id
stringlengths
14
16
text
stringlengths
31
2.41k
source
stringlengths
53
121
94e2996c717b-18
"\n", " ", "", ] elif language == Language.LATEX: return [ # First, try to split along Latex sections "\n\\\chapter{", "\n\\\section{", "\n\\\subsection{", "\n\\\subsubsection{", # Now split by environments "\n\\\begin{enumerate}", "\n\\\begin{itemize}", "\n\\\begin{description}", "\n\\\begin{list}", "\n\\\begin{quote}", "\n\\\begin{quotation}", "\n\\\begin{verse}", "\n\\\begin{verbatim}", # Now split by math environments "\n\\\begin{align}", "$$", "$", # Now split by the normal type of lines " ", "", ] elif language == Language.HTML: return [ # First, try to split along HTML tags "<body", "<div", "<p", "<br", "<li", "<h1", "<h2", "<h3", "<h4", "<h5", "<h6", "<span", "<table", "<tr", "<td", "<th", "<ul", "<ol", "<header", "<footer", "<nav", # Head "<head", "<style", "<script", "<meta", "<title", "", ] elif language == Language.SOL: return [ # Split along compiler informations definitions "\npragma ",
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
94e2996c717b-19
return [ # Split along compiler informations definitions "\npragma ", "\nusing ", # Split along contract definitions "\ncontract ", "\ninterface ", "\nlibrary ", # Split along method definitions "\nconstructor ", "\ntype ", "\nfunction ", "\nevent ", "\nmodifier ", "\nerror ", "\nstruct ", "\nenum ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\ndo while ", "\nassembly ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] else: raise ValueError( f"Language {language} is not supported! " f"Please choose from {list(Language)}" ) [docs]class NLTKTextSplitter(TextSplitter): """Implementation of splitting text that looks at sentences using NLTK.""" def __init__(self, separator: str = "\n\n", **kwargs: Any) -> None: """Initialize the NLTK splitter.""" super().__init__(**kwargs) try: from nltk.tokenize import sent_tokenize self._tokenizer = sent_tokenize except ImportError: raise ImportError( "NLTK is not installed, please install it with `pip install nltk`." ) self._separator = separator [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" # First we naively split the large input into a bunch of smaller ones. splits = self._tokenizer(text)
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
94e2996c717b-20
splits = self._tokenizer(text) return self._merge_splits(splits, self._separator) [docs]class SpacyTextSplitter(TextSplitter): """Implementation of splitting text that looks at sentences using Spacy.""" def __init__( self, separator: str = "\n\n", pipeline: str = "en_core_web_sm", **kwargs: Any ) -> None: """Initialize the spacy text splitter.""" super().__init__(**kwargs) try: import spacy except ImportError: raise ImportError( "Spacy is not installed, please install it with `pip install spacy`." ) self._tokenizer = spacy.load(pipeline) self._separator = separator [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" splits = (str(s) for s in self._tokenizer(text).sents) return self._merge_splits(splits, self._separator) # For backwards compatibility [docs]class PythonCodeTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Python syntax.""" def __init__(self, **kwargs: Any) -> None: """Initialize a PythonCodeTextSplitter.""" separators = self.get_separators_for_language(Language.PYTHON) super().__init__(separators=separators, **kwargs) [docs]class MarkdownTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Markdown-formatted headings.""" def __init__(self, **kwargs: Any) -> None: """Initialize a MarkdownTextSplitter.""" separators = self.get_separators_for_language(Language.MARKDOWN)
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
94e2996c717b-21
separators = self.get_separators_for_language(Language.MARKDOWN) super().__init__(separators=separators, **kwargs) [docs]class LatexTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Latex-formatted layout elements.""" def __init__(self, **kwargs: Any) -> None: """Initialize a LatexTextSplitter.""" separators = self.get_separators_for_language(Language.LATEX) super().__init__(separators=separators, **kwargs)
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c176e0cb7c3-0
Source code for langchain.requests """Lightweight wrapper around requests library, with async support.""" from contextlib import asynccontextmanager from typing import Any, AsyncGenerator, Dict, Optional import aiohttp import requests from pydantic import BaseModel, Extra class Requests(BaseModel): """Wrapper around requests to handle auth and async. The main purpose of this wrapper is to handle authentication (by saving headers) and enable easy async methods on the same base object. """ headers: Optional[Dict[str, str]] = None aiosession: Optional[aiohttp.ClientSession] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True def get(self, url: str, **kwargs: Any) -> requests.Response: """GET the URL and return the text.""" return requests.get(url, headers=self.headers, **kwargs) def post(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response: """POST to the URL and return the text.""" return requests.post(url, json=data, headers=self.headers, **kwargs) def patch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response: """PATCH the URL and return the text.""" return requests.patch(url, json=data, headers=self.headers, **kwargs) def put(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response: """PUT the URL and return the text.""" return requests.put(url, json=data, headers=self.headers, **kwargs) def delete(self, url: str, **kwargs: Any) -> requests.Response:
https://api.python.langchain.com/en/latest/_modules/langchain/requests.html
9c176e0cb7c3-1
def delete(self, url: str, **kwargs: Any) -> requests.Response: """DELETE the URL and return the text.""" return requests.delete(url, headers=self.headers, **kwargs) @asynccontextmanager async def _arequest( self, method: str, url: str, **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """Make an async request.""" if not self.aiosession: async with aiohttp.ClientSession() as session: async with session.request( method, url, headers=self.headers, **kwargs ) as response: yield response else: async with self.aiosession.request( method, url, headers=self.headers, **kwargs ) as response: yield response @asynccontextmanager async def aget( self, url: str, **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """GET the URL and return the text asynchronously.""" async with self._arequest("GET", url, **kwargs) as response: yield response @asynccontextmanager async def apost( self, url: str, data: Dict[str, Any], **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """POST to the URL and return the text asynchronously.""" async with self._arequest("POST", url, **kwargs) as response: yield response @asynccontextmanager async def apatch( self, url: str, data: Dict[str, Any], **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """PATCH the URL and return the text asynchronously."""
https://api.python.langchain.com/en/latest/_modules/langchain/requests.html
9c176e0cb7c3-2
"""PATCH the URL and return the text asynchronously.""" async with self._arequest("PATCH", url, **kwargs) as response: yield response @asynccontextmanager async def aput( self, url: str, data: Dict[str, Any], **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """PUT the URL and return the text asynchronously.""" async with self._arequest("PUT", url, **kwargs) as response: yield response @asynccontextmanager async def adelete( self, url: str, **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """DELETE the URL and return the text asynchronously.""" async with self._arequest("DELETE", url, **kwargs) as response: yield response [docs]class TextRequestsWrapper(BaseModel): """Lightweight wrapper around requests library. The main purpose of this wrapper is to always return a text output. """ headers: Optional[Dict[str, str]] = None aiosession: Optional[aiohttp.ClientSession] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def requests(self) -> Requests: return Requests(headers=self.headers, aiosession=self.aiosession) [docs] def get(self, url: str, **kwargs: Any) -> str: """GET the URL and return the text.""" return self.requests.get(url, **kwargs).text [docs] def post(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
https://api.python.langchain.com/en/latest/_modules/langchain/requests.html
9c176e0cb7c3-3
"""POST to the URL and return the text.""" return self.requests.post(url, data, **kwargs).text [docs] def patch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """PATCH the URL and return the text.""" return self.requests.patch(url, data, **kwargs).text [docs] def put(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """PUT the URL and return the text.""" return self.requests.put(url, data, **kwargs).text [docs] def delete(self, url: str, **kwargs: Any) -> str: """DELETE the URL and return the text.""" return self.requests.delete(url, **kwargs).text [docs] async def aget(self, url: str, **kwargs: Any) -> str: """GET the URL and return the text asynchronously.""" async with self.requests.aget(url, **kwargs) as response: return await response.text() [docs] async def apost(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """POST to the URL and return the text asynchronously.""" async with self.requests.apost(url, **kwargs) as response: return await response.text() [docs] async def apatch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """PATCH the URL and return the text asynchronously.""" async with self.requests.apatch(url, **kwargs) as response: return await response.text() [docs] async def aput(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
https://api.python.langchain.com/en/latest/_modules/langchain/requests.html
9c176e0cb7c3-4
"""PUT the URL and return the text asynchronously.""" async with self.requests.aput(url, **kwargs) as response: return await response.text() [docs] async def adelete(self, url: str, **kwargs: Any) -> str: """DELETE the URL and return the text asynchronously.""" async with self.requests.adelete(url, **kwargs) as response: return await response.text() # For backwards compatibility RequestsWrapper = TextRequestsWrapper
https://api.python.langchain.com/en/latest/_modules/langchain/requests.html
d04e2872c89e-0
Source code for langchain.schema """Common schema objects.""" from __future__ import annotations from abc import ABC, abstractmethod from dataclasses import dataclass from typing import ( Any, Dict, Generic, List, NamedTuple, Optional, Sequence, TypeVar, Union, ) from uuid import UUID from pydantic import BaseModel, Field, root_validator from langchain.load.serializable import Serializable RUN_KEY = "__run" [docs]def get_buffer_string( messages: List[BaseMessage], human_prefix: str = "Human", ai_prefix: str = "AI" ) -> str: """Get buffer string of messages.""" string_messages = [] for m in messages: if isinstance(m, HumanMessage): role = human_prefix elif isinstance(m, AIMessage): role = ai_prefix elif isinstance(m, SystemMessage): role = "System" elif isinstance(m, FunctionMessage): role = "Function" elif isinstance(m, ChatMessage): role = m.role else: raise ValueError(f"Got unsupported message type: {m}") message = f"{role}: {m.content}" if isinstance(m, AIMessage) and "function_call" in m.additional_kwargs: message += f"{m.additional_kwargs['function_call']}" string_messages.append(message) return "\n".join(string_messages) [docs]@dataclass class AgentAction: """Agent's action to take.""" tool: str tool_input: Union[str, dict] log: str [docs]class AgentFinish(NamedTuple): """Agent's return value.""" return_values: dict
https://api.python.langchain.com/en/latest/_modules/langchain/schema.html
d04e2872c89e-1
"""Agent's return value.""" return_values: dict log: str [docs]class Generation(Serializable): """Output of a single generation.""" text: str """Generated text output.""" generation_info: Optional[Dict[str, Any]] = None """Raw generation info response from the provider""" """May include things like reason for finishing (e.g. in OpenAI)""" # TODO: add log probs @property def lc_serializable(self) -> bool: """This class is LangChain serializable.""" return True [docs]class BaseMessage(Serializable): """Message object.""" content: str additional_kwargs: dict = Field(default_factory=dict) @property @abstractmethod def type(self) -> str: """Type of the message, used for serialization.""" @property def lc_serializable(self) -> bool: """This class is LangChain serializable.""" return True [docs]class HumanMessage(BaseMessage): """Type of message that is spoken by the human.""" example: bool = False @property def type(self) -> str: """Type of the message, used for serialization.""" return "human" [docs]class AIMessage(BaseMessage): """Type of message that is spoken by the AI.""" example: bool = False @property def type(self) -> str: """Type of the message, used for serialization.""" return "ai" [docs]class SystemMessage(BaseMessage): """Type of message that is a system message.""" @property def type(self) -> str: """Type of the message, used for serialization.""" return "system"
https://api.python.langchain.com/en/latest/_modules/langchain/schema.html
d04e2872c89e-2
"""Type of the message, used for serialization.""" return "system" [docs]class FunctionMessage(BaseMessage): name: str @property def type(self) -> str: """Type of the message, used for serialization.""" return "function" [docs]class ChatMessage(BaseMessage): """Type of message with arbitrary speaker.""" role: str @property def type(self) -> str: """Type of the message, used for serialization.""" return "chat" def _message_to_dict(message: BaseMessage) -> dict: return {"type": message.type, "data": message.dict()} [docs]def messages_to_dict(messages: List[BaseMessage]) -> List[dict]: """Convert messages to dict. Args: messages: List of messages to convert. Returns: List of dicts. """ return [_message_to_dict(m) for m in messages] def _message_from_dict(message: dict) -> BaseMessage: _type = message["type"] if _type == "human": return HumanMessage(**message["data"]) elif _type == "ai": return AIMessage(**message["data"]) elif _type == "system": return SystemMessage(**message["data"]) elif _type == "chat": return ChatMessage(**message["data"]) else: raise ValueError(f"Got unexpected type: {_type}") [docs]def messages_from_dict(messages: List[dict]) -> List[BaseMessage]: """Convert messages from dict. Args: messages: List of messages (dicts) to convert. Returns: List of messages (BaseMessages). """
