datasetId
large_stringlengths 6
116
| author
large_stringlengths 2
42
| last_modified
large_stringdate 2021-05-20 00:57:22
2025-06-03 10:14:14
| downloads
int64 0
3.97M
| likes
int64 0
7.74k
| tags
large listlengths 1
2.03k
| task_categories
large listlengths 0
48
| createdAt
large_stringdate 2022-03-02 23:29:22
2025-06-03 10:13:51
| trending_score
float64 1
36
⌀ | card
large_stringlengths 31
1.01M
|
---|---|---|---|---|---|---|---|---|---|
self-label-zanette-lab/dapo_mixed_dataset_with_fraction_labeled_0.01 | self-label-zanette-lab | 2025-05-02T15:44:14Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-02T15:44:13Z | null | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: answer
dtype: string
- name: source
dtype: string
- name: id
dtype: int64
splits:
- name: train
num_bytes: 5694890
num_examples: 17398
download_size: 2676607
dataset_size: 5694890
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Mxode/Chinese-QA-Agriculture_Forestry_Animal_Husbandry_Fishery | Mxode | 2025-05-02T10:50:18Z | 106 | 0 | [
"task_categories:text-generation",
"task_categories:question-answering",
"language:zh",
"license:cc-by-sa-4.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"text-generation",
"question-answering"
] | 2025-04-22T16:15:08Z | null | ---
license: cc-by-sa-4.0
task_categories:
- text-generation
- question-answering
language:
- zh
size_categories:
- 100K<n<1M
---
<h1 align="center">
中文农林牧渔问答数据集
</h1>
<p align="center">
<a href="https://github.com/Mxoder/Maxs-Awesome-Datasets" target="_blank">💻 Github Repo</a> <br>
</p>
## 简介
中文农林牧渔问答数据集,涵盖农业、林业、畜牧业、渔业,数据量 900K+,均为简单的问答形式。
## 数据格式
每条数据的格式如下:
```json
{
"id": << 12位nanoid >>,
"prompt": << 问题 >>,
"response": << 答案 >>
}
``` |
Mxode/NanoExperiment-Data-Mix-10M | Mxode | 2025-05-02T10:46:03Z | 18 | 0 | [
"task_categories:translation",
"language:en",
"language:zh",
"license:cc-by-sa-4.0",
"size_categories:10M<n<100M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"chemistry",
"biology",
"finance",
"legal",
"music",
"art",
"climate",
"medical",
"synthetic"
] | [
"translation"
] | 2024-09-13T16:58:49Z | null | ---
license: cc-by-sa-4.0
task_categories:
- translation
language:
- en
- zh
tags:
- chemistry
- biology
- finance
- legal
- music
- art
- climate
- medical
- synthetic
pretty_name: BiST
size_categories:
- 1M<n<10M
configs:
- config_name: raw
data_files:
- split: train
path: raw/*
- config_name: tokenized
data_files:
- split: train
path: tokenized/*
---
# **Mxode/NanoExperiment-Data-Mix-10M**
Dataset of [NanoExperiment](https://github.com/Mxoder/NanoExperiment). Tokenized by [Bilingual-Tokenizer-2K](https://huggingface.co/Mxode/Bilingual-Tokenizer/tree/main/BilingualTokenizer-2K). |
Mxode/Magpie-Pro-10K-GPT4o-mini | Mxode | 2025-05-02T10:43:14Z | 36 | 0 | [
"task_categories:text-generation",
"task_categories:question-answering",
"language:en",
"license:cc-by-sa-4.0",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"magpie",
"gpt-4o"
] | [
"text-generation",
"question-answering"
] | 2024-09-06T07:20:09Z | null | ---
license: cc-by-sa-4.0
task_categories:
- text-generation
- question-answering
language:
- en
tags:
- magpie
- gpt-4o
size_categories:
- 10K<n<100K
--- |
NONHUMAN-RESEARCH/tic-tac-toe-pos-eight | NONHUMAN-RESEARCH | 2025-05-02T04:27:57Z | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:timeseries",
"modality:video",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot",
"so100",
"test"
] | [
"robotics"
] | 2025-05-02T04:26:56Z | null | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- so100
- test
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": "so100",
"total_episodes": 25,
"total_frames": 11175,
"total_tasks": 1,
"total_videos": 50,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:25"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.images.laptop": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.phone": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
hai2131/OCR-dataset | hai2131 | 2025-05-02T01:09:46Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-02T01:09:42Z | null | ---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype: string
splits:
- name: train
num_bytes: 13465855.2
num_examples: 8000
- name: val
num_bytes: 3366481.8
num_examples: 2000
download_size: 13265496
dataset_size: 16832337.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: val
path: data/val-*
---
|
mlfoundations-dev/d1_code_gpt_0.3k | mlfoundations-dev | 2025-05-01T17:05:44Z | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-01T17:05:31Z | null | ---
dataset_info:
features:
- name: id
dtype: string
- name: instruction_seed
dtype: string
- name: output
dtype: string
- name: source
dtype: string
- name: license
dtype: string
- name: dataset
dtype: string
- name: split
dtype: string
- name: difficulty
dtype: int64
- name: solution
dtype: string
- name: index
dtype: string
- name: _source
dtype: string
- name: difficulty_reasoning
dtype: string
- name: __original_row_idx
dtype: int64
- name: ms_id
dtype: int64
- name: reasoning
sequence: string
- name: deepseek_solution
sequence: string
- name: final_reasoning_trace
sequence: string
- name: correct
sequence: bool
- name: classifier_reasoning
dtype: string
- name: _majority_responses
sequence: string
- name: verified_final_reasoning_trace
dtype: string
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 664551210.79
num_examples: 316
download_size: 276573145
dataset_size: 664551210.79
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kwangchaeko/koch_test_3 | kwangchaeko | 2025-05-01T03:55:32Z | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:timeseries",
"modality:video",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot",
"koch",
"tutorial"
] | [
"robotics"
] | 2025-05-01T03:54:42Z | null | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- koch
- tutorial
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": "koch",
"total_episodes": 10,
"total_frames": 17543,
"total_tasks": 1,
"total_videos": 10,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:10"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
4
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
4
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex"
]
},
"observation.images.laptop": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
DamianBoborzi/Objaverse_processed | DamianBoborzi | 2025-04-16T14:14:51Z | 19,856 | 0 | [
"license:odc-by",
"arxiv:2503.14002",
"region:us"
] | [] | 2025-02-28T15:01:58Z | null | ---
license: odc-by
pretty_name: Objaverse Processsing Data
---
Contains information of Objaverse XL objects from the alignment and TRELLIS500K (over 1 Millionen processed objects) dataset. We downloaded and rendered 4 views of each object. We generat siglip embeddings and Yolov10 objects detections for fast filtering. We added TRELLIS and CAP3D Captions where available. If there were no captions we generated new captions with the large version of Florence 2. This is the base dataset we used to generate [MeshFleet](https://huggingface.co/datasets/DamianBoborzi/meshfleetXL) which is described in [MeshFleet: Filtered and Annotated 3D Vehicle Dataset for Domain Specific Generative Modeling](arxiv.org/abs/2503.14002).
