datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-05-20 00:57:22
2025-06-03 10:14:14
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
2.03k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-03 10:13:51
trending_score
float64
1
36
card
large_stringlengths
31
1.01M
mteb/NanoClimateFeverRetrieval
mteb
2025-05-06T20:20:43Z
0
0
[ "task_categories:text-retrieval", "task_ids:fact-checking", "task_ids:fact-checking-retrieval", "annotations_creators:expert-annotated", "multilinguality:monolingual", "source_datasets:mteb/climate-fever", "language:eng", "license:cc-by-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2012.00614", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-retrieval" ]
2025-05-06T20:20:24Z
null
--- annotations_creators: - expert-annotated language: - eng license: cc-by-4.0 multilinguality: monolingual source_datasets: - mteb/climate-fever task_categories: - text-retrieval task_ids: - fact-checking - fact-checking-retrieval dataset_info: - config_name: corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: train num_bytes: 5630737 num_examples: 3408 download_size: 3317653 dataset_size: 5630737 - config_name: qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: train num_bytes: 5545 num_examples: 148 download_size: 3975 dataset_size: 5545 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: train num_bytes: 7044 num_examples: 50 download_size: 7058 dataset_size: 7044 configs: - config_name: corpus data_files: - split: train path: corpus/train-* - config_name: qrels data_files: - split: train path: qrels/train-* - config_name: queries data_files: - split: train path: queries/train-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">NanoClimateFeverRetrieval</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> NanoClimateFever is a small version of the BEIR dataset adopting the FEVER methodology that consists of 1,535 real-world claims regarding climate-change. | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Non-fiction, Academic, News | | Reference | https://arxiv.org/abs/2012.00614 | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["NanoClimateFeverRetrieval"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{diggelmann2021climatefever, archiveprefix = {arXiv}, author = {Thomas Diggelmann and Jordan Boyd-Graber and Jannis Bulian and Massimiliano Ciaramita and Markus Leippold}, eprint = {2012.00614}, primaryclass = {cs.CL}, title = {CLIMATE-FEVER: A Dataset for Verification of Real-World Climate Claims}, year = {2021}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("NanoClimateFeverRetrieval") desc_stats = task.metadata.descriptive_stats ``` ```json { "train": { "num_samples": 3458, "number_of_characters": 5525784, "num_documents": 3408, "min_document_length": 33, "average_document_length": 1619.531690140845, "max_document_length": 6619, "unique_documents": 3408, "num_queries": 50, "min_query_length": 38, "average_query_length": 128.4, "max_query_length": 265, "unique_queries": 50, "none_queries": 0, "num_relevant_docs": 148, "min_relevant_docs_per_query": 1, "average_relevant_docs_per_query": 2.96, "max_relevant_docs_per_query": 5, "unique_relevant_docs": 115, "num_instructions": null, "min_instruction_length": null, "average_instruction_length": null, "max_instruction_length": null, "unique_instructions": null, "num_top_ranked": null, "min_top_ranked_per_query": null, "average_top_ranked_per_query": null, "max_top_ranked_per_query": null } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
Rogudev/whiskey_dataset
Rogudev
2025-05-06T20:19:53Z
9
0
[ "license:mit", "region:us" ]
[]
2025-04-30T16:10:18Z
null
--- license: mit --- # Dataset for whiskey_classificator ## How is this dataset generated? This dataset comes from a function which creates a sintetic dataset emulating data that could be used in a real whiskey classification. ```Python import pandas as pd import numpy as np import random def generate_whiskey(num_rows=500): """ Generate a balanced and shuffled DataFrame with whiskey data across all price categories. Parameters: - num_rows: int — Number of rows to generate (default 500). Returns: - pd.DataFrame — Shuffled whiskey dataset. """ # constants brands = ["Macallan", "Glenfiddich", "Yamazaki", "Lagavulin", "Jack Daniel's", "Buffalo Trace", "Balvenie", "Ardbeg", "Jameson", "Highland Park"] types = ["Scotch", "Bourbon", "Rye", "Japanese", "Irish"] regions = { "Scotch": ["Islay", "Speyside", "Highlands", "Lowlands"], "Bourbon": ["Kentucky", "Tennessee"], "Rye": ["Canada", "USA"], "Japanese": ["Honshu", "Hokkaido"], "Irish": ["Dublin", "Cork"] } cask_types = ["Sherry", "Bourbon", "Port", "Wine", "Rum"] bottling_types = ["Single Malt", "Blended", "Single Cask", "Cask Strength"] category_definitions = { "Basic": (25, 49), "Standard": (50, 88), "Premium": (89, 128), "Exclusive": (129, 278), "Luxury": (279, 500) } categories = list(category_definitions.keys()) num_classes = len(categories) per_class = num_rows // num_classes remainder = num_rows % num_classes data = [] for i, category in enumerate(categories): count = per_class + (1 if i < remainder else 0) price_min, price_max = category_definitions[category] for _ in range(count): brand = random.choice(brands) w_type = random.choice(types) region = random.choice(regions[w_type]) age = np.random.choice([0, *range(3, 31)], p=[0.1] + [0.9 / 28] * 28) abv = round(random.uniform(40, 60), 1) cask = random.choice(cask_types) bottling = random.choice(bottling_types) limited = np.random.rand() < 0.15 release_year = random.randint(1990, 2025) awards = np.random.poisson(1.5) avg_rating = round(np.random.normal(85 + (age / 30) * 10 + awards, 3), 1) price = round(random.uniform(price_min, price_max), 2) # rating category (ordinal) if avg_rating < 85: rating_category = "Low" elif avg_rating < 90: rating_category = "Medium" elif avg_rating < 95: rating_category = "High" else: rating_category = "Excelent" whiskey_name = f"{brand} {age if age else 'NAS'} {cask} Cask" data.append([ whiskey_name, brand, w_type, age, abv, region, cask, bottling, price, limited, release_year, avg_rating, awards, rating_category, category ]) columns = [ "whiskey_name", "brand", "type", "age", "abv", "region", "cask_type", "bottling_type", "retail_price_usd", "is_limited_edition", "release_year", "average_rating", "award_wins", "rating_category", "category" ] # Crear DataFrame y mezclarlo df = pd.DataFrame(data, columns=columns) df = df.sample(frac=1, random_state=42).reset_index(drop=True) return df ```
iabd04/estados_materia_dataset
iabd04
2025-05-06T20:15:22Z
30
0
[ "task_categories:text-classification", "language:es", "license:cc-by-nc-4.0", "size_categories:n<1K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
2025-05-04T15:30:00Z
null
--- license: cc-by-nc-4.0 task_categories: - text-classification language: - es pretty_name: Estados Materia size_categories: - n<1K --- # Dataset de Estados de la Materia Este dataset contiene **400 muestras sintéticas** que simulan condiciones físico-químicas de distintos materiales, con el objetivo de predecir su **estado físico**: **Sólido**, **Líquido**, **Gas** o **Plasma**. Fue diseñado específicamente para entrenar modelos de clasificación supervisada. ## Objetivo del dataset El propósito de este dataset es proporcionar datos estructurados que permitan a un modelo de Machine Learning **predecir correctamente el estado físico de un material** a partir de variables continuas que lo describen. ## Estructura del dataset El dataset consta de un único split llamado train, con 400 registros representados en formato tabular. Cada fila incluye cuatro variables de entrada de tipo numérico (float32) y una variable objetivo categórica (string). Puedes ver la estructura completa en el archivo [`dataset_infos.json`](./dataset_infos.json). ## Descripción de las columnas | Columna | Tipo | Descripción | |-----------------|---------|-----------------------------------------------------------------------------------| | `Temperatura` | float | Temperatura (ºC). Es un punto clave para la transición de estados. | | `Presión` | float | Presión ambiental (Pa). Afecta el punto de cambio entre estados. | | `Densidad` | float | Densidad del material (g/cm^3). Se espera que varíe entre los distintos estados. | | `Nivel_Energía` | float | Nivel de energía. Puede tomar uno de los siguientes valores: Alto, Medio o Bajo. | | `Estado` | String | **Variable dependiente (Objetivo)**. Puede tomar uno de los siguientes valores: `Sólido`, `Líquido`, `Gas` o `Plasma` | | ## Variables independientes Las variables independientes son aquellas utilizadas como entrada por los algoritmos de Machine Learning para inferir el valor de la [variable objetivo (`Estado`)](#variable-dependiente). En este dataset, las siguientes columnas actúan como variables independientes: - **`Temperatura`**: Influye directamente en los cambios de fase. A mayor temperatura, aumenta la probabilidad de encontrar el material en estado gaseoso o plasmático. - **`Presión`**: Juega un papel clave en las transiciones entre estados, especialmente entre líquido y gas. Altas presiones pueden comprimir el material, afectando su densidad y estado. - **`Densidad`**: Propiedad intrínseca del material que varía significativamente entre sólidos (alta densidad), líquidos, gases (baja densidad) y plasmas. - **`Nivel_Energía`**: Variable categórica (`Bajo(0)`, `Medio(1)`, `Alto(2)`) que sintetiza otros factores internos o externos relacionados con la energía contenida en el sistema. Está fuertemente correlacionada con los estados de mayor excitación (Gas y Plasma). Estas variables se han seleccionado por su relevancia físico-química y por su capacidad para representar de forma simplificada un entorno donde los estados de la materia cambian bajo ciertas condiciones. Son esenciales para que el modelo aprenda patrones válidos y extrapolables. ## Variable dependiente La columna **`Estado`** es la variable objetivo (target) que el modelo intenta predecir. Es una variable **categórica multinomial** con 4 clases: - `Sólido` - `Líquido` - `Gas` - `Plasma` ## Estadísticas del dataset - Total de muestras: **400** - Número de características predictoras: **4** - Número de clases: **4** - Distribución de clases: **equilibrada** (100 muestras por clase aproximadamente) > **Nota:** Aunque se trata de un dataset sintético, fue generado siguiendo patrones lógicos para que los modelos puedan generalizar comportamientos reales. ## Licencia Este dataset se distribuye bajo la licencia **Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)**. Puedes usarlo libremente para fines académicos y no comerciales.
Asap7772/dapo-hint-generator-qwen3-14b-filtered-lr1e6-0-5000
Asap7772
2025-05-06T20:06:39Z
0
0
[ "region:us" ]
[]
2025-05-06T20:06:32Z
null
--- dataset_info: features: - name: problem dtype: string - name: answer dtype: string - name: data_source dtype: string - name: source_prompt list: - name: content dtype: string - name: role dtype: string - name: ability dtype: string - name: reward_model struct: - name: ground_truth dtype: string - name: style dtype: string - name: extra_info struct: - name: index dtype: string - name: completion dtype: string - name: note1 dtype: string - name: note2 dtype: string - name: note3 dtype: string - name: note4 dtype: string - name: note5 dtype: string - name: all_hints dtype: string splits: - name: train num_bytes: 62723579 num_examples: 5000 download_size: 28874717 dataset_size: 62723579 configs: - config_name: default data_files: - split: train path: data/train-* ---
aarontrinh02/math_pipeline_part10
aarontrinh02
2025-05-06T20:00:16Z
0
0
[ "region:us" ]
[]
2025-05-06T20:00:12Z
null
--- dataset_info: features: - name: query_positive dtype: string - name: instruction_positive dtype: string - name: document_positive dtype: string - name: query_negative dtype: string - name: instruction_negative dtype: string - name: hard_negative_document_1 dtype: string - name: hard_negative_document_2 dtype: string splits: - name: train num_bytes: 1246205 num_examples: 500 download_size: 603937 dataset_size: 1246205 configs: - config_name: default data_files: - split: train path: data/train-* ---
jiang784/ptm-naming-elements
jiang784
2025-05-06T19:59:48Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-05-06T19:45:47Z
null
--- license: apache-2.0 pretty_name: PTM-NAMING --- # Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> This dataset contains extracted naming components and their predicted categories from Pre-trained Model (PTM) names sourced from Hugging Face. The extraction and categorization are performed using an OpenAI GPT model based on a predefined schema and prompt. ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> This dataset provides a structured analysis of Hugging Face model names. Source code of this is available at: ` It is generated by a Python script (`extractor.py`) that processes a list of model names (filtered by download counts from an input CSV like `data/HF_pkgs.csv`). The script sends batches of these names to an OpenAI GPT model (`o4-mini-2025-04-16` by default) which, guided by a system prompt and a JSON schema, identifies constituent components within each model name (e.g., "bert", "base", "uncased") and assigns a category to each component (e.g., "Architecture", "Size", "Style"). The output is a JSON file (`data/hf_pkg_elements.json`) and a CSV file (`data/hf_pkg_elements.csv`) detailing these components and categories for each analyzed model name. This allows for systematic study of PTM naming conventions. - **Curated by:** The PTM-Naming Elements Extractor script and the underlying OpenAI model. The initial list of model names is sourced from Hugging Face. - **License:** Apache-2.0 ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [https://github.com/wenxin-jiang/PTM-Naming-Elements-Extractor](https://github.com/wenxin-jiang/PTM-Naming-Elements-Extractor) ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> This dataset can be used to: - Analyze common naming patterns and conventions in Pre-trained Models (PTMs) on Hugging Face. - Understand the distribution of different types of components (e.g., architecture, size, dataset, language) in PTM names. - Train models to predict or suggest PTM names based on their characteristics. - Facilitate searching and categorization of PTMs based on parsed name components. - Serve as a basis for further research into the evolution of PTM naming practices. ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> - The dataset should not be considered an exhaustive or perfectly accurate representation of all PTM naming components. The accuracy is dependent on the OpenAI GPT model's performance and the defined schema. - It should not be used to make definitive judgments about model capabilities solely based on its name components. - The dataset reflects naming conventions at the time of data collection and may not capture future trends. - Using the dataset to generate misleading or nonsensical PTM names is out of scope. ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> The dataset is provided in two formats: 1. **JSON (`hf_pkg_elements.json`):** A dictionary where keys are the original Hugging Face model names (`context_id`). Each value is a list of component mappings. Each component mapping is an object with: * `component`: (string) The extracted part of the model name (e.g., "bert", "base", "uncased"). * `category`: (string) The predicted category for the component (e.g., "Architecture", "Size", "Style", "Dataset", "Language", "Organization", "Checkpoint_Info", "Quantization", "Framework_Host", "Task_Specific", "Version_Release", "Modifier", "Other_Identifier"). The categories are defined in `schema.py`. Example JSON structure for one entry: ```json { "bert-base-uncased": [ {"component": "bert", "category": "Architecture"}, {"component": "base", "category": "Size"}, {"component": "uncased", "category": "Style"} ] } ``` 2. **CSV (`hf_pkg_elements.csv`):** A tabular format with the following columns: * `model_name`: (string) The original Hugging Face model name (e.g., "org/bert-base-uncased"). * `namespace`: (string) The part of the model name before the first '/', if present (e.g., "org"). Otherwise, empty. * `model_part`: (string) The part of the model name after the first '/', or the full name if no '/' is present (e.g., "bert-base-uncased"). * `component`: (string) The extracted part of the `model_part` (e.g., "bert"). * `category`: (string) The predicted category for the `component` (e.g., "Architecture"). Each row in the CSV represents a single extracted component from a model name. ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> The primary motivation for creating this dataset is to systematically understand and catalog the naming conventions used for Pre-trained Models (PTMs) available on platforms like Hugging Face. As the number of PTMs grows, their names become increasingly complex, encoding information about their architecture, size, training data, specific tasks, etc. This dataset aims to deconstruct these names into meaningful components and categorize them, facilitating better discoverability, analysis, and potentially automated processing of PTMs. ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> The source data consists of model names from the Hugging Face Hub. Specifically, the script uses an input CSV file (default: `HF_pkgs.csv`) which is expected to contain at least `context_id` (the model name, e.g., "username/model-name") and `downloads` (the number of downloads for the model). #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> . **Loading Packages:** Model names (`context_id`) are loaded from the specified CSV file (`CSV_FILE_PATH`). 2. **Filtering:** Models are filtered based on a minimum download count (`MIN_DOWNLOADS`, default 1000) to focus on more popular/established models. 3. **Sampling (Optional):** If `NUM_MODELS` is specified, a random sample of the filtered model names is selected for processing. Otherwise, all filtered models are processed. 4. **Batching:** The selected model names are divided into batches (`BATCH_SIZE`, default 100). 5. **API Interaction:** For each batch: * Model names are simplified: if a name contains `/`, only the part after the `/` is sent to the API (e.g., "model-name" from "username/model-name"). Full names are used if they don't contain `/`. * A request is made to the OpenAI API (model: `MODEL_NAME`, default "o4-mini-2025-04-16"). * The API call includes a system prompt (`BACKGROUND_PROMPT` from `system_prompt.py`) that provides context and instructions for the task. * The API is instructed to return a JSON response conforming to a specific schema (`JSON_SCHEMA` from `schema.py`), which defines the expected structure for "PackageAnalysis" including "name" and "componentMapping" (with "component" and "category"). 6. **Parsing Response:** The JSON response from OpenAI is parsed. The simplified names in the response are mapped back to their original full model names. 7. **Retry Mechanism:** If a batch fails, the script retries up to `MAX_RERUNS` (default 3) times, reducing the batch size by half with each retry and using exponential backoff. 8. **Output:** * Results are incrementally saved to a JSON file (`OUTPUT_JSON_PATH`, default `data/hf_pkg_elements.json`). * After each batch (or skipped batch), the accumulated JSON data is converted and saved to a CSV file (`OUTPUT_CSV_PATH`, default `data/hf_pkg_elements.csv`). 9. **Libraries Used:** `os`, `csv`, `json`, `time`, `traceback`, `argparse`, `random`, `pandas`, `openai`, `loguru`, `tqdm`. #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> The primary source data (the model names and their download counts) are produced by the Hugging Face community, which includes individual researchers, academic institutions, and commercial entities who create and upload models to the Hugging Face Hub. The script itself does not generate these initial model names but processes them. ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> The dataset itself is a result of an annotation process where "annotation" refers to the extraction of components from model names and the assignment of categories to these components. #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> The annotation process is automated using the OpenAI GPT model (`o4-mini-2025-04-16` or as specified by `MODEL_NAME`). - **Annotator:** OpenAI GPT model. - **Annotation Task:** Given a (potentially simplified) model name, identify its constituent parts and assign a predefined category to each part. - **Guidelines:** The primary guidelines are provided through: * The `BACKGROUND_PROMPT` (defined in `system_prompt.py`), which instructs the model on how to approach the task of breaking down PTM names. * The `JSON_SCHEMA` (defined in `schema.py`), which dictates the output format, including the list of valid categories for components. The `strict: True` parameter in the API call enforces this schema. - **Tooling:** The `extractor.py` script orchestrates the process, including batching, API calls, and response parsing. - **Validation:** The script checks for the presence of `packageAnalysis`, `name`, and `componentMapping` in the API response. Failed batches are retried. However, the semantic correctness of the component breakdown and category assignment relies on the GPT model's interpretation of the prompt and schema. #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> The "annotator" in this context is the OpenAI GPT model specified by `MODEL_NAME` (e.g., `o4-mini-2025-04-16`). The process is automated, and the script's authors defined the prompts and schema that guide the model. #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> The source data (Hugging Face model names) are generally public identifiers for software artifacts and do not inherently contain personal or sensitive information beyond usernames or organization names that might be part of the model ID (e.g., "username/model-name"). The script does not process or add any other form of personal or sensitive information. ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> - **Model Dependence and Accuracy:** The quality of component extraction and categorization heavily depends on the capabilities and potential biases of the chosen OpenAI GPT model (`MODEL_NAME`). The model might misinterpret names, hallucinate components, or assign incorrect categories. Its performance can vary with the complexity and novelty of PTM names. - **Prompt and Schema Influence:** The `BACKGROUND_PROMPT` and `JSON_SCHEMA` significantly guide the model. Any ambiguities, limitations, or biases in their design will be reflected in the output. The predefined categories in the schema might not cover all nuances or future naming trends. - **Input Data Bias:** The dataset is derived from Hugging Face model names. If the input CSV (`data/HF_pkgs.csv`) is not representative of all PTMs, or if the `MIN_DOWNLOADS` filter is too restrictive or too lenient, the resulting dataset might exhibit biases (e.g., towards more popular models or models from certain organizations). - **Simplification of Names:** The script sends only the part of the model name after a '/' to the API (if a '/' exists). While this simplifies processing, it might remove context (the namespace/organization) that could be relevant for interpreting the model name itself for the LLM. - **Cost Considerations:** Generating or updating the dataset incurs costs associated with OpenAI API usage, proportional to the number of tokens processed. - **Snapshot in Time:** The dataset reflects the PTM naming landscape at the time of its generation. Naming conventions evolve, so the dataset may become outdated. - **Limited Scope of "Component":** The definition of a "component" is guided by the prompt and schema, which might not align with all possible interpretations of PTM name segmentation. - **No Ground Truth Validation:** The script does not automatically validate the correctness of the LLM's output against a human-annotated ground truth. The `parse_api_response` function checks for structural validity but not semantic accuracy. ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> - Users should be aware of the above limitations and critically assess the dataset's suitability for their specific use case. - When using the dataset for analytical purposes, consider the potential impact of model biases and the chosen `MIN_DOWNLOADS` threshold. - For critical applications, consider manual validation of a subset of the data or using multiple LLMs/prompts for cross-verification. - Acknowledge the version of the OpenAI model used if citing or using the data in research, as model updates can change behavior. - Be mindful that the categories are predefined and may not be exhaustive. ## Dataset Card Contact Wenxin Jiang, Ph.D., ECE@Purdue, Email: jiang784@purdue.edu
proton98/test-distill2
proton98
2025-05-06T19:46:37Z
0
0
[ "region:us" ]
[]
2025-05-06T19:46:34Z
null
--- dataset_info: features: - name: sql_prompt dtype: string - name: sql_context dtype: string - name: sql dtype: string - name: sql_explanation dtype: string - name: generation sequence: string - name: distilabel_metadata list: - name: raw_input_text_generation_0 list: - name: content dtype: string - name: role dtype: string - name: raw_output_text_generation_0 dtype: string - name: statistics_text_generation_0 struct: - name: input_tokens dtype: int64 - name: output_tokens dtype: int64 - name: model_name dtype: string splits: - name: train num_bytes: 107319 num_examples: 20 download_size: 67593 dataset_size: 107319 configs: - config_name: default data_files: - split: train path: data/train-* ---
archivartaunik/MinskGemini_new_version
archivartaunik
2025-05-06T18:28:06Z
0
0
[ "region:us" ]
[]
2025-05-06T18:28:01Z
null
--- dataset_info: features: - name: chunk_filename dtype: string - name: start_ms dtype: int64 - name: end_ms dtype: int64 - name: start_time dtype: string - name: end_time dtype: string - name: text dtype: string - name: audio dtype: audio splits: - name: train num_bytes: 1947431.0 num_examples: 24 download_size: 1948205 dataset_size: 1947431.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
reasoning-proj/exp_rob_dfiltered_DeepSeek_R1_Distill_Qwen_1_5B_madversarial_insert_w_t10
reasoning-proj
2025-05-06T17:52:12Z
0
0
[ "region:us" ]
[]
2025-05-06T16:48:58Z
null
--- dataset_info: features: - name: question dtype: string - name: answer_content dtype: string - name: reference_answer dtype: string - name: id dtype: string - name: metadata struct: - name: question_license dtype: string - name: question_source dtype: string - name: model_name dtype: string - name: verifier_score dtype: int64 - name: mutated_answer_content dtype: string splits: - name: train num_bytes: 788325 num_examples: 50 download_size: 314168 dataset_size: 788325 configs: - config_name: default data_files: - split: train path: data/train-* ---
kkteru/alpaca_farm_human_ann_train_chat
kkteru
2025-05-06T17:31:57Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T17:31:56Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 10982591 num_examples: 17701 download_size: 5540061 dataset_size: 10982591 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/hero_run_3_math
mlfoundations-dev
2025-05-06T17:31:53Z
6
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T06:01:39Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: instruction_seed dtype: string - name: response_seed dtype: string - name: _source dtype: string - name: gpt41_mini_response dtype: string - name: __original_row_idx dtype: int64 - name: length dtype: int64 - name: ms_id dtype: int64 splits: - name: train num_bytes: 16155172624 num_examples: 850000 download_size: 463834425 dataset_size: 16155172624 configs: - config_name: default data_files: - split: train path: data/train-* ---
flyingbugs/OpenR1-Math-220k-pruned-keep-0.75-end-start-0.5
flyingbugs
2025-05-06T16:38:05Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T16:36:51Z
null
--- dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: problem_type dtype: string - name: question_type dtype: string - name: source dtype: string - name: uuid dtype: string - name: is_reasoning_complete sequence: bool - name: generations sequence: string - name: correctness_math_verify sequence: bool - name: correctness_llama sequence: bool - name: finish_reasons sequence: string - name: correctness_count dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 4701787252 num_examples: 93733 download_size: 2040887094 dataset_size: 4701787252 configs: - config_name: default data_files: - split: train path: data/train-* ---
Martingkc/MediBert_Dataset
Martingkc
2025-05-06T16:21:10Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T16:10:18Z
null
--- dataset_info: features: - name: Image Index dtype: string - name: Texts dtype: string - name: View Position dtype: string - name: Image Features sequence: float64 - name: Text Features sequence: float64 - name: Atelectasis dtype: int64 - name: Cardiomegaly dtype: int64 - name: Effusion dtype: int64 - name: Infiltration dtype: int64 - name: Mass dtype: int64 - name: Nodule dtype: int64 - name: Pneumonia dtype: int64 - name: Pneumothorax dtype: int64 - name: Consolidation dtype: int64 - name: Edema dtype: int64 - name: Emphysema dtype: int64 - name: Fibrosis dtype: int64 - name: Hernia dtype: int64 - name: Pleural_Thickening dtype: int64 - name: No_Finding dtype: int64 - name: Image dtype: image splits: - name: train num_bytes: 965181538.2 num_examples: 2380 - name: test num_bytes: 965181538.2 num_examples: 2380 download_size: 1929861734 dataset_size: 1930363076.4 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
ilahgel/dataset_augmentedbygpt
ilahgel
2025-05-06T15:49:28Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T15:49:24Z
null
--- dataset_info: features: - name: equipment_id dtype: string - name: question dtype: string - name: options sequence: string - name: answer dtype: string - name: explanation dtype: string - name: category dtype: string splits: - name: train num_bytes: 11172437 num_examples: 50272 download_size: 2295671 dataset_size: 11172437 configs: - config_name: default data_files: - split: train path: data/train-* ---
ma921/golden-hh-tokenized-mistral_noise0
ma921
2025-05-06T15:14:47Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T15:14:45Z
null
--- dataset_info: features: - name: sft_input_ids sequence: int64 - name: pos_input_ids sequence: int64 - name: neg_input_ids sequence: int64 splits: - name: train num_bytes: 19145216 num_examples: 12066 download_size: 4444162 dataset_size: 19145216 configs: - config_name: default data_files: - split: train path: data/train-* ---
shylee/eval_DP_pengripA_downDims1_cropNo224_freeze0_16_1_ema0_1e-4_ckpt330000
shylee
2025-05-06T15:10:27Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-05-06T14:44:45Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 2, "total_frames": 1036, "total_tasks": 1, "total_videos": 6, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.FrontCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.TopCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.WristCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Mxode/Chinese-Multimodal-Instruct
Mxode
2025-05-06T15:04:50Z
221
2
[ "task_categories:visual-question-answering", "task_categories:image-to-text", "license:cc-by-sa-4.0", "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "visual-question-answering", "image-to-text" ]
2025-05-01T04:38:57Z
2
--- configs: - config_name: samples default: true data_files: - split: train path: samples.parquet license: cc-by-sa-4.0 task_categories: - visual-question-answering - image-to-text --- <h1 align="center"> 中文(视觉)多模态指令数据集 </h1> <p align="center"> <a href="https://github.com/Mxoder/Maxs-Awesome-Datasets" target="_blank">💻 Github Repo</a> <br> </p> 本项目旨在构建一个高质量、大规模的**中文(视觉)多模态指令数据集**,目前仍在施工中 🚧💦 --- > [!Important] > 本数据集仍处于 **WIP (Work in Progress)** 状态,目前 Dataset Viewer 展示的是 100 条示例。 > > 初步预计规模大约在 1~2M(不包含其他来源的数据集),均为多轮对话形式。 > > [!Tip] > [2025/05/05] 图片已经上传完毕,后续文字部分正等待上传。
AdaptiveML/bird_v4.2_chess_new
AdaptiveML
2025-05-06T15:04:40Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T15:01:23Z
null
--- dataset_info: features: - name: db_id dtype: string - name: question dtype: string - name: evidence dtype: string - name: SQL dtype: string - name: schema dtype: string - name: gt_obj dtype: string splits: - name: train num_bytes: 817906437 num_examples: 9428 - name: dev num_bytes: 41886334 num_examples: 1534 download_size: 389910235 dataset_size: 859792771 configs: - config_name: default data_files: - split: train path: data/train-* - split: dev path: data/dev-* ---
ma921/oasst1-tokenized-qwen2.5_noise0
ma921
2025-05-06T14:58:07Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T14:58:03Z
null
--- dataset_info: features: - name: sft_input_ids sequence: int64 - name: pos_input_ids sequence: int64 - name: neg_input_ids sequence: int64 splits: - name: train num_bytes: 104153972 num_examples: 16419 download_size: 27651264 dataset_size: 104153972 configs: - config_name: default data_files: - split: train path: data/train-* ---
pengguilan/DPO_dataset_from_lima
pengguilan
2025-05-06T14:15:07Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T12:54:37Z
null
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 756204 num_examples: 200 download_size: 253118 dataset_size: 756204 configs: - config_name: default data_files: - split: train path: data/train-* ---
mteb/KorHateClassification
mteb
2025-05-06T12:37:19Z
0
0
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "task_ids:sentiment-scoring", "task_ids:sentiment-classification", "task_ids:hate-speech-detection", "annotations_creators:expert-annotated", "multilinguality:monolingual", "language:kor", "license:cc-by-sa-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2005.12503", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2025-05-06T12:37:15Z
null