https://api.python.langchain.com/en/latest/_modules/langchain/schema.html
d04e2872c89e-3
Returns: List of messages (BaseMessages). """ return [_message_from_dict(m) for m in messages] [docs]class ChatGeneration(Generation): """Output of a single generation.""" text = "" message: BaseMessage @root_validator def set_text(cls, values: Dict[str, Any]) -> Dict[str, Any]: values["text"] = values["message"].content return values [docs]class RunInfo(BaseModel): """Class that contains all relevant metadata for a Run.""" run_id: UUID [docs]class ChatResult(BaseModel): """Class that contains all relevant information for a Chat Result.""" generations: List[ChatGeneration] """List of the things generated.""" llm_output: Optional[dict] = None """For arbitrary LLM provider specific output.""" [docs]class LLMResult(BaseModel): """Class that contains all relevant information for an LLM Result.""" generations: List[List[Generation]] """List of the things generated. This is List[List[]] because each input could have multiple generations.""" llm_output: Optional[dict] = None """For arbitrary LLM provider specific output.""" run: Optional[List[RunInfo]] = None """Run metadata.""" [docs] def flatten(self) -> List[LLMResult]: """Flatten generations into a single list.""" llm_results = [] for i, gen_list in enumerate(self.generations): # Avoid double counting tokens in OpenAICallback if i == 0: llm_results.append( LLMResult( generations=[gen_list], llm_output=self.llm_output, ) )
https://api.python.langchain.com/en/latest/_modules/langchain/schema.html
d04e2872c89e-4
llm_output=self.llm_output, ) ) else: if self.llm_output is not None: llm_output = self.llm_output.copy() llm_output["token_usage"] = dict() else: llm_output = None llm_results.append( LLMResult( generations=[gen_list], llm_output=llm_output, ) ) return llm_results def __eq__(self, other: object) -> bool: if not isinstance(other, LLMResult): return NotImplemented return ( self.generations == other.generations and self.llm_output == other.llm_output ) [docs]class PromptValue(Serializable, ABC): [docs] @abstractmethod def to_string(self) -> str: """Return prompt as string.""" [docs] @abstractmethod def to_messages(self) -> List[BaseMessage]: """Return prompt as messages.""" [docs]class BaseMemory(Serializable, ABC): """Base interface for memory in chains.""" class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True @property @abstractmethod def memory_variables(self) -> List[str]: """Input keys this memory class will load dynamically.""" [docs] @abstractmethod def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return key-value pairs given the text input to the chain. If None, return all memories """ [docs] @abstractmethod def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
https://api.python.langchain.com/en/latest/_modules/langchain/schema.html
d04e2872c89e-5
"""Save the context of this model run to memory.""" [docs] @abstractmethod def clear(self) -> None: """Clear memory contents.""" [docs]class BaseChatMessageHistory(ABC): """Base interface for chat message history See `ChatMessageHistory` for default implementation. """ """ Example: .. code-block:: python class FileChatMessageHistory(BaseChatMessageHistory): storage_path: str session_id: str @property def messages(self): with open(os.path.join(storage_path, session_id), 'r:utf-8') as f: messages = json.loads(f.read()) return messages_from_dict(messages) def add_message(self, message: BaseMessage) -> None: messages = self.messages.append(_message_to_dict(message)) with open(os.path.join(storage_path, session_id), 'w') as f: json.dump(f, messages) def clear(self): with open(os.path.join(storage_path, session_id), 'w') as f: f.write("[]") """ messages: List[BaseMessage] [docs] def add_user_message(self, message: str) -> None: """Add a user message to the store""" self.add_message(HumanMessage(content=message)) [docs] def add_ai_message(self, message: str) -> None: """Add an AI message to the store""" self.add_message(AIMessage(content=message)) [docs] def add_message(self, message: BaseMessage) -> None: """Add a self-created message to the store""" raise NotImplementedError [docs] @abstractmethod def clear(self) -> None:
https://api.python.langchain.com/en/latest/_modules/langchain/schema.html
d04e2872c89e-6
raise NotImplementedError [docs] @abstractmethod def clear(self) -> None: """Remove all messages from the store""" [docs]class Document(Serializable): """Interface for interacting with a document.""" page_content: str metadata: dict = Field(default_factory=dict) [docs]class BaseRetriever(ABC): """Base interface for retrievers.""" [docs] @abstractmethod def get_relevant_documents(self, query: str) -> List[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: List of relevant documents """ [docs] @abstractmethod async def aget_relevant_documents(self, query: str) -> List[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: List of relevant documents """ # For backwards compatibility Memory = BaseMemory T = TypeVar("T") [docs]class BaseLLMOutputParser(Serializable, ABC, Generic[T]): [docs] @abstractmethod def parse_result(self, result: List[Generation]) -> T: """Parse LLM Result.""" [docs]class BaseOutputParser(BaseLLMOutputParser, ABC, Generic[T]): """Class to parse the output of an LLM call. Output parsers help structure language model responses. """ [docs] def parse_result(self, result: List[Generation]) -> T: return self.parse(result[0].text) [docs] @abstractmethod def parse(self, text: str) -> T: """Parse the output of an LLM call.
https://api.python.langchain.com/en/latest/_modules/langchain/schema.html
d04e2872c89e-7
"""Parse the output of an LLM call. A method which takes in a string (assumed output of a language model ) and parses it into some structure. Args: text: output of language model Returns: structured output """ [docs] def parse_with_prompt(self, completion: str, prompt: PromptValue) -> Any: """Optional method to parse the output of an LLM call with a prompt. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Args: completion: output of language model prompt: prompt value Returns: structured output """ return self.parse(completion) [docs] def get_format_instructions(self) -> str: """Instructions on how the LLM output should be formatted.""" raise NotImplementedError @property def _type(self) -> str: """Return the type key.""" raise NotImplementedError( f"_type property is not implemented in class {self.__class__.__name__}." " This is required for serialization." ) [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of output parser.""" output_parser_dict = super().dict() output_parser_dict["_type"] = self._type return output_parser_dict [docs]class NoOpOutputParser(BaseOutputParser[str]): """Output parser that just returns the text as is.""" @property def lc_serializable(self) -> bool: return True @property def _type(self) -> str: return "default"
https://api.python.langchain.com/en/latest/_modules/langchain/schema.html
d04e2872c89e-8
@property def _type(self) -> str: return "default" [docs] def parse(self, text: str) -> str: return text [docs]class OutputParserException(ValueError): """Exception that output parsers should raise to signify a parsing error. This exists to differentiate parsing errors from other code or execution errors that also may arise inside the output parser. OutputParserExceptions will be available to catch and handle in ways to fix the parsing error, while other errors will be raised. """ def __init__( self, error: Any, observation: str | None = None, llm_output: str | None = None, send_to_llm: bool = False, ): super(OutputParserException, self).__init__(error) if send_to_llm: if observation is None or llm_output is None: raise ValueError( "Arguments 'observation' & 'llm_output'" " are required if 'send_to_llm' is True" ) self.observation = observation self.llm_output = llm_output self.send_to_llm = send_to_llm [docs]class BaseDocumentTransformer(ABC): """Base interface for transforming documents.""" [docs] @abstractmethod def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Transform a list of documents.""" [docs] @abstractmethod async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Asynchronously transform a list of documents."""
https://api.python.langchain.com/en/latest/_modules/langchain/schema.html
1b552510fc88-0
Source code for langchain.document_transformers """Transform documents""" from typing import Any, Callable, List, Sequence import numpy as np from pydantic import BaseModel, Field from langchain.embeddings.base import Embeddings from langchain.math_utils import cosine_similarity from langchain.schema import BaseDocumentTransformer, Document class _DocumentWithState(Document): """Wrapper for a document that includes arbitrary state.""" state: dict = Field(default_factory=dict) """State associated with the document.""" def to_document(self) -> Document: """Convert the DocumentWithState to a Document.""" return Document(page_content=self.page_content, metadata=self.metadata) @classmethod def from_document(cls, doc: Document) -> "_DocumentWithState": """Create a DocumentWithState from a Document.""" if isinstance(doc, cls): return doc return cls(page_content=doc.page_content, metadata=doc.metadata) [docs]def get_stateful_documents( documents: Sequence[Document], ) -> Sequence[_DocumentWithState]: """Convert a list of documents to a list of documents with state. Args: documents: The documents to convert. Returns: A list of documents with state. """ return [_DocumentWithState.from_document(doc) for doc in documents] def _filter_similar_embeddings( embedded_documents: List[List[float]], similarity_fn: Callable, threshold: float ) -> List[int]: """Filter redundant documents based on the similarity of their embeddings.""" similarity = np.tril(similarity_fn(embedded_documents, embedded_documents), k=-1) redundant = np.where(similarity > threshold) redundant_stacked = np.column_stack(redundant)
https://api.python.langchain.com/en/latest/_modules/langchain/document_transformers.html
1b552510fc88-1
redundant_stacked = np.column_stack(redundant) redundant_sorted = np.argsort(similarity[redundant])[::-1] included_idxs = set(range(len(embedded_documents))) for first_idx, second_idx in redundant_stacked[redundant_sorted]: if first_idx in included_idxs and second_idx in included_idxs: # Default to dropping the second document of any highly similar pair. included_idxs.remove(second_idx) return list(sorted(included_idxs)) def _get_embeddings_from_stateful_docs( embeddings: Embeddings, documents: Sequence[_DocumentWithState] ) -> List[List[float]]: if len(documents) and "embedded_doc" in documents[0].state: embedded_documents = [doc.state["embedded_doc"] for doc in documents] else: embedded_documents = embeddings.embed_documents( [d.page_content for d in documents] ) for doc, embedding in zip(documents, embedded_documents): doc.state["embedded_doc"] = embedding return embedded_documents [docs]class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel): """Filter that drops redundant documents by comparing their embeddings.""" embeddings: Embeddings """Embeddings to use for embedding document contents.""" similarity_fn: Callable = cosine_similarity """Similarity function for comparing documents. Function expected to take as input two matrices (List[List[float]]) and return a matrix of scores where higher values indicate greater similarity.""" similarity_threshold: float = 0.95 """Threshold for determining when two documents are similar enough to be considered redundant.""" class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def transform_documents(
https://api.python.langchain.com/en/latest/_modules/langchain/document_transformers.html
1b552510fc88-2
arbitrary_types_allowed = True [docs] def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Filter down documents.""" stateful_documents = get_stateful_documents(documents) embedded_documents = _get_embeddings_from_stateful_docs( self.embeddings, stateful_documents ) included_idxs = _filter_similar_embeddings( embedded_documents, self.similarity_fn, self.similarity_threshold ) return [stateful_documents[i] for i in sorted(included_idxs)] [docs] async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: raise NotImplementedError
https://api.python.langchain.com/en/latest/_modules/langchain/document_transformers.html
8cfc73f54b33-0
Source code for langchain.agents.loading """Functionality for loading agents.""" import json import logging from pathlib import Path from typing import Any, List, Optional, Union import yaml from langchain.agents.agent import BaseMultiActionAgent, BaseSingleActionAgent from langchain.agents.tools import Tool from langchain.agents.types import AGENT_TO_CLASS from langchain.base_language import BaseLanguageModel from langchain.chains.loading import load_chain, load_chain_from_config from langchain.utilities.loading import try_load_from_hub logger = logging.getLogger(__file__) URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/agents/" def _load_agent_from_tools( config: dict, llm: BaseLanguageModel, tools: List[Tool], **kwargs: Any ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") agent_cls = AGENT_TO_CLASS[config_type] combined_config = {**config, **kwargs} return agent_cls.from_llm_and_tools(llm, tools, **combined_config) def load_agent_from_config( config: dict, llm: Optional[BaseLanguageModel] = None, tools: Optional[List[Tool]] = None, **kwargs: Any, ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: """Load agent from Config Dict.""" if "_type" not in config: raise ValueError("Must specify an agent Type in config") load_from_tools = config.pop("load_from_llm_and_tools", False) if load_from_tools: if llm is None:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/loading.html
8cfc73f54b33-1
