|
import os |
|
import json |
|
import numpy as np |
|
from scipy.optimize import linear_sum_assignment |
|
import logging |
|
from collections import defaultdict |
|
|
|
class PixelBBoxTracker: |
|
def __init__(self, max_disappeared=50, max_distance=100, max_pigs=9): |
|
self.tracks = {} |
|
self.next_id = 1 |
|
self.max_disappeared = max_disappeared |
|
self.max_distance = max_distance |
|
self.max_pigs = max_pigs |
|
self.disappeared_tracks = {} |
|
self.track_history = defaultdict(list) |
|
self.ambiguous_threshold = 0.1 |
|
self.iou_weight = 0.4 |
|
self.centroid_weight = 0.4 |
|
self.area_weight = 0.2 |
|
|
|
def _get_centroid(self, bbox): |
|
x, y, w, h = bbox |
|
return np.array([x + w/2, y + h/2]) |
|
|
|
def _calculate_area(self, bbox): |
|
_, _, w, h = bbox |
|
return w * h |
|
|
|
def _area_similarity(self, area1, area2): |
|
"""Calculate normalized area similarity (1.0 = identical areas)""" |
|
if area1 == 0 or area2 == 0: |
|
return 0.0 |
|
min_area = min(area1, area2) |
|
max_area = max(area1, area2) |
|
return min_area / max_area |
|
|
|
def _bbox_iou(self, box1, box2): |
|
"""Calculate Intersection over Union (IoU) of two bounding boxes""" |
|
|
|
x1, y1, w1, h1 = box1 |
|
x2, y2, w2, h2 = box2 |
|
|
|
|
|
xi1 = max(x1, x2) |
|
yi1 = max(y1, y2) |
|
xi2 = min(x1 + w1, x2 + w2) |
|
yi2 = min(y1 + h1, y2 + h2) |
|
|
|
|
|
inter_width = max(0, xi2 - xi1) |
|
inter_height = max(0, yi2 - yi1) |
|
inter_area = inter_width * inter_height |
|
|
|
|
|
box1_area = w1 * h1 |
|
box2_area = w2 * h2 |
|
union_area = box1_area + box2_area - inter_area |
|
|
|
return inter_area / union_area if union_area > 0 else 0.0 |
|
|
|
def _calculate_cost(self, track, detection_bbox): |
|
"""Calculate combined cost using centroid distance, IoU, and area similarity""" |
|
|
|
last_centroid = track["centroid"] |
|
last_bbox = track["bbox"] |
|
track_area = self._calculate_area(last_bbox) |
|
|
|
|
|
detection_centroid = self._get_centroid(detection_bbox) |
|
detection_area = self._calculate_area(detection_bbox) |
|
|
|
|
|
centroid_distance = np.linalg.norm(detection_centroid - last_centroid) |
|
normalized_distance = min(centroid_distance / self.max_distance, 1.0) |
|
|
|
iou = self._bbox_iou(last_bbox, detection_bbox) |
|
iou_term = 1.0 - iou |
|
|
|
area_sim = self._area_similarity(track_area, detection_area) |
|
area_term = 1.0 - area_sim |
|
|
|
|
|
cost = (self.centroid_weight * normalized_distance + |
|
self.iou_weight * iou_term + |
|
self.area_weight * area_term) |
|
|
|
return cost |
|
|
|
def update(self, detections): |
|
|
|
detections = [d for d in detections if self._calculate_area(d['bbox']) >= 100] |
|
|
|
|
|
current_centroids = [self._get_centroid(d['bbox']) for d in detections] |
|
detection_bboxes = [d['bbox'] for d in detections] |
|
track_ids = [-1] * len(detections) |
|
|
|
|
|
if self.tracks and detections: |
|
track_ids_list = list(self.tracks.keys()) |
|
cost_matrix = np.full((len(track_ids_list), len(detections)), 10.0) |
|
|
|
|
|
for t_idx, track_id in enumerate(track_ids_list): |
|
track = self.tracks[track_id] |
|
for d_idx, bbox in enumerate(detection_bboxes): |
|
cost = self._calculate_cost(track, bbox) |
|
centroid_distance = np.linalg.norm(current_centroids[d_idx] - track["centroid"]) |
|
|
|
|
|
if centroid_distance <= self.max_distance: |
|
cost_matrix[t_idx, d_idx] = cost |
|
|
|
|
|
try: |
|
row_ind, col_ind = linear_sum_assignment(cost_matrix) |
|
|
|
|
|
for t_idx, d_idx in zip(row_ind, col_ind): |
|
if cost_matrix[t_idx, d_idx] < 0.8: |
|
track_id = track_ids_list[t_idx] |
|
