id
stringlengths
14
15
text
stringlengths
35
2.07k
embedding
sequence
source
stringlengths
61
154
05e8e554f6ac-3
get_token_ids(text: str) → List[int][source]¶ Get the token IDs using the tiktoken package. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object
[ 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 1483, 2484, 60, 55609, 198, 1991, 279, 4037, 29460, 1701, 279, 87272, 5963, 6462, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.OpenAIChat.html
05e8e554f6ac-4
Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.OpenAIChat.html
c310321705d5-0
langchain.llms.gooseai.GooseAI¶ class langchain.llms.gooseai.GooseAI(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: Any = None, model_name: str = 'gpt-neo-20b', temperature: float = 0.7, max_tokens: int = 256, top_p: float = 1, min_tokens: int = 1, frequency_penalty: float = 0, presence_penalty: float = 0, n: int = 1, model_kwargs: Dict[str, Any] = None, logit_bias: Optional[Dict[str, float]] = None, gooseai_api_key: Optional[str] = None)[source]¶ Bases: LLM Wrapper around OpenAI large language models. To use, you should have the openai python package installed, and the environment variable GOOSEAI_API_KEY set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example from langchain.llms import GooseAI gooseai = GooseAI(model_name="gpt-neo-20b") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param client: Any = None¶ param frequency_penalty: float = 0¶ Penalizes repeated tokens according to frequency.
[ 5317, 8995, 60098, 1026, 1326, 14070, 2192, 1246, 14070, 15836, 55609, 198, 1058, 8859, 8995, 60098, 1026, 1326, 14070, 2192, 1246, 14070, 15836, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 5884, 284, 2290, 11, 1646, 1292, 25, 610, 284, 364, 70, 418, 41078, 78, 12, 508, 65, 518, 9499, 25, 2273, 284, 220, 15, 13, 22, 11, 1973, 29938, 25, 528, 284, 220, 4146, 11, 1948, 623, 25, 2273, 284, 220, 16, 11, 1332, 29938, 25, 528, 284, 220, 16, 11, 11900, 83386, 25, 2273, 284, 220, 15, 11, 9546, 83386, 25, 2273, 284, 220, 15, 11, 308, 25, 528, 284, 220, 16, 11, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 284, 2290, 11, 1515, 275, 37481, 25, 12536, 58, 13755, 17752, 11, 2273, 5163, 284, 2290, 11, 63237, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 5377, 15836, 3544, 4221, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 1825, 2192, 10344, 6462, 10487, 11, 323, 279, 198, 24175, 3977, 12890, 76734, 15836, 11669, 6738, 743, 449, 701, 5446, 1401, 627, 8780, 5137, 430, 527, 2764, 311, 387, 5946, 311, 279, 1825, 2192, 2581, 1650, 649, 387, 5946, 198, 258, 11, 1524, 422, 539, 21650, 6924, 389, 420, 538, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 82207, 15836, 198, 3427, 974, 2192, 284, 82207, 15836, 7790, 1292, 429, 70, 418, 41078, 78, 12, 508, 65, 1158, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 3016, 25, 5884, 284, 2290, 55609, 198, 913, 11900, 83386, 25, 2273, 284, 220, 15, 55609, 198, 29305, 278, 4861, 11763, 11460, 4184, 311, 11900, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.gooseai.GooseAI.html
c310321705d5-1
param frequency_penalty: float = 0¶ Penalizes repeated tokens according to frequency. param gooseai_api_key: Optional[str] = None¶ param logit_bias: Optional[Dict[str, float]] [Optional]¶ Adjust the probability of specific tokens being generated. param max_tokens: int = 256¶ The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size. param min_tokens: int = 1¶ The minimum number of tokens to generate in the completion. param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param model_name: str = 'gpt-neo-20b'¶ Model name to use param n: int = 1¶ How many completions to generate for each prompt. param presence_penalty: float = 0¶ Penalizes repeated tokens. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.7¶ What sampling temperature to use param top_p: float = 1¶ Total probability mass of tokens to consider at each step. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input.
