id
stringlengths
14
16
text
stringlengths
31
2.41k
source
stringlengths
53
121
6f6dbf4a4161-1
) http_operation_tools.append(endpoint_tool) return http_operation_tools [docs] @classmethod def from_llm_and_spec( cls, llm: BaseLanguageModel, spec: OpenAPISpec, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit by creating tools for each operation.""" http_operation_tools = cls._get_http_operation_tools( llm=llm, spec=spec, requests=requests, verbose=verbose, **kwargs ) return cls(nla_tools=http_operation_tools) [docs] @classmethod def from_llm_and_url( cls, llm: BaseLanguageModel, open_api_url: str, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit from an OpenAPI Spec URL""" spec = OpenAPISpec.from_url(open_api_url) return cls.from_llm_and_spec( llm=llm, spec=spec, requests=requests, verbose=verbose, **kwargs ) [docs] @classmethod def from_llm_and_ai_plugin( cls, llm: BaseLanguageModel, ai_plugin: AIPlugin, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit from an OpenAPI Spec URL""" spec = OpenAPISpec.from_url(ai_plugin.api.url)
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/nla/toolkit.html
6f6dbf4a4161-2
spec = OpenAPISpec.from_url(ai_plugin.api.url) # TODO: Merge optional Auth information with the `requests` argument return cls.from_llm_and_spec( llm=llm, spec=spec, requests=requests, verbose=verbose, **kwargs, ) [docs] @classmethod def from_llm_and_ai_plugin_url( cls, llm: BaseLanguageModel, ai_plugin_url: str, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit from an OpenAPI Spec URL""" plugin = AIPlugin.from_url(ai_plugin_url) return cls.from_llm_and_ai_plugin( llm=llm, ai_plugin=plugin, requests=requests, verbose=verbose, **kwargs )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/nla/toolkit.html
f5ec50f30ce9-0
Source code for langchain.agents.agent_toolkits.powerbi.toolkit """Toolkit for interacting with a Power BI dataset.""" from typing import List, Optional from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.prompts import PromptTemplate from langchain.tools import BaseTool from langchain.tools.powerbi.prompt import QUESTION_TO_QUERY from langchain.tools.powerbi.tool import ( InfoPowerBITool, ListPowerBITool, QueryPowerBITool, ) from langchain.utilities.powerbi import PowerBIDataset [docs]class PowerBIToolkit(BaseToolkit): """Toolkit for interacting with PowerBI dataset.""" powerbi: PowerBIDataset = Field(exclude=True) llm: BaseLanguageModel = Field(exclude=True) examples: Optional[str] = None max_iterations: int = 5 callback_manager: Optional[BaseCallbackManager] = None class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" if self.callback_manager: chain = LLMChain( llm=self.llm, callback_manager=self.callback_manager, prompt=PromptTemplate( template=QUESTION_TO_QUERY, input_variables=["tool_input", "tables", "schemas", "examples"], ), ) else: chain = LLMChain( llm=self.llm, prompt=PromptTemplate( template=QUESTION_TO_QUERY,
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/toolkit.html
f5ec50f30ce9-1
prompt=PromptTemplate( template=QUESTION_TO_QUERY, input_variables=["tool_input", "tables", "schemas", "examples"], ), ) return [ QueryPowerBITool( llm_chain=chain, powerbi=self.powerbi, examples=self.examples, max_iterations=self.max_iterations, ), InfoPowerBITool(powerbi=self.powerbi), ListPowerBITool(powerbi=self.powerbi), ]
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/toolkit.html
d00d134df72b-0
Source code for langchain.agents.agent_toolkits.powerbi.chat_base """Power BI agent.""" from typing import Any, Dict, List, Optional from langchain.agents import AgentExecutor from langchain.agents.agent import AgentOutputParser from langchain.agents.agent_toolkits.powerbi.prompt import ( POWERBI_CHAT_PREFIX, POWERBI_CHAT_SUFFIX, ) from langchain.agents.agent_toolkits.powerbi.toolkit import PowerBIToolkit from langchain.agents.conversational_chat.base import ConversationalChatAgent from langchain.callbacks.base import BaseCallbackManager from langchain.chat_models.base import BaseChatModel from langchain.memory import ConversationBufferMemory from langchain.memory.chat_memory import BaseChatMemory from langchain.utilities.powerbi import PowerBIDataset [docs]def create_pbi_chat_agent( llm: BaseChatModel, toolkit: Optional[PowerBIToolkit], powerbi: Optional[PowerBIDataset] = None, callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = POWERBI_CHAT_PREFIX, suffix: str = POWERBI_CHAT_SUFFIX, examples: Optional[str] = None, input_variables: Optional[List[str]] = None, memory: Optional[BaseChatMemory] = None, top_k: int = 10, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a pbi agent from an Chat LLM and tools. If you supply only a toolkit and no powerbi dataset, the same LLM is used for both. """ if toolkit is None:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/chat_base.html
d00d134df72b-1
""" if toolkit is None: if powerbi is None: raise ValueError("Must provide either a toolkit or powerbi dataset") toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples) tools = toolkit.get_tools() agent = ConversationalChatAgent.from_llm_and_tools( llm=llm, tools=tools, system_message=prefix.format(top_k=top_k), human_message=suffix, input_variables=input_variables, callback_manager=callback_manager, output_parser=output_parser, verbose=verbose, **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, memory=memory or ConversationBufferMemory(memory_key="chat_history", return_messages=True), verbose=verbose, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/chat_base.html
203c758a42ae-0
Source code for langchain.agents.agent_toolkits.powerbi.base """Power BI agent.""" from typing import Any, Dict, List, Optional from langchain.agents import AgentExecutor from langchain.agents.agent_toolkits.powerbi.prompt import ( POWERBI_PREFIX, POWERBI_SUFFIX, ) from langchain.agents.agent_toolkits.powerbi.toolkit import PowerBIToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.utilities.powerbi import PowerBIDataset [docs]def create_pbi_agent( llm: BaseLanguageModel, toolkit: Optional[PowerBIToolkit], powerbi: Optional[PowerBIDataset] = None, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = POWERBI_PREFIX, suffix: str = POWERBI_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, examples: Optional[str] = None, input_variables: Optional[List[str]] = None, top_k: int = 10, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a pbi agent from an LLM and tools.""" if toolkit is None: if powerbi is None: raise ValueError("Must provide either a toolkit or powerbi dataset") toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples) tools = toolkit.get_tools()
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/base.html
203c758a42ae-1
tools = toolkit.get_tools() agent = ZeroShotAgent( llm_chain=LLMChain( llm=llm, prompt=ZeroShotAgent.create_prompt( tools, prefix=prefix.format(top_k=top_k), suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ), callback_manager=callback_manager, # type: ignore verbose=verbose, ), allowed_tools=[tool.name for tool in tools], **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/base.html
a68c5bab9629-0
Source code for langchain.agents.agent_toolkits.spark_sql.toolkit """Toolkit for interacting with Spark SQL.""" from typing import List from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.base_language import BaseLanguageModel from langchain.tools import BaseTool from langchain.tools.spark_sql.tool import ( InfoSparkSQLTool, ListSparkSQLTool, QueryCheckerTool, QuerySparkSQLTool, ) from langchain.utilities.spark_sql import SparkSQL [docs]class SparkSQLToolkit(BaseToolkit): """Toolkit for interacting with Spark SQL.""" db: SparkSQL = Field(exclude=True) llm: BaseLanguageModel = Field(exclude=True) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return [ QuerySparkSQLTool(db=self.db), InfoSparkSQLTool(db=self.db), ListSparkSQLTool(db=self.db), QueryCheckerTool(db=self.db, llm=self.llm), ]
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/spark_sql/toolkit.html
dab3cd0e4f13-0
Source code for langchain.agents.agent_toolkits.spark_sql.base """Spark SQL agent.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.spark_sql.prompt import SQL_PREFIX, SQL_SUFFIX from langchain.agents.agent_toolkits.spark_sql.toolkit import SparkSQLToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain [docs]def create_spark_sql_agent( llm: BaseLanguageModel, toolkit: SparkSQLToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = SQL_PREFIX, suffix: str = SQL_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, top_k: int = 10, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a sql agent from an LLM and tools.""" tools = toolkit.get_tools() prefix = prefix.format(top_k=top_k) prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm,
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/spark_sql/base.html
dab3cd0e4f13-1
llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/spark_sql/base.html
cff02565fe92-0
Source code for langchain.agents.agent_toolkits.csv.base """Agent for working with csvs.""" from typing import Any, List, Optional, Union from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent from langchain.base_language import BaseLanguageModel [docs]def create_csv_agent( llm: BaseLanguageModel, path: Union[str, List[str]], pandas_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AgentExecutor: """Create csv agent by loading to a dataframe and using pandas agent.""" try: import pandas as pd except ImportError: raise ValueError( "pandas package not found, please install with `pip install pandas`" ) _kwargs = pandas_kwargs or {} if isinstance(path, str): df = pd.read_csv(path, **_kwargs) elif isinstance(path, list): df = [] for item in path: if not isinstance(item, str): raise ValueError(f"Expected str, got {type(path)}") df.append(pd.read_csv(item, **_kwargs)) else: raise ValueError(f"Expected str or list, got {type(path)}") return create_pandas_dataframe_agent(llm, df, **kwargs)
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/csv/base.html
aa154115c70d-0
Source code for langchain.agents.agent_toolkits.azure_cognitive_services.toolkit from __future__ import annotations import sys from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools.azure_cognitive_services import ( AzureCogsFormRecognizerTool, AzureCogsImageAnalysisTool, AzureCogsSpeech2TextTool, AzureCogsText2SpeechTool, ) from langchain.tools.base import BaseTool [docs]class AzureCognitiveServicesToolkit(BaseToolkit): """Toolkit for Azure Cognitive Services.""" [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" tools = [ AzureCogsFormRecognizerTool(), AzureCogsSpeech2TextTool(), AzureCogsText2SpeechTool(), ] # TODO: Remove check once azure-ai-vision supports MacOS. if sys.platform.startswith("linux") or sys.platform.startswith("win"): tools.append(AzureCogsImageAnalysisTool()) return tools
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/azure_cognitive_services/toolkit.html
14a55ce8af05-0
Source code for langchain.agents.agent_toolkits.jira.toolkit """Jira Toolkit.""" from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.jira.tool import JiraAction from langchain.utilities.jira import JiraAPIWrapper [docs]class JiraToolkit(BaseToolkit): """Jira Toolkit.""" tools: List[BaseTool] = [] [docs] @classmethod def from_jira_api_wrapper(cls, jira_api_wrapper: JiraAPIWrapper) -> "JiraToolkit": actions = jira_api_wrapper.list() tools = [ JiraAction( name=action["name"], description=action["description"], mode=action["mode"], api_wrapper=jira_api_wrapper, ) for action in actions ] return cls(tools=tools) [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return self.tools
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/jira/toolkit.html
2388140f5260-0
Source code for langchain.agents.agent_toolkits.vectorstore.toolkit """Toolkit for interacting with a vector store.""" from typing import List from pydantic import BaseModel, Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.base_language import BaseLanguageModel from langchain.llms.openai import OpenAI from langchain.tools import BaseTool from langchain.tools.vectorstore.tool import ( VectorStoreQATool, VectorStoreQAWithSourcesTool, ) from langchain.vectorstores.base import VectorStore [docs]class VectorStoreInfo(BaseModel): """Information about a vectorstore.""" vectorstore: VectorStore = Field(exclude=True) name: str description: str class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs]class VectorStoreToolkit(BaseToolkit): """Toolkit for interacting with a vector store.""" vectorstore_info: VectorStoreInfo = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" description = VectorStoreQATool.get_description( self.vectorstore_info.name, self.vectorstore_info.description ) qa_tool = VectorStoreQATool( name=self.vectorstore_info.name, description=description, vectorstore=self.vectorstore_info.vectorstore, llm=self.llm, ) description = VectorStoreQAWithSourcesTool.get_description( self.vectorstore_info.name, self.vectorstore_info.description )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/toolkit.html
