id
stringlengths
14
16
text
stringlengths
31
2.41k
source
stringlengths
53
121
9e3e8c0b73e3-5
Example: .. code-block:: python # If working with agent executor agent.agent.save(file_path="path/agent.yaml") """ # Convert file to Path object. if isinstance(file_path, str): save_path = Path(file_path) else: save_path = file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) # Fetch dictionary to save agent_dict = self.dict() if save_path.suffix == ".json": with open(file_path, "w") as f: json.dump(agent_dict, f, indent=4) elif save_path.suffix == ".yaml": with open(file_path, "w") as f: yaml.dump(agent_dict, f, default_flow_style=False) else: raise ValueError(f"{save_path} must be json or yaml") [docs] def tool_run_logging_kwargs(self) -> Dict: return {} [docs]class AgentOutputParser(BaseOutputParser): [docs] @abstractmethod def parse(self, text: str) -> Union[AgentAction, AgentFinish]: """Parse text into agent action/finish.""" [docs]class LLMSingleActionAgent(BaseSingleActionAgent): llm_chain: LLMChain output_parser: AgentOutputParser stop: List[str] @property def input_keys(self) -> List[str]: return list(set(self.llm_chain.input_keys) - {"intermediate_steps"}) [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() del _dict["output_parser"] return _dict [docs] def plan(
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-6
return _dict [docs] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ output = self.llm_chain.run( intermediate_steps=intermediate_steps, stop=self.stop, callbacks=callbacks, **kwargs, ) return self.output_parser.parse(output) [docs] async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ output = await self.llm_chain.arun( intermediate_steps=intermediate_steps, stop=self.stop, callbacks=callbacks, **kwargs, ) return self.output_parser.parse(output) [docs] def tool_run_logging_kwargs(self) -> Dict: return { "llm_prefix": "", "observation_prefix": "" if len(self.stop) == 0 else self.stop[0], }
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-7
} [docs]class Agent(BaseSingleActionAgent): """Class responsible for calling the language model and deciding the action. This is driven by an LLMChain. The prompt in the LLMChain MUST include a variable called "agent_scratchpad" where the agent can put its intermediary work. """ llm_chain: LLMChain output_parser: AgentOutputParser allowed_tools: Optional[List[str]] = None [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() del _dict["output_parser"] return _dict [docs] def get_allowed_tools(self) -> Optional[List[str]]: return self.allowed_tools @property def return_values(self) -> List[str]: return ["output"] def _fix_text(self, text: str) -> str: """Fix the text.""" raise ValueError("fix_text not implemented for this agent.") @property def _stop(self) -> List[str]: return [ f"\n{self.observation_prefix.rstrip()}", f"\n\t{self.observation_prefix.rstrip()}", ] def _construct_scratchpad( self, intermediate_steps: List[Tuple[AgentAction, str]] ) -> Union[str, List[BaseMessage]]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" return thoughts [docs] def plan( self,
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-8
return thoughts [docs] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs) return self.output_parser.parse(full_output) [docs] async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) full_output = await self.llm_chain.apredict(callbacks=callbacks, **full_inputs) return self.output_parser.parse(full_output) [docs] def get_full_inputs( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any ) -> Dict[str, Any]: """Create the full inputs for the LLMChain from intermediate steps."""
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-9
"""Create the full inputs for the LLMChain from intermediate steps.""" thoughts = self._construct_scratchpad(intermediate_steps) new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} full_inputs = {**kwargs, **new_inputs} return full_inputs @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return list(set(self.llm_chain.input_keys) - {"agent_scratchpad"}) @root_validator() def validate_prompt(cls, values: Dict) -> Dict: """Validate that prompt matches format.""" prompt = values["llm_chain"].prompt if "agent_scratchpad" not in prompt.input_variables: logger.warning( "`agent_scratchpad` should be a variable in prompt.input_variables." " Did not find it, so adding it at the end." ) prompt.input_variables.append("agent_scratchpad") if isinstance(prompt, PromptTemplate): prompt.template += "\n{agent_scratchpad}" elif isinstance(prompt, FewShotPromptTemplate): prompt.suffix += "\n{agent_scratchpad}" else: raise ValueError(f"Got unexpected prompt type {type(prompt)}") return values @property @abstractmethod def observation_prefix(self) -> str: """Prefix to append the observation with.""" @property @abstractmethod def llm_prefix(self) -> str: """Prefix to append the LLM call with.""" [docs] @classmethod @abstractmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Create a prompt for this class.""" @classmethod
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-10
"""Create a prompt for this class.""" @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: """Validate that appropriate tools are passed in.""" pass @classmethod @abstractmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: """Get default output parser for this class.""" [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) llm_chain = LLMChain( llm=llm, prompt=cls.create_prompt(tools), callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser() return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, ) [docs] def return_stopped_response( self, early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> AgentFinish: """Return response when agent has been stopped due to max iterations.""" if early_stopping_method == "force": # `force` just returns a constant string return AgentFinish(
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-11
# `force` just returns a constant string return AgentFinish( {"output": "Agent stopped due to iteration limit or time limit."}, "" ) elif early_stopping_method == "generate": # Generate does one final forward pass thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += ( f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" ) # Adding to the previous steps, we now tell the LLM to make a final pred thoughts += ( "\n\nI now need to return a final answer based on the previous steps:" ) new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} full_inputs = {**kwargs, **new_inputs} full_output = self.llm_chain.predict(**full_inputs) # We try to extract a final answer parsed_output = self.output_parser.parse(full_output) if isinstance(parsed_output, AgentFinish): # If we can extract, we send the correct stuff return parsed_output else: # If we can extract, but the tool is not the final tool, # we just return the full output return AgentFinish({"output": full_output}, full_output) else: raise ValueError( "early_stopping_method should be one of `force` or `generate`, " f"got {early_stopping_method}" ) [docs] def tool_run_logging_kwargs(self) -> Dict: return { "llm_prefix": self.llm_prefix, "observation_prefix": self.observation_prefix, } class ExceptionTool(BaseTool): name = "_Exception"
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-12
} class ExceptionTool(BaseTool): name = "_Exception" description = "Exception tool" def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: return query async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: return query [docs]class AgentExecutor(Chain): """Consists of an agent using tools.""" agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] """The agent to run for creating a plan and determining actions to take at each step of the execution loop.""" tools: Sequence[BaseTool] """The valid tools the agent can call.""" return_intermediate_steps: bool = False """Whether to return the agent's trajectory of intermediate steps at the end in addition to the final output.""" max_iterations: Optional[int] = 15 """The maximum number of steps to take before ending the execution loop. Setting to 'None' could lead to an infinite loop.""" max_execution_time: Optional[float] = None """The maximum amount of wall clock time to spend in the execution loop. """ early_stopping_method: str = "force" """The method to use for early stopping if the agent never returns `AgentFinish`. Either 'force' or 'generate'. `"force"` returns a string saying that it stopped because it met a time or iteration limit. `"generate"` calls the agent's LLM Chain one final time to generate
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-13
`"generate"` calls the agent's LLM Chain one final time to generate a final answer based on the previous steps. """ handle_parsing_errors: Union[ bool, str, Callable[[OutputParserException], str] ] = False """How to handle errors raised by the agent's output parser. Defaults to `False`, which raises the error. s If `true`, the error will be sent back to the LLM as an observation. If a string, the string itself will be sent to the LLM as an observation. If a callable function, the function will be called with the exception as an argument, and the result of that function will be passed to the agent as an observation. """ [docs] @classmethod def from_agent_and_tools( cls, agent: Union[BaseSingleActionAgent, BaseMultiActionAgent], tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any, ) -> AgentExecutor: """Create from agent and tools.""" return cls( agent=agent, tools=tools, callback_manager=callback_manager, **kwargs ) @root_validator() def validate_tools(cls, values: Dict) -> Dict: """Validate that tools are compatible with agent.""" agent = values["agent"] tools = values["tools"] allowed_tools = agent.get_allowed_tools() if allowed_tools is not None: if set(allowed_tools) != set([tool.name for tool in tools]): raise ValueError( f"Allowed tools ({allowed_tools}) different than " f"provided tools ({[tool.name for tool in tools]})"
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-14
f"provided tools ({[tool.name for tool in tools]})" ) return values @root_validator() def validate_return_direct_tool(cls, values: Dict) -> Dict: """Validate that tools are compatible with agent.""" agent = values["agent"] tools = values["tools"] if isinstance(agent, BaseMultiActionAgent): for tool in tools: if tool.return_direct: raise ValueError( "Tools that have `return_direct=True` are not allowed " "in multi-action agents" ) return values [docs] def save(self, file_path: Union[Path, str]) -> None: """Raise error - saving not supported for Agent Executors.""" raise ValueError( "Saving not supported for agent executors. " "If you are trying to save the agent, please use the " "`.save_agent(...)`" ) [docs] def save_agent(self, file_path: Union[Path, str]) -> None: """Save the underlying agent.""" return self.agent.save(file_path) @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return self.agent.input_keys @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if self.return_intermediate_steps: return self.agent.return_values + ["intermediate_steps"] else: return self.agent.return_values [docs] def lookup_tool(self, name: str) -> BaseTool: """Lookup tool by name.""" return {tool.name: tool for tool in self.tools}[name]
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-15
return {tool.name: tool for tool in self.tools}[name] def _should_continue(self, iterations: int, time_elapsed: float) -> bool: if self.max_iterations is not None and iterations >= self.max_iterations: return False if ( self.max_execution_time is not None and time_elapsed >= self.max_execution_time ): return False return True def _return( self, output: AgentFinish, intermediate_steps: list, run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: if run_manager: run_manager.on_agent_finish(output, color="green", verbose=self.verbose) final_output = output.return_values if self.return_intermediate_steps: final_output["intermediate_steps"] = intermediate_steps return final_output async def _areturn( self, output: AgentFinish, intermediate_steps: list, run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: if run_manager: await run_manager.on_agent_finish( output, color="green", verbose=self.verbose ) final_output = output.return_values if self.return_intermediate_steps: final_output["intermediate_steps"] = intermediate_steps return final_output def _take_next_step( self, name_to_tool_map: Dict[str, BaseTool], color_mapping: Dict[str, str], inputs: Dict[str, str], intermediate_steps: List[Tuple[AgentAction, str]], run_manager: Optional[CallbackManagerForChainRun] = None,