if load_from_tools: if llm is None: raise ValueError( "If `load_from_llm_and_tools` is set to True, " "then LLM must be provided" ) if tools is None: raise ValueError( "If `load_from_llm_and_tools` is set to True, " "then tools must be provided" ) return _load_agent_from_tools(config, llm, tools, **kwargs) config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") agent_cls = AGENT_TO_CLASS[config_type] if "llm_chain" in config: config["llm_chain"] = load_chain_from_config(config.pop("llm_chain")) elif "llm_chain_path" in config: config["llm_chain"] = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` and `llm_chain_path` should be specified.") if "output_parser" in config: logger.warning( "Currently loading output parsers on agent is not supported, " "will just use the default one." ) del config["output_parser"] combined_config = {**config, **kwargs} return agent_cls(**combined_config) # type: ignore [docs]def load_agent( path: Union[str, Path], **kwargs: Any ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: """Unified method for loading a agent from LangChainHub or local fs.""" if hub_result := try_load_from_hub(
https://api.python.langchain.com/en/latest/_modules/langchain/agents/loading.html
8cfc73f54b33-2
if hub_result := try_load_from_hub( path, _load_agent_from_file, "agents", {"json", "yaml"} ): return hub_result else: return _load_agent_from_file(path, **kwargs) def _load_agent_from_file( file: Union[str, Path], **kwargs: Any ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: """Load agent from file.""" # Convert file to Path object. if isinstance(file, str): file_path = Path(file) else: file_path = file # Load from either json or yaml. if file_path.suffix == ".json": with open(file_path) as f: config = json.load(f) elif file_path.suffix == ".yaml": with open(file_path, "r") as f: config = yaml.safe_load(f) else: raise ValueError("File type must be json or yaml") # Load the agent from the config now. return load_agent_from_config(config, **kwargs)
https://api.python.langchain.com/en/latest/_modules/langchain/agents/loading.html
cacf3f41db8b-0
Source code for langchain.agents.agent_types from enum import Enum [docs]class AgentType(str, Enum): """Enumerator with the Agent types.""" ZERO_SHOT_REACT_DESCRIPTION = "zero-shot-react-description" REACT_DOCSTORE = "react-docstore" SELF_ASK_WITH_SEARCH = "self-ask-with-search" CONVERSATIONAL_REACT_DESCRIPTION = "conversational-react-description" CHAT_ZERO_SHOT_REACT_DESCRIPTION = "chat-zero-shot-react-description" CHAT_CONVERSATIONAL_REACT_DESCRIPTION = "chat-conversational-react-description" STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION = ( "structured-chat-zero-shot-react-description" ) OPENAI_FUNCTIONS = "openai-functions" OPENAI_MULTI_FUNCTIONS = "openai-multi-functions"
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_types.html
10c3327965d4-0
Source code for langchain.agents.initialize """Load agent.""" from typing import Any, Optional, Sequence from langchain.agents.agent import AgentExecutor from langchain.agents.agent_types import AgentType from langchain.agents.loading import AGENT_TO_CLASS, load_agent from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.tools.base import BaseTool [docs]def initialize_agent( tools: Sequence[BaseTool], llm: BaseLanguageModel, agent: Optional[AgentType] = None, callback_manager: Optional[BaseCallbackManager] = None, agent_path: Optional[str] = None, agent_kwargs: Optional[dict] = None, *, tags: Optional[Sequence[str]] = None, **kwargs: Any, ) -> AgentExecutor: """Load an agent executor given tools and LLM. Args: tools: List of tools this agent has access to. llm: Language model to use as the agent. agent: Agent type to use. If None and agent_path is also None, will default to AgentType.ZERO_SHOT_REACT_DESCRIPTION. callback_manager: CallbackManager to use. Global callback manager is used if not provided. Defaults to None. agent_path: Path to serialized agent to use. agent_kwargs: Additional key word arguments to pass to the underlying agent tags: Tags to apply to the traced runs. **kwargs: Additional key word arguments passed to the agent executor Returns: An agent executor """ tags_ = list(tags) if tags else [] if agent is None and agent_path is None: agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION
https://api.python.langchain.com/en/latest/_modules/langchain/agents/initialize.html
10c3327965d4-1
agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION if agent is not None and agent_path is not None: raise ValueError( "Both `agent` and `agent_path` are specified, " "but at most only one should be." ) if agent is not None: if agent not in AGENT_TO_CLASS: raise ValueError( f"Got unknown agent type: {agent}. " f"Valid types are: {AGENT_TO_CLASS.keys()}." ) tags_.append(agent.value if isinstance(agent, AgentType) else agent) agent_cls = AGENT_TO_CLASS[agent] agent_kwargs = agent_kwargs or {} agent_obj = agent_cls.from_llm_and_tools( llm, tools, callback_manager=callback_manager, **agent_kwargs ) elif agent_path is not None: agent_obj = load_agent( agent_path, llm=llm, tools=tools, callback_manager=callback_manager ) try: # TODO: Add tags from the serialized object directly. tags_.append(agent_obj._agent_type) except NotImplementedError: pass else: raise ValueError( "Somehow both `agent` and `agent_path` are None, " "this should never happen." ) return AgentExecutor.from_agent_and_tools( agent=agent_obj, tools=tools, callback_manager=callback_manager, tags=tags_, **kwargs, )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/initialize.html
45339159c89f-0
Source code for langchain.agents.agent """Chain that takes in an input and produces an action and action input.""" from __future__ import annotations import asyncio import json import logging import time from abc import abstractmethod from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union import yaml from pydantic import BaseModel, root_validator from langchain.agents.agent_types import AgentType from langchain.agents.tools import InvalidTool from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, AsyncCallbackManagerForToolRun, CallbackManagerForChainRun, CallbackManagerForToolRun, Callbacks, ) from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.input import get_color_mapping from langchain.prompts.base import BasePromptTemplate from langchain.prompts.few_shot import FewShotPromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.schema import ( AgentAction, AgentFinish, BaseMessage, BaseOutputParser, OutputParserException, ) from langchain.tools.base import BaseTool from langchain.utilities.asyncio import asyncio_timeout logger = logging.getLogger(__name__) [docs]class BaseSingleActionAgent(BaseModel): """Base Agent class.""" @property def return_values(self) -> List[str]: """Return values of the agent.""" return ["output"] [docs] def get_allowed_tools(self) -> Optional[List[str]]: return None [docs] @abstractmethod def plan( self,
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-1
return None [docs] @abstractmethod def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ [docs] @abstractmethod async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ @property @abstractmethod def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ [docs] def return_stopped_response( self, early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> AgentFinish: """Return response when agent has been stopped due to max iterations.""" if early_stopping_method == "force": # `force` just returns a constant string return AgentFinish(
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-2
# `force` just returns a constant string return AgentFinish( {"output": "Agent stopped due to iteration limit or time limit."}, "" ) else: raise ValueError( f"Got unsupported early_stopping_method `{early_stopping_method}`" ) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any, ) -> BaseSingleActionAgent: raise NotImplementedError @property def _agent_type(self) -> str: """Return Identifier of agent type.""" raise NotImplementedError [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() _type = self._agent_type if isinstance(_type, AgentType): _dict["_type"] = str(_type.value) else: _dict["_type"] = _type return _dict [docs] def save(self, file_path: Union[Path, str]) -> None: """Save the agent. Args: file_path: Path to file to save the agent to. Example: .. code-block:: python # If working with agent executor agent.agent.save(file_path="path/agent.yaml") """ # Convert file to Path object. if isinstance(file_path, str): save_path = Path(file_path) else: save_path = file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) # Fetch dictionary to save
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-3
directory_path.mkdir(parents=True, exist_ok=True) # Fetch dictionary to save agent_dict = self.dict() if save_path.suffix == ".json": with open(file_path, "w") as f: json.dump(agent_dict, f, indent=4) elif save_path.suffix == ".yaml": with open(file_path, "w") as f: yaml.dump(agent_dict, f, default_flow_style=False) else: raise ValueError(f"{save_path} must be json or yaml") [docs] def tool_run_logging_kwargs(self) -> Dict: return {} [docs]class BaseMultiActionAgent(BaseModel): """Base Agent class.""" @property def return_values(self) -> List[str]: """Return values of the agent.""" return ["output"] [docs] def get_allowed_tools(self) -> Optional[List[str]]: return None [docs] @abstractmethod def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[List[AgentAction], AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Actions specifying what tool to use. """ [docs] @abstractmethod async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[List[AgentAction], AgentFinish]:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-4
**kwargs: Any, ) -> Union[List[AgentAction], AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Actions specifying what tool to use. """ @property @abstractmethod def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ [docs] def return_stopped_response( self, early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> AgentFinish: """Return response when agent has been stopped due to max iterations.""" if early_stopping_method == "force": # `force` just returns a constant string return AgentFinish({"output": "Agent stopped due to max iterations."}, "") else: raise ValueError( f"Got unsupported early_stopping_method `{early_stopping_method}`" ) @property def _agent_type(self) -> str: """Return Identifier of agent type.""" raise NotImplementedError [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() _dict["_type"] = str(self._agent_type) return _dict [docs] def save(self, file_path: Union[Path, str]) -> None: """Save the agent. Args: file_path: Path to file to save the agent to. Example: .. code-block:: python
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-5
Example: .. code-block:: python # If working with agent executor agent.agent.save(file_path="path/agent.yaml") """ # Convert file to Path object. if isinstance(file_path, str): save_path = Path(file_path) else: save_path = file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) # Fetch dictionary to save agent_dict = self.dict() if save_path.suffix == ".json": with open(file_path, "w") as f: json.dump(agent_dict, f, indent=4) elif save_path.suffix == ".yaml": with open(file_path, "w") as f: yaml.dump(agent_dict, f, default_flow_style=False) else: raise ValueError(f"{save_path} must be json or yaml") [docs] def tool_run_logging_kwargs(self) -> Dict: return {} [docs]class AgentOutputParser(BaseOutputParser): [docs] @abstractmethod def parse(self, text: str) -> Union[AgentAction, AgentFinish]: """Parse text into agent action/finish.""" [docs]class LLMSingleActionAgent(BaseSingleActionAgent): llm_chain: LLMChain output_parser: AgentOutputParser stop: List[str] @property def input_keys(self) -> List[str]: return list(set(self.llm_chain.input_keys) - {"intermediate_steps"}) [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() del _dict["output_parser"] return _dict [docs] def plan(
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-6
return _dict [docs] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ output = self.llm_chain.run( intermediate_steps=intermediate_steps, stop=self.stop, callbacks=callbacks, **kwargs, ) return self.output_parser.parse(output) [docs] async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ output = await self.llm_chain.arun( intermediate_steps=intermediate_steps, stop=self.stop, callbacks=callbacks, **kwargs, ) return self.output_parser.parse(output) [docs] def tool_run_logging_kwargs(self) -> Dict: return { "llm_prefix": "", "observation_prefix": "" if len(self.stop) == 0 else self.stop[0], }
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-7
} [docs]class Agent(BaseSingleActionAgent): """Class responsible for calling the language model and deciding the action. This is driven by an LLMChain. The prompt in the LLMChain MUST include a variable called "agent_scratchpad" where the agent can put its intermediary work. """ llm_chain: LLMChain output_parser: AgentOutputParser allowed_tools: Optional[List[str]] = None [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() del _dict["output_parser"] return _dict [docs] def get_allowed_tools(self) -> Optional[List[str]]: return self.allowed_tools @property def return_values(self) -> List[str]: return ["output"] def _fix_text(self, text: str) -> str: """Fix the text.""" raise ValueError("fix_text not implemented for this agent.") @property def _stop(self) -> List[str]: return [ f"\n{self.observation_prefix.rstrip()}", f"\n\t{self.observation_prefix.rstrip()}", ] def _construct_scratchpad( self, intermediate_steps: List[Tuple[AgentAction, str]] ) -> Union[str, List[BaseMessage]]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" return thoughts [docs] def plan( self,
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-8
return thoughts [docs] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs) return self.output_parser.parse(full_output) [docs] async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) full_output = await self.llm_chain.apredict(callbacks=callbacks, **full_inputs) return self.output_parser.parse(full_output) [docs] def get_full_inputs( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any ) -> Dict[str, Any]: """Create the full inputs for the LLMChain from intermediate steps."""
