import os import json import numpy as np from scipy.optimize import linear_sum_assignment import logging from collections import defaultdict class PixelBBoxTracker: def __init__(self, max_disappeared=50, max_distance=100, max_pigs=9): self.tracks = {} # Active tracks: {id: {'centroid', 'disappeared', 'bbox'}} self.next_id = 1 self.max_disappeared = max_disappeared self.max_distance = max_distance self.max_pigs = max_pigs self.disappeared_tracks = {} # Temporarily lost tracks self.track_history = defaultdict(list) # Store recent positions self.ambiguous_threshold = 0.1 # Cost difference threshold for ambiguity self.iou_weight = 0.4 # Weight for IoU in cost calculation self.centroid_weight = 0.4 # Weight for centroid distance self.area_weight = 0.2 # Weight for area similarity def _get_centroid(self, bbox): x, y, w, h = bbox return np.array([x + w/2, y + h/2]) def _calculate_area(self, bbox): _, _, w, h = bbox return w * h def _area_similarity(self, area1, area2): """Calculate normalized area similarity (1.0 = identical areas)""" if area1 == 0 or area2 == 0: return 0.0 min_area = min(area1, area2) max_area = max(area1, area2) return min_area / max_area def _bbox_iou(self, box1, box2): """Calculate Intersection over Union (IoU) of two bounding boxes""" # Box format: [x, y, w, h] x1, y1, w1, h1 = box1 x2, y2, w2, h2 = box2 # Calculate intersection coordinates xi1 = max(x1, x2) yi1 = max(y1, y2) xi2 = min(x1 + w1, x2 + w2) yi2 = min(y1 + h1, y2 + h2) # Calculate intersection area inter_width = max(0, xi2 - xi1) inter_height = max(0, yi2 - yi1) inter_area = inter_width * inter_height # Calculate union area box1_area = w1 * h1 box2_area = w2 * h2 union_area = box1_area + box2_area - inter_area return inter_area / union_area if union_area > 0 else 0.0 def _calculate_cost(self, track, detection_bbox): """Calculate combined cost using centroid distance, IoU, and area similarity""" # Get track information last_centroid = track["centroid"] last_bbox = track["bbox"] track_area = self._calculate_area(last_bbox) # Detection information detection_centroid = self._get_centroid(detection_bbox) detection_area = self._calculate_area(detection_bbox) # Calculate components centroid_distance = np.linalg.norm(detection_centroid - last_centroid) normalized_distance = min(centroid_distance / self.max_distance, 1.0) iou = self._bbox_iou(last_bbox, detection_bbox) iou_term = 1.0 - iou area_sim = self._area_similarity(track_area, detection_area) area_term = 1.0 - area_sim # Combine with weights cost = (self.centroid_weight * normalized_distance + self.iou_weight * iou_term + self.area_weight * area_term) return cost def update(self, detections): # Filter out small bounding boxes detections = [d for d in detections if self._calculate_area(d['bbox']) >= 100] # Get current frame information current_centroids = [self._get_centroid(d['bbox']) for d in detections] detection_bboxes = [d['bbox'] for d in detections] track_ids = [-1] * len(detections) # Initialize all as unmatched # Stage 1: Match existing tracks to detections if self.tracks and detections: track_ids_list = list(self.tracks.keys()) cost_matrix = np.full((len(track_ids_list), len(detections)), 10.0) # High default cost # Calculate cost matrix for t_idx, track_id in enumerate(track_ids_list): track = self.tracks[track_id] for d_idx, bbox in enumerate(detection_bboxes): cost = self._calculate_cost(track, bbox) centroid_distance = np.linalg.norm(current_centroids[d_idx] - track["centroid"]) # Only consider if within max distance if centroid_distance <= self.max_distance: cost_matrix[t_idx, d_idx] = cost # Apply Hungarian algorithm for optimal matching try: row_ind, col_ind = linear_sum_assignment(cost_matrix) # Process matches for t_idx, d_idx in zip(row_ind, col_ind): if cost_matrix[t_idx, d_idx] < 0.8: # Only accept good matches track_id = track_ids_list[t_idx] track = self.tracks[track_id] bbox = detection_bboxes[d_idx] # Update track information track["centroid"] = current_centroids[d_idx] track["bbox"] = bbox track["disappeared"] = 0 self.track_history[track_id].append(current_centroids[d_idx]) # Assign track ID to detection track_ids[d_idx] = track_id except Exception as e: pass # Stage 2: Handle unmatched detections unmatched_detections = [d_idx for d_idx, tid in enumerate(track_ids) if tid == -1] regained_ids = [] new_track_ids = [] for d_idx in unmatched_detections: centroid = current_centroids[d_idx] bbox = detection_bboxes[d_idx] # Try to regain from disappeared tracks best_match_id = None min_cost = float('inf') for track_id, track in self.disappeared_tracks.items(): cost = self._calculate_cost(track, bbox) centroid_distance = np.linalg.norm(centroid - track["centroid"]) if cost < min_cost and centroid_distance <= self.max_distance: min_cost = cost best_match_id = track_id # Regain track if found if best_match_id and len(self.tracks) < self.max_pigs: # Update track information self.tracks[best_match_id] = { "centroid": centroid, "bbox": bbox, "disappeared": 0 } self.track_history[best_match_id].append(centroid) track_ids[d_idx] = best_match_id regained_ids.append(best_match_id) del self.disappeared_tracks[best_match_id] # Create new track if no match and under capacity elif len(self.tracks) < self.max_pigs: new_id = self.next_id self.tracks[new_id] = { "centroid": centroid, "bbox": bbox, "disappeared": 0 } self.track_history[new_id].append(centroid) track_ids[d_idx] = new_id new_track_ids.append(new_id) self.next_id += 1 # Stage 3: Update disappeared tracks lost_track_ids = [] # Check all active tracks for track_id in list(self.tracks.keys()): # If track wasn't matched if track_id not in track_ids: self.tracks[track_id]["disappeared"] += 1 # Move to disappeared if disappeared too long if self.tracks[track_id]["disappeared"] > self.max_disappeared: self.disappeared_tracks[track_id] = self.tracks[track_id] del self.tracks[track_id] lost_track_ids.append(track_id) # Keep history for potential regain # Stage 4: Cap at max pigs if len(self.tracks) > self.max_pigs: # Remove oldest lost track (highest disappeared count) oldest_id = None max_disappeared = -1 for track_id, track in self.tracks.items(): if track["disappeared"] > max_disappeared: max_disappeared = track["disappeared"] oldest_id = track_id if oldest_id: self.disappeared_tracks[oldest_id] = self.tracks[oldest_id] del self.tracks[oldest_id] lost_track_ids.append(oldest_id) # Return only current detections with track IDs all_track_ids = [] all_bboxes = [] for i, tid in enumerate(track_ids): if tid != -1: all_track_ids.append(tid) all_bboxes.append(detection_bboxes[i]) return all_track_ids, all_bboxes, regained_ids, lost_track_ids # The rest of your code remains the same (read_json_file, save_json_file, setup_logger, and main) def read_json_file(json_path): with open(json_path, 'r') as f: data = json.load(f) frame_data = {} for item in data: frame_id = item['frame_id'] det = { "bbox": item["bbox"], "area": item.get("area", 0) } if frame_id not in frame_data: frame_data[frame_id] = { "frame_width": item.get("frame_width", 1280), "frame_height": item.get("frame_height", 720), "detections": [] } frame_data[frame_id]["detections"].append(det) return frame_data def save_json_file(output_path, results): coco_output = { "images": [], "annotations": [], "categories": [{"id": 1, "name": "pig"}] } annotation_id = 1 for frame_id in sorted(results.keys()): frame = results[frame_id] width = frame["frame_width"] height = frame["frame_height"] file_name = f"{frame_id:08d}.jpg" coco_output["images"].append({ "id": frame_id, "file_name": file_name, "width": width, "height": height }) for det in frame["detections"]: x, y, w, h = det["bbox"] area = det.get("area", w * h) coco_output["annotations"].append({ "id": annotation_id, "image_id": frame_id, "category_id": 1, "bbox": [x, y, w, h], "track_id": det["track_id"], "area": area, "iscrowd": 0 }) annotation_id += 1 with open(output_path, 'w') as f: json.dump(coco_output, f, indent=2) def setup_logger(log_path): logger = logging.getLogger('tracking_logger') logger.setLevel(logging.INFO) for handler in logger.handlers[:]: logger.removeHandler(handler) file_handler = logging.FileHandler(log_path) file_handler.setLevel(logging.INFO) console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(message)s') file_handler.setFormatter(formatter) console_handler.setFormatter(formatter) logger.addHandler(file_handler) logger.addHandler(console_handler) return logger if __name__ == "__main__": input_dir = "path/to/your/detected_json" output_dir = "path/to/your/tracked_json" log_dir = "path/to/your/tracking_log" os.makedirs(output_dir, exist_ok=True) os.makedirs(log_dir, exist_ok=True) for file_name in os.listdir(input_dir): if not file_name.endswith(".json"): continue input_path = os.path.join(input_dir, file_name) output_path = os.path.join(output_dir, file_name.replace("detection.json", "tracked.json")) log_path = os.path.join(log_dir, file_name.replace(".json", ".log")) logger = setup_logger(log_path) logger.info(f"Starting processing for {file_name}") frames = read_json_file(input_path) tracker = PixelBBoxTracker(max_disappeared=180, max_distance=125, max_pigs=9) results = {} detection_counts = defaultdict(list) for frame_id in sorted(frames.keys()): frame = frames[frame_id] detections = frame["detections"] # Remove original track ID for det in detections: det.pop("track_id", None) # Process tracking track_ids, bboxes, regained_ids, lost_track_ids = tracker.update(detections) # Prepare detections for this frame frame_detections = [] for track_id, bbox in zip(track_ids, bboxes): frame_detections.append({ "bbox": bbox, "track_id": track_id, "area": bbox[2] * bbox[3] # w * h }) # Store results results[frame_id] = { "frame_width": frame["frame_width"], "frame_height": frame["frame_height"], "detections": frame_detections } # Logging detection_count = len(frame_detections) detection_counts[detection_count].append(frame_id) if detection_count > 9: logger.warning(f"Frame {frame_id}: Too many detections ({detection_count}) - capped to 9") elif detection_count < 9: logger.info(f"Frame {frame_id}: Only {detection_count} detections") if lost_track_ids: logger.info(f"Frame {frame_id}: Lost tracks - {', '.join(map(str, lost_track_ids))}") if regained_ids: logger.info(f"Frame {frame_id}: Regained tracks - {', '.join(map(str, regained_ids))}") # Save detection count statistics logger.info("\nDetection Count Statistics:") for count, frames in sorted(detection_counts.items()): logger.info(f"{count} detections: {len(frames)} frames") # Save results save_json_file(output_path, results) logger.info(f"Tracking complete. Output saved to {output_path}\n") print("All files processed successfully.")