decode( lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) _snake_case = calculate_bleu(lowercase , lowercase ) print(lowercase ) self.assertGreaterEqual(scores['bleu'] , lowercase )
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
1
def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [] _snake_case = set({'(', '[', '{'} ) _snake_case = set({')', ']', '}'} ) _snake_case = {'{': '}', '[': ']', '(': ')'} for i in range(len(__lowercase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__lowercase ) == 0 or (len(__lowercase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__lowercase ) == 0 def a_ ( ) -> Dict: _snake_case = input('Enter sequence of brackets: ' ) if is_balanced(__lowercase ): print(__lowercase , 'is balanced' ) else: print(__lowercase , 'is not balanced' ) if __name__ == "__main__": main()
686
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Union[str, Any] = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
1
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline _lowerCamelCase : Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def A ( self : int , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = [label.strip() for label in labels.split(',' ) if label.strip()] return labels def __call__( self : Optional[Any] , lowercase : Optional[Any] , lowercase : Any , lowercase : Optional[Any] ): '''simple docstring''' if len(lowercase ) == 0 or len(lowercase ) == 0: raise ValueError('You must include at least one label and at least one sequence.' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(lowercase ) ) if isinstance(lowercase , lowercase ): _snake_case = [sequences] _snake_case = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowercase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : List[str]=ZeroShotClassificationArgumentHandler() , *lowercase : List[str] , **lowercase : Tuple ): '''simple docstring''' _snake_case = args_parser super().__init__(*lowercase , **lowercase ) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' ) @property def A ( self : List[Any] ): '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail' ): return ind return -1 def A ( self : Optional[Any] , lowercase : List[Any] , lowercase : List[Any]=True , lowercase : Union[str, Any]=True , lowercase : Optional[int]=TruncationStrategy.ONLY_FIRST , **lowercase : List[str] ): '''simple docstring''' _snake_case = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`' ) _snake_case = self.tokenizer.eos_token try: _snake_case = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=lowercase , ) except Exception as e: if "too short" in str(lowercase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _snake_case = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def A ( self : Tuple , **lowercase : Tuple ): '''simple docstring''' if kwargs.get('multi_class' , lowercase ) is not None: _snake_case = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.' ) _snake_case = {} if "candidate_labels" in kwargs: _snake_case = self._args_parser._parse_labels(kwargs['candidate_labels'] ) if "hypothesis_template" in kwargs: _snake_case = kwargs['hypothesis_template'] _snake_case = {} if "multi_label" in kwargs: _snake_case = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self : int , lowercase : Union[str, List[str]] , *lowercase : Any , **lowercase : List[str] , ): '''simple docstring''' if len(lowercase ) == 0: pass elif len(lowercase ) == 1 and "candidate_labels" not in kwargs: _snake_case = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(lowercase , **lowercase ) def A ( self : List[Any] , lowercase : int , lowercase : Any=None , lowercase : Union[str, Any]="This example is {}." ): '''simple docstring''' _snake_case , _snake_case = self._args_parser(lowercase , lowercase , lowercase ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowercase , lowercase ) ): _snake_case = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowercase ) - 1, **model_input, } def A ( self : Optional[int] , lowercase : int ): '''simple docstring''' _snake_case = inputs['candidate_label'] _snake_case = inputs['sequence'] _snake_case = {k: inputs[k] for k in self.tokenizer.model_input_names} _snake_case = self.model(**lowercase ) _snake_case = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def A ( self : int , lowercase : List[Any] , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = [outputs['candidate_label'] for outputs in model_outputs] _snake_case = [outputs['sequence'] for outputs in model_outputs] _snake_case = np.concatenate([output['logits'].numpy() for output in model_outputs] ) _snake_case = logits.shape[0] _snake_case = len(lowercase ) _snake_case = N // n _snake_case = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowercase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _snake_case = self.entailment_id _snake_case = -1 if entailment_id == 0 else 0 _snake_case = reshaped_outputs[..., [contradiction_id, entailment_id]] _snake_case = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) _snake_case = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _snake_case = reshaped_outputs[..., self.entailment_id] _snake_case = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) _snake_case = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
686
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
1
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[Any] , lowercase : Union[str, Any] ): '''simple docstring''' if isinstance(lowercase , lowercase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden _snake_case = deepcopy(lowercase ) elif os.path.exists(lowercase ): with io.open(lowercase , 'r' , encoding='utf-8' ) as f: _snake_case = json.load(lowercase ) else: try: _snake_case = baseaa.urlsafe_baadecode(lowercase ).decode('utf-8' ) _snake_case = json.loads(lowercase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) _snake_case = config self.set_stage_and_offload() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.get_value('zero_optimization.stage' , -1 ) # offload _snake_case = False if self.is_zeroa() or self.is_zeroa(): _snake_case = set(['cpu', 'nvme'] ) _snake_case = set( [ self.get_value('zero_optimization.offload_optimizer.device' ), self.get_value('zero_optimization.offload_param.device' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: _snake_case = True def A ( self : Tuple , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = self.config # find the config node of interest if it exists _snake_case = ds_key_long.split('.' ) _snake_case = nodes.pop() for node in nodes: _snake_case = config.get(lowercase ) if config is None: return None, ds_key return config, ds_key def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Union[str, Any]=None ): '''simple docstring''' _snake_case , _snake_case = self.find_config_node(lowercase ) if config is None: return default return config.get(lowercase , lowercase ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' _snake_case = self.config # find the config node of interest if it exists _snake_case = ds_key_long.split('.' ) for node in nodes: _snake_case = config _snake_case = config.get(lowercase ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowercase ) def A ( self : Optional[int] , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = self.get_value(lowercase ) return False if value is None else bool(lowercase ) def A ( self : Tuple , lowercase : int ): '''simple docstring''' _snake_case = self.get_value(lowercase ) return False if value is None else not bool(lowercase ) def A ( self : Dict ): '''simple docstring''' return self._stage == 2 def A ( self : List[Any] ): '''simple docstring''' return self._stage == 3 def A ( self : Dict ): '''simple docstring''' return self._offload class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Optional[int] , lowercase : int ): '''simple docstring''' _snake_case = engine def A ( self : int , lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' self.engine.backward(lowercase , **lowercase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Dict , lowercase : List[str] ): '''simple docstring''' super().__init__(lowercase , device_placement=lowercase , scaler=lowercase ) _snake_case = hasattr(self.optimizer , 'overflow' ) def A ( self : Tuple , lowercase : str=None ): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def A ( self : Any ): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def A ( self : Dict ): '''simple docstring''' if self.__has_overflow__: return self.optimizer.overflow return False class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : Dict , lowercase : Optional[int] ): '''simple docstring''' super().__init__(lowercase , lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any]=0.001 , lowercase : List[str]=0 , **lowercase : Tuple ): '''simple docstring''' _snake_case = params _snake_case = lr _snake_case = weight_decay _snake_case = kwargs class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[str] , lowercase : Optional[int] , lowercase : Union[str, Any]=None , lowercase : Optional[int]=0 , **lowercase : Optional[Any] ): '''simple docstring''' _snake_case = optimizer _snake_case = total_num_steps _snake_case = warmup_num_steps _snake_case = kwargs
686
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
1
from __future__ import annotations def a_ ( __lowercase : float , __lowercase : float , __lowercase : float , ) -> tuple[str, float]: if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
686
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : int = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[str] = "deit" def __init__( self : Optional[int] , lowercase : Optional[Any]=768 , lowercase : List[Any]=12 , lowercase : List[Any]=12 , lowercase : str=3_072 , lowercase : Union[str, Any]="gelu" , lowercase : Union[str, Any]=0.0 , lowercase : Any=0.0 , lowercase : Union[str, Any]=0.02 , lowercase : Optional[int]=1E-12 , lowercase : str=224 , lowercase : int=16 , lowercase : Tuple=3 , lowercase : List[str]=True , lowercase : List[str]=16 , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = encoder_stride class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = version.parse("1.11" ) @property def A ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4
686
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
1
from math import factorial def a_ ( __lowercase : int , __lowercase : int , __lowercase : float ) -> float: if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowercase , __lowercase ) or not isinstance(__lowercase , __lowercase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case = float(factorial(__lowercase ) ) coefficient /= factorial(__lowercase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.7_5))
686
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCamelCase : Optional[int] = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
1
def a_ ( __lowercase : int ) -> int: if not isinstance(__lowercase , __lowercase ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
686