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-16
run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]: """Take a single step in the thought-action-observation loop. Override this to take control of how the agent makes and acts on choices. """ try: # Call the LLM to see what to do. output = self.agent.plan( intermediate_steps, callbacks=run_manager.get_child() if run_manager else None, **inputs, ) except OutputParserException as e: if isinstance(self.handle_parsing_errors, bool): raise_error = not self.handle_parsing_errors else: raise_error = False if raise_error: raise e text = str(e) if isinstance(self.handle_parsing_errors, bool): if e.send_to_llm: observation = str(e.observation) text = str(e.llm_output) else: observation = "Invalid or incomplete response" elif isinstance(self.handle_parsing_errors, str): observation = self.handle_parsing_errors elif callable(self.handle_parsing_errors): observation = self.handle_parsing_errors(e) else: raise ValueError("Got unexpected type of `handle_parsing_errors`") output = AgentAction("_Exception", observation, text) if run_manager: run_manager.on_agent_action(output, color="green") tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = ExceptionTool().run( output.tool_input, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-17
**tool_run_kwargs, ) return [(output, observation)] # If the tool chosen is the finishing tool, then we end and return. if isinstance(output, AgentFinish): return output actions: List[AgentAction] if isinstance(output, AgentAction): actions = [output] else: actions = output result = [] for agent_action in actions: if run_manager: run_manager.on_agent_action(agent_action, color="green") # Otherwise we lookup the tool if agent_action.tool in name_to_tool_map: tool = name_to_tool_map[agent_action.tool] return_direct = tool.return_direct color = color_mapping[agent_action.tool] tool_run_kwargs = self.agent.tool_run_logging_kwargs() if return_direct: tool_run_kwargs["llm_prefix"] = "" # We then call the tool on the tool input to get an observation observation = tool.run( agent_action.tool_input, verbose=self.verbose, color=color, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) else: tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = InvalidTool().run( agent_action.tool, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) result.append((agent_action, observation)) return result async def _atake_next_step( self, name_to_tool_map: Dict[str, BaseTool], color_mapping: Dict[str, str], inputs: Dict[str, str],
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-18
color_mapping: Dict[str, str], inputs: Dict[str, str], intermediate_steps: List[Tuple[AgentAction, str]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]: """Take a single step in the thought-action-observation loop. Override this to take control of how the agent makes and acts on choices. """ try: # Call the LLM to see what to do. output = await self.agent.aplan( intermediate_steps, callbacks=run_manager.get_child() if run_manager else None, **inputs, ) except OutputParserException as e: if isinstance(self.handle_parsing_errors, bool): raise_error = not self.handle_parsing_errors else: raise_error = False if raise_error: raise e text = str(e) if isinstance(self.handle_parsing_errors, bool): if e.send_to_llm: observation = str(e.observation) text = str(e.llm_output) else: observation = "Invalid or incomplete response" elif isinstance(self.handle_parsing_errors, str): observation = self.handle_parsing_errors elif callable(self.handle_parsing_errors): observation = self.handle_parsing_errors(e) else: raise ValueError("Got unexpected type of `handle_parsing_errors`") output = AgentAction("_Exception", observation, text) tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = await ExceptionTool().arun( output.tool_input, verbose=self.verbose, color=None,
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-19
output.tool_input, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) return [(output, observation)] # If the tool chosen is the finishing tool, then we end and return. if isinstance(output, AgentFinish): return output actions: List[AgentAction] if isinstance(output, AgentAction): actions = [output] else: actions = output async def _aperform_agent_action( agent_action: AgentAction, ) -> Tuple[AgentAction, str]: if run_manager: await run_manager.on_agent_action( agent_action, verbose=self.verbose, color="green" ) # Otherwise we lookup the tool if agent_action.tool in name_to_tool_map: tool = name_to_tool_map[agent_action.tool] return_direct = tool.return_direct color = color_mapping[agent_action.tool] tool_run_kwargs = self.agent.tool_run_logging_kwargs() if return_direct: tool_run_kwargs["llm_prefix"] = "" # We then call the tool on the tool input to get an observation observation = await tool.arun( agent_action.tool_input, verbose=self.verbose, color=color, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) else: tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = await InvalidTool().arun( agent_action.tool, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-20
**tool_run_kwargs, ) return agent_action, observation # Use asyncio.gather to run multiple tool.arun() calls concurrently result = await asyncio.gather( *[_aperform_agent_action(agent_action) for agent_action in actions] ) return list(result) def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run text through and get agent response.""" # Construct a mapping of tool name to tool for easy lookup name_to_tool_map = {tool.name: tool for tool in self.tools} # We construct a mapping from each tool to a color, used for logging. color_mapping = get_color_mapping( [tool.name for tool in self.tools], excluded_colors=["green", "red"] ) intermediate_steps: List[Tuple[AgentAction, str]] = [] # Let's start tracking the number of iterations and time elapsed iterations = 0 time_elapsed = 0.0 start_time = time.time() # We now enter the agent loop (until it returns something). while self._should_continue(iterations, time_elapsed): next_step_output = self._take_next_step( name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager=run_manager, ) if isinstance(next_step_output, AgentFinish): return self._return( next_step_output, intermediate_steps, run_manager=run_manager ) intermediate_steps.extend(next_step_output) if len(next_step_output) == 1: next_step_action = next_step_output[0]
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-21
next_step_action = next_step_output[0] # See if tool should return directly tool_return = self._get_tool_return(next_step_action) if tool_return is not None: return self._return( tool_return, intermediate_steps, run_manager=run_manager ) iterations += 1 time_elapsed = time.time() - start_time output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return self._return(output, intermediate_steps, run_manager=run_manager) async def _acall( self, inputs: Dict[str, str], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: """Run text through and get agent response.""" # Construct a mapping of tool name to tool for easy lookup name_to_tool_map = {tool.name: tool for tool in self.tools} # We construct a mapping from each tool to a color, used for logging. color_mapping = get_color_mapping( [tool.name for tool in self.tools], excluded_colors=["green"] ) intermediate_steps: List[Tuple[AgentAction, str]] = [] # Let's start tracking the number of iterations and time elapsed iterations = 0 time_elapsed = 0.0 start_time = time.time() # We now enter the agent loop (until it returns something). async with asyncio_timeout(self.max_execution_time): try: while self._should_continue(iterations, time_elapsed): next_step_output = await self._atake_next_step( name_to_tool_map, color_mapping, inputs, intermediate_steps,
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-22
color_mapping, inputs, intermediate_steps, run_manager=run_manager, ) if isinstance(next_step_output, AgentFinish): return await self._areturn( next_step_output, intermediate_steps, run_manager=run_manager, ) intermediate_steps.extend(next_step_output) if len(next_step_output) == 1: next_step_action = next_step_output[0] # See if tool should return directly tool_return = self._get_tool_return(next_step_action) if tool_return is not None: return await self._areturn( tool_return, intermediate_steps, run_manager=run_manager ) iterations += 1 time_elapsed = time.time() - start_time output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return await self._areturn( output, intermediate_steps, run_manager=run_manager ) except TimeoutError: # stop early when interrupted by the async timeout output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return await self._areturn( output, intermediate_steps, run_manager=run_manager ) def _get_tool_return( self, next_step_output: Tuple[AgentAction, str] ) -> Optional[AgentFinish]: """Check if the tool is a returning tool.""" agent_action, observation = next_step_output name_to_tool_map = {tool.name: tool for tool in self.tools} # Invalid tools won't be in the map, so we return False. if agent_action.tool in name_to_tool_map:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
9e3e8c0b73e3-23
if agent_action.tool in name_to_tool_map: if name_to_tool_map[agent_action.tool].return_direct: return AgentFinish( {self.agent.return_values[0]: observation}, "", ) return None
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent.html
957176a2a20f-0
Source code for langchain.agents.load_tools # flake8: noqa """Load tools.""" import warnings from typing import Any, Dict, List, Optional, Callable, Tuple from mypy_extensions import Arg, KwArg from langchain.agents.tools import Tool from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import Callbacks from langchain.chains.api import news_docs, open_meteo_docs, podcast_docs, tmdb_docs from langchain.chains.api.base import APIChain from langchain.chains.llm_math.base import LLMMathChain from langchain.chains.pal.base import PALChain from langchain.requests import TextRequestsWrapper from langchain.tools.arxiv.tool import ArxivQueryRun from langchain.tools.pubmed.tool import PubmedQueryRun from langchain.tools.base import BaseTool from langchain.tools.bing_search.tool import BingSearchRun from langchain.tools.ddg_search.tool import DuckDuckGoSearchRun from langchain.tools.google_search.tool import GoogleSearchResults, GoogleSearchRun from langchain.tools.metaphor_search.tool import MetaphorSearchResults from langchain.tools.google_serper.tool import GoogleSerperResults, GoogleSerperRun from langchain.tools.graphql.tool import BaseGraphQLTool from langchain.tools.human.tool import HumanInputRun from langchain.tools.python.tool import PythonREPLTool from langchain.tools.requests.tool import ( RequestsDeleteTool, RequestsGetTool, RequestsPatchTool, RequestsPostTool, RequestsPutTool, ) from langchain.tools.scenexplain.tool import SceneXplainTool from langchain.tools.searx_search.tool import SearxSearchResults, SearxSearchRun from langchain.tools.shell.tool import ShellTool
https://api.python.langchain.com/en/stable/_modules/langchain/agents/load_tools.html
957176a2a20f-1