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-9
"""Create the full inputs for the LLMChain from intermediate steps.""" thoughts = self._construct_scratchpad(intermediate_steps) new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} full_inputs = {**kwargs, **new_inputs} return full_inputs @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return list(set(self.llm_chain.input_keys) - {"agent_scratchpad"}) @root_validator() def validate_prompt(cls, values: Dict) -> Dict: """Validate that prompt matches format.""" prompt = values["llm_chain"].prompt if "agent_scratchpad" not in prompt.input_variables: logger.warning( "`agent_scratchpad` should be a variable in prompt.input_variables." " Did not find it, so adding it at the end." ) prompt.input_variables.append("agent_scratchpad") if isinstance(prompt, PromptTemplate): prompt.template += "\n{agent_scratchpad}" elif isinstance(prompt, FewShotPromptTemplate): prompt.suffix += "\n{agent_scratchpad}" else: raise ValueError(f"Got unexpected prompt type {type(prompt)}") return values @property @abstractmethod def observation_prefix(self) -> str: """Prefix to append the observation with.""" @property @abstractmethod def llm_prefix(self) -> str: """Prefix to append the LLM call with.""" [docs] @classmethod @abstractmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Create a prompt for this class.""" @classmethod
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-10
"""Create a prompt for this class.""" @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: """Validate that appropriate tools are passed in.""" pass @classmethod @abstractmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: """Get default output parser for this class.""" [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) llm_chain = LLMChain( llm=llm, prompt=cls.create_prompt(tools), callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser() return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, ) [docs] def return_stopped_response( self, early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> AgentFinish: """Return response when agent has been stopped due to max iterations.""" if early_stopping_method == "force": # `force` just returns a constant string return AgentFinish(
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-11
# `force` just returns a constant string return AgentFinish( {"output": "Agent stopped due to iteration limit or time limit."}, "" ) elif early_stopping_method == "generate": # Generate does one final forward pass thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += ( f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" ) # Adding to the previous steps, we now tell the LLM to make a final pred thoughts += ( "\n\nI now need to return a final answer based on the previous steps:" ) new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} full_inputs = {**kwargs, **new_inputs} full_output = self.llm_chain.predict(**full_inputs) # We try to extract a final answer parsed_output = self.output_parser.parse(full_output) if isinstance(parsed_output, AgentFinish): # If we can extract, we send the correct stuff return parsed_output else: # If we can extract, but the tool is not the final tool, # we just return the full output return AgentFinish({"output": full_output}, full_output) else: raise ValueError( "early_stopping_method should be one of `force` or `generate`, " f"got {early_stopping_method}" ) [docs] def tool_run_logging_kwargs(self) -> Dict: return { "llm_prefix": self.llm_prefix, "observation_prefix": self.observation_prefix, } class ExceptionTool(BaseTool): name = "_Exception"
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-12
} class ExceptionTool(BaseTool): name = "_Exception" description = "Exception tool" def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: return query async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: return query [docs]class AgentExecutor(Chain): """Consists of an agent using tools.""" agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] """The agent to run for creating a plan and determining actions to take at each step of the execution loop.""" tools: Sequence[BaseTool] """The valid tools the agent can call.""" return_intermediate_steps: bool = False """Whether to return the agent's trajectory of intermediate steps at the end in addition to the final output.""" max_iterations: Optional[int] = 15 """The maximum number of steps to take before ending the execution loop. Setting to 'None' could lead to an infinite loop.""" max_execution_time: Optional[float] = None """The maximum amount of wall clock time to spend in the execution loop. """ early_stopping_method: str = "force" """The method to use for early stopping if the agent never returns `AgentFinish`. Either 'force' or 'generate'. `"force"` returns a string saying that it stopped because it met a time or iteration limit. `"generate"` calls the agent's LLM Chain one final time to generate
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-13
`"generate"` calls the agent's LLM Chain one final time to generate a final answer based on the previous steps. """ handle_parsing_errors: Union[ bool, str, Callable[[OutputParserException], str] ] = False """How to handle errors raised by the agent's output parser. Defaults to `False`, which raises the error. s If `true`, the error will be sent back to the LLM as an observation. If a string, the string itself will be sent to the LLM as an observation. If a callable function, the function will be called with the exception as an argument, and the result of that function will be passed to the agent as an observation. """ [docs] @classmethod def from_agent_and_tools( cls, agent: Union[BaseSingleActionAgent, BaseMultiActionAgent], tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any, ) -> AgentExecutor: """Create from agent and tools.""" return cls( agent=agent, tools=tools, callback_manager=callback_manager, **kwargs ) @root_validator() def validate_tools(cls, values: Dict) -> Dict: """Validate that tools are compatible with agent.""" agent = values["agent"] tools = values["tools"] allowed_tools = agent.get_allowed_tools() if allowed_tools is not None: if set(allowed_tools) != set([tool.name for tool in tools]): raise ValueError( f"Allowed tools ({allowed_tools}) different than " f"provided tools ({[tool.name for tool in tools]})"
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-14
f"provided tools ({[tool.name for tool in tools]})" ) return values @root_validator() def validate_return_direct_tool(cls, values: Dict) -> Dict: """Validate that tools are compatible with agent.""" agent = values["agent"] tools = values["tools"] if isinstance(agent, BaseMultiActionAgent): for tool in tools: if tool.return_direct: raise ValueError( "Tools that have `return_direct=True` are not allowed " "in multi-action agents" ) return values [docs] def save(self, file_path: Union[Path, str]) -> None: """Raise error - saving not supported for Agent Executors.""" raise ValueError( "Saving not supported for agent executors. " "If you are trying to save the agent, please use the " "`.save_agent(...)`" ) [docs] def save_agent(self, file_path: Union[Path, str]) -> None: """Save the underlying agent.""" return self.agent.save(file_path) @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return self.agent.input_keys @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if self.return_intermediate_steps: return self.agent.return_values + ["intermediate_steps"] else: return self.agent.return_values [docs] def lookup_tool(self, name: str) -> BaseTool: """Lookup tool by name.""" return {tool.name: tool for tool in self.tools}[name]
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-15
return {tool.name: tool for tool in self.tools}[name] def _should_continue(self, iterations: int, time_elapsed: float) -> bool: if self.max_iterations is not None and iterations >= self.max_iterations: return False if ( self.max_execution_time is not None and time_elapsed >= self.max_execution_time ): return False return True def _return( self, output: AgentFinish, intermediate_steps: list, run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: if run_manager: run_manager.on_agent_finish(output, color="green", verbose=self.verbose) final_output = output.return_values if self.return_intermediate_steps: final_output["intermediate_steps"] = intermediate_steps return final_output async def _areturn( self, output: AgentFinish, intermediate_steps: list, run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: if run_manager: await run_manager.on_agent_finish( output, color="green", verbose=self.verbose ) final_output = output.return_values if self.return_intermediate_steps: final_output["intermediate_steps"] = intermediate_steps return final_output def _take_next_step( self, name_to_tool_map: Dict[str, BaseTool], color_mapping: Dict[str, str], inputs: Dict[str, str], intermediate_steps: List[Tuple[AgentAction, str]], run_manager: Optional[CallbackManagerForChainRun] = None,
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-16
run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]: """Take a single step in the thought-action-observation loop. Override this to take control of how the agent makes and acts on choices. """ try: # Call the LLM to see what to do. output = self.agent.plan( intermediate_steps, callbacks=run_manager.get_child() if run_manager else None, **inputs, ) except OutputParserException as e: if isinstance(self.handle_parsing_errors, bool): raise_error = not self.handle_parsing_errors else: raise_error = False if raise_error: raise e text = str(e) if isinstance(self.handle_parsing_errors, bool): if e.send_to_llm: observation = str(e.observation) text = str(e.llm_output) else: observation = "Invalid or incomplete response" elif isinstance(self.handle_parsing_errors, str): observation = self.handle_parsing_errors elif callable(self.handle_parsing_errors): observation = self.handle_parsing_errors(e) else: raise ValueError("Got unexpected type of `handle_parsing_errors`") output = AgentAction("_Exception", observation, text) if run_manager: run_manager.on_agent_action(output, color="green") tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = ExceptionTool().run( output.tool_input, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-17
**tool_run_kwargs, ) return [(output, observation)] # If the tool chosen is the finishing tool, then we end and return. if isinstance(output, AgentFinish): return output actions: List[AgentAction] if isinstance(output, AgentAction): actions = [output] else: actions = output result = [] for agent_action in actions: if run_manager: run_manager.on_agent_action(agent_action, color="green") # Otherwise we lookup the tool if agent_action.tool in name_to_tool_map: tool = name_to_tool_map[agent_action.tool] return_direct = tool.return_direct color = color_mapping[agent_action.tool] tool_run_kwargs = self.agent.tool_run_logging_kwargs() if return_direct: tool_run_kwargs["llm_prefix"] = "" # We then call the tool on the tool input to get an observation observation = tool.run( agent_action.tool_input, verbose=self.verbose, color=color, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) else: tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = InvalidTool().run( agent_action.tool, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) result.append((agent_action, observation)) return result async def _atake_next_step( self, name_to_tool_map: Dict[str, BaseTool], color_mapping: Dict[str, str], inputs: Dict[str, str],
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-18
color_mapping: Dict[str, str], inputs: Dict[str, str], intermediate_steps: List[Tuple[AgentAction, str]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]: """Take a single step in the thought-action-observation loop. Override this to take control of how the agent makes and acts on choices. """ try: # Call the LLM to see what to do. output = await self.agent.aplan( intermediate_steps, callbacks=run_manager.get_child() if run_manager else None, **inputs, ) except OutputParserException as e: if isinstance(self.handle_parsing_errors, bool): raise_error = not self.handle_parsing_errors else: raise_error = False if raise_error: raise e text = str(e) if isinstance(self.handle_parsing_errors, bool): if e.send_to_llm: observation = str(e.observation) text = str(e.llm_output) else: observation = "Invalid or incomplete response" elif isinstance(self.handle_parsing_errors, str): observation = self.handle_parsing_errors elif callable(self.handle_parsing_errors): observation = self.handle_parsing_errors(e) else: raise ValueError("Got unexpected type of `handle_parsing_errors`") output = AgentAction("_Exception", observation, text) tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = await ExceptionTool().arun( output.tool_input, verbose=self.verbose, color=None,
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-19
output.tool_input, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) return [(output, observation)] # If the tool chosen is the finishing tool, then we end and return. if isinstance(output, AgentFinish): return output actions: List[AgentAction] if isinstance(output, AgentAction): actions = [output] else: actions = output async def _aperform_agent_action( agent_action: AgentAction, ) -> Tuple[AgentAction, str]: if run_manager: await run_manager.on_agent_action( agent_action, verbose=self.verbose, color="green" ) # Otherwise we lookup the tool if agent_action.tool in name_to_tool_map: tool = name_to_tool_map[agent_action.tool] return_direct = tool.return_direct color = color_mapping[agent_action.tool] tool_run_kwargs = self.agent.tool_run_logging_kwargs() if return_direct: tool_run_kwargs["llm_prefix"] = "" # We then call the tool on the tool input to get an observation observation = await tool.arun( agent_action.tool_input, verbose=self.verbose, color=color, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) else: tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = await InvalidTool().arun( agent_action.tool, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-20
**tool_run_kwargs, ) return agent_action, observation # Use asyncio.gather to run multiple tool.arun() calls concurrently result = await asyncio.gather( *[_aperform_agent_action(agent_action) for agent_action in actions] ) return list(result) def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run text through and get agent response.""" # Construct a mapping of tool name to tool for easy lookup name_to_tool_map = {tool.name: tool for tool in self.tools} # We construct a mapping from each tool to a color, used for logging. color_mapping = get_color_mapping( [tool.name for tool in self.tools], excluded_colors=["green", "red"] ) intermediate_steps: List[Tuple[AgentAction, str]] = [] # Let's start tracking the number of iterations and time elapsed iterations = 0 time_elapsed = 0.0 start_time = time.time() # We now enter the agent loop (until it returns something). while self._should_continue(iterations, time_elapsed): next_step_output = self._take_next_step( name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager=run_manager, ) if isinstance(next_step_output, AgentFinish): return self._return( next_step_output, intermediate_steps, run_manager=run_manager ) intermediate_steps.extend(next_step_output) if len(next_step_output) == 1: next_step_action = next_step_output[0]
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-21
next_step_action = next_step_output[0] # See if tool should return directly tool_return = self._get_tool_return(next_step_action) if tool_return is not None: return self._return( tool_return, intermediate_steps, run_manager=run_manager ) iterations += 1 time_elapsed = time.time() - start_time output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return self._return(output, intermediate_steps, run_manager=run_manager) async def _acall( self, inputs: Dict[str, str], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: """Run text through and get agent response.""" # Construct a mapping of tool name to tool for easy lookup name_to_tool_map = {tool.name: tool for tool in self.tools} # We construct a mapping from each tool to a color, used for logging. color_mapping = get_color_mapping( [tool.name for tool in self.tools], excluded_colors=["green"] ) intermediate_steps: List[Tuple[AgentAction, str]] = [] # Let's start tracking the number of iterations and time elapsed iterations = 0 time_elapsed = 0.0 start_time = time.time() # We now enter the agent loop (until it returns something). async with asyncio_timeout(self.max_execution_time): try: while self._should_continue(iterations, time_elapsed): next_step_output = await self._atake_next_step( name_to_tool_map, color_mapping, inputs, intermediate_steps,