[ 913, 11900, 83386, 25, 2273, 284, 220, 15, 55609, 198, 29305, 278, 4861, 11763, 11460, 4184, 311, 11900, 627, 913, 63237, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1515, 275, 37481, 25, 12536, 58, 13755, 17752, 11, 2273, 5163, 510, 15669, 60, 55609, 198, 39716, 279, 19463, 315, 3230, 11460, 1694, 8066, 627, 913, 1973, 29938, 25, 528, 284, 220, 4146, 55609, 198, 791, 7340, 1396, 315, 11460, 311, 7068, 304, 279, 9954, 627, 12, 16, 4780, 439, 1690, 11460, 439, 3284, 2728, 279, 10137, 323, 198, 1820, 4211, 54229, 2317, 1404, 627, 913, 1332, 29938, 25, 528, 284, 220, 16, 55609, 198, 791, 8187, 1396, 315, 11460, 311, 7068, 304, 279, 9954, 627, 913, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 510, 15669, 60, 55609, 198, 39, 18938, 904, 1646, 5137, 2764, 369, 1893, 1650, 539, 21650, 5300, 627, 913, 1646, 1292, 25, 610, 284, 364, 70, 418, 41078, 78, 12, 508, 65, 6, 55609, 198, 1747, 836, 311, 1005, 198, 913, 308, 25, 528, 284, 220, 16, 55609, 198, 4438, 1690, 3543, 919, 311, 7068, 369, 1855, 10137, 627, 913, 9546, 83386, 25, 2273, 284, 220, 15, 55609, 198, 29305, 278, 4861, 11763, 11460, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 9499, 25, 2273, 284, 220, 15, 13, 22, 55609, 198, 3923, 25936, 9499, 311, 1005, 198, 913, 1948, 623, 25, 2273, 284, 220, 16, 55609, 198, 7749, 19463, 3148, 315, 11460, 311, 2980, 520, 1855, 3094, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.gooseai.GooseAI.html
c310321705d5-2
Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator build_extra  »  all fields[source]¶ Build extra kwargs from additional params that were passed in. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶
[ 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 1977, 32958, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 11313, 5066, 16901, 505, 5217, 3712, 430, 1051, 5946, 304, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.gooseai.GooseAI.html
c310321705d5-3
Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶
[ 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.gooseai.GooseAI.html
c310321705d5-4
property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic config. extra = 'ignore'¶
[ 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 2242, 627, 15824, 284, 364, 13431, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.gooseai.GooseAI.html
e11c7e3557b8-0
langchain.llms.openllm.OpenLLM¶ class langchain.llms.openllm.OpenLLM(model_name: Optional[str] = None, *, model_id: Optional[str] = None, server_url: Optional[str] = None, server_type: Literal['grpc', 'http'] = 'http', embedded: bool = True, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, llm_kwargs: Dict[str, Any])[source]¶ Bases: LLM Wrapper for accessing OpenLLM, supporting both in-process model instance and remote OpenLLM servers. To use, you should have the openllm library installed: pip install openllm Learn more at: https://github.com/bentoml/openllm Example running an LLM model locally managed by OpenLLM:from langchain.llms import OpenLLM llm = OpenLLM( model_name='flan-t5', model_id='google/flan-t5-large', ) llm("What is the difference between a duck and a goose?") For all available supported models, you can run ‘openllm models’. If you have a OpenLLM server running, you can also use it remotely:from langchain.llms import OpenLLM llm = OpenLLM(server_url='http://localhost:3000') llm("What is the difference between a duck and a goose?") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶
[ 5317, 8995, 60098, 1026, 5949, 657, 76, 13250, 4178, 44, 55609, 198, 1058, 8859, 8995, 60098, 1026, 5949, 657, 76, 13250, 4178, 44, 7790, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 12039, 1646, 851, 25, 12536, 17752, 60, 284, 2290, 11, 3622, 2975, 25, 12536, 17752, 60, 284, 2290, 11, 3622, 1857, 25, 50774, 681, 57685, 518, 364, 1277, 663, 284, 364, 1277, 518, 23711, 25, 1845, 284, 3082, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 9507, 76, 37335, 25, 30226, 17752, 11, 5884, 41105, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 369, 32888, 5377, 4178, 44, 11, 12899, 2225, 304, 51194, 1646, 198, 4956, 323, 8870, 5377, 4178, 44, 16692, 627, 1271, 1005, 11, 499, 1288, 617, 279, 1825, 657, 76, 6875, 10487, 512, 52601, 4685, 1825, 657, 76, 198, 24762, 810, 520, 25, 3788, 1129, 5316, 916, 3554, 306, 316, 75, 38744, 657, 76, 198, 13617, 4401, 459, 445, 11237, 1646, 24392, 9152, 555, 5377, 4178, 44, 25, 1527, 8859, 8995, 60098, 1026, 1179, 5377, 4178, 44, 198, 657, 76, 284, 5377, 4178, 44, 1021, 262, 1646, 1292, 1151, 1517, 276, 2442, 20, 756, 262, 1646, 851, 1151, 17943, 59403, 276, 2442, 20, 40248, 756, 340, 657, 76, 446, 3923, 374, 279, 6811, 1990, 264, 37085, 323, 264, 63237, 71928, 2520, 682, 2561, 7396, 4211, 11, 499, 649, 1629, 3451, 2569, 657, 76, 4211, 529, 627, 2746, 499, 617, 264, 5377, 4178, 44, 3622, 4401, 11, 499, 649, 1101, 1005, 433, 39529, 25, 1527, 8859, 8995, 60098, 1026, 1179, 5377, 4178, 44, 198, 657, 76, 284, 5377, 4178, 44, 22136, 2975, 1151, 1277, 1129, 8465, 25, 3101, 15, 1329, 657, 76, 446, 3923, 374, 279, 6811, 1990, 264, 37085, 323, 264, 63237, 71928, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openllm.OpenLLM.html
e11c7e3557b8-1
param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param embedded: bool = True¶ Initialize this LLM instance in current process by default. Should only set to False when using in conjunction with BentoML Service. param llm_kwargs: Dict[str, Any] [Required]¶ Key word arguments to be passed to openllm.LLM param model_id: Optional[str] = None¶ Model Id to use. If not provided, will use the default model for the model name. See ‘openllm models’ for all available model variants. param model_name: Optional[str] = None¶ Model name to use. See ‘openllm models’ for all available models. param server_type: ServerType = 'http'¶ Optional server type. Either ‘http’ or ‘grpc’. param server_url: Optional[str] = None¶ Optional server URL that currently runs a LLMServer with ‘openllm start’. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
[ 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 23711, 25, 1845, 284, 3082, 55609, 198, 10130, 420, 445, 11237, 2937, 304, 1510, 1920, 555, 1670, 13, 12540, 198, 3323, 743, 311, 3641, 994, 1701, 304, 32546, 449, 426, 17996, 2735, 5475, 627, 913, 9507, 76, 37335, 25, 30226, 17752, 11, 5884, 60, 510, 8327, 60, 55609, 198, 1622, 3492, 6105, 311, 387, 5946, 311, 1825, 657, 76, 1236, 11237, 198, 913, 1646, 851, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 1747, 5336, 311, 1005, 13, 1442, 539, 3984, 11, 690, 1005, 279, 1670, 1646, 369, 279, 1646, 836, 627, 10031, 3451, 2569, 657, 76, 4211, 529, 369, 682, 2561, 1646, 27103, 627, 913, 1646, 1292, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 1747, 836, 311, 1005, 13, 3580, 3451, 2569, 657, 76, 4211, 529, 369, 682, 2561, 4211, 627, 913, 3622, 1857, 25, 8588, 941, 284, 364, 1277, 6, 55609, 198, 15669, 3622, 955, 13, 21663, 3451, 1277, 529, 477, 3451, 57685, 529, 627, 913, 3622, 2975, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 15669, 3622, 5665, 430, 5131, 8640, 264, 20072, 4931, 2906, 449, 3451, 2569, 657, 76, 1212, 529, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openllm.OpenLLM.html
e11c7e3557b8-2
Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text.