2388140f5260-1
self.vectorstore_info.name, self.vectorstore_info.description ) qa_with_sources_tool = VectorStoreQAWithSourcesTool( name=f"{self.vectorstore_info.name}_with_sources", description=description, vectorstore=self.vectorstore_info.vectorstore, llm=self.llm, ) return [qa_tool, qa_with_sources_tool] [docs]class VectorStoreRouterToolkit(BaseToolkit): """Toolkit for routing between vector stores.""" vectorstores: List[VectorStoreInfo] = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" tools: List[BaseTool] = [] for vectorstore_info in self.vectorstores: description = VectorStoreQATool.get_description( vectorstore_info.name, vectorstore_info.description ) qa_tool = VectorStoreQATool( name=vectorstore_info.name, description=description, vectorstore=vectorstore_info.vectorstore, llm=self.llm, ) tools.append(qa_tool) return tools
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/toolkit.html
2cc085fe5d0e-0
Source code for langchain.agents.agent_toolkits.vectorstore.base """VectorStore agent.""" from typing import Any, Dict, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.vectorstore.prompt import PREFIX, ROUTER_PREFIX from langchain.agents.agent_toolkits.vectorstore.toolkit import ( VectorStoreRouterToolkit, VectorStoreToolkit, ) from langchain.agents.mrkl.base import ZeroShotAgent from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain [docs]def create_vectorstore_agent( llm: BaseLanguageModel, toolkit: VectorStoreToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = PREFIX, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a vectorstore agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), ) [docs]def create_vectorstore_router_agent(
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/base.html
2cc085fe5d0e-1
) [docs]def create_vectorstore_router_agent( llm: BaseLanguageModel, toolkit: VectorStoreRouterToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = ROUTER_PREFIX, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a vectorstore router agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/base.html
f995a3517e4f-0
Source code for langchain.agents.agent_toolkits.sql.toolkit """Toolkit for interacting with a SQL database.""" from typing import List from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.base_language import BaseLanguageModel from langchain.sql_database import SQLDatabase from langchain.tools import BaseTool from langchain.tools.sql_database.tool import ( InfoSQLDatabaseTool, ListSQLDatabaseTool, QuerySQLCheckerTool, QuerySQLDataBaseTool, ) [docs]class SQLDatabaseToolkit(BaseToolkit): """Toolkit for interacting with SQL databases.""" db: SQLDatabase = Field(exclude=True) llm: BaseLanguageModel = Field(exclude=True) @property def dialect(self) -> str: """Return string representation of dialect to use.""" return self.db.dialect class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" query_sql_database_tool_description = ( "Input to this tool is a detailed and correct SQL query, output is a " "result from the database. If the query is not correct, an error message " "will be returned. If an error is returned, rewrite the query, check the " "query, and try again. If you encounter an issue with Unknown column " "'xxxx' in 'field list', using schema_sql_db to query the correct table " "fields." ) info_sql_database_tool_description = ( "Input to this tool is a comma-separated list of tables, output is the " "schema and sample rows for those tables. "
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/sql/toolkit.html
f995a3517e4f-1
"schema and sample rows for those tables. " "Be sure that the tables actually exist by calling list_tables_sql_db " "first! Example Input: 'table1, table2, table3'" ) return [ QuerySQLDataBaseTool( db=self.db, description=query_sql_database_tool_description ), InfoSQLDatabaseTool( db=self.db, description=info_sql_database_tool_description ), ListSQLDatabaseTool(db=self.db), QuerySQLCheckerTool(db=self.db, llm=self.llm), ]
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/sql/toolkit.html
aa59cae9d7e1-0
Source code for langchain.agents.agent_toolkits.sql.base """SQL agent.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor, BaseSingleActionAgent from langchain.agents.agent_toolkits.sql.prompt import ( SQL_FUNCTIONS_SUFFIX, SQL_PREFIX, SQL_SUFFIX, ) from langchain.agents.agent_toolkits.sql.toolkit import SQLDatabaseToolkit from langchain.agents.agent_types import AgentType from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, ) from langchain.schema import AIMessage, SystemMessage [docs]def create_sql_agent( llm: BaseLanguageModel, toolkit: SQLDatabaseToolkit, agent_type: AgentType = AgentType.ZERO_SHOT_REACT_DESCRIPTION, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = SQL_PREFIX, suffix: Optional[str] = None, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, top_k: int = 10, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any],
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/sql/base.html
aa59cae9d7e1-1
**kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a sql agent from an LLM and tools.""" tools = toolkit.get_tools() prefix = prefix.format(dialect=toolkit.dialect, top_k=top_k) agent: BaseSingleActionAgent if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION: prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix or SQL_SUFFIX, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) elif agent_type == AgentType.OPENAI_FUNCTIONS: messages = [ SystemMessage(content=prefix), HumanMessagePromptTemplate.from_template("{input}"), AIMessage(content=suffix or SQL_FUNCTIONS_SUFFIX), MessagesPlaceholder(variable_name="agent_scratchpad"), ] input_variables = ["input", "agent_scratchpad"] _prompt = ChatPromptTemplate(input_variables=input_variables, messages=messages) agent = OpenAIFunctionsAgent( llm=llm, prompt=_prompt, tools=tools, callback_manager=callback_manager, **kwargs, ) else: raise ValueError(f"Agent type {agent_type} not supported at the moment.") return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose,
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/sql/base.html
aa59cae9d7e1-2
tools=tools, callback_manager=callback_manager, verbose=verbose, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/sql/base.html
a1b10b90ebfc-0
Source code for langchain.agents.agent_toolkits.gmail.toolkit from __future__ import annotations from typing import TYPE_CHECKING, List from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.gmail.create_draft import GmailCreateDraft from langchain.tools.gmail.get_message import GmailGetMessage from langchain.tools.gmail.get_thread import GmailGetThread from langchain.tools.gmail.search import GmailSearch from langchain.tools.gmail.send_message import GmailSendMessage from langchain.tools.gmail.utils import build_resource_service if TYPE_CHECKING: # This is for linting and IDE typehints from googleapiclient.discovery import Resource else: try: # We do this so pydantic can resolve the types when instantiating from googleapiclient.discovery import Resource except ImportError: pass SCOPES = ["https://mail.google.com/"] [docs]class GmailToolkit(BaseToolkit): """Toolkit for interacting with Gmail.""" api_resource: Resource = Field(default_factory=build_resource_service) class Config: """Pydantic config.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return [ GmailCreateDraft(api_resource=self.api_resource), GmailSendMessage(api_resource=self.api_resource), GmailSearch(api_resource=self.api_resource), GmailGetMessage(api_resource=self.api_resource), GmailGetThread(api_resource=self.api_resource), ]
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/gmail/toolkit.html
017ce69215a6-0
Source code for langchain.agents.agent_toolkits.file_management.toolkit """Toolkit for interacting with the local filesystem.""" from __future__ import annotations from typing import List, Optional from pydantic import root_validator from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.file_management.copy import CopyFileTool from langchain.tools.file_management.delete import DeleteFileTool from langchain.tools.file_management.file_search import FileSearchTool from langchain.tools.file_management.list_dir import ListDirectoryTool from langchain.tools.file_management.move import MoveFileTool from langchain.tools.file_management.read import ReadFileTool from langchain.tools.file_management.write import WriteFileTool _FILE_TOOLS = { tool_cls.__fields__["name"].default: tool_cls for tool_cls in [ CopyFileTool, DeleteFileTool, FileSearchTool, MoveFileTool, ReadFileTool, WriteFileTool, ListDirectoryTool, ] } [docs]class FileManagementToolkit(BaseToolkit): """Toolkit for interacting with a Local Files.""" root_dir: Optional[str] = None """If specified, all file operations are made relative to root_dir.""" selected_tools: Optional[List[str]] = None """If provided, only provide the selected tools. Defaults to all.""" @root_validator def validate_tools(cls, values: dict) -> dict: selected_tools = values.get("selected_tools") or [] for tool_name in selected_tools: if tool_name not in _FILE_TOOLS: raise ValueError( f"File Tool of name {tool_name} not supported." f" Permitted tools: {list(_FILE_TOOLS)}" ) return values
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/file_management/toolkit.html
017ce69215a6-1
) return values [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" allowed_tools = self.selected_tools or _FILE_TOOLS.keys() tools: List[BaseTool] = [] for tool in allowed_tools: tool_cls = _FILE_TOOLS[tool] tools.append(tool_cls(root_dir=self.root_dir)) # type: ignore return tools __all__ = ["FileManagementToolkit"]
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/file_management/toolkit.html
b92736f01d64-0
Source code for langchain.agents.agent_toolkits.zapier.toolkit """Zapier Toolkit.""" from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.zapier.tool import ZapierNLARunAction from langchain.utilities.zapier import ZapierNLAWrapper [docs]class ZapierToolkit(BaseToolkit): """Zapier Toolkit.""" tools: List[BaseTool] = [] [docs] @classmethod def from_zapier_nla_wrapper( cls, zapier_nla_wrapper: ZapierNLAWrapper ) -> "ZapierToolkit": """Create a toolkit from a ZapierNLAWrapper.""" actions = zapier_nla_wrapper.list() tools = [ ZapierNLARunAction( action_id=action["id"], zapier_description=action["description"], params_schema=action["params"], api_wrapper=zapier_nla_wrapper, ) for action in actions ] return cls(tools=tools) [docs] @classmethod async def async_from_zapier_nla_wrapper( cls, zapier_nla_wrapper: ZapierNLAWrapper ) -> "ZapierToolkit": """Create a toolkit from a ZapierNLAWrapper.""" actions = await zapier_nla_wrapper.alist() tools = [ ZapierNLARunAction( action_id=action["id"], zapier_description=action["description"], params_schema=action["params"], api_wrapper=zapier_nla_wrapper, ) for action in actions ] return cls(tools=tools)
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/zapier/toolkit.html
b92736f01d64-1
for action in actions ] return cls(tools=tools) [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return self.tools
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/zapier/toolkit.html
63d001e4fcf4-0
Source code for langchain.agents.agent_toolkits.pandas.base """Agent for working with pandas objects.""" from typing import Any, Dict, List, Optional, Tuple from langchain.agents.agent import AgentExecutor, BaseSingleActionAgent from langchain.agents.agent_toolkits.pandas.prompt import ( FUNCTIONS_WITH_DF, FUNCTIONS_WITH_MULTI_DF, MULTI_DF_PREFIX, MULTI_DF_PREFIX_FUNCTIONS, PREFIX, PREFIX_FUNCTIONS, SUFFIX_NO_DF, SUFFIX_WITH_DF, SUFFIX_WITH_MULTI_DF, ) from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent from langchain.agents.types import AgentType from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.prompts.base import BasePromptTemplate from langchain.schema import SystemMessage from langchain.tools.python.tool import PythonAstREPLTool def _get_multi_prompt( dfs: List[Any], prefix: Optional[str] = None, suffix: Optional[str] = None, input_variables: Optional[List[str]] = None, include_df_in_prompt: Optional[bool] = True, ) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: num_dfs = len(dfs) if suffix is not None: suffix_to_use = suffix include_dfs_head = True elif include_df_in_prompt: suffix_to_use = SUFFIX_WITH_MULTI_DF include_dfs_head = True else: suffix_to_use = SUFFIX_NO_DF include_dfs_head = False if input_variables is None:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
63d001e4fcf4-1