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-22
color_mapping, inputs, intermediate_steps, run_manager=run_manager, ) if isinstance(next_step_output, AgentFinish): return await self._areturn( next_step_output, intermediate_steps, run_manager=run_manager, ) intermediate_steps.extend(next_step_output) if len(next_step_output) == 1: next_step_action = next_step_output[0] # See if tool should return directly tool_return = self._get_tool_return(next_step_action) if tool_return is not None: return await self._areturn( tool_return, intermediate_steps, run_manager=run_manager ) iterations += 1 time_elapsed = time.time() - start_time output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return await self._areturn( output, intermediate_steps, run_manager=run_manager ) except TimeoutError: # stop early when interrupted by the async timeout output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return await self._areturn( output, intermediate_steps, run_manager=run_manager ) def _get_tool_return( self, next_step_output: Tuple[AgentAction, str] ) -> Optional[AgentFinish]: """Check if the tool is a returning tool.""" agent_action, observation = next_step_output name_to_tool_map = {tool.name: tool for tool in self.tools} # Invalid tools won't be in the map, so we return False. if agent_action.tool in name_to_tool_map:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
45339159c89f-23
if agent_action.tool in name_to_tool_map: if name_to_tool_map[agent_action.tool].return_direct: return AgentFinish( {self.agent.return_values[0]: observation}, "", ) return None
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent.html
96bcfe0241f4-0
Source code for langchain.agents.load_tools # flake8: noqa """Load tools.""" import warnings from typing import Any, Dict, List, Optional, Callable, Tuple from mypy_extensions import Arg, KwArg from langchain.agents.tools import Tool from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import Callbacks from langchain.chains.api import news_docs, open_meteo_docs, podcast_docs, tmdb_docs from langchain.chains.api.base import APIChain from langchain.chains.llm_math.base import LLMMathChain from langchain.chains.pal.base import PALChain from langchain.requests import TextRequestsWrapper from langchain.tools.arxiv.tool import ArxivQueryRun from langchain.tools.pubmed.tool import PubmedQueryRun from langchain.tools.base import BaseTool from langchain.tools.bing_search.tool import BingSearchRun from langchain.tools.ddg_search.tool import DuckDuckGoSearchRun from langchain.tools.google_search.tool import GoogleSearchResults, GoogleSearchRun from langchain.tools.metaphor_search.tool import MetaphorSearchResults from langchain.tools.google_serper.tool import GoogleSerperResults, GoogleSerperRun from langchain.tools.graphql.tool import BaseGraphQLTool from langchain.tools.human.tool import HumanInputRun from langchain.tools.python.tool import PythonREPLTool from langchain.tools.requests.tool import ( RequestsDeleteTool, RequestsGetTool, RequestsPatchTool, RequestsPostTool, RequestsPutTool, ) from langchain.tools.scenexplain.tool import SceneXplainTool from langchain.tools.searx_search.tool import SearxSearchResults, SearxSearchRun from langchain.tools.shell.tool import ShellTool
https://api.python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
96bcfe0241f4-1
from langchain.tools.shell.tool import ShellTool from langchain.tools.sleep.tool import SleepTool from langchain.tools.wikipedia.tool import WikipediaQueryRun from langchain.tools.wolfram_alpha.tool import WolframAlphaQueryRun from langchain.tools.openweathermap.tool import OpenWeatherMapQueryRun from langchain.utilities import ArxivAPIWrapper from langchain.utilities import PubMedAPIWrapper from langchain.utilities.bing_search import BingSearchAPIWrapper from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper from langchain.utilities.google_search import GoogleSearchAPIWrapper from langchain.utilities.google_serper import GoogleSerperAPIWrapper from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper from langchain.utilities.awslambda import LambdaWrapper from langchain.utilities.graphql import GraphQLAPIWrapper from langchain.utilities.searx_search import SearxSearchWrapper from langchain.utilities.serpapi import SerpAPIWrapper from langchain.utilities.twilio import TwilioAPIWrapper from langchain.utilities.wikipedia import WikipediaAPIWrapper from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper from langchain.utilities.openweathermap import OpenWeatherMapAPIWrapper def _get_python_repl() -> BaseTool: return PythonREPLTool() def _get_tools_requests_get() -> BaseTool: return RequestsGetTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_post() -> BaseTool: return RequestsPostTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_patch() -> BaseTool: return RequestsPatchTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_put() -> BaseTool: return RequestsPutTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_delete() -> BaseTool:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
96bcfe0241f4-2
def _get_tools_requests_delete() -> BaseTool: return RequestsDeleteTool(requests_wrapper=TextRequestsWrapper()) def _get_terminal() -> BaseTool: return ShellTool() def _get_sleep() -> BaseTool: return SleepTool() _BASE_TOOLS: Dict[str, Callable[[], BaseTool]] = { "python_repl": _get_python_repl, "requests": _get_tools_requests_get, # preserved for backwards compatability "requests_get": _get_tools_requests_get, "requests_post": _get_tools_requests_post, "requests_patch": _get_tools_requests_patch, "requests_put": _get_tools_requests_put, "requests_delete": _get_tools_requests_delete, "terminal": _get_terminal, "sleep": _get_sleep, } def _get_pal_math(llm: BaseLanguageModel) -> BaseTool: return Tool( name="PAL-MATH", description="A language model that is really good at solving complex word math problems. Input should be a fully worded hard word math problem.", func=PALChain.from_math_prompt(llm).run, ) def _get_pal_colored_objects(llm: BaseLanguageModel) -> BaseTool: return Tool( name="PAL-COLOR-OBJ", description="A language model that is really good at reasoning about position and the color attributes of objects. Input should be a fully worded hard reasoning problem. Make sure to include all information about the objects AND the final question you want to answer.", func=PALChain.from_colored_object_prompt(llm).run, ) def _get_llm_math(llm: BaseLanguageModel) -> BaseTool: return Tool( name="Calculator",
https://api.python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
96bcfe0241f4-3
return Tool( name="Calculator", description="Useful for when you need to answer questions about math.", func=LLMMathChain.from_llm(llm=llm).run, coroutine=LLMMathChain.from_llm(llm=llm).arun, ) def _get_open_meteo_api(llm: BaseLanguageModel) -> BaseTool: chain = APIChain.from_llm_and_api_docs(llm, open_meteo_docs.OPEN_METEO_DOCS) return Tool( name="Open Meteo API", description="Useful for when you want to get weather information from the OpenMeteo API. The input should be a question in natural language that this API can answer.", func=chain.run, ) _LLM_TOOLS: Dict[str, Callable[[BaseLanguageModel], BaseTool]] = { "pal-math": _get_pal_math, "pal-colored-objects": _get_pal_colored_objects, "llm-math": _get_llm_math, "open-meteo-api": _get_open_meteo_api, } def _get_news_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: news_api_key = kwargs["news_api_key"] chain = APIChain.from_llm_and_api_docs( llm, news_docs.NEWS_DOCS, headers={"X-Api-Key": news_api_key} ) return Tool( name="News API", description="Use this when you want to get information about the top headlines of current news stories. The input should be a question in natural language that this API can answer.", func=chain.run, )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
96bcfe0241f4-4
func=chain.run, ) def _get_tmdb_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: tmdb_bearer_token = kwargs["tmdb_bearer_token"] chain = APIChain.from_llm_and_api_docs( llm, tmdb_docs.TMDB_DOCS, headers={"Authorization": f"Bearer {tmdb_bearer_token}"}, ) return Tool( name="TMDB API", description="Useful for when you want to get information from The Movie Database. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_podcast_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: listen_api_key = kwargs["listen_api_key"] chain = APIChain.from_llm_and_api_docs( llm, podcast_docs.PODCAST_DOCS, headers={"X-ListenAPI-Key": listen_api_key}, ) return Tool( name="Podcast API", description="Use the Listen Notes Podcast API to search all podcasts or episodes. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_lambda_api(**kwargs: Any) -> BaseTool: return Tool( name=kwargs["awslambda_tool_name"], description=kwargs["awslambda_tool_description"], func=LambdaWrapper(**kwargs).run, ) def _get_wolfram_alpha(**kwargs: Any) -> BaseTool: return WolframAlphaQueryRun(api_wrapper=WolframAlphaAPIWrapper(**kwargs)) def _get_google_search(**kwargs: Any) -> BaseTool:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
96bcfe0241f4-5
def _get_google_search(**kwargs: Any) -> BaseTool: return GoogleSearchRun(api_wrapper=GoogleSearchAPIWrapper(**kwargs)) def _get_wikipedia(**kwargs: Any) -> BaseTool: return WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(**kwargs)) def _get_arxiv(**kwargs: Any) -> BaseTool: return ArxivQueryRun(api_wrapper=ArxivAPIWrapper(**kwargs)) def _get_pupmed(**kwargs: Any) -> BaseTool: return PubmedQueryRun(api_wrapper=PubMedAPIWrapper(**kwargs)) def _get_google_serper(**kwargs: Any) -> BaseTool: return GoogleSerperRun(api_wrapper=GoogleSerperAPIWrapper(**kwargs)) def _get_google_serper_results_json(**kwargs: Any) -> BaseTool: return GoogleSerperResults(api_wrapper=GoogleSerperAPIWrapper(**kwargs)) def _get_google_search_results_json(**kwargs: Any) -> BaseTool: return GoogleSearchResults(api_wrapper=GoogleSearchAPIWrapper(**kwargs)) def _get_serpapi(**kwargs: Any) -> BaseTool: return Tool( name="Search", description="A search engine. Useful for when you need to answer questions about current events. Input should be a search query.", func=SerpAPIWrapper(**kwargs).run, coroutine=SerpAPIWrapper(**kwargs).arun, ) def _get_twilio(**kwargs: Any) -> BaseTool: return Tool( name="Text Message", description="Useful for when you need to send a text message to a provided phone number.", func=TwilioAPIWrapper(**kwargs).run, ) def _get_searx_search(**kwargs: Any) -> BaseTool:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
96bcfe0241f4-6
) def _get_searx_search(**kwargs: Any) -> BaseTool: return SearxSearchRun(wrapper=SearxSearchWrapper(**kwargs)) def _get_searx_search_results_json(**kwargs: Any) -> BaseTool: wrapper_kwargs = {k: v for k, v in kwargs.items() if k != "num_results"} return SearxSearchResults(wrapper=SearxSearchWrapper(**wrapper_kwargs), **kwargs) def _get_bing_search(**kwargs: Any) -> BaseTool: return BingSearchRun(api_wrapper=BingSearchAPIWrapper(**kwargs)) def _get_metaphor_search(**kwargs: Any) -> BaseTool: return MetaphorSearchResults(api_wrapper=MetaphorSearchAPIWrapper(**kwargs)) def _get_ddg_search(**kwargs: Any) -> BaseTool: return DuckDuckGoSearchRun(api_wrapper=DuckDuckGoSearchAPIWrapper(**kwargs)) def _get_human_tool(**kwargs: Any) -> BaseTool: return HumanInputRun(**kwargs) def _get_scenexplain(**kwargs: Any) -> BaseTool: return SceneXplainTool(**kwargs) def _get_graphql_tool(**kwargs: Any) -> BaseTool: graphql_endpoint = kwargs["graphql_endpoint"] wrapper = GraphQLAPIWrapper(graphql_endpoint=graphql_endpoint) return BaseGraphQLTool(graphql_wrapper=wrapper) def _get_openweathermap(**kwargs: Any) -> BaseTool: return OpenWeatherMapQueryRun(api_wrapper=OpenWeatherMapAPIWrapper(**kwargs)) _EXTRA_LLM_TOOLS: Dict[ str, Tuple[Callable[[Arg(BaseLanguageModel, "llm"), KwArg(Any)], BaseTool], List[str]], ] = {
https://api.python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
96bcfe0241f4-7
] = { "news-api": (_get_news_api, ["news_api_key"]), "tmdb-api": (_get_tmdb_api, ["tmdb_bearer_token"]), "podcast-api": (_get_podcast_api, ["listen_api_key"]), } _EXTRA_OPTIONAL_TOOLS: Dict[str, Tuple[Callable[[KwArg(Any)], BaseTool], List[str]]] = { "wolfram-alpha": (_get_wolfram_alpha, ["wolfram_alpha_appid"]), "google-search": (_get_google_search, ["google_api_key", "google_cse_id"]), "google-search-results-json": ( _get_google_search_results_json, ["google_api_key", "google_cse_id", "num_results"], ), "searx-search-results-json": ( _get_searx_search_results_json, ["searx_host", "engines", "num_results", "aiosession"], ), "bing-search": (_get_bing_search, ["bing_subscription_key", "bing_search_url"]), "metaphor-search": (_get_metaphor_search, ["metaphor_api_key"]), "ddg-search": (_get_ddg_search, []), "google-serper": (_get_google_serper, ["serper_api_key", "aiosession"]), "google-serper-results-json": ( _get_google_serper_results_json, ["serper_api_key", "aiosession"], ), "serpapi": (_get_serpapi, ["serpapi_api_key", "aiosession"]), "twilio": (_get_twilio, ["account_sid", "auth_token", "from_number"]),
https://api.python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
96bcfe0241f4-8
"searx-search": (_get_searx_search, ["searx_host", "engines", "aiosession"]), "wikipedia": (_get_wikipedia, ["top_k_results", "lang"]), "arxiv": ( _get_arxiv, ["top_k_results", "load_max_docs", "load_all_available_meta"], ), "pupmed": ( _get_pupmed, ["top_k_results", "load_max_docs", "load_all_available_meta"], ), "human": (_get_human_tool, ["prompt_func", "input_func"]), "awslambda": ( _get_lambda_api, ["awslambda_tool_name", "awslambda_tool_description", "function_name"], ), "sceneXplain": (_get_scenexplain, []), "graphql": (_get_graphql_tool, ["graphql_endpoint"]), "openweathermap-api": (_get_openweathermap, ["openweathermap_api_key"]), } def _handle_callbacks( callback_manager: Optional[BaseCallbackManager], callbacks: Callbacks ) -> Callbacks: if callback_manager is not None: warnings.warn( "callback_manager is deprecated. Please use callbacks instead.", DeprecationWarning, ) if callbacks is not None: raise ValueError( "Cannot specify both callback_manager and callbacks arguments." ) return callback_manager return callbacks [docs]def load_huggingface_tool( task_or_repo_id: str, model_repo_id: Optional[str] = None, token: Optional[str] = None, remote: bool = False, **kwargs: Any, ) -> BaseTool:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
96bcfe0241f4-9
**kwargs: Any, ) -> BaseTool: """Loads a tool from the HuggingFace Hub. Args: task_or_repo_id: Task or model repo id. model_repo_id: Optional model repo id. token: Optional token. remote: Optional remote. Defaults to False. **kwargs: Returns: A tool. """ try: from transformers import load_tool except ImportError: raise ImportError( "HuggingFace tools require the libraries `transformers>=4.29.0`" " and `huggingface_hub>=0.14.1` to be installed." " Please install it with" " `pip install --upgrade transformers huggingface_hub`." ) hf_tool = load_tool( task_or_repo_id, model_repo_id=model_repo_id, token=token, remote=remote, **kwargs, ) outputs = hf_tool.outputs if set(outputs) != {"text"}: raise NotImplementedError("Multimodal outputs not supported yet.") inputs = hf_tool.inputs if set(inputs) != {"text"}: raise NotImplementedError("Multimodal inputs not supported yet.") return Tool.from_function( hf_tool.__call__, name=hf_tool.name, description=hf_tool.description ) [docs]def load_tools( tool_names: List[str], llm: Optional[BaseLanguageModel] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> List[BaseTool]: """Load tools based on their name. Args: tool_names: name of tools to load.