track = self.tracks[track_id] |
|
bbox = detection_bboxes[d_idx] |
|
|
|
|
|
track["centroid"] = current_centroids[d_idx] |
|
track["bbox"] = bbox |
|
track["disappeared"] = 0 |
|
self.track_history[track_id].append(current_centroids[d_idx]) |
|
|
|
|
|
track_ids[d_idx] = track_id |
|
except Exception as e: |
|
pass |
|
|
|
|
|
unmatched_detections = [d_idx for d_idx, tid in enumerate(track_ids) if tid == -1] |
|
regained_ids = [] |
|
new_track_ids = [] |
|
|
|
for d_idx in unmatched_detections: |
|
centroid = current_centroids[d_idx] |
|
bbox = detection_bboxes[d_idx] |
|
|
|
|
|
best_match_id = None |
|
min_cost = float('inf') |
|
|
|
for track_id, track in self.disappeared_tracks.items(): |
|
cost = self._calculate_cost(track, bbox) |
|
centroid_distance = np.linalg.norm(centroid - track["centroid"]) |
|
|
|
if cost < min_cost and centroid_distance <= self.max_distance: |
|
min_cost = cost |
|
best_match_id = track_id |
|
|
|
|
|
if best_match_id and len(self.tracks) < self.max_pigs: |
|
|
|
self.tracks[best_match_id] = { |
|
"centroid": centroid, |
|
"bbox": bbox, |
|
"disappeared": 0 |
|
} |
|
self.track_history[best_match_id].append(centroid) |
|
track_ids[d_idx] = best_match_id |
|
regained_ids.append(best_match_id) |
|
del self.disappeared_tracks[best_match_id] |
|
|
|
|
|
elif len(self.tracks) < self.max_pigs: |
|
new_id = self.next_id |
|
self.tracks[new_id] = { |
|
"centroid": centroid, |
|
"bbox": bbox, |
|
"disappeared": 0 |
|
} |
|
self.track_history[new_id].append(centroid) |
|
track_ids[d_idx] = new_id |
|
new_track_ids.append(new_id) |
|
self.next_id += 1 |
|
|
|
|
|
lost_track_ids = [] |
|
|
|
|
|
for track_id in list(self.tracks.keys()): |
|
|
|
if track_id not in track_ids: |
|
self.tracks[track_id]["disappeared"] += 1 |
|
|
|
|
|
if self.tracks[track_id]["disappeared"] > self.max_disappeared: |
|
self.disappeared_tracks[track_id] = self.tracks[track_id] |
|
del self.tracks[track_id] |
|
lost_track_ids.append(track_id) |
|
|
|
|
|
|
|
if len(self.tracks) > self.max_pigs: |
|
|
|
oldest_id = None |
|
max_disappeared = -1 |
|
for track_id, track in self.tracks.items(): |
|
if track["disappeared"] > max_disappeared: |
|
max_disappeared = track["disappeared"] |
|
oldest_id = track_id |
|
|
|
if oldest_id: |
|
self.disappeared_tracks[oldest_id] = self.tracks[oldest_id] |
|
del self.tracks[oldest_id] |
|
lost_track_ids.append(oldest_id) |
|
|
|
|
|
all_track_ids = [] |
|
all_bboxes = [] |
|
|
|
for i, tid in enumerate(track_ids): |
|
if tid != -1: |
|
all_track_ids.append(tid) |
|
all_bboxes.append(detection_bboxes[i]) |
|
|
|
return all_track_ids, all_bboxes, regained_ids, lost_track_ids |
|
|
|
|
|
|
|
|
|
def read_json_file(json_path): |
|
with open(json_path, 'r') as f: |
|
data = json.load(f) |
|
|
|
frame_data = {} |
|
for item in data: |
|
frame_id = item['frame_id'] |
|
det = { |
|
"bbox": item["bbox"], |
|
"area": item.get("area", 0) |
|
} |
|
|
|
if frame_id not in frame_data: |
|
frame_data[frame_id] = { |
|
"frame_width": item.get("frame_width", 1280), |
|
"frame_height": item.get("frame_height", 720), |
|
"detections": [] |
|
} |
|
|
|
frame_data[frame_id]["detections"].append(det) |
|
|
|
return frame_data |
|
|
|
|
|
def save_json_file(output_path, results): |
|
coco_output = { |
|
"images": [], |
|
"annotations": [], |
|
"categories": [{"id": 1, "name": "pig"}] |
|
} |
|
|
|
annotation_id = 1 |
|
for frame_id in sorted(results.keys()): |
|
frame = results[frame_id] |
|
width = frame["frame_width"] |
|
height = frame["frame_height"] |
|
file_name = f"{frame_id:08d}.jpg" |
|
|
|