include_dfs_head = False if input_variables is None: input_variables = ["input", "agent_scratchpad", "num_dfs"] if include_dfs_head: input_variables += ["dfs_head"] if prefix is None: prefix = MULTI_DF_PREFIX df_locals = {} for i, dataframe in enumerate(dfs): df_locals[f"df{i + 1}"] = dataframe tools = [PythonAstREPLTool(locals=df_locals)] prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix_to_use, input_variables=input_variables ) partial_prompt = prompt.partial() if "dfs_head" in input_variables: dfs_head = "\n\n".join([d.head().to_markdown() for d in dfs]) partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs), dfs_head=dfs_head) if "num_dfs" in input_variables: partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs)) return partial_prompt, tools def _get_single_prompt( df: Any, prefix: Optional[str] = None, suffix: Optional[str] = None, input_variables: Optional[List[str]] = None, include_df_in_prompt: Optional[bool] = True, ) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: if suffix is not None: suffix_to_use = suffix include_df_head = True elif include_df_in_prompt: suffix_to_use = SUFFIX_WITH_DF include_df_head = True else: suffix_to_use = SUFFIX_NO_DF include_df_head = False if input_variables is None:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
63d001e4fcf4-2
include_df_head = False if input_variables is None: input_variables = ["input", "agent_scratchpad"] if include_df_head: input_variables += ["df_head"] if prefix is None: prefix = PREFIX tools = [PythonAstREPLTool(locals={"df": df})] prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix_to_use, input_variables=input_variables ) partial_prompt = prompt.partial() if "df_head" in input_variables: partial_prompt = partial_prompt.partial(df_head=str(df.head().to_markdown())) return partial_prompt, tools def _get_prompt_and_tools( df: Any, prefix: Optional[str] = None, suffix: Optional[str] = None, input_variables: Optional[List[str]] = None, include_df_in_prompt: Optional[bool] = True, ) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: try: import pandas as pd except ImportError: raise ValueError( "pandas package not found, please install with `pip install pandas`" ) if include_df_in_prompt is not None and suffix is not None: raise ValueError("If suffix is specified, include_df_in_prompt should not be.") if isinstance(df, list): for item in df: if not isinstance(item, pd.DataFrame): raise ValueError(f"Expected pandas object, got {type(df)}") return _get_multi_prompt( df, prefix=prefix, suffix=suffix, input_variables=input_variables, include_df_in_prompt=include_df_in_prompt, ) else:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
63d001e4fcf4-3
include_df_in_prompt=include_df_in_prompt, ) else: if not isinstance(df, pd.DataFrame): raise ValueError(f"Expected pandas object, got {type(df)}") return _get_single_prompt( df, prefix=prefix, suffix=suffix, input_variables=input_variables, include_df_in_prompt=include_df_in_prompt, ) def _get_functions_single_prompt( df: Any, prefix: Optional[str] = None, suffix: Optional[str] = None, include_df_in_prompt: Optional[bool] = True, ) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: if suffix is not None: suffix_to_use = suffix if include_df_in_prompt: suffix_to_use = suffix_to_use.format(df_head=str(df.head().to_markdown())) elif include_df_in_prompt: suffix_to_use = FUNCTIONS_WITH_DF.format(df_head=str(df.head().to_markdown())) else: suffix_to_use = "" if prefix is None: prefix = PREFIX_FUNCTIONS tools = [PythonAstREPLTool(locals={"df": df})] system_message = SystemMessage(content=prefix + suffix_to_use) prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message) return prompt, tools def _get_functions_multi_prompt( dfs: Any, prefix: Optional[str] = None, suffix: Optional[str] = None, include_df_in_prompt: Optional[bool] = True, ) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: if suffix is not None: suffix_to_use = suffix if include_df_in_prompt:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
63d001e4fcf4-4
suffix_to_use = suffix if include_df_in_prompt: dfs_head = "\n\n".join([d.head().to_markdown() for d in dfs]) suffix_to_use = suffix_to_use.format( dfs_head=dfs_head, ) elif include_df_in_prompt: dfs_head = "\n\n".join([d.head().to_markdown() for d in dfs]) suffix_to_use = FUNCTIONS_WITH_MULTI_DF.format( dfs_head=dfs_head, ) else: suffix_to_use = "" if prefix is None: prefix = MULTI_DF_PREFIX_FUNCTIONS prefix = prefix.format(num_dfs=str(len(dfs))) df_locals = {} for i, dataframe in enumerate(dfs): df_locals[f"df{i + 1}"] = dataframe tools = [PythonAstREPLTool(locals=df_locals)] system_message = SystemMessage(content=prefix + suffix_to_use) prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message) return prompt, tools def _get_functions_prompt_and_tools( df: Any, prefix: Optional[str] = None, suffix: Optional[str] = None, input_variables: Optional[List[str]] = None, include_df_in_prompt: Optional[bool] = True, ) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: try: import pandas as pd except ImportError: raise ValueError( "pandas package not found, please install with `pip install pandas`" ) if input_variables is not None: raise ValueError("`input_variables` is not supported at the moment.") if include_df_in_prompt is not None and suffix is not None:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
63d001e4fcf4-5
if include_df_in_prompt is not None and suffix is not None: raise ValueError("If suffix is specified, include_df_in_prompt should not be.") if isinstance(df, list): for item in df: if not isinstance(item, pd.DataFrame): raise ValueError(f"Expected pandas object, got {type(df)}") return _get_functions_multi_prompt( df, prefix=prefix, suffix=suffix, include_df_in_prompt=include_df_in_prompt, ) else: if not isinstance(df, pd.DataFrame): raise ValueError(f"Expected pandas object, got {type(df)}") return _get_functions_single_prompt( df, prefix=prefix, suffix=suffix, include_df_in_prompt=include_df_in_prompt, ) [docs]def create_pandas_dataframe_agent( llm: BaseLanguageModel, df: Any, agent_type: AgentType = AgentType.ZERO_SHOT_REACT_DESCRIPTION, callback_manager: Optional[BaseCallbackManager] = None, prefix: Optional[str] = None, suffix: Optional[str] = None, input_variables: Optional[List[str]] = None, verbose: bool = False, return_intermediate_steps: bool = False, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", agent_executor_kwargs: Optional[Dict[str, Any]] = None, include_df_in_prompt: Optional[bool] = True, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a pandas agent from an LLM and dataframe.""" agent: BaseSingleActionAgent
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
63d001e4fcf4-6
agent: BaseSingleActionAgent if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION: prompt, tools = _get_prompt_and_tools( df, prefix=prefix, suffix=suffix, input_variables=input_variables, include_df_in_prompt=include_df_in_prompt, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent( llm_chain=llm_chain, allowed_tools=tool_names, callback_manager=callback_manager, **kwargs, ) elif agent_type == AgentType.OPENAI_FUNCTIONS: _prompt, tools = _get_functions_prompt_and_tools( df, prefix=prefix, suffix=suffix, input_variables=input_variables, include_df_in_prompt=include_df_in_prompt, ) agent = OpenAIFunctionsAgent( llm=llm, prompt=_prompt, tools=tools, callback_manager=callback_manager, **kwargs, ) else: raise ValueError(f"Agent type {agent_type} not supported at the moment.") return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, return_intermediate_steps=return_intermediate_steps, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
b88ed3e82e6b-0
Source code for langchain.agents.agent_toolkits.json.toolkit """Toolkit for interacting with a JSON spec.""" from __future__ import annotations from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.json.tool import JsonGetValueTool, JsonListKeysTool, JsonSpec [docs]class JsonToolkit(BaseToolkit): """Toolkit for interacting with a JSON spec.""" spec: JsonSpec [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return [ JsonListKeysTool(spec=self.spec), JsonGetValueTool(spec=self.spec), ]
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/json/toolkit.html
978fb97ca533-0
Source code for langchain.agents.agent_toolkits.json.base """Json agent.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.json.prompt import JSON_PREFIX, JSON_SUFFIX from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain [docs]def create_json_agent( llm: BaseLanguageModel, toolkit: JsonToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = JSON_PREFIX, suffix: str = JSON_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a json agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools(
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/json/base.html
978fb97ca533-1
return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/json/base.html
487b0c0ecc31-0
Source code for langchain.agents.self_ask_with_search.base """Chain that does self ask with search.""" from typing import Any, Sequence, Union from pydantic import Field from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser from langchain.agents.agent_types import AgentType from langchain.agents.self_ask_with_search.output_parser import SelfAskOutputParser from langchain.agents.self_ask_with_search.prompt import PROMPT from langchain.agents.tools import Tool from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.prompts.base import BasePromptTemplate from langchain.tools.base import BaseTool from langchain.utilities.google_serper import GoogleSerperAPIWrapper from langchain.utilities.serpapi import SerpAPIWrapper class SelfAskWithSearchAgent(Agent): """Agent for the self-ask-with-search paper.""" output_parser: AgentOutputParser = Field(default_factory=SelfAskOutputParser) @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return SelfAskOutputParser() @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return AgentType.SELF_ASK_WITH_SEARCH @classmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Prompt does not depend on tools.""" return PROMPT @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: validate_tools_single_input(cls.__name__, tools) super()._validate_tools(tools) if len(tools) != 1: raise ValueError(f"Exactly one tool must be specified, but got {tools}")
https://api.python.langchain.com/en/latest/_modules/langchain/agents/self_ask_with_search/base.html
487b0c0ecc31-1
raise ValueError(f"Exactly one tool must be specified, but got {tools}") tool_names = {tool.name for tool in tools} if tool_names != {"Intermediate Answer"}: raise ValueError( f"Tool name should be Intermediate Answer, got {tool_names}" ) @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Intermediate answer: " @property def llm_prefix(self) -> str: """Prefix to append the LLM call with.""" return "" [docs]class SelfAskWithSearchChain(AgentExecutor): """Chain that does self ask with search. Example: .. code-block:: python from langchain import SelfAskWithSearchChain, OpenAI, GoogleSerperAPIWrapper search_chain = GoogleSerperAPIWrapper() self_ask = SelfAskWithSearchChain(llm=OpenAI(), search_chain=search_chain) """ def __init__( self, llm: BaseLanguageModel, search_chain: Union[GoogleSerperAPIWrapper, SerpAPIWrapper], **kwargs: Any, ): """Initialize with just an LLM and a search chain.""" search_tool = Tool( name="Intermediate Answer", func=search_chain.run, coroutine=search_chain.arun, description="Search", ) agent = SelfAskWithSearchAgent.from_llm_and_tools(llm, [search_tool]) super().__init__(agent=agent, tools=[search_tool], **kwargs)
https://api.python.langchain.com/en/latest/_modules/langchain/agents/self_ask_with_search/base.html
dff4429db269-0
Source code for langchain.experimental.autonomous_agents.baby_agi.baby_agi """BabyAGI agent.""" from collections import deque from typing import Any, Dict, List, Optional from pydantic import BaseModel, Field from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.experimental.autonomous_agents.baby_agi.task_creation import ( TaskCreationChain, ) from langchain.experimental.autonomous_agents.baby_agi.task_execution import ( TaskExecutionChain, ) from langchain.experimental.autonomous_agents.baby_agi.task_prioritization import ( TaskPrioritizationChain, ) from langchain.vectorstores.base import VectorStore [docs]class BabyAGI(Chain, BaseModel): """Controller model for the BabyAGI agent.""" task_list: deque = Field(default_factory=deque) task_creation_chain: Chain = Field(...) task_prioritization_chain: Chain = Field(...) execution_chain: Chain = Field(...) task_id_counter: int = Field(1) vectorstore: VectorStore = Field(init=False) max_iterations: Optional[int] = None [docs] class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def add_task(self, task: Dict) -> None: self.task_list.append(task) def print_task_list(self) -> None: print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m") for t in self.task_list: print(str(t["task_id"]) + ": " + t["task_name"])
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/baby_agi/baby_agi.html
dff4429db269-1