- The rendered views are in the data directory split into webdataset chunks. The file 'objaverse_xl_render_files.csv' shows which objects is in which chunk using the sha256 of the objects. You can simply extract all files from each chunk using something like `tar -xf chunk_0.tar -C extract_test` or you can use the WebDataset Library to access the content of each chunk.
- objaverse_oxl_processing_df.csv includes the following information:
sha256: The sha256 of the object from Objaverse XL
yolo_detections: Detected objects
cap3D Data: cap3D_caption: The Captions generation by Cap3D (https://cap3d-um.github.io/), cap3D_avg_clip_similarity: is the average similariy of the text siglip embeddings to the siglip embedding of filtered car objects
TRELLIS500K Data: Captions (trellis_caption) and aesthetic scores (trellis_aesthetic_score) from TRELLIS500K (https://huggingface.co/datasets/JeffreyXiang/TRELLIS-500K). We also used the referenced aesthetic score prediciton model (aesthetic_score). The results are however very different.
Florence_caption: Captions of objects which did not have a caption either from CAP3D or TRELLIS500 using Florence 2 (https://huggingface.co/microsoft/Florence-2-large)
Car Quality Assessment: We processed all objects by generating SigLIP and DINOv2 Embeddings and estiomating if the object is a high quality vehicle. Results contain the estimated label(predicted_car_quality_label), the score of the model before taking the max of the output (output_score), and uncertainty estimates using monte carlo dropout: car_quality_uncertainty_entropy,car_quality_uncertainty_mutual_info,car_quality_uncertainty_variation_ratio
- objaverse_combined_captions.csv combines the captions from three different sources (CAP3D, TRELLIS500K and newly generated ones with Florence 2) and stores them together with the corresponding sha256 of the object.
- objaverse_vehicle_detections_textcategories.csv
Contains the detection if a car is described based on the captions from CAP3D, TRELLIS500K and the Florence-2 generated ones. The result is given with text_category_car as 'car' and 'not a car'. If the text describes a car the text_category_vehicle gives an estimate what type of car.
- objaverse_car_classification_results_df.csv
Contains the Car Quality Assessment alone without the additional information from objaverse_oxl_processing_df.csv.
|
AnonRes/OpenMind | AnonRes | 2025-04-03T11:51:07Z | 2,050 | 16 | [
"task_categories:image-feature-extraction",
"license:cc-by-4.0",
"modality:3d",
"modality:image",
"region:us",
"3d",
"image"
] | [
"image-feature-extraction"
] | 2025-03-11T14:19:10Z | 2 | ---
license: cc-by-4.0
task_categories:
- "image-feature-extraction"
pretty_name: "The OpenMind Dataset"
tags:
- 3d
- image
---
# The OpenMind Dataset: A large-scale Head-And-Neck 3D MRI Dataset for self-supervised learning

## Description
The OpenMind Dataset is a large-scale 3D MRI dataset of the head and neck region featuring 114k MRI Images. Its purpose is to provide access of large amounts of 3D medical imaging data to accelerate the development of self-supervised learning methods for 3D medical imaging. This data was pooled from exactly 800 datasets from the OpenNeuro platform and provides 23 different MRI modalities/techniques from over 30 different scanners, representing a highly variable pre-training dataset.
## Additional Features
Aside from the 3D MRI Images, we provide stratified metadata for each of the 114k images when made available by the original dataset in a unified format.
Moreover, we provide a) `deface_masks`, which delineate anonymized/defaced regions, allowing to take them into account when developing reconstruction based pre-training methods and b) `anatomy_masks`, which delineate areas which holds anatomy, e.g. for cases where images were brain extracted. Similarly to the `deface_masks` this allows to either ignore regions outside of this during reconstruction and allows sampling regions with anatomy, avoiding empty regions for contrastive learning approaches.
## Dataset structure
The dataset is structured akin to the original OpenNeuro datasets, following a modified BIDS format, exemplified below.
We recommend using the `openneuro_metadata.csv` which holds the relative paths from the root directory to the images and their associated masks as well as metadata.
```
-- Readme.md // this readme
-- openneuro_metadata.csv // metadata file containing the relative paths to the images and their metadata
-- openmind_dataset
|-- openneuro_metadata.csv # Contains the relative paths to the images and their metadata
|-- OpenMind
|-- ds_000001
|-- sub-01
|-- anat
|-- sub-01_ses-01_T1w.nii.gz # 3D Image in Nifti format
|-- sub-01_T1w__Data # Associated Folder holding Masks to Image
|-- deface_mask.nii.gz # deface mask
\-- fb_mask.nii.gz # anatomy mask
|-- sub-01_inplaneT2.nii.gz
\-- sub-01_inplaneT2__Data # Associated Folder holding Masks to Image
|-- deface_mask.nii.gz
\-- fb_mask.nii.gz
...
...
...
|-- ds_xxxxxx
...