--- annotations_creators: - expert-annotated language: - kor license: cc-by-sa-4.0 multilinguality: monolingual task_categories: - text-classification task_ids: - sentiment-analysis - sentiment-scoring - sentiment-classification - hate-speech-detection dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 221668 num_examples: 2048 - name: test num_bytes: 51373 num_examples: 471 download_size: 190060 dataset_size: 273041 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">KorHateClassification</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> The dataset was created to provide the first human-labeled Korean corpus for toxic speech detection from a Korean online entertainment news aggregator. Recently, two young Korean celebrities suffered from a series of tragic incidents that led to two major Korean web portals to close the comments section on their platform. However, this only serves as a temporary solution, and the fundamental issue has not been solved yet. This dataset hopes to improve Korean hate speech detection. Annotation was performed by 32 annotators, consisting of 29 annotators from the crowdsourcing platform DeepNatural AI and three NLP researchers. | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Social, Written | | Reference | https://paperswithcode.com/dataset/korean-hatespeech-dataset | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["KorHateClassification"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{moon2020beep, archiveprefix = {arXiv}, author = {Jihyung Moon and Won Ik Cho and Junbum Lee}, eprint = {2005.12503}, primaryclass = {cs.CL}, title = {BEEP! Korean Corpus of Online News Comments for Toxic Speech Detection}, year = {2020}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("KorHateClassification") desc_stats = task.metadata.descriptive_stats ``` ```json { "train": { "num_samples": 2048, "number_of_characters": 79006, "number_texts_intersect_with_train": null, "min_text_length": 4, "average_text_length": 38.5771484375, "max_text_length": 130, "unique_text": 2048, "unique_labels": 3, "labels": { "1": { "count": 648 }, "2": { "count": 904 }, "0": { "count": 496 } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
mteb/ContractNLISharingWithEmployeesLegalBenchClassification
mteb
2025-05-06T11:59:27Z
0
0
[ "task_categories:text-classification", "annotations_creators:expert-annotated", "multilinguality:monolingual", "language:eng", "license:cc-by-4.0", "modality:text", "arxiv:2308.11462", "arxiv:2110.01799", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2025-05-06T11:59:23Z
null
--- annotations_creators: - expert-annotated language: - eng license: cc-by-4.0 multilinguality: monolingual task_categories: - text-classification task_ids: [] dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 2776 num_examples: 8 - name: test num_bytes: 95604 num_examples: 170 download_size: 47087 dataset_size: 98380 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">ContractNLISharingWithEmployeesLegalBenchClassification</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> This task is a subset of ContractNLI, and consists of determining whether a clause from an NDA clause provides that the Receiving Party may share some Confidential Information with some of Receiving Party's employees. | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Legal, Written | | Reference | https://huggingface.co/datasets/nguha/legalbench | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["ContractNLISharingWithEmployeesLegalBenchClassification"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{guha2023legalbench, archiveprefix = {arXiv}, author = {Neel Guha and Julian Nyarko and Daniel E. Ho and Christopher Ré and Adam Chilton and Aditya Narayana and Alex Chohlas-Wood and Austin Peters and Brandon Waldon and Daniel N. Rockmore and Diego Zambrano and Dmitry Talisman and Enam Hoque and Faiz Surani and Frank Fagan and Galit Sarfaty and Gregory M. Dickinson and Haggai Porat and Jason Hegland and Jessica Wu and Joe Nudell and Joel Niklaus and John Nay and Jonathan H. Choi and Kevin Tobia and Margaret Hagan and Megan Ma and Michael Livermore and Nikon Rasumov-Rahe and Nils Holzenberger and Noam Kolt and Peter Henderson and Sean Rehaag and Sharad Goel and Shang Gao and Spencer Williams and Sunny Gandhi and Tom Zur and Varun Iyer and Zehua Li}, eprint = {2308.11462}, primaryclass = {cs.CL}, title = {LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models}, year = {2023}, } @article{koreeda2021contractnli, author = {Koreeda, Yuta and Manning, Christopher D}, journal = {arXiv preprint arXiv:2110.01799}, title = {ContractNLI: A dataset for document-level natural language inference for contracts}, year = {2021}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("ContractNLISharingWithEmployeesLegalBenchClassification") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 170, "number_of_characters": 93267, "number_texts_intersect_with_train": 0, "min_text_length": 87, "average_text_length": 548.6294117647059, "max_text_length": 2493, "unique_text": 170, "unique_labels": 2, "labels": { "1": { "count": 88 }, "0": { "count": 82 } } }, "train": { "num_samples": 8, "number_of_characters": 2680, "number_texts_intersect_with_train": null, "min_text_length": 126, "average_text_length": 335.0, "max_text_length": 706, "unique_text": 8, "unique_labels": 2, "labels": { "1": { "count": 4 }, "0": { "count": 4 } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
mteb/CUADGoverningLawLegalBenchClassification
mteb
2025-05-06T11:54:09Z
0
0
[ "task_categories:text-classification", "annotations_creators:expert-annotated", "multilinguality:monolingual", "language:eng", "license:cc-by-4.0", "modality:text", "arxiv:2308.11462", "arxiv:2103.06268", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2025-05-06T11:54:05Z
null
--- annotations_creators: - expert-annotated language: - eng license: cc-by-4.0 multilinguality: monolingual task_categories: - text-classification task_ids: [] dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 1917 num_examples: 6 - name: test num_bytes: 264457 num_examples: 876 download_size: 121055 dataset_size: 266374 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">CUADGoverningLawLegalBenchClassification</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> This task was constructed from the CUAD dataset. It consists of determining if the clause specifies which state/country’s law governs the contract. | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Legal, Written | | Reference | https://huggingface.co/datasets/nguha/legalbench | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["CUADGoverningLawLegalBenchClassification"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{guha2023legalbench, archiveprefix = {arXiv}, author = {Neel Guha and Julian Nyarko and Daniel E. Ho and Christopher Ré and Adam Chilton and Aditya Narayana and Alex Chohlas-Wood and Austin Peters and Brandon Waldon and Daniel N. Rockmore and Diego Zambrano and Dmitry Talisman and Enam Hoque and Faiz Surani and Frank Fagan and Galit Sarfaty and Gregory M. Dickinson and Haggai Porat and Jason Hegland and Jessica Wu and Joe Nudell and Joel Niklaus and John Nay and Jonathan H. Choi and Kevin Tobia and Margaret Hagan and Megan Ma and Michael Livermore and Nikon Rasumov-Rahe and Nils Holzenberger and Noam Kolt and Peter Henderson and Sean Rehaag and Sharad Goel and Shang Gao and Spencer Williams and Sunny Gandhi and Tom Zur and Varun Iyer and Zehua Li}, eprint = {2308.11462}, primaryclass = {cs.CL}, title = {LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models}, year = {2023}, } @article{hendrycks2021cuad, author = {Hendrycks, Dan and Burns, Collin and Chen, Anya and Ball, Spencer}, journal = {arXiv preprint arXiv:2103.06268}, title = {Cuad: An expert-annotated nlp dataset for legal contract review}, year = {2021}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("CUADGoverningLawLegalBenchClassification") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 876, "number_of_characters": 253930, "number_texts_intersect_with_train": 0, "min_text_length": 60, "average_text_length": 289.8744292237443, "max_text_length": 2402, "unique_text": 876, "unique_labels": 2, "labels": { "1": { "count": 438 }, "0": { "count": 438 } } }, "train": { "num_samples": 6, "number_of_characters": 1845, "number_texts_intersect_with_train": null, "min_text_length": 97, "average_text_length": 307.5, "max_text_length": 838, "unique_text": 6, "unique_labels": 2, "labels": { "1": { "count": 3 }, "0": { "count": 3 } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
mteb/CyrillicTurkicLangClassification
mteb
2025-05-06T11:19:54Z
0
0
[ "task_categories:text-classification", "task_ids:language-identification", "annotations_creators:derived", "multilinguality:monolingual", "language:bak", "language:chv", "language:kaz", "language:kir", "language:krc", "language:rus", "language:sah", "language:tat", "language:tyv", "license:cc-by-nc-4.0", "modality:text", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2025-05-06T11:19:48Z
null
--- annotations_creators: - derived language: - bak - chv - kaz - kir - krc - rus - sah - tat - tyv license: cc-by-nc-4.0 multilinguality: monolingual task_categories: - text-classification task_ids: - language-identification dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 13028257 num_examples: 72000 - name: validation num_bytes: 1633483 num_examples: 9000 - name: test num_bytes: 375171 num_examples: 2048 download_size: 9046362 dataset_size: 15036911 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">CyrillicTurkicLangClassification</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> Cyrillic dataset of 8 Turkic languages spoken in Russia and former USSR | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Web, Written | | Reference | https://huggingface.co/datasets/tatiana-merz/cyrillic_turkic_langs | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["CyrillicTurkicLangClassification"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{goldhahn2012building, author = {Goldhahn, Dirk and Eckart, Thomas and Quasthoff, Uwe}, booktitle = {Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)}, title = {Building Large Monolingual Dictionaries at the Leipzig Corpora Collection: From 100 to 200 Languages}, year = {2012}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("CyrillicTurkicLangClassification") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 2048, "number_of_characters": 191378, "number_texts_intersect_with_train": 0, "min_text_length": 15, "average_text_length": 93.4462890625, "max_text_length": 253, "unique_text": 2048, "unique_labels": 9, "labels": { "2": { "count": 228 }, "3": { "count": 227 }, "8": { "count": 228 }, "5": { "count": 227 }, "6": { "count": 228 }, "0": { "count": 227 }, "7": { "count": 227 }, "1": { "count": 228 }, "4": { "count": 228 } } }, "train": { "num_samples": 72000, "number_of_characters": 6640175, "number_texts_intersect_with_train": null, "min_text_length": 15, "average_text_length": 92.22465277777778, "max_text_length": 255, "unique_text": 72000, "unique_labels": 9, "labels": { "8": { "count": 8000 }, "3": { "count": 8000 }, "7": { "count": 8000 }, "5": { "count": 8000 }, "2": { "count": 8000 }, "1": { "count": 8000 }, "6": { "count": 8000 }, "4": { "count": 8000 }, "0": { "count": 8000 } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
mteb/Core17InstructionRetrieval
mteb
2025-05-06T11:19:00Z
0
0
[ "task_categories:text-ranking", "annotations_creators:derived", "multilinguality:monolingual", "language:eng", "license:mit", "modality:text", "arxiv:2403.15246", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-ranking" ]
2025-05-06T11:18:45Z
null
--- annotations_creators: - derived language: - eng license: mit multilinguality: monolingual task_categories: - text-ranking task_ids: [] dataset_info: - config_name: corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 44843804 num_examples: 19899 download_size: 27963474 dataset_size: 44843804 - config_name: instruction features: - name: query-id dtype: string - name: instruction dtype: string splits: - name: test num_bytes: 13675 num_examples: 40 download_size: 7443 dataset_size: 13675 - config_name: qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 311980 num_examples: 9480 download_size: 93738 dataset_size: 311980 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 5050 num_examples: 40 download_size: 3561 dataset_size: 5050 - config_name: top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 498500 num_examples: 40 download_size: 213125 dataset_size: 498500 configs: - config_name: corpus data_files: - split: test path: corpus/test-* - config_name: instruction data_files: - split: test path: instruction/test-* - config_name: qrels data_files: - split: test path: qrels/test-* - config_name: queries data_files: - split: test path: queries/test-* - config_name: top_ranked data_files: - split: test path: top_ranked/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">Core17InstructionRetrieval</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> Measuring retrieval instruction following ability on Core17 narratives for the FollowIR benchmark. | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | News, Written | | Reference | https://arxiv.org/abs/2403.15246 | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["Core17InstructionRetrieval"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{weller2024followir, archiveprefix = {arXiv}, author = {Orion Weller and Benjamin Chang and Sean MacAvaney and Kyle Lo and Arman Cohan and Benjamin Van Durme and Dawn Lawrie and Luca Soldaini}, eprint = {2403.15246}, primaryclass = {cs.IR}, title = {FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions}, year = {2024}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("Core17InstructionRetrieval") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 19939, "number_of_characters": 44459412, "num_documents": 19899, "min_document_length": 8, "average_document_length": 2234.0329664807277, "max_document_length": 2960, "unique_documents": 19899, "num_queries": 40, "min_query_length": 55, "average_query_length": 109.75, "max_query_length": 278, "unique_queries": 40, "none_queries": 0, "num_relevant_docs": 9480, "min_relevant_docs_per_query": 135, "average_relevant_docs_per_query": 43.6, "max_relevant_docs_per_query": 379, "unique_relevant_docs": 4739, "num_instructions": 40, "min_instruction_length": 102, "average_instruction_length": 13015, "max_instruction_length": 837, "unique_instructions": 40, "num_top_ranked": null, "min_top_ranked_per_query": null, "average_top_ranked_per_query": null, "max_top_ranked_per_query": null } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
quyanh/redbench-v1_decontaminated
quyanh
2025-05-06T10:37:18Z
0
0
[ "region:us" ]
[]
2025-05-06T10:14:50Z
null