from langchain.tools.shell.tool import ShellTool from langchain.tools.sleep.tool import SleepTool from langchain.tools.wikipedia.tool import WikipediaQueryRun from langchain.tools.wolfram_alpha.tool import WolframAlphaQueryRun from langchain.tools.openweathermap.tool import OpenWeatherMapQueryRun from langchain.utilities import ArxivAPIWrapper from langchain.utilities import PubMedAPIWrapper from langchain.utilities.bing_search import BingSearchAPIWrapper from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper from langchain.utilities.google_search import GoogleSearchAPIWrapper from langchain.utilities.google_serper import GoogleSerperAPIWrapper from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper from langchain.utilities.awslambda import LambdaWrapper from langchain.utilities.graphql import GraphQLAPIWrapper from langchain.utilities.searx_search import SearxSearchWrapper from langchain.utilities.serpapi import SerpAPIWrapper from langchain.utilities.twilio import TwilioAPIWrapper from langchain.utilities.wikipedia import WikipediaAPIWrapper from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper from langchain.utilities.openweathermap import OpenWeatherMapAPIWrapper def _get_python_repl() -> BaseTool: return PythonREPLTool() def _get_tools_requests_get() -> BaseTool: return RequestsGetTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_post() -> BaseTool: return RequestsPostTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_patch() -> BaseTool: return RequestsPatchTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_put() -> BaseTool: return RequestsPutTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_delete() -> BaseTool:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/load_tools.html
957176a2a20f-2
def _get_tools_requests_delete() -> BaseTool: return RequestsDeleteTool(requests_wrapper=TextRequestsWrapper()) def _get_terminal() -> BaseTool: return ShellTool() def _get_sleep() -> BaseTool: return SleepTool() _BASE_TOOLS: Dict[str, Callable[[], BaseTool]] = { "python_repl": _get_python_repl, "requests": _get_tools_requests_get, # preserved for backwards compatability "requests_get": _get_tools_requests_get, "requests_post": _get_tools_requests_post, "requests_patch": _get_tools_requests_patch, "requests_put": _get_tools_requests_put, "requests_delete": _get_tools_requests_delete, "terminal": _get_terminal, "sleep": _get_sleep, } def _get_pal_math(llm: BaseLanguageModel) -> BaseTool: return Tool( name="PAL-MATH", description="A language model that is really good at solving complex word math problems. Input should be a fully worded hard word math problem.", func=PALChain.from_math_prompt(llm).run, ) def _get_pal_colored_objects(llm: BaseLanguageModel) -> BaseTool: return Tool( name="PAL-COLOR-OBJ", description="A language model that is really good at reasoning about position and the color attributes of objects. Input should be a fully worded hard reasoning problem. Make sure to include all information about the objects AND the final question you want to answer.", func=PALChain.from_colored_object_prompt(llm).run, ) def _get_llm_math(llm: BaseLanguageModel) -> BaseTool: return Tool( name="Calculator",
https://api.python.langchain.com/en/stable/_modules/langchain/agents/load_tools.html
957176a2a20f-3
return Tool( name="Calculator", description="Useful for when you need to answer questions about math.", func=LLMMathChain.from_llm(llm=llm).run, coroutine=LLMMathChain.from_llm(llm=llm).arun, ) def _get_open_meteo_api(llm: BaseLanguageModel) -> BaseTool: chain = APIChain.from_llm_and_api_docs(llm, open_meteo_docs.OPEN_METEO_DOCS) return Tool( name="Open Meteo API", description="Useful for when you want to get weather information from the OpenMeteo API. The input should be a question in natural language that this API can answer.", func=chain.run, ) _LLM_TOOLS: Dict[str, Callable[[BaseLanguageModel], BaseTool]] = { "pal-math": _get_pal_math, "pal-colored-objects": _get_pal_colored_objects, "llm-math": _get_llm_math, "open-meteo-api": _get_open_meteo_api, } def _get_news_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: news_api_key = kwargs["news_api_key"] chain = APIChain.from_llm_and_api_docs( llm, news_docs.NEWS_DOCS, headers={"X-Api-Key": news_api_key} ) return Tool( name="News API", description="Use this when you want to get information about the top headlines of current news stories. The input should be a question in natural language that this API can answer.", func=chain.run, )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/load_tools.html
957176a2a20f-4
func=chain.run, ) def _get_tmdb_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: tmdb_bearer_token = kwargs["tmdb_bearer_token"] chain = APIChain.from_llm_and_api_docs( llm, tmdb_docs.TMDB_DOCS, headers={"Authorization": f"Bearer {tmdb_bearer_token}"}, ) return Tool( name="TMDB API", description="Useful for when you want to get information from The Movie Database. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_podcast_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: listen_api_key = kwargs["listen_api_key"] chain = APIChain.from_llm_and_api_docs( llm, podcast_docs.PODCAST_DOCS, headers={"X-ListenAPI-Key": listen_api_key}, ) return Tool( name="Podcast API", description="Use the Listen Notes Podcast API to search all podcasts or episodes. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_lambda_api(**kwargs: Any) -> BaseTool: return Tool( name=kwargs["awslambda_tool_name"], description=kwargs["awslambda_tool_description"], func=LambdaWrapper(**kwargs).run, ) def _get_wolfram_alpha(**kwargs: Any) -> BaseTool: return WolframAlphaQueryRun(api_wrapper=WolframAlphaAPIWrapper(**kwargs)) def _get_google_search(**kwargs: Any) -> BaseTool:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/load_tools.html
957176a2a20f-5
def _get_google_search(**kwargs: Any) -> BaseTool: return GoogleSearchRun(api_wrapper=GoogleSearchAPIWrapper(**kwargs)) def _get_wikipedia(**kwargs: Any) -> BaseTool: return WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(**kwargs)) def _get_arxiv(**kwargs: Any) -> BaseTool: return ArxivQueryRun(api_wrapper=ArxivAPIWrapper(**kwargs)) def _get_pupmed(**kwargs: Any) -> BaseTool: return PubmedQueryRun(api_wrapper=PubMedAPIWrapper(**kwargs)) def _get_google_serper(**kwargs: Any) -> BaseTool: return GoogleSerperRun(api_wrapper=GoogleSerperAPIWrapper(**kwargs)) def _get_google_serper_results_json(**kwargs: Any) -> BaseTool: return GoogleSerperResults(api_wrapper=GoogleSerperAPIWrapper(**kwargs)) def _get_google_search_results_json(**kwargs: Any) -> BaseTool: return GoogleSearchResults(api_wrapper=GoogleSearchAPIWrapper(**kwargs)) def _get_serpapi(**kwargs: Any) -> BaseTool: return Tool( name="Search", description="A search engine. Useful for when you need to answer questions about current events. Input should be a search query.", func=SerpAPIWrapper(**kwargs).run, coroutine=SerpAPIWrapper(**kwargs).arun, ) def _get_twilio(**kwargs: Any) -> BaseTool: return Tool( name="Text Message", description="Useful for when you need to send a text message to a provided phone number.", func=TwilioAPIWrapper(**kwargs).run, ) def _get_searx_search(**kwargs: Any) -> BaseTool:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/load_tools.html
957176a2a20f-6
) def _get_searx_search(**kwargs: Any) -> BaseTool: return SearxSearchRun(wrapper=SearxSearchWrapper(**kwargs)) def _get_searx_search_results_json(**kwargs: Any) -> BaseTool: wrapper_kwargs = {k: v for k, v in kwargs.items() if k != "num_results"} return SearxSearchResults(wrapper=SearxSearchWrapper(**wrapper_kwargs), **kwargs) def _get_bing_search(**kwargs: Any) -> BaseTool: return BingSearchRun(api_wrapper=BingSearchAPIWrapper(**kwargs)) def _get_metaphor_search(**kwargs: Any) -> BaseTool: return MetaphorSearchResults(api_wrapper=MetaphorSearchAPIWrapper(**kwargs)) def _get_ddg_search(**kwargs: Any) -> BaseTool: return DuckDuckGoSearchRun(api_wrapper=DuckDuckGoSearchAPIWrapper(**kwargs)) def _get_human_tool(**kwargs: Any) -> BaseTool: return HumanInputRun(**kwargs) def _get_scenexplain(**kwargs: Any) -> BaseTool: return SceneXplainTool(**kwargs) def _get_graphql_tool(**kwargs: Any) -> BaseTool: graphql_endpoint = kwargs["graphql_endpoint"] wrapper = GraphQLAPIWrapper(graphql_endpoint=graphql_endpoint) return BaseGraphQLTool(graphql_wrapper=wrapper) def _get_openweathermap(**kwargs: Any) -> BaseTool: return OpenWeatherMapQueryRun(api_wrapper=OpenWeatherMapAPIWrapper(**kwargs)) _EXTRA_LLM_TOOLS: Dict[ str, Tuple[Callable[[Arg(BaseLanguageModel, "llm"), KwArg(Any)], BaseTool], List[str]], ] = {
https://api.python.langchain.com/en/stable/_modules/langchain/agents/load_tools.html
957176a2a20f-7
] = { "news-api": (_get_news_api, ["news_api_key"]), "tmdb-api": (_get_tmdb_api, ["tmdb_bearer_token"]), "podcast-api": (_get_podcast_api, ["listen_api_key"]), } _EXTRA_OPTIONAL_TOOLS: Dict[str, Tuple[Callable[[KwArg(Any)], BaseTool], List[str]]] = { "wolfram-alpha": (_get_wolfram_alpha, ["wolfram_alpha_appid"]), "google-search": (_get_google_search, ["google_api_key", "google_cse_id"]), "google-search-results-json": ( _get_google_search_results_json, ["google_api_key", "google_cse_id", "num_results"], ), "searx-search-results-json": ( _get_searx_search_results_json, ["searx_host", "engines", "num_results", "aiosession"], ), "bing-search": (_get_bing_search, ["bing_subscription_key", "bing_search_url"]), "metaphor-search": (_get_metaphor_search, ["metaphor_api_key"]), "ddg-search": (_get_ddg_search, []), "google-serper": (_get_google_serper, ["serper_api_key", "aiosession"]), "google-serper-results-json": ( _get_google_serper_results_json, ["serper_api_key", "aiosession"], ), "serpapi": (_get_serpapi, ["serpapi_api_key", "aiosession"]), "twilio": (_get_twilio, ["account_sid", "auth_token", "from_number"]),
https://api.python.langchain.com/en/stable/_modules/langchain/agents/load_tools.html
957176a2a20f-8
"searx-search": (_get_searx_search, ["searx_host", "engines", "aiosession"]), "wikipedia": (_get_wikipedia, ["top_k_results", "lang"]), "arxiv": ( _get_arxiv, ["top_k_results", "load_max_docs", "load_all_available_meta"], ), "pupmed": ( _get_pupmed, ["top_k_results", "load_max_docs", "load_all_available_meta"], ), "human": (_get_human_tool, ["prompt_func", "input_func"]), "awslambda": ( _get_lambda_api, ["awslambda_tool_name", "awslambda_tool_description", "function_name"], ), "sceneXplain": (_get_scenexplain, []), "graphql": (_get_graphql_tool, ["graphql_endpoint"]), "openweathermap-api": (_get_openweathermap, ["openweathermap_api_key"]), } def _handle_callbacks( callback_manager: Optional[BaseCallbackManager], callbacks: Callbacks ) -> Callbacks: if callback_manager is not None: warnings.warn( "callback_manager is deprecated. Please use callbacks instead.", DeprecationWarning, ) if callbacks is not None: raise ValueError( "Cannot specify both callback_manager and callbacks arguments." ) return callback_manager return callbacks [docs]def load_huggingface_tool( task_or_repo_id: str, model_repo_id: Optional[str] = None, token: Optional[str] = None, remote: bool = False, **kwargs: Any, ) -> BaseTool:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/load_tools.html
957176a2a20f-9
**kwargs: Any, ) -> BaseTool: """Loads a tool from the HuggingFace Hub. Args: task_or_repo_id: Task or model repo id. model_repo_id: Optional model repo id. token: Optional token. remote: Optional remote. Defaults to False. **kwargs: Returns: A tool. """ try: from transformers import load_tool except ImportError: raise ImportError( "HuggingFace tools require the libraries `transformers>=4.29.0`" " and `huggingface_hub>=0.14.1` to be installed." " Please install it with" " `pip install --upgrade transformers huggingface_hub`." ) hf_tool = load_tool( task_or_repo_id, model_repo_id=model_repo_id, token=token, remote=remote, **kwargs, ) outputs = hf_tool.outputs if set(outputs) != {"text"}: raise NotImplementedError("Multimodal outputs not supported yet.") inputs = hf_tool.inputs if set(inputs) != {"text"}: raise NotImplementedError("Multimodal inputs not supported yet.") return Tool.from_function( hf_tool.__call__, name=hf_tool.name, description=hf_tool.description ) [docs]def load_tools( tool_names: List[str], llm: Optional[BaseLanguageModel] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> List[BaseTool]: """Load tools based on their name. Args: tool_names: name of tools to load.