```
Available meta-data tags (Name [Percent of images with this metadata]) within the metadata.csv file are:
- MR Modalitiy/Technique [100%]
- Scanner Manufacturer [100%]
- Scanner Model [100%]
- Scanner Field Strength [100%]
- Age [70%]
- Sex [77.4%]
- Weight [1.5%]
- BMI [15.7%]
- Race [11.7%]
- Handedness (right/left/ambidexterous) [35.4%]
- Health Status (healthy/ill) [26.4%]
|
open-r1/OpenR1-Math-220k | open-r1 | 2025-02-18T11:45:27Z | 32,044 | 564 | [
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-02-10T13:41:48Z | null | ---
license: apache-2.0
language:
- en
configs:
- config_name: all
data_files:
- split: train
path: all/train-*
- config_name: default
data_files:
- split: train
path: data/train-*
- config_name: extended
data_files:
- split: train
path: extended/train-*
dataset_info:
- config_name: all
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: problem_type
dtype: string
- name: question_type
dtype: string
- name: source
dtype: string
- name: uuid
dtype: string
- name: is_reasoning_complete
sequence: bool
- name: generations
sequence: string
- name: correctness_math_verify
sequence: bool
- name: correctness_llama
sequence: bool
- name: finish_reasons
sequence: string
- name: correctness_count
dtype: int64
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 9734110026.0
num_examples: 225129
download_size: 4221672067
dataset_size: 9734110026.0
- config_name: default
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: problem_type
dtype: string
- name: question_type
dtype: string
- name: source
dtype: string
- name: uuid
dtype: string
- name: is_reasoning_complete
sequence: bool
- name: generations
sequence: string
- name: correctness_math_verify
sequence: bool
- name: correctness_llama
sequence: bool
- name: finish_reasons
sequence: string
- name: correctness_count
dtype: int64
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 4964543659
num_examples: 93733
download_size: 2149897914
dataset_size: 4964543659
- config_name: extended
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: problem_type
dtype: string
- name: question_type
dtype: string
- name: source
dtype: string
- name: uuid
dtype: string
- name: is_reasoning_complete
sequence: bool
- name: generations
sequence: string
- name: correctness_math_verify
sequence: bool
- name: correctness_llama
sequence: bool
- name: finish_reasons
sequence: string
- name: correctness_count
dtype: int64
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 4769566550
num_examples: 131396
download_size: 2063936457
dataset_size: 4769566550
---
# OpenR1-Math-220k
## Dataset description
OpenR1-Math-220k is a large-scale dataset for mathematical reasoning. It consists of 220k math problems with two to four reasoning traces generated by [DeepSeek R1](https://huggingface.co/deepseek-ai/DeepSeek-R1) for problems from NuminaMath 1.5.
The traces were verified using [Math Verify](https://github.com/huggingface/Math-Verify) for most samples and [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) as a judge for 12% of the samples, and each problem contains at least one reasoning trace with a correct answer.
The dataset consists of two splits:
- `default` with 94k problems and that achieves the best performance after SFT.
- `extended` with 131k samples where we add data sources like `cn_k12`. This provides more reasoning traces, but we found that the performance after SFT to be lower than the `default` subset, likely because the questions from `cn_k12` are less difficult than other sources.
You can load the dataset as follows:
```python
from datasets import load_dataset
ds = load_dataset("open-r1/OpenR1-Math-220k", "default")
```
## Dataset curation
To build OpenR1-Math-220k, we prompt [DeepSeek R1](https://huggingface.co/deepseek-ai/DeepSeek-R1) model to generate solutions for 400k problems from [NuminaMath 1.5](https://huggingface.co/datasets/AI-MO/NuminaMath-1.5) using [SGLang](https://github.com/sgl-project/sglang), the generation code is available [here](https://github.com/huggingface/open-r1/tree/main/slurm). We follow the model card’s recommended generation parameters and prepend the following instruction to the user prompt:
`"Please reason step by step, and put your final answer within \boxed{}."`
We set a 16k token limit per generation, as our analysis showed that only 75% of problems could be solved in under 8k tokens, and most of the remaining problems required the full 16k tokens. We were able to generate 25 solutions per hour per H100, enabling us to generate 300k problem solutions per day on 512 H100s.
We generate two solutions per problem—and in some cases, four—to provide flexibility in filtering and training. This approach allows for rejection sampling, similar to DeepSeek R1’s methodology, and also makes the dataset suitable for preference optimisation methods like DPO.
## License
The dataset is licensed under Apache 2.0
|
NebulaByte/E-Commerce_Customer_Support_Conversations | NebulaByte | 2024-04-01T05:57:55Z | 272 | 36 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2023-07-24T05:56:30Z | 2 | ---
dataset_info:
features:
- name: issue_area
dtype: string
- name: issue_category
dtype: string
- name: issue_sub_category
dtype: string
- name: issue_category_sub_category
dtype: string
- name: customer_sentiment
dtype: string
- name: product_category
dtype: string
- name: product_sub_category
dtype: string
- name: issue_complexity
dtype: string
- name: agent_experience_level
dtype: string
- name: agent_experience_level_desc
dtype: string
- name: conversation
dtype: string
splits:
- name: train
num_bytes: 2537279
num_examples: 1000
download_size: 827367
dataset_size: 2537279
---
# Dataset Card for "E-Commerce_Customer_Support_Conversations"
The dataset is synthetically generated with OpenAI ChatGPT model (gpt-3.5-turbo).
