File size: 14,692 Bytes
52d6f05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import os
import json
import numpy as np
from scipy.optimize import linear_sum_assignment
import logging
from collections import defaultdict
class PixelBBoxTracker:
def __init__(self, max_disappeared=50, max_distance=100, max_pigs=9):
self.tracks = {} # Active tracks: {id: {'centroid', 'disappeared', 'bbox'}}
self.next_id = 1
self.max_disappeared = max_disappeared
self.max_distance = max_distance
self.max_pigs = max_pigs
self.disappeared_tracks = {} # Temporarily lost tracks
self.track_history = defaultdict(list) # Store recent positions
self.ambiguous_threshold = 0.1 # Cost difference threshold for ambiguity
self.iou_weight = 0.4 # Weight for IoU in cost calculation
self.centroid_weight = 0.4 # Weight for centroid distance
self.area_weight = 0.2 # Weight for area similarity
def _get_centroid(self, bbox):
x, y, w, h = bbox
return np.array([x + w/2, y + h/2])
def _calculate_area(self, bbox):
_, _, w, h = bbox
return w * h
def _area_similarity(self, area1, area2):
"""Calculate normalized area similarity (1.0 = identical areas)"""
if area1 == 0 or area2 == 0:
return 0.0
min_area = min(area1, area2)
max_area = max(area1, area2)
return min_area / max_area
def _bbox_iou(self, box1, box2):
"""Calculate Intersection over Union (IoU) of two bounding boxes"""
# Box format: [x, y, w, h]
x1, y1, w1, h1 = box1
x2, y2, w2, h2 = box2
# Calculate intersection coordinates
xi1 = max(x1, x2)
yi1 = max(y1, y2)
xi2 = min(x1 + w1, x2 + w2)
yi2 = min(y1 + h1, y2 + h2)
# Calculate intersection area
inter_width = max(0, xi2 - xi1)
inter_height = max(0, yi2 - yi1)
inter_area = inter_width * inter_height
# Calculate union area
box1_area = w1 * h1
box2_area = w2 * h2
union_area = box1_area + box2_area - inter_area
return inter_area / union_area if union_area > 0 else 0.0
def _calculate_cost(self, track, detection_bbox):
"""Calculate combined cost using centroid distance, IoU, and area similarity"""
# Get track information
last_centroid = track["centroid"]
last_bbox = track["bbox"]
track_area = self._calculate_area(last_bbox)
# Detection information
detection_centroid = self._get_centroid(detection_bbox)
detection_area = self._calculate_area(detection_bbox)
# Calculate components
centroid_distance = np.linalg.norm(detection_centroid - last_centroid)
normalized_distance = min(centroid_distance / self.max_distance, 1.0)
iou = self._bbox_iou(last_bbox, detection_bbox)
iou_term = 1.0 - iou
area_sim = self._area_similarity(track_area, detection_area)
area_term = 1.0 - area_sim
# Combine with weights
cost = (self.centroid_weight * normalized_distance +
self.iou_weight * iou_term +
self.area_weight * area_term)
return cost
def update(self, detections):
# Filter out small bounding boxes
detections = [d for d in detections if self._calculate_area(d['bbox']) >= 100]
# Get current frame information
current_centroids = [self._get_centroid(d['bbox']) for d in detections]
detection_bboxes = [d['bbox'] for d in detections]
track_ids = [-1] * len(detections) # Initialize all as unmatched
# Stage 1: Match existing tracks to detections
if self.tracks and detections:
track_ids_list = list(self.tracks.keys())
cost_matrix = np.full((len(track_ids_list), len(detections)), 10.0) # High default cost
# Calculate cost matrix
for t_idx, track_id in enumerate(track_ids_list):
track = self.tracks[track_id]
for d_idx, bbox in enumerate(detection_bboxes):
cost = self._calculate_cost(track, bbox)
centroid_distance = np.linalg.norm(current_centroids[d_idx] - track["centroid"])