https://api.python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
96bcfe0241f4-10
Args: tool_names: name of tools to load. llm: Optional language model, may be needed to initialize certain tools. callbacks: Optional callback manager or list of callback handlers. If not provided, default global callback manager will be used. Returns: List of tools. """ tools = [] callbacks = _handle_callbacks( callback_manager=kwargs.get("callback_manager"), callbacks=callbacks ) for name in tool_names: if name == "requests": warnings.warn( "tool name `requests` is deprecated - " "please use `requests_all` or specify the requests method" ) if name == "requests_all": # expand requests into various methods requests_method_tools = [ _tool for _tool in _BASE_TOOLS if _tool.startswith("requests_") ] tool_names.extend(requests_method_tools) elif name in _BASE_TOOLS: tools.append(_BASE_TOOLS[name]()) elif name in _LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") tool = _LLM_TOOLS[name](llm) tools.append(tool) elif name in _EXTRA_LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") _get_llm_tool_func, extra_keys = _EXTRA_LLM_TOOLS[name] missing_keys = set(extra_keys).difference(kwargs) if missing_keys: raise ValueError( f"Tool {name} requires some parameters that were not " f"provided: {missing_keys}" )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
96bcfe0241f4-11
f"provided: {missing_keys}" ) sub_kwargs = {k: kwargs[k] for k in extra_keys} tool = _get_llm_tool_func(llm=llm, **sub_kwargs) tools.append(tool) elif name in _EXTRA_OPTIONAL_TOOLS: _get_tool_func, extra_keys = _EXTRA_OPTIONAL_TOOLS[name] sub_kwargs = {k: kwargs[k] for k in extra_keys if k in kwargs} tool = _get_tool_func(**sub_kwargs) tools.append(tool) else: raise ValueError(f"Got unknown tool {name}") if callbacks is not None: for tool in tools: tool.callbacks = callbacks return tools [docs]def get_all_tool_names() -> List[str]: """Get a list of all possible tool names.""" return ( list(_BASE_TOOLS) + list(_EXTRA_OPTIONAL_TOOLS) + list(_EXTRA_LLM_TOOLS) + list(_LLM_TOOLS) )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
28c34f5ff74a-0
Source code for langchain.agents.conversational.base """An agent designed to hold a conversation in addition to using tools.""" from __future__ import annotations from typing import Any, List, Optional, Sequence from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.agent_types import AgentType from langchain.agents.conversational.output_parser import ConvoOutputParser from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.tools.base import BaseTool [docs]class ConversationalAgent(Agent): """An agent designed to hold a conversation in addition to using tools.""" ai_prefix: str = "AI" output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser) @classmethod def _get_default_output_parser( cls, ai_prefix: str = "AI", **kwargs: Any ) -> AgentOutputParser: return ConvoOutputParser(ai_prefix=ai_prefix) @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return AgentType.CONVERSATIONAL_REACT_DESCRIPTION @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" [docs] @classmethod def create_prompt( cls,
https://api.python.langchain.com/en/latest/_modules/langchain/agents/conversational/base.html
28c34f5ff74a-1
[docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, ai_prefix: str = "AI", human_prefix: str = "Human", input_variables: Optional[List[str]] = None, ) -> PromptTemplate: """Create prompt in the style of the zero shot agent. Args: tools: List of tools the agent will have access to, used to format the prompt. prefix: String to put before the list of tools. suffix: String to put after the list of tools. ai_prefix: String to use before AI output. human_prefix: String to use before human output. input_variables: List of input variables the final prompt will expect. Returns: A PromptTemplate with the template assembled from the pieces here. """ tool_strings = "\n".join( [f"> {tool.name}: {tool.description}" for tool in tools] ) tool_names = ", ".join([tool.name for tool in tools]) format_instructions = format_instructions.format( tool_names=tool_names, ai_prefix=ai_prefix, human_prefix=human_prefix ) template = "\n\n".join([prefix, tool_strings, format_instructions, suffix]) if input_variables is None: input_variables = ["input", "chat_history", "agent_scratchpad"] return PromptTemplate(template=template, input_variables=input_variables) @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: super()._validate_tools(tools) validate_tools_single_input(cls.__name__, tools)
https://api.python.langchain.com/en/latest/_modules/langchain/agents/conversational/base.html
28c34f5ff74a-2
validate_tools_single_input(cls.__name__, tools) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, ai_prefix: str = "AI", human_prefix: str = "Human", input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) prompt = cls.create_prompt( tools, ai_prefix=ai_prefix, human_prefix=human_prefix, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser( ai_prefix=ai_prefix ) return cls( llm_chain=llm_chain, allowed_tools=tool_names, ai_prefix=ai_prefix, output_parser=_output_parser, **kwargs, )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/conversational/base.html
e34d7b3012a3-0
Source code for langchain.agents.conversational_chat.base """An agent designed to hold a conversation in addition to using tools.""" from __future__ import annotations from typing import Any, List, Optional, Sequence, Tuple from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.conversational_chat.output_parser import ConvoOutputParser from langchain.agents.conversational_chat.prompt import ( PREFIX, SUFFIX, TEMPLATE_TOOL_RESPONSE, ) from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains import LLMChain from langchain.prompts.base import BasePromptTemplate from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from langchain.schema import ( AgentAction, AIMessage, BaseMessage, BaseOutputParser, HumanMessage, ) from langchain.tools.base import BaseTool [docs]class ConversationalChatAgent(Agent): """An agent designed to hold a conversation in addition to using tools.""" output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser) template_tool_response: str = TEMPLATE_TOOL_RESPONSE @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return ConvoOutputParser() @property def _agent_type(self) -> str: raise NotImplementedError @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property
https://api.python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html
e34d7b3012a3-1
return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: super()._validate_tools(tools) validate_tools_single_input(cls.__name__, tools) [docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, output_parser: Optional[BaseOutputParser] = None, ) -> BasePromptTemplate: tool_strings = "\n".join( [f"> {tool.name}: {tool.description}" for tool in tools] ) tool_names = ", ".join([tool.name for tool in tools]) _output_parser = output_parser or cls._get_default_output_parser() format_instructions = human_message.format( format_instructions=_output_parser.get_format_instructions() ) final_prompt = format_instructions.format( tool_names=tool_names, tools=tool_strings ) if input_variables is None: input_variables = ["input", "chat_history", "agent_scratchpad"] messages = [ SystemMessagePromptTemplate.from_template(system_message), MessagesPlaceholder(variable_name="chat_history"), HumanMessagePromptTemplate.from_template(final_prompt), MessagesPlaceholder(variable_name="agent_scratchpad"), ] return ChatPromptTemplate(input_variables=input_variables, messages=messages) def _construct_scratchpad( self, intermediate_steps: List[Tuple[AgentAction, str]] ) -> List[BaseMessage]:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html
e34d7b3012a3-2
) -> List[BaseMessage]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts: List[BaseMessage] = [] for action, observation in intermediate_steps: thoughts.append(AIMessage(content=action.log)) human_message = HumanMessage( content=self.template_tool_response.format(observation=observation) ) thoughts.append(human_message) return thoughts [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) _output_parser = output_parser or cls._get_default_output_parser() prompt = cls.create_prompt( tools, system_message=system_message, human_message=human_message, input_variables=input_variables, output_parser=_output_parser, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html
cba691317bf1-0
Source code for langchain.agents.structured_chat.base import re from typing import Any, List, Optional, Sequence, Tuple from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.structured_chat.output_parser import ( StructuredChatOutputParserWithRetries, ) from langchain.agents.structured_chat.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.prompts.base import BasePromptTemplate from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.schema import AgentAction from langchain.tools import BaseTool HUMAN_MESSAGE_TEMPLATE = "{input}\n\n{agent_scratchpad}" [docs]class StructuredChatAgent(Agent): output_parser: AgentOutputParser = Field( default_factory=StructuredChatOutputParserWithRetries ) @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" def _construct_scratchpad( self, intermediate_steps: List[Tuple[AgentAction, str]] ) -> str: agent_scratchpad = super()._construct_scratchpad(intermediate_steps) if not isinstance(agent_scratchpad, str): raise ValueError("agent_scratchpad should be of type string.") if agent_scratchpad: return ( f"This was your previous work "
https://api.python.langchain.com/en/latest/_modules/langchain/agents/structured_chat/base.html
cba691317bf1-1
return ( f"This was your previous work " f"(but I haven't seen any of it! I only see what " f"you return as final answer):\n{agent_scratchpad}" ) else: return agent_scratchpad @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: pass @classmethod def _get_default_output_parser( cls, llm: Optional[BaseLanguageModel] = None, **kwargs: Any ) -> AgentOutputParser: return StructuredChatOutputParserWithRetries.from_llm(llm=llm) @property def _stop(self) -> List[str]: return ["Observation:"] [docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], prefix: str = PREFIX, suffix: str = SUFFIX, human_message_template: str = HUMAN_MESSAGE_TEMPLATE, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, memory_prompts: Optional[List[BasePromptTemplate]] = None, ) -> BasePromptTemplate: tool_strings = [] for tool in tools: args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args))) tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}") formatted_tools = "\n".join(tool_strings) tool_names = ", ".join([tool.name for tool in tools]) format_instructions = format_instructions.format(tool_names=tool_names) template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
https://api.python.langchain.com/en/latest/_modules/langchain/agents/structured_chat/base.html
cba691317bf1-2
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix]) if input_variables is None: input_variables = ["input", "agent_scratchpad"] _memory_prompts = memory_prompts or [] messages = [ SystemMessagePromptTemplate.from_template(template), *_memory_prompts, HumanMessagePromptTemplate.from_template(human_message_template), ] return ChatPromptTemplate(input_variables=input_variables, messages=messages) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = PREFIX, suffix: str = SUFFIX, human_message_template: str = HUMAN_MESSAGE_TEMPLATE, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, memory_prompts: Optional[List[BasePromptTemplate]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) prompt = cls.create_prompt( tools, prefix=prefix, suffix=suffix, human_message_template=human_message_template, format_instructions=format_instructions, input_variables=input_variables, memory_prompts=memory_prompts, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools]
https://api.python.langchain.com/en/latest/_modules/langchain/agents/structured_chat/base.html
cba691317bf1-3
) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser(llm=llm) return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, ) @property def _agent_type(self) -> str: raise ValueError
https://api.python.langchain.com/en/latest/_modules/langchain/agents/structured_chat/base.html
c07438d62305-0
Source code for langchain.agents.openai_functions_agent.base """Module implements an agent that uses OpenAI's APIs function enabled API.""" import json from dataclasses import dataclass from json import JSONDecodeError from typing import Any, List, Optional, Sequence, Tuple, Union from pydantic import root_validator from langchain.agents import BaseSingleActionAgent from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import Callbacks from langchain.chat_models.openai import ChatOpenAI from langchain.prompts.base import BasePromptTemplate from langchain.prompts.chat import ( BaseMessagePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, ) from langchain.schema import ( AgentAction, AgentFinish, AIMessage, BaseMessage, FunctionMessage, OutputParserException, SystemMessage, ) from langchain.tools import BaseTool from langchain.tools.convert_to_openai import format_tool_to_openai_function @dataclass class _FunctionsAgentAction(AgentAction): message_log: List[BaseMessage] def _convert_agent_action_to_messages( agent_action: AgentAction, observation: str ) -> List[BaseMessage]: """Convert an agent action to a message. This code is used to reconstruct the original AI message from the agent action. Args: agent_action: Agent action to convert. Returns: AIMessage that corresponds to the original tool invocation. """ if isinstance(agent_action, _FunctionsAgentAction): return agent_action.message_log + [ _create_function_message(agent_action, observation) ] else: return [AIMessage(content=agent_action.log)]
https://api.python.langchain.com/en/latest/_modules/langchain/agents/openai_functions_agent/base.html
c07438d62305-1
