File size: 5,021 Bytes
52d6f05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145


import cv2
import numpy as np
from pathlib import Path
from ultralytics import YOLO
from collections import defaultdict
import time
import json


# Configuration
INPUT_VIDEOS_DIR = "datasets/usplf/tracking/pen2_cam2"  # Directory containing input videos
OUTPUT_DIR = "datasets/usplf/tracking/detected_json/pen2_cam2"
# POLYGON_VERTICES = np.array([[89,139], [325,57], [594, 6], [1128, 29], [1129, 364], [1031, 717],[509, 653],[287, 583], [100, 506],[74, 321]])  # Pen2 Cam1 polygon coordinates
POLYGON_VERTICES = np.array([[179, 3], [844, 8], [1151, 137], [1151, 316], [1135, 486], [995, 531],[801, 592],[278, 711], [167, 325]])  # Pen2 Cam2 polygon coordinates
CONF_THRESH = 0.55  # Confidence threshold
# TRACKER_CONFIG = "custom_bytetrack.yaml"  # Built-in tracker config

# Visualization settings
SHOW_MASK_OVERLAY = True
MASK_ALPHA = 0.3  # Transparency for polygon mask
BOX_COLOR = (0, 255, 0)  # Green
TEXT_COLOR = (255, 255, 255)  # White
FONT_SCALE = 0.8
THICKNESS = 2

def create_mask(frame_shape):
    mask = np.zeros(frame_shape[:2], dtype=np.uint8)
    cv2.fillPoly(mask, [POLYGON_VERTICES], 255)
    return mask

def draw_visuals_detection(frame, mask, detections, frame_count, fps):
    if SHOW_MASK_OVERLAY:
        overlay = frame.copy()
        cv2.fillPoly(overlay, [POLYGON_VERTICES], (0, 100, 0))
        cv2.addWeighted(overlay, MASK_ALPHA, frame, 1 - MASK_ALPHA, 0, frame)

    for det in detections:
        x, y, w, h = det['bbox']
        conf = det['confidence']
        
        # Draw bounding box
        cv2.rectangle(
            frame,
            (int(x - w / 2), int(y - h / 2)),
            (int(x + w / 2), int(y + h / 2)),
            BOX_COLOR, THICKNESS
        )
        
        # Display confidence
        cv2.putText(frame, f"{conf:.2f}", 
                    (int(x - w / 2), int(y - h / 2) - 10),
                    cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS)

    # Overlay info
    cv2.putText(frame, f"Frame: {frame_count}", (10, 30),
                cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS)
    cv2.putText(frame, f"FPS: {fps:.1f}", (10, 60),
                cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS)
    cv2.putText(frame, f"Pigs: {len(detections)}", (10, 90),
                cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS)
    
    return frame


def process_video(video_path, output_path):
    model = YOLO("trained_model_weight/pig_detect/yolo/pig_detect_pen2_best.pt")
    cap = cv2.VideoCapture(str(video_path))
    frame_count = 0
    results_list = []
    fps_history = []
    
    # Video properties
    frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    mask = create_mask((frame_height, frame_width))
    
    win_name = f"Pig Detection - {video_path.name}"
    cv2.namedWindow(win_name, cv2.WINDOW_NORMAL)
    
    while cap.isOpened():
        start_time = time.time()
        success, frame = cap.read()
        if not success:
            break

        masked_frame = cv2.bitwise_and(frame, frame, mask=mask)
        
        # Detection instead of tracking
        results = model.predict(
            masked_frame,
            conf=CONF_THRESH,
            verbose=False
        )

        detections = []
        if results[0].boxes is not None:
            boxes = results[0].boxes.xywh.cpu().numpy()
            scores = results[0].boxes.conf.cpu().numpy()
            
            for box, score in zip(boxes, scores):
                x, y, w, h = box
                detections.append({"confidence": float(score), "bbox": [x, y, w, h]})
                results_list.append({
                    "frame_id": frame_count,
                    "frame_width": frame_width,
                    "frame_height": frame_height,
                    "confidence": float(score),
                    "bbox": [float(x), float(y), float(w), float(h)],
                    "area": float(w * h)
                })

        # FPS calculation
        processing_time = time.time() - start_time
        fps = 1 / processing_time
        fps_history.append(fps)
        if len(fps_history) > 10:
            fps = np.mean(fps_history[-10:])
        
        # Draw visuals
        display_frame = draw_visuals_detection(frame.copy(), mask, detections, frame_count, fps)
        cv2.imshow(win_name, display_frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

        frame_count += 1

    cap.release()
    cv2.destroyWindow(win_name)

    # Save JSON
    output_file = output_path / f"{video_path.stem}_detection.json"
    with open(output_file, 'w') as f:
        json.dump(results_list, f, indent=2)

if __name__ == "__main__":
    input_dir = Path(INPUT_VIDEOS_DIR)
    output_dir = Path(OUTPUT_DIR)
    output_dir.mkdir(exist_ok=True)

    for video_file in input_dir.glob("*.mp4"):
        print(f"Processing {video_file.name}...")
        process_video(video_file, output_dir)
    cv2.destroyAllWindows()