# Only consider if within max distance
if centroid_distance <= self.max_distance:
cost_matrix[t_idx, d_idx] = cost
# Apply Hungarian algorithm for optimal matching
try:
row_ind, col_ind = linear_sum_assignment(cost_matrix)
# Process matches
for t_idx, d_idx in zip(row_ind, col_ind):
if cost_matrix[t_idx, d_idx] < 0.8: # Only accept good matches
track_id = track_ids_list[t_idx]
track = self.tracks[track_id]
bbox = detection_bboxes[d_idx]
# Update track information
track["centroid"] = current_centroids[d_idx]
track["bbox"] = bbox
track["disappeared"] = 0
self.track_history[track_id].append(current_centroids[d_idx])
# Assign track ID to detection
track_ids[d_idx] = track_id
except Exception as e:
pass
# Stage 2: Handle unmatched detections
unmatched_detections = [d_idx for d_idx, tid in enumerate(track_ids) if tid == -1]
regained_ids = []
new_track_ids = []
for d_idx in unmatched_detections:
centroid = current_centroids[d_idx]
bbox = detection_bboxes[d_idx]
# Try to regain from disappeared tracks
best_match_id = None
min_cost = float('inf')
for track_id, track in self.disappeared_tracks.items():
cost = self._calculate_cost(track, bbox)
centroid_distance = np.linalg.norm(centroid - track["centroid"])
if cost < min_cost and centroid_distance <= self.max_distance:
min_cost = cost
best_match_id = track_id
# Regain track if found
if best_match_id and len(self.tracks) < self.max_pigs:
# Update track information
self.tracks[best_match_id] = {
"centroid": centroid,
"bbox": bbox,
"disappeared": 0
}
self.track_history[best_match_id].append(centroid)
track_ids[d_idx] = best_match_id
regained_ids.append(best_match_id)
del self.disappeared_tracks[best_match_id]
# Create new track if no match and under capacity
elif len(self.tracks) < self.max_pigs:
new_id = self.next_id
self.tracks[new_id] = {
"centroid": centroid,
"bbox": bbox,
"disappeared": 0
}
self.track_history[new_id].append(centroid)
track_ids[d_idx] = new_id
new_track_ids.append(new_id)
self.next_id += 1
# Stage 3: Update disappeared tracks
lost_track_ids = []
# Check all active tracks
for track_id in list(self.tracks.keys()):
# If track wasn't matched
if track_id not in track_ids:
self.tracks[track_id]["disappeared"] += 1
# Move to disappeared if disappeared too long
if self.tracks[track_id]["disappeared"] > self.max_disappeared:
self.disappeared_tracks[track_id] = self.tracks[track_id]
del self.tracks[track_id]
lost_track_ids.append(track_id)
# Keep history for potential regain
# Stage 4: Cap at max pigs
if len(self.tracks) > self.max_pigs:
# Remove oldest lost track (highest disappeared count)
oldest_id = None
max_disappeared = -1
for track_id, track in self.tracks.items():
if track["disappeared"] > max_disappeared:
max_disappeared = track["disappeared"]
oldest_id = track_id
if oldest_id:
self.disappeared_tracks[oldest_id] = self.tracks[oldest_id]
del self.tracks[oldest_id]
lost_track_ids.append(oldest_id)
# Return only current detections with track IDs
all_track_ids = []
all_bboxes = []
for i, tid in enumerate(track_ids):
if tid != -1:
all_track_ids.append(tid)
all_bboxes.append(detection_bboxes[i])
return all_track_ids, all_bboxes, regained_ids, lost_track_ids
# The rest of your code remains the same (read_json_file, save_json_file, setup_logger, and main)
def read_json_file(json_path):
with open(json_path, 'r') as f:
data = json.load(f)
frame_data = {}
for item in data:
frame_id = item['frame_id']
det = {
"bbox": item["bbox"],
"area": item.get("area", 0)
}
if frame_id not in frame_data:
frame_data[frame_id] = {
"frame_width": item.get("frame_width", 1280),