print(str(t["task_id"]) + ": " + t["task_name"]) def print_next_task(self, task: Dict) -> None: print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m") print(str(task["task_id"]) + ": " + task["task_name"]) def print_task_result(self, result: str) -> None: print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m") print(result) @property def input_keys(self) -> List[str]: return ["objective"] @property def output_keys(self) -> List[str]: return [] [docs] def get_next_task( self, result: str, task_description: str, objective: str ) -> List[Dict]: """Get the next task.""" task_names = [t["task_name"] for t in self.task_list] incomplete_tasks = ", ".join(task_names) response = self.task_creation_chain.run( result=result, task_description=task_description, incomplete_tasks=incomplete_tasks, objective=objective, ) new_tasks = response.split("\n") return [ {"task_name": task_name} for task_name in new_tasks if task_name.strip() ] [docs] def prioritize_tasks(self, this_task_id: int, objective: str) -> List[Dict]: """Prioritize tasks.""" task_names = [t["task_name"] for t in list(self.task_list)] next_task_id = int(this_task_id) + 1
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/baby_agi/baby_agi.html
dff4429db269-2
next_task_id = int(this_task_id) + 1 response = self.task_prioritization_chain.run( task_names=", ".join(task_names), next_task_id=str(next_task_id), objective=objective, ) new_tasks = response.split("\n") prioritized_task_list = [] for task_string in new_tasks: if not task_string.strip(): continue task_parts = task_string.strip().split(".", 1) if len(task_parts) == 2: task_id = task_parts[0].strip() task_name = task_parts[1].strip() prioritized_task_list.append( {"task_id": task_id, "task_name": task_name} ) return prioritized_task_list def _get_top_tasks(self, query: str, k: int) -> List[str]: """Get the top k tasks based on the query.""" results = self.vectorstore.similarity_search(query, k=k) if not results: return [] return [str(item.metadata["task"]) for item in results] [docs] def execute_task(self, objective: str, task: str, k: int = 5) -> str: """Execute a task.""" context = self._get_top_tasks(query=objective, k=k) return self.execution_chain.run( objective=objective, context="\n".join(context), task=task ) def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run the agent.""" objective = inputs["objective"]
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/baby_agi/baby_agi.html
dff4429db269-3
"""Run the agent.""" objective = inputs["objective"] first_task = inputs.get("first_task", "Make a todo list") self.add_task({"task_id": 1, "task_name": first_task}) num_iters = 0 while True: if self.task_list: self.print_task_list() # Step 1: Pull the first task task = self.task_list.popleft() self.print_next_task(task) # Step 2: Execute the task result = self.execute_task(objective, task["task_name"]) this_task_id = int(task["task_id"]) self.print_task_result(result) # Step 3: Store the result in Pinecone result_id = f"result_{task['task_id']}" self.vectorstore.add_texts( texts=[result], metadatas=[{"task": task["task_name"]}], ids=[result_id], ) # Step 4: Create new tasks and reprioritize task list new_tasks = self.get_next_task(result, task["task_name"], objective) for new_task in new_tasks: self.task_id_counter += 1 new_task.update({"task_id": self.task_id_counter}) self.add_task(new_task) self.task_list = deque(self.prioritize_tasks(this_task_id, objective)) num_iters += 1 if self.max_iterations is not None and num_iters == self.max_iterations: print( "\033[91m\033[1m" + "\n*****TASK ENDING*****\n" + "\033[0m\033[0m" ) break return {} [docs] @classmethod def from_llm(
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/baby_agi/baby_agi.html
dff4429db269-4
return {} [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, vectorstore: VectorStore, verbose: bool = False, task_execution_chain: Optional[Chain] = None, **kwargs: Dict[str, Any], ) -> "BabyAGI": """Initialize the BabyAGI Controller.""" task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose) task_prioritization_chain = TaskPrioritizationChain.from_llm( llm, verbose=verbose ) if task_execution_chain is None: execution_chain: Chain = TaskExecutionChain.from_llm(llm, verbose=verbose) else: execution_chain = task_execution_chain return cls( task_creation_chain=task_creation_chain, task_prioritization_chain=task_prioritization_chain, execution_chain=execution_chain, vectorstore=vectorstore, **kwargs, )
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/baby_agi/baby_agi.html
6e6dc68fe7f9-0
Source code for langchain.experimental.autonomous_agents.autogpt.agent from __future__ import annotations from typing import List, Optional from pydantic import ValidationError from langchain.chains.llm import LLMChain from langchain.chat_models.base import BaseChatModel from langchain.experimental.autonomous_agents.autogpt.output_parser import ( AutoGPTOutputParser, BaseAutoGPTOutputParser, ) from langchain.experimental.autonomous_agents.autogpt.prompt import AutoGPTPrompt from langchain.experimental.autonomous_agents.autogpt.prompt_generator import ( FINISH_NAME, ) from langchain.memory import ChatMessageHistory from langchain.schema import ( AIMessage, BaseChatMessageHistory, Document, HumanMessage, SystemMessage, ) from langchain.tools.base import BaseTool from langchain.tools.human.tool import HumanInputRun from langchain.vectorstores.base import VectorStoreRetriever [docs]class AutoGPT: """Agent class for interacting with Auto-GPT.""" def __init__( self, ai_name: str, memory: VectorStoreRetriever, chain: LLMChain, output_parser: BaseAutoGPTOutputParser, tools: List[BaseTool], feedback_tool: Optional[HumanInputRun] = None, chat_history_memory: Optional[BaseChatMessageHistory] = None, ): self.ai_name = ai_name self.memory = memory self.next_action_count = 0 self.chain = chain self.output_parser = output_parser self.tools = tools self.feedback_tool = feedback_tool self.chat_history_memory = chat_history_memory or ChatMessageHistory() @classmethod def from_llm_and_tools(
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/autogpt/agent.html
6e6dc68fe7f9-1
@classmethod def from_llm_and_tools( cls, ai_name: str, ai_role: str, memory: VectorStoreRetriever, tools: List[BaseTool], llm: BaseChatModel, human_in_the_loop: bool = False, output_parser: Optional[BaseAutoGPTOutputParser] = None, chat_history_memory: Optional[BaseChatMessageHistory] = None, ) -> AutoGPT: prompt = AutoGPTPrompt( ai_name=ai_name, ai_role=ai_role, tools=tools, input_variables=["memory", "messages", "goals", "user_input"], token_counter=llm.get_num_tokens, ) human_feedback_tool = HumanInputRun() if human_in_the_loop else None chain = LLMChain(llm=llm, prompt=prompt) return cls( ai_name, memory, chain, output_parser or AutoGPTOutputParser(), tools, feedback_tool=human_feedback_tool, chat_history_memory=chat_history_memory, ) def run(self, goals: List[str]) -> str: user_input = ( "Determine which next command to use, " "and respond using the format specified above:" ) # Interaction Loop loop_count = 0 while True: # Discontinue if continuous limit is reached loop_count += 1 # Send message to AI, get response assistant_reply = self.chain.run( goals=goals, messages=self.chat_history_memory.messages, memory=self.memory, user_input=user_input, ) # Print Assistant thoughts
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/autogpt/agent.html
6e6dc68fe7f9-2
user_input=user_input, ) # Print Assistant thoughts print(assistant_reply) self.chat_history_memory.add_message(HumanMessage(content=user_input)) self.chat_history_memory.add_message(AIMessage(content=assistant_reply)) # Get command name and arguments action = self.output_parser.parse(assistant_reply) tools = {t.name: t for t in self.tools} if action.name == FINISH_NAME: return action.args["response"] if action.name in tools: tool = tools[action.name] try: observation = tool.run(action.args) except ValidationError as e: observation = ( f"Validation Error in args: {str(e)}, args: {action.args}" ) except Exception as e: observation = ( f"Error: {str(e)}, {type(e).__name__}, args: {action.args}" ) result = f"Command {tool.name} returned: {observation}" elif action.name == "ERROR": result = f"Error: {action.args}. " else: result = ( f"Unknown command '{action.name}'. " f"Please refer to the 'COMMANDS' list for available " f"commands and only respond in the specified JSON format." ) memory_to_add = ( f"Assistant Reply: {assistant_reply} " f"\nResult: {result} " ) if self.feedback_tool is not None: feedback = f"\n{self.feedback_tool.run('Input: ')}" if feedback in {"q", "stop"}: print("EXITING") return "EXITING" memory_to_add += feedback
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/autogpt/agent.html
6e6dc68fe7f9-3
return "EXITING" memory_to_add += feedback self.memory.add_documents([Document(page_content=memory_to_add)]) self.chat_history_memory.add_message(SystemMessage(content=result))
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/autogpt/agent.html
9a7aab7b9e07-0
Source code for langchain.experimental.generative_agents.memory import logging import re from datetime import datetime from typing import Any, Dict, List, Optional from langchain import LLMChain from langchain.base_language import BaseLanguageModel from langchain.prompts import PromptTemplate from langchain.retrievers import TimeWeightedVectorStoreRetriever from langchain.schema import BaseMemory, Document from langchain.utils import mock_now logger = logging.getLogger(__name__) [docs]class GenerativeAgentMemory(BaseMemory): llm: BaseLanguageModel """The core language model.""" memory_retriever: TimeWeightedVectorStoreRetriever """The retriever to fetch related memories.""" verbose: bool = False reflection_threshold: Optional[float] = None """When aggregate_importance exceeds reflection_threshold, stop to reflect.""" current_plan: List[str] = [] """The current plan of the agent.""" # A weight of 0.15 makes this less important than it # would be otherwise, relative to salience and time importance_weight: float = 0.15 """How much weight to assign the memory importance.""" aggregate_importance: float = 0.0 # : :meta private: """Track the sum of the 'importance' of recent memories. Triggers reflection when it reaches reflection_threshold.""" max_tokens_limit: int = 1200 # : :meta private: # input keys queries_key: str = "queries" most_recent_memories_token_key: str = "recent_memories_token" add_memory_key: str = "add_memory" # output keys relevant_memories_key: str = "relevant_memories"
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/memory.html
9a7aab7b9e07-1
# output keys relevant_memories_key: str = "relevant_memories" relevant_memories_simple_key: str = "relevant_memories_simple" most_recent_memories_key: str = "most_recent_memories" now_key: str = "now" reflecting: bool = False def chain(self, prompt: PromptTemplate) -> LLMChain: return LLMChain(llm=self.llm, prompt=prompt, verbose=self.verbose) @staticmethod def _parse_list(text: str) -> List[str]: """Parse a newline-separated string into a list of strings.""" lines = re.split(r"\n", text.strip()) lines = [line for line in lines if line.strip()] # remove empty lines return [re.sub(r"^\s*\d+\.\s*", "", line).strip() for line in lines] def _get_topics_of_reflection(self, last_k: int = 50) -> List[str]: """Return the 3 most salient high-level questions about recent observations.""" prompt = PromptTemplate.from_template( "{observations}\n\n" "Given only the information above, what are the 3 most salient " "high-level questions we can answer about the subjects in the statements?\n" "Provide each question on a new line." ) observations = self.memory_retriever.memory_stream[-last_k:] observation_str = "\n".join( [self._format_memory_detail(o) for o in observations] ) result = self.chain(prompt).run(observations=observation_str) return self._parse_list(result) def _get_insights_on_topic( self, topic: str, now: Optional[datetime] = None
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/memory.html
9a7aab7b9e07-2
self, topic: str, now: Optional[datetime] = None ) -> List[str]: """Generate 'insights' on a topic of reflection, based on pertinent memories.""" prompt = PromptTemplate.from_template( "Statements relevant to: '{topic}'\n" "---\n" "{related_statements}\n" "---\n" "What 5 high-level novel insights can you infer from the above statements " "that are relevant for answering the following question?\n" "Do not include any insights that are not relevant to the question.\n" "Do not repeat any insights that have already been made.\n\n" "Question: {topic}\n\n" "(example format: insight (because of 1, 5, 3))\n" ) related_memories = self.fetch_memories(topic, now=now) related_statements = "\n".join( [ self._format_memory_detail(memory, prefix=f"{i+1}. ") for i, memory in enumerate(related_memories) ] ) result = self.chain(prompt).run( topic=topic, related_statements=related_statements ) # TODO: Parse the connections between memories and insights return self._parse_list(result) [docs] def pause_to_reflect(self, now: Optional[datetime] = None) -> List[str]: """Reflect on recent observations and generate 'insights'.""" if self.verbose: logger.info("Character is reflecting") new_insights = [] topics = self._get_topics_of_reflection() for topic in topics: insights = self._get_insights_on_topic(topic, now=now)
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/memory.html