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase : Optional[int] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase : int = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase : Optional[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def a_ ( __lowercase : str , __lowercase : str ) -> tuple[str, float]: _snake_case = len([g for position, g in enumerate(__lowercase ) if g == main_target[position]] ) return (item, float(__lowercase )) def a_ ( __lowercase : str , __lowercase : str ) -> tuple[str, str]: _snake_case = random.randint(0 , len(__lowercase ) - 1 ) _snake_case = parent_a[:random_slice] + parent_a[random_slice:] _snake_case = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def a_ ( __lowercase : str , __lowercase : list[str] ) -> str: _snake_case = list(__lowercase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _snake_case = random.choice(__lowercase ) return "".join(__lowercase ) def a_ ( __lowercase : tuple[str, float] , __lowercase : list[tuple[str, float]] , __lowercase : list[str] , ) -> list[str]: _snake_case = [] # Generate more children proportionally to the fitness score. _snake_case = int(parent_a[1] * 100 ) + 1 _snake_case = 10 if child_n >= 10 else child_n for _ in range(__lowercase ): _snake_case = population_score[random.randint(0 , __lowercase )][0] _snake_case , _snake_case = crossover(parent_a[0] , __lowercase ) # Append new string to the population list. pop.append(mutate(__lowercase , __lowercase ) ) pop.append(mutate(__lowercase , __lowercase ) ) return pop def a_ ( __lowercase : str , __lowercase : list[str] , __lowercase : bool = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _snake_case = f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(__lowercase ) # Verify that the target contains no genes besides the ones inside genes variable. _snake_case = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _snake_case = f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(__lowercase ) # Generate random starting population. _snake_case = [] for _ in range(__lowercase ): population.append(''.join([random.choice(__lowercase ) for i in range(len(__lowercase ) )] ) ) # Just some logs to know what the algorithms is doing. _snake_case , _snake_case = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__lowercase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _snake_case = [evaluate(__lowercase , __lowercase ) for item in population] # Check if there is a matching evolution. _snake_case = sorted(__lowercase , key=lambda __lowercase : x[1] , reverse=__lowercase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _snake_case = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__lowercase ) # Normalize population score to be between 0 and 1. _snake_case = [ (item, score / len(__lowercase )) for item, score in population_score ] # This is selection for i in range(__lowercase ): population.extend(select(population_score[int(__lowercase )] , __lowercase , __lowercase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__lowercase ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase : int = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) _lowerCamelCase : Any = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = basic(target_str, genes_list) print( F'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _lowerCamelCase : Dict = ['''gpt2'''] _lowerCamelCase : Tuple = '''gpt2''' if is_tf_available(): class SCREAMING_SNAKE_CASE__ ( tf.Module ): '''simple docstring''' def __init__( self : int , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__() _snake_case = tokenizer _snake_case = AutoConfig.from_pretrained(lowercase ) _snake_case = TFGPTaLMHeadModel.from_config(lowercase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def A ( self : int , lowercase : Any ): '''simple docstring''' _snake_case = self.tokenizer(lowercase ) _snake_case = tokenized['input_ids'].to_tensor() _snake_case = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case = self.model(input_ids=lowercase , attention_mask=lowercase )['logits'] return outputs @require_tf @require_keras_nlp class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : str ): '''simple docstring''' super().setUp() _snake_case = [GPTaTokenizer.from_pretrained(lowercase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case = [TFGPTaTokenizer.from_pretrained(lowercase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def A ( self : List[str] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case = python_outputs[key].numpy() _snake_case = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowercase , tf.intaa ) == tf_outputs_values ) ) @slow def A ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case = tf.function(lowercase ) for test_inputs in self.test_sentences: _snake_case = tf.constant(lowercase ) _snake_case = compiled_tokenizer(lowercase ) _snake_case = tf_tokenizer(lowercase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def A ( self : int ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case = ModelToSave(tokenizer=lowercase ) _snake_case = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case = model.serving(lowercase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case = Path(lowercase ) / 'saved.model' tf.saved_model.save(lowercase , lowercase , signatures={'serving_default': model.serving} ) _snake_case = tf.saved_model.load(lowercase ) _snake_case = loaded_model.signatures['serving_default'](lowercase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def A ( self : int ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case = tf_tokenizer(lowercase ) # Build model with some sample inputs _snake_case = tf_tokenizer.get_config() _snake_case = TFGPTaTokenizer.from_config(lowercase ) _snake_case = model_from_config(lowercase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case = 123_123 for max_length in [3, 5, 1_024]: _snake_case = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case = tf_tokenizer(lowercase , max_length=lowercase ) _snake_case = out['input_ids'].numpy().shape[1] assert out_length == max_length
686
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : Any = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } _lowerCamelCase : Optional[int] = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[str] = VOCAB_FILES_NAMES _UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Dict = ["input_ids", "attention_mask"] _UpperCAmelCase : Union[str, Any] = RobertaTokenizer def __init__( self : Optional[int] , lowercase : str=None , lowercase : Any=None , lowercase : Tuple=None , lowercase : List[Any]="replace" , lowercase : str="<s>" , lowercase : Union[str, Any]="</s>" , lowercase : Optional[Any]="</s>" , lowercase : Optional[Any]="<s>" , lowercase : Optional[Any]="<unk>" , lowercase : Dict="<pad>" , lowercase : Any="<mask>" , lowercase : Dict=False , lowercase : Dict=True , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) _snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase ) != add_prefix_space: _snake_case = getattr(lowercase , pre_tok_state.pop('type' ) ) _snake_case = add_prefix_space _snake_case = pre_tok_class(**lowercase ) _snake_case = add_prefix_space _snake_case = 'post_processor' _snake_case = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: _snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _snake_case = tuple(state['sep'] ) if "cls" in state: _snake_case = tuple(state['cls'] ) _snake_case = False if state.get('add_prefix_space' , lowercase ) != add_prefix_space: _snake_case = add_prefix_space _snake_case = True if state.get('trim_offsets' , lowercase ) != trim_offsets: _snake_case = trim_offsets _snake_case = True if changes_to_apply: _snake_case = getattr(lowercase , state.pop('type' ) ) _snake_case = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property def A ( self : Union[str, Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def A ( self : List[Any] , lowercase : Any ): '''simple docstring''' _snake_case = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value _snake_case = value def A ( self : List[Any] , *lowercase : Any , **lowercase : Optional[int] ): '''simple docstring''' _snake_case = kwargs.get('is_split_into_words' , lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase , **lowercase ) def A ( self : Dict , *lowercase : Dict , **lowercase : Optional[int] ): '''simple docstring''' _snake_case = kwargs.get('is_split_into_words' , lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase , **lowercase ) def A ( self : Dict , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' _snake_case = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def A ( self : Optional[Any] , lowercase : Optional[int] , lowercase : Optional[Any]=None ): '''simple docstring''' _snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : Any , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
686
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
1
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
1
import os import sys import unittest _lowerCamelCase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : Dict = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') _lowerCamelCase : Dict = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : int ): '''simple docstring''' _snake_case = get_test_to_tester_mapping(lowercase ) _snake_case = get_test_to_tester_mapping(lowercase ) _snake_case = {'BertModelTest': 'BertModelTester'} _snake_case = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) def A ( self : Tuple ): '''simple docstring''' _snake_case = get_model_to_test_mapping(lowercase ) _snake_case = get_model_to_test_mapping(lowercase ) _snake_case = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } _snake_case = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) def A ( self : Tuple ): '''simple docstring''' _snake_case = get_model_to_tester_mapping(lowercase ) _snake_case = get_model_to_tester_mapping(lowercase ) _snake_case = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } _snake_case = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase )
686
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def A ( self : List[str] , lowercase : Union[str, Any]=0 ): '''simple docstring''' _snake_case = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase ) ) _snake_case = np.random.RandomState(lowercase ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def A ( self : Tuple ): '''simple docstring''' _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**lowercase ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) _snake_case = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def A ( self : Optional[int] ): '''simple docstring''' _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**lowercase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _snake_case = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def A ( self : Any ): '''simple docstring''' _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase ) # warmup pass to apply optimizations _snake_case = pipe(**self.get_dummy_inputs() ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**lowercase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _snake_case = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def A ( self : List[str] ): '''simple docstring''' _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**lowercase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _snake_case = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def A ( self : str ): '''simple docstring''' _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**lowercase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _snake_case = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def A ( self : List[Any] ): '''simple docstring''' _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**lowercase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _snake_case = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @property def A ( self : Tuple ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A ( self : Dict ): '''simple docstring''' _snake_case = ort.SessionOptions() _snake_case = False return options def A ( self : Dict ): '''simple docstring''' _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _snake_case = init_image.resize((768, 512) ) # using the PNDM scheduler by default _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = 'A fantasy landscape, trending on artstation' _snake_case = np.random.RandomState(0 ) _snake_case = pipe( prompt=lowercase , image=lowercase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase , output_type='np' , ) _snake_case = output.images _snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _snake_case = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def A ( self : List[str] ): '''simple docstring''' _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _snake_case = init_image.resize((768, 512) ) _snake_case = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = 'A fantasy landscape, trending on artstation' _snake_case = np.random.RandomState(0 ) _snake_case = pipe( prompt=lowercase , image=lowercase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase , output_type='np' , ) _snake_case = output.images _snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _snake_case = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
686
