import cv2 import numpy as np from pathlib import Path from ultralytics import YOLO from collections import defaultdict import time import json # Configuration INPUT_VIDEOS_DIR = "datasets/usplf/tracking/pen2_cam2" # Directory containing input videos OUTPUT_DIR = "datasets/usplf/tracking/detected_json/pen2_cam2" # POLYGON_VERTICES = np.array([[89,139], [325,57], [594, 6], [1128, 29], [1129, 364], [1031, 717],[509, 653],[287, 583], [100, 506],[74, 321]]) # Pen2 Cam1 polygon coordinates POLYGON_VERTICES = np.array([[179, 3], [844, 8], [1151, 137], [1151, 316], [1135, 486], [995, 531],[801, 592],[278, 711], [167, 325]]) # Pen2 Cam2 polygon coordinates CONF_THRESH = 0.55 # Confidence threshold # TRACKER_CONFIG = "custom_bytetrack.yaml" # Built-in tracker config # Visualization settings SHOW_MASK_OVERLAY = True MASK_ALPHA = 0.3 # Transparency for polygon mask BOX_COLOR = (0, 255, 0) # Green TEXT_COLOR = (255, 255, 255) # White FONT_SCALE = 0.8 THICKNESS = 2 def create_mask(frame_shape): mask = np.zeros(frame_shape[:2], dtype=np.uint8) cv2.fillPoly(mask, [POLYGON_VERTICES], 255) return mask def draw_visuals_detection(frame, mask, detections, frame_count, fps): if SHOW_MASK_OVERLAY: overlay = frame.copy() cv2.fillPoly(overlay, [POLYGON_VERTICES], (0, 100, 0)) cv2.addWeighted(overlay, MASK_ALPHA, frame, 1 - MASK_ALPHA, 0, frame) for det in detections: x, y, w, h = det['bbox'] conf = det['confidence'] # Draw bounding box cv2.rectangle( frame, (int(x - w / 2), int(y - h / 2)), (int(x + w / 2), int(y + h / 2)), BOX_COLOR, THICKNESS ) # Display confidence cv2.putText(frame, f"{conf:.2f}", (int(x - w / 2), int(y - h / 2) - 10), cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS) # Overlay info cv2.putText(frame, f"Frame: {frame_count}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS) cv2.putText(frame, f"FPS: {fps:.1f}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS) cv2.putText(frame, f"Pigs: {len(detections)}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS) return frame def process_video(video_path, output_path): model = YOLO("trained_model_weight/pig_detect/yolo/pig_detect_pen2_best.pt") cap = cv2.VideoCapture(str(video_path)) frame_count = 0 results_list = [] fps_history = [] # Video properties frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) mask = create_mask((frame_height, frame_width)) win_name = f"Pig Detection - {video_path.name}" cv2.namedWindow(win_name, cv2.WINDOW_NORMAL) while cap.isOpened(): start_time = time.time() success, frame = cap.read() if not success: break masked_frame = cv2.bitwise_and(frame, frame, mask=mask) # Detection instead of tracking results = model.predict( masked_frame, conf=CONF_THRESH, verbose=False ) detections = [] if results[0].boxes is not None: boxes = results[0].boxes.xywh.cpu().numpy() scores = results[0].boxes.conf.cpu().numpy() for box, score in zip(boxes, scores): x, y, w, h = box detections.append({"confidence": float(score), "bbox": [x, y, w, h]}) results_list.append({ "frame_id": frame_count, "frame_width": frame_width, "frame_height": frame_height, "confidence": float(score), "bbox": [float(x), float(y), float(w), float(h)], "area": float(w * h) }) # FPS calculation processing_time = time.time() - start_time fps = 1 / processing_time fps_history.append(fps) if len(fps_history) > 10: fps = np.mean(fps_history[-10:]) # Draw visuals display_frame = draw_visuals_detection(frame.copy(), mask, detections, frame_count, fps) cv2.imshow(win_name, display_frame) if cv2.waitKey(1) & 0xFF == ord('q'): break frame_count += 1 cap.release() cv2.destroyWindow(win_name) # Save JSON output_file = output_path / f"{video_path.stem}_detection.json" with open(output_file, 'w') as f: json.dump(results_list, f, indent=2) if __name__ == "__main__": input_dir = Path(INPUT_VIDEOS_DIR) output_dir = Path(OUTPUT_DIR) output_dir.mkdir(exist_ok=True) for video_file in input_dir.glob("*.mp4"): print(f"Processing {video_file.name}...") process_video(video_file, output_dir) cv2.destroyAllWindows()