File size: 14,692 Bytes
52d6f05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import os
import json
import numpy as np
from scipy.optimize import linear_sum_assignment
import logging
from collections import defaultdict

class PixelBBoxTracker:
    def __init__(self, max_disappeared=50, max_distance=100, max_pigs=9):
        self.tracks = {}  # Active tracks: {id: {'centroid', 'disappeared', 'bbox'}}
        self.next_id = 1
        self.max_disappeared = max_disappeared
        self.max_distance = max_distance
        self.max_pigs = max_pigs
        self.disappeared_tracks = {}  # Temporarily lost tracks
        self.track_history = defaultdict(list)  # Store recent positions
        self.ambiguous_threshold = 0.1  # Cost difference threshold for ambiguity
        self.iou_weight = 0.4  # Weight for IoU in cost calculation
        self.centroid_weight = 0.4  # Weight for centroid distance
        self.area_weight = 0.2  # Weight for area similarity

    def _get_centroid(self, bbox):
        x, y, w, h = bbox
        return np.array([x + w/2, y + h/2])

    def _calculate_area(self, bbox):
        _, _, w, h = bbox
        return w * h

    def _area_similarity(self, area1, area2):
        """Calculate normalized area similarity (1.0 = identical areas)"""
        if area1 == 0 or area2 == 0:
            return 0.0
        min_area = min(area1, area2)
        max_area = max(area1, area2)
        return min_area / max_area

    def _bbox_iou(self, box1, box2):
        """Calculate Intersection over Union (IoU) of two bounding boxes"""
        # Box format: [x, y, w, h]
        x1, y1, w1, h1 = box1
        x2, y2, w2, h2 = box2
        
        # Calculate intersection coordinates
        xi1 = max(x1, x2)
        yi1 = max(y1, y2)
        xi2 = min(x1 + w1, x2 + w2)
        yi2 = min(y1 + h1, y2 + h2)
        
        # Calculate intersection area
        inter_width = max(0, xi2 - xi1)
        inter_height = max(0, yi2 - yi1)
        inter_area = inter_width * inter_height
        
        # Calculate union area
        box1_area = w1 * h1
        box2_area = w2 * h2
        union_area = box1_area + box2_area - inter_area
        
        return inter_area / union_area if union_area > 0 else 0.0

    def _calculate_cost(self, track, detection_bbox):
        """Calculate combined cost using centroid distance, IoU, and area similarity"""
        # Get track information
        last_centroid = track["centroid"]
        last_bbox = track["bbox"]
        track_area = self._calculate_area(last_bbox)
        
        # Detection information
        detection_centroid = self._get_centroid(detection_bbox)
        detection_area = self._calculate_area(detection_bbox)
        
        # Calculate components
        centroid_distance = np.linalg.norm(detection_centroid - last_centroid)
        normalized_distance = min(centroid_distance / self.max_distance, 1.0)
        
        iou = self._bbox_iou(last_bbox, detection_bbox)
        iou_term = 1.0 - iou
        
        area_sim = self._area_similarity(track_area, detection_area)
        area_term = 1.0 - area_sim
        
        # Combine with weights
        cost = (self.centroid_weight * normalized_distance +
                self.iou_weight * iou_term +
                self.area_weight * area_term)
        
        return cost

    def update(self, detections):
        # Filter out small bounding boxes
        detections = [d for d in detections if self._calculate_area(d['bbox']) >= 100]
        
        # Get current frame information
        current_centroids = [self._get_centroid(d['bbox']) for d in detections]
        detection_bboxes = [d['bbox'] for d in detections]
        track_ids = [-1] * len(detections)  # Initialize all as unmatched
        
        # Stage 1: Match existing tracks to detections
        if self.tracks and detections:
            track_ids_list = list(self.tracks.keys())
            cost_matrix = np.full((len(track_ids_list), len(detections)), 10.0)  # High default cost
            
            # Calculate cost matrix
            for t_idx, track_id in enumerate(track_ids_list):
                track = self.tracks[track_id]
                for d_idx, bbox in enumerate(detection_bboxes):
                    cost = self._calculate_cost(track, bbox)
                    centroid_distance = np.linalg.norm(current_centroids[d_idx] - track["centroid"])
                    
                    # Only consider if within max distance
                    if centroid_distance <= self.max_distance:
                        cost_matrix[t_idx, d_idx] = cost
            