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
coastalcph/lex_glue | coastalcph | 2024-01-04T14:25:27Z | 27,251 | 57 | [
"task_categories:question-answering",
"task_categories:text-classification",
"task_ids:multi-class-classification",
"task_ids:multi-label-classification",
"task_ids:multiple-choice-qa",
"task_ids:topic-classification",
"annotations_creators:found",
"language_creators:found",
"multilinguality:monolingual",
"source_datasets:extended",
"language:en",
"license:cc-by-4.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2110.00976",
"arxiv:2109.00904",
"arxiv:1805.01217",
"arxiv:2104.08671",
"region:us"
] | [
"question-answering",
"text-classification"
] | 2022-03-02T23:29:22Z | null | ---
annotations_creators:
- found
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended
task_categories:
- question-answering
- text-classification
task_ids:
- multi-class-classification
- multi-label-classification
- multiple-choice-qa
- topic-classification
pretty_name: LexGLUE
config_names:
- case_hold
- ecthr_a
- ecthr_b
- eurlex
- ledgar
- scotus
- unfair_tos
dataset_info:
- config_name: case_hold
features:
- name: context
dtype: string
- name: endings
sequence: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
'2': '2'
'3': '3'
'4': '4'
splits:
- name: train
num_bytes: 74781706
num_examples: 45000
- name: test
num_bytes: 5989952
num_examples: 3600
- name: validation
num_bytes: 6474603
num_examples: 3900
download_size: 47303537
dataset_size: 87246261
- config_name: ecthr_a
features:
- name: text
sequence: string
- name: labels
sequence:
class_label:
names:
'0': '2'
'1': '3'
'2': '5'
'3': '6'
'4': '8'
'5': '9'
'6': '10'
'7': '11'
'8': '14'
'9': P1-1
splits:
- name: train
num_bytes: 89637449
num_examples: 9000
- name: test
num_bytes: 11884168
num_examples: 1000
- name: validation
num_bytes: 10985168
num_examples: 1000
download_size: 53352586
dataset_size: 112506785
- config_name: ecthr_b
features:
- name: text
sequence: string
- name: labels
sequence:
class_label:
names:
'0': '2'
'1': '3'
'2': '5'
'3': '6'
'4': '8'
'5': '9'
'6': '10'
'7': '11'
'8': '14'
'9': P1-1
splits:
- name: train
num_bytes: 89657649
num_examples: 9000
- name: test
num_bytes: 11886928
num_examples: 1000
- name: validation
num_bytes: 10987816
num_examples: 1000
download_size: 53352494
dataset_size: 112532393
- config_name: eurlex
features:
- name: text
dtype: string
- name: labels
sequence:
class_label:
names:
'0': '100163'
'1': '100168'
'2': '100169'
'3': '100170'
'4': '100171'
'5': '100172'
'6': '100173'
'7': '100174'
'8': '100175'
'9': '100176'
'10': '100177'
'11': '100179'
'12': '100180'
'13': '100183'
'14': '100184'
'15': '100185'
'16': '100186'
'17': '100187'
'18': '100189'
'19': '100190'
'20': '100191'
'21': '100192'
'22': '100193'
'23': '100194'
'24': '100195'
'25': '100196'
'26': '100197'
'27': '100198'
'28': '100199'
'29': '100200'
'30': '100201'
'31': '100202'
'32': '100204'
'33': '100205'
'34': '100206'
'35': '100207'
'36': '100212'
'37': '100214'
'38': '100215'
'39': '100220'
'40': '100221'
'41': '100222'
'42': '100223'
'43': '100224'
'44': '100226'
'45': '100227'
'46': '100229'
'47': '100230'
'48': '100231'
'49': '100232'
'50': '100233'
'51': '100234'
'52': '100235'
'53': '100237'
'54': '100238'
'55': '100239'
'56': '100240'
'57': '100241'
'58': '100242'
'59': '100243'
'60': '100244'
'61': '100245'
'62': '100246'
'63': '100247'
'64': '100248'
'65': '100249'
'66': '100250'
'67': '100252'
'68': '100253'
'69': '100254'
'70': '100255'
'71': '100256'
'72': '100257'
'73': '100258'
'74': '100259'
'75': '100260'
'76': '100261'
'77': '100262'
'78': '100263'
'79': '100264'
'80': '100265'
'81': '100266'
'82': '100268'
'83': '100269'
'84': '100270'
'85': '100271'
'86': '100272'
'87': '100273'
'88': '100274'
'89': '100275'
'90': '100276'
'91': '100277'
'92': '100278'
'93': '100279'
'94': '100280'
'95': '100281'
'96': '100282'
'97': '100283'
'98': '100284'
'99': '100285'
splits:
- name: train
num_bytes: 390770241
num_examples: 55000
- name: test
num_bytes: 59739094
num_examples: 5000
- name: validation
num_bytes: 41544476
num_examples: 5000
download_size: 208028049
dataset_size: 492053811
- config_name: ledgar
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': Adjustments
'1': Agreements
'2': Amendments
'3': Anti-Corruption Laws
'4': Applicable Laws
'5': Approvals
'6': Arbitration
'7': Assignments
'8': Assigns
'9': Authority
'10': Authorizations
'11': Base Salary
'12': Benefits
'13': Binding Effects
'14': Books
'15': Brokers
'16': Capitalization
'17': Change In Control
'18': Closings
'19': Compliance With Laws
'20': Confidentiality
'21': Consent To Jurisdiction
'22': Consents
'23': Construction
'24': Cooperation
'25': Costs
'26': Counterparts
'27': Death
'28': Defined Terms
'29': Definitions
'30': Disability
'31': Disclosures
'32': Duties
'33': Effective Dates
'34': Effectiveness
'35': Employment
'36': Enforceability
'37': Enforcements
'38': Entire Agreements
'39': Erisa
'40': Existence
'41': Expenses
'42': Fees
'43': Financial Statements
'44': Forfeitures
'45': Further Assurances
'46': General
'47': Governing Laws
'48': Headings
'49': Indemnifications
'50': Indemnity
'51': Insurances
'52': Integration
'53': Intellectual Property
'54': Interests
'55': Interpretations
'56': Jurisdictions
'57': Liens
'58': Litigations
'59': Miscellaneous
'60': Modifications
'61': No Conflicts
'62': No Defaults
'63': No Waivers
'64': Non-Disparagement
'65': Notices
'66': Organizations
'67': Participations
'68': Payments
'69': Positions
'70': Powers
'71': Publicity
'72': Qualifications
'73': Records
'74': Releases
'75': Remedies
'76': Representations
'77': Sales
'78': Sanctions
'79': Severability
'80': Solvency
'81': Specific Performance
'82': Submission To Jurisdiction
'83': Subsidiaries
'84': Successors
'85': Survival
'86': Tax Withholdings
'87': Taxes
'88': Terminations
'89': Terms
'90': Titles
'91': Transactions With Affiliates
'92': Use Of Proceeds
'93': Vacations
'94': Venues
'95': Vesting
'96': Waiver Of Jury Trials
'97': Waivers
'98': Warranties
'99': Withholdings
splits:
- name: train
num_bytes: 43358291
num_examples: 60000
- name: test
num_bytes: 6845581
num_examples: 10000
- name: validation
num_bytes: 7143588
num_examples: 10000
download_size: 27650585
dataset_size: 57347460
- config_name: scotus
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': '1'
'1': '2'
'2': '3'
'3': '4'
'4': '5'
'5': '6'
'6': '7'
'7': '8'
'8': '9'
'9': '10'
'10': '11'
'11': '12'
'12': '13'
splits:
- name: train
num_bytes: 178959316
num_examples: 5000