coco_output["images"].append({ |
|
"id": frame_id, |
|
"file_name": file_name, |
|
"width": width, |
|
"height": height |
|
}) |
|
|
|
for det in frame["detections"]: |
|
x, y, w, h = det["bbox"] |
|
area = det.get("area", w * h) |
|
coco_output["annotations"].append({ |
|
"id": annotation_id, |
|
"image_id": frame_id, |
|
"category_id": 1, |
|
"bbox": [x, y, w, h], |
|
"track_id": det["track_id"], |
|
"area": area, |
|
"iscrowd": 0 |
|
}) |
|
annotation_id += 1 |
|
|
|
with open(output_path, 'w') as f: |
|
json.dump(coco_output, f, indent=2) |
|
|
|
|
|
def setup_logger(log_path): |
|
logger = logging.getLogger('tracking_logger') |
|
logger.setLevel(logging.INFO) |
|
|
|
for handler in logger.handlers[:]: |
|
logger.removeHandler(handler) |
|
|
|
file_handler = logging.FileHandler(log_path) |
|
file_handler.setLevel(logging.INFO) |
|
|
|
console_handler = logging.StreamHandler() |
|
console_handler.setLevel(logging.INFO) |
|
|
|
formatter = logging.Formatter('%(asctime)s - %(message)s') |
|
file_handler.setFormatter(formatter) |
|
console_handler.setFormatter(formatter) |
|
|
|
logger.addHandler(file_handler) |
|
logger.addHandler(console_handler) |
|
|
|
return logger |
|
|
|
|
|
if __name__ == "__main__": |
|
input_dir = "path/to/your/detected_json" |
|
output_dir = "path/to/your/tracked_json" |
|
log_dir = "path/to/your/tracking_log" |
|
os.makedirs(output_dir, exist_ok=True) |
|
os.makedirs(log_dir, exist_ok=True) |
|
|
|
for file_name in os.listdir(input_dir): |
|
if not file_name.endswith(".json"): |
|
continue |
|
|
|
input_path = os.path.join(input_dir, file_name) |
|
output_path = os.path.join(output_dir, file_name.replace("detection.json", "tracked.json")) |
|
log_path = os.path.join(log_dir, file_name.replace(".json", ".log")) |
|
|
|
logger = setup_logger(log_path) |
|
logger.info(f"Starting processing for {file_name}") |
|
|
|
frames = read_json_file(input_path) |
|
tracker = PixelBBoxTracker(max_disappeared=180, max_distance=125, max_pigs=9) |
|
results = {} |
|
detection_counts = defaultdict(list) |
|
|
|
for frame_id in sorted(frames.keys()): |
|
frame = frames[frame_id] |
|
detections = frame["detections"] |
|
|
|
|
|
for det in detections: |
|
det.pop("track_id", None) |
|
|
|
|
|
track_ids, bboxes, regained_ids, lost_track_ids = tracker.update(detections) |
|
|
|
|
|
frame_detections = [] |
|
for track_id, bbox in zip(track_ids, bboxes): |
|
frame_detections.append({ |
|
"bbox": bbox, |
|
"track_id": track_id, |
|
"area": bbox[2] * bbox[3] |
|
}) |
|
|
|
|
|
results[frame_id] = { |
|
"frame_width": frame["frame_width"], |
|
"frame_height": frame["frame_height"], |
|
"detections": frame_detections |
|
} |
|
|
|
|
|
detection_count = len(frame_detections) |
|
detection_counts[detection_count].append(frame_id) |
|
|
|
if detection_count > 9: |
|
logger.warning(f"Frame {frame_id}: Too many detections ({detection_count}) - capped to 9") |
|
elif detection_count < 9: |
|
logger.info(f"Frame {frame_id}: Only {detection_count} detections") |
|
|
|
if lost_track_ids: |
|
logger.info(f"Frame {frame_id}: Lost tracks - {', '.join(map(str, lost_track_ids))}") |
|
|
|
if regained_ids: |
|
logger.info(f"Frame {frame_id}: Regained tracks - {', '.join(map(str, regained_ids))}") |
|
|
|
|
|
logger.info("\nDetection Count Statistics:") |
|
for count, frames in sorted(detection_counts.items()): |
|
logger.info(f"{count} detections: {len(frames)} frames") |
|
|
|
|
|
save_json_file(output_path, results) |
|
logger.info(f"Tracking complete. Output saved to {output_path}\n") |
|
|
|
print("All files processed successfully.") |
|
|