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openllm.OpenLLM.html
e11c7e3557b8-3
Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. property runner: openllm.LLMRunner¶ Get the underlying openllm.LLMRunner instance for integration with BentoML. Example: .. code-block:: python
[ 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 3784, 23055, 25, 1825, 657, 76, 1236, 11237, 20051, 55609, 198, 1991, 279, 16940, 1825, 657, 76, 1236, 11237, 20051, 2937, 369, 18052, 449, 426, 17996, 2735, 627, 13617, 512, 497, 2082, 9612, 487, 10344 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openllm.OpenLLM.html
e11c7e3557b8-4
Example: .. code-block:: python llm = OpenLLM(model_name=’flan-t5’, model_id=’google/flan-t5-large’, embedded=False, ) tools = load_tools([“serpapi”, “llm-math”], llm=llm) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION ) svc = bentoml.Service(“langchain-openllm”, runners=[llm.runner]) @svc.api(input=Text(), output=Text()) def chat(input_text: str): return agent.run(input_text) model Config[source]¶ Bases: object extra = 'forbid'¶
[ 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 284, 5377, 4178, 44, 7790, 1292, 28, 529, 1517, 276, 2442, 20, 529, 345, 2590, 851, 28, 529, 17943, 59403, 276, 2442, 20, 40248, 529, 345, 70964, 5725, 345, 340, 16297, 284, 2865, 40823, 2625, 2118, 805, 79, 2113, 9520, 1054, 657, 76, 1474, 589, 863, 1145, 9507, 76, 28, 657, 76, 340, 8252, 284, 9656, 26814, 1021, 16297, 11, 9507, 76, 11, 8479, 28, 17230, 941, 70948, 6977, 1831, 2241, 6966, 39268, 198, 340, 59194, 284, 30280, 316, 75, 14181, 7, 2118, 5317, 8995, 26770, 657, 76, 9520, 39380, 5941, 657, 76, 42328, 2608, 31, 59194, 6314, 5498, 28, 1199, 1535, 2612, 28, 1199, 2455, 755, 6369, 5498, 4424, 25, 610, 997, 693, 8479, 7789, 5498, 4424, 340, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openllm.OpenLLM.html
369e58a46baf-0
langchain.llms.octoai_endpoint.OctoAIEndpoint¶ class langchain.llms.octoai_endpoint.OctoAIEndpoint(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, endpoint_url: Optional[str] = None, model_kwargs: Optional[dict] = None, octoai_api_token: Optional[str] = None)[source]¶ Bases: LLM Wrapper around OctoAI Inference Endpoints. OctoAIEndpoint is a class to interact with OctoAICompute Service large language model endpoints. To use, you should have the octoai python package installed, and the environment variable OCTOAI_API_TOKEN set with your API token, or pass it as a named parameter to the constructor. Example from langchain.llms.octoai_endpoint import OctoAIEndpoint OctoAIEndpoint( octoai_api_token="octoai-api-key", endpoint_url="https://mpt-7b-demo-kk0powt97tmb.octoai.cloud/generate", model_kwargs={ "max_new_tokens": 200, "temperature": 0.75, "top_p": 0.95, "repetition_penalty": 1, "seed": None, "stop": [], }, ) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶
[ 5317, 8995, 60098, 1026, 14778, 302, 78, 2192, 37799, 8548, 302, 78, 15836, 28480, 55609, 198, 1058, 8859, 8995, 60098, 1026, 14778, 302, 78, 2192, 37799, 8548, 302, 78, 15836, 28480, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 15233, 2975, 25, 12536, 17752, 60, 284, 2290, 11, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 11, 18998, 78, 2192, 11959, 6594, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 5020, 78, 15836, 763, 2251, 4060, 7862, 627, 18544, 78, 15836, 28480, 374, 264, 538, 311, 16681, 449, 5020, 78, 15836, 47354, 5475, 3544, 4221, 1646, 37442, 627, 1271, 1005, 11, 499, 1288, 617, 279, 18998, 78, 2192, 10344, 6462, 10487, 11, 323, 279, 198, 24175, 3977, 67277, 46, 15836, 11669, 19199, 743, 449, 701, 5446, 4037, 11, 477, 1522, 198, 275, 439, 264, 7086, 5852, 311, 279, 4797, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 14778, 302, 78, 2192, 37799, 220, 1179, 5020, 78, 15836, 28480, 198, 18544, 78, 15836, 28480, 1021, 262, 18998, 78, 2192, 11959, 6594, 429, 42792, 78, 2192, 24851, 16569, 761, 262, 15233, 2975, 429, 2485, 1129, 76, 418, 12, 22, 65, 59993, 12934, 74, 15, 22491, 83, 3534, 83, 3172, 14778, 302, 78, 2192, 17365, 4951, 13523, 761, 262, 1646, 37335, 18013, 286, 330, 2880, 6046, 29938, 794, 220, 1049, 345, 286, 330, 35658, 794, 220, 15, 13, 2075, 345, 286, 330, 3565, 623, 794, 220, 15, 13, 2721, 345, 286, 330, 265, 56867, 83386, 794, 220, 16, 345, 286, 330, 23425, 794, 2290, 345, 286, 330, 9684, 794, 10450, 262, 1173, 340, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html
369e58a46baf-1
param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param endpoint_url: Optional[str] = None¶ Endpoint URL to use. param model_kwargs: Optional[dict] = None¶ Key word arguments to pass to the model. param octoai_api_token: Optional[str] = None¶ OCTOAI API Token param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages.