9a7aab7b9e07-3
insights = self._get_insights_on_topic(topic, now=now) for insight in insights: self.add_memory(insight, now=now) new_insights.extend(insights) return new_insights def _score_memory_importance(self, memory_content: str) -> float: """Score the absolute importance of the given memory.""" prompt = PromptTemplate.from_template( "On the scale of 1 to 10, where 1 is purely mundane" + " (e.g., brushing teeth, making bed) and 10 is" + " extremely poignant (e.g., a break up, college" + " acceptance), rate the likely poignancy of the" + " following piece of memory. Respond with a single integer." + "\nMemory: {memory_content}" + "\nRating: " ) score = self.chain(prompt).run(memory_content=memory_content).strip() if self.verbose: logger.info(f"Importance score: {score}") match = re.search(r"^\D*(\d+)", score) if match: return (float(match.group(1)) / 10) * self.importance_weight else: return 0.0 def _score_memories_importance(self, memory_content: str) -> List[float]: """Score the absolute importance of the given memory.""" prompt = PromptTemplate.from_template( "On the scale of 1 to 10, where 1 is purely mundane" + " (e.g., brushing teeth, making bed) and 10 is" + " extremely poignant (e.g., a break up, college" + " acceptance), rate the likely poignancy of the"
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/memory.html
9a7aab7b9e07-4
+ " acceptance), rate the likely poignancy of the" + " following piece of memory. Always answer with only a list of numbers." + " If just given one memory still respond in a list." + " Memories are separated by semi colans (;)" + "\Memories: {memory_content}" + "\nRating: " ) scores = self.chain(prompt).run(memory_content=memory_content).strip() if self.verbose: logger.info(f"Importance scores: {scores}") # Split into list of strings and convert to floats scores_list = [float(x) for x in scores.split(";")] return scores_list [docs] def add_memories( self, memory_content: str, now: Optional[datetime] = None ) -> List[str]: """Add an observations or memories to the agent's memory.""" importance_scores = self._score_memories_importance(memory_content) self.aggregate_importance += max(importance_scores) memory_list = memory_content.split(";") documents = [] for i in range(len(memory_list)): documents.append( Document( page_content=memory_list[i], metadata={"importance": importance_scores[i]}, ) ) result = self.memory_retriever.add_documents(documents, current_time=now) # After an agent has processed a certain amount of memories (as measured by # aggregate importance), it is time to reflect on recent events to add # more synthesized memories to the agent's memory stream. if ( self.reflection_threshold is not None and self.aggregate_importance > self.reflection_threshold and not self.reflecting ): self.reflecting = True
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/memory.html
9a7aab7b9e07-5
and not self.reflecting ): self.reflecting = True self.pause_to_reflect(now=now) # Hack to clear the importance from reflection self.aggregate_importance = 0.0 self.reflecting = False return result [docs] def add_memory( self, memory_content: str, now: Optional[datetime] = None ) -> List[str]: """Add an observation or memory to the agent's memory.""" importance_score = self._score_memory_importance(memory_content) self.aggregate_importance += importance_score document = Document( page_content=memory_content, metadata={"importance": importance_score} ) result = self.memory_retriever.add_documents([document], current_time=now) # After an agent has processed a certain amount of memories (as measured by # aggregate importance), it is time to reflect on recent events to add # more synthesized memories to the agent's memory stream. if ( self.reflection_threshold is not None and self.aggregate_importance > self.reflection_threshold and not self.reflecting ): self.reflecting = True self.pause_to_reflect(now=now) # Hack to clear the importance from reflection self.aggregate_importance = 0.0 self.reflecting = False return result [docs] def fetch_memories( self, observation: str, now: Optional[datetime] = None ) -> List[Document]: """Fetch related memories.""" if now is not None: with mock_now(now): return self.memory_retriever.get_relevant_documents(observation) else: return self.memory_retriever.get_relevant_documents(observation)
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/memory.html
9a7aab7b9e07-6
else: return self.memory_retriever.get_relevant_documents(observation) def format_memories_detail(self, relevant_memories: List[Document]) -> str: content = [] for mem in relevant_memories: content.append(self._format_memory_detail(mem, prefix="- ")) return "\n".join([f"{mem}" for mem in content]) def _format_memory_detail(self, memory: Document, prefix: str = "") -> str: created_time = memory.metadata["created_at"].strftime("%B %d, %Y, %I:%M %p") return f"{prefix}[{created_time}] {memory.page_content.strip()}" def format_memories_simple(self, relevant_memories: List[Document]) -> str: return "; ".join([f"{mem.page_content}" for mem in relevant_memories]) def _get_memories_until_limit(self, consumed_tokens: int) -> str: """Reduce the number of tokens in the documents.""" result = [] for doc in self.memory_retriever.memory_stream[::-1]: if consumed_tokens >= self.max_tokens_limit: break consumed_tokens += self.llm.get_num_tokens(doc.page_content) if consumed_tokens < self.max_tokens_limit: result.append(doc) return self.format_memories_simple(result) @property def memory_variables(self) -> List[str]: """Input keys this memory class will load dynamically.""" return [] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Return key-value pairs given the text input to the chain.""" queries = inputs.get(self.queries_key) now = inputs.get(self.now_key) if queries is not None:
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/memory.html
9a7aab7b9e07-7
now = inputs.get(self.now_key) if queries is not None: relevant_memories = [ mem for query in queries for mem in self.fetch_memories(query, now=now) ] return { self.relevant_memories_key: self.format_memories_detail( relevant_memories ), self.relevant_memories_simple_key: self.format_memories_simple( relevant_memories ), } most_recent_memories_token = inputs.get(self.most_recent_memories_token_key) if most_recent_memories_token is not None: return { self.most_recent_memories_key: self._get_memories_until_limit( most_recent_memories_token ) } return {} [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, Any]) -> None: """Save the context of this model run to memory.""" # TODO: fix the save memory key mem = outputs.get(self.add_memory_key) now = outputs.get(self.now_key) if mem: self.add_memory(mem, now=now) [docs] def clear(self) -> None: """Clear memory contents.""" # TODO
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/memory.html
60662630844e-0
Source code for langchain.experimental.generative_agents.generative_agent import re from datetime import datetime from typing import Any, Dict, List, Optional, Tuple from pydantic import BaseModel, Field from langchain import LLMChain from langchain.base_language import BaseLanguageModel from langchain.experimental.generative_agents.memory import GenerativeAgentMemory from langchain.prompts import PromptTemplate [docs]class GenerativeAgent(BaseModel): """A character with memory and innate characteristics.""" name: str """The character's name.""" age: Optional[int] = None """The optional age of the character.""" traits: str = "N/A" """Permanent traits to ascribe to the character.""" status: str """The traits of the character you wish not to change.""" memory: GenerativeAgentMemory """The memory object that combines relevance, recency, and 'importance'.""" llm: BaseLanguageModel """The underlying language model.""" verbose: bool = False summary: str = "" #: :meta private: """Stateful self-summary generated via reflection on the character's memory.""" summary_refresh_seconds: int = 3600 #: :meta private: """How frequently to re-generate the summary.""" last_refreshed: datetime = Field(default_factory=datetime.now) # : :meta private: """The last time the character's summary was regenerated.""" daily_summaries: List[str] = Field(default_factory=list) # : :meta private: """Summary of the events in the plan that the agent took.""" [docs] class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True # LLM-related methods @staticmethod
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/generative_agent.html
60662630844e-1
arbitrary_types_allowed = True # LLM-related methods @staticmethod def _parse_list(text: str) -> List[str]: """Parse a newline-separated string into a list of strings.""" lines = re.split(r"\n", text.strip()) return [re.sub(r"^\s*\d+\.\s*", "", line).strip() for line in lines] def chain(self, prompt: PromptTemplate) -> LLMChain: return LLMChain( llm=self.llm, prompt=prompt, verbose=self.verbose, memory=self.memory ) def _get_entity_from_observation(self, observation: str) -> str: prompt = PromptTemplate.from_template( "What is the observed entity in the following observation? {observation}" + "\nEntity=" ) return self.chain(prompt).run(observation=observation).strip() def _get_entity_action(self, observation: str, entity_name: str) -> str: prompt = PromptTemplate.from_template( "What is the {entity} doing in the following observation? {observation}" + "\nThe {entity} is" ) return ( self.chain(prompt).run(entity=entity_name, observation=observation).strip() ) [docs] def summarize_related_memories(self, observation: str) -> str: """Summarize memories that are most relevant to an observation.""" prompt = PromptTemplate.from_template( """ {q1}? Context from memory: {relevant_memories} Relevant context: """ ) entity_name = self._get_entity_from_observation(observation) entity_action = self._get_entity_action(observation, entity_name)
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/generative_agent.html
60662630844e-2
entity_action = self._get_entity_action(observation, entity_name) q1 = f"What is the relationship between {self.name} and {entity_name}" q2 = f"{entity_name} is {entity_action}" return self.chain(prompt=prompt).run(q1=q1, queries=[q1, q2]).strip() def _generate_reaction( self, observation: str, suffix: str, now: Optional[datetime] = None ) -> str: """React to a given observation or dialogue act.""" prompt = PromptTemplate.from_template( "{agent_summary_description}" + "\nIt is {current_time}." + "\n{agent_name}'s status: {agent_status}" + "\nSummary of relevant context from {agent_name}'s memory:" + "\n{relevant_memories}" + "\nMost recent observations: {most_recent_memories}" + "\nObservation: {observation}" + "\n\n" + suffix ) agent_summary_description = self.get_summary(now=now) relevant_memories_str = self.summarize_related_memories(observation) current_time_str = ( datetime.now().strftime("%B %d, %Y, %I:%M %p") if now is None else now.strftime("%B %d, %Y, %I:%M %p") ) kwargs: Dict[str, Any] = dict( agent_summary_description=agent_summary_description, current_time=current_time_str, relevant_memories=relevant_memories_str, agent_name=self.name, observation=observation, agent_status=self.status, ) consumed_tokens = self.llm.get_num_tokens(
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/generative_agent.html
60662630844e-3
) consumed_tokens = self.llm.get_num_tokens( prompt.format(most_recent_memories="", **kwargs) ) kwargs[self.memory.most_recent_memories_token_key] = consumed_tokens return self.chain(prompt=prompt).run(**kwargs).strip() def _clean_response(self, text: str) -> str: return re.sub(f"^{self.name} ", "", text.strip()).strip() [docs] def generate_reaction( self, observation: str, now: Optional[datetime] = None ) -> Tuple[bool, str]: """React to a given observation.""" call_to_action_template = ( "Should {agent_name} react to the observation, and if so," + " what would be an appropriate reaction? Respond in one line." + ' If the action is to engage in dialogue, write:\nSAY: "what to say"' + "\notherwise, write:\nREACT: {agent_name}'s reaction (if anything)." + "\nEither do nothing, react, or say something but not both.\n\n" ) full_result = self._generate_reaction( observation, call_to_action_template, now=now ) result = full_result.strip().split("\n")[0] # AAA self.memory.save_context( {}, { self.memory.add_memory_key: f"{self.name} observed " f"{observation} and reacted by {result}", self.memory.now_key: now, }, ) if "REACT:" in result: reaction = self._clean_response(result.split("REACT:")[-1]) return False, f"{self.name} {reaction}" if "SAY:" in result:
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/generative_agent.html
60662630844e-4