https://api.python.langchain.com/en/stable/_modules/langchain/agents/load_tools.html
957176a2a20f-10
Args: tool_names: name of tools to load. llm: Optional language model, may be needed to initialize certain tools. callbacks: Optional callback manager or list of callback handlers. If not provided, default global callback manager will be used. Returns: List of tools. """ tools = [] callbacks = _handle_callbacks( callback_manager=kwargs.get("callback_manager"), callbacks=callbacks ) for name in tool_names: if name == "requests": warnings.warn( "tool name `requests` is deprecated - " "please use `requests_all` or specify the requests method" ) if name == "requests_all": # expand requests into various methods requests_method_tools = [ _tool for _tool in _BASE_TOOLS if _tool.startswith("requests_") ] tool_names.extend(requests_method_tools) elif name in _BASE_TOOLS: tools.append(_BASE_TOOLS[name]()) elif name in _LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") tool = _LLM_TOOLS[name](llm) tools.append(tool) elif name in _EXTRA_LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") _get_llm_tool_func, extra_keys = _EXTRA_LLM_TOOLS[name] missing_keys = set(extra_keys).difference(kwargs) if missing_keys: raise ValueError( f"Tool {name} requires some parameters that were not " f"provided: {missing_keys}" )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/load_tools.html
957176a2a20f-11
f"provided: {missing_keys}" ) sub_kwargs = {k: kwargs[k] for k in extra_keys} tool = _get_llm_tool_func(llm=llm, **sub_kwargs) tools.append(tool) elif name in _EXTRA_OPTIONAL_TOOLS: _get_tool_func, extra_keys = _EXTRA_OPTIONAL_TOOLS[name] sub_kwargs = {k: kwargs[k] for k in extra_keys if k in kwargs} tool = _get_tool_func(**sub_kwargs) tools.append(tool) else: raise ValueError(f"Got unknown tool {name}") if callbacks is not None: for tool in tools: tool.callbacks = callbacks return tools [docs]def get_all_tool_names() -> List[str]: """Get a list of all possible tool names.""" return ( list(_BASE_TOOLS) + list(_EXTRA_OPTIONAL_TOOLS) + list(_EXTRA_LLM_TOOLS) + list(_LLM_TOOLS) )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/load_tools.html
c502485a233c-0
Source code for langchain.agents.conversational.base """An agent designed to hold a conversation in addition to using tools.""" from __future__ import annotations from typing import Any, List, Optional, Sequence from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.agent_types import AgentType from langchain.agents.conversational.output_parser import ConvoOutputParser from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.tools.base import BaseTool [docs]class ConversationalAgent(Agent): """An agent designed to hold a conversation in addition to using tools.""" ai_prefix: str = "AI" output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser) @classmethod def _get_default_output_parser( cls, ai_prefix: str = "AI", **kwargs: Any ) -> AgentOutputParser: return ConvoOutputParser(ai_prefix=ai_prefix) @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return AgentType.CONVERSATIONAL_REACT_DESCRIPTION @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" [docs] @classmethod def create_prompt( cls,
https://api.python.langchain.com/en/stable/_modules/langchain/agents/conversational/base.html
c502485a233c-1
[docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, ai_prefix: str = "AI", human_prefix: str = "Human", input_variables: Optional[List[str]] = None, ) -> PromptTemplate: """Create prompt in the style of the zero shot agent. Args: tools: List of tools the agent will have access to, used to format the prompt. prefix: String to put before the list of tools. suffix: String to put after the list of tools. ai_prefix: String to use before AI output. human_prefix: String to use before human output. input_variables: List of input variables the final prompt will expect. Returns: A PromptTemplate with the template assembled from the pieces here. """ tool_strings = "\n".join( [f"> {tool.name}: {tool.description}" for tool in tools] ) tool_names = ", ".join([tool.name for tool in tools]) format_instructions = format_instructions.format( tool_names=tool_names, ai_prefix=ai_prefix, human_prefix=human_prefix ) template = "\n\n".join([prefix, tool_strings, format_instructions, suffix]) if input_variables is None: input_variables = ["input", "chat_history", "agent_scratchpad"] return PromptTemplate(template=template, input_variables=input_variables) @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: super()._validate_tools(tools) validate_tools_single_input(cls.__name__, tools)
https://api.python.langchain.com/en/stable/_modules/langchain/agents/conversational/base.html
c502485a233c-2
validate_tools_single_input(cls.__name__, tools) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, ai_prefix: str = "AI", human_prefix: str = "Human", input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) prompt = cls.create_prompt( tools, ai_prefix=ai_prefix, human_prefix=human_prefix, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser( ai_prefix=ai_prefix ) return cls( llm_chain=llm_chain, allowed_tools=tool_names, ai_prefix=ai_prefix, output_parser=_output_parser, **kwargs, )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/conversational/base.html
b354eac541df-0
Source code for langchain.agents.conversational_chat.base """An agent designed to hold a conversation in addition to using tools.""" from __future__ import annotations from typing import Any, List, Optional, Sequence, Tuple from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.conversational_chat.output_parser import ConvoOutputParser from langchain.agents.conversational_chat.prompt import ( PREFIX, SUFFIX, TEMPLATE_TOOL_RESPONSE, ) from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains import LLMChain from langchain.prompts.base import BasePromptTemplate from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from langchain.schema import ( AgentAction, AIMessage, BaseMessage, BaseOutputParser, HumanMessage, ) from langchain.tools.base import BaseTool [docs]class ConversationalChatAgent(Agent): """An agent designed to hold a conversation in addition to using tools.""" output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser) template_tool_response: str = TEMPLATE_TOOL_RESPONSE @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return ConvoOutputParser() @property def _agent_type(self) -> str: raise NotImplementedError @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property
https://api.python.langchain.com/en/stable/_modules/langchain/agents/conversational_chat/base.html
b354eac541df-1
return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: super()._validate_tools(tools) validate_tools_single_input(cls.__name__, tools) [docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, output_parser: Optional[BaseOutputParser] = None, ) -> BasePromptTemplate: tool_strings = "\n".join( [f"> {tool.name}: {tool.description}" for tool in tools] ) tool_names = ", ".join([tool.name for tool in tools]) _output_parser = output_parser or cls._get_default_output_parser() format_instructions = human_message.format( format_instructions=_output_parser.get_format_instructions() ) final_prompt = format_instructions.format( tool_names=tool_names, tools=tool_strings ) if input_variables is None: input_variables = ["input", "chat_history", "agent_scratchpad"] messages = [ SystemMessagePromptTemplate.from_template(system_message), MessagesPlaceholder(variable_name="chat_history"), HumanMessagePromptTemplate.from_template(final_prompt), MessagesPlaceholder(variable_name="agent_scratchpad"), ] return ChatPromptTemplate(input_variables=input_variables, messages=messages) def _construct_scratchpad( self, intermediate_steps: List[Tuple[AgentAction, str]] ) -> List[BaseMessage]:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/conversational_chat/base.html
b354eac541df-2
) -> List[BaseMessage]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts: List[BaseMessage] = [] for action, observation in intermediate_steps: thoughts.append(AIMessage(content=action.log)) human_message = HumanMessage( content=self.template_tool_response.format(observation=observation) ) thoughts.append(human_message) return thoughts [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) _output_parser = output_parser or cls._get_default_output_parser() prompt = cls.create_prompt( tools, system_message=system_message, human_message=human_message, input_variables=input_variables, output_parser=_output_parser, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/conversational_chat/base.html
40b039db3cdf-0
Source code for langchain.agents.structured_chat.base import re from typing import Any, List, Optional, Sequence, Tuple from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.structured_chat.output_parser import ( StructuredChatOutputParserWithRetries, ) from langchain.agents.structured_chat.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.prompts.base import BasePromptTemplate from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.schema import AgentAction from langchain.tools import BaseTool HUMAN_MESSAGE_TEMPLATE = "{input}\n\n{agent_scratchpad}" [docs]class StructuredChatAgent(Agent): output_parser: AgentOutputParser = Field( default_factory=StructuredChatOutputParserWithRetries ) @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" def _construct_scratchpad( self, intermediate_steps: List[Tuple[AgentAction, str]] ) -> str: agent_scratchpad = super()._construct_scratchpad(intermediate_steps) if not isinstance(agent_scratchpad, str): raise ValueError("agent_scratchpad should be of type string.") if agent_scratchpad: return ( f"This was your previous work "
https://api.python.langchain.com/en/stable/_modules/langchain/agents/structured_chat/base.html
40b039db3cdf-1
return ( f"This was your previous work " f"(but I haven't seen any of it! I only see what " f"you return as final answer):\n{agent_scratchpad}" ) else: return agent_scratchpad @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: pass @classmethod def _get_default_output_parser( cls, llm: Optional[BaseLanguageModel] = None, **kwargs: Any ) -> AgentOutputParser: return StructuredChatOutputParserWithRetries.from_llm(llm=llm) @property def _stop(self) -> List[str]: return ["Observation:"] [docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], prefix: str = PREFIX, suffix: str = SUFFIX, human_message_template: str = HUMAN_MESSAGE_TEMPLATE, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, memory_prompts: Optional[List[BasePromptTemplate]] = None, ) -> BasePromptTemplate: tool_strings = [] for tool in tools: args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args))) tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}") formatted_tools = "\n".join(tool_strings) tool_names = ", ".join([tool.name for tool in tools]) format_instructions = format_instructions.format(tool_names=tool_names) template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
https://api.python.langchain.com/en/stable/_modules/langchain/agents/structured_chat/base.html
40b039db3cdf-2
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix]) if input_variables is None: input_variables = ["input", "agent_scratchpad"] _memory_prompts = memory_prompts or [] messages = [ SystemMessagePromptTemplate.from_template(template), *_memory_prompts, HumanMessagePromptTemplate.from_template(human_message_template), ] return ChatPromptTemplate(input_variables=input_variables, messages=messages) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = PREFIX, suffix: str = SUFFIX, human_message_template: str = HUMAN_MESSAGE_TEMPLATE, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, memory_prompts: Optional[List[BasePromptTemplate]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) prompt = cls.create_prompt( tools, prefix=prefix, suffix=suffix, human_message_template=human_message_template, format_instructions=format_instructions, input_variables=input_variables, memory_prompts=memory_prompts, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools]
https://api.python.langchain.com/en/stable/_modules/langchain/agents/structured_chat/base.html
40b039db3cdf-3
) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser(llm=llm) return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, ) @property def _agent_type(self) -> str: raise ValueError
https://api.python.langchain.com/en/stable/_modules/langchain/agents/structured_chat/base.html
f31f4e77a4c5-0
Source code for langchain.agents.openai_functions_agent.base """Module implements an agent that uses OpenAI's APIs function enabled API.""" import json from dataclasses import dataclass from json import JSONDecodeError from typing import Any, List, Optional, Sequence, Tuple, Union from pydantic import root_validator from langchain.agents import BaseSingleActionAgent from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import Callbacks from langchain.chat_models.openai import ChatOpenAI from langchain.prompts.base import BasePromptTemplate from langchain.prompts.chat import ( BaseMessagePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, ) from langchain.schema import ( AgentAction, AgentFinish, AIMessage, BaseMessage, FunctionMessage, OutputParserException, SystemMessage, ) from langchain.tools import BaseTool from langchain.tools.convert_to_openai import format_tool_to_openai_function @dataclass class _FunctionsAgentAction(AgentAction): message_log: List[BaseMessage] def _convert_agent_action_to_messages( agent_action: AgentAction, observation: str ) -> List[BaseMessage]: """Convert an agent action to a message. This code is used to reconstruct the original AI message from the agent action. Args: agent_action: Agent action to convert. Returns: AIMessage that corresponds to the original tool invocation. """ if isinstance(agent_action, _FunctionsAgentAction): return agent_action.message_log + [ _create_function_message(agent_action, observation) ] else: return [AIMessage(content=agent_action.log)]
https://api.python.langchain.com/en/stable/_modules/langchain/agents/openai_functions_agent/base.html
f31f4e77a4c5-1
] else: return [AIMessage(content=agent_action.log)] def _create_function_message( agent_action: AgentAction, observation: str ) -> FunctionMessage: """Convert agent action and observation into a function message. Args: agent_action: the tool invocation request from the agent observation: the result of the tool invocation Returns: FunctionMessage that corresponds to the original tool invocation """ if not isinstance(observation, str): try: content = json.dumps(observation, ensure_ascii=False) except Exception: content = str(observation) else: content = observation return FunctionMessage( name=agent_action.tool, content=content, ) def _format_intermediate_steps( intermediate_steps: List[Tuple[AgentAction, str]], ) -> List[BaseMessage]: """Format intermediate steps. Args: intermediate_steps: Steps the LLM has taken to date, along with observations Returns: list of messages to send to the LLM for the next prediction """ messages = [] for intermediate_step in intermediate_steps: agent_action, observation = intermediate_step messages.extend(_convert_agent_action_to_messages(agent_action, observation)) return messages def _parse_ai_message(message: BaseMessage) -> Union[AgentAction, AgentFinish]: """Parse an AI message.""" if not isinstance(message, AIMessage): raise TypeError(f"Expected an AI message got {type(message)}") function_call = message.additional_kwargs.get("function_call", {}) if function_call: function_call = message.additional_kwargs["function_call"] function_name = function_call["name"] try:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/openai_functions_agent/base.html
f31f4e77a4c5-2
function_name = function_call["name"] try: _tool_input = json.loads(function_call["arguments"]) except JSONDecodeError: raise OutputParserException( f"Could not parse tool input: {function_call} because " f"the `arguments` is not valid JSON." ) # HACK HACK HACK: # The code that encodes tool input into Open AI uses a special variable # name called `__arg1` to handle old style tools that do not expose a # schema and expect a single string argument as an input. # We unpack the argument here if it exists. # Open AI does not support passing in a JSON array as an argument. if "__arg1" in _tool_input: tool_input = _tool_input["__arg1"] else: tool_input = _tool_input content_msg = "responded: {content}\n" if message.content else "\n" return _FunctionsAgentAction( tool=function_name, tool_input=tool_input, log=f"\nInvoking: `{function_name}` with `{tool_input}`\n{content_msg}\n", message_log=[message], ) return AgentFinish(return_values={"output": message.content}, log=message.content) [docs]class OpenAIFunctionsAgent(BaseSingleActionAgent): """An Agent driven by OpenAIs function powered API. Args: llm: This should be an instance of ChatOpenAI, specifically a model that supports using `functions`. tools: The tools this agent has access to. prompt: The prompt for this agent, should support agent_scratchpad as one of the variables. For an easy way to construct this prompt, use
https://api.python.langchain.com/en/stable/_modules/langchain/agents/openai_functions_agent/base.html
f31f4e77a4c5-3
of the variables. For an easy way to construct this prompt, use `OpenAIFunctionsAgent.create_prompt(...)` """ llm: BaseLanguageModel tools: Sequence[BaseTool] prompt: BasePromptTemplate [docs] def get_allowed_tools(self) -> List[str]: """Get allowed tools.""" return list([t.name for t in self.tools]) @root_validator def validate_llm(cls, values: dict) -> dict: if not isinstance(values["llm"], ChatOpenAI): raise ValueError("Only supported with ChatOpenAI models.") return values @root_validator def validate_prompt(cls, values: dict) -> dict: prompt: BasePromptTemplate = values["prompt"] if "agent_scratchpad" not in prompt.input_variables: raise ValueError( "`agent_scratchpad` should be one of the variables in the prompt, " f"got {prompt.input_variables}" ) return values @property def input_keys(self) -> List[str]: """Get input keys. Input refers to user input here.""" return ["input"] @property def functions(self) -> List[dict]: return [dict(format_tool_to_openai_function(t)) for t in self.tools] [docs] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/openai_functions_agent/base.html
f31f4e77a4c5-4
**kwargs: User inputs. Returns: Action specifying what tool to use. """ agent_scratchpad = _format_intermediate_steps(intermediate_steps) selected_inputs = { k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad" } full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad) prompt = self.prompt.format_prompt(**full_inputs) messages = prompt.to_messages() predicted_message = self.llm.predict_messages( messages, functions=self.functions, callbacks=callbacks ) agent_decision = _parse_ai_message(predicted_message) return agent_decision [docs] async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns: Action specifying what tool to use. """ agent_scratchpad = _format_intermediate_steps(intermediate_steps) selected_inputs = { k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad" } full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad) prompt = self.prompt.format_prompt(**full_inputs) messages = prompt.to_messages() predicted_message = await self.llm.apredict_messages( messages, functions=self.functions, callbacks=callbacks ) agent_decision = _parse_ai_message(predicted_message)
https://api.python.langchain.com/en/stable/_modules/langchain/agents/openai_functions_agent/base.html
f31f4e77a4c5-5
) agent_decision = _parse_ai_message(predicted_message) return agent_decision [docs] @classmethod def create_prompt( cls, system_message: Optional[SystemMessage] = SystemMessage( content="You are a helpful AI assistant." ), extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None, ) -> BasePromptTemplate: """Create prompt for this agent. Args: system_message: Message to use as the system message that will be the first in the prompt. extra_prompt_messages: Prompt messages that will be placed between the system message and the new human input. Returns: A prompt template to pass into this agent. """ _prompts = extra_prompt_messages or [] messages: List[Union[BaseMessagePromptTemplate, BaseMessage]] if system_message: messages = [system_message] else: messages = [] messages.extend( [ *_prompts, HumanMessagePromptTemplate.from_template("{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ] ) return ChatPromptTemplate(messages=messages) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None, system_message: Optional[SystemMessage] = SystemMessage( content="You are a helpful AI assistant." ), **kwargs: Any, ) -> BaseSingleActionAgent: """Construct an agent from an LLM and tools."""