[ 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 15233, 2975, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 28480, 5665, 311, 1005, 627, 913, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 55609, 198, 1622, 3492, 6105, 311, 1522, 311, 279, 1646, 627, 913, 18998, 78, 2192, 11959, 6594, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 46, 1182, 46, 15836, 5446, 9857, 198, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html
369e58a46baf-2
Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it.
[ 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html
369e58a46baf-3
validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html
a330eff80ffd-0
langchain.llms.bedrock.Bedrock¶ class langchain.llms.bedrock.Bedrock(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: Any = None, region_name: Optional[str] = None, credentials_profile_name: Optional[str] = None, model_id: str, model_kwargs: Optional[Dict] = None)[source]¶ Bases: LLM LLM provider to invoke Bedrock models. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Bedrock service. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param credentials_profile_name: Optional[str] = None¶ The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html param model_id: str [Required]¶
[ 5317, 8995, 60098, 1026, 91446, 21161, 1823, 291, 21161, 55609, 198, 1058, 8859, 8995, 60098, 1026, 91446, 21161, 1823, 291, 21161, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 5884, 284, 2290, 11, 5654, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 16792, 14108, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 1646, 851, 25, 610, 11, 1646, 37335, 25, 12536, 58, 13755, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 4178, 44, 9287, 311, 20466, 13394, 21161, 4211, 627, 1271, 34289, 11, 279, 24124, 3016, 5829, 279, 2768, 5528, 311, 198, 28172, 7167, 2865, 16792, 512, 2485, 1129, 65, 2117, 18, 29871, 916, 5574, 16, 86686, 10729, 34249, 4951, 35805, 14, 33453, 2628, 198, 2746, 264, 3230, 41307, 5643, 1288, 387, 1511, 11, 499, 2011, 1522, 198, 1820, 836, 315, 279, 5643, 505, 279, 41058, 8805, 14, 33453, 1052, 430, 374, 311, 387, 1511, 627, 8238, 2771, 279, 16792, 611, 13073, 1511, 617, 279, 2631, 10396, 311, 198, 5323, 279, 13394, 21161, 2532, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 16792, 14108, 1292, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 791, 836, 315, 279, 5643, 304, 279, 41058, 8805, 14, 33453, 477, 41058, 8805, 15072, 3626, 11, 902, 198, 4752, 3060, 2680, 7039, 477, 3560, 2038, 5300, 627, 2746, 539, 5300, 11, 279, 1670, 41307, 5643, 477, 11, 422, 389, 459, 21283, 17, 2937, 345, 33453, 505, 6654, 6061, 690, 387, 1511, 627, 10031, 25, 3788, 1129, 65, 2117, 18, 29871, 916, 5574, 16, 86686, 10729, 34249, 4951, 35805, 14, 33453, 2628, 198, 913, 1646, 851, 25, 610, 510, 8327, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.bedrock.Bedrock.html
a330eff80ffd-1
param model_id: str [Required]¶ Id of the model to call, e.g., amazon.titan-tg1-large, this is equivalent to the modelId property in the list-foundation-models api param model_kwargs: Optional[Dict] = None¶ Key word arguments to pass to the model. param region_name: Optional[str] = None¶ The aws region e.g., us-west-2. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config in case it is not provided here. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text.
[ 913, 1646, 851, 25, 610, 510, 8327, 60, 55609, 198, 769, 315, 279, 1646, 311, 1650, 11, 384, 1326, 2637, 39516, 739, 13145, 2442, 70, 16, 40248, 11, 420, 374, 198, 26378, 12031, 311, 279, 1646, 769, 3424, 304, 279, 1160, 2269, 4159, 29344, 82, 6464, 198, 913, 1646, 37335, 25, 12536, 58, 13755, 60, 284, 2290, 55609, 198, 1622, 3492, 6105, 311, 1522, 311, 279, 1646, 627, 913, 5654, 1292, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 791, 32621, 5654, 384, 1326, 2637, 603, 38702, 12, 17, 13, 30743, 1445, 311, 24124, 14131, 40279, 6233, 3977, 198, 269, 5654, 5300, 304, 41058, 8805, 15072, 304, 1162, 433, 374, 539, 3984, 1618, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.bedrock.Bedrock.html
a330eff80ffd-2
Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python
[ 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.bedrock.Bedrock.html
a330eff80ffd-3
Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that AWS credentials to and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 24124, 16792, 311, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.bedrock.Bedrock.html
318083b09c2e-0
langchain.llms.cohere.completion_with_retry¶ langchain.llms.cohere.completion_with_retry(llm: Cohere, **kwargs: Any) → Any[source]¶ Use tenacity to retry the completion call.