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _lowerCamelCase : Any = logging.get_logger(__name__) # General docstring _lowerCamelCase : Optional[Any] = '''RegNetConfig''' # Base docstring _lowerCamelCase : int = '''facebook/regnet-y-040''' _lowerCamelCase : Optional[Any] = [1, 1_088, 7, 7] # Image classification docstring _lowerCamelCase : Dict = '''facebook/regnet-y-040''' _lowerCamelCase : str = '''tabby, tabby cat''' _lowerCamelCase : Dict = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : int = 1 , lowercase : Optional[str] = "relu" , **lowercase : str , ): '''simple docstring''' super().__init__(**lowercase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _snake_case = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _snake_case = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=lowercase , strides=lowercase , padding='VALID' , groups=lowercase , use_bias=lowercase , name='convolution' , ) _snake_case = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) _snake_case = ACTaFN[activation] if activation is not None else tf.identity def A ( self : str , lowercase : List[Any] ): '''simple docstring''' _snake_case = self.convolution(self.padding(lowercase ) ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : RegNetConfig , **lowercase : Any ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = config.num_channels _snake_case = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def A ( self : Any , lowercase : Tuple ): '''simple docstring''' _snake_case = shape_list(lowercase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _snake_case = tf.transpose(lowercase , perm=(0, 2, 3, 1) ) _snake_case = self.embedder(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int = 2 , **lowercase : List[Any] ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=1 , strides=lowercase , use_bias=lowercase , name='convolution' ) _snake_case = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def A ( self : Tuple , lowercase : tf.Tensor , lowercase : bool = False ): '''simple docstring''' return self.normalization(self.convolution(lowercase ) , training=lowercase ) class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int , lowercase : int , **lowercase : List[Any] ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) _snake_case = [ tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def A ( self : Optional[int] , lowercase : Dict ): '''simple docstring''' _snake_case = self.pooler(lowercase ) for layer_module in self.attention: _snake_case = layer_module(lowercase ) _snake_case = hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , lowercase : RegNetConfig , lowercase : int , lowercase : int , lowercase : int = 1 , **lowercase : List[Any] ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = in_channels != out_channels or stride != 1 _snake_case = max(1 , out_channels // config.groups_width ) _snake_case = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _snake_case = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.2' ), ] _snake_case = ACTaFN[config.hidden_act] def A ( self : str , lowercase : str ): '''simple docstring''' _snake_case = hidden_state for layer_module in self.layers: _snake_case = layer_module(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : RegNetConfig , lowercase : int , lowercase : int , lowercase : int = 1 , **lowercase : Tuple ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = in_channels != out_channels or stride != 1 _snake_case = max(1 , out_channels // config.groups_width ) _snake_case = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) _snake_case = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(lowercase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.3' ), ] _snake_case = ACTaFN[config.hidden_act] def A ( self : Tuple , lowercase : int ): '''simple docstring''' _snake_case = hidden_state for layer_module in self.layers: _snake_case = layer_module(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , lowercase : RegNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , **lowercase : Tuple ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer _snake_case = [ # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , lowercase , stride=lowercase , name='layers.0' ), *[layer(lowercase , lowercase , lowercase , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def A ( self : Optional[Any] , lowercase : Dict ): '''simple docstring''' for layer_module in self.layers: _snake_case = layer_module(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : RegNetConfig , **lowercase : str ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowercase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowercase , lowercase , lowercase , depth=lowercase , name=f'''stages.{i+1}''' ) ) def A ( self : Tuple , lowercase : tf.Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowercase , hidden_states=lowercase ) @keras_serializable class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' _UpperCAmelCase : Tuple = RegNetConfig def __init__( self : str , lowercase : List[str] , **lowercase : Any ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = config _snake_case = TFRegNetEmbeddings(lowercase , name='embedder' ) _snake_case = TFRegNetEncoder(lowercase , name='encoder' ) _snake_case = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) @unpack_inputs def A ( self : str , lowercase : tf.Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , lowercase : bool = False , ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase , training=lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) # Change to NCHW output format have uniformity in the modules _snake_case = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) _snake_case = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _snake_case = tuple([tf.transpose(lowercase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = RegNetConfig _UpperCAmelCase : Union[str, Any] = "regnet" _UpperCAmelCase : Optional[Any] = "pixel_values" @property def A ( self : Tuple ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} _lowerCamelCase : List[Any] = r''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : Optional[Any] = r''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[str] , lowercase : RegNetConfig , *lowercase : List[str] , **lowercase : Optional[int] ): '''simple docstring''' super().__init__(lowercase , *lowercase , **lowercase ) _snake_case = TFRegNetMainLayer(lowercase , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : List[str] , lowercase : tf.Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , lowercase : Optional[Any]=False , ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.regnet( pixel_values=lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : RegNetConfig , *lowercase : Optional[int] , **lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase , *lowercase , **lowercase ) _snake_case = config.num_labels _snake_case = TFRegNetMainLayer(lowercase , name='regnet' ) # classification head _snake_case = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Any , lowercase : tf.Tensor = None , lowercase : tf.Tensor = None , lowercase : bool = None , lowercase : bool = None , lowercase : Dict=False , ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.regnet( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier[0](lowercase ) _snake_case = self.classifier[1](lowercase ) _snake_case = None if labels is None else self.hf_compute_loss(labels=lowercase , logits=lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states )
686
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
1
from __future__ import annotations def a_ ( __lowercase : int , __lowercase : int ) -> tuple[int, int]: if b == 0: return (1, 0) ((_snake_case) , (_snake_case)) = extended_euclid(__lowercase , a % b ) _snake_case = a // b return (y, x - k * y) def a_ ( __lowercase : int , __lowercase : int , __lowercase : int , __lowercase : int ) -> int: ((_snake_case) , (_snake_case)) = extended_euclid(__lowercase , __lowercase ) _snake_case = na * na _snake_case = ra * x * na + ra * y * na return (n % m + m) % m def a_ ( __lowercase : int , __lowercase : int ) -> int: ((_snake_case) , (_snake_case)) = extended_euclid(__lowercase , __lowercase ) if b < 0: _snake_case = (b % n + n) % n return b def a_ ( __lowercase : int , __lowercase : int , __lowercase : int , __lowercase : int ) -> int: _snake_case , _snake_case = invert_modulo(__lowercase , __lowercase ), invert_modulo(__lowercase , __lowercase ) _snake_case = na * na _snake_case = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
686
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = Dict[str, Any] _lowerCamelCase : List[str] = List[Prediction] @add_end_docstrings(UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , *lowercase : Tuple , **lowercase : Dict ): '''simple docstring''' super().__init__(*lowercase , **lowercase ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def A ( self : List[Any] , **lowercase : int ): '''simple docstring''' _snake_case = {} if "threshold" in kwargs: _snake_case = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self : Optional[Any] , *lowercase : Optional[int] , **lowercase : Optional[int] ): '''simple docstring''' return super().__call__(*lowercase , **lowercase ) def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = load_image(lowercase ) _snake_case = torch.IntTensor([[image.height, image.width]] ) _snake_case = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: _snake_case = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) _snake_case = target_size return inputs def A ( self : Dict , lowercase : Dict ): '''simple docstring''' _snake_case = model_inputs.pop('target_size' ) _snake_case = self.model(**lowercase ) _snake_case = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: _snake_case = model_inputs['bbox'] return model_outputs def A ( self : List[str] , lowercase : Union[str, Any] , lowercase : Optional[Any]=0.9 ): '''simple docstring''' _snake_case = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _snake_case , _snake_case = target_size[0].tolist() def unnormalize(lowercase : Optional[int] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_000), (height * bbox[1] / 1_000), (width * bbox[2] / 1_000), (height * bbox[3] / 1_000), ] ) ) _snake_case , _snake_case = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _snake_case = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _snake_case = [unnormalize(lowercase ) for bbox in model_outputs['bbox'].squeeze(0 )] _snake_case = ['score', 'label', 'box'] _snake_case = [dict(zip(lowercase , lowercase ) ) for vals in zip(scores.tolist() , lowercase , lowercase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _snake_case = self.image_processor.post_process_object_detection(lowercase , lowercase , lowercase ) _snake_case = raw_annotations[0] _snake_case = raw_annotation['scores'] _snake_case = raw_annotation['labels'] _snake_case = raw_annotation['boxes'] _snake_case = scores.tolist() _snake_case = [self.model.config.idalabel[label.item()] for label in labels] _snake_case = [self._get_bounding_box(lowercase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _snake_case = ['score', 'label', 'box'] _snake_case = [ dict(zip(lowercase , lowercase ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def A ( self : Union[str, Any] , lowercase : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) _snake_case , _snake_case , _snake_case , _snake_case = box.int().tolist() _snake_case = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
686
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , *lowercase : str , **lowercase : Tuple ): '''simple docstring''' warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
686
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Any = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] _lowerCamelCase : Tuple = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
1
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def a_ ( __lowercase : List[Any] , __lowercase : Any , __lowercase : Union[str, Any] , __lowercase : Optional[int] ) -> Tuple: _snake_case = s.rsplit(__lowercase , __lowercase ) return new.join(__lowercase ) def a_ ( __lowercase : List[Any] ) -> str: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def a_ ( __lowercase : List[str] ) -> Any: _snake_case = {} _snake_case = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: _snake_case = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: _snake_case = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): _snake_case = rreplace(__lowercase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): _snake_case = rreplace(__lowercase , '.b' , '.bias' , 1 ) _snake_case = value.float() return upgrade @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : List[str] , __lowercase : Optional[Any]=None , __lowercase : str=True ) -> List[Any]: from dall_e import Encoder _snake_case = Encoder() if os.path.exists(__lowercase ): _snake_case = torch.load(__lowercase ) else: _snake_case = torch.hub.load_state_dict_from_url(__lowercase ) if isinstance(__lowercase , __lowercase ): _snake_case = ckpt.state_dict() encoder.load_state_dict(__lowercase ) if config_path is not None: _snake_case = FlavaImageCodebookConfig.from_pretrained(__lowercase ) else: _snake_case = FlavaImageCodebookConfig() _snake_case = FlavaImageCodebook(__lowercase ).eval() _snake_case = encoder.state_dict() _snake_case = upgrade_state_dict(__lowercase ) hf_model.load_state_dict(__lowercase ) _snake_case = hf_model.state_dict() _snake_case = count_parameters(__lowercase ) _snake_case = count_parameters(__lowercase ) assert torch.allclose(__lowercase , __lowercase , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(__lowercase ) else: return hf_state_dict if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') _lowerCamelCase : Optional[int] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
1
def a_ ( __lowercase : list ) -> list: if any(not isinstance(__lowercase , __lowercase ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(__lowercase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__lowercase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