https://api.python.langchain.com/en/stable/_modules/langchain/agents/openai_functions_agent/base.html
f31f4e77a4c5-6
"""Construct an agent from an LLM and tools.""" if not isinstance(llm, ChatOpenAI): raise ValueError("Only supported with ChatOpenAI models.") prompt = cls.create_prompt( extra_prompt_messages=extra_prompt_messages, system_message=system_message, ) return cls( llm=llm, prompt=prompt, tools=tools, callback_manager=callback_manager, **kwargs, )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/openai_functions_agent/base.html
3aad8c5ebea2-0
Source code for langchain.agents.react.base """Chain that implements the ReAct paper from https://arxiv.org/pdf/2210.03629.pdf.""" from typing import Any, List, Optional, Sequence from pydantic import Field from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser from langchain.agents.agent_types import AgentType from langchain.agents.react.output_parser import ReActOutputParser from langchain.agents.react.textworld_prompt import TEXTWORLD_PROMPT from langchain.agents.react.wiki_prompt import WIKI_PROMPT from langchain.agents.tools import Tool from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.docstore.base import Docstore from langchain.docstore.document import Document from langchain.prompts.base import BasePromptTemplate from langchain.tools.base import BaseTool class ReActDocstoreAgent(Agent): """Agent for the ReAct chain.""" output_parser: AgentOutputParser = Field(default_factory=ReActOutputParser) @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return ReActOutputParser() @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return AgentType.REACT_DOCSTORE @classmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Return default prompt.""" return WIKI_PROMPT @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: validate_tools_single_input(cls.__name__, tools) super()._validate_tools(tools) if len(tools) != 2:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/react/base.html
3aad8c5ebea2-1
super()._validate_tools(tools) if len(tools) != 2: raise ValueError(f"Exactly two tools must be specified, but got {tools}") tool_names = {tool.name for tool in tools} if tool_names != {"Lookup", "Search"}: raise ValueError( f"Tool names should be Lookup and Search, got {tool_names}" ) @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def _stop(self) -> List[str]: return ["\nObservation:"] @property def llm_prefix(self) -> str: """Prefix to append the LLM call with.""" return "Thought:" class DocstoreExplorer: """Class to assist with exploration of a document store.""" def __init__(self, docstore: Docstore): """Initialize with a docstore, and set initial document to None.""" self.docstore = docstore self.document: Optional[Document] = None self.lookup_str = "" self.lookup_index = 0 def search(self, term: str) -> str: """Search for a term in the docstore, and if found save.""" result = self.docstore.search(term) if isinstance(result, Document): self.document = result return self._summary else: self.document = None return result def lookup(self, term: str) -> str: """Lookup a term in document (if saved).""" if self.document is None: raise ValueError("Cannot lookup without a successful search first") if term.lower() != self.lookup_str:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/react/base.html
3aad8c5ebea2-2
if term.lower() != self.lookup_str: self.lookup_str = term.lower() self.lookup_index = 0 else: self.lookup_index += 1 lookups = [p for p in self._paragraphs if self.lookup_str in p.lower()] if len(lookups) == 0: return "No Results" elif self.lookup_index >= len(lookups): return "No More Results" else: result_prefix = f"(Result {self.lookup_index + 1}/{len(lookups)})" return f"{result_prefix} {lookups[self.lookup_index]}" @property def _summary(self) -> str: return self._paragraphs[0] @property def _paragraphs(self) -> List[str]: if self.document is None: raise ValueError("Cannot get paragraphs without a document") return self.document.page_content.split("\n\n") [docs]class ReActTextWorldAgent(ReActDocstoreAgent): """Agent for the ReAct TextWorld chain.""" [docs] @classmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Return default prompt.""" return TEXTWORLD_PROMPT @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: validate_tools_single_input(cls.__name__, tools) super()._validate_tools(tools) if len(tools) != 1: raise ValueError(f"Exactly one tool must be specified, but got {tools}") tool_names = {tool.name for tool in tools} if tool_names != {"Play"}: raise ValueError(f"Tool name should be Play, got {tool_names}")
https://api.python.langchain.com/en/stable/_modules/langchain/agents/react/base.html
3aad8c5ebea2-3
raise ValueError(f"Tool name should be Play, got {tool_names}") [docs]class ReActChain(AgentExecutor): """Chain that implements the ReAct paper. Example: .. code-block:: python from langchain import ReActChain, OpenAI react = ReAct(llm=OpenAI()) """ def __init__(self, llm: BaseLanguageModel, docstore: Docstore, **kwargs: Any): """Initialize with the LLM and a docstore.""" docstore_explorer = DocstoreExplorer(docstore) tools = [ Tool( name="Search", func=docstore_explorer.search, description="Search for a term in the docstore.", ), Tool( name="Lookup", func=docstore_explorer.lookup, description="Lookup a term in the docstore.", ), ] agent = ReActDocstoreAgent.from_llm_and_tools(llm, tools) super().__init__(agent=agent, tools=tools, **kwargs)
https://api.python.langchain.com/en/stable/_modules/langchain/agents/react/base.html
9d87e1709257-0
Source code for langchain.agents.mrkl.base """Attempt to implement MRKL systems as described in arxiv.org/pdf/2205.00445.pdf.""" from __future__ import annotations from typing import Any, Callable, List, NamedTuple, Optional, Sequence from pydantic import Field from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser from langchain.agents.agent_types import AgentType from langchain.agents.mrkl.output_parser import MRKLOutputParser from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.agents.tools import Tool from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.tools.base import BaseTool class ChainConfig(NamedTuple): """Configuration for chain to use in MRKL system. Args: action_name: Name of the action. action: Action function to call. action_description: Description of the action. """ action_name: str action: Callable action_description: str [docs]class ZeroShotAgent(Agent): """Agent for the MRKL chain.""" output_parser: AgentOutputParser = Field(default_factory=MRKLOutputParser) @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return MRKLOutputParser() @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return AgentType.ZERO_SHOT_REACT_DESCRIPTION @property def observation_prefix(self) -> str:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/mrkl/base.html
9d87e1709257-1
@property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" [docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, ) -> PromptTemplate: """Create prompt in the style of the zero shot agent. Args: tools: List of tools the agent will have access to, used to format the prompt. prefix: String to put before the list of tools. suffix: String to put after the list of tools. input_variables: List of input variables the final prompt will expect. Returns: A PromptTemplate with the template assembled from the pieces here. """ tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools]) tool_names = ", ".join([tool.name for tool in tools]) format_instructions = format_instructions.format(tool_names=tool_names) template = "\n\n".join([prefix, tool_strings, format_instructions, suffix]) if input_variables is None: input_variables = ["input", "agent_scratchpad"] return PromptTemplate(template=template, input_variables=input_variables) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool],
https://api.python.langchain.com/en/stable/_modules/langchain/agents/mrkl/base.html
9d87e1709257-2
llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) prompt = cls.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser() return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, ) @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: validate_tools_single_input(cls.__name__, tools) if len(tools) == 0: raise ValueError( f"Got no tools for {cls.__name__}. At least one tool must be provided." ) for tool in tools: if tool.description is None: raise ValueError( f"Got a tool {tool.name} without a description. For this agent, " f"a description must always be provided." )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/mrkl/base.html
9d87e1709257-3
f"a description must always be provided." ) super()._validate_tools(tools) [docs]class MRKLChain(AgentExecutor): """Chain that implements the MRKL system. Example: .. code-block:: python from langchain import OpenAI, MRKLChain from langchain.chains.mrkl.base import ChainConfig llm = OpenAI(temperature=0) prompt = PromptTemplate(...) chains = [...] mrkl = MRKLChain.from_chains(llm=llm, prompt=prompt) """ [docs] @classmethod def from_chains( cls, llm: BaseLanguageModel, chains: List[ChainConfig], **kwargs: Any ) -> AgentExecutor: """User friendly way to initialize the MRKL chain. This is intended to be an easy way to get up and running with the MRKL chain. Args: llm: The LLM to use as the agent LLM. chains: The chains the MRKL system has access to. **kwargs: parameters to be passed to initialization. Returns: An initialized MRKL chain. Example: .. code-block:: python from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, MRKLChain from langchain.chains.mrkl.base import ChainConfig llm = OpenAI(temperature=0) search = SerpAPIWrapper() llm_math_chain = LLMMathChain(llm=llm) chains = [ ChainConfig( action_name = "Search", action=search.search, action_description="useful for searching" ), ChainConfig(
https://api.python.langchain.com/en/stable/_modules/langchain/agents/mrkl/base.html
9d87e1709257-4
action_description="useful for searching" ), ChainConfig( action_name="Calculator", action=llm_math_chain.run, action_description="useful for doing math" ) ] mrkl = MRKLChain.from_chains(llm, chains) """ tools = [ Tool( name=c.action_name, func=c.action, description=c.action_description, ) for c in chains ] agent = ZeroShotAgent.from_llm_and_tools(llm, tools) return cls(agent=agent, tools=tools, **kwargs)
https://api.python.langchain.com/en/stable/_modules/langchain/agents/mrkl/base.html
8b1bd31f5d5c-0
Source code for langchain.agents.agent_toolkits.playwright.toolkit """Playwright web browser toolkit.""" from __future__ import annotations from typing import TYPE_CHECKING, List, Optional, Type, cast from pydantic import Extra, root_validator from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools.base import BaseTool from langchain.tools.playwright.base import ( BaseBrowserTool, lazy_import_playwright_browsers, ) from langchain.tools.playwright.click import ClickTool from langchain.tools.playwright.current_page import CurrentWebPageTool from langchain.tools.playwright.extract_hyperlinks import ExtractHyperlinksTool from langchain.tools.playwright.extract_text import ExtractTextTool from langchain.tools.playwright.get_elements import GetElementsTool from langchain.tools.playwright.navigate import NavigateTool from langchain.tools.playwright.navigate_back import NavigateBackTool if TYPE_CHECKING: from playwright.async_api import Browser as AsyncBrowser from playwright.sync_api import Browser as SyncBrowser else: try: # We do this so pydantic can resolve the types when instantiating from playwright.async_api import Browser as AsyncBrowser from playwright.sync_api import Browser as SyncBrowser except ImportError: pass [docs]class PlayWrightBrowserToolkit(BaseToolkit): """Toolkit for web browser tools.""" sync_browser: Optional["SyncBrowser"] = None async_browser: Optional["AsyncBrowser"] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator def validate_imports_and_browser_provided(cls, values: dict) -> dict: """Check that the arguments are valid.""" lazy_import_playwright_browsers()
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/playwright/toolkit.html
8b1bd31f5d5c-1
"""Check that the arguments are valid.""" lazy_import_playwright_browsers() if values.get("async_browser") is None and values.get("sync_browser") is None: raise ValueError("Either async_browser or sync_browser must be specified.") return values [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" tool_classes: List[Type[BaseBrowserTool]] = [ ClickTool, NavigateTool, NavigateBackTool, ExtractTextTool, ExtractHyperlinksTool, GetElementsTool, CurrentWebPageTool, ] tools = [ tool_cls.from_browser( sync_browser=self.sync_browser, async_browser=self.async_browser ) for tool_cls in tool_classes ] return cast(List[BaseTool], tools) [docs] @classmethod def from_browser( cls, sync_browser: Optional[SyncBrowser] = None, async_browser: Optional[AsyncBrowser] = None, ) -> PlayWrightBrowserToolkit: """Instantiate the toolkit.""" # This is to raise a better error than the forward ref ones Pydantic would have lazy_import_playwright_browsers() return cls(sync_browser=sync_browser, async_browser=async_browser)