if "SAY:" in result: said_value = self._clean_response(result.split("SAY:")[-1]) return True, f"{self.name} said {said_value}" else: return False, result [docs] def generate_dialogue_response( self, observation: str, now: Optional[datetime] = None ) -> Tuple[bool, str]: """React to a given observation.""" call_to_action_template = ( "What would {agent_name} say? To end the conversation, write:" ' GOODBYE: "what to say". Otherwise to continue the conversation,' ' write: SAY: "what to say next"\n\n' ) full_result = self._generate_reaction( observation, call_to_action_template, now=now ) result = full_result.strip().split("\n")[0] if "GOODBYE:" in result: farewell = self._clean_response(result.split("GOODBYE:")[-1]) self.memory.save_context( {}, { self.memory.add_memory_key: f"{self.name} observed " f"{observation} and said {farewell}", self.memory.now_key: now, }, ) return False, f"{self.name} said {farewell}" if "SAY:" in result: response_text = self._clean_response(result.split("SAY:")[-1]) self.memory.save_context( {}, { self.memory.add_memory_key: f"{self.name} observed " f"{observation} and said {response_text}", self.memory.now_key: now, }, ) return True, f"{self.name} said {response_text}"
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/generative_agent.html
60662630844e-5
) return True, f"{self.name} said {response_text}" else: return False, result ###################################################### # Agent stateful' summary methods. # # Each dialog or response prompt includes a header # # summarizing the agent's self-description. This is # # updated periodically through probing its memories # ###################################################### def _compute_agent_summary(self) -> str: """""" prompt = PromptTemplate.from_template( "How would you summarize {name}'s core characteristics given the" + " following statements:\n" + "{relevant_memories}" + "Do not embellish." + "\n\nSummary: " ) # The agent seeks to think about their core characteristics. return ( self.chain(prompt) .run(name=self.name, queries=[f"{self.name}'s core characteristics"]) .strip() ) [docs] def get_summary( self, force_refresh: bool = False, now: Optional[datetime] = None ) -> str: """Return a descriptive summary of the agent.""" current_time = datetime.now() if now is None else now since_refresh = (current_time - self.last_refreshed).seconds if ( not self.summary or since_refresh >= self.summary_refresh_seconds or force_refresh ): self.summary = self._compute_agent_summary() self.last_refreshed = current_time age = self.age if self.age is not None else "N/A" return ( f"Name: {self.name} (age: {age})" + f"\nInnate traits: {self.traits}"
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/generative_agent.html
60662630844e-6
+ f"\nInnate traits: {self.traits}" + f"\n{self.summary}" ) [docs] def get_full_header( self, force_refresh: bool = False, now: Optional[datetime] = None ) -> str: """Return a full header of the agent's status, summary, and current time.""" now = datetime.now() if now is None else now summary = self.get_summary(force_refresh=force_refresh, now=now) current_time_str = now.strftime("%B %d, %Y, %I:%M %p") return ( f"{summary}\nIt is {current_time_str}.\n{self.name}'s status: {self.status}" )
https://api.python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/generative_agent.html
89ed0ff49ed6-0
Source code for langchain.vectorstores.typesense """Wrapper around Typesense vector search""" from __future__ import annotations import uuid from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Tuple, Union from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_env from langchain.vectorstores.base import VectorStore if TYPE_CHECKING: from typesense.client import Client from typesense.collection import Collection [docs]class Typesense(VectorStore): """Wrapper around Typesense vector search. To use, you should have the ``typesense`` python package installed. Example: .. code-block:: python from langchain.embedding.openai import OpenAIEmbeddings from langchain.vectorstores import Typesense import typesense node = { "host": "localhost", # For Typesense Cloud use xxx.a1.typesense.net "port": "8108", # For Typesense Cloud use 443 "protocol": "http" # For Typesense Cloud use https } typesense_client = typesense.Client( { "nodes": [node], "api_key": "<API_KEY>", "connection_timeout_seconds": 2 } ) typesense_collection_name = "langchain-memory" embedding = OpenAIEmbeddings() vectorstore = Typesense( typesense_client=typesense_client, embedding=embedding, typesense_collection_name=typesense_collection_name, text_key="text", ) """ def __init__( self, typesense_client: Client, embedding: Embeddings, *,
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/typesense.html
89ed0ff49ed6-1
typesense_client: Client, embedding: Embeddings, *, typesense_collection_name: Optional[str] = None, text_key: str = "text", ): """Initialize with Typesense client.""" try: from typesense import Client except ImportError: raise ValueError( "Could not import typesense python package. " "Please install it with `pip install typesense`." ) if not isinstance(typesense_client, Client): raise ValueError( f"typesense_client should be an instance of typesense.Client, " f"got {type(typesense_client)}" ) self._typesense_client = typesense_client self._embedding = embedding self._typesense_collection_name = ( typesense_collection_name or f"langchain-{str(uuid.uuid4())}" ) self._text_key = text_key @property def _collection(self) -> Collection: return self._typesense_client.collections[self._typesense_collection_name] def _prep_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]], ids: Optional[List[str]], ) -> List[dict]: """Embed and create the documents""" _ids = ids or (str(uuid.uuid4()) for _ in texts) _metadatas: Iterable[dict] = metadatas or ({} for _ in texts) embedded_texts = self._embedding.embed_documents(list(texts)) return [ {"id": _id, "vec": vec, f"{self._text_key}": text, "metadata": metadata}
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/typesense.html
89ed0ff49ed6-2
for _id, vec, text, metadata in zip(_ids, embedded_texts, texts, _metadatas) ] def _create_collection(self, num_dim: int) -> None: fields = [ {"name": "vec", "type": "float[]", "num_dim": num_dim}, {"name": f"{self._text_key}", "type": "string"}, {"name": ".*", "type": "auto"}, ] self._typesense_client.collections.create( {"name": self._typesense_collection_name, "fields": fields} ) [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embedding and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. Returns: List of ids from adding the texts into the vectorstore. """ from typesense.exceptions import ObjectNotFound docs = self._prep_texts(texts, metadatas, ids) try: self._collection.documents.import_(docs, {"action": "upsert"}) except ObjectNotFound: # Create the collection if it doesn't already exist self._create_collection(len(docs[0]["vec"])) self._collection.documents.import_(docs, {"action": "upsert"}) return [doc["id"] for doc in docs]
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/typesense.html
89ed0ff49ed6-3
return [doc["id"] for doc in docs] [docs] def similarity_search_with_score( self, query: str, k: int = 10, filter: Optional[str] = "", ) -> List[Tuple[Document, float]]: """Return typesense documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 10. Minimum 10 results would be returned. filter: typesense filter_by expression to filter documents on Returns: List of Documents most similar to the query and score for each """ embedded_query = [str(x) for x in self._embedding.embed_query(query)] query_obj = { "q": "*", "vector_query": f'vec:([{",".join(embedded_query)}], k:{k})', "filter_by": filter, "collection": self._typesense_collection_name, } docs = [] response = self._typesense_client.multi_search.perform( {"searches": [query_obj]}, {} ) for hit in response["results"][0]["hits"]: document = hit["document"] metadata = document["metadata"] text = document[self._text_key] score = hit["vector_distance"] docs.append((Document(page_content=text, metadata=metadata), score)) return docs [docs] def similarity_search( self, query: str, k: int = 10, filter: Optional[str] = "", **kwargs: Any, ) -> List[Document]: """Return typesense documents most similar to query.
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/typesense.html
89ed0ff49ed6-4
) -> List[Document]: """Return typesense documents most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 10. Minimum 10 results would be returned. filter: typesense filter_by expression to filter documents on Returns: List of Documents most similar to the query and score for each """ docs_and_score = self.similarity_search_with_score(query, k=k, filter=filter) return [doc for doc, _ in docs_and_score] [docs] @classmethod def from_client_params( cls, embedding: Embeddings, *, host: str = "localhost", port: Union[str, int] = "8108", protocol: str = "http", typesense_api_key: Optional[str] = None, connection_timeout_seconds: int = 2, **kwargs: Any, ) -> Typesense: """Initialize Typesense directly from client parameters. Example: .. code-block:: python from langchain.embedding.openai import OpenAIEmbeddings from langchain.vectorstores import Typesense # Pass in typesense_api_key as kwarg or set env var "TYPESENSE_API_KEY". vectorstore = Typesense( OpenAIEmbeddings(), host="localhost", port="8108", protocol="http", typesense_collection_name="langchain-memory", ) """ try: from typesense import Client except ImportError: raise ValueError( "Could not import typesense python package. " "Please install it with `pip install typesense`." )
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/typesense.html
89ed0ff49ed6-5
"Please install it with `pip install typesense`." ) node = { "host": host, "port": str(port), "protocol": protocol, } typesense_api_key = typesense_api_key or get_from_env( "typesense_api_key", "TYPESENSE_API_KEY" ) client_config = { "nodes": [node], "api_key": typesense_api_key, "connection_timeout_seconds": connection_timeout_seconds, } return cls(Client(client_config), embedding, **kwargs) [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, typesense_client: Optional[Client] = None, typesense_client_params: Optional[dict] = None, typesense_collection_name: Optional[str] = None, text_key: str = "text", **kwargs: Any, ) -> Typesense: """Construct Typesense wrapper from raw text.""" if typesense_client: vectorstore = cls(typesense_client, embedding, **kwargs) elif typesense_client_params: vectorstore = cls.from_client_params( embedding, **typesense_client_params, **kwargs ) else: raise ValueError( "Must specify one of typesense_client or typesense_client_params." ) vectorstore.add_texts(texts, metadatas=metadatas, ids=ids) return vectorstore
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/typesense.html
a69c40c6a54c-0
Source code for langchain.vectorstores.supabase from __future__ import annotations import uuid from itertools import repeat from typing import ( TYPE_CHECKING, Any, Iterable, List, Optional, Tuple, Type, Union, ) import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance if TYPE_CHECKING: import supabase [docs]class SupabaseVectorStore(VectorStore): """VectorStore for a Supabase postgres database. Assumes you have the `pgvector` extension installed and a `match_documents` (or similar) function. For more details: https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabase You can implement your own `match_documents` function in order to limit the search space to a subset of documents based on your own authorization or business logic. Note that the Supabase Python client does not yet support async operations. If you'd like to use `max_marginal_relevance_search`, please review the instructions below on modifying the `match_documents` function to return matched embeddings. """ _client: supabase.client.Client # This is the embedding function. Don't confuse with the embedding vectors. # We should perhaps rename the underlying Embedding base class to EmbeddingFunction # or something _embedding: Embeddings table_name: str query_name: str def __init__( self, client: supabase.client.Client, embedding: Embeddings, table_name: str,
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
a69c40c6a54c-1
embedding: Embeddings, table_name: str, query_name: Union[str, None] = None, ) -> None: """Initialize with supabase client.""" try: import supabase # noqa: F401 except ImportError: raise ValueError( "Could not import supabase python package. " "Please install it with `pip install supabase`." ) self._client = client self._embedding: Embeddings = embedding self.table_name = table_name or "documents" self.query_name = query_name or "match_documents" [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict[Any, Any]]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: ids = ids or [str(uuid.uuid4()) for _ in texts] docs = self._texts_to_documents(texts, metadatas) vectors = self._embedding.embed_documents(list(texts)) return self.add_vectors(vectors, docs, ids) [docs] @classmethod def from_texts( cls: Type["SupabaseVectorStore"], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, client: Optional[supabase.client.Client] = None, table_name: Optional[str] = "documents", query_name: Union[str, None] = "match_documents", ids: Optional[List[str]] = None, **kwargs: Any, ) -> "SupabaseVectorStore": """Return VectorStore initialized from texts and embeddings."""