--- dataset_info: - config_name: AdvBench features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 4444580.410659676 num_examples: 1076 download_size: 1099471 dataset_size: 4444580.410659676 - config_name: CatQA features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 2242943.4600262125 num_examples: 543 download_size: 596927 dataset_size: 2242943.4600262125 - config_name: CoCoNot features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 5700298.296199214 num_examples: 1380 download_size: 1308135 dataset_size: 5700298.296199214 - config_name: CoNA features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 735255.8671909131 num_examples: 178 download_size: 255594 dataset_size: 735255.8671909131 - config_name: CoSafe features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 4341314.137177807 num_examples: 1051 download_size: 1252494 dataset_size: 4341314.137177807 - config_name: ControversialInstructions features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 165226.0375709917 num_examples: 40 download_size: 67688 dataset_size: 165226.0375709917 - config_name: CyberattackAssistance features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 4052168.5714285714 num_examples: 981 download_size: 1380005 dataset_size: 4052168.5714285714 - config_name: DAN features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 1606823.2153778942 num_examples: 389 download_size: 411373 dataset_size: 1606823.2153778942 - config_name: DeMET features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 119788.87723896898 num_examples: 29 download_size: 50740 dataset_size: 119788.87723896898 - config_name: DiaSafety features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 2057064.1677588467 num_examples: 498 download_size: 583809 dataset_size: 2057064.1677588467 - config_name: DoNotAnswer features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 3870419.9301004806 num_examples: 937 download_size: 995150 dataset_size: 3870419.9301004806 - config_name: ForbiddenQuestions features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 1413352 num_examples: 390 download_size: 397264 dataset_size: 1413352 - config_name: GEST features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 14684464.089121887 num_examples: 3555 download_size: 3142341 dataset_size: 14684464.089121887 - config_name: GPTFuzzer features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 392411.8392311053 num_examples: 95 download_size: 121232 dataset_size: 392411.8392311053 - config_name: GandalfIgnoreInstructions features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 462632.90519877675 num_examples: 112 download_size: 153458 dataset_size: 462632.90519877675 - config_name: GandalfSummarization features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 53698.4622105723 num_examples: 13 download_size: 43716 dataset_size: 53698.4622105723 - config_name: HarmBench features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 1493569 num_examples: 320 download_size: 419115 dataset_size: 1493569 - config_name: HarmfulQ features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 813738.2350371341 num_examples: 197 download_size: 240650 dataset_size: 813738.2350371341 - config_name: HarmfulQA features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 8001070.869375273 num_examples: 1937 download_size: 2049297 dataset_size: 8001070.869375273 - config_name: JADE features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 330452.0751419834 num_examples: 80 download_size: 133497 dataset_size: 330452.0751419834 - config_name: JBBBehaviours features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 384150.5373525557 num_examples: 93 download_size: 105224 dataset_size: 384150.5373525557 - config_name: KorNAT features: - name: prompt dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 80258 num_examples: 14 download_size: 38792 dataset_size: 80258 - config_name: LatentJailbreak features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 10012697.876802096 num_examples: 2424 download_size: 2482559 dataset_size: 10012697.876802096 - config_name: MaliciousInstruct features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 413065.09392747923 num_examples: 100 download_size: 152998 dataset_size: 413065.09392747923 - config_name: MaliciousInstructions features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 404803.79204892967 num_examples: 98 download_size: 130632 dataset_size: 404803.79204892967 - config_name: MedSafetyBench features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 3717585.845347313 num_examples: 900 download_size: 1193872 dataset_size: 3717585.845347313 - config_name: MoralExceptQA features: - name: prompt dtype: string - name: choices dtype: string - name: answer struct: - name: human.response dtype: float64 - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 903099 num_examples: 148 download_size: 213091 dataset_size: 903099 - config_name: ORBench features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 5448328.588903451 num_examples: 1319 download_size: 1700064 dataset_size: 5448328.588903451 - config_name: PhysicalSafetyInstructions features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 413065.09392747923 num_examples: 100 download_size: 204901 dataset_size: 413065.09392747923 - config_name: QHarm features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 396542.4901703801 num_examples: 96 download_size: 142601 dataset_size: 396542.4901703801 - config_name: SGBench features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 3866289.279161206 num_examples: 936 download_size: 1025021 dataset_size: 3866289.279161206 - config_name: SGXSTest features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 413065.09392747923 num_examples: 100 download_size: 167129 dataset_size: 413065.09392747923 - config_name: SafeText features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 0.0 num_examples: 0 download_size: 3266 dataset_size: 0.0 - config_name: StrongREJECT features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 937657.7632153779 num_examples: 227 download_size: 334463 dataset_size: 937657.7632153779 - config_name: ToxiGen features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 3882811.8829183048 num_examples: 940 download_size: 1022196 dataset_size: 3882811.8829183048 - config_name: WMDP features: - name: prompt dtype: string - name: choices sequence: string - name: answer dtype: int64 - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 21642650 num_examples: 3668 download_size: 6007583 dataset_size: 21642650 - config_name: XSTest features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 1850531.620795107 num_examples: 448 download_size: 498192 dataset_size: 1850531.620795107 - config_name: XSafety features: - name: prompt dtype: string - name: choices dtype: string - name: answer dtype: string - name: task dtype: string - name: subtask dtype: string - name: category dtype: string - name: domain dtype: string - name: language dtype: string - name: source dtype: string - name: risk_response dtype: string - name: risk_property dtype: string - name: domain_response dtype: string - name: domain_property dtype: string - name: subdataset dtype: string splits: - name: train num_bytes: 11557561.328090869 num_examples: 2798 download_size: 3097933 dataset_size: 11557561.328090869 configs: - config_name: AdvBench data_files: - split: train path: AdvBench/train-* - config_name: CatQA data_files: - split: train path: CatQA/train-* - config_name: CoCoNot data_files: - split: train path: CoCoNot/train-* - config_name: CoNA data_files: - split: train path: CoNA/train-* - config_name: CoSafe data_files: - split: train path: CoSafe/train-* - config_name: ControversialInstructions data_files: - split: train path: ControversialInstructions/train-* - config_name: CyberattackAssistance data_files: - split: train path: CyberattackAssistance/train-* - config_name: DAN data_files: - split: train path: DAN/train-* - config_name: DeMET data_files: - split: train path: DeMET/train-* - config_name: DiaSafety data_files: - split: train path: DiaSafety/train-* - config_name: DoNotAnswer data_files: - split: train path: DoNotAnswer/train-* - config_name: ForbiddenQuestions data_files: - split: train path: ForbiddenQuestions/train-* - config_name: GEST data_files: - split: train path: GEST/train-* - config_name: GPTFuzzer data_files: - split: train path: GPTFuzzer/train-* - config_name: GandalfIgnoreInstructions data_files: - split: train path: GandalfIgnoreInstructions/train-* - config_name: GandalfSummarization data_files: - split: train path: GandalfSummarization/train-* - config_name: HarmBench data_files: - split: train path: HarmBench/train-* - config_name: HarmfulQ data_files: - split: train path: HarmfulQ/train-* - config_name: HarmfulQA data_files: - split: train path: HarmfulQA/train-* - config_name: JADE data_files: - split: train path: JADE/train-* - config_name: JBBBehaviours data_files: - split: train path: JBBBehaviours/train-* - config_name: KorNAT data_files: - split: train path: KorNAT/train-* - config_name: LatentJailbreak data_files: - split: train path: LatentJailbreak/train-* - config_name: MaliciousInstruct data_files: - split: train path: MaliciousInstruct/train-* - config_name: MaliciousInstructions data_files: - split: train path: MaliciousInstructions/train-* - config_name: MedSafetyBench data_files: - split: train path: MedSafetyBench/train-* - config_name: MoralExceptQA data_files: - split: train path: MoralExceptQA/train-* - config_name: ORBench data_files: - split: train path: ORBench/train-* - config_name: PhysicalSafetyInstructions data_files: - split: train path: PhysicalSafetyInstructions/train-* - config_name: QHarm data_files: - split: train path: QHarm/train-* - config_name: SGBench data_files: - split: train path: SGBench/train-* - config_name: SGXSTest data_files: - split: train path: SGXSTest/train-* - config_name: SafeText data_files: - split: train path: SafeText/train-* - config_name: StrongREJECT data_files: - split: train path: StrongREJECT/train-* - config_name: ToxiGen data_files: - split: train path: ToxiGen/train-* - config_name: WMDP data_files: - split: train path: WMDP/train-* - config_name: XSTest data_files: - split: train path: XSTest/train-* - config_name: XSafety data_files: - split: train path: XSafety/train-* ---
SayantanJoker/processed_seamless_align_hindi_new_chunk_46
SayantanJoker
2025-05-06T10:22:02Z
0
0
[ "region:us" ]
[]
2025-05-06T10:20:35Z
null
--- dataset_info: features: - name: audio dtype: audio - name: transcription dtype: string - name: file_name dtype: string splits: - name: train num_bytes: 2662496217.0 num_examples: 10000 download_size: 2547829459 dataset_size: 2662496217.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
SayantanJoker/processed_seamless_align_hindi_new_chunk_17
SayantanJoker
2025-05-06T09:40:18Z
0
0
[ "region:us" ]
[]
2025-05-06T09:38:51Z
null
--- dataset_info: features: - name: audio dtype: audio - name: transcription dtype: string - name: file_name dtype: string splits: - name: train num_bytes: 2682105462.0 num_examples: 10000 download_size: 2539386917 dataset_size: 2682105462.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
SayantanJoker/processed_seamless_align_hindi_new_chunk_7
SayantanJoker
2025-05-06T09:25:38Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T09:24:15Z
null
--- dataset_info: features: - name: audio dtype: audio - name: transcription dtype: string - name: file_name dtype: string splits: - name: train num_bytes: 2607074974.0 num_examples: 10000 download_size: 2483608876 dataset_size: 2607074974.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
iseddik/poison_tr_0.1_128b
iseddik
2025-05-06T08:49:58Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T08:49:56Z
null
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: poisoned_index dtype: int64 splits: - name: train num_bytes: 47589 num_examples: 128 download_size: 33091 dataset_size: 47589 configs: - config_name: default data_files: - split: train path: data/train-* ---
iseddik/clean_tr_0.1_128b
iseddik
2025-05-06T08:49:26Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T08:49:24Z
null
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 47741.952 num_examples: 128 download_size: 33973 dataset_size: 47741.952 configs: - config_name: default data_files: - split: train path: data/train-* ---
mteb/ArguAna-Fa
mteb
2025-05-06T08:17:58Z
0
0
[ "task_categories:text-retrieval", "task_ids:document-retrieval", "annotations_creators:derived", "multilinguality:monolingual", "source_datasets:mteb/arguana", "language:fas", "license:unknown", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-retrieval" ]
2025-05-06T08:17:42Z
null
--- annotations_creators: - derived language: - fas license: unknown multilinguality: monolingual source_datasets: - mteb/arguana task_categories: - text-retrieval task_ids: - document-retrieval dataset_info: - config_name: corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 14546179 num_examples: 8674 download_size: 6447438 dataset_size: 14546179 - config_name: qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 111736 num_examples: 1406 download_size: 24447 dataset_size: 111736 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 2694250 num_examples: 1406 download_size: 1193251 dataset_size: 2694250 configs: - config_name: corpus data_files: - split: test path: corpus/test-* - config_name: qrels data_files: - split: test path: qrels/test-* - config_name: queries data_files: - split: test path: queries/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">ArguAna-Fa</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> ArguAna-Fa | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Blog | | Reference | https://huggingface.co/datasets/MCINext/arguana-fa | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["ArguAna-Fa"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("ArguAna-Fa") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 10080, "number_of_characters": 9458841, "num_documents": 8674, "min_document_length": 1, "average_document_length": 918.7068249942356, "max_document_length": 4427, "unique_documents": 8674, "num_queries": 1406, "min_query_length": 189, "average_query_length": 1059.7283072546231, "max_query_length": 4234, "unique_queries": 1406, "none_queries": 0, "num_relevant_docs": 1406, "min_relevant_docs_per_query": 1, "average_relevant_docs_per_query": 1.0, "max_relevant_docs_per_query": 1, "unique_relevant_docs": 1406, "num_instructions": null, "min_instruction_length": null, "average_instruction_length": null, "max_instruction_length": null, "unique_instructions": null, "num_top_ranked": null, "min_top_ranked_per_query": null, "average_top_ranked_per_query": null, "max_top_ranked_per_query": null } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
mteb/AngryTweetsClassification
mteb
2025-05-06T08:15:53Z
0
0
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "task_ids:sentiment-scoring", "task_ids:sentiment-classification", "task_ids:hate-speech-detection", "annotations_creators:human-annotated", "multilinguality:monolingual", "language:dan", "license:cc-by-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2025-05-06T08:15:41Z
null
--- annotations_creators: - human-annotated language: - dan license: cc-by-4.0 multilinguality: monolingual task_categories: - text-classification task_ids: - sentiment-analysis - sentiment-scoring - sentiment-classification - hate-speech-detection dataset_info: features: - name: text dtype: string - name: label dtype: string splits: - name: train num_bytes: 416154 num_examples: 2411 - name: test num_bytes: 184365 num_examples: 1047 download_size: 392885 dataset_size: 600519 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">AngryTweetsClassification</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> A sentiment dataset with 3 classes (positiv, negativ, neutral) for Danish tweets | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Social, Written | | Reference | https://aclanthology.org/2021.nodalida-main.53/ | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["AngryTweetsClassification"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{pauli2021danlp, author = {Pauli, Amalie Brogaard and Barrett, Maria and Lacroix, Oph{\'e}lie and Hvingelby, Rasmus}, booktitle = {Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)}, pages = {460--466}, title = {DaNLP: An open-source toolkit for Danish Natural Language Processing}, year = {2021}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("AngryTweetsClassification") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 1047, "number_of_characters": 163484, "number_texts_intersect_with_train": 0, "min_text_length": 9, "average_text_length": 156.14517669531998, "max_text_length": 327, "unique_text": 1044, "unique_labels": 3, "labels": { "neutral": { "count": 363 }, "positiv": { "count": 282 }, "negativ": { "count": 402 } } }, "train": { "num_samples": 2411, "number_of_characters": 368784, "number_texts_intersect_with_train": null, "min_text_length": 1, "average_text_length": 152.95893819991704, "max_text_length": 338, "unique_text": 2410, "unique_labels": 3, "labels": { "positiv": { "count": 648 }, "neutral": { "count": 852 }, "negativ": { "count": 911 } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
worstchan/Belle_1.4M-SLAM-Omni
worstchan
2025-05-06T08:04:59Z
1,958
1
[ "task_categories:question-answering", "language:zh", "license:gpl-3.0", "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2412.15649", "region:us" ]
[ "question-answering" ]
2024-12-20T09:11:26Z
null
--- license: gpl-3.0 dataset_info: features: - name: split_name dtype: string - name: index dtype: int64 - name: round dtype: int64 - name: question dtype: string - name: question_audio struct: - name: array sequence: float32 - name: path dtype: string - name: sampling_rate dtype: int64 - name: answer dtype: string - name: answer_cosyvoice_speech_token sequence: int64 - name: answer_snac dtype: string splits: - name: train num_bytes: 800059817200 num_examples: 1400398 download_size: 792877562556 dataset_size: 800059817200 configs: - config_name: default data_files: - split: train path: data/train-* task_categories: - question-answering language: - zh size_categories: - 1M<n<10M --- # Belle_1.4M *This dataset is prepared for the reproduction of [SLAM-Omni](https://arxiv.org/abs/2412.15649).* This is a **multi-round Chinese spoken dialogue** training dataset. For code and usage examples, please refer to the related GitHub repository: [X-LANCE/SLAM-LLM (examples/s2s)](https://github.com/X-LANCE/SLAM-LLM/tree/main/examples/s2s) ## 🔧 Modifications 1. **Data Filtering**: We removed samples with excessively long data. 2. **Speech Response Tokens**: We used [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) to synthesize corresponding semantic speech tokens for the speech response. These tokens, represented as `answer_cosyvoice_speech_token`, are included as model training targets. 3. **User Instruction Speech**: Synthesized speech for user instructions using CosyVoice, with timbres randomly selected from 1,010 Chinese prompts in the [seed-tts-eval](https://github.com/BytedanceSpeech/seed-tts-eval) subset to ensure diversity. ## 🙏 Acknowledgment The original dataset was sourced from [Belle_train_3.5M_CN](https://huggingface.co/datasets/BelleGroup/train_3.5M_CN). We thank the Belle Group for their open-source contribution. ## 📄 Citation If you find our work helpful, please consider citing: ```bibtex @article{chen2024slam, title={SLAM-Omni: Timbre-Controllable Voice Interaction System with Single-Stage Training}, author={Chen, Wenxi and Ma, Ziyang and Yan, Ruiqi and Liang, Yuzhe and Li, Xiquan and Xu, Ruiyang and Niu, Zhikang and Zhu, Yanqiao and Yang, Yifan and Liu, Zhanxun and others}, journal={arXiv preprint arXiv:2412.15649}, year={2024} } ```
