|
|
|
|
|
import cv2 |
|
import numpy as np |
|
from pathlib import Path |
|
from ultralytics import YOLO |
|
from collections import defaultdict |
|
import time |
|
import json |
|
|
|
|
|
|
|
INPUT_VIDEOS_DIR = "datasets/usplf/tracking/pen2_cam2" |
|
OUTPUT_DIR = "datasets/usplf/tracking/detected_json/pen2_cam2" |
|
|
|
POLYGON_VERTICES = np.array([[179, 3], [844, 8], [1151, 137], [1151, 316], [1135, 486], [995, 531],[801, 592],[278, 711], [167, 325]]) |
|
CONF_THRESH = 0.55 |
|
|
|
|
|
|
|
SHOW_MASK_OVERLAY = True |
|
MASK_ALPHA = 0.3 |
|
BOX_COLOR = (0, 255, 0) |
|
TEXT_COLOR = (255, 255, 255) |
|
FONT_SCALE = 0.8 |
|
THICKNESS = 2 |
|
|
|
def create_mask(frame_shape): |
|
mask = np.zeros(frame_shape[:2], dtype=np.uint8) |
|
cv2.fillPoly(mask, [POLYGON_VERTICES], 255) |
|
return mask |
|
|
|
def draw_visuals_detection(frame, mask, detections, frame_count, fps): |
|
if SHOW_MASK_OVERLAY: |
|
overlay = frame.copy() |
|
cv2.fillPoly(overlay, [POLYGON_VERTICES], (0, 100, 0)) |
|
cv2.addWeighted(overlay, MASK_ALPHA, frame, 1 - MASK_ALPHA, 0, frame) |
|
|
|
for det in detections: |
|
x, y, w, h = det['bbox'] |
|
conf = det['confidence'] |
|
|
|
|
|
cv2.rectangle( |
|
frame, |
|
(int(x - w / 2), int(y - h / 2)), |
|
(int(x + w / 2), int(y + h / 2)), |
|
BOX_COLOR, THICKNESS |
|
) |
|
|
|
|
|
cv2.putText(frame, f"{conf:.2f}", |
|
(int(x - w / 2), int(y - h / 2) - 10), |
|
cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS) |
|
|
|
|
|
cv2.putText(frame, f"Frame: {frame_count}", (10, 30), |
|
cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS) |
|
cv2.putText(frame, f"FPS: {fps:.1f}", (10, 60), |
|
cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS) |
|
cv2.putText(frame, f"Pigs: {len(detections)}", (10, 90), |
|
cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS) |
|
|
|
return frame |
|
|
|
|
|
def process_video(video_path, output_path): |
|
model = YOLO("trained_model_weight/pig_detect/yolo/pig_detect_pen2_best.pt") |
|
cap = cv2.VideoCapture(str(video_path)) |
|
frame_count = 0 |
|
results_list = [] |
|
fps_history = [] |
|
|
|
|
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
mask = create_mask((frame_height, frame_width)) |
|
|
|
win_name = f"Pig Detection - {video_path.name}" |
|
cv2.namedWindow(win_name, cv2.WINDOW_NORMAL) |
|
|
|
while cap.isOpened(): |
|
start_time = time.time() |
|
success, frame = cap.read() |
|
if not success: |
|
break |
|
|
|
masked_frame = cv2.bitwise_and(frame, frame, mask=mask) |
|
|
|
|
|
results = model.predict( |
|
masked_frame, |
|
conf=CONF_THRESH, |
|
verbose=False |
|
) |
|
|
|
detections = [] |
|
if results[0].boxes is not None: |
|
boxes = results[0].boxes.xywh.cpu().numpy() |
|
scores = results[0].boxes.conf.cpu().numpy() |
|
|
|
for box, score in zip(boxes, scores): |
|
x, y, w, h = box |
|
detections.append({"confidence": float(score), "bbox": [x, y, w, h]}) |
|
results_list.append({ |
|
"frame_id": frame_count, |
|
"frame_width": frame_width, |
|
"frame_height": frame_height, |
|
"confidence": float(score), |
|
"bbox": [float(x), float(y), float(w), float(h)], |
|
"area": float(w * h) |
|
}) |
|
|
|
|
|
processing_time = time.time() - start_time |
|
fps = 1 / processing_time |
|
fps_history.append(fps) |
|
if len(fps_history) > 10: |
|
fps = np.mean(fps_history[-10:]) |
|
|
|
|
|
display_frame = draw_visuals_detection(frame.copy(), mask, detections, frame_count, fps) |
|
cv2.imshow(win_name, display_frame) |
|
if cv2.waitKey(1) & 0xFF == ord('q'): |
|
break |
|
|
|
frame_count += 1 |
|
|
|
cap.release() |
|
cv2.destroyWindow(win_name) |
|
|
|
|
|
output_file = output_path / f"{video_path.stem}_detection.json" |
|
with open(output_file, 'w') as f: |
|
json.dump(results_list, f, indent=2) |
|
|
|
if __name__ == "__main__": |
|
input_dir = Path(INPUT_VIDEOS_DIR) |
|
output_dir = Path(OUTPUT_DIR) |
|
output_dir.mkdir(exist_ok=True) |
|
|
|
for video_file in input_dir.glob("*.mp4"): |
|
print(f"Processing {video_file.name}...") |
|
process_video(video_file, output_dir) |
|
cv2.destroyAllWindows() |