[ 5317, 8995, 60098, 1026, 522, 2319, 486, 916, 14723, 6753, 63845, 55609, 198, 5317, 8995, 60098, 1026, 522, 2319, 486, 916, 14723, 6753, 63845, 36621, 76, 25, 84675, 486, 11, 3146, 9872, 25, 5884, 8, 11651, 5884, 76747, 60, 55609, 198, 10464, 5899, 4107, 311, 23515, 279, 9954, 1650, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.cohere.completion_with_retry.html
fe7afdc6a659-0
langchain.llms.petals.Petals¶ class langchain.llms.petals.Petals(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: Any = None, tokenizer: Any = None, model_name: str = 'bigscience/bloom-petals', temperature: float = 0.7, max_new_tokens: int = 256, top_p: float = 0.9, top_k: Optional[int] = None, do_sample: bool = True, max_length: Optional[int] = None, model_kwargs: Dict[str, Any] = None, huggingface_api_key: Optional[str] = None)[source]¶ Bases: LLM Wrapper around Petals Bloom models. To use, you should have the petals python package installed, and the environment variable HUGGINGFACE_API_KEY set with your API key. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example from langchain.llms import petals petals = Petals() Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param client: Any = None¶ The client to use for the API calls. param do_sample: bool = True¶ Whether or not to use sampling; use greedy decoding otherwise. param huggingface_api_key: Optional[str] = None¶
[ 5317, 8995, 60098, 1026, 80962, 1147, 1087, 295, 1147, 55609, 198, 1058, 8859, 8995, 60098, 1026, 80962, 1147, 1087, 295, 1147, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 5884, 284, 2290, 11, 47058, 25, 5884, 284, 2290, 11, 1646, 1292, 25, 610, 284, 364, 16548, 40657, 3554, 18981, 2320, 295, 1147, 518, 9499, 25, 2273, 284, 220, 15, 13, 22, 11, 1973, 6046, 29938, 25, 528, 284, 220, 4146, 11, 1948, 623, 25, 2273, 284, 220, 15, 13, 24, 11, 1948, 4803, 25, 12536, 19155, 60, 284, 2290, 11, 656, 17949, 25, 1845, 284, 3082, 11, 1973, 5228, 25, 12536, 19155, 60, 284, 2290, 11, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 284, 2290, 11, 305, 36368, 1594, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 11586, 1147, 25517, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 96740, 10344, 6462, 10487, 11, 323, 279, 198, 24175, 3977, 473, 3014, 50537, 20342, 11669, 6738, 743, 449, 701, 5446, 1401, 627, 8780, 5137, 430, 527, 2764, 311, 387, 5946, 311, 279, 1650, 649, 387, 5946, 198, 258, 11, 1524, 422, 539, 21650, 6924, 389, 420, 538, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 96740, 198, 7005, 1147, 284, 11586, 1147, 746, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 3016, 25, 5884, 284, 2290, 55609, 198, 791, 3016, 311, 1005, 369, 279, 5446, 6880, 627, 913, 656, 17949, 25, 1845, 284, 3082, 55609, 198, 25729, 477, 539, 311, 1005, 25936, 26, 1005, 57080, 48216, 6062, 627, 913, 305, 36368, 1594, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.petals.Petals.html
fe7afdc6a659-1
param huggingface_api_key: Optional[str] = None¶ param max_length: Optional[int] = None¶ The maximum length of the sequence to be generated. param max_new_tokens: int = 256¶ The maximum number of new tokens to generate in the completion. param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param model_name: str = 'bigscience/bloom-petals'¶ The model to use. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.7¶ What sampling temperature to use param tokenizer: Any = None¶ The tokenizer to use for the API calls. param top_k: Optional[int] = None¶ The number of highest probability vocabulary tokens to keep for top-k-filtering. param top_p: float = 0.9¶ The cumulative probability for top-p sampling. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