            # Apply Hungarian algorithm for optimal matching
            try:
                row_ind, col_ind = linear_sum_assignment(cost_matrix)
                
                # Process matches
                for t_idx, d_idx in zip(row_ind, col_ind):
                    if cost_matrix[t_idx, d_idx] < 0.8:  # Only accept good matches
                        track_id = track_ids_list[t_idx]
                        track = self.tracks[track_id]
                        bbox = detection_bboxes[d_idx]
                        
                        # Update track information
                        track["centroid"] = current_centroids[d_idx]
                        track["bbox"] = bbox
                        track["disappeared"] = 0
                        self.track_history[track_id].append(current_centroids[d_idx])
                        
                        # Assign track ID to detection
                        track_ids[d_idx] = track_id
            except Exception as e:
                pass

        # Stage 2: Handle unmatched detections
        unmatched_detections = [d_idx for d_idx, tid in enumerate(track_ids) if tid == -1]
        regained_ids = []
        new_track_ids = []
        
        for d_idx in unmatched_detections:
            centroid = current_centroids[d_idx]
            bbox = detection_bboxes[d_idx]
            
            # Try to regain from disappeared tracks
            best_match_id = None
            min_cost = float('inf')
            
            for track_id, track in self.disappeared_tracks.items():
                cost = self._calculate_cost(track, bbox)
                centroid_distance = np.linalg.norm(centroid - track["centroid"])
                
                if cost < min_cost and centroid_distance <= self.max_distance:
                    min_cost = cost
                    best_match_id = track_id
            
            # Regain track if found
            if best_match_id and len(self.tracks) < self.max_pigs:
                # Update track information
                self.tracks[best_match_id] = {
                    "centroid": centroid,
                    "bbox": bbox,
                    "disappeared": 0
                }
                self.track_history[best_match_id].append(centroid)
                track_ids[d_idx] = best_match_id
                regained_ids.append(best_match_id)
                del self.disappeared_tracks[best_match_id]
            
            # Create new track if no match and under capacity
            elif len(self.tracks) < self.max_pigs:
                new_id = self.next_id
                self.tracks[new_id] = {
                    "centroid": centroid,
                    "bbox": bbox,
                    "disappeared": 0
                }
                self.track_history[new_id].append(centroid)
                track_ids[d_idx] = new_id
                new_track_ids.append(new_id)
                self.next_id += 1

        # Stage 3: Update disappeared tracks
        lost_track_ids = []
        
        # Check all active tracks
        for track_id in list(self.tracks.keys()):
            # If track wasn't matched
            if track_id not in track_ids:
                self.tracks[track_id]["disappeared"] += 1
                
                # Move to disappeared if disappeared too long
                if self.tracks[track_id]["disappeared"] > self.max_disappeared:
                    self.disappeared_tracks[track_id] = self.tracks[track_id]
                    del self.tracks[track_id]
                    lost_track_ids.append(track_id)
                    # Keep history for potential regain
        
        # Stage 4: Cap at max pigs
        if len(self.tracks) > self.max_pigs:
            # Remove oldest lost track (highest disappeared count)
            oldest_id = None
            max_disappeared = -1
            for track_id, track in self.tracks.items():
                if track["disappeared"] > max_disappeared:
                    max_disappeared = track["disappeared"]
                    oldest_id = track_id
            
            if oldest_id:
                self.disappeared_tracks[oldest_id] = self.tracks[oldest_id]
                del self.tracks[oldest_id]
                lost_track_ids.append(oldest_id)

        # Return only current detections with track IDs
        all_track_ids = []
        all_bboxes = []
        
        for i, tid in enumerate(track_ids):
            if tid != -1:
                all_track_ids.append(tid)
                all_bboxes.append(detection_bboxes[i])
        
        return all_track_ids, all_bboxes, regained_ids, lost_track_ids


# The rest of your code remains the same (read_json_file, save_json_file, setup_logger, and main)

def read_json_file(json_path):
    with open(json_path, 'r') as f:
        data = json.load(f)

    frame_data = {}
    for item in data:
        frame_id = item['frame_id']
        det = {
            "bbox": item["bbox"],
            "area": item.get("area", 0)
        }

        if frame_id not in frame_data:
            frame_data[frame_id] = {
                "frame_width": item.get("frame_width", 1280),
                "frame_height": item.get("frame_height", 720),
                "detections": []
            }