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/playwright/toolkit.html
e32a6e52baee-0
Source code for langchain.agents.agent_toolkits.openapi.toolkit """Requests toolkit.""" from __future__ import annotations from typing import Any, List from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.agents.agent_toolkits.json.base import create_json_agent from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit from langchain.agents.agent_toolkits.openapi.prompt import DESCRIPTION from langchain.agents.tools import Tool from langchain.base_language import BaseLanguageModel from langchain.requests import TextRequestsWrapper from langchain.tools import BaseTool from langchain.tools.json.tool import JsonSpec from langchain.tools.requests.tool import ( RequestsDeleteTool, RequestsGetTool, RequestsPatchTool, RequestsPostTool, RequestsPutTool, ) class RequestsToolkit(BaseToolkit): """Toolkit for making requests.""" requests_wrapper: TextRequestsWrapper def get_tools(self) -> List[BaseTool]: """Return a list of tools.""" return [ RequestsGetTool(requests_wrapper=self.requests_wrapper), RequestsPostTool(requests_wrapper=self.requests_wrapper), RequestsPatchTool(requests_wrapper=self.requests_wrapper), RequestsPutTool(requests_wrapper=self.requests_wrapper), RequestsDeleteTool(requests_wrapper=self.requests_wrapper), ] [docs]class OpenAPIToolkit(BaseToolkit): """Toolkit for interacting with a OpenAPI api.""" json_agent: AgentExecutor requests_wrapper: TextRequestsWrapper [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" json_agent_tool = Tool( name="json_explorer", func=self.json_agent.run, description=DESCRIPTION, )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/openapi/toolkit.html
e32a6e52baee-1
func=self.json_agent.run, description=DESCRIPTION, ) request_toolkit = RequestsToolkit(requests_wrapper=self.requests_wrapper) return [*request_toolkit.get_tools(), json_agent_tool] [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, json_spec: JsonSpec, requests_wrapper: TextRequestsWrapper, **kwargs: Any, ) -> OpenAPIToolkit: """Create json agent from llm, then initialize.""" json_agent = create_json_agent(llm, JsonToolkit(spec=json_spec), **kwargs) return cls(json_agent=json_agent, requests_wrapper=requests_wrapper)
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/openapi/toolkit.html
119336d6d0f6-0
Source code for langchain.agents.agent_toolkits.openapi.base """OpenAPI spec agent.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.openapi.prompt import ( OPENAPI_PREFIX, OPENAPI_SUFFIX, ) from langchain.agents.agent_toolkits.openapi.toolkit import OpenAPIToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain [docs]def create_openapi_agent( llm: BaseLanguageModel, toolkit: OpenAPIToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = OPENAPI_PREFIX, suffix: str = OPENAPI_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", verbose: bool = False, return_intermediate_steps: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a json agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain(
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/openapi/base.html
119336d6d0f6-1
input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, return_intermediate_steps=return_intermediate_steps, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/openapi/base.html
c5561aedd9ea-0
Source code for langchain.agents.agent_toolkits.python.base """Python agent.""" from typing import Any, Dict, Optional from langchain.agents.agent import AgentExecutor, BaseSingleActionAgent from langchain.agents.agent_toolkits.python.prompt import PREFIX from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent from langchain.agents.types import AgentType from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.schema import SystemMessage from langchain.tools.python.tool import PythonREPLTool [docs]def create_python_agent( llm: BaseLanguageModel, tool: PythonREPLTool, agent_type: AgentType = AgentType.ZERO_SHOT_REACT_DESCRIPTION, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = False, prefix: str = PREFIX, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a python agent from an LLM and tool.""" tools = [tool] agent: BaseSingleActionAgent if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION: prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) elif agent_type == AgentType.OPENAI_FUNCTIONS:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/python/base.html
c5561aedd9ea-1
elif agent_type == AgentType.OPENAI_FUNCTIONS: system_message = SystemMessage(content=prefix) _prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message) agent = OpenAIFunctionsAgent( llm=llm, prompt=_prompt, tools=tools, callback_manager=callback_manager, **kwargs, ) else: raise ValueError(f"Agent type {agent_type} not supported at the moment.") return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/python/base.html
b03d88c101f5-0
Source code for langchain.agents.agent_toolkits.spark.base """Agent for working with pandas objects.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.spark.prompt import PREFIX, SUFFIX from langchain.agents.mrkl.base import ZeroShotAgent from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.base import BaseLLM from langchain.tools.python.tool import PythonAstREPLTool def _validate_spark_df(df: Any) -> bool: try: from pyspark.sql import DataFrame as SparkLocalDataFrame return isinstance(df, SparkLocalDataFrame) except ImportError: return False def _validate_spark_connect_df(df: Any) -> bool: try: from pyspark.sql.connect.dataframe import DataFrame as SparkConnectDataFrame return isinstance(df, SparkConnectDataFrame) except ImportError: return False [docs]def create_spark_dataframe_agent( llm: BaseLLM, df: Any, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = PREFIX, suffix: str = SUFFIX, input_variables: Optional[List[str]] = None, verbose: bool = False, return_intermediate_steps: bool = False, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a spark agent from an LLM and dataframe."""
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/spark/base.html
b03d88c101f5-1
) -> AgentExecutor: """Construct a spark agent from an LLM and dataframe.""" if not _validate_spark_df(df) and not _validate_spark_connect_df(df): raise ValueError("Spark is not installed. run `pip install pyspark`.") if input_variables is None: input_variables = ["df", "input", "agent_scratchpad"] tools = [PythonAstREPLTool(locals={"df": df})] prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=input_variables ) partial_prompt = prompt.partial(df=str(df.first())) llm_chain = LLMChain( llm=llm, prompt=partial_prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent( llm_chain=llm_chain, allowed_tools=tool_names, callback_manager=callback_manager, **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, return_intermediate_steps=return_intermediate_steps, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/spark/base.html
604be8ad511d-0
Source code for langchain.agents.agent_toolkits.nla.toolkit """Toolkit for interacting with API's using natural language.""" from __future__ import annotations from typing import Any, List, Optional, Sequence from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.agents.agent_toolkits.nla.tool import NLATool from langchain.base_language import BaseLanguageModel from langchain.requests import Requests from langchain.tools.base import BaseTool from langchain.tools.openapi.utils.openapi_utils import OpenAPISpec from langchain.tools.plugin import AIPlugin [docs]class NLAToolkit(BaseToolkit): """Natural Language API Toolkit Definition.""" nla_tools: Sequence[NLATool] = Field(...) """List of API Endpoint Tools.""" [docs] def get_tools(self) -> List[BaseTool]: """Get the tools for all the API operations.""" return list(self.nla_tools) @staticmethod def _get_http_operation_tools( llm: BaseLanguageModel, spec: OpenAPISpec, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> List[NLATool]: """Get the tools for all the API operations.""" if not spec.paths: return [] http_operation_tools = [] for path in spec.paths: for method in spec.get_methods_for_path(path): endpoint_tool = NLATool.from_llm_and_method( llm=llm, path=path, method=method, spec=spec, requests=requests, verbose=verbose, **kwargs, ) http_operation_tools.append(endpoint_tool) return http_operation_tools
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/nla/toolkit.html
604be8ad511d-1
) http_operation_tools.append(endpoint_tool) return http_operation_tools [docs] @classmethod def from_llm_and_spec( cls, llm: BaseLanguageModel, spec: OpenAPISpec, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit by creating tools for each operation.""" http_operation_tools = cls._get_http_operation_tools( llm=llm, spec=spec, requests=requests, verbose=verbose, **kwargs ) return cls(nla_tools=http_operation_tools) [docs] @classmethod def from_llm_and_url( cls, llm: BaseLanguageModel, open_api_url: str, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit from an OpenAPI Spec URL""" spec = OpenAPISpec.from_url(open_api_url) return cls.from_llm_and_spec( llm=llm, spec=spec, requests=requests, verbose=verbose, **kwargs ) [docs] @classmethod def from_llm_and_ai_plugin( cls, llm: BaseLanguageModel, ai_plugin: AIPlugin, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit from an OpenAPI Spec URL""" spec = OpenAPISpec.from_url(ai_plugin.api.url)
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/nla/toolkit.html
604be8ad511d-2
spec = OpenAPISpec.from_url(ai_plugin.api.url) # TODO: Merge optional Auth information with the `requests` argument return cls.from_llm_and_spec( llm=llm, spec=spec, requests=requests, verbose=verbose, **kwargs, ) [docs] @classmethod def from_llm_and_ai_plugin_url( cls, llm: BaseLanguageModel, ai_plugin_url: str, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit from an OpenAPI Spec URL""" plugin = AIPlugin.from_url(ai_plugin_url) return cls.from_llm_and_ai_plugin( llm=llm, ai_plugin=plugin, requests=requests, verbose=verbose, **kwargs )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/nla/toolkit.html
2d7e28de58b8-0
Source code for langchain.agents.agent_toolkits.powerbi.toolkit """Toolkit for interacting with a Power BI dataset.""" from typing import List, Optional from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.prompts import PromptTemplate from langchain.tools import BaseTool from langchain.tools.powerbi.prompt import QUESTION_TO_QUERY from langchain.tools.powerbi.tool import ( InfoPowerBITool, ListPowerBITool, QueryPowerBITool, ) from langchain.utilities.powerbi import PowerBIDataset [docs]class PowerBIToolkit(BaseToolkit): """Toolkit for interacting with PowerBI dataset.""" powerbi: PowerBIDataset = Field(exclude=True) llm: BaseLanguageModel = Field(exclude=True) examples: Optional[str] = None max_iterations: int = 5 callback_manager: Optional[BaseCallbackManager] = None class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" if self.callback_manager: chain = LLMChain( llm=self.llm, callback_manager=self.callback_manager, prompt=PromptTemplate( template=QUESTION_TO_QUERY, input_variables=["tool_input", "tables", "schemas", "examples"], ), ) else: chain = LLMChain( llm=self.llm, prompt=PromptTemplate( template=QUESTION_TO_QUERY,
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/powerbi/toolkit.html
2d7e28de58b8-1
prompt=PromptTemplate( template=QUESTION_TO_QUERY, input_variables=["tool_input", "tables", "schemas", "examples"], ), ) return [ QueryPowerBITool( llm_chain=chain, powerbi=self.powerbi, examples=self.examples, max_iterations=self.max_iterations, ), InfoPowerBITool(powerbi=self.powerbi), ListPowerBITool(powerbi=self.powerbi), ]
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/powerbi/toolkit.html
9dd2fc47c15c-0
Source code for langchain.agents.agent_toolkits.powerbi.chat_base """Power BI agent.""" from typing import Any, Dict, List, Optional from langchain.agents import AgentExecutor from langchain.agents.agent import AgentOutputParser from langchain.agents.agent_toolkits.powerbi.prompt import ( POWERBI_CHAT_PREFIX, POWERBI_CHAT_SUFFIX, ) from langchain.agents.agent_toolkits.powerbi.toolkit import PowerBIToolkit from langchain.agents.conversational_chat.base import ConversationalChatAgent from langchain.callbacks.base import BaseCallbackManager from langchain.chat_models.base import BaseChatModel from langchain.memory import ConversationBufferMemory from langchain.memory.chat_memory import BaseChatMemory from langchain.utilities.powerbi import PowerBIDataset [docs]def create_pbi_chat_agent( llm: BaseChatModel, toolkit: Optional[PowerBIToolkit], powerbi: Optional[PowerBIDataset] = None, callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = POWERBI_CHAT_PREFIX, suffix: str = POWERBI_CHAT_SUFFIX, examples: Optional[str] = None, input_variables: Optional[List[str]] = None, memory: Optional[BaseChatMemory] = None, top_k: int = 10, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a pbi agent from an Chat LLM and tools. If you supply only a toolkit and no powerbi dataset, the same LLM is used for both. """ if toolkit is None:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/powerbi/chat_base.html