] else: return [AIMessage(content=agent_action.log)] def _create_function_message( agent_action: AgentAction, observation: str ) -> FunctionMessage: """Convert agent action and observation into a function message. Args: agent_action: the tool invocation request from the agent observation: the result of the tool invocation Returns: FunctionMessage that corresponds to the original tool invocation """ if not isinstance(observation, str): try: content = json.dumps(observation, ensure_ascii=False) except Exception: content = str(observation) else: content = observation return FunctionMessage( name=agent_action.tool, content=content, ) def _format_intermediate_steps( intermediate_steps: List[Tuple[AgentAction, str]], ) -> List[BaseMessage]: """Format intermediate steps. Args: intermediate_steps: Steps the LLM has taken to date, along with observations Returns: list of messages to send to the LLM for the next prediction """ messages = [] for intermediate_step in intermediate_steps: agent_action, observation = intermediate_step messages.extend(_convert_agent_action_to_messages(agent_action, observation)) return messages def _parse_ai_message(message: BaseMessage) -> Union[AgentAction, AgentFinish]: """Parse an AI message.""" if not isinstance(message, AIMessage): raise TypeError(f"Expected an AI message got {type(message)}") function_call = message.additional_kwargs.get("function_call", {}) if function_call: function_call = message.additional_kwargs["function_call"] function_name = function_call["name"] try:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/openai_functions_agent/base.html
c07438d62305-2
function_name = function_call["name"] try: _tool_input = json.loads(function_call["arguments"]) except JSONDecodeError: raise OutputParserException( f"Could not parse tool input: {function_call} because " f"the `arguments` is not valid JSON." ) # HACK HACK HACK: # The code that encodes tool input into Open AI uses a special variable # name called `__arg1` to handle old style tools that do not expose a # schema and expect a single string argument as an input. # We unpack the argument here if it exists. # Open AI does not support passing in a JSON array as an argument. if "__arg1" in _tool_input: tool_input = _tool_input["__arg1"] else: tool_input = _tool_input content_msg = "responded: {content}\n" if message.content else "\n" return _FunctionsAgentAction( tool=function_name, tool_input=tool_input, log=f"\nInvoking: `{function_name}` with `{tool_input}`\n{content_msg}\n", message_log=[message], ) return AgentFinish(return_values={"output": message.content}, log=message.content) [docs]class OpenAIFunctionsAgent(BaseSingleActionAgent): """An Agent driven by OpenAIs function powered API. Args: llm: This should be an instance of ChatOpenAI, specifically a model that supports using `functions`. tools: The tools this agent has access to. prompt: The prompt for this agent, should support agent_scratchpad as one of the variables. For an easy way to construct this prompt, use
https://api.python.langchain.com/en/latest/_modules/langchain/agents/openai_functions_agent/base.html
c07438d62305-3
of the variables. For an easy way to construct this prompt, use `OpenAIFunctionsAgent.create_prompt(...)` """ llm: BaseLanguageModel tools: Sequence[BaseTool] prompt: BasePromptTemplate [docs] def get_allowed_tools(self) -> List[str]: """Get allowed tools.""" return list([t.name for t in self.tools]) @root_validator def validate_llm(cls, values: dict) -> dict: if not isinstance(values["llm"], ChatOpenAI): raise ValueError("Only supported with ChatOpenAI models.") return values @root_validator def validate_prompt(cls, values: dict) -> dict: prompt: BasePromptTemplate = values["prompt"] if "agent_scratchpad" not in prompt.input_variables: raise ValueError( "`agent_scratchpad` should be one of the variables in the prompt, " f"got {prompt.input_variables}" ) return values @property def input_keys(self) -> List[str]: """Get input keys. Input refers to user input here.""" return ["input"] @property def functions(self) -> List[dict]: return [dict(format_tool_to_openai_function(t)) for t in self.tools] [docs] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/openai_functions_agent/base.html
c07438d62305-4
**kwargs: User inputs. Returns: Action specifying what tool to use. """ agent_scratchpad = _format_intermediate_steps(intermediate_steps) selected_inputs = { k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad" } full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad) prompt = self.prompt.format_prompt(**full_inputs) messages = prompt.to_messages() predicted_message = self.llm.predict_messages( messages, functions=self.functions, callbacks=callbacks ) agent_decision = _parse_ai_message(predicted_message) return agent_decision [docs] async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns: Action specifying what tool to use. """ agent_scratchpad = _format_intermediate_steps(intermediate_steps) selected_inputs = { k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad" } full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad) prompt = self.prompt.format_prompt(**full_inputs) messages = prompt.to_messages() predicted_message = await self.llm.apredict_messages( messages, functions=self.functions, callbacks=callbacks ) agent_decision = _parse_ai_message(predicted_message)
https://api.python.langchain.com/en/latest/_modules/langchain/agents/openai_functions_agent/base.html
c07438d62305-5
) agent_decision = _parse_ai_message(predicted_message) return agent_decision [docs] @classmethod def create_prompt( cls, system_message: Optional[SystemMessage] = SystemMessage( content="You are a helpful AI assistant." ), extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None, ) -> BasePromptTemplate: """Create prompt for this agent. Args: system_message: Message to use as the system message that will be the first in the prompt. extra_prompt_messages: Prompt messages that will be placed between the system message and the new human input. Returns: A prompt template to pass into this agent. """ _prompts = extra_prompt_messages or [] messages: List[Union[BaseMessagePromptTemplate, BaseMessage]] if system_message: messages = [system_message] else: messages = [] messages.extend( [ *_prompts, HumanMessagePromptTemplate.from_template("{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ] ) return ChatPromptTemplate(messages=messages) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None, system_message: Optional[SystemMessage] = SystemMessage( content="You are a helpful AI assistant." ), **kwargs: Any, ) -> BaseSingleActionAgent: """Construct an agent from an LLM and tools."""
https://api.python.langchain.com/en/latest/_modules/langchain/agents/openai_functions_agent/base.html
c07438d62305-6
"""Construct an agent from an LLM and tools.""" if not isinstance(llm, ChatOpenAI): raise ValueError("Only supported with ChatOpenAI models.") prompt = cls.create_prompt( extra_prompt_messages=extra_prompt_messages, system_message=system_message, ) return cls( llm=llm, prompt=prompt, tools=tools, callback_manager=callback_manager, **kwargs, )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/openai_functions_agent/base.html
e17f399bf20c-0
Source code for langchain.agents.react.base """Chain that implements the ReAct paper from https://arxiv.org/pdf/2210.03629.pdf.""" from typing import Any, List, Optional, Sequence from pydantic import Field from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser from langchain.agents.agent_types import AgentType from langchain.agents.react.output_parser import ReActOutputParser from langchain.agents.react.textworld_prompt import TEXTWORLD_PROMPT from langchain.agents.react.wiki_prompt import WIKI_PROMPT from langchain.agents.tools import Tool from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.docstore.base import Docstore from langchain.docstore.document import Document from langchain.prompts.base import BasePromptTemplate from langchain.tools.base import BaseTool class ReActDocstoreAgent(Agent): """Agent for the ReAct chain.""" output_parser: AgentOutputParser = Field(default_factory=ReActOutputParser) @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return ReActOutputParser() @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return AgentType.REACT_DOCSTORE @classmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Return default prompt.""" return WIKI_PROMPT @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: validate_tools_single_input(cls.__name__, tools) super()._validate_tools(tools) if len(tools) != 2:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/react/base.html
e17f399bf20c-1
super()._validate_tools(tools) if len(tools) != 2: raise ValueError(f"Exactly two tools must be specified, but got {tools}") tool_names = {tool.name for tool in tools} if tool_names != {"Lookup", "Search"}: raise ValueError( f"Tool names should be Lookup and Search, got {tool_names}" ) @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def _stop(self) -> List[str]: return ["\nObservation:"] @property def llm_prefix(self) -> str: """Prefix to append the LLM call with.""" return "Thought:" class DocstoreExplorer: """Class to assist with exploration of a document store.""" def __init__(self, docstore: Docstore): """Initialize with a docstore, and set initial document to None.""" self.docstore = docstore self.document: Optional[Document] = None self.lookup_str = "" self.lookup_index = 0 def search(self, term: str) -> str: """Search for a term in the docstore, and if found save.""" result = self.docstore.search(term) if isinstance(result, Document): self.document = result return self._summary else: self.document = None return result def lookup(self, term: str) -> str: """Lookup a term in document (if saved).""" if self.document is None: raise ValueError("Cannot lookup without a successful search first") if term.lower() != self.lookup_str:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/react/base.html
e17f399bf20c-2
if term.lower() != self.lookup_str: self.lookup_str = term.lower() self.lookup_index = 0 else: self.lookup_index += 1 lookups = [p for p in self._paragraphs if self.lookup_str in p.lower()] if len(lookups) == 0: return "No Results" elif self.lookup_index >= len(lookups): return "No More Results" else: result_prefix = f"(Result {self.lookup_index + 1}/{len(lookups)})" return f"{result_prefix} {lookups[self.lookup_index]}" @property def _summary(self) -> str: return self._paragraphs[0] @property def _paragraphs(self) -> List[str]: if self.document is None: raise ValueError("Cannot get paragraphs without a document") return self.document.page_content.split("\n\n") [docs]class ReActTextWorldAgent(ReActDocstoreAgent): """Agent for the ReAct TextWorld chain.""" [docs] @classmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Return default prompt.""" return TEXTWORLD_PROMPT @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: validate_tools_single_input(cls.__name__, tools) super()._validate_tools(tools) if len(tools) != 1: raise ValueError(f"Exactly one tool must be specified, but got {tools}") tool_names = {tool.name for tool in tools} if tool_names != {"Play"}: raise ValueError(f"Tool name should be Play, got {tool_names}")
https://api.python.langchain.com/en/latest/_modules/langchain/agents/react/base.html
e17f399bf20c-3
raise ValueError(f"Tool name should be Play, got {tool_names}") [docs]class ReActChain(AgentExecutor): """Chain that implements the ReAct paper. Example: .. code-block:: python from langchain import ReActChain, OpenAI react = ReAct(llm=OpenAI()) """ def __init__(self, llm: BaseLanguageModel, docstore: Docstore, **kwargs: Any): """Initialize with the LLM and a docstore.""" docstore_explorer = DocstoreExplorer(docstore) tools = [ Tool( name="Search", func=docstore_explorer.search, description="Search for a term in the docstore.", ), Tool( name="Lookup", func=docstore_explorer.lookup, description="Lookup a term in the docstore.", ), ] agent = ReActDocstoreAgent.from_llm_and_tools(llm, tools) super().__init__(agent=agent, tools=tools, **kwargs)
https://api.python.langchain.com/en/latest/_modules/langchain/agents/react/base.html
1848f4c9ddcc-0
Source code for langchain.agents.mrkl.base """Attempt to implement MRKL systems as described in arxiv.org/pdf/2205.00445.pdf.""" from __future__ import annotations from typing import Any, Callable, List, NamedTuple, Optional, Sequence from pydantic import Field from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser from langchain.agents.agent_types import AgentType from langchain.agents.mrkl.output_parser import MRKLOutputParser from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.agents.tools import Tool from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.tools.base import BaseTool class ChainConfig(NamedTuple): """Configuration for chain to use in MRKL system. Args: action_name: Name of the action. action: Action function to call. action_description: Description of the action. """ action_name: str action: Callable action_description: str [docs]class ZeroShotAgent(Agent): """Agent for the MRKL chain.""" output_parser: AgentOutputParser = Field(default_factory=MRKLOutputParser) @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return MRKLOutputParser() @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return AgentType.ZERO_SHOT_REACT_DESCRIPTION @property def observation_prefix(self) -> str:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html
1848f4c9ddcc-1
@property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" [docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, ) -> PromptTemplate: """Create prompt in the style of the zero shot agent. Args: tools: List of tools the agent will have access to, used to format the prompt. prefix: String to put before the list of tools. suffix: String to put after the list of tools. input_variables: List of input variables the final prompt will expect. Returns: A PromptTemplate with the template assembled from the pieces here. """ tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools]) tool_names = ", ".join([tool.name for tool in tools]) format_instructions = format_instructions.format(tool_names=tool_names) template = "\n\n".join([prefix, tool_strings, format_instructions, suffix]) if input_variables is None: input_variables = ["input", "agent_scratchpad"] return PromptTemplate(template=template, input_variables=input_variables) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool],