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
a69c40c6a54c-2
"""Return VectorStore initialized from texts and embeddings.""" if not client: raise ValueError("Supabase client is required.") if not table_name: raise ValueError("Supabase document table_name is required.") embeddings = embedding.embed_documents(texts) ids = [str(uuid.uuid4()) for _ in texts] docs = cls._texts_to_documents(texts, metadatas) _ids = cls._add_vectors(client, table_name, embeddings, docs, ids) return cls( client=client, embedding=embedding, table_name=table_name, query_name=query_name, ) [docs] def add_vectors( self, vectors: List[List[float]], documents: List[Document], ids: List[str], ) -> List[str]: return self._add_vectors(self._client, self.table_name, vectors, documents, ids) [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: vectors = self._embedding.embed_documents([query]) return self.similarity_search_by_vector(vectors[0], k) [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: result = self.similarity_search_by_vector_with_relevance_scores(embedding, k) documents = [doc for doc, _ in result] return documents [docs] def similarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]:
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
a69c40c6a54c-3
) -> List[Tuple[Document, float]]: vectors = self._embedding.embed_documents([query]) return self.similarity_search_by_vector_with_relevance_scores(vectors[0], k) [docs] def similarity_search_by_vector_with_relevance_scores( self, query: List[float], k: int ) -> List[Tuple[Document, float]]: match_documents_params = dict(query_embedding=query, match_count=k) res = self._client.rpc(self.query_name, match_documents_params).execute() match_result = [ ( Document( metadata=search.get("metadata", {}), # type: ignore page_content=search.get("content", ""), ), search.get("similarity", 0.0), ) for search in res.data if search.get("content") ] return match_result [docs] def similarity_search_by_vector_returning_embeddings( self, query: List[float], k: int ) -> List[Tuple[Document, float, np.ndarray[np.float32, Any]]]: match_documents_params = dict(query_embedding=query, match_count=k) res = self._client.rpc(self.query_name, match_documents_params).execute() match_result = [ ( Document( metadata=search.get("metadata", {}), # type: ignore page_content=search.get("content", ""), ), search.get("similarity", 0.0), # Supabase returns a vector type as its string represation (!). # This is a hack to convert the string to numpy array. np.fromstring( search.get("embedding", "").strip("[]"), np.float32, sep="," ), )
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
a69c40c6a54c-4
), ) for search in res.data if search.get("content") ] return match_result @staticmethod def _texts_to_documents( texts: Iterable[str], metadatas: Optional[Iterable[dict[Any, Any]]] = None, ) -> List[Document]: """Return list of Documents from list of texts and metadatas.""" if metadatas is None: metadatas = repeat({}) docs = [ Document(page_content=text, metadata=metadata) for text, metadata in zip(texts, metadatas) ] return docs @staticmethod def _add_vectors( client: supabase.client.Client, table_name: str, vectors: List[List[float]], documents: List[Document], ids: List[str], ) -> List[str]: """Add vectors to Supabase table.""" rows: List[dict[str, Any]] = [ { "id": ids[idx], "content": documents[idx].page_content, "embedding": embedding, "metadata": documents[idx].metadata, # type: ignore } for idx, embedding in enumerate(vectors) ] # According to the SupabaseVectorStore JS implementation, the best chunk size # is 500 chunk_size = 500 id_list: List[str] = [] for i in range(0, len(rows), chunk_size): chunk = rows[i : i + chunk_size] result = client.from_(table_name).upsert(chunk).execute() # type: ignore if len(result.data) == 0:
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
a69c40c6a54c-5
if len(result.data) == 0: raise Exception("Error inserting: No rows added") # VectorStore.add_vectors returns ids as strings ids = [str(i.get("id")) for i in result.data if i.get("id")] id_list.extend(ids) return id_list [docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ result = self.similarity_search_by_vector_returning_embeddings( embedding, fetch_k ) matched_documents = [doc_tuple[0] for doc_tuple in result] matched_embeddings = [doc_tuple[2] for doc_tuple in result] mmr_selected = maximal_marginal_relevance( np.array([embedding], dtype=np.float32), matched_embeddings, k=k, lambda_mult=lambda_mult, )
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
a69c40c6a54c-6
matched_embeddings, k=k, lambda_mult=lambda_mult, ) filtered_documents = [matched_documents[i] for i in mmr_selected] return filtered_documents [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. `max_marginal_relevance_search` requires that `query_name` returns matched embeddings alongside the match documents. The following function demonstrates how to do this: ```sql CREATE FUNCTION match_documents_embeddings(query_embedding vector(1536), match_count int) RETURNS TABLE( id bigint, content text, metadata jsonb, embedding vector(1536), similarity float) LANGUAGE plpgsql AS $$ # variable_conflict use_column BEGIN RETURN query SELECT id, content, metadata, embedding,
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
a69c40c6a54c-7
SELECT id, content, metadata, embedding, 1 -(docstore.embedding <=> query_embedding) AS similarity FROM docstore ORDER BY docstore.embedding <=> query_embedding LIMIT match_count; END; $$; ``` """ embedding = self._embedding.embed_documents([query]) docs = self.max_marginal_relevance_search_by_vector( embedding[0], k, fetch_k, lambda_mult=lambda_mult ) return docs [docs] def delete(self, ids: List[str]) -> None: """Delete by vector IDs. Args: ids: List of ids to delete. """ rows: List[dict[str, Any]] = [ { "id": id, } for id in ids ] # TODO: Check if this can be done in bulk for row in rows: self._client.from_(self.table_name).delete().eq("id", row["id"]).execute()
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
daaaaf8c8dbe-0
Source code for langchain.vectorstores.cassandra """Wrapper around Cassandra vector-store capabilities, based on cassIO.""" from __future__ import annotations import hashlib import typing from typing import Any, Iterable, List, Optional, Tuple, Type, TypeVar import numpy as np if typing.TYPE_CHECKING: from cassandra.cluster import Session from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance CVST = TypeVar("CVST", bound="Cassandra") # a positive number of seconds to expire entries, or None for no expiration. CASSANDRA_VECTORSTORE_DEFAULT_TTL_SECONDS = None def _hash(_input: str) -> str: """Use a deterministic hashing approach.""" return hashlib.md5(_input.encode()).hexdigest() [docs]class Cassandra(VectorStore): """Wrapper around Cassandra embeddings platform. There is no notion of a default table name, since each embedding function implies its own vector dimension, which is part of the schema. Example: .. code-block:: python from langchain.vectorstores import Cassandra from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() session = ... keyspace = 'my_keyspace' vectorstore = Cassandra(embeddings, session, keyspace, 'my_doc_archive') """ _embedding_dimension: int | None def _getEmbeddingDimension(self) -> int: if self._embedding_dimension is None: self._embedding_dimension = len( self.embedding.embed_query("This is a sample sentence.") ) return self._embedding_dimension def __init__( self,
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/cassandra.html
daaaaf8c8dbe-1
) return self._embedding_dimension def __init__( self, embedding: Embeddings, session: Session, keyspace: str, table_name: str, ttl_seconds: int | None = CASSANDRA_VECTORSTORE_DEFAULT_TTL_SECONDS, ) -> None: try: from cassio.vector import VectorTable except (ImportError, ModuleNotFoundError): raise ImportError( "Could not import cassio python package. " "Please install it with `pip install cassio`." ) """Create a vector table.""" self.embedding = embedding self.session = session self.keyspace = keyspace self.table_name = table_name self.ttl_seconds = ttl_seconds # self._embedding_dimension = None # self.table = VectorTable( session=session, keyspace=keyspace, table=table_name, embedding_dimension=self._getEmbeddingDimension(), auto_id=False, # the `add_texts` contract admits user-provided ids ) [docs] def delete_collection(self) -> None: """ Just an alias for `clear` (to better align with other VectorStore implementations). """ self.clear() [docs] def clear(self) -> None: """Empty the collection.""" self.table.clear() [docs] def delete_by_document_id(self, document_id: str) -> None: return self.table.delete(document_id) [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any,
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/cassandra.html
daaaaf8c8dbe-2
ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added texts. """ _texts = list(texts) # lest it be a generator or something if ids is None: # unless otherwise specified, we have deterministic IDs: # re-inserting an existing document will not create a duplicate. # (and effectively update the metadata) ids = [_hash(text) for text in _texts] if metadatas is None: metadatas = [{} for _ in _texts] # ttl_seconds = kwargs.get("ttl_seconds", self.ttl_seconds) # embedding_vectors = self.embedding.embed_documents(_texts) for text, embedding_vector, text_id, metadata in zip( _texts, embedding_vectors, ids, metadatas ): self.table.put( document=text, embedding_vector=embedding_vector, document_id=text_id, metadata=metadata, ttl_seconds=ttl_seconds, ) # return ids # id-returning search facilities [docs] def similarity_search_with_score_id_by_vector( self, embedding: List[float], k: int = 4, ) -> List[Tuple[Document, float, str]]: """Return docs most similar to embedding vector.
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/cassandra.html
daaaaf8c8dbe-3
"""Return docs most similar to embedding vector. No support for `filter` query (on metadata) along with vector search. Args: embedding (str): Embedding to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. Returns: List of (Document, score, id), the most similar to the query vector. """ hits = self.table.search( embedding_vector=embedding, top_k=k, metric="cos", metric_threshold=None, ) # We stick to 'cos' distance as it can be normalized on a 0-1 axis # (1=most relevant), as required by this class' contract. return [ ( Document( page_content=hit["document"], metadata=hit["metadata"], ), 0.5 + 0.5 * hit["distance"], hit["document_id"], ) for hit in hits ] [docs] def similarity_search_with_score_id( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float, str]]: embedding_vector = self.embedding.embed_query(query) return self.similarity_search_with_score_id_by_vector( embedding=embedding_vector, k=k, ) # id-unaware search facilities [docs] def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, ) -> List[Tuple[Document, float]]: """Return docs most similar to embedding vector.
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/cassandra.html
daaaaf8c8dbe-4
"""Return docs most similar to embedding vector. No support for `filter` query (on metadata) along with vector search. Args: embedding (str): Embedding to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. Returns: List of (Document, score), the most similar to the query vector. """ return [ (doc, score) for (doc, score, docId) in self.similarity_search_with_score_id_by_vector( embedding=embedding, k=k, ) ] [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Document]: # embedding_vector = self.embedding.embed_query(query) return self.similarity_search_by_vector( embedding_vector, k, **kwargs, ) [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any, ) -> List[Document]: return [ doc for doc, _ in self.similarity_search_with_score_by_vector( embedding, k, ) ] [docs] def similarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: embedding_vector = self.embedding.embed_query(query) return self.similarity_search_with_score_by_vector( embedding_vector, k, )
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/cassandra.html
daaaaf8c8dbe-5
embedding_vector, k, ) # Even though this is a `_`-method, # it is apparently used by VectorSearch parent class # in an exposed method (`similarity_search_with_relevance_scores`). # So we implement it (hmm). def _similarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: return self.similarity_search_with_score( query, k, **kwargs, ) [docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Returns: List of Documents selected by maximal marginal relevance. """ prefetchHits = self.table.search( embedding_vector=embedding, top_k=fetch_k, metric="cos", metric_threshold=None, )
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/cassandra.html
daaaaf8c8dbe-6
metric="cos", metric_threshold=None, ) # let the mmr utility pick the *indices* in the above array mmrChosenIndices = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), [pfHit["embedding_vector"] for pfHit in prefetchHits], k=k, lambda_mult=lambda_mult, ) mmrHits = [ pfHit for pfIndex, pfHit in enumerate(prefetchHits) if pfIndex in mmrChosenIndices ] return [ Document( page_content=hit["document"], metadata=hit["metadata"], ) for hit in mmrHits ] [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Optional. Returns: List of Documents selected by maximal marginal relevance. """ embedding_vector = self.embedding.embed_query(query) return self.max_marginal_relevance_search_by_vector(
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/cassandra.html
daaaaf8c8dbe-7
return self.max_marginal_relevance_search_by_vector( embedding_vector, k, fetch_k, lambda_mult=lambda_mult, ) [docs] @classmethod def from_texts( cls: Type[CVST], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> CVST: """Create a Cassandra vectorstore from raw texts. No support for specifying text IDs Returns: a Cassandra vectorstore. """ session: Session = kwargs["session"] keyspace: str = kwargs["keyspace"] table_name: str = kwargs["table_name"] cassandraStore = cls( embedding=embedding, session=session, keyspace=keyspace, table_name=table_name, ) cassandraStore.add_texts(texts=texts, metadatas=metadatas) return cassandraStore [docs] @classmethod def from_documents( cls: Type[CVST], documents: List[Document], embedding: Embeddings, **kwargs: Any, ) -> CVST: """Create a Cassandra vectorstore from a document list. No support for specifying text IDs Returns: a Cassandra vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] session: Session = kwargs["session"] keyspace: str = kwargs["keyspace"] table_name: str = kwargs["table_name"] return cls.from_texts( texts=texts,
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/cassandra.html
daaaaf8c8dbe-8
return cls.from_texts( texts=texts, metadatas=metadatas, embedding=embedding, session=session, keyspace=keyspace, table_name=table_name, )
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/cassandra.html
57e44bac4f40-0
Source code for langchain.vectorstores.alibabacloud_opensearch import json import logging import numbers from hashlib import sha1 from typing import Any, Dict, Iterable, List, Optional, Tuple from langchain.embeddings.base import Embeddings from langchain.schema import Document from langchain.vectorstores.base import VectorStore logger = logging.getLogger() [docs]class AlibabaCloudOpenSearchSettings: """Opensearch Client Configuration Attribute: endpoint (str) : The endpoint of opensearch instance, You can find it from the console of Alibaba Cloud OpenSearch. instance_id (str) : The identify of opensearch instance, You can find it from the console of Alibaba Cloud OpenSearch. datasource_name (str): The name of the data source specified when creating it. username (str) : The username specified when purchasing the instance. password (str) : The password specified when purchasing the instance. embedding_index_name (str) : The name of the vector attribute specified when configuring the instance attributes. field_name_mapping (Dict) : Using field name mapping between opensearch vector store and opensearch instance configuration table field names: { 'id': 'The id field name map of index document.', 'document': 'The text field name map of index document.', 'embedding': 'In the embedding field of the opensearch instance, the values must be in float16 multivalue type and separated by commas.', 'metadata_field_x': 'Metadata field mapping includes the mapped field name and operator in the mapping value, separated by a comma between the mapped field name and the operator.', } """ endpoint: str instance_id: str username: str password: str