9dd2fc47c15c-1
""" if toolkit is None: if powerbi is None: raise ValueError("Must provide either a toolkit or powerbi dataset") toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples) tools = toolkit.get_tools() agent = ConversationalChatAgent.from_llm_and_tools( llm=llm, tools=tools, system_message=prefix.format(top_k=top_k), human_message=suffix, input_variables=input_variables, callback_manager=callback_manager, output_parser=output_parser, verbose=verbose, **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, memory=memory or ConversationBufferMemory(memory_key="chat_history", return_messages=True), verbose=verbose, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/powerbi/chat_base.html
a9007248f28d-0
Source code for langchain.agents.agent_toolkits.powerbi.base """Power BI agent.""" from typing import Any, Dict, List, Optional from langchain.agents import AgentExecutor from langchain.agents.agent_toolkits.powerbi.prompt import ( POWERBI_PREFIX, POWERBI_SUFFIX, ) from langchain.agents.agent_toolkits.powerbi.toolkit import PowerBIToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.utilities.powerbi import PowerBIDataset [docs]def create_pbi_agent( llm: BaseLanguageModel, toolkit: Optional[PowerBIToolkit], powerbi: Optional[PowerBIDataset] = None, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = POWERBI_PREFIX, suffix: str = POWERBI_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, examples: Optional[str] = None, input_variables: Optional[List[str]] = None, top_k: int = 10, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a pbi agent from an LLM and tools.""" if toolkit is None: if powerbi is None: raise ValueError("Must provide either a toolkit or powerbi dataset") toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples) tools = toolkit.get_tools()
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/powerbi/base.html
a9007248f28d-1
tools = toolkit.get_tools() agent = ZeroShotAgent( llm_chain=LLMChain( llm=llm, prompt=ZeroShotAgent.create_prompt( tools, prefix=prefix.format(top_k=top_k), suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ), callback_manager=callback_manager, # type: ignore verbose=verbose, ), allowed_tools=[tool.name for tool in tools], **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/powerbi/base.html
f755b53369db-0
Source code for langchain.agents.agent_toolkits.spark_sql.toolkit """Toolkit for interacting with Spark SQL.""" from typing import List from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.base_language import BaseLanguageModel from langchain.tools import BaseTool from langchain.tools.spark_sql.tool import ( InfoSparkSQLTool, ListSparkSQLTool, QueryCheckerTool, QuerySparkSQLTool, ) from langchain.utilities.spark_sql import SparkSQL [docs]class SparkSQLToolkit(BaseToolkit): """Toolkit for interacting with Spark SQL.""" db: SparkSQL = Field(exclude=True) llm: BaseLanguageModel = Field(exclude=True) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return [ QuerySparkSQLTool(db=self.db), InfoSparkSQLTool(db=self.db), ListSparkSQLTool(db=self.db), QueryCheckerTool(db=self.db, llm=self.llm), ]
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/spark_sql/toolkit.html
8f52e2e1fff8-0
Source code for langchain.agents.agent_toolkits.spark_sql.base """Spark SQL agent.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.spark_sql.prompt import SQL_PREFIX, SQL_SUFFIX from langchain.agents.agent_toolkits.spark_sql.toolkit import SparkSQLToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain [docs]def create_spark_sql_agent( llm: BaseLanguageModel, toolkit: SparkSQLToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = SQL_PREFIX, suffix: str = SQL_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, top_k: int = 10, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a sql agent from an LLM and tools.""" tools = toolkit.get_tools() prefix = prefix.format(top_k=top_k) prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm,
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/spark_sql/base.html
8f52e2e1fff8-1
llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/spark_sql/base.html
b4d0f381eac8-0
Source code for langchain.agents.agent_toolkits.csv.base """Agent for working with csvs.""" from typing import Any, List, Optional, Union from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent from langchain.base_language import BaseLanguageModel [docs]def create_csv_agent( llm: BaseLanguageModel, path: Union[str, List[str]], pandas_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AgentExecutor: """Create csv agent by loading to a dataframe and using pandas agent.""" try: import pandas as pd except ImportError: raise ValueError( "pandas package not found, please install with `pip install pandas`" ) _kwargs = pandas_kwargs or {} if isinstance(path, str): df = pd.read_csv(path, **_kwargs) elif isinstance(path, list): df = [] for item in path: if not isinstance(item, str): raise ValueError(f"Expected str, got {type(path)}") df.append(pd.read_csv(item, **_kwargs)) else: raise ValueError(f"Expected str or list, got {type(path)}") return create_pandas_dataframe_agent(llm, df, **kwargs)
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/csv/base.html
935363887fff-0
Source code for langchain.agents.agent_toolkits.azure_cognitive_services.toolkit from __future__ import annotations import sys from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools.azure_cognitive_services import ( AzureCogsFormRecognizerTool, AzureCogsImageAnalysisTool, AzureCogsSpeech2TextTool, AzureCogsText2SpeechTool, ) from langchain.tools.base import BaseTool [docs]class AzureCognitiveServicesToolkit(BaseToolkit): """Toolkit for Azure Cognitive Services.""" [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" tools = [ AzureCogsFormRecognizerTool(), AzureCogsSpeech2TextTool(), AzureCogsText2SpeechTool(), ] # TODO: Remove check once azure-ai-vision supports MacOS. if sys.platform.startswith("linux") or sys.platform.startswith("win"): tools.append(AzureCogsImageAnalysisTool()) return tools
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/azure_cognitive_services/toolkit.html
c2b006caf35c-0
Source code for langchain.agents.agent_toolkits.jira.toolkit """Jira Toolkit.""" from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.jira.tool import JiraAction from langchain.utilities.jira import JiraAPIWrapper [docs]class JiraToolkit(BaseToolkit): """Jira Toolkit.""" tools: List[BaseTool] = [] [docs] @classmethod def from_jira_api_wrapper(cls, jira_api_wrapper: JiraAPIWrapper) -> "JiraToolkit": actions = jira_api_wrapper.list() tools = [ JiraAction( name=action["name"], description=action["description"], mode=action["mode"], api_wrapper=jira_api_wrapper, ) for action in actions ] return cls(tools=tools) [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return self.tools
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/jira/toolkit.html
1a7e6feffe57-0
Source code for langchain.agents.agent_toolkits.vectorstore.toolkit """Toolkit for interacting with a vector store.""" from typing import List from pydantic import BaseModel, Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.base_language import BaseLanguageModel from langchain.llms.openai import OpenAI from langchain.tools import BaseTool from langchain.tools.vectorstore.tool import ( VectorStoreQATool, VectorStoreQAWithSourcesTool, ) from langchain.vectorstores.base import VectorStore [docs]class VectorStoreInfo(BaseModel): """Information about a vectorstore.""" vectorstore: VectorStore = Field(exclude=True) name: str description: str class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs]class VectorStoreToolkit(BaseToolkit): """Toolkit for interacting with a vector store.""" vectorstore_info: VectorStoreInfo = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" description = VectorStoreQATool.get_description( self.vectorstore_info.name, self.vectorstore_info.description ) qa_tool = VectorStoreQATool( name=self.vectorstore_info.name, description=description, vectorstore=self.vectorstore_info.vectorstore, llm=self.llm, ) description = VectorStoreQAWithSourcesTool.get_description( self.vectorstore_info.name, self.vectorstore_info.description )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/vectorstore/toolkit.html
1a7e6feffe57-1
self.vectorstore_info.name, self.vectorstore_info.description ) qa_with_sources_tool = VectorStoreQAWithSourcesTool( name=f"{self.vectorstore_info.name}_with_sources", description=description, vectorstore=self.vectorstore_info.vectorstore, llm=self.llm, ) return [qa_tool, qa_with_sources_tool] [docs]class VectorStoreRouterToolkit(BaseToolkit): """Toolkit for routing between vector stores.""" vectorstores: List[VectorStoreInfo] = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" tools: List[BaseTool] = [] for vectorstore_info in self.vectorstores: description = VectorStoreQATool.get_description( vectorstore_info.name, vectorstore_info.description ) qa_tool = VectorStoreQATool( name=vectorstore_info.name, description=description, vectorstore=vectorstore_info.vectorstore, llm=self.llm, ) tools.append(qa_tool) return tools
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/vectorstore/toolkit.html
aa90ee00e458-0
Source code for langchain.agents.agent_toolkits.vectorstore.base """VectorStore agent.""" from typing import Any, Dict, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.vectorstore.prompt import PREFIX, ROUTER_PREFIX from langchain.agents.agent_toolkits.vectorstore.toolkit import ( VectorStoreRouterToolkit, VectorStoreToolkit, ) from langchain.agents.mrkl.base import ZeroShotAgent from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain [docs]def create_vectorstore_agent( llm: BaseLanguageModel, toolkit: VectorStoreToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = PREFIX, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a vectorstore agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), ) [docs]def create_vectorstore_router_agent(
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/vectorstore/base.html
aa90ee00e458-1
) [docs]def create_vectorstore_router_agent( llm: BaseLanguageModel, toolkit: VectorStoreRouterToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = ROUTER_PREFIX, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a vectorstore router agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/vectorstore/base.html
54d325e3ea74-0
Source code for langchain.agents.agent_toolkits.sql.toolkit """Toolkit for interacting with a SQL database.""" from typing import List from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.base_language import BaseLanguageModel from langchain.sql_database import SQLDatabase from langchain.tools import BaseTool from langchain.tools.sql_database.tool import ( InfoSQLDatabaseTool, ListSQLDatabaseTool, QuerySQLCheckerTool, QuerySQLDataBaseTool, ) [docs]class SQLDatabaseToolkit(BaseToolkit): """Toolkit for interacting with SQL databases.""" db: SQLDatabase = Field(exclude=True) llm: BaseLanguageModel = Field(exclude=True) @property def dialect(self) -> str: """Return string representation of dialect to use.""" return self.db.dialect class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" query_sql_database_tool_description = ( "Input to this tool is a detailed and correct SQL query, output is a " "result from the database. If the query is not correct, an error message " "will be returned. If an error is returned, rewrite the query, check the " "query, and try again. If you encounter an issue with Unknown column " "'xxxx' in 'field list', using schema_sql_db to query the correct table " "fields." ) info_sql_database_tool_description = ( "Input to this tool is a comma-separated list of tables, output is the " "schema and sample rows for those tables. "
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/sql/toolkit.html
54d325e3ea74-1
"schema and sample rows for those tables. " "Be sure that the tables actually exist by calling list_tables_sql_db " "first! Example Input: 'table1, table2, table3'" ) return [ QuerySQLDataBaseTool( db=self.db, description=query_sql_database_tool_description ), InfoSQLDatabaseTool( db=self.db, description=info_sql_database_tool_description ), ListSQLDatabaseTool(db=self.db), QuerySQLCheckerTool(db=self.db, llm=self.llm), ]