https://api.python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html
1848f4c9ddcc-2
llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) prompt = cls.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser() return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, ) @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: validate_tools_single_input(cls.__name__, tools) if len(tools) == 0: raise ValueError( f"Got no tools for {cls.__name__}. At least one tool must be provided." ) for tool in tools: if tool.description is None: raise ValueError( f"Got a tool {tool.name} without a description. For this agent, " f"a description must always be provided." )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html
1848f4c9ddcc-3
f"a description must always be provided." ) super()._validate_tools(tools) [docs]class MRKLChain(AgentExecutor): """Chain that implements the MRKL system. Example: .. code-block:: python from langchain import OpenAI, MRKLChain from langchain.chains.mrkl.base import ChainConfig llm = OpenAI(temperature=0) prompt = PromptTemplate(...) chains = [...] mrkl = MRKLChain.from_chains(llm=llm, prompt=prompt) """ [docs] @classmethod def from_chains( cls, llm: BaseLanguageModel, chains: List[ChainConfig], **kwargs: Any ) -> AgentExecutor: """User friendly way to initialize the MRKL chain. This is intended to be an easy way to get up and running with the MRKL chain. Args: llm: The LLM to use as the agent LLM. chains: The chains the MRKL system has access to. **kwargs: parameters to be passed to initialization. Returns: An initialized MRKL chain. Example: .. code-block:: python from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, MRKLChain from langchain.chains.mrkl.base import ChainConfig llm = OpenAI(temperature=0) search = SerpAPIWrapper() llm_math_chain = LLMMathChain(llm=llm) chains = [ ChainConfig( action_name = "Search", action=search.search, action_description="useful for searching" ), ChainConfig(
https://api.python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html
1848f4c9ddcc-4
action_description="useful for searching" ), ChainConfig( action_name="Calculator", action=llm_math_chain.run, action_description="useful for doing math" ) ] mrkl = MRKLChain.from_chains(llm, chains) """ tools = [ Tool( name=c.action_name, func=c.action, description=c.action_description, ) for c in chains ] agent = ZeroShotAgent.from_llm_and_tools(llm, tools) return cls(agent=agent, tools=tools, **kwargs)
https://api.python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html
385ea07de428-0
Source code for langchain.agents.agent_toolkits.playwright.toolkit """Playwright web browser toolkit.""" from __future__ import annotations from typing import TYPE_CHECKING, List, Optional, Type, cast from pydantic import Extra, root_validator from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools.base import BaseTool from langchain.tools.playwright.base import ( BaseBrowserTool, lazy_import_playwright_browsers, ) from langchain.tools.playwright.click import ClickTool from langchain.tools.playwright.current_page import CurrentWebPageTool from langchain.tools.playwright.extract_hyperlinks import ExtractHyperlinksTool from langchain.tools.playwright.extract_text import ExtractTextTool from langchain.tools.playwright.get_elements import GetElementsTool from langchain.tools.playwright.navigate import NavigateTool from langchain.tools.playwright.navigate_back import NavigateBackTool if TYPE_CHECKING: from playwright.async_api import Browser as AsyncBrowser from playwright.sync_api import Browser as SyncBrowser else: try: # We do this so pydantic can resolve the types when instantiating from playwright.async_api import Browser as AsyncBrowser from playwright.sync_api import Browser as SyncBrowser except ImportError: pass [docs]class PlayWrightBrowserToolkit(BaseToolkit): """Toolkit for web browser tools.""" sync_browser: Optional["SyncBrowser"] = None async_browser: Optional["AsyncBrowser"] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator def validate_imports_and_browser_provided(cls, values: dict) -> dict: """Check that the arguments are valid.""" lazy_import_playwright_browsers()
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/playwright/toolkit.html
385ea07de428-1
"""Check that the arguments are valid.""" lazy_import_playwright_browsers() if values.get("async_browser") is None and values.get("sync_browser") is None: raise ValueError("Either async_browser or sync_browser must be specified.") return values [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" tool_classes: List[Type[BaseBrowserTool]] = [ ClickTool, NavigateTool, NavigateBackTool, ExtractTextTool, ExtractHyperlinksTool, GetElementsTool, CurrentWebPageTool, ] tools = [ tool_cls.from_browser( sync_browser=self.sync_browser, async_browser=self.async_browser ) for tool_cls in tool_classes ] return cast(List[BaseTool], tools) [docs] @classmethod def from_browser( cls, sync_browser: Optional[SyncBrowser] = None, async_browser: Optional[AsyncBrowser] = None, ) -> PlayWrightBrowserToolkit: """Instantiate the toolkit.""" # This is to raise a better error than the forward ref ones Pydantic would have lazy_import_playwright_browsers() return cls(sync_browser=sync_browser, async_browser=async_browser)
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/playwright/toolkit.html
4935b06df2fc-0
Source code for langchain.agents.agent_toolkits.openapi.toolkit """Requests toolkit.""" from __future__ import annotations from typing import Any, List from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.agents.agent_toolkits.json.base import create_json_agent from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit from langchain.agents.agent_toolkits.openapi.prompt import DESCRIPTION from langchain.agents.tools import Tool from langchain.base_language import BaseLanguageModel from langchain.requests import TextRequestsWrapper from langchain.tools import BaseTool from langchain.tools.json.tool import JsonSpec from langchain.tools.requests.tool import ( RequestsDeleteTool, RequestsGetTool, RequestsPatchTool, RequestsPostTool, RequestsPutTool, ) class RequestsToolkit(BaseToolkit): """Toolkit for making requests.""" requests_wrapper: TextRequestsWrapper def get_tools(self) -> List[BaseTool]: """Return a list of tools.""" return [ RequestsGetTool(requests_wrapper=self.requests_wrapper), RequestsPostTool(requests_wrapper=self.requests_wrapper), RequestsPatchTool(requests_wrapper=self.requests_wrapper), RequestsPutTool(requests_wrapper=self.requests_wrapper), RequestsDeleteTool(requests_wrapper=self.requests_wrapper), ] [docs]class OpenAPIToolkit(BaseToolkit): """Toolkit for interacting with a OpenAPI api.""" json_agent: AgentExecutor requests_wrapper: TextRequestsWrapper [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" json_agent_tool = Tool( name="json_explorer", func=self.json_agent.run, description=DESCRIPTION, )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/toolkit.html
4935b06df2fc-1
func=self.json_agent.run, description=DESCRIPTION, ) request_toolkit = RequestsToolkit(requests_wrapper=self.requests_wrapper) return [*request_toolkit.get_tools(), json_agent_tool] [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, json_spec: JsonSpec, requests_wrapper: TextRequestsWrapper, **kwargs: Any, ) -> OpenAPIToolkit: """Create json agent from llm, then initialize.""" json_agent = create_json_agent(llm, JsonToolkit(spec=json_spec), **kwargs) return cls(json_agent=json_agent, requests_wrapper=requests_wrapper)
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/toolkit.html
a0c7db5c4fbc-0
Source code for langchain.agents.agent_toolkits.openapi.base """OpenAPI spec agent.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.openapi.prompt import ( OPENAPI_PREFIX, OPENAPI_SUFFIX, ) from langchain.agents.agent_toolkits.openapi.toolkit import OpenAPIToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain [docs]def create_openapi_agent( llm: BaseLanguageModel, toolkit: OpenAPIToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = OPENAPI_PREFIX, suffix: str = OPENAPI_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", verbose: bool = False, return_intermediate_steps: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a json agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain(
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/base.html
a0c7db5c4fbc-1
input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, return_intermediate_steps=return_intermediate_steps, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/base.html
46b195e8550c-0
Source code for langchain.agents.agent_toolkits.python.base """Python agent.""" from typing import Any, Dict, Optional from langchain.agents.agent import AgentExecutor, BaseSingleActionAgent from langchain.agents.agent_toolkits.python.prompt import PREFIX from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent from langchain.agents.types import AgentType from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.schema import SystemMessage from langchain.tools.python.tool import PythonREPLTool [docs]def create_python_agent( llm: BaseLanguageModel, tool: PythonREPLTool, agent_type: AgentType = AgentType.ZERO_SHOT_REACT_DESCRIPTION, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = False, prefix: str = PREFIX, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a python agent from an LLM and tool.""" tools = [tool] agent: BaseSingleActionAgent if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION: prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) elif agent_type == AgentType.OPENAI_FUNCTIONS:
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/python/base.html
46b195e8550c-1
elif agent_type == AgentType.OPENAI_FUNCTIONS: system_message = SystemMessage(content=prefix) _prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message) agent = OpenAIFunctionsAgent( llm=llm, prompt=_prompt, tools=tools, callback_manager=callback_manager, **kwargs, ) else: raise ValueError(f"Agent type {agent_type} not supported at the moment.") return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/python/base.html
b0822cf912d4-0
Source code for langchain.agents.agent_toolkits.spark.base """Agent for working with pandas objects.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.spark.prompt import PREFIX, SUFFIX from langchain.agents.mrkl.base import ZeroShotAgent from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.base import BaseLLM from langchain.tools.python.tool import PythonAstREPLTool def _validate_spark_df(df: Any) -> bool: try: from pyspark.sql import DataFrame as SparkLocalDataFrame return isinstance(df, SparkLocalDataFrame) except ImportError: return False def _validate_spark_connect_df(df: Any) -> bool: try: from pyspark.sql.connect.dataframe import DataFrame as SparkConnectDataFrame return isinstance(df, SparkConnectDataFrame) except ImportError: return False [docs]def create_spark_dataframe_agent( llm: BaseLLM, df: Any, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = PREFIX, suffix: str = SUFFIX, input_variables: Optional[List[str]] = None, verbose: bool = False, return_intermediate_steps: bool = False, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a spark agent from an LLM and dataframe."""
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/spark/base.html
b0822cf912d4-1
) -> AgentExecutor: """Construct a spark agent from an LLM and dataframe.""" if not _validate_spark_df(df) and not _validate_spark_connect_df(df): raise ValueError("Spark is not installed. run `pip install pyspark`.") if input_variables is None: input_variables = ["df", "input", "agent_scratchpad"] tools = [PythonAstREPLTool(locals={"df": df})] prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=input_variables ) partial_prompt = prompt.partial(df=str(df.first())) llm_chain = LLMChain( llm=llm, prompt=partial_prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent( llm_chain=llm_chain, allowed_tools=tool_names, callback_manager=callback_manager, **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, return_intermediate_steps=return_intermediate_steps, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), )
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/spark/base.html
6f6dbf4a4161-0
Source code for langchain.agents.agent_toolkits.nla.toolkit """Toolkit for interacting with API's using natural language.""" from __future__ import annotations from typing import Any, List, Optional, Sequence from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.agents.agent_toolkits.nla.tool import NLATool from langchain.base_language import BaseLanguageModel from langchain.requests import Requests from langchain.tools.base import BaseTool from langchain.tools.openapi.utils.openapi_utils import OpenAPISpec from langchain.tools.plugin import AIPlugin [docs]class NLAToolkit(BaseToolkit): """Natural Language API Toolkit Definition.""" nla_tools: Sequence[NLATool] = Field(...) """List of API Endpoint Tools.""" [docs] def get_tools(self) -> List[BaseTool]: """Get the tools for all the API operations.""" return list(self.nla_tools) @staticmethod def _get_http_operation_tools( llm: BaseLanguageModel, spec: OpenAPISpec, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> List[NLATool]: """Get the tools for all the API operations.""" if not spec.paths: return [] http_operation_tools = [] for path in spec.paths: for method in spec.get_methods_for_path(path): endpoint_tool = NLATool.from_llm_and_method( llm=llm, path=path, method=method, spec=spec, requests=requests, verbose=verbose, **kwargs, ) http_operation_tools.append(endpoint_tool) return http_operation_tools
https://api.python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/nla/toolkit.html