Sooraj87/med-data
Sooraj87
2025-05-06T06:21:25Z
0
0
[ "region:us" ]
[]
2025-05-06T06:21:24Z
null
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: __index_level_0__ dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2271829 num_examples: 1000 download_size: 1304108 dataset_size: 2271829 configs: - config_name: default data_files: - split: train path: data/train-* ---
huutuan/LeViSQA-200sample
huutuan
2025-05-06T05:59:27Z
0
0
[ "region:us" ]
[]
2025-05-06T05:58:58Z
null
--- dataset_info: features: - name: _id dtype: string - name: speech dtype: audio - name: transcription dtype: string - name: questions dtype: string - name: answers dtype: string - name: source dtype: string splits: - name: train num_bytes: 1201469914.2630787 num_examples: 200 download_size: 777839295 dataset_size: 1201469914.2630787 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/d1_science_all_large_10k
mlfoundations-dev
2025-05-06T05:19:25Z
0
0
[ "region:us" ]
[]
2025-05-06T05:19:13Z
null
--- dataset_info: features: - name: instruction_seed dtype: string - name: _source dtype: string - name: gpt41_mini_response dtype: string - name: __original_row_idx dtype: int64 - name: length dtype: int64 - name: domain dtype: string - name: r1_response dtype: string - name: r1_reasoning_content dtype: string - name: extract_solution dtype: string - name: url dtype: string - name: filename dtype: string - name: success dtype: bool - name: page_count dtype: int64 - name: page_number dtype: int64 - name: question_choices_solutions dtype: string - name: extracted_question dtype: string - name: extracted_answer_choices sequence: string - name: matched_solution dtype: string - name: qa_validation_outputs dtype: bool - name: classifier_reasoning dtype: string - name: is_organic_chemistry dtype: bool - name: ms_id dtype: int64 - name: reasoning dtype: string - name: deepseek_solution dtype: string - name: final_reasoning_trace dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 716420520.0949367 num_examples: 10000 download_size: 316275097 dataset_size: 716420520.0949367 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/openthoughts2_code_10k
mlfoundations-dev
2025-05-06T05:04:53Z
0
0
[ "region:us" ]
[]
2025-05-06T05:04:36Z
null
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: _domain dtype: string - name: system dtype: string - name: problem dtype: string - name: reasoning dtype: string - name: deepseek_solution dtype: string - name: question dtype: string - name: source dtype: string - name: id dtype: int64 - name: extracted_instruction dtype: string splits: - name: train num_bytes: 263414468.80182666 num_examples: 10000 download_size: 110745763 dataset_size: 263414468.80182666 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/e1_science_longest_qwq_together_0.3k
mlfoundations-dev
2025-05-06T04:45:49Z
0
0
[ "region:us" ]
[]
2025-05-06T04:45:42Z
null
--- dataset_info: features: - name: instruction_seed dtype: string - name: _source dtype: string - name: gpt41_mini_response dtype: string - name: __original_row_idx dtype: int64 - name: length dtype: int64 - name: domain dtype: string - name: r1_response dtype: string - name: r1_reasoning_content dtype: string - name: extract_solution dtype: string - name: url dtype: string - name: filename dtype: string - name: success dtype: bool - name: page_count dtype: int64 - name: page_number dtype: int64 - name: question_choices_solutions dtype: string - name: extracted_question dtype: string - name: extracted_answer_choices sequence: string - name: matched_solution dtype: string - name: qa_validation_outputs dtype: bool - name: classifier_reasoning dtype: string - name: is_organic_chemistry dtype: bool - name: ms_id dtype: int64 - name: qwq_thinking_trajectory dtype: string - name: qwq_attempt dtype: string - name: qwq_response sequence: string - name: _majority_responses sequence: string - name: verified_qwq_response dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 261132236.55 num_examples: 316 download_size: 122282190 dataset_size: 261132236.55 configs: - config_name: default data_files: - split: train path: data/train-* ---
genex-world/Genex-DB-World-Exploration
genex-world
2025-05-06T03:21:17Z
286
0
[ "license:cc-by-4.0", "size_categories:10K<n<100K", "modality:video", "library:datasets", "library:mlcroissant", "arxiv:2412.09624", "region:us" ]
[]
2025-04-23T04:14:07Z
null
--- dataset_info: features: - name: video dtype: video splits: - name: view num_examples: 4 - name: realistic num_examples: 3700 - name: low_texture num_examples: 8400 - name: anime num_examples: 900 - name: real_world num_examples: 2400 configs: - config_name: default data_files: - split: view path: view/*.mp4 - split: realistic path: Realistic/*.mp4 - split: low_texture path: Low-Texture/*.mp4 - split: anime path: Anime/*.mp4 - split: real_world path: Real-World/*.mp4 size_categories: - 10K<n<100K license: cc-by-4.0 --- # GenEx-DB-World-Exploration 🎬🌍 This is the video version of the GenEx-DB dataset. The dataset contains forward navigation path, captured by panoramic cameras. Each path is 0.4m/frame, 50 frames in total. Each example is a single `.mp4` video reconstructed from the original frame folders. ## 📂 Splits | Split Name | Description |---------------|-------------------------------------- | `realistic` | 📸 Unreal 5 City Sample renders | `low_texture` | 🏜️ Blender Low-texture synthetic scenes | `anime` | 🌸 Unity Stylized/anime scenes | `real_world` | 🎥 JHU campus handheld collected real-world clips ## 🏗️ Structure ``` Genex-DB-Video/ ├── low_texture/ │ ├── video001.mp4 │ └── … ├── realistic/ │ └── … ├── anime/ │ └── … └── real_world/ └── … ``` Each file is named `<video_id>.mp4` and contains 50 (or 97 for `real_world`) frames at 10 FPS. ## 🚀 Usage ```python from datasets import load_dataset # Load the “anime” split ds = load_dataset("videofolder", data_dir="genex-world/Genex-DB-World-Exploration", split="anime") # Inspect one example example = ds[0] print(example["video"].shape) # (num_frames, height, width, 3) ``` ## ✨ BibTex ``` @misc{lu2025genexgeneratingexplorableworld, title={GenEx: Generating an Explorable World}, author={Taiming Lu and Tianmin Shu and Junfei Xiao and Luoxin Ye and Jiahao Wang and Cheng Peng and Chen Wei and Daniel Khashabi and Rama Chellappa and Alan Yuille and Jieneng Chen}, year={2025}, eprint={2412.09624}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2412.09624}, } ```
osama24sy/llama3.1-8b-it-coutdown-game-7k-qwq-r64-v0.2-countdown-v0.3
osama24sy
2025-05-06T03:12:14Z
0
0
[ "region:us" ]
[]
2025-05-06T03:12:13Z
null
--- dataset_info: features: - name: index dtype: int64 - name: numbers sequence: int64 - name: target dtype: int64 - name: operations sequence: string - name: response dtype: string - name: token_count dtype: int64 splits: - name: train num_bytes: 1622865 num_examples: 150 download_size: 602887 dataset_size: 1622865 configs: - config_name: default data_files: - split: train path: data/train-* ---
kaiwenw/distill-r1-qwen-1.5b-hmmt-feb-25-4096-with-labels-prm-indices_38400_46080
kaiwenw
2025-05-06T03:07:14Z
0
0
[ "region:us" ]
[]
2025-05-06T03:06:49Z
null
--- dataset_info: features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: string - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1134888781 num_examples: 7680 download_size: 670961721 dataset_size: 1134888781 configs: - config_name: default data_files: - split: train path: data/train-* ---
kaiwenw/distill-r1-qwen-1.5b-hmmt-feb-25-4096-with-labels-prm-indices_61440_69120
kaiwenw
2025-05-06T02:48:10Z
0
0
[ "region:us" ]
[]
2025-05-06T02:47:47Z
null
--- dataset_info: features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: string - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1131365794 num_examples: 7680 download_size: 668098928 dataset_size: 1131365794 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_0.5_alpha_0.2_num-company_3_dataset_2_for_gen_2_v2
HungVu2003
2025-05-06T02:47:43Z
0
0
[ "region:us" ]
[]
2025-05-06T02:47:42Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 2572712 num_examples: 14998 download_size: 1336141 dataset_size: 2572712 configs: - config_name: default data_files: - split: train path: data/train-* ---
kaiwenw/distill-r1-qwen-1.5b-hmmt-feb-25-4096-with-old-prm-indices_0_7680
kaiwenw
2025-05-06T02:41:24Z
0
0
[ "region:us" ]
[]
2025-05-06T02:41:11Z
null
--- dataset_info: features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: string - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1134755270 num_examples: 7680 download_size: 267352027 dataset_size: 1134755270 configs: - config_name: default data_files: - split: train path: data/train-* ---
ParkSY/data_nerf_depthanything_depth_normalmap
ParkSY
2025-05-06T01:46:26Z
0
0
[ "region:us" ]
[]
2025-05-06T01:46:21Z
null
--- dataset_info: features: - name: input_image dtype: string - name: edit_prompt dtype: string - name: edited_image dtype: string - name: label dtype: int64 - name: depthmap dtype: string - name: normalmap dtype: string splits: - name: train num_bytes: 3128138 num_examples: 9828 download_size: 39548 dataset_size: 3128138 configs: - config_name: default data_files: - split: train path: data/train-* ---
Jennny/eng-prm-test
Jennny
2025-05-06T00:46:48Z
0
0
[ "region:us" ]
[]
2025-05-06T00:46:46Z
null
--- dataset_info: features: - name: conversations list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 2397071 num_examples: 1200 download_size: 983649 dataset_size: 2397071 configs: - config_name: default data_files: - split: train path: data/train-* ---
mhr2004/nevir-original-mhr2004-roberta-large-anion-1e-06-256-stsb-lr2e-05-bs32-pred
mhr2004
2025-05-06T00:31:28Z
0
0
[ "region:us" ]
[]
2025-05-06T00:31:26Z
null
--- dataset_info: features: - name: input_ids_1 sequence: int64 - name: att_1 sequence: int64 - name: query dtype: string - name: doc_1 dtype: string - name: doc_2 dtype: string - name: input_ids_2 sequence: int64 - name: att_2 sequence: int64 - name: label dtype: int64 - name: pair_id dtype: int64 - name: pred dtype: int64 splits: - name: train num_bytes: 49610561 num_examples: 2766 download_size: 2469482 dataset_size: 49610561 configs: - config_name: default data_files: - split: train path: data/train-* ---
justus27/s2-numina
justus27
2025-05-05T23:18:25Z
0
0
[ "region:us" ]
[]
2025-05-05T23:02:22Z
null
--- dataset_info: features: - name: problem_id dtype: string - name: task_type dtype: string - name: prompt dtype: string - name: verification_info dtype: string - name: metadata dtype: string splits: - name: train num_bytes: 283538059 num_examples: 735773 download_size: 114223231 dataset_size: 283538059 configs: - config_name: default data_files: - split: train path: data/train-* ---
samahadhoud/decomposed-tikz-dataset-80-end
samahadhoud
2025-05-05T22:28:54Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-05T22:28:10Z
null
--- dataset_info: features: - name: id dtype: string - name: png dtype: image - name: code dtype: string splits: - name: train num_bytes: 736552396.57 num_examples: 68695 download_size: 676079721 dataset_size: 736552396.57 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.0_num-company_3_dataset_1_for_gen_19_v2
HungVu2003
2025-05-05T22:06:29Z
0
0
[ "region:us" ]
[]
2025-05-05T22:06:28Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 6619719 num_examples: 12500 download_size: 3373397 dataset_size: 6619719 configs: - config_name: default data_files: - split: train path: data/train-* ---
ieuniversity/group_2_submission
ieuniversity
2025-05-05T21:52:14Z
433
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-17T13:20:12Z
null
--- dataset_info: features: - name: ID dtype: string - name: CLASE dtype: string splits: - name: train num_bytes: 895475 num_examples: 25808 download_size: 501513 dataset_size: 895475 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_0.0_alpha_0.0_num-company_3_dataset_2_for_gen_7_v2
HungVu2003
2025-05-05T21:42:27Z
0
0
[ "region:us" ]
[]
2025-05-05T21:42:26Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 814852 num_examples: 12500 download_size: 561364 dataset_size: 814852 configs: - config_name: default data_files: - split: train path: data/train-* ---
Chenlu123/numia_prompt_ppo
Chenlu123
2025-05-05T21:38:24Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-05T17:16:24Z
null
--- dataset_info: features: - name: data_source dtype: string - name: ability dtype: string - name: reward_model struct: - name: ground_truth dtype: string - name: style dtype: string - name: problem dtype: string - name: solution dtype: string splits: - name: train num_bytes: 448356055.7457226 num_examples: 312448 download_size: 224564284 dataset_size: 448356055.7457226 configs: - config_name: default data_files: - split: train path: data/train-* ---
MarsRedderd/coin-images
MarsRedderd
2025-05-05T21:36:42Z
0
0
[ "region:us" ]
[]
2025-05-05T21:36:40Z
null
--- dataset_info: features: - name: folder dtype: string - name: file_name dtype: string splits: - name: train num_bytes: 265326 num_examples: 3749 download_size: 36274 dataset_size: 265326 configs: - config_name: default data_files: - split: train path: data/train-* ---
MBZUAI-IFM/R1_distilled_brain_teasers_filtered_final
MBZUAI-IFM
2025-05-05T20:10:46Z
0
0
[ "region:us" ]
[]
2025-05-05T20:10:43Z
null
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: puzzle_id dtype: string - name: reconstruction dtype: string - name: question dtype: string - name: answer dtype: string - name: distrator1 dtype: string - name: distrator2 dtype: string - name: unsure dtype: string - name: DSR1_reasoning_content dtype: string - name: DSR1_content dtype: string - name: output dtype: string - name: instruction dtype: string - name: answerKey dtype: string - name: choices struct: - name: label sequence: string - name: text sequence: string - name: original_question dtype: string - name: has_forbidden dtype: bool splits: - name: train num_bytes: 24033616 num_examples: 2345 download_size: 10953571 dataset_size: 24033616 configs: - config_name: default data_files: - split: train path: data/train-* ---
jdchang/qsharp-bt-mixture
jdchang
2025-05-05T19:55:28Z
0
0
[ "region:us" ]
[]
2025-05-05T19:54:46Z
null
--- dataset_info: features: - name: message_id dtype: string - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: reward sequence: bool - name: roll_in_ids sequence: sequence: int32 - name: roll_outs_ids sequence: sequence: int32 - name: processed_answer sequence: string splits: - name: train num_bytes: 2433860777 num_examples: 27194 download_size: 688707061 dataset_size: 2433860777 configs: - config_name: default data_files: - split: train path: data/train-* ---
kaiwenw/distill-r1-qwen-1.5b-hmmt-feb-24-4096-with-labels-prm-indices_23040_30720
kaiwenw
2025-05-05T19:20:17Z
0
0
[ "region:us" ]
[]
2025-05-05T19:19:50Z
null
--- dataset_info: features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: string - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1121700952 num_examples: 7680 download_size: 670958341 dataset_size: 1121700952 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_0.5_alpha_0.0_num-company_2_dataset_0_for_gen_10_v2
HungVu2003
2025-05-05T19:14:35Z
0
0
[ "region:us" ]
[]
2025-05-05T19:14:33Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 981223 num_examples: 12500 download_size: 633869 dataset_size: 981223 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_0.5_alpha_0.8_num-company_3_dataset_1_for_gen_6
HungVu2003
2025-05-05T19:11:14Z
0
0
[ "region:us" ]
[]
2025-05-05T19:11:09Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 2883478 num_examples: 12498 download_size: 1308514 dataset_size: 2883478 configs: - config_name: default data_files: - split: train path: data/train-* ---
kaiwenw/distill-r1-qwen-1.5b-hmmt-feb-24-4096-with-old-prm-indices_15360_23040
kaiwenw
2025-05-05T18:56:14Z
0
0
[ "region:us" ]
[]
2025-05-05T18:56:03Z
null
--- dataset_info: features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: string - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1130349195 num_examples: 7680 download_size: 266993315 dataset_size: 1130349195 configs: - config_name: default data_files: - split: train path: data/train-* ---
amrosama/arabic_english_dataset_for_lang_translations_tasks
amrosama
2025-05-05T18:27:27Z
3
0
[ "license:apache-2.0", "region:us", "translation", "arabic" ]
[]
2024-05-11T15:16:11Z
null
--- license: apache-2.0 tags: - translation - arabic ---
MBZUAI-IFM/riddlesenseplusplus_evaluated
MBZUAI-IFM
2025-05-05T17:57:56Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-05T17:57:54Z
null
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: metadata dtype: string - name: dataset_source dtype: string splits: - name: train num_bytes: 1267424 num_examples: 397 download_size: 601693 dataset_size: 1267424 configs: - config_name: default data_files: - split: train path: data/train-* ---