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/alibabacloud_opensearch.html
57e44bac4f40-1
instance_id: str username: str password: str datasource_name: str embedding_index_name: str field_name_mapping: Dict[str, str] = { "id": "id", "document": "document", "embedding": "embedding", "metadata_field_x": "metadata_field_x,operator", } def __init__( self, endpoint: str, instance_id: str, username: str, password: str, datasource_name: str, embedding_index_name: str, field_name_mapping: Dict[str, str], ) -> None: self.endpoint = endpoint self.instance_id = instance_id self.username = username self.password = password self.datasource_name = datasource_name self.embedding_index_name = embedding_index_name self.field_name_mapping = field_name_mapping def __getitem__(self, item: str) -> Any: return getattr(self, item) def create_metadata(fields: Dict[str, Any]) -> Dict[str, Any]: """Create metadata from fields. Args: fields: The fields of the document. The fields must be a dict. Returns: metadata: The metadata of the document. The metadata must be a dict. """ metadata: Dict[str, Any] = {} for key, value in fields.items(): if key == "id" or key == "document" or key == "embedding": continue metadata[key] = value return metadata [docs]class AlibabaCloudOpenSearch(VectorStore): """Alibaba Cloud OpenSearch Vector Store""" def __init__( self, embedding: Embeddings,
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/alibabacloud_opensearch.html
57e44bac4f40-2
def __init__( self, embedding: Embeddings, config: AlibabaCloudOpenSearchSettings, **kwargs: Any, ) -> None: try: from alibabacloud_ha3engine import client, models from alibabacloud_tea_util import models as util_models except ImportError: raise ValueError( "Could not import alibaba cloud opensearch python package. " "Please install it with `pip install alibabacloud-ha3engine`." ) self.config = config self.embedding = embedding self.runtime = util_models.RuntimeOptions( connect_timeout=5000, read_timeout=10000, autoretry=False, ignore_ssl=False, max_idle_conns=50, ) self.ha3EngineClient = client.Client( models.Config( endpoint=config.endpoint, instance_id=config.instance_id, protocol="http", access_user_name=config.username, access_pass_word=config.password, ) ) self.options_headers: Dict[str, str] = {} [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: def _upsert(push_doc_list: List[Dict]) -> List[str]: if push_doc_list is None or len(push_doc_list) == 0: return [] try: push_request = models.PushDocumentsRequestModel( self.options_headers, push_doc_list ) push_response = self.ha3EngineClient.push_documents( self.config.datasource_name, field_name_map["id"], push_request
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/alibabacloud_opensearch.html
57e44bac4f40-3
self.config.datasource_name, field_name_map["id"], push_request ) json_response = json.loads(push_response.body) if json_response["status"] == "OK": return [ push_doc["fields"][field_name_map["id"]] for push_doc in push_doc_list ] return [] except Exception as e: logger.error( f"add doc to endpoint:{self.config.endpoint} " f"instance_id:{self.config.instance_id} failed.", e, ) raise e from alibabacloud_ha3engine import models ids = [sha1(t.encode("utf-8")).hexdigest() for t in texts] embeddings = self.embedding.embed_documents(list(texts)) metadatas = metadatas or [{} for _ in texts] field_name_map = self.config.field_name_mapping add_doc_list = [] text_list = list(texts) for idx, doc_id in enumerate(ids): embedding = embeddings[idx] if idx < len(embeddings) else None metadata = metadatas[idx] if idx < len(metadatas) else None text = text_list[idx] if idx < len(text_list) else None add_doc: Dict[str, Any] = dict() add_doc_fields: Dict[str, Any] = dict() add_doc_fields.__setitem__(field_name_map["id"], doc_id) add_doc_fields.__setitem__(field_name_map["document"], text) if embedding is not None: add_doc_fields.__setitem__( field_name_map["embedding"], ",".join(str(unit) for unit in embedding), ) if metadata is not None:
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/alibabacloud_opensearch.html
57e44bac4f40-4
) if metadata is not None: for md_key, md_value in metadata.items(): add_doc_fields.__setitem__( field_name_map[md_key].split(",")[0], md_value ) add_doc.__setitem__("fields", add_doc_fields) add_doc.__setitem__("cmd", "add") add_doc_list.append(add_doc) return _upsert(add_doc_list) [docs] def similarity_search( self, query: str, k: int = 4, search_filter: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> List[Document]: embedding = self.embedding.embed_query(query) return self.create_results( self.inner_embedding_query( embedding=embedding, search_filter=search_filter, k=k ) ) [docs] def similarity_search_with_relevance_scores( self, query: str, k: int = 4, search_filter: Optional[dict] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: embedding: List[float] = self.embedding.embed_query(query) return self.create_results_with_score( self.inner_embedding_query( embedding=embedding, search_filter=search_filter, k=k ) ) [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, search_filter: Optional[dict] = None, **kwargs: Any, ) -> List[Document]: return self.create_results( self.inner_embedding_query( embedding=embedding, search_filter=search_filter, k=k )
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/alibabacloud_opensearch.html
57e44bac4f40-5
embedding=embedding, search_filter=search_filter, k=k ) ) [docs] def inner_embedding_query( self, embedding: List[float], search_filter: Optional[Dict[str, Any]] = None, k: int = 4, ) -> Dict[str, Any]: def generate_embedding_query() -> str: tmp_search_config_str = ( f"config=start:0,hit:{k},format:json&&cluster=general&&kvpairs=" f"first_formula:proxima_score({self.config.embedding_index_name})&&sort=+RANK" ) tmp_query_str = ( f"&&query={self.config.embedding_index_name}:" + "'" + ",".join(str(x) for x in embedding) + "'" ) if search_filter is not None: filter_clause = "&&filter=" + " AND ".join( [ create_filter(md_key, md_value) for md_key, md_value in search_filter.items() ] ) tmp_query_str += filter_clause return tmp_search_config_str + tmp_query_str def create_filter(md_key: str, md_value: Any) -> str: md_filter_expr = self.config.field_name_mapping[md_key] if md_filter_expr is None: return "" expr = md_filter_expr.split(",") if len(expr) != 2: logger.error( f"filter {md_filter_expr} express is not correct, " f"must contain mapping field and operator." ) return "" md_filter_key = expr[0].strip() md_filter_operator = expr[1].strip()
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/alibabacloud_opensearch.html
57e44bac4f40-6
md_filter_operator = expr[1].strip() if isinstance(md_value, numbers.Number): return f"{md_filter_key} {md_filter_operator} {md_value}" return f'{md_filter_key}{md_filter_operator}"{md_value}"' def search_data(single_query_str: str) -> Dict[str, Any]: search_query = models.SearchQuery(query=single_query_str) search_request = models.SearchRequestModel( self.options_headers, search_query ) return json.loads(self.ha3EngineClient.search(search_request).body) from alibabacloud_ha3engine import models try: query_str = generate_embedding_query() json_response = search_data(query_str) if len(json_response["errors"]) != 0: logger.error( f"query {self.config.endpoint} {self.config.instance_id} " f"errors:{json_response['errors']} failed." ) else: return json_response except Exception as e: logger.error( f"query instance endpoint:{self.config.endpoint} " f"instance_id:{self.config.instance_id} failed.", e, ) return {} [docs] def create_results(self, json_result: Dict[str, Any]) -> List[Document]: items = json_result["result"]["items"] query_result_list: List[Document] = [] for item in items: fields = item["fields"] query_result_list.append( Document( page_content=fields[self.config.field_name_mapping["document"]], metadata=create_metadata(fields), ) ) return query_result_list [docs] def create_results_with_score( self, json_result: Dict[str, Any]
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/alibabacloud_opensearch.html
57e44bac4f40-7
self, json_result: Dict[str, Any] ) -> List[Tuple[Document, float]]: items = json_result["result"]["items"] query_result_list: List[Tuple[Document, float]] = [] for item in items: fields = item["fields"] query_result_list.append( ( Document( page_content=fields[self.config.field_name_mapping["document"]], metadata=create_metadata(fields), ), float(item["sortExprValues"][0]), ) ) return query_result_list [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, config: Optional[AlibabaCloudOpenSearchSettings] = None, **kwargs: Any, ) -> "AlibabaCloudOpenSearch": if config is None: raise Exception("config can't be none") ctx = cls(embedding, config, **kwargs) ctx.add_texts(texts=texts, metadatas=metadatas) return ctx [docs] @classmethod def from_documents( cls, documents: List[Document], embedding: Embeddings, ids: Optional[List[str]] = None, config: Optional[AlibabaCloudOpenSearchSettings] = None, **kwargs: Any, ) -> "AlibabaCloudOpenSearch": if config is None: raise Exception("config can't be none") texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return cls.from_texts( texts=texts,
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/alibabacloud_opensearch.html
57e44bac4f40-8
return cls.from_texts( texts=texts, embedding=embedding, metadatas=metadatas, config=config, **kwargs, )
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/alibabacloud_opensearch.html
926f7a3a3a06-0
Source code for langchain.vectorstores.starrocks """Wrapper around open source StarRocks VectorSearch capability.""" from __future__ import annotations import json import logging from hashlib import sha1 from threading import Thread from typing import Any, Dict, Iterable, List, Optional, Tuple from pydantic import BaseSettings from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore logger = logging.getLogger() DEBUG = False def has_mul_sub_str(s: str, *args: Any) -> bool: """ Check if a string has multiple substrings. Args: s: The string to check *args: The substrings to check for in the string Returns: bool: True if all substrings are present in the string, False otherwise """ for a in args: if a not in s: return False return True def debug_output(s: Any) -> None: """ Print a debug message if DEBUG is True. Args: s: The message to print """ if DEBUG: print(s) def get_named_result(connection: Any, query: str) -> List[dict[str, Any]]: """ Get a named result from a query. Args: connection: The connection to the database query: The query to execute Returns: List[dict[str, Any]]: The result of the query """ cursor = connection.cursor() cursor.execute(query) columns = cursor.description result = [] for value in cursor.fetchall(): r = {} for idx, datum in enumerate(value): k = columns[idx][0]
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/starrocks.html
926f7a3a3a06-1
for idx, datum in enumerate(value): k = columns[idx][0] r[k] = datum result.append(r) debug_output(result) cursor.close() return result class StarRocksSettings(BaseSettings): """StarRocks Client Configuration Attribute: StarRocks_host (str) : An URL to connect to MyScale backend. Defaults to 'localhost'. StarRocks_port (int) : URL port to connect with HTTP. Defaults to 8443. username (str) : Username to login. Defaults to None. password (str) : Password to login. Defaults to None. database (str) : Database name to find the table. Defaults to 'default'. table (str) : Table name to operate on. Defaults to 'vector_table'. column_map (Dict) : Column type map to project column name onto langchain semantics. Must have keys: `text`, `id`, `vector`, must be same size to number of columns. For example: .. code-block:: python { 'id': 'text_id', 'embedding': 'text_embedding', 'document': 'text_plain', 'metadata': 'metadata_dictionary_in_json', } Defaults to identity map. """ host: str = "localhost" port: int = 9030 username: str = "root" password: str = "" column_map: Dict[str, str] = { "id": "id", "document": "document", "embedding": "embedding", "metadata": "metadata", } database: str = "default" table: str = "langchain"
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/starrocks.html
926f7a3a3a06-2
database: str = "default" table: str = "langchain" def __getitem__(self, item: str) -> Any: return getattr(self, item) class Config: env_file = ".env" env_prefix = "starrocks_" env_file_encoding = "utf-8" [docs]class StarRocks(VectorStore): """Wrapper around StarRocks vector database You need a `pymysql` python package, and a valid account to connect to StarRocks. Right now StarRocks has only implemented `cosine_similarity` function to compute distance between two vectors. And there is no vector inside right now, so we have to iterate all vectors and compute spatial distance. For more information, please visit [StarRocks official site](https://www.starrocks.io/) [StarRocks github](https://github.com/StarRocks/starrocks) """ def __init__( self, embedding: Embeddings, config: Optional[StarRocksSettings] = None, **kwargs: Any, ) -> None: """StarRocks Wrapper to LangChain embedding_function (Embeddings): config (StarRocksSettings): Configuration to StarRocks Client """ try: import pymysql # type: ignore[import] except ImportError: raise ImportError( "Could not import pymysql python package. " "Please install it with `pip install pymysql`." ) try: from tqdm import tqdm self.pgbar = tqdm except ImportError: # Just in case if tqdm is not installed self.pgbar = lambda x, **kwargs: x
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/starrocks.html
926f7a3a3a06-3
self.pgbar = lambda x, **kwargs: x super().__init__() if config is not None: self.config = config else: self.config = StarRocksSettings() assert self.config assert self.config.host and self.config.port assert self.config.column_map and self.config.database and self.config.table for k in ["id", "embedding", "document", "metadata"]: assert k in self.config.column_map # initialize the schema dim = len(embedding.embed_query("test")) self.schema = f"""\ CREATE TABLE IF NOT EXISTS {self.config.database}.{self.config.table}( {self.config.column_map['id']} string, {self.config.column_map['document']} string, {self.config.column_map['embedding']} array<float>, {self.config.column_map['metadata']} string ) ENGINE = OLAP PRIMARY KEY(id) DISTRIBUTED BY HASH(id) \ PROPERTIES ("replication_num" = "1")\ """ self.dim = dim self.BS = "\\" self.must_escape = ("\\", "'") self.embedding_function = embedding self.dist_order = "DESC" debug_output(self.config) # Create a connection to StarRocks self.connection = pymysql.connect( host=self.config.host, port=self.config.port, user=self.config.username, password=self.config.password, database=self.config.database, **kwargs, ) debug_output(self.schema) get_named_result(self.connection, self.schema) [docs] def escape_str(self, value: str) -> str: return "".join(f"{self.BS}{c}" if c in self.must_escape else c for c in value)
https://api.python.langchain.com/en/latest/_modules/langchain/vectorstores/starrocks.html