686
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
1
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') _lowerCamelCase , _lowerCamelCase : List[str] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') _lowerCamelCase : str = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: _lowerCamelCase : Tuple = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _lowerCamelCase : str = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'pip install -r transformers/examples/{example_dir}/requirements.txt']) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
686
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCamelCase : List[str] = ''' Human: <<task>> Assistant: ''' _lowerCamelCase : Optional[int] = '''huggingface-tools/default-prompts''' _lowerCamelCase : int = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def a_ ( __lowercase : Optional[Any] , __lowercase : str , __lowercase : Any="run" ) -> str: if prompt_or_repo_id is None: _snake_case = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowercase ) is not None: return prompt_or_repo_id _snake_case = cached_file( __lowercase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowercase , 'r' , encoding='utf-8' ) as f: return f.read()
686
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : str = KandinskyVaaControlnetImgaImgPipeline _UpperCAmelCase : Optional[int] = ["image_embeds", "negative_image_embeds", "image", "hint"] _UpperCAmelCase : str = ["image_embeds", "negative_image_embeds", "image", "hint"] _UpperCAmelCase : Any = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _UpperCAmelCase : str = False @property def A ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def A ( self : str ): '''simple docstring''' return 32 @property def A ( self : Tuple ): '''simple docstring''' return self.time_input_dim @property def A ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def A ( self : Union[str, Any] ): '''simple docstring''' return 100 @property def A ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _snake_case = UNetaDConditionModel(**lowercase ) return model @property def A ( self : Any ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def A ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = VQModel(**self.dummy_movq_kwargs ) return model def A ( self : List[Any] ): '''simple docstring''' _snake_case = self.dummy_unet _snake_case = self.dummy_movq _snake_case = { 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.00085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _snake_case = DDIMScheduler(**lowercase ) _snake_case = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def A ( self : List[Any] , lowercase : Optional[Any] , lowercase : Dict=0 ): '''simple docstring''' _snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase ) ).to(lowercase ) _snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase ) # create init_image _snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase ) ).to(lowercase ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case = Image.fromarray(np.uinta(lowercase ) ).convert('RGB' ).resize((256, 256) ) # create hint _snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase ) ).to(lowercase ) if str(lowercase ).startswith('mps' ): _snake_case = torch.manual_seed(lowercase ) else: _snake_case = torch.Generator(device=lowercase ).manual_seed(lowercase ) _snake_case = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def A ( self : int ): '''simple docstring''' _snake_case = 'cpu' _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowercase ) _snake_case = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = pipe(**self.get_dummy_inputs(lowercase ) ) _snake_case = output.images _snake_case = pipe( **self.get_dummy_inputs(lowercase ) , return_dict=lowercase , )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _snake_case = init_image.resize((512, 512) ) _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) _snake_case = torch.from_numpy(np.array(lowercase ) ).float() / 255.0 _snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _snake_case = 'A robot, 4k photo' _snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase ) _snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) _snake_case = pipeline.to(lowercase ) pipeline.set_progress_bar_config(disable=lowercase ) _snake_case = torch.Generator(device='cpu' ).manual_seed(0 ) _snake_case , _snake_case = pipe_prior( lowercase , image=lowercase , strength=0.85 , generator=lowercase , negative_prompt='' , ).to_tuple() _snake_case = pipeline( image=lowercase , image_embeds=lowercase , negative_image_embeds=lowercase , hint=lowercase , generator=lowercase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='np' , ) _snake_case = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowercase , lowercase )
686
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : str = "audio-spectrogram-transformer" def __init__( self : Any , lowercase : int=768 , lowercase : str=12 , lowercase : Optional[Any]=12 , lowercase : Optional[int]=3_072 , lowercase : List[Any]="gelu" , lowercase : int=0.0 , lowercase : str=0.0 , lowercase : Optional[Any]=0.02 , lowercase : Dict=1E-12 , lowercase : List[Any]=16 , lowercase : Dict=True , lowercase : int=10 , lowercase : Optional[Any]=10 , lowercase : Union[str, Any]=1_024 , lowercase : Optional[Any]=128 , **lowercase : Dict , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = patch_size _snake_case = qkv_bias _snake_case = frequency_stride _snake_case = time_stride _snake_case = max_length _snake_case = num_mel_bins
686
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
1
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
1
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a_ ( __lowercase : str , __lowercase : int , __lowercase : Dict ) -> Dict: # Construct model if gpta_config_file == "": _snake_case = GPTaConfig() else: _snake_case = GPTaConfig.from_json_file(__lowercase ) _snake_case = GPTaModel(__lowercase ) # Load weights from numpy load_tf_weights_in_gpta(__lowercase , __lowercase , __lowercase ) # Save pytorch-model _snake_case = pytorch_dump_folder_path + '/' + WEIGHTS_NAME _snake_case = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , __lowercase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) _lowerCamelCase : List[Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
686
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
def a_ ( __lowercase : str , __lowercase : str ) -> int: if len(__lowercase ) != len(__lowercase ): raise ValueError('String lengths must match!' ) _snake_case = 0 for chara, chara in zip(__lowercase , __lowercase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
686
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
1
from math import sqrt def a_ ( __lowercase : int ) -> bool: assert isinstance(__lowercase , __lowercase ) and ( number >= 0 ), "'number' must been an int and positive" _snake_case = True # 0 and 1 are none primes. if number <= 1: _snake_case = False for divisor in range(2 , int(round(sqrt(__lowercase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _snake_case = False break # precondition assert isinstance(__lowercase , __lowercase ), "'status' must been from type bool" return status def a_ ( __lowercase : int ) -> Dict: assert isinstance(__lowercase , __lowercase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _snake_case = list(range(2 , n + 1 ) ) _snake_case = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__lowercase ) ): for j in range(i + 1 , len(__lowercase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _snake_case = 0 # filters actual prime numbers. _snake_case = [x for x in begin_list if x != 0] # precondition assert isinstance(__lowercase , __lowercase ), "'ans' must been from type list" return ans def a_ ( __lowercase : int ) -> Optional[Any]: assert isinstance(__lowercase , __lowercase ) and (n > 2), "'N' must been an int and > 2" _snake_case = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__lowercase ): ans.append(__lowercase ) # precondition assert isinstance(__lowercase , __lowercase ), "'ans' must been from type list" return ans def a_ ( __lowercase : Optional[int] ) -> Any: assert isinstance(__lowercase , __lowercase ) and number >= 0, "'number' must been an int and >= 0" _snake_case = [] # this list will be returns of the function. # potential prime number factors. _snake_case = 2 _snake_case = number if number == 0 or number == 1: ans.append(__lowercase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__lowercase ): while quotient != 1: if is_prime(__lowercase ) and (quotient % factor == 0): ans.append(__lowercase ) quotient /= factor else: factor += 1 else: ans.append(__lowercase ) # precondition assert isinstance(__lowercase , __lowercase ), "'ans' must been from type list" return ans def a_ ( __lowercase : Optional[Any] ) -> Any: assert isinstance(__lowercase , __lowercase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _snake_case = 0 # prime factorization of 'number' _snake_case = prime_factorization(__lowercase ) _snake_case = max(__lowercase ) # precondition assert isinstance(__lowercase , __lowercase ), "'ans' must been from type int" return ans def a_ ( __lowercase : Optional[int] ) -> Dict: assert isinstance(__lowercase , __lowercase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _snake_case = 0 # prime factorization of 'number' _snake_case = prime_factorization(__lowercase ) _snake_case = min(__lowercase ) # precondition assert isinstance(__lowercase , __lowercase ), "'ans' must been from type int" return ans def a_ ( __lowercase : Union[str, Any] ) -> Union[str, Any]: assert isinstance(__lowercase , __lowercase ), "'number' must been an int" assert isinstance(number % 2 == 0 , __lowercase ), "compare bust been from type bool" return number % 2 == 0 def a_ ( __lowercase : Optional[int] ) -> Optional[int]: assert isinstance(__lowercase , __lowercase ), "'number' must been an int" assert isinstance(number % 2 != 0 , __lowercase ), "compare bust been from type bool" return number % 2 != 0 def a_ ( __lowercase : Union[str, Any] ) -> Dict: assert ( isinstance(__lowercase , __lowercase ) and (number > 2) and is_even(__lowercase ) ), "'number' must been an int, even and > 2" _snake_case = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' _snake_case = get_prime_numbers(__lowercase ) _snake_case = len(__lowercase ) # run variable for while-loops. _snake_case = 0 _snake_case = None # exit variable. for break up the loops _snake_case = True while i < len_pn and loop: _snake_case = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _snake_case = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__lowercase , __lowercase ) and (len(__lowercase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a_ ( __lowercase : Tuple , __lowercase : List[Any] ) -> Any: assert ( isinstance(__lowercase , __lowercase ) and isinstance(__lowercase , __lowercase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _snake_case = 0 while numbera != 0: _snake_case = numbera % numbera _snake_case = numbera _snake_case = rest # precondition assert isinstance(__lowercase , __lowercase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a_ ( __lowercase : str , __lowercase : int ) -> Union[str, Any]: assert ( isinstance(__lowercase , __lowercase ) and isinstance(__lowercase , __lowercase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _snake_case = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _snake_case = prime_factorization(__lowercase ) _snake_case = prime_factorization(__lowercase ) elif numbera == 1 or numbera == 1: _snake_case = [] _snake_case = [] _snake_case = max(__lowercase , __lowercase ) _snake_case = 0 _snake_case = 0 _snake_case = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _snake_case = prime_fac_a.count(__lowercase ) _snake_case = prime_fac_a.count(__lowercase ) for _ in range(max(__lowercase , __lowercase ) ): ans *= n else: _snake_case = prime_fac_a.count(__lowercase ) for _ in range(__lowercase ): ans *= n done.append(__lowercase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _snake_case = prime_fac_a.count(__lowercase ) for _ in range(__lowercase ): ans *= n done.append(__lowercase ) # precondition assert isinstance(__lowercase , __lowercase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a_ ( __lowercase : List[str] ) -> str: assert isinstance(__lowercase , __lowercase ) and (n >= 0), "'number' must been a positive int" _snake_case = 0 _snake_case = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__lowercase ): ans += 1 # precondition assert isinstance(__lowercase , __lowercase ) and is_prime( __lowercase ), "'ans' must been a prime number and from type int" return ans def a_ ( __lowercase : str , __lowercase : Tuple ) -> Union[str, Any]: assert ( is_prime(__lowercase ) and is_prime(__lowercase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _snake_case = p_number_a + 1 # jump to the next number _snake_case = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__lowercase ): number += 1 while number < p_number_a: ans.append(__lowercase ) number += 1 # fetch the next prime number. while not is_prime(__lowercase ): number += 1 # precondition assert ( isinstance(__lowercase , __lowercase ) and ans[0] != p_number_a and ans[len(__lowercase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a_ ( __lowercase : Dict ) -> Dict: assert isinstance(__lowercase , __lowercase ) and (n >= 1), "'n' must been int and >= 1" _snake_case = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__lowercase ) # precondition assert ans[0] == 1 and ans[len(__lowercase ) - 1] == n, "Error in function getDivisiors(...)" return ans def a_ ( __lowercase : Tuple ) -> Tuple: assert isinstance(__lowercase , __lowercase ) and ( number > 1 ), "'number' must been an int and >= 1" _snake_case = get_divisors(__lowercase ) # precondition assert ( isinstance(__lowercase , __lowercase ) and (divisors[0] == 1) and (divisors[len(__lowercase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a_ ( __lowercase : Optional[Any] , __lowercase : List[Any] ) -> Any: assert ( isinstance(__lowercase , __lowercase ) and isinstance(__lowercase , __lowercase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _snake_case = gcd(abs(__lowercase ) , abs(__lowercase ) ) # precondition assert ( isinstance(__lowercase , __lowercase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a_ ( __lowercase : Tuple ) -> str: assert isinstance(__lowercase , __lowercase ) and (n >= 0), "'n' must been a int and >= 0" _snake_case = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a_ ( __lowercase : Dict ) -> Tuple: assert isinstance(__lowercase , __lowercase ) and (n >= 0), "'n' must been an int and >= 0" _snake_case = 0 _snake_case = 1 _snake_case = 1 # this will be return for _ in range(n - 1 ): _snake_case = ans ans += fiba _snake_case = tmp return ans
686
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
1
def a_ ( __lowercase : str , __lowercase : str ) -> bool: _snake_case = len(__lowercase ) + 1 _snake_case = len(__lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _snake_case = [[0 for i in range(__lowercase )] for j in range(__lowercase )] # since string of zero length match pattern of zero length _snake_case = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __lowercase ): _snake_case = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __lowercase ): _snake_case = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __lowercase ): for j in range(1 , __lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _snake_case = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _snake_case = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _snake_case = dp[i - 1][j] else: _snake_case = 0 else: _snake_case = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _lowerCamelCase : int = '''aab''' _lowerCamelCase : List[str] = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'{input_string} matches the given pattern {pattern}') else: print(F'{input_string} does not match with the given pattern {pattern}')
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
1
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ["image_processor", "tokenizer"] _UpperCAmelCase : Dict = "AutoImageProcessor" _UpperCAmelCase : Dict = "AutoTokenizer" def __init__( self : List[str] , lowercase : Dict=None , lowercase : str=None , **lowercase : Dict ): '''simple docstring''' _snake_case = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase , ) _snake_case = kwargs.pop('feature_extractor' ) _snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowercase , lowercase ) _snake_case = self.image_processor _snake_case = False def __call__( self : List[str] , *lowercase : str , **lowercase : List[Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowercase , **lowercase ) _snake_case = kwargs.pop('images' , lowercase ) _snake_case = kwargs.pop('text' , lowercase ) if len(lowercase ) > 0: _snake_case = args[0] _snake_case = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: _snake_case = self.image_processor(lowercase , *lowercase , **lowercase ) if text is not None: _snake_case = self.tokenizer(lowercase , **lowercase ) if text is None: return inputs elif images is None: return encodings else: _snake_case = encodings['input_ids'] return inputs def A ( self : Optional[Any] , *lowercase : List[Any] , **lowercase : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A ( self : Any , *lowercase : str , **lowercase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase ) @contextmanager def A ( self : str ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) _snake_case = True _snake_case = self.tokenizer yield _snake_case = self.image_processor _snake_case = False def A ( self : Any , lowercase : List[str] , lowercase : Any=False , lowercase : List[str]=None ): '''simple docstring''' if added_vocab is None: _snake_case = self.tokenizer.get_added_vocab() _snake_case = {} while tokens: _snake_case = re.search(R'<s_(.*?)>' , lowercase , re.IGNORECASE ) if start_token is None: break _snake_case = start_token.group(1 ) _snake_case = re.search(Rf'''</s_{key}>''' , lowercase , re.IGNORECASE ) _snake_case = start_token.group() if end_token is None: _snake_case = tokens.replace(lowercase , '' ) else: _snake_case = end_token.group() _snake_case = re.escape(lowercase ) _snake_case = re.escape(lowercase ) _snake_case = re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''' , lowercase , re.IGNORECASE ) if content is not None: _snake_case = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _snake_case = self.tokenajson(lowercase , is_inner_value=lowercase , added_vocab=lowercase ) if value: if len(lowercase ) == 1: _snake_case = value[0] _snake_case = value else: # leaf nodes _snake_case = [] for leaf in content.split(R'<sep/>' ): _snake_case = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _snake_case = leaf[1:-2] # for categorical special tokens output[key].append(lowercase ) if len(output[key] ) == 1: _snake_case = output[key][0] _snake_case = tokens[tokens.find(lowercase ) + len(lowercase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=lowercase , added_vocab=lowercase ) if len(lowercase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def A ( self : int ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase , ) return self.image_processor_class @property def A ( self : Optional[int] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase , ) return self.image_processor
686
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = BioGptTokenizer _UpperCAmelCase : List[str] = False def A ( self : Optional[int] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _snake_case = dict(zip(lowercase , range(len(lowercase ) ) ) ) _snake_case = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(lowercase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(lowercase ) ) def A ( self : str , lowercase : Any ): '''simple docstring''' _snake_case = 'lower newer' _snake_case = 'lower newer' return input_text, output_text def A ( self : int ): '''simple docstring''' _snake_case = BioGptTokenizer(self.vocab_file , self.merges_file ) _snake_case = 'lower' _snake_case = ['low', 'er</w>'] _snake_case = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) _snake_case = tokens + ['<unk>'] _snake_case = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) @slow def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=lowercase ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowercase ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
686
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
import math def a_ ( __lowercase : int ) -> bool: assert isinstance(__lowercase , __lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _snake_case = range(3 , int(math.sqrt(__lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=1 , **__lowercase : Tuple ) -> Union[str, Any]: _snake_case = factor * value _snake_case = value while not is_prime(__lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__lowercase ) return value
686
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
1
def a_ ( __lowercase : list ) -> list: _snake_case = False while is_sorted is False: # Until all the indices are traversed keep looping _snake_case = True for i in range(0 , len(__lowercase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: _snake_case , _snake_case = input_list[i + 1], input_list[i] # swapping if elements not in order _snake_case = False for i in range(1 , len(__lowercase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: _snake_case , _snake_case = input_list[i + 1], input_list[i] # swapping if elements not in order _snake_case = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') _lowerCamelCase : Union[str, Any] = [int(x) for x in input().split()] # inputing elements of the list in one line _lowerCamelCase : int = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
686
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
1
def a_ ( __lowercase : int , __lowercase : list[int] , __lowercase : int ) -> int: def count_of_possible_combinations(__lowercase : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__lowercase ) def a_ ( __lowercase : int , __lowercase : list[int] , __lowercase : int ) -> int: def count_of_possible_combinations_with_dp_array( __lowercase : int , __lowercase : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _snake_case = sum( count_of_possible_combinations_with_dp_array(target - item , __lowercase ) for item in array ) _snake_case = answer return answer _snake_case = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__lowercase , __lowercase ) def a_ ( __lowercase : int , __lowercase : list[int] , __lowercase : int ) -> int: _snake_case = [0] * (target + 1) _snake_case = 1 for i in range(1 , target + 1 ): for j in range(__lowercase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : Optional[int] = 3 _lowerCamelCase : List[Any] = 5 _lowerCamelCase : int = [1, 2, 5] print(combination_sum_iv(n, array, target))
686
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : Dict = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = ['''MobileNetV2FeatureExtractor'''] _lowerCamelCase : Dict = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
1
import os import jsonlines import numpy as np from tqdm import tqdm _lowerCamelCase : Union[str, Any] = 2_048 _lowerCamelCase : Union[str, Any] = 4_096 _lowerCamelCase : str = 42 _lowerCamelCase : List[Any] = os.environ.pop('''PROCESS_TRAIN''', '''false''') _lowerCamelCase : Tuple = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def a_ ( __lowercase : int ) -> int: def choose_first(__lowercase : Optional[int] , __lowercase : str=False ): assert isinstance(__lowercase , __lowercase ) if len(__lowercase ) == 1: _snake_case = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: _snake_case = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a _snake_case = {'id': example['id']} _snake_case = example['annotations'] _snake_case = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: _snake_case = ['yes'] if 1 in yes_no_answer else ['no'] _snake_case = _snake_case = [] _snake_case = _snake_case = [] _snake_case = ['<cls>'] else: _snake_case = ['short'] _snake_case = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available _snake_case = ['long'] _snake_case = choose_first(annotation['long_answer'] , is_long_answer=__lowercase ) _snake_case = [] answer.update(__lowercase ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: _snake_case = True else: _snake_case = False _snake_case = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , __lowercase ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def a_ ( __lowercase : Optional[int] , __lowercase : Tuple=False ) -> Union[str, Any]: _snake_case = _get_single_answer(__lowercase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element _snake_case = example['document']['tokens'] _snake_case = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(__lowercase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples _snake_case = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 _snake_case = example['document']['tokens'] _snake_case = answer['start_token'] _snake_case = answer['end_token'] _snake_case = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 _snake_case = ' '.join(context[start_token:end_token] ) # checking above code if assertion: _snake_case = doc['is_html'][answer['start_token'] : answer['end_token']] _snake_case = doc['token'][answer['start_token'] : answer['end_token']] _snake_case = ' '.join([old[i] for i in range(len(__lowercase ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , __lowercase , end='\n' ) print('Old:' , __lowercase , end='\n\n' ) return { "context": " ".join(__lowercase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def a_ ( __lowercase : Optional[Any] , __lowercase : List[Any] , __lowercase : List[str]=2_048 , __lowercase : int=4_096 , __lowercase : Optional[Any]=True ) -> Dict: # overlap will be of doc_stride - q_len _snake_case = get_context_and_ans(__lowercase , assertion=__lowercase ) _snake_case = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } _snake_case = tokenizer(example['question']['text'] , out['context'] ).input_ids _snake_case = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element _snake_case = [] _snake_case = [] _snake_case = input_ids[:q_len] _snake_case = range(__lowercase , len(__lowercase ) , max_length - doc_stride ) for i in doc_start_indices: _snake_case = i + max_length - q_len _snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(__lowercase ), "end_token": [-100] * len(__lowercase ), "category": category, }, } _snake_case = out['context'].split() _snake_case = splitted_context[answer['end_token']] _snake_case = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=__lowercase , ).input_ids ) _snake_case = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=__lowercase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token _snake_case = len(tokenizer(__lowercase , add_special_tokens=__lowercase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 _snake_case = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive _snake_case = answer['start_token'] _snake_case = answer['end_token'] if assertion: _snake_case = tokenizer.decode(__lowercase ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , __lowercase , end='\n\n' ) if len(__lowercase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } _snake_case = input_ids[:q_len] _snake_case = range(__lowercase , len(__lowercase ) , max_length - doc_stride ) _snake_case = [] _snake_case = [] _snake_case = [] _snake_case = [] # null, yes, no, long, short for i in doc_start_indices: _snake_case = i + max_length - q_len _snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: _snake_case = start_token - i + q_len _snake_case = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: _snake_case = -100 _snake_case = -100 answers_category.append('null' ) _snake_case = inputs[-1][start_token : end_token + 1] answers_start_token.append(__lowercase ) answers_end_token.append(__lowercase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(__lowercase ) ) print('Old:' , tokenizer.decode(__lowercase ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def a_ ( __lowercase : int , __lowercase : str , __lowercase : Dict=2_048 , __lowercase : List[str]=4_096 , __lowercase : List[str]=False ) -> int: _snake_case = get_strided_contexts_and_ans( __lowercase , __lowercase , doc_stride=__lowercase , max_length=__lowercase , assertion=__lowercase , ) return example def a_ ( __lowercase : Any , __lowercase : List[Any] ) -> Dict: with jsonlines.open(__lowercase , 'a' ) as writer: for example in tqdm(__lowercase , total=len(__lowercase ) , desc='Saving samples ... ' ): _snake_case = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer _lowerCamelCase : int = load_dataset('''natural_questions''') _lowerCamelCase : Dict = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') _lowerCamelCase : List[str] = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] _lowerCamelCase : List[Any] = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } _lowerCamelCase : Optional[Any] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) _lowerCamelCase : Tuple = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) _lowerCamelCase : List[str] = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
686
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
1
def a_ ( __lowercase : int = 1_000 ) -> int: return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
686
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _lowerCamelCase : int = get_logger(__name__) def a_ ( __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : List[str] , __lowercase : List[str] , __lowercase : Optional[Any]=0 ) -> Optional[int]: os.makedirs(__lowercase , exist_ok=__lowercase ) with FSDP.state_dict_type( __lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _snake_case = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' _snake_case = os.path.join(__lowercase , __lowercase ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(__lowercase , __lowercase ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _snake_case = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) _snake_case = os.path.join(__lowercase , __lowercase ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(__lowercase , __lowercase ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _snake_case = os.path.join(__lowercase , f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(__lowercase , exist_ok=__lowercase ) logger.info(f'''Saving model to {ckpt_dir}''' ) _snake_case = {'model': state_dict} dist_cp.save_state_dict( state_dict=__lowercase , storage_writer=dist_cp.FileSystemWriter(__lowercase ) , planner=DefaultSavePlanner() , ) logger.info(f'''Model saved to {ckpt_dir}''' ) def a_ ( __lowercase : str , __lowercase : Optional[int] , __lowercase : List[Any] , __lowercase : Union[str, Any] , __lowercase : Union[str, Any]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( __lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__lowercase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return _snake_case = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' _snake_case = os.path.join(__lowercase , __lowercase ) logger.info(f'''Loading model from {input_model_file}''' ) _snake_case = torch.load(__lowercase ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _snake_case = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) _snake_case = os.path.join(__lowercase , __lowercase ) logger.info(f'''Loading model from {input_model_file}''' ) _snake_case = torch.load(__lowercase ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _snake_case = ( os.path.join(__lowercase , f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) _snake_case = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__lowercase , storage_reader=dist_cp.FileSystemReader(__lowercase ) , planner=DefaultLoadPlanner() , ) _snake_case = state_dict['model'] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(__lowercase ) def a_ ( __lowercase : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : Any , __lowercase : Any , __lowercase : Tuple , __lowercase : Union[str, Any]=0 ) -> Union[str, Any]: os.makedirs(__lowercase , exist_ok=__lowercase ) with FSDP.state_dict_type( __lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _snake_case = FSDP.optim_state_dict(__lowercase , __lowercase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: _snake_case = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) _snake_case = os.path.join(__lowercase , __lowercase ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(__lowercase , __lowercase ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: _snake_case = os.path.join(__lowercase , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(__lowercase , exist_ok=__lowercase ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__lowercase ) , planner=DefaultSavePlanner() , ) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def a_ ( __lowercase : Dict , __lowercase : Optional[int] , __lowercase : List[Any] , __lowercase : int , __lowercase : Tuple , __lowercase : Dict=0 ) -> Any: accelerator.wait_for_everyone() with FSDP.state_dict_type( __lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: _snake_case = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) _snake_case = os.path.join(__lowercase , __lowercase ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) _snake_case = torch.load(__lowercase ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: _snake_case = ( os.path.join(__lowercase , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) _snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__lowercase ) , ) _snake_case = optim_state['optimizer'] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) _snake_case = FSDP.optim_state_dict_to_load(__lowercase , __lowercase , __lowercase ) optimizer.load_state_dict(__lowercase )
686
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
1
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _lowerCamelCase : Any = datasets.load_iris() _lowerCamelCase : Dict = np.array(data['''data''']) _lowerCamelCase : Any = np.array(data['''target''']) _lowerCamelCase : Dict = data['''target_names'''] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = train_test_split(X, y) def a_ ( __lowercase : int , __lowercase : List[str] ) -> Optional[Any]: return np.linalg.norm(np.array(__lowercase ) - np.array(__lowercase ) ) def a_ ( __lowercase : List[str] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[Any] , __lowercase : int=5 ) -> List[str]: _snake_case = zip(__lowercase , __lowercase ) # List of distances of all points from the point to be classified _snake_case = [] for data_point in data: _snake_case = euclidean_distance(data_point[0] , __lowercase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. _snake_case = [i[1] for i in sorted(__lowercase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified _snake_case = Counter(__lowercase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
686
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
1
import math def a_ ( __lowercase : int ) -> list[int]: _snake_case = [] _snake_case = 2 _snake_case = int(math.sqrt(__lowercase ) ) # Size of every segment _snake_case = [True] * (end + 1) _snake_case = [] while start <= end: if temp[start] is True: in_prime.append(__lowercase ) for i in range(start * start , end + 1 , __lowercase ): _snake_case = False start += 1 prime += in_prime _snake_case = end + 1 _snake_case = min(2 * end , __lowercase ) while low <= n: _snake_case = [True] * (high - low + 1) for each in in_prime: _snake_case = math.floor(low / each ) * each if t < low: t += each for j in range(__lowercase , high + 1 , __lowercase ): _snake_case = False for j in range(len(__lowercase ) ): if temp[j] is True: prime.append(j + low ) _snake_case = high + 1 _snake_case = min(high + end , __lowercase ) return prime print(sieve(10**6))
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
1
import re def a_ ( __lowercase : str ) -> str: if len(re.findall('[ATCG]' , __lowercase ) ) != len(__lowercase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
686
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
1
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def a_ ( __lowercase : str , __lowercase : List[Any] , __lowercase : List[str] , __lowercase : Union[str, Any] ) -> str: _snake_case = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] _snake_case = { 'wmt16-en-de-dist-12-1': [2_8.3, 2_7.5_2], 'wmt16-en-de-dist-6-1': [2_7.4, 2_7.1_1], 'wmt16-en-de-12-1': [2_6.9, 2_5.7_5], } _snake_case = f'''{src_lang}-{tgt_lang}''' _snake_case = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=__lowercase , exist_ok=__lowercase ) _snake_case = os.path.join(__lowercase , 'README.md' ) print(f'''Generating {path}''' ) with open(__lowercase , 'w' , encoding='utf-8' ) as f: f.write(__lowercase ) # make sure we are under the root of the project _lowerCamelCase : Dict = Path(__file__).resolve().parent.parent.parent _lowerCamelCase : Any = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _lowerCamelCase : Optional[int] = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
686
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "gpt_bigcode" _UpperCAmelCase : Dict = ["past_key_values"] _UpperCAmelCase : int = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , lowercase : Dict=50_257 , lowercase : Optional[int]=1_024 , lowercase : List[str]=768 , lowercase : Optional[Any]=12 , lowercase : str=12 , lowercase : Any=None , lowercase : Optional[Any]="gelu_pytorch_tanh" , lowercase : Dict=0.1 , lowercase : Any=0.1 , lowercase : Union[str, Any]=0.1 , lowercase : Dict=1E-5 , lowercase : Dict=0.02 , lowercase : Dict=True , lowercase : int=True , lowercase : List[Any]=50_256 , lowercase : str=50_256 , lowercase : Any=True , lowercase : Dict=True , lowercase : int=True , **lowercase : Union[str, Any] , ): '''simple docstring''' _snake_case = vocab_size _snake_case = n_positions _snake_case = n_embd _snake_case = n_layer _snake_case = n_head _snake_case = n_inner _snake_case = activation_function _snake_case = resid_pdrop _snake_case = embd_pdrop _snake_case = attn_pdrop _snake_case = layer_norm_epsilon _snake_case = initializer_range _snake_case = scale_attn_weights _snake_case = use_cache _snake_case = attention_softmax_in_fpaa _snake_case = scale_attention_softmax_in_fpaa _snake_case = multi_query _snake_case = bos_token_id _snake_case = eos_token_id super().__init__(bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