- name: test
num_bytes: 76213279
num_examples: 1400
- name: validation
num_bytes: 75600243
num_examples: 1400
download_size: 173411399
dataset_size: 330772838
- config_name: unfair_tos
features:
- name: text
dtype: string
- name: labels
sequence:
class_label:
names:
'0': Limitation of liability
'1': Unilateral termination
'2': Unilateral change
'3': Content removal
'4': Contract by using
'5': Choice of law
'6': Jurisdiction
'7': Arbitration
splits:
- name: train
num_bytes: 1041782
num_examples: 5532
- name: test
num_bytes: 303099
num_examples: 1607
- name: validation
num_bytes: 452111
num_examples: 2275
download_size: 865604
dataset_size: 1796992
configs:
- config_name: case_hold
data_files:
- split: train
path: case_hold/train-*
- split: test
path: case_hold/test-*
- split: validation
path: case_hold/validation-*
- config_name: ecthr_a
data_files:
- split: train
path: ecthr_a/train-*
- split: test
path: ecthr_a/test-*
- split: validation
path: ecthr_a/validation-*
- config_name: ecthr_b
data_files:
- split: train
path: ecthr_b/train-*
- split: test
path: ecthr_b/test-*
- split: validation
path: ecthr_b/validation-*
- config_name: eurlex
data_files:
- split: train
path: eurlex/train-*
- split: test
path: eurlex/test-*
- split: validation
path: eurlex/validation-*
- config_name: ledgar
data_files:
- split: train
path: ledgar/train-*
- split: test
path: ledgar/test-*
- split: validation
path: ledgar/validation-*
- config_name: scotus
data_files:
- split: train
path: scotus/train-*
- split: test
path: scotus/test-*
- split: validation
path: scotus/validation-*
- config_name: unfair_tos
data_files:
- split: train
path: unfair_tos/train-*
- split: test
path: unfair_tos/test-*
- split: validation
path: unfair_tos/validation-*
---
# Dataset Card for "LexGLUE"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/coastalcph/lex-glue
- **Repository:** https://github.com/coastalcph/lex-glue
- **Paper:** https://arxiv.org/abs/2110.00976
- **Leaderboard:** https://github.com/coastalcph/lex-glue
- **Point of Contact:** [Ilias Chalkidis](mailto:ilias.chalkidis@di.ku.dk)
### Dataset Summary
Inspired by the recent widespread use of the GLUE multi-task benchmark NLP dataset (Wang et al., 2018), the subsequent more difficult SuperGLUE (Wang et al., 2019), other previous multi-task NLP benchmarks (Conneau and Kiela, 2018; McCann et al., 2018), and similar initiatives in other domains (Peng et al., 2019), we introduce the *Legal General Language Understanding Evaluation (LexGLUE) benchmark*, a benchmark dataset to evaluate the performance of NLP methods in legal tasks. LexGLUE is based on seven existing legal NLP datasets, selected using criteria largely from SuperGLUE.
As in GLUE and SuperGLUE (Wang et al., 2019b,a), one of our goals is to push towards generic (or ‘foundation’) models that can cope with multiple NLP tasks, in our case legal NLP tasks possibly with limited task-specific fine-tuning. Another goal is to provide a convenient and informative entry point for NLP researchers and practitioners wishing to explore or develop methods for legalNLP. Having these goals in mind, the datasets we include in LexGLUE and the tasks they address have been simplified in several ways to make it easier for newcomers and generic models to address all tasks.
LexGLUE benchmark is accompanied by experimental infrastructure that relies on Hugging Face Transformers library and resides at: https://github.com/coastalcph/lex-glue.
### Supported Tasks and Leaderboards
The supported tasks are the following:
<table>
<tr><td>Dataset</td><td>Source</td><td>Sub-domain</td><td>Task Type</td><td>Classes</td><tr>
<tr><td>ECtHR (Task A)</td><td> <a href="https://aclanthology.org/P19-1424/">Chalkidis et al. (2019)</a> </td><td>ECHR</td><td>Multi-label classification</td><td>10+1</td></tr>
<tr><td>ECtHR (Task B)</td><td> <a href="https://aclanthology.org/2021.naacl-main.22/">Chalkidis et al. (2021a)</a> </td><td>ECHR</td><td>Multi-label classification </td><td>10+1</td></tr>
<tr><td>SCOTUS</td><td> <a href="http://scdb.wustl.edu">Spaeth et al. (2020)</a></td><td>US Law</td><td>Multi-class classification</td><td>14</td></tr>
<tr><td>EUR-LEX</td><td> <a href="https://arxiv.org/abs/2109.00904">Chalkidis et al. (2021b)</a></td><td>EU Law</td><td>Multi-label classification</td><td>100</td></tr>
<tr><td>LEDGAR</td><td> <a href="https://aclanthology.org/2020.lrec-1.155/">Tuggener et al. (2020)</a></td><td>Contracts</td><td>Multi-class classification</td><td>100</td></tr>
<tr><td>UNFAIR-ToS</td><td><a href="https://arxiv.org/abs/1805.01217"> Lippi et al. (2019)</a></td><td>Contracts</td><td>Multi-label classification</td><td>8+1</td></tr>
<tr><td>CaseHOLD</td><td><a href="https://arxiv.org/abs/2104.08671">Zheng et al. (2021)</a></td><td>US Law</td><td>Multiple choice QA</td><td>n/a</td></tr>
</table>
#### ecthr_a
The European Court of Human Rights (ECtHR) hears allegations that a state has breached human rights provisions of the European Convention of Human Rights (ECHR). For each case, the dataset provides a list of factual paragraphs (facts) from the case description. Each case is mapped to articles of the ECHR that were violated (if any).
#### ecthr_b
The European Court of Human Rights (ECtHR) hears allegations that a state has breached human rights provisions of the European Convention of Human Rights (ECHR). For each case, the dataset provides a list of factual paragraphs (facts) from the case description. Each case is mapped to articles of ECHR that were allegedly violated (considered by the court).
#### scotus
The US Supreme Court (SCOTUS) is the highest federal court in the United States of America and generally hears only the most controversial or otherwise complex cases which have not been sufficiently well solved by lower courts. This is a single-label multi-class classification task, where given a document (court opinion), the task is to predict the relevant issue areas. The 14 issue areas cluster 278 issues whose focus is on the subject matter of the controversy (dispute).
#### eurlex
European Union (EU) legislation is published in EUR-Lex portal. All EU laws are annotated by EU's Publications Office with multiple concepts from the EuroVoc thesaurus, a multilingual thesaurus maintained by the Publications Office. The current version of EuroVoc contains more than 7k concepts referring to various activities of the EU and its Member States (e.g., economics, health-care, trade). Given a document, the task is to predict its EuroVoc labels (concepts).