kaiwenw/distill-r1-qwen-1.5b-aime-25-4096-with-old-prm-indices_0_7680
kaiwenw
2025-05-05T17:02:37Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-05T17:02:26Z
null
--- dataset_info: features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: string - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1031600947 num_examples: 7680 download_size: 239593968 dataset_size: 1031600947 configs: - config_name: default data_files: - split: train path: data/train-* ---
kaiwenw/distill-r1-qwen-1.5b-aime-25-4096-with-old-prm-indices_53760_61440
kaiwenw
2025-05-05T17:02:21Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-05T17:02:11Z
null
--- dataset_info: features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: string - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1025824877 num_examples: 7680 download_size: 238270157 dataset_size: 1025824877 configs: - config_name: default data_files: - split: train path: data/train-* ---
kaiwenw/distill-r1-qwen-1.5b-aime-24-4096-with-labels-prm
kaiwenw
2025-05-05T16:25:30Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-05T15:55:42Z
null
--- dataset_info: - config_name: indices_0_7680 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1023956244 num_examples: 7680 download_size: 617586529 dataset_size: 1023956244 - config_name: indices_107520_115200 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1017325551 num_examples: 7680 download_size: 613390391 dataset_size: 1017325551 - config_name: indices_115200_122880 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1020491797 num_examples: 7680 download_size: 615100745 dataset_size: 1020491797 - config_name: indices_15360_23040 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1026219794 num_examples: 7680 download_size: 618093222 dataset_size: 1026219794 - config_name: indices_23040_30720 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1021861659 num_examples: 7680 download_size: 615007459 dataset_size: 1021861659 - config_name: indices_30720_38400 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1020002616 num_examples: 7680 download_size: 613899406 dataset_size: 1020002616 - config_name: indices_38400_46080 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1024811701 num_examples: 7680 download_size: 618375505 dataset_size: 1024811701 - config_name: indices_46080_53760 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1024116214 num_examples: 7680 download_size: 616654955 dataset_size: 1024116214 - config_name: indices_53760_61440 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1014971869 num_examples: 7680 download_size: 611103486 dataset_size: 1014971869 - config_name: indices_61440_69120 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1026457214 num_examples: 7680 download_size: 618610320 dataset_size: 1026457214 - config_name: indices_69120_76800 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1024570847 num_examples: 7680 download_size: 616563479 dataset_size: 1024570847 - config_name: indices_76800_84480 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1028915104 num_examples: 7680 download_size: 620150325 dataset_size: 1028915104 - config_name: indices_7680_15360 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1019043475 num_examples: 7680 download_size: 614058001 dataset_size: 1019043475 - config_name: indices_84480_92160 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1013502838 num_examples: 7680 download_size: 611049399 dataset_size: 1013502838 - config_name: indices_92160_99840 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1015782555 num_examples: 7680 download_size: 612128279 dataset_size: 1015782555 - config_name: indices_99840_107520 features: - name: message_id dtype: string - name: problem dtype: string - name: answer dtype: int64 - name: processed_answer dtype: string - name: responses dtype: string - name: reward dtype: bool - name: prompt_len dtype: int64 - name: response_len dtype: int64 - name: classifier_scores sequence: float64 splits: - name: train num_bytes: 1016733372 num_examples: 7680 download_size: 611771187 dataset_size: 1016733372 configs: - config_name: indices_0_7680 data_files: - split: train path: indices_0_7680/train-* - config_name: indices_107520_115200 data_files: - split: train path: indices_107520_115200/train-* - config_name: indices_115200_122880 data_files: - split: train path: indices_115200_122880/train-* - config_name: indices_15360_23040 data_files: - split: train path: indices_15360_23040/train-* - config_name: indices_23040_30720 data_files: - split: train path: indices_23040_30720/train-* - config_name: indices_30720_38400 data_files: - split: train path: indices_30720_38400/train-* - config_name: indices_38400_46080 data_files: - split: train path: indices_38400_46080/train-* - config_name: indices_46080_53760 data_files: - split: train path: indices_46080_53760/train-* - config_name: indices_53760_61440 data_files: - split: train path: indices_53760_61440/train-* - config_name: indices_61440_69120 data_files: - split: train path: indices_61440_69120/train-* - config_name: indices_69120_76800 data_files: - split: train path: indices_69120_76800/train-* - config_name: indices_76800_84480 data_files: - split: train path: indices_76800_84480/train-* - config_name: indices_7680_15360 data_files: - split: train path: indices_7680_15360/train-* - config_name: indices_84480_92160 data_files: - split: train path: indices_84480_92160/train-* - config_name: indices_92160_99840 data_files: - split: train path: indices_92160_99840/train-* - config_name: indices_99840_107520 data_files: - split: train path: indices_99840_107520/train-* ---
gunnybd01/Shortermpotential_smr
gunnybd01
2025-05-05T15:48:28Z
31
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-05T03:44:36Z
null
--- dataset_info: features: - name: Keys dtype: string - name: Indicators dtype: string - name: Considerations dtype: string - name: ShortTermPCT dtype: float64 splits: - name: train num_bytes: 8175947 num_examples: 3900 download_size: 3079970 dataset_size: 8175947 configs: - config_name: default data_files: - split: train path: data/train-* ---
PHBD/nchs-birth-rates-for-females-by-age-group-united
PHBD
2025-05-05T15:06:05Z
0
0
[ "language:en", "size_categories:n<1K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "hhs", "cdc", "nchs" ]
[]
2025-05-05T15:06:04Z
null
--- language: - en pretty_name: 'NCHS - Birth Rates for Females by Age Group: United States' tags: - hhs - cdc - nchs --- # NCHS - Birth Rates for Females by Age Group: United States ## Description This dataset includes birth rates for females by age group in the United States since 1940. The number of states in the reporting area differ historically. In 1915 (when the birth registration area was established), 10 states and the District of Columbia reported births; by 1933, 48 states and the District of Columbia were reporting births, with the last two states, Alaska and Hawaii, added to the registration area in 1959 and 1960, when these regions gained statehood. Reporting area information is detailed in references 1 and 2 below. Trend lines for 1909–1958 are based on live births adjusted for under-registration; beginning with 1959, trend lines are based on registered live births. ## Dataset Details - **Publisher**: Centers for Disease Control and Prevention - **Temporal Coverage**: 1940/2018 - **Geographic Coverage**: 50 states and District of Columbia - **Last Modified**: 2025-04-21 - **Contact**: National Center for Health Statistics (births@cdc.gov) ## Source Original data can be found at: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm ## Usage You can load this dataset using: ```python from datasets import load_dataset dataset = load_dataset("PHBD/nchs-birth-rates-for-females-by-age-group-united") ``` ## License This dataset is licensed under https://www.usa.gov/government-works
PHBD/efforts-to-sustain-education-and-subsidized-meal-p
PHBD
2025-05-05T15:05:51Z
0
0
[ "language:en", "size_categories:n<1K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "hhs", "cdc", "covid-19" ]
[]
2025-05-05T15:05:50Z
null
--- language: - en pretty_name: Efforts to sustain education and subsidized meal programs during COVID-19-related school closures, United States, March-June 2020 tags: - hhs - cdc - covid-19 --- # Efforts to sustain education and subsidized meal programs during COVID-19-related school closures, United States, March-June 2020 ## Description Data on distance learning and supplemental feeding programs were collected from a stratified sample of 600 school districts. School districts were divided into quartiles based on the percentage of students eligible for free/reduced-price lunch, an indicator of family economic status, as reported by the National Center for Education Statistics (https://nces.ed.gov/ccd/). A simple random sample was taken in each stratum, and sample size per stratum was calculated using 95% confidence interval of 50% ± 10%. Data on the availability and method of delivery of both distance learning and supplemental feeding programs were collected from publicly available announcements on school district websites and their official social media pages (Facebook, Twitter). Google searches were performed for news resources when information was not available from online district sources. ## Dataset Details - **Publisher**: Centers for Disease Control and Prevention - **Last Modified**: 2022-01-12 - **Contact**: Nicole Zviedrite (jmu6@cdc.gov) ## Source Original data can be found at: https://data.cdc.gov/d/jkmz-c8jz ## Usage You can load this dataset using: ```python from datasets import load_dataset dataset = load_dataset("PHBD/efforts-to-sustain-education-and-subsidized-meal-p") ``` ## License This dataset is licensed under https://www.usa.gov/government-works
TheRealPilot638/Falcon3-1B-dvts-4_no_chunking_H200
TheRealPilot638
2025-05-05T14:38:20Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-05T03:30:21Z
null
--- dataset_info: - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-1--agg_strategy--last--evals features: - name: n dtype: 'null' - name: acc_naive dtype: 'null' - name: acc_weighted dtype: 'null' - name: acc_maj dtype: 'null' splits: - name: train num_bytes: 0 num_examples: 0 download_size: 1125 dataset_size: 0 - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-2--agg_strategy--last--evals features: - name: n dtype: 'null' - name: acc_naive dtype: 'null' - name: acc_weighted dtype: 'null' - name: acc_maj dtype: 'null' splits: - name: train num_bytes: 0 num_examples: 0 download_size: 1125 dataset_size: 0 - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-3--agg_strategy--last--evals features: - name: n dtype: 'null' - name: acc_naive dtype: 'null' - name: acc_weighted dtype: 'null' - name: acc_maj dtype: 'null' splits: - name: train num_bytes: 0 num_examples: 0 download_size: 1125 dataset_size: 0 - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-1--seed-0--agg_strategy--last features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: unique_id dtype: string - name: completions sequence: string - name: pred dtype: string - name: completion_tokens dtype: int64 - name: scores sequence: sequence: float64 - name: agg_scores sequence: float64 - name: pred_weighted@1 dtype: string - name: pred_maj@1 dtype: string - name: pred_naive@1 dtype: string - name: pred_weighted@2 dtype: string - name: pred_maj@2 dtype: string - name: pred_naive@2 dtype: string - name: pred_weighted@4 dtype: string - name: pred_maj@4 dtype: string - name: pred_naive@4 dtype: string splits: - name: train num_bytes: 4197703 num_examples: 500 download_size: 1042134 dataset_size: 4197703 - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-1--seed-0--agg_strategy--last--evals features: - name: n dtype: int64 - name: acc_naive dtype: float64 - name: acc_weighted dtype: float64 - name: acc_maj dtype: float64 splits: - name: train num_bytes: 32 num_examples: 1 download_size: 1961 dataset_size: 32 - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-1--seed-1--agg_strategy--last features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: unique_id dtype: string - name: completions sequence: string - name: pred dtype: string - name: completion_tokens dtype: int64 - name: scores sequence: sequence: float64 - name: agg_scores sequence: float64 - name: pred_weighted@1 dtype: string - name: pred_maj@1 dtype: string - name: pred_naive@1 dtype: string - name: pred_weighted@2 dtype: string - name: pred_maj@2 dtype: string - name: pred_naive@2 dtype: string - name: pred_weighted@4 dtype: string - name: pred_maj@4 dtype: string - name: pred_naive@4 dtype: string splits: - name: train num_bytes: 4159527 num_examples: 500 download_size: 1039824 dataset_size: 4159527 - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-1--seed-2--agg_strategy--last features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: unique_id dtype: string - name: completions sequence: string - name: pred dtype: string - name: completion_tokens dtype: int64 - name: scores sequence: sequence: float64 - name: agg_scores sequence: float64 - name: pred_weighted@1 dtype: string - name: pred_maj@1 dtype: string - name: pred_naive@1 dtype: string - name: pred_weighted@2 dtype: string - name: pred_maj@2 dtype: string - name: pred_naive@2 dtype: string - name: pred_weighted@4 dtype: string - name: pred_maj@4 dtype: string - name: pred_naive@4 dtype: string splits: - name: train num_bytes: 4146444 num_examples: 500 download_size: 1046606 dataset_size: 4146444 - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-1--seed-3--agg_strategy--last features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: unique_id dtype: string - name: completions sequence: string - name: pred dtype: string - name: completion_tokens dtype: int64 - name: scores sequence: sequence: float64 - name: agg_scores sequence: float64 - name: pred_weighted@1 dtype: string - name: pred_maj@1 dtype: string - name: pred_naive@1 dtype: string - name: pred_weighted@2 dtype: string - name: pred_maj@2 dtype: string - name: pred_naive@2 dtype: string - name: pred_weighted@4 dtype: string - name: pred_maj@4 dtype: string - name: pred_naive@4 dtype: string splits: - name: train num_bytes: 4168750 num_examples: 500 download_size: 1047608 dataset_size: 4168750 configs: - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-1--agg_strategy--last--evals data_files: - split: train path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-1--agg_strategy--last--evals/train-* - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-2--agg_strategy--last--evals data_files: - split: train path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-2--agg_strategy--last--evals/train-* - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-3--agg_strategy--last--evals data_files: - split: train path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-3--agg_strategy--last--evals/train-* - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-1--seed-0--agg_strategy--last data_files: - split: train path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-1--seed-0--agg_strategy--last/train-* - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-1--seed-0--agg_strategy--last--evals data_files: - split: train path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-1--seed-0--agg_strategy--last--evals/train-* - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-1--seed-1--agg_strategy--last data_files: - split: train path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-1--seed-1--agg_strategy--last/train-* - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-1--seed-2--agg_strategy--last data_files: - split: train path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-1--seed-2--agg_strategy--last/train-* - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-1--seed-3--agg_strategy--last data_files: - split: train path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-1--seed-3--agg_strategy--last/train-* ---
Caesarisnotasalad/data_2
Caesarisnotasalad
2025-05-05T11:04:43Z
104
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-05T11:02:10Z
null
--- dataset_info: features: - name: uuid dtype: string - name: model dtype: string - name: instruction dtype: string - name: task_category dtype: string - name: other_task_category sequence: string - name: difficulty dtype: string - name: intent dtype: string - name: knowledge dtype: string - name: input_quality dtype: string - name: quality_explanation dtype: string - name: llama_guard_2 dtype: string - name: instruct_reward dtype: float64 - name: min_neighbor_distance dtype: float64 - name: repeat_count dtype: int64 - name: min_similar_uuid dtype: string - name: instruction_length dtype: int64 splits: - name: train num_bytes: 1006281037.674 num_examples: 896962 download_size: 479040621 dataset_size: 1006281037.674 configs: - config_name: default data_files: - split: train path: data/train-* ---
Kallia/stock-news-summaries-processed-finetuning
Kallia
2025-05-05T08:38:42Z
0
0
[ "region:us" ]
[]
2025-05-05T08:38:33Z
null