686
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["input_features", "is_longer"] def __init__( self : Optional[int] , lowercase : Optional[Any]=64 , lowercase : Union[str, Any]=48_000 , lowercase : str=480 , lowercase : Optional[Any]=10 , lowercase : Optional[Any]=1_024 , lowercase : Optional[int]=0.0 , lowercase : List[Any]=False , lowercase : float = 0 , lowercase : float = 14_000 , lowercase : int = None , lowercase : str = "fusion" , lowercase : str = "repeatpad" , **lowercase : Any , ): '''simple docstring''' super().__init__( feature_size=lowercase , sampling_rate=lowercase , padding_value=lowercase , return_attention_mask=lowercase , **lowercase , ) _snake_case = top_db _snake_case = truncation _snake_case = padding _snake_case = fft_window_size _snake_case = (fft_window_size >> 1) + 1 _snake_case = hop_length _snake_case = max_length_s _snake_case = max_length_s * sampling_rate _snake_case = sampling_rate _snake_case = frequency_min _snake_case = frequency_max _snake_case = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowercase , min_frequency=lowercase , max_frequency=lowercase , sampling_rate=lowercase , norm=lowercase , mel_scale='htk' , ) _snake_case = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowercase , min_frequency=lowercase , max_frequency=lowercase , sampling_rate=lowercase , norm='slaney' , mel_scale='slaney' , ) def A ( self : Dict ): '''simple docstring''' _snake_case = copy.deepcopy(self.__dict__ ) _snake_case = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def A ( self : Optional[int] , lowercase : np.array , lowercase : Optional[np.array] = None ): '''simple docstring''' _snake_case = spectrogram( lowercase , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowercase , log_mel='dB' , ) return log_mel_spectrogram.T def A ( self : Tuple , lowercase : Any , lowercase : Optional[int] , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _snake_case = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _snake_case = [0] # randomly choose index for each part _snake_case = np.random.choice(ranges[0] ) _snake_case = np.random.choice(ranges[1] ) _snake_case = np.random.choice(ranges[2] ) _snake_case = mel[idx_front : idx_front + chunk_frames, :] _snake_case = mel[idx_middle : idx_middle + chunk_frames, :] _snake_case = mel[idx_back : idx_back + chunk_frames, :] _snake_case = torch.tensor(mel[None, None, :] ) _snake_case = torch.nn.functional.interpolate( lowercase , size=[chunk_frames, 64] , mode='bilinear' , align_corners=lowercase ) _snake_case = mel_shrink[0][0].numpy() _snake_case = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def A ( self : Tuple , lowercase : np.array , lowercase : Any , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _snake_case = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _snake_case = len(lowercase ) - max_length _snake_case = np.random.randint(0 , overflow + 1 ) _snake_case = waveform[idx : idx + max_length] _snake_case = self._np_extract_fbank_features(lowercase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _snake_case = self._np_extract_fbank_features(lowercase , self.mel_filters ) _snake_case = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _snake_case = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _snake_case = np.stack([mel, mel, mel, mel] , axis=0 ) _snake_case = False else: _snake_case = self._random_mel_fusion(lowercase , lowercase , lowercase ) _snake_case = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: _snake_case = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _snake_case = int(max_length / len(lowercase ) ) _snake_case = np.stack(np.tile(lowercase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _snake_case = int(max_length / len(lowercase ) ) _snake_case = np.stack(np.tile(lowercase , lowercase ) ) _snake_case = np.pad(lowercase , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _snake_case = self._np_extract_fbank_features(lowercase , self.mel_filters ) _snake_case = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _snake_case = self._np_extract_fbank_features(lowercase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Dict , lowercase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase : str = None , lowercase : Optional[str] = None , lowercase : Optional[int] = None , lowercase : Optional[int] = None , lowercase : Optional[Union[str, TensorType]] = None , **lowercase : str , ): '''simple docstring''' _snake_case = truncation if truncation is not None else self.truncation _snake_case = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _snake_case = isinstance(lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) _snake_case = is_batched_numpy or ( isinstance(lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _snake_case = [np.asarray(lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowercase , np.ndarray ): _snake_case = np.asarray(lowercase , dtype=np.floataa ) elif isinstance(lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _snake_case = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _snake_case = [np.asarray(lowercase )] # convert to mel spectrogram, truncate and pad if needed. _snake_case = [ self._get_input_mel(lowercase , max_length if max_length else self.nb_max_samples , lowercase , lowercase ) for waveform in raw_speech ] _snake_case = [] _snake_case = [] for mel, longer in padded_inputs: input_mel.append(lowercase ) is_longer.append(lowercase ) if truncation == "fusion" and sum(lowercase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _snake_case = np.random.randint(0 , len(lowercase ) ) _snake_case = True if isinstance(input_mel[0] , lowercase ): _snake_case = [np.asarray(lowercase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _snake_case = [[longer] for longer in is_longer] _snake_case = {'input_features': input_mel, 'is_longer': is_longer} _snake_case = BatchFeature(lowercase ) if return_tensors is not None: _snake_case = input_features.convert_to_tensors(lowercase ) return input_features
686
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
1
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowerCamelCase : Union[str, Any] = logging.getLogger(__name__) def a_ ( __lowercase : torch.nn.Module , __lowercase : BnbQuantizationConfig , __lowercase : Union[str, os.PathLike] = None , __lowercase : Optional[Dict[str, Union[int, str, torch.device]]] = None , __lowercase : Optional[List[str]] = None , __lowercase : Optional[Dict[Union[int, str], Union[int, str]]] = None , __lowercase : Optional[Union[str, os.PathLike]] = None , __lowercase : bool = False , ) -> Union[str, Any]: _snake_case = bnb_quantization_config.load_in_abit _snake_case = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) _snake_case = [] # custom device map if isinstance(__lowercase , __lowercase ) and len(device_map.keys() ) > 1: _snake_case = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: _snake_case = get_keys_to_not_convert(__lowercase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowercase ) _snake_case = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: _snake_case = [] _snake_case = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowercase ) # compatibility with peft _snake_case = load_in_abit _snake_case = load_in_abit _snake_case = get_parameter_device(__lowercase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) _snake_case = replace_with_bnb_layers(__lowercase , __lowercase , modules_to_not_convert=__lowercase ) # convert param to the right dtype _snake_case = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: _snake_case = name.replace('.weight' , '' ).replace('.bias' , '' ) _snake_case = getattr(__lowercase , __lowercase , __lowercase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowercase ): param.to(__lowercase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): _snake_case = replace_with_bnb_layers( __lowercase , __lowercase , modules_to_not_convert=__lowercase ) _snake_case = get_quantized_model_device_map( __lowercase , __lowercase , __lowercase , max_memory=__lowercase , no_split_module_classes=__lowercase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): _snake_case = True _snake_case = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( __lowercase , __lowercase , __lowercase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowercase , offload_state_dict=__lowercase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowercase , device_map=__lowercase , offload_dir=__lowercase ) def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : Any=None , __lowercase : List[Any]=None , __lowercase : Union[str, Any]=None ) -> int: if device_map is None: if torch.cuda.is_available(): _snake_case = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(__lowercase , __lowercase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) _snake_case = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) _snake_case = {} _snake_case = special_dtypes _snake_case = no_split_module_classes _snake_case = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": _snake_case = get_balanced_memory( __lowercase , low_zero=(device_map == 'balanced_low_0') , max_memory=__lowercase , **__lowercase , ) _snake_case = max_memory _snake_case = infer_auto_device_map(__lowercase , **__lowercase ) if isinstance(__lowercase , __lowercase ): # check if don't have any quantized module on the cpu _snake_case = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules _snake_case = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def a_ ( __lowercase : Dict , __lowercase : Optional[Any] , __lowercase : Any=None , __lowercase : Tuple=None ) -> Tuple: if modules_to_not_convert is None: _snake_case = [] _snake_case , _snake_case = _replace_with_bnb_layers( __lowercase , __lowercase , __lowercase , __lowercase ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def a_ ( __lowercase : List[Any] , __lowercase : Dict , __lowercase : List[Any]=None , __lowercase : List[str]=None , ) -> Optional[int]: _snake_case = False for name, module in model.named_children(): if current_key_name is None: _snake_case = [] current_key_name.append(__lowercase ) if isinstance(__lowercase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` _snake_case = '.'.join(__lowercase ) _snake_case = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: _snake_case = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: _snake_case = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowercase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: _snake_case = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) _snake_case = module.weight.data if module.bias is not None: _snake_case = module.bias.data bnb_module.requires_grad_(__lowercase ) setattr(__lowercase , __lowercase , __lowercase ) _snake_case = True if len(list(module.children() ) ) > 0: _snake_case , _snake_case = _replace_with_bnb_layers( __lowercase , __lowercase , __lowercase , __lowercase ) _snake_case = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def a_ ( __lowercase : Any ) -> Optional[int]: # Create a copy of the model with init_empty_weights(): _snake_case = deepcopy(__lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` _snake_case = find_tied_parameters(__lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowercase , __lowercase ): _snake_case = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _snake_case = sum(__lowercase , [] ) _snake_case = len(__lowercase ) > 0 # Check if it is a base model _snake_case = False if hasattr(__lowercase , 'base_model_prefix' ): _snake_case = not hasattr(__lowercase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _snake_case = list(model.named_children() ) _snake_case = [list_modules[-1][0]] # add last module together with tied weights _snake_case = set(__lowercase ) - set(__lowercase ) _snake_case = list(set(__lowercase ) ) + list(__lowercase ) # remove ".weight" from the keys _snake_case = ['.weight', '.bias'] _snake_case = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _snake_case = name.replace(__lowercase , '' ) filtered_module_names.append(__lowercase ) return filtered_module_names def a_ ( __lowercase : List[str] ) -> List[Any]: for m in model.modules(): if isinstance(__lowercase , bnb.nn.Linearabit ): return True return False def a_ ( __lowercase : nn.Module ) -> Any: return next(parameter.parameters() ).device def a_ ( __lowercase : List[str] , __lowercase : Any , __lowercase : List[str] , __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Any , __lowercase : Tuple ) -> Tuple: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__lowercase , __lowercase , 0 , dtype=__lowercase , value=__lowercase ) _snake_case = param_name _snake_case = model if "." in tensor_name: _snake_case = tensor_name.split('.' ) for split in splits[:-1]: _snake_case = getattr(__lowercase , __lowercase ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) _snake_case = new_module _snake_case = splits[-1] # offload weights _snake_case = False offload_weight(module._parameters[tensor_name] , __lowercase , __lowercase , index=__lowercase ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , __lowercase , index=__lowercase , ) else: offload_weight(__lowercase , __lowercase , __lowercase , index=__lowercase ) offload_weight(__lowercase , param_name.replace('weight' , 'SCB' ) , __lowercase , index=__lowercase ) set_module_tensor_to_device(__lowercase , __lowercase , 'meta' , dtype=__lowercase , value=torch.empty(*param.size() ) )