#### ledgar
LEDGAR dataset aims contract provision (paragraph) classification. The contract provisions come from contracts obtained from the US Securities and Exchange Commission (SEC) filings, which are publicly available from EDGAR. Each label represents the single main topic (theme) of the corresponding contract provision.
#### unfair_tos
The UNFAIR-ToS dataset contains 50 Terms of Service (ToS) from on-line platforms (e.g., YouTube, Ebay, Facebook, etc.). The dataset has been annotated on the sentence-level with 8 types of unfair contractual terms (sentences), meaning terms that potentially violate user rights according to the European consumer law.
#### case_hold
The CaseHOLD (Case Holdings on Legal Decisions) dataset includes multiple choice questions about holdings of US court cases from the Harvard Law Library case law corpus. Holdings are short summaries of legal rulings accompany referenced decisions relevant for the present case. The input consists of an excerpt (or prompt) from a court decision, containing a reference to a particular case, while the holding statement is masked out. The model must identify the correct (masked) holding statement from a selection of five choices.
The current leaderboard includes several Transformer-based (Vaswaniet al., 2017) pre-trained language models, which achieve state-of-the-art performance in most NLP tasks (Bommasani et al., 2021) and NLU benchmarks (Wang et al., 2019a). Results reported by [Chalkidis et al. (2021)](https://arxiv.org/abs/2110.00976):
*Task-wise Test Results*
<table>
<tr><td><b>Dataset</b></td><td><b>ECtHR A</b></td><td><b>ECtHR B</b></td><td><b>SCOTUS</b></td><td><b>EUR-LEX</b></td><td><b>LEDGAR</b></td><td><b>UNFAIR-ToS</b></td><td><b>CaseHOLD</b></td></tr>
<tr><td><b>Model</b></td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1</td><td>μ-F1 / m-F1 </td></tr>
<tr><td>TFIDF+SVM</td><td> 64.7 / 51.7 </td><td>74.6 / 65.1 </td><td> <b>78.2</b> / <b>69.5</b> </td><td>71.3 / 51.4 </td><td>87.2 / 82.4 </td><td>95.4 / 78.8</td><td>n/a </td></tr>
<tr><td colspan="8" style='text-align:center'><b>Medium-sized Models (L=12, H=768, A=12)</b></td></tr>
<td>BERT</td> <td> 71.2 / 63.6 </td> <td> 79.7 / 73.4 </td> <td> 68.3 / 58.3 </td> <td> 71.4 / 57.2 </td> <td> 87.6 / 81.8 </td> <td> 95.6 / 81.3 </td> <td> 70.8 </td> </tr>
<td>RoBERTa</td> <td> 69.2 / 59.0 </td> <td> 77.3 / 68.9 </td> <td> 71.6 / 62.0 </td> <td> 71.9 / <b>57.9</b> </td> <td> 87.9 / 82.3 </td> <td> 95.2 / 79.2 </td> <td> 71.4 </td> </tr>
<td>DeBERTa</td> <td> 70.0 / 60.8 </td> <td> 78.8 / 71.0 </td> <td> 71.1 / 62.7 </td> <td> <b>72.1</b> / 57.4 </td> <td> 88.2 / 83.1 </td> <td> 95.5 / 80.3 </td> <td> 72.6 </td> </tr>
<td>Longformer</td> <td> 69.9 / 64.7 </td> <td> 79.4 / 71.7 </td> <td> 72.9 / 64.0 </td> <td> 71.6 / 57.7 </td> <td> 88.2 / 83.0 </td> <td> 95.5 / 80.9 </td> <td> 71.9 </td> </tr>
<td>BigBird</td> <td> 70.0 / 62.9 </td> <td> 78.8 / 70.9 </td> <td> 72.8 / 62.0 </td> <td> 71.5 / 56.8 </td> <td> 87.8 / 82.6 </td> <td> 95.7 / 81.3 </td> <td> 70.8 </td> </tr>
<td>Legal-BERT</td> <td> 70.0 / 64.0 </td> <td> <b>80.4</b> / <b>74.7</b> </td> <td> 76.4 / 66.5 </td> <td> <b>72.1</b> / 57.4 </td> <td> 88.2 / 83.0 </td> <td> <b>96.0</b> / <b>83.0</b> </td> <td> 75.3 </td> </tr>
<td>CaseLaw-BERT</td> <td> 69.8 / 62.9 </td> <td> 78.8 / 70.3 </td> <td> 76.6 / 65.9 </td> <td> 70.7 / 56.6 </td> <td> 88.3 / 83.0 </td> <td> <b>96.0</b> / 82.3 </td> <td> <b>75.4</b> </td> </tr>
<tr><td colspan="8" style='text-align:center'><b>Large-sized Models (L=24, H=1024, A=18)</b></td></tr>
<tr><td>RoBERTa</td> <td> <b>73.8</b> / <b>67.6</b> </td> <td> 79.8 / 71.6 </td> <td> 75.5 / 66.3 </td> <td> 67.9 / 50.3 </td> <td> <b>88.6</b> / <b>83.6</b> </td> <td> 95.8 / 81.6 </td> <td> 74.4 </td> </tr>
</table>
*Averaged (Mean over Tasks) Test Results*
<table>
<tr><td><b>Averaging</b></td><td><b>Arithmetic</b></td><td><b>Harmonic</b></td><td><b>Geometric</b></td></tr>
<tr><td><b>Model</b></td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td></tr>
<tr><td colspan="4" style='text-align:center'><b>Medium-sized Models (L=12, H=768, A=12)</b></td></tr>
<tr><td>BERT</td><td> 77.8 / 69.5 </td><td> 76.7 / 68.2 </td><td> 77.2 / 68.8 </td></tr>
<tr><td>RoBERTa</td><td> 77.8 / 68.7 </td><td> 76.8 / 67.5 </td><td> 77.3 / 68.1 </td></tr>
<tr><td>DeBERTa</td><td> 78.3 / 69.7 </td><td> 77.4 / 68.5 </td><td> 77.8 / 69.1 </td></tr>
<tr><td>Longformer</td><td> 78.5 / 70.5 </td><td> 77.5 / 69.5 </td><td> 78.0 / 70.0 </td></tr>
<tr><td>BigBird</td><td> 78.2 / 69.6 </td><td> 77.2 / 68.5 </td><td> 77.7 / 69.0 </td></tr>
<tr><td>Legal-BERT</td><td> <b>79.8</b> / <b>72.0</b> </td><td> <b>78.9</b> / <b>70.8</b> </td><td> <b>79.3</b> / <b>71.4</b> </td></tr>
<tr><td>CaseLaw-BERT</td><td> 79.4 / 70.9 </td><td> 78.5 / 69.7 </td><td> 78.9 / 70.3 </td></tr>
<tr><td colspan="4" style='text-align:center'><b>Large-sized Models (L=24, H=1024, A=18)</b></td></tr>
<tr><td>RoBERTa</td><td> 79.4 / 70.8 </td><td> 78.4 / 69.1 </td><td> 78.9 / 70.0 </td></tr>
</table>
### Languages
We only consider English datasets, to make experimentation easier for researchers across the globe.