--- dataset_info: features: - name: article dtype: string - name: summary dtype: string splits: - name: train num_bytes: 5894458.695375927 num_examples: 2266 - name: validation num_bytes: 736157.021531945 num_examples: 283 - name: test num_bytes: 738758.2830921285 num_examples: 284 download_size: 4613500 dataset_size: 7369374.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
ParkSY/data_nerf_nerfdepth_normalmap
ParkSY
2025-05-05T06:59:20Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-05T06:59:16Z
null
--- dataset_info: features: - name: input_image dtype: string - name: edit_prompt dtype: string - name: edited_image dtype: string - name: label dtype: int64 - name: depthmap dtype: string - name: normalmap dtype: string splits: - name: train num_bytes: 1024967 num_examples: 3549 download_size: 104131 dataset_size: 1024967 configs: - config_name: default data_files: - split: train path: data/train-* ---
zhengbang0707/REFUEL_it2_mask1_v2_llama3_test
zhengbang0707
2025-05-05T05:45:17Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-05T05:45:16Z
null
--- dataset_info: features: - name: chosen list: - name: content dtype: string - name: role dtype: string - name: reject list: - name: content dtype: string - name: role dtype: string - name: chosen_token sequence: int64 - name: reject_token sequence: int64 - name: chosen_mask sequence: int64 - name: chosen_mask_user sequence: int64 - name: reject_mask sequence: int64 - name: reject_mask_user sequence: int64 - name: chosen_reward_list sequence: float64 - name: reject_reward_list sequence: float64 - name: chosen_reward_list_new sequence: float64 - name: reject_reward_list_new sequence: float64 - name: chosen_reward dtype: float64 - name: reject_reward dtype: float64 splits: - name: train num_bytes: 53174161 num_examples: 500 download_size: 2589330 dataset_size: 53174161 configs: - config_name: default data_files: - split: train path: data/train-* ---
VGraf/paraphrase_train_dev_8maxturns_truncated2048
VGraf
2025-05-05T05:09:58Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-05T05:09:50Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: id dtype: string - name: source dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 129881181 num_examples: 9281 download_size: 61734145 dataset_size: 129881181 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/openthoughts2_math_100k
mlfoundations-dev
2025-05-05T04:02:03Z
0
0
[ "region:us" ]
[]
2025-05-05T04:01:30Z
null
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: _domain dtype: string - name: system dtype: string - name: problem dtype: string - name: reasoning dtype: string - name: deepseek_solution dtype: string - name: question dtype: string - name: source dtype: string - name: id dtype: int64 - name: extracted_instruction dtype: string splits: - name: train num_bytes: 1470156799.5440912 num_examples: 100000 download_size: 647386299 dataset_size: 1470156799.5440912 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.8_num-company_3_dataset_0_for_gen_5
HungVu2003
2025-05-05T01:55:24Z
0
0
[ "region:us" ]
[]
2025-05-05T01:55:23Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 6719782 num_examples: 12498 download_size: 2631930 dataset_size: 6719782 configs: - config_name: default data_files: - split: train path: data/train-* ---
singhjagpreet/Gurbani-BaniDB
singhjagpreet
2025-05-04T23:53:30Z
0
0
[ "region:us" ]
[]
2025-05-04T23:53:29Z
null
--- dataset_info: features: - name: shabad_id dtype: int64 - name: source_uni dtype: string - name: source_eng dtype: string - name: writer dtype: string - name: ang dtype: int64 - name: verse_id dtype: int64 - name: verse dtype: string - name: english_meaning dtype: string - name: punjabi_meaning dtype: string splits: - name: train num_bytes: 38044 num_examples: 72 download_size: 19182 dataset_size: 38044 configs: - config_name: default data_files: - split: train path: data/train-* ---
averntech/AvernK1Bolt-Itimidation
averntech
2025-05-04T22:41:00Z
0
0
[ "task_categories:text-classification", "task_categories:text-generation", "license:apache-2.0", "region:us" ]
[ "text-classification", "text-generation" ]
2025-05-04T16:54:16Z
null
--- license: apache-2.0 task_categories: - text-classification - text-generation pretty_name: 'Avern Itimidation (K1-Bolt) ' --- # Avern Itimidation (K1-Bolt) The founding and foremost dataset used in all Avern K1 series models. Used to give the base a personality of Avern before adding the other additional datasets. Will be different for different K1-Series Models (eg. K1-Ultra)
GitBag/block-q-sharp_ds-distilled-qwen-1.5b-ppo-kl-1e-4-ec-0.001-16384_actor_hmmt-feb-24_eval
GitBag
2025-05-04T22:01:33Z
0
0
[ "region:us" ]
[]
2025-05-04T22:01:31Z
null
--- dataset_info: features: - name: problem dtype: string - name: answer dtype: string - name: response_0 dtype: string - name: response_1 dtype: string - name: response_2 dtype: string - name: response_3 dtype: string - name: response_4 dtype: string - name: response_5 dtype: string - name: response_6 dtype: string - name: response_7 dtype: string - name: response_8 dtype: string - name: response_9 dtype: string - name: response_10 dtype: string - name: response_11 dtype: string - name: response_12 dtype: string - name: response_13 dtype: string - name: response_14 dtype: string - name: response_15 dtype: string - name: response_16 dtype: string - name: response_17 dtype: string - name: response_18 dtype: string - name: response_19 dtype: string - name: response_20 dtype: string - name: response_21 dtype: string - name: response_22 dtype: string - name: response_23 dtype: string - name: response_24 dtype: string - name: response_25 dtype: string - name: response_26 dtype: string - name: response_27 dtype: string - name: response_28 dtype: string - name: response_29 dtype: string - name: response_30 dtype: string - name: response_31 dtype: string - name: eval_0 dtype: float64 - name: eval_1 dtype: float64 - name: eval_2 dtype: float64 - name: eval_3 dtype: float64 - name: eval_4 dtype: float64 - name: eval_5 dtype: float64 - name: eval_6 dtype: float64 - name: eval_7 dtype: float64 - name: eval_8 dtype: float64 - name: eval_9 dtype: float64 - name: eval_10 dtype: float64 - name: eval_11 dtype: float64 - name: eval_12 dtype: float64 - name: eval_13 dtype: float64 - name: eval_14 dtype: float64 - name: eval_15 dtype: float64 - name: eval_16 dtype: float64 - name: eval_17 dtype: float64 - name: eval_18 dtype: float64 - name: eval_19 dtype: float64 - name: eval_20 dtype: float64 - name: eval_21 dtype: float64 - name: eval_22 dtype: float64 - name: eval_23 dtype: float64 - name: eval_24 dtype: float64 - name: eval_25 dtype: float64 - name: eval_26 dtype: float64 - name: eval_27 dtype: float64 - name: eval_28 dtype: float64 - name: eval_29 dtype: float64 - name: eval_30 dtype: float64 - name: eval_31 dtype: float64 splits: - name: train num_bytes: 39694870 num_examples: 30 download_size: 14183542 dataset_size: 39694870 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.4_num-company_2_dataset_0_for_gen_1_v2
HungVu2003
2025-05-04T21:22:54Z
0
0
[ "region:us" ]
[]
2025-05-04T21:22:53Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 2915606 num_examples: 15000 download_size: 1578395 dataset_size: 2915606 configs: - config_name: default data_files: - split: train path: data/train-* ---
Roshal/AI4EO_DatasetsDiversity_Evals
Roshal
2025-05-04T19:19:38Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-05-04T18:47:03Z
null
--- license: apache-2.0 ---
user074/concat_cleaned_gsm8k_math_8
user074
2025-05-04T18:21:42Z
0
0
[ "region:us" ]
[]
2025-05-04T17:51:25Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 92211153 num_examples: 14310 download_size: 20119888 dataset_size: 92211153 configs: - config_name: default data_files: - split: train path: data/train-* ---
jumava/adv-ele
jumava
2025-05-04T18:02:14Z
0
0
[ "region:us" ]
[]
2025-05-04T18:02:12Z
null
--- dataset_info: features: - name: ADV dtype: string - name: ELE dtype: string splits: - name: train num_bytes: 430918.56140350876 num_examples: 1732 - name: test num_bytes: 107978.43859649122 num_examples: 434 download_size: 296569 dataset_size: 538897.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
mteb/VideoRetrieval
mteb
2025-05-04T16:11:43Z
14
0
[ "task_categories:text-retrieval", "multilinguality:monolingual", "language:cmn", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2203.03367", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-retrieval" ]
2024-11-28T10:51:02Z
null
--- language: - cmn multilinguality: monolingual task_categories: - text-retrieval task_ids: [] dataset_info: - config_name: corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: dev num_bytes: 8580491 num_examples: 100930 download_size: 7277662 dataset_size: 8580491 - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: dev num_bytes: 27968 num_examples: 1000 download_size: 17445 dataset_size: 27968 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: dev num_bytes: 34156 num_examples: 1000 download_size: 29116 dataset_size: 34156 configs: - config_name: corpus data_files: - split: dev path: corpus/dev-* - config_name: default data_files: - split: dev path: data/dev-* - config_name: queries data_files: - split: dev path: queries/dev-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">VideoRetrieval</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> VideoRetrieval | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | None | | Reference | https://arxiv.org/abs/2203.03367 | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["VideoRetrieval"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{long2022multicprmultidomainchinese, archiveprefix = {arXiv}, author = {Dingkun Long and Qiong Gao and Kuan Zou and Guangwei Xu and Pengjun Xie and Ruijie Guo and Jian Xu and Guanjun Jiang and Luxi Xing and Ping Yang}, eprint = {2203.03367}, primaryclass = {cs.IR}, title = {Multi-CPR: A Multi Domain Chinese Dataset for Passage Retrieval}, url = {https://arxiv.org/abs/2203.03367}, year = {2022}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("VideoRetrieval") desc_stats = task.metadata.descriptive_stats ``` ```json { "dev": { "num_samples": 101930, "number_of_characters": 3141126, "num_documents": 100930, "min_document_length": 1, "average_document_length": 31.048855642524522, "max_document_length": 5869, "unique_documents": 100930, "num_queries": 1000, "min_query_length": 2, "average_query_length": 7.365, "max_query_length": 19, "unique_queries": 1000, "none_queries": 0, "num_relevant_docs": 1000, "min_relevant_docs_per_query": 1, "average_relevant_docs_per_query": 1.0, "max_relevant_docs_per_query": 1, "unique_relevant_docs": 1000, "num_instructions": null, "min_instruction_length": null, "average_instruction_length": null, "max_instruction_length": null, "unique_instructions": null, "num_top_ranked": null, "min_top_ranked_per_query": null, "average_top_ranked_per_query": null, "max_top_ranked_per_query": null } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
mteb/GerDaLIRSmall
mteb
2025-05-04T16:09:30Z
48
0
[ "task_categories:text-retrieval", "task_ids:document-retrieval", "annotations_creators:derived", "multilinguality:monolingual", "language:deu", "license:mit", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-retrieval" ]
2024-03-30T07:42:00Z
null
--- annotations_creators: - derived language: - deu license: mit multilinguality: monolingual task_categories: - text-retrieval task_ids: - document-retrieval config_names: - corpus tags: - mteb - text dataset_info: - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: float64 splits: - name: test num_examples: 14320 - config_name: corpus features: - name: _id dtype: string - name: title dtype: string - name: text dtype: string splits: - name: corpus num_examples: 9969 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: queries num_examples: 12234 configs: - config_name: default data_files: - split: test path: qrels/test.jsonl - config_name: corpus data_files: - split: corpus path: corpus.jsonl - config_name: queries data_files: - split: queries path: queries.jsonl --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">GerDaLIRSmall</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> The dataset consists of documents, passages and relevance labels in German. In contrast to the original dataset, only documents that have corresponding queries in the query set are chosen to create a smaller corpus for evaluation purposes. | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Legal, Written | | Reference | https://github.com/lavis-nlp/GerDaLIR | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["GerDaLIRSmall"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{wrzalik-krechel-2021-gerdalir, abstract = {We present GerDaLIR, a German Dataset for Legal Information Retrieval based on case documents from the open legal information platform Open Legal Data. The dataset consists of 123K queries, each labelled with at least one relevant document in a collection of 131K case documents. We conduct several baseline experiments including BM25 and a state-of-the-art neural re-ranker. With our dataset, we aim to provide a standardized benchmark for German LIR and promote open research in this area. Beyond that, our dataset comprises sufficient training data to be used as a downstream task for German or multilingual language models.}, address = {Punta Cana, Dominican Republic}, author = {Wrzalik, Marco and Krechel, Dirk}, booktitle = {Proceedings of the Natural Legal Language Processing Workshop 2021}, month = nov, pages = {123--128}, publisher = {Association for Computational Linguistics}, title = {{G}er{D}a{LIR}: A {G}erman Dataset for Legal Information Retrieval}, url = {https://aclanthology.org/2021.nllp-1.13}, year = {2021}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("GerDaLIRSmall") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 22203, "number_of_characters": 209081381, "num_documents": 9969, "min_document_length": 151, "average_document_length": 19707.823653325308, "max_document_length": 427235, "unique_documents": 9969, "num_queries": 12234, "min_query_length": 150, "average_query_length": 1031.0680889324833, "max_query_length": 23560, "unique_queries": 12234, "none_queries": 0, "num_relevant_docs": 14320, "min_relevant_docs_per_query": 1, "average_relevant_docs_per_query": 1.1705084191597188, "max_relevant_docs_per_query": 9, "unique_relevant_docs": 9969, "num_instructions": null, "min_instruction_length": null, "average_instruction_length": null, "max_instruction_length": null, "unique_instructions": null, "num_top_ranked": null, "min_top_ranked_per_query": null, "average_top_ranked_per_query": null, "max_top_ranked_per_query": null } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
mteb/multilingual-scala-classification
mteb
2025-05-04T16:08:12Z
112
1
[ "task_categories:text-classification", "task_ids:acceptability-classification", "annotations_creators:human-annotated", "multilinguality:multilingual", "language:dan", "language:nno", "language:nob", "language:swe", "license:cc-by-sa-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2024-04-29T20:11:40Z
null