686
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : int = LDMTextToImagePipeline _UpperCAmelCase : Tuple = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase : Dict = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase : List[str] = False def A ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _snake_case = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) _snake_case = CLIPTextModel(lowercase ) _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def A ( self : List[str] , lowercase : Optional[int] , lowercase : Any=0 ): '''simple docstring''' if str(lowercase ).startswith('mps' ): _snake_case = torch.manual_seed(lowercase ) else: _snake_case = torch.Generator(device=lowercase ).manual_seed(lowercase ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A ( self : str ): '''simple docstring''' _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = LDMTextToImagePipeline(**lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs(lowercase ) _snake_case = pipe(**lowercase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _snake_case = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Optional[int] , lowercase : Tuple , lowercase : str=torch.floataa , lowercase : Dict=0 ): '''simple docstring''' _snake_case = torch.manual_seed(lowercase ) _snake_case = np.random.RandomState(lowercase ).standard_normal((1, 4, 32, 32) ) _snake_case = torch.from_numpy(lowercase ).to(device=lowercase , dtype=lowercase ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A ( self : List[Any] ): '''simple docstring''' _snake_case = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_inputs(lowercase ) _snake_case = pipe(**lowercase ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _snake_case = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] ) _snake_case = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Tuple , lowercase : Tuple , lowercase : Optional[Any]=torch.floataa , lowercase : Tuple=0 ): '''simple docstring''' _snake_case = torch.manual_seed(lowercase ) _snake_case = np.random.RandomState(lowercase ).standard_normal((1, 4, 32, 32) ) _snake_case = torch.from_numpy(lowercase ).to(device=lowercase , dtype=lowercase ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A ( self : str ): '''simple docstring''' _snake_case = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_inputs(lowercase ) _snake_case = pipe(**lowercase ).images[0] _snake_case = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _snake_case = np.abs(expected_image - image ).max() assert max_diff < 1E-3
686
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
1
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup _lowerCamelCase : Optional[Any] = [ '''kernels/rwkv/wkv_cuda.cu''', '''kernels/rwkv/wkv_op.cpp''', '''kernels/deformable_detr/ms_deform_attn.h''', '''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''', '''models/graphormer/algos_graphormer.pyx''', ] def a_ ( __lowercase : List[Any] ) -> Tuple: # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') _lowerCamelCase : int = parser.parse_args() if args.check_lib: _lowerCamelCase : Tuple = importlib.import_module('''transformers''') _lowerCamelCase : List[Any] = Path(transformers_module.__file__).parent else: _lowerCamelCase : Any = Path.cwd() / '''build/lib/transformers''' if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
686
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "beit" def __init__( self : Any , lowercase : Any=8_192 , lowercase : str=768 , lowercase : str=12 , lowercase : Optional[int]=12 , lowercase : str=3_072 , lowercase : Any="gelu" , lowercase : Union[str, Any]=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[int]=0.02 , lowercase : Tuple=1E-12 , lowercase : str=224 , lowercase : Optional[Any]=16 , lowercase : List[str]=3 , lowercase : List[str]=False , lowercase : str=False , lowercase : Optional[int]=False , lowercase : List[str]=False , lowercase : List[Any]=0.1 , lowercase : int=0.1 , lowercase : Tuple=True , lowercase : int=[3, 5, 7, 11] , lowercase : Any=[1, 2, 3, 6] , lowercase : int=True , lowercase : Dict=0.4 , lowercase : Union[str, Any]=256 , lowercase : Optional[Any]=1 , lowercase : int=False , lowercase : Dict=255 , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = use_mask_token _snake_case = use_absolute_position_embeddings _snake_case = use_relative_position_bias _snake_case = use_shared_relative_position_bias _snake_case = layer_scale_init_value _snake_case = drop_path_rate _snake_case = use_mean_pooling # decode head attributes (semantic segmentation) _snake_case = out_indices _snake_case = pool_scales # auxiliary head attributes (semantic segmentation) _snake_case = use_auxiliary_head _snake_case = auxiliary_loss_weight _snake_case = auxiliary_channels _snake_case = auxiliary_num_convs _snake_case = auxiliary_concat_input _snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Optional[int] = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : str ): '''simple docstring''' return 1E-4
686
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[int] = StableDiffusionInpaintPipeline _UpperCAmelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS _UpperCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _UpperCAmelCase : Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _UpperCAmelCase : Union[str, Any] = frozenset([] ) def A ( self : int ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowercase , ) _snake_case = PNDMScheduler(skip_prk_steps=lowercase ) torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) _snake_case = CLIPTextModel(lowercase ) _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A ( self : Optional[int] , lowercase : Tuple , lowercase : Dict=0 ): '''simple docstring''' _snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case = Image.fromarray(np.uinta(lowercase ) ).convert('RGB' ).resize((64, 64) ) _snake_case = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(lowercase ).startswith('mps' ): _snake_case = torch.manual_seed(lowercase ) else: _snake_case = torch.Generator(device=lowercase ).manual_seed(lowercase ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A ( self : Any ): '''simple docstring''' _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionInpaintPipeline(**lowercase ) _snake_case = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs(lowercase ) _snake_case = sd_pipe(**lowercase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : str ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Dict ): '''simple docstring''' _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) _snake_case = 'stabilityai/stable-diffusion-2-inpainting' _snake_case = StableDiffusionInpaintPipeline.from_pretrained(lowercase , safety_checker=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() _snake_case = 'Face of a yellow cat, high resolution, sitting on a park bench' _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowercase , image=lowercase , mask_image=lowercase , generator=lowercase , output_type='np' , ) _snake_case = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def A ( self : Tuple ): '''simple docstring''' _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) _snake_case = 'stabilityai/stable-diffusion-2-inpainting' _snake_case = StableDiffusionInpaintPipeline.from_pretrained( lowercase , torch_dtype=torch.floataa , safety_checker=lowercase , ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() _snake_case = 'Face of a yellow cat, high resolution, sitting on a park bench' _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowercase , image=lowercase , mask_image=lowercase , generator=lowercase , output_type='np' , ) _snake_case = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def A ( self : Tuple ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _snake_case = 'stabilityai/stable-diffusion-2-inpainting' _snake_case = PNDMScheduler.from_pretrained(lowercase , subfolder='scheduler' ) _snake_case = StableDiffusionInpaintPipeline.from_pretrained( lowercase , safety_checker=lowercase , scheduler=lowercase , torch_dtype=torch.floataa , ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _snake_case = 'Face of a yellow cat, high resolution, sitting on a park bench' _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowercase , image=lowercase , mask_image=lowercase , generator=lowercase , num_inference_steps=2 , output_type='np' , ) _snake_case = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
686
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
1
from jiwer import compute_measures import datasets _lowerCamelCase : Optional[Any] = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' _lowerCamelCase : int = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' _lowerCamelCase : List[str] = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def A ( self : Optional[int] , lowercase : Tuple=None , lowercase : Any=None , lowercase : int=False ): '''simple docstring''' if concatenate_texts: return compute_measures(lowercase , lowercase )["wer"] else: _snake_case = 0 _snake_case = 0 for prediction, reference in zip(lowercase , lowercase ): _snake_case = compute_measures(lowercase , lowercase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
1
def a_ ( __lowercase : int = 50 ) -> int: _snake_case = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
686
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : List[str] = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[str] = "poolformer" def __init__( self : Dict , lowercase : str=3 , lowercase : int=16 , lowercase : Dict=16 , lowercase : Optional[int]=3 , lowercase : Union[str, Any]=4.0 , lowercase : Tuple=[2, 2, 6, 2] , lowercase : str=[64, 128, 320, 512] , lowercase : str=[7, 3, 3, 3] , lowercase : Dict=[4, 2, 2, 2] , lowercase : Dict=[2, 1, 1, 1] , lowercase : Union[str, Any]=4 , lowercase : Optional[int]=0.0 , lowercase : List[Any]="gelu" , lowercase : Optional[int]=True , lowercase : Tuple=1E-5 , lowercase : int=0.02 , **lowercase : Dict , ): '''simple docstring''' _snake_case = num_channels _snake_case = patch_size _snake_case = stride _snake_case = padding _snake_case = pool_size _snake_case = hidden_sizes _snake_case = mlp_ratio _snake_case = depths _snake_case = patch_sizes _snake_case = strides _snake_case = num_encoder_blocks _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_layer_scale _snake_case = layer_scale_init_value _snake_case = initializer_range super().__init__(**lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : str = version.parse("1.11" ) @property def A ( self : Dict ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Dict ): '''simple docstring''' return 2E-3
686
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) _lowerCamelCase : Optional[int] = logging.getLogger() def a_ ( __lowercase : str ) -> Dict: _snake_case = {} _snake_case = os.path.join(__lowercase , 'all_results.json' ) if os.path.exists(__lowercase ): with open(__lowercase , 'r' ) as f: _snake_case = json.load(__lowercase ) else: raise ValueError(f'''can\'t find {path}''' ) return results _lowerCamelCase : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def A ( self : str ): '''simple docstring''' import xla_spawn _snake_case = self.get_auto_remove_tmp_dir() _snake_case = f''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowercase , 'argv' , lowercase ): _snake_case = time() xla_spawn.main() _snake_case = time() _snake_case = get_results(lowercase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def A ( self : Union[str, Any] ): '''simple docstring''' import xla_spawn _snake_case = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(lowercase , 'argv' , lowercase ): xla_spawn.main()
686
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
1
def a_ ( __lowercase : int ) -> int: if not isinstance(__lowercase , __lowercase ): raise TypeError('Input value must be an \'int\' type' ) _snake_case = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
686
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
1