        frame_data[frame_id]["detections"].append(det)

    return frame_data


def save_json_file(output_path, results):
    coco_output = {
        "images": [],
        "annotations": [],
        "categories": [{"id": 1, "name": "pig"}]
    }

    annotation_id = 1
    for frame_id in sorted(results.keys()):
        frame = results[frame_id]
        width = frame["frame_width"]
        height = frame["frame_height"]
        file_name = f"{frame_id:08d}.jpg"

        coco_output["images"].append({
            "id": frame_id,
            "file_name": file_name,
            "width": width,
            "height": height
        })

        for det in frame["detections"]:
            x, y, w, h = det["bbox"]
            area = det.get("area", w * h)
            coco_output["annotations"].append({
                "id": annotation_id,
                "image_id": frame_id,
                "category_id": 1,
                "bbox": [x, y, w, h],
                "track_id": det["track_id"],
                "area": area,
                "iscrowd": 0
            })
            annotation_id += 1

    with open(output_path, 'w') as f:
        json.dump(coco_output, f, indent=2)


def setup_logger(log_path):
    logger = logging.getLogger('tracking_logger')
    logger.setLevel(logging.INFO)
    
    for handler in logger.handlers[:]:
        logger.removeHandler(handler)
    
    file_handler = logging.FileHandler(log_path)
    file_handler.setLevel(logging.INFO)
    
    console_handler = logging.StreamHandler()
    console_handler.setLevel(logging.INFO)
    
    formatter = logging.Formatter('%(asctime)s - %(message)s')
    file_handler.setFormatter(formatter)
    console_handler.setFormatter(formatter)
    
    logger.addHandler(file_handler)
    logger.addHandler(console_handler)
    
    return logger


if __name__ == "__main__":
    input_dir = "path/to/your/detected_json"
    output_dir = "path/to/your/tracked_json"
    log_dir = "path/to/your/tracking_log"
    os.makedirs(output_dir, exist_ok=True)
    os.makedirs(log_dir, exist_ok=True)

    for file_name in os.listdir(input_dir):
        if not file_name.endswith(".json"):
            continue

        input_path = os.path.join(input_dir, file_name)
        output_path = os.path.join(output_dir, file_name.replace("detection.json", "tracked.json"))
        log_path = os.path.join(log_dir, file_name.replace(".json", ".log"))
        
        logger = setup_logger(log_path)
        logger.info(f"Starting processing for {file_name}")
        
        frames = read_json_file(input_path)
        tracker = PixelBBoxTracker(max_disappeared=180, max_distance=125, max_pigs=9)
        results = {}
        detection_counts = defaultdict(list)

        for frame_id in sorted(frames.keys()):
            frame = frames[frame_id]
            detections = frame["detections"]
            
            # Remove original track ID
            for det in detections:
                det.pop("track_id", None)
            
            # Process tracking
            track_ids, bboxes, regained_ids, lost_track_ids = tracker.update(detections)
            
            # Prepare detections for this frame
            frame_detections = []
            for track_id, bbox in zip(track_ids, bboxes):
                frame_detections.append({
                    "bbox": bbox,
                    "track_id": track_id,
                    "area": bbox[2] * bbox[3]  # w * h
                })
            
            # Store results
            results[frame_id] = {
                "frame_width": frame["frame_width"],
                "frame_height": frame["frame_height"],
                "detections": frame_detections
            }
            
            # Logging
            detection_count = len(frame_detections)
            detection_counts[detection_count].append(frame_id)
            
            if detection_count > 9:
                logger.warning(f"Frame {frame_id}: Too many detections ({detection_count}) - capped to 9")
            elif detection_count < 9:
                logger.info(f"Frame {frame_id}: Only {detection_count} detections")
            
            if lost_track_ids:
                logger.info(f"Frame {frame_id}: Lost tracks - {', '.join(map(str, lost_track_ids))}")
            
            if regained_ids:
                logger.info(f"Frame {frame_id}: Regained tracks - {', '.join(map(str, regained_ids))}")
        
        # Save detection count statistics
        logger.info("\nDetection Count Statistics:")
        for count, frames in sorted(detection_counts.items()):
            logger.info(f"{count} detections: {len(frames)} frames")
        
        # Save results
        save_json_file(output_path, results)
        logger.info(f"Tracking complete. Output saved to {output_path}\n")
    
    print("All files processed successfully.")