--- annotations_creators: - human-annotated language: - dan - nno - nob - swe license: cc-by-sa-4.0 multilinguality: multilingual task_categories: - text-classification task_ids: - acceptability-classification dataset_info: - config_name: Danish features: - name: text dtype: string - name: corruption_type dtype: string - name: label dtype: string splits: - name: train num_bytes: 139194 num_examples: 1024 - name: test num_bytes: 281517 num_examples: 2048 - name: full_train num_bytes: 733506 num_examples: 5342 - name: val num_bytes: 32942 num_examples: 256 download_size: 700593 dataset_size: 1187159 - config_name: Norwegian_b features: - name: text dtype: string - name: corruption_type dtype: string - name: label dtype: string splits: - name: train num_bytes: 126028 num_examples: 1024 - name: test num_bytes: 258103 num_examples: 2048 - name: full_train num_bytes: 3221649 num_examples: 25946 - name: val num_bytes: 31302 num_examples: 256 download_size: 2161548 dataset_size: 3637082 - config_name: Norwegian_n features: - name: text dtype: string - name: corruption_type dtype: string - name: label dtype: string splits: - name: train num_bytes: 136251 num_examples: 1024 - name: test num_bytes: 268761 num_examples: 2048 - name: full_train num_bytes: 3062138 num_examples: 22800 - name: val num_bytes: 33910 num_examples: 256 download_size: 2088966 dataset_size: 3501060 - config_name: Swedish features: - name: text dtype: string - name: corruption_type dtype: string - name: label dtype: string splits: - name: train num_bytes: 135999 num_examples: 1024 - name: test num_bytes: 262897 num_examples: 2048 - name: full_train num_bytes: 1014513 num_examples: 7446 - name: val num_bytes: 36681 num_examples: 256 download_size: 807624 dataset_size: 1450090 configs: - config_name: Danish data_files: - split: train path: Danish/train-* - split: test path: Danish/test-* - split: full_train path: Danish/full_train-* - split: val path: Danish/val-* - config_name: Norwegian_b data_files: - split: train path: Norwegian_b/train-* - split: test path: Norwegian_b/test-* - split: full_train path: Norwegian_b/full_train-* - split: val path: Norwegian_b/val-* - config_name: Norwegian_n data_files: - split: train path: Norwegian_n/train-* - split: test path: Norwegian_n/test-* - split: full_train path: Norwegian_n/full_train-* - split: val path: Norwegian_n/val-* - config_name: Swedish data_files: - split: train path: Swedish/train-* - split: test path: Swedish/test-* - split: full_train path: Swedish/full_train-* - split: val path: Swedish/val-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">ScalaClassification</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> ScaLa a linguistic acceptability dataset for the mainland Scandinavian languages automatically constructed from dependency annotations in Universal Dependencies Treebanks. Published as part of 'ScandEval: A Benchmark for Scandinavian Natural Language Processing' | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Fiction, News, Non-fiction, Blog, Spoken, Web, Written | | Reference | https://aclanthology.org/2023.nodalida-1.20/ | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["ScalaClassification"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{nielsen-2023-scandeval, address = {T{\'o}rshavn, Faroe Islands}, author = {Nielsen, Dan}, booktitle = {Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)}, editor = {Alum{\"a}e, Tanel and Fishel, Mark}, month = may, pages = {185--201}, publisher = {University of Tartu Library}, title = {{S}cand{E}val: A Benchmark for {S}candinavian Natural Language Processing}, url = {https://aclanthology.org/2023.nodalida-1.20}, year = {2023}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("ScalaClassification") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 8192, "number_of_characters": 839257, "number_texts_intersect_with_train": 0, "min_text_length": 13, "average_text_length": 102.4483642578125, "max_text_length": 613, "unique_text": 8192, "unique_labels": 2, "labels": { "0": { "count": 4096 }, "1": { "count": 4096 } }, "hf_subset_descriptive_stats": { "Danish": { "num_samples": 2048, "number_of_characters": 224132, "number_texts_intersect_with_train": 0, "min_text_length": 13, "average_text_length": 109.439453125, "max_text_length": 443, "unique_text": 2048, "unique_labels": 2, "labels": { "0": { "count": 1024 }, "1": { "count": 1024 } } }, "Norwegian_b": { "num_samples": 2048, "number_of_characters": 201596, "number_texts_intersect_with_train": 0, "min_text_length": 18, "average_text_length": 98.435546875, "max_text_length": 397, "unique_text": 2048, "unique_labels": 2, "labels": { "1": { "count": 1024 }, "0": { "count": 1024 } } }, "Norwegian_n": { "num_samples": 2048, "number_of_characters": 212059, "number_texts_intersect_with_train": 0, "min_text_length": 18, "average_text_length": 103.54443359375, "max_text_length": 349, "unique_text": 2048, "unique_labels": 2, "labels": { "1": { "count": 1024 }, "0": { "count": 1024 } } }, "Swedish": { "num_samples": 2048, "number_of_characters": 201470, "number_texts_intersect_with_train": 0, "min_text_length": 17, "average_text_length": 98.3740234375, "max_text_length": 613, "unique_text": 2048, "unique_labels": 2, "labels": { "1": { "count": 1024 }, "0": { "count": 1024 } } } } }, "train": { "num_samples": 4096, "number_of_characters": 421198, "number_texts_intersect_with_train": null, "min_text_length": 14, "average_text_length": 102.83154296875, "max_text_length": 402, "unique_text": 4096, "unique_labels": 2, "labels": { "1": { "count": 2048 }, "0": { "count": 2048 } }, "hf_subset_descriptive_stats": { "Danish": { "num_samples": 1024, "number_of_characters": 110271, "number_texts_intersect_with_train": null, "min_text_length": 14, "average_text_length": 107.6865234375, "max_text_length": 392, "unique_text": 1024, "unique_labels": 2, "labels": { "1": { "count": 512 }, "0": { "count": 512 } } }, "Norwegian_b": { "num_samples": 1024, "number_of_characters": 97878, "number_texts_intersect_with_train": null, "min_text_length": 18, "average_text_length": 95.583984375, "max_text_length": 350, "unique_text": 1024, "unique_labels": 2, "labels": { "1": { "count": 512 }, "0": { "count": 512 } } }, "Norwegian_n": { "num_samples": 1024, "number_of_characters": 107913, "number_texts_intersect_with_train": null, "min_text_length": 20, "average_text_length": 105.3837890625, "max_text_length": 402, "unique_text": 1024, "unique_labels": 2, "labels": { "1": { "count": 512 }, "0": { "count": 512 } } }, "Swedish": { "num_samples": 1024, "number_of_characters": 105136, "number_texts_intersect_with_train": null, "min_text_length": 19, "average_text_length": 102.671875, "max_text_length": 326, "unique_text": 1024, "unique_labels": 2, "labels": { "1": { "count": 512 }, "0": { "count": 512 } } } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
nhagar/culturax_urls
nhagar
2025-05-04T16:02:06Z
786
0
[ "task_categories:text-generation", "size_categories:1B<n<10B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-generation" ]
2025-04-20T18:58:48Z
null
--- task_categories: - text-generation size_categories: - 1B<n<10B --- # Dataset Card for culturax_urls This dataset provides the URLs and top-level domains associated with training records in [uonlp/CulturaX](https://huggingface.co/datasets/uonlp/CulturaX). It is part of a [collection of datasets](https://huggingface.co/collections/nhagar/llm-urls-neurips-681698adac0862be6c65c72b) curated to make exploring LLM training datasets more straightforward and accessible. ## Dataset Details ### Dataset Description This dataset was created by downloading the source data, extracting URLs and top-level domains, and retaining only those record identifiers. In doing so, it allows researchers and practitioners to explore the contents of these training datasets without having to manage terabytes of raw text. You can explore the pipeline used to construct this dataset on [GitHub](https://github.com/NHagar/cc-genealogy). - **Curated by:** [Nick Hagar](https://huggingface.co/nhagar) and [Jack Bandy](https://huggingface.co/jackbandy) - **License:** Same as source dataset ### Dataset Sources - **Repository:** [uonlp/CulturaX](https://huggingface.co/datasets/uonlp/CulturaX) ## Uses This dataset is intended to allow researchers and practitioners to analyze the contents of large LLM training datasets without having to wade through terabytes of unwieldy text data. ### Direct Use The main use case for these data is to explore the contents of LLM training datasets at scale. This might involve: - Identifying the most-used websites - Categorizing URLs to understand domain- or topic-level dataset composition - Comparing URLs across datasets - Digging into inclusion/exclusion patterns for a particular website ### Out-of-Scope Use This dataset is not intend to replicate or replace the source data, nor is it intended to enable large-scale scraping of the URLs listed. For source text, refer to the original dataset. ## Dataset Structure This dataset contains every record with a URL from the source dataset. It contains two columns: - `url`: The raw URL associated with each record - `domain`: The top-level domain for each URL, extracted with `tldextract` ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed]
nhagar/infimm-webmath-40b_urls
nhagar
2025-05-04T15:59:41Z
2
0
[ "task_categories:text-generation", "language:en", "language:zh", "license:odc-by", "size_categories:10M<n<100M", "region:us" ]
[ "text-generation" ]
2025-04-27T23:15:20Z
null
--- license: odc-by task_categories: - text-generation language: - en - zh size_categories: - 10M<n<100M --- # Dataset Card for infimm-webmath-40b_urls This dataset provides the URLs and top-level domains associated with training records in [Infi-MM/InfiMM-WebMath-40B](https://huggingface.co/datasets/Infi-MM/InfiMM-WebMath-40B). It is part of a [collection of datasets](https://huggingface.co/collections/nhagar/llm-urls-neurips-681698adac0862be6c65c72b) curated to make exploring LLM training datasets more straightforward and accessible. ## Dataset Details ### Dataset Description This dataset was created by downloading the source data, extracting URLs and top-level domains, and retaining only those record identifiers. In doing so, it allows researchers and practitioners to explore the contents of these training datasets without having to manage terabytes of raw text. You can explore the pipeline used to construct this dataset on [GitHub](https://github.com/NHagar/cc-genealogy). - **Curated by:** [Nick Hagar](https://huggingface.co/nhagar) and [Jack Bandy](https://huggingface.co/jackbandy) - **License:** Same as source dataset ### Dataset Sources - **Repository:** [Infi-MM/InfiMM-WebMath-40B](https://huggingface.co/datasets/Infi-MM/InfiMM-WebMath-40B) ## Uses This dataset is intended to allow researchers and practitioners to analyze the contents of large LLM training datasets without having to wade through terabytes of unwieldy text data. ### Direct Use The main use case for these data is to explore the contents of LLM training datasets at scale. This might involve: - Identifying the most-used websites - Categorizing URLs to understand domain- or topic-level dataset composition - Comparing URLs across datasets - Digging into inclusion/exclusion patterns for a particular website ### Out-of-Scope Use This dataset is not intend to replicate or replace the source data, nor is it intended to enable large-scale scraping of the URLs listed. For source text, refer to the original dataset. ## Dataset Structure This dataset contains every record with a URL from the source dataset. It contains two columns: - `url`: The raw URL associated with each record - `domain`: The top-level domain for each URL, extracted with `tldextract` ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed]
arjunsama/tts_orpheus_valorant_viper_v2.5
arjunsama
2025-05-04T09:29:59Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T09:29:49Z
null
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string splits: - name: train num_bytes: 77510524.0 num_examples: 445 download_size: 67023534 dataset_size: 77510524.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
Hkang/summarize_sft-test_lm-pythia1b-oai-summary-PPO-0KL-newrm_12K_seed-42_numex-250
Hkang
2025-05-04T06:48:34Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T06:48:33Z
null
--- dataset_info: features: - name: id dtype: string - name: subreddit dtype: string - name: title dtype: string - name: post dtype: string - name: summary dtype: string - name: query_input_ids sequence: int64 - name: query_attention_mask sequence: int64 - name: query dtype: string - name: reference_response dtype: string - name: reference_response_input_ids sequence: int64 - name: reference_response_attention_mask sequence: int64 - name: reference_response_token_len dtype: int64 - name: query_reference_response dtype: string - name: query_reference_response_input_ids sequence: int64 - name: query_reference_response_attention_mask sequence: int64 - name: query_reference_response_token_response_label sequence: int64 - name: query_reference_response_token_len dtype: int64 - name: model_response dtype: string splits: - name: test num_bytes: 6868072 num_examples: 250 download_size: 1158476 dataset_size: 6868072 configs: - config_name: default data_files: - split: test path: data/test-* ---
spiralworks/openreview-iclr-decision-2025
spiralworks
2025-05-04T04:20:01Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-04T04:19:34Z
null
--- dataset_info: features: - name: forum_id dtype: string - name: forum_title dtype: string - name: forum_authors sequence: string - name: forum_abstract dtype: string - name: forum_keywords sequence: string - name: forum_decision dtype: string - name: forum_pdf_url dtype: string - name: forum_url dtype: string - name: note_id dtype: string - name: note_type dtype: string - name: note_created dtype: int64 - name: note_replyto dtype: string - name: note_readers sequence: string - name: note_signatures sequence: string - name: venue dtype: string - name: year dtype: string - name: note_text dtype: string splits: - name: train num_bytes: 1572432705 num_examples: 381588 download_size: 452272080 dataset_size: 1572432705 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_0.5_alpha_0.6_num-company_3_dataset_0_for_gen_13
HungVu2003
2025-05-03T16:41:46Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T16:41:44Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 7304720 num_examples: 12500 download_size: 1973081 dataset_size: 7304720 configs: - config_name: default data_files: - split: train path: data/train-* ---
roaminwind/NUMINAMATH_MOMENTUM_5000_complete
roaminwind
2025-05-03T12:08:00Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T12:06:17Z
null
--- dataset_info: features: - name: index dtype: int64 - name: query dtype: string - name: solution dtype: string - name: reasoning_text dtype: string - name: final_answer dtype: string - name: num_steps dtype: int64 - name: max_momentum dtype: float64 splits: - name: train num_bytes: 17184247 num_examples: 5000 download_size: 8155710 dataset_size: 17184247 configs: - config_name: default data_files: - split: train path: data/train-* ---
chiyuanhsiao/text_L2-regular-14_trivia_qa-audio-score
chiyuanhsiao
2025-05-03T06:43:29Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T06:43:25Z
null
--- dataset_info: features: - name: question dtype: string - name: question_id dtype: string - name: question_source dtype: string - name: entity_pages sequence: - name: doc_source dtype: string - name: filename dtype: string - name: title dtype: string - name: wiki_context dtype: string - name: search_results sequence: - name: description dtype: string - name: filename dtype: string - name: rank dtype: int32 - name: title dtype: string - name: url dtype: string - name: search_context dtype: string - name: answer struct: - name: aliases sequence: string - name: normalized_aliases sequence: string - name: matched_wiki_entity_name dtype: string - name: normalized_matched_wiki_entity_name dtype: string - name: normalized_value dtype: string - name: type dtype: string - name: value dtype: string - name: my_prediction_text dtype: string - name: text_score dtype: int64 splits: - name: validation num_bytes: 74599653 num_examples: 1000 download_size: 31218183 dataset_size: 74599653 configs: - config_name: default data_files: - split: validation path: data/validation-* ---
AlSamCur123/LesserShareGPTNotWorking
AlSamCur123
2025-05-03T03:29:56Z
54
0
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-08T01:01:20Z
null
--- license: apache-2.0 ---
Aravindh25/eval_trossen_pick_tshirt_3cam_v2m5V5
Aravindh25
2025-05-03T01:53:51Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-05-03T01:52:31Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "trossen_ai_solo", "total_episodes": 5, "total_frames": 8942, "total_tasks": 1, "total_videos": 15, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:5" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_joint_0", "main_joint_1", "main_joint_2", "main_joint_3", "main_joint_4", "main_joint_5", "main_joint_6" ] }, "observation.state": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_joint_0", "main_joint_1", "main_joint_2", "main_joint_3", "main_joint_4", "main_joint_5", "main_joint_6" ] }, "observation.images.cam_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_high": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_front": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
VGraf/mt_dependent_user_2_turns
VGraf
2025-05-03T00:35:28Z
41
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-09T15:30:17Z
null
--- dataset_info: features: - name: conv list: - name: user dtype: string - name: sys dtype: string - name: id dtype: string - name: do_inference dtype: bool - name: inst dtype: string - name: key dtype: int64 - name: prompt dtype: string - name: entity dtype: string - name: id dtype: int64 splits: - name: train num_bytes: 203495 num_examples: 600 download_size: 83466 dataset_size: 203495 configs: - config_name: default data_files: - split: train path: data/train-* - config_name: user_reference data_files: - split: test path: data/train-* ---
cchoi1/kodcode-complete_1000_qwen7b_att_iter0_att40_sol5_dedup_dpo_10000
cchoi1
2025-05-03T00:28:33Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T00:28:30Z
null
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: task_id dtype: string splits: - name: train num_bytes: 22153857.309409436 num_examples: 5662 - name: test num_bytes: 5540420.690590562 num_examples: 1416 download_size: 7167234 dataset_size: 27694278.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
tacab/Asr_agri_somalii
tacab
2025-05-02T17:59:34Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-02T17:55:53Z
null
--- dataset_info: features: - name: audio dtype: audio - name: cleaned_text dtype: string splits: - name: train num_bytes: 597094141.956 num_examples: 2778 download_size: 397302337 dataset_size: 597094141.956 configs: - config_name: default data_files: - split: train path: data/train-* ---