"frame_height": item.get("frame_height", 720),
"detections": []
}
frame_data[frame_id]["detections"].append(det)
return frame_data
def save_json_file(output_path, results):
coco_output = {
"images": [],
"annotations": [],
"categories": [{"id": 1, "name": "pig"}]
}
annotation_id = 1
for frame_id in sorted(results.keys()):
frame = results[frame_id]
width = frame["frame_width"]
height = frame["frame_height"]
file_name = f"{frame_id:08d}.jpg"
coco_output["images"].append({
"id": frame_id,
"file_name": file_name,
"width": width,
"height": height
})
for det in frame["detections"]:
x, y, w, h = det["bbox"]
area = det.get("area", w * h)
coco_output["annotations"].append({
"id": annotation_id,
"image_id": frame_id,
"category_id": 1,
"bbox": [x, y, w, h],
"track_id": det["track_id"],
"area": area,
"iscrowd": 0
})
annotation_id += 1
with open(output_path, 'w') as f:
json.dump(coco_output, f, indent=2)
def setup_logger(log_path):
logger = logging.getLogger('tracking_logger')
logger.setLevel(logging.INFO)
for handler in logger.handlers[:]:
logger.removeHandler(handler)
file_handler = logging.FileHandler(log_path)
file_handler.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(message)s')
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(console_handler)
return logger
if __name__ == "__main__":
input_dir = "path/to/your/detected_json"
output_dir = "path/to/your/tracked_json"
log_dir = "path/to/your/tracking_log"
os.makedirs(output_dir, exist_ok=True)
os.makedirs(log_dir, exist_ok=True)
for file_name in os.listdir(input_dir):
if not file_name.endswith(".json"):
continue
input_path = os.path.join(input_dir, file_name)
output_path = os.path.join(output_dir, file_name.replace("detection.json", "tracked.json"))
log_path = os.path.join(log_dir, file_name.replace(".json", ".log"))
logger = setup_logger(log_path)
logger.info(f"Starting processing for {file_name}")
frames = read_json_file(input_path)
tracker = PixelBBoxTracker(max_disappeared=180, max_distance=125, max_pigs=9)
results = {}
detection_counts = defaultdict(list)
for frame_id in sorted(frames.keys()):
frame = frames[frame_id]
detections = frame["detections"]
# Remove original track ID
for det in detections:
det.pop("track_id", None)
# Process tracking
track_ids, bboxes, regained_ids, lost_track_ids = tracker.update(detections)
# Prepare detections for this frame
frame_detections = []
for track_id, bbox in zip(track_ids, bboxes):
frame_detections.append({
"bbox": bbox,
"track_id": track_id,
"area": bbox[2] * bbox[3] # w * h
})
# Store results
results[frame_id] = {
"frame_width": frame["frame_width"],
"frame_height": frame["frame_height"],
"detections": frame_detections
}
# Logging
detection_count = len(frame_detections)
detection_counts[detection_count].append(frame_id)
if detection_count > 9:
logger.warning(f"Frame {frame_id}: Too many detections ({detection_count}) - capped to 9")
elif detection_count < 9:
logger.info(f"Frame {frame_id}: Only {detection_count} detections")
if lost_track_ids:
logger.info(f"Frame {frame_id}: Lost tracks - {', '.join(map(str, lost_track_ids))}")
if regained_ids:
logger.info(f"Frame {frame_id}: Regained tracks - {', '.join(map(str, regained_ids))}")
# Save detection count statistics
logger.info("\nDetection Count Statistics:")
for count, frames in sorted(detection_counts.items()):
logger.info(f"{count} detections: {len(frames)} frames")
# Save results
save_json_file(output_path, results)
logger.info(f"Tracking complete. Output saved to {output_path}\n")
print("All files processed successfully.")
|