## Dataset Structure
### Data Instances
#### ecthr_a
An example of 'train' looks as follows.
```json
{
"text": ["8. The applicant was arrested in the early morning of 21 October 1990 ...", ...],
"labels": [6]
}
```
#### ecthr_b
An example of 'train' looks as follows.
```json
{
"text": ["8. The applicant was arrested in the early morning of 21 October 1990 ...", ...],
"label": [5, 6]
}
```
#### scotus
An example of 'train' looks as follows.
```json
{
"text": "Per Curiam\nSUPREME COURT OF THE UNITED STATES\nRANDY WHITE, WARDEN v. ROGER L. WHEELER\n Decided December 14, 2015\nPER CURIAM.\nA death sentence imposed by a Kentucky trial court and\naffirmed by the ...",
"label": 8
}
```
#### eurlex
An example of 'train' looks as follows.
```json
{
"text": "COMMISSION REGULATION (EC) No 1629/96 of 13 August 1996 on an invitation to tender for the refund on export of wholly milled round grain rice to certain third countries ...",
"labels": [4, 20, 21, 35, 68]
}
```
#### ledgar
An example of 'train' looks as follows.
```json
{
"text": "All Taxes shall be the financial responsibility of the party obligated to pay such Taxes as determined by applicable law and neither party is or shall be liable at any time for any of the other party ...",
"label": 32
}
```
#### unfair_tos
An example of 'train' looks as follows.
```json
{
"text": "tinder may terminate your account at any time without notice if it believes that you have violated this agreement.",
"label": 2
}
```
#### casehold
An example of 'test' looks as follows.
```json
{
"context": "In Granato v. City and County of Denver, No. CIV 11-0304 MSK/BNB, 2011 WL 3820730 (D.Colo. Aug. 20, 2011), the Honorable Marcia S. Krieger, now-Chief United States District Judge for the District of Colorado, ruled similarly: At a minimum, a party asserting a Mo-nell claim must plead sufficient facts to identify ... to act pursuant to City or State policy, custom, decision, ordinance, re d 503, 506-07 (3d Cir.l985)(<HOLDING>).",
"endings": ["holding that courts are to accept allegations in the complaint as being true including monell policies and writing that a federal court reviewing the sufficiency of a complaint has a limited task",
"holding that for purposes of a class certification motion the court must accept as true all factual allegations in the complaint and may draw reasonable inferences therefrom",
"recognizing that the allegations of the complaint must be accepted as true on a threshold motion to dismiss",
"holding that a court need not accept as true conclusory allegations which are contradicted by documents referred to in the complaint",
"holding that where the defendant was in default the district court correctly accepted the fact allegations of the complaint as true"
],
"label": 0
}
```
### Data Fields
#### ecthr_a
- `text`: a list of `string` features (list of factual paragraphs (facts) from the case description).
- `labels`: a list of classification labels (a list of violated ECHR articles, if any) .
<details>
<summary>List of ECHR articles</summary>
"Article 2", "Article 3", "Article 5", "Article 6", "Article 8", "Article 9", "Article 10", "Article 11", "Article 14", "Article 1 of Protocol 1"
</details>
#### ecthr_b
- `text`: a list of `string` features (list of factual paragraphs (facts) from the case description)
- `labels`: a list of classification labels (a list of articles considered).
<details>
<summary>List of ECHR articles</summary>
"Article 2", "Article 3", "Article 5", "Article 6", "Article 8", "Article 9", "Article 10", "Article 11", "Article 14", "Article 1 of Protocol 1"
</details>
#### scotus
- `text`: a `string` feature (the court opinion).
- `label`: a classification label (the relevant issue area).
<details>
<summary>List of issue areas</summary>
(1, Criminal Procedure), (2, Civil Rights), (3, First Amendment), (4, Due Process), (5, Privacy), (6, Attorneys), (7, Unions), (8, Economic Activity), (9, Judicial Power), (10, Federalism), (11, Interstate Relations), (12, Federal Taxation), (13, Miscellaneous), (14, Private Action)
</details>
#### eurlex
- `text`: a `string` feature (an EU law).
- `labels`: a list of classification labels (a list of relevant EUROVOC concepts).
<details>
<summary>List of EUROVOC concepts</summary>
The list is very long including 100 EUROVOC concepts. You can find the EUROVOC concepts descriptors <a href="https://raw.githubusercontent.com/nlpaueb/multi-eurlex/master/data/eurovoc_descriptors.json">here</a>.
</details>
#### ledgar
- `text`: a `string` feature (a contract provision/paragraph).
- `label`: a classification label (the type of contract provision).
<details>
<summary>List of contract provision types</summary>
"Adjustments", "Agreements", "Amendments", "Anti-Corruption Laws", "Applicable Laws", "Approvals", "Arbitration", "Assignments", "Assigns", "Authority", "Authorizations", "Base Salary", "Benefits", "Binding Effects", "Books", "Brokers", "Capitalization", "Change In Control", "Closings", "Compliance With Laws", "Confidentiality", "Consent To Jurisdiction", "Consents", "Construction", "Cooperation", "Costs", "Counterparts", "Death", "Defined Terms", "Definitions", "Disability", "Disclosures", "Duties", "Effective Dates", "Effectiveness", "Employment", "Enforceability", "Enforcements", "Entire Agreements", "Erisa", "Existence", "Expenses", "Fees", "Financial Statements", "Forfeitures", "Further Assurances", "General", "Governing Laws", "Headings", "Indemnifications", "Indemnity", "Insurances", "Integration", "Intellectual Property", "Interests", "Interpretations", "Jurisdictions", "Liens", "Litigations", "Miscellaneous", "Modifications", "No Conflicts", "No Defaults", "No Waivers", "Non-Disparagement", "Notices", "Organizations", "Participations", "Payments", "Positions", "Powers", "Publicity", "Qualifications", "Records", "Releases", "Remedies", "Representations", "Sales", "Sanctions", "Severability", "Solvency", "Specific Performance", "Submission To Jurisdiction", "Subsidiaries", "Successors", "Survival", "Tax Withholdings", "Taxes", "Terminations", "Terms", "Titles", "Transactions With Affiliates", "Use Of Proceeds", "Vacations", "Venues", "Vesting", "Waiver Of Jury Trials", "Waivers", "Warranties", "Withholdings",
</details>
#### unfair_tos
- `text`: a `string` feature (a ToS sentence)
- `labels`: a list of classification labels (a list of unfair types, if any).