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/sql/toolkit.html
cfe5cc7b0817-0
Source code for langchain.agents.agent_toolkits.sql.base """SQL agent.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor, BaseSingleActionAgent from langchain.agents.agent_toolkits.sql.prompt import ( SQL_FUNCTIONS_SUFFIX, SQL_PREFIX, SQL_SUFFIX, ) from langchain.agents.agent_toolkits.sql.toolkit import SQLDatabaseToolkit from langchain.agents.agent_types import AgentType from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, ) from langchain.schema import AIMessage, SystemMessage [docs]def create_sql_agent( llm: BaseLanguageModel, toolkit: SQLDatabaseToolkit, agent_type: AgentType = AgentType.ZERO_SHOT_REACT_DESCRIPTION, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = SQL_PREFIX, suffix: Optional[str] = None, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, top_k: int = 10, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any],
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/sql/base.html
cfe5cc7b0817-1
**kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a sql agent from an LLM and tools.""" tools = toolkit.get_tools() prefix = prefix.format(dialect=toolkit.dialect, top_k=top_k) agent: BaseSingleActionAgent if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION: prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix or SQL_SUFFIX, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) elif agent_type == AgentType.OPENAI_FUNCTIONS: messages = [ SystemMessage(content=prefix), HumanMessagePromptTemplate.from_template("{input}"), AIMessage(content=suffix or SQL_FUNCTIONS_SUFFIX), MessagesPlaceholder(variable_name="agent_scratchpad"), ] input_variables = ["input", "agent_scratchpad"] _prompt = ChatPromptTemplate(input_variables=input_variables, messages=messages) agent = OpenAIFunctionsAgent( llm=llm, prompt=_prompt, tools=tools, callback_manager=callback_manager, **kwargs, ) else: raise ValueError(f"Agent type {agent_type} not supported at the moment.") return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose,
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/sql/base.html
cfe5cc7b0817-2
tools=tools, callback_manager=callback_manager, verbose=verbose, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/sql/base.html
e420b0bf5aa3-0
Source code for langchain.agents.agent_toolkits.gmail.toolkit from __future__ import annotations from typing import TYPE_CHECKING, List from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.gmail.create_draft import GmailCreateDraft from langchain.tools.gmail.get_message import GmailGetMessage from langchain.tools.gmail.get_thread import GmailGetThread from langchain.tools.gmail.search import GmailSearch from langchain.tools.gmail.send_message import GmailSendMessage from langchain.tools.gmail.utils import build_resource_service if TYPE_CHECKING: # This is for linting and IDE typehints from googleapiclient.discovery import Resource else: try: # We do this so pydantic can resolve the types when instantiating from googleapiclient.discovery import Resource except ImportError: pass SCOPES = ["https://mail.google.com/"] [docs]class GmailToolkit(BaseToolkit): """Toolkit for interacting with Gmail.""" api_resource: Resource = Field(default_factory=build_resource_service) class Config: """Pydantic config.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return [ GmailCreateDraft(api_resource=self.api_resource), GmailSendMessage(api_resource=self.api_resource), GmailSearch(api_resource=self.api_resource), GmailGetMessage(api_resource=self.api_resource), GmailGetThread(api_resource=self.api_resource), ]
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/gmail/toolkit.html
960e10ca8716-0
Source code for langchain.agents.agent_toolkits.file_management.toolkit """Toolkit for interacting with the local filesystem.""" from __future__ import annotations from typing import List, Optional from pydantic import root_validator from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.file_management.copy import CopyFileTool from langchain.tools.file_management.delete import DeleteFileTool from langchain.tools.file_management.file_search import FileSearchTool from langchain.tools.file_management.list_dir import ListDirectoryTool from langchain.tools.file_management.move import MoveFileTool from langchain.tools.file_management.read import ReadFileTool from langchain.tools.file_management.write import WriteFileTool _FILE_TOOLS = { tool_cls.__fields__["name"].default: tool_cls for tool_cls in [ CopyFileTool, DeleteFileTool, FileSearchTool, MoveFileTool, ReadFileTool, WriteFileTool, ListDirectoryTool, ] } [docs]class FileManagementToolkit(BaseToolkit): """Toolkit for interacting with a Local Files.""" root_dir: Optional[str] = None """If specified, all file operations are made relative to root_dir.""" selected_tools: Optional[List[str]] = None """If provided, only provide the selected tools. Defaults to all.""" @root_validator def validate_tools(cls, values: dict) -> dict: selected_tools = values.get("selected_tools") or [] for tool_name in selected_tools: if tool_name not in _FILE_TOOLS: raise ValueError( f"File Tool of name {tool_name} not supported." f" Permitted tools: {list(_FILE_TOOLS)}" ) return values
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/file_management/toolkit.html
960e10ca8716-1
) return values [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" allowed_tools = self.selected_tools or _FILE_TOOLS.keys() tools: List[BaseTool] = [] for tool in allowed_tools: tool_cls = _FILE_TOOLS[tool] tools.append(tool_cls(root_dir=self.root_dir)) # type: ignore return tools __all__ = ["FileManagementToolkit"]
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/file_management/toolkit.html
bb0e366cb94c-0
Source code for langchain.agents.agent_toolkits.zapier.toolkit """Zapier Toolkit.""" from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.zapier.tool import ZapierNLARunAction from langchain.utilities.zapier import ZapierNLAWrapper [docs]class ZapierToolkit(BaseToolkit): """Zapier Toolkit.""" tools: List[BaseTool] = [] [docs] @classmethod def from_zapier_nla_wrapper( cls, zapier_nla_wrapper: ZapierNLAWrapper ) -> "ZapierToolkit": """Create a toolkit from a ZapierNLAWrapper.""" actions = zapier_nla_wrapper.list() tools = [ ZapierNLARunAction( action_id=action["id"], zapier_description=action["description"], params_schema=action["params"], api_wrapper=zapier_nla_wrapper, ) for action in actions ] return cls(tools=tools) [docs] @classmethod async def async_from_zapier_nla_wrapper( cls, zapier_nla_wrapper: ZapierNLAWrapper ) -> "ZapierToolkit": """Create a toolkit from a ZapierNLAWrapper.""" actions = await zapier_nla_wrapper.alist() tools = [ ZapierNLARunAction( action_id=action["id"], zapier_description=action["description"], params_schema=action["params"], api_wrapper=zapier_nla_wrapper, ) for action in actions ] return cls(tools=tools)
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/zapier/toolkit.html
bb0e366cb94c-1
for action in actions ] return cls(tools=tools) [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return self.tools
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/zapier/toolkit.html
f50ec90d5116-0
Source code for langchain.agents.agent_toolkits.pandas.base """Agent for working with pandas objects.""" from typing import Any, Dict, List, Optional, Tuple from langchain.agents.agent import AgentExecutor, BaseSingleActionAgent from langchain.agents.agent_toolkits.pandas.prompt import ( FUNCTIONS_WITH_DF, FUNCTIONS_WITH_MULTI_DF, MULTI_DF_PREFIX, MULTI_DF_PREFIX_FUNCTIONS, PREFIX, PREFIX_FUNCTIONS, SUFFIX_NO_DF, SUFFIX_WITH_DF, SUFFIX_WITH_MULTI_DF, ) from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent from langchain.agents.types import AgentType from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.prompts.base import BasePromptTemplate from langchain.schema import SystemMessage from langchain.tools.python.tool import PythonAstREPLTool def _get_multi_prompt( dfs: List[Any], prefix: Optional[str] = None, suffix: Optional[str] = None, input_variables: Optional[List[str]] = None, include_df_in_prompt: Optional[bool] = True, ) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: num_dfs = len(dfs) if suffix is not None: suffix_to_use = suffix include_dfs_head = True elif include_df_in_prompt: suffix_to_use = SUFFIX_WITH_MULTI_DF include_dfs_head = True else: suffix_to_use = SUFFIX_NO_DF include_dfs_head = False if input_variables is None:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/pandas/base.html
f50ec90d5116-1
include_dfs_head = False if input_variables is None: input_variables = ["input", "agent_scratchpad", "num_dfs"] if include_dfs_head: input_variables += ["dfs_head"] if prefix is None: prefix = MULTI_DF_PREFIX df_locals = {} for i, dataframe in enumerate(dfs): df_locals[f"df{i + 1}"] = dataframe tools = [PythonAstREPLTool(locals=df_locals)] prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix_to_use, input_variables=input_variables ) partial_prompt = prompt.partial() if "dfs_head" in input_variables: dfs_head = "\n\n".join([d.head().to_markdown() for d in dfs]) partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs), dfs_head=dfs_head) if "num_dfs" in input_variables: partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs)) return partial_prompt, tools def _get_single_prompt( df: Any, prefix: Optional[str] = None, suffix: Optional[str] = None, input_variables: Optional[List[str]] = None, include_df_in_prompt: Optional[bool] = True, ) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: if suffix is not None: suffix_to_use = suffix include_df_head = True elif include_df_in_prompt: suffix_to_use = SUFFIX_WITH_DF include_df_head = True else: suffix_to_use = SUFFIX_NO_DF include_df_head = False if input_variables is None:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/pandas/base.html
f50ec90d5116-2
include_df_head = False if input_variables is None: input_variables = ["input", "agent_scratchpad"] if include_df_head: input_variables += ["df_head"] if prefix is None: prefix = PREFIX tools = [PythonAstREPLTool(locals={"df": df})] prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix_to_use, input_variables=input_variables ) partial_prompt = prompt.partial() if "df_head" in input_variables: partial_prompt = partial_prompt.partial(df_head=str(df.head().to_markdown())) return partial_prompt, tools def _get_prompt_and_tools( df: Any, prefix: Optional[str] = None, suffix: Optional[str] = None, input_variables: Optional[List[str]] = None, include_df_in_prompt: Optional[bool] = True, ) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: try: import pandas as pd except ImportError: raise ValueError( "pandas package not found, please install with `pip install pandas`" ) if include_df_in_prompt is not None and suffix is not None: raise ValueError("If suffix is specified, include_df_in_prompt should not be.") if isinstance(df, list): for item in df: if not isinstance(item, pd.DataFrame): raise ValueError(f"Expected pandas object, got {type(df)}") return _get_multi_prompt( df, prefix=prefix, suffix=suffix, input_variables=input_variables, include_df_in_prompt=include_df_in_prompt, ) else:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/pandas/base.html
f50ec90d5116-3
include_df_in_prompt=include_df_in_prompt, ) else: if not isinstance(df, pd.DataFrame): raise ValueError(f"Expected pandas object, got {type(df)}") return _get_single_prompt( df, prefix=prefix, suffix=suffix, input_variables=input_variables, include_df_in_prompt=include_df_in_prompt, ) def _get_functions_single_prompt( df: Any, prefix: Optional[str] = None, suffix: Optional[str] = None, include_df_in_prompt: Optional[bool] = True, ) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: if suffix is not None: suffix_to_use = suffix if include_df_in_prompt: suffix_to_use = suffix_to_use.format(df_head=str(df.head().to_markdown())) elif include_df_in_prompt: suffix_to_use = FUNCTIONS_WITH_DF.format(df_head=str(df.head().to_markdown())) else: suffix_to_use = "" if prefix is None: prefix = PREFIX_FUNCTIONS tools = [PythonAstREPLTool(locals={"df": df})] system_message = SystemMessage(content=prefix + suffix_to_use) prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message) return prompt, tools def _get_functions_multi_prompt( dfs: Any, prefix: Optional[str] = None, suffix: Optional[str] = None, include_df_in_prompt: Optional[bool] = True, ) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: if suffix is not None: suffix_to_use = suffix if include_df_in_prompt:
https://api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/pandas/base.html