<details>
<summary>List of unfair types</summary>
"Limitation of liability", "Unilateral termination", "Unilateral change", "Content removal", "Contract by using", "Choice of law", "Jurisdiction", "Arbitration"
</details>
#### casehold
- `context`: a `string` feature (a context sentence incl. a masked holding statement).
- `holdings`: a list of `string` features (a list of candidate holding statements).
- `label`: a classification label (the id of the original/correct holding).
### Data Splits
<table>
<tr><td>Dataset </td><td>Training</td><td>Development</td><td>Test</td><td>Total</td></tr>
<tr><td>ECtHR (Task A)</td><td>9,000</td><td>1,000</td><td>1,000</td><td>11,000</td></tr>
<tr><td>ECtHR (Task B)</td><td>9,000</td><td>1,000</td><td>1,000</td><td>11,000</td></tr>
<tr><td>SCOTUS</td><td>5,000</td><td>1,400</td><td>1,400</td><td>7,800</td></tr>
<tr><td>EUR-LEX</td><td>55,000</td><td>5,000</td><td>5,000</td><td>65,000</td></tr>
<tr><td>LEDGAR</td><td>60,000</td><td>10,000</td><td>10,000</td><td>80,000</td></tr>
<tr><td>UNFAIR-ToS</td><td>5,532</td><td>2,275</td><td>1,607</td><td>9,414</td></tr>
<tr><td>CaseHOLD</td><td>45,000</td><td>3,900</td><td>3,900</td><td>52,800</td></tr>
</table>
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
<table>
<tr><td>Dataset</td><td>Source</td><td>Sub-domain</td><td>Task Type</td><tr>
<tr><td>ECtHR (Task A)</td><td> <a href="https://aclanthology.org/P19-1424/">Chalkidis et al. (2019)</a> </td><td>ECHR</td><td>Multi-label classification</td></tr>
<tr><td>ECtHR (Task B)</td><td> <a href="https://aclanthology.org/2021.naacl-main.22/">Chalkidis et al. (2021a)</a> </td><td>ECHR</td><td>Multi-label classification </td></tr>
<tr><td>SCOTUS</td><td> <a href="http://scdb.wustl.edu">Spaeth et al. (2020)</a></td><td>US Law</td><td>Multi-class classification</td></tr>
<tr><td>EUR-LEX</td><td> <a href="https://arxiv.org/abs/2109.00904">Chalkidis et al. (2021b)</a></td><td>EU Law</td><td>Multi-label classification</td></tr>
<tr><td>LEDGAR</td><td> <a href="https://aclanthology.org/2020.lrec-1.155/">Tuggener et al. (2020)</a></td><td>Contracts</td><td>Multi-class classification</td></tr>
<tr><td>UNFAIR-ToS</td><td><a href="https://arxiv.org/abs/1805.01217"> Lippi et al. (2019)</a></td><td>Contracts</td><td>Multi-label classification</td></tr>
<tr><td>CaseHOLD</td><td><a href="https://arxiv.org/abs/2104.08671">Zheng et al. (2021)</a></td><td>US Law</td><td>Multiple choice QA</td></tr>
</table>
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Dataset Curators
*Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopoulos, Daniel Martin Katz, and Nikolaos Aletras.*
*LexGLUE: A Benchmark Dataset for Legal Language Understanding in English.*
*2022. In the Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin, Ireland.*
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
[*Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopoulos, Daniel Martin Katz, and Nikolaos Aletras.*
*LexGLUE: A Benchmark Dataset for Legal Language Understanding in English.*
*2022. In the Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin, Ireland.*](https://arxiv.org/abs/2110.00976)
```
@inproceedings{chalkidis-etal-2021-lexglue,
title={LexGLUE: A Benchmark Dataset for Legal Language Understanding in English},
author={Chalkidis, Ilias and Jana, Abhik and Hartung, Dirk and
Bommarito, Michael and Androutsopoulos, Ion and Katz, Daniel Martin and
Aletras, Nikolaos},
year={2022},
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics},
address={Dubln, Ireland},
}
```
### Contributions
Thanks to [@iliaschalkidis](https://github.com/iliaschalkidis) for adding this dataset. |
lighteval/siqa | lighteval | 2023-10-07T08:03:32Z | 1,598 | 7 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2023-10-07T08:03:29Z | 1 | ---
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
dataset_info:
features:
- name: context
dtype: string
- name: question
dtype: string
- name: answerA
dtype: string
- name: answerB
dtype: string
- name: answerC
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 6327209
num_examples: 33410
- name: validation
num_bytes: 372815
num_examples: 1954
download_size: 3678635
dataset_size: 6700024
---
# Dataset Card for "siqa"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
GBaker/MedQA-USMLE-4-options | GBaker | 2023-01-24T19:18:09Z | 2,121 | 57 | [
"language:en",
"license:cc-by-4.0",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2023-01-24T19:08:56Z | 2 | ---
license: cc-by-4.0
language:
- en
---
Original dataset introduced by Jin et al. in [What Disease does this Patient Have? A Large-scale Open Domain Question Answering Dataset from Medical Exams](https://paperswithcode.com/paper/what-disease-does-this-patient-have-a-large)
<h4>Citation information:</h4>
@article{jin2020disease,
title={What Disease does this Patient Have? A Large-scale Open Domain Question Answering Dataset from Medical Exams},
author={Jin, Di and Pan, Eileen and Oufattole, Nassim and Weng, Wei-Hung and Fang, Hanyi and Szolovits, Peter},
journal={arXiv preprint arXiv:2009.13081},
year={2020}
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.