[ 913, 305, 36368, 1594, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1973, 5228, 25, 12536, 19155, 60, 284, 2290, 55609, 198, 791, 7340, 3160, 315, 279, 8668, 311, 387, 8066, 627, 913, 1973, 6046, 29938, 25, 528, 284, 220, 4146, 55609, 198, 791, 7340, 1396, 315, 502, 11460, 311, 7068, 304, 279, 9954, 627, 913, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 510, 15669, 60, 55609, 198, 39, 18938, 904, 1646, 5137, 2764, 369, 1893, 1650, 198, 1962, 21650, 5300, 627, 913, 1646, 1292, 25, 610, 284, 364, 16548, 40657, 3554, 18981, 2320, 295, 1147, 6, 55609, 198, 791, 1646, 311, 1005, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 9499, 25, 2273, 284, 220, 15, 13, 22, 55609, 198, 3923, 25936, 9499, 311, 1005, 198, 913, 47058, 25, 5884, 284, 2290, 55609, 198, 791, 47058, 311, 1005, 369, 279, 5446, 6880, 627, 913, 1948, 4803, 25, 12536, 19155, 60, 284, 2290, 55609, 198, 791, 1396, 315, 8592, 19463, 36018, 11460, 198, 998, 2567, 369, 1948, 12934, 33548, 287, 627, 913, 1948, 623, 25, 2273, 284, 220, 15, 13, 24, 55609, 198, 791, 40944, 19463, 369, 1948, 2320, 25936, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.petals.Petals.html
fe7afdc6a659-2
Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator build_extra  »  all fields[source]¶ Build extra kwargs from additional params that were passed in. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 1977, 32958, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 11313, 5066, 16901, 505, 5217, 3712, 430, 1051, 5946, 304, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.petals.Petals.html
fe7afdc6a659-3
get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object
[ 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.petals.Petals.html
fe7afdc6a659-4
model Config[source]¶ Bases: object Configuration for this pydantic config. extra = 'forbid'¶
[ 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 2242, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.petals.Petals.html
67a5a9e0f47d-0
langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference¶ class langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, max_new_tokens: int = 512, top_k: Optional[int] = None, top_p: Optional[float] = 0.95, typical_p: Optional[float] = 0.95, temperature: float = 0.8, repetition_penalty: Optional[float] = None, stop_sequences: List[str] = None, seed: Optional[int] = None, inference_server_url: str = '', timeout: int = 120, server_kwargs: Dict[str, Any] = None, stream: bool = False, client: Any = None, async_client: Any = None)[source]¶ Bases: LLM HuggingFace text generation inference API. This class is a wrapper around the HuggingFace text generation inference API. It is used to generate text from a given prompt. Attributes: - max_new_tokens: The maximum number of tokens to generate. - top_k: The number of top-k tokens to consider when generating text. - top_p: The cumulative probability threshold for generating text. - typical_p: The typical probability threshold for generating text. - temperature: The temperature to use when generating text. - repetition_penalty: The repetition penalty to use when generating text. - stop_sequences: A list of stop sequences to use when generating text. - seed: The seed to use when generating text. - inference_server_url: The URL of the inference server to use.
[ 5317, 8995, 60098, 1026, 870, 36368, 1594, 4424, 16724, 1265, 2251, 3924, 36368, 16680, 1199, 10172, 644, 2251, 55609, 198, 1058, 8859, 8995, 60098, 1026, 870, 36368, 1594, 4424, 16724, 1265, 2251, 3924, 36368, 16680, 1199, 10172, 644, 2251, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 1973, 6046, 29938, 25, 528, 284, 220, 8358, 11, 1948, 4803, 25, 12536, 19155, 60, 284, 2290, 11, 1948, 623, 25, 12536, 96481, 60, 284, 220, 15, 13, 2721, 11, 14595, 623, 25, 12536, 96481, 60, 284, 220, 15, 13, 2721, 11, 9499, 25, 2273, 284, 220, 15, 13, 23, 11, 54515, 83386, 25, 12536, 96481, 60, 284, 2290, 11, 3009, 59832, 25, 1796, 17752, 60, 284, 2290, 11, 10533, 25, 12536, 19155, 60, 284, 2290, 11, 45478, 12284, 2975, 25, 610, 284, 9158, 9829, 25, 528, 284, 220, 4364, 11, 3622, 37335, 25, 30226, 17752, 11, 5884, 60, 284, 2290, 11, 4365, 25, 1845, 284, 3641, 11, 3016, 25, 5884, 284, 2290, 11, 3393, 8342, 25, 5884, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 39, 36368, 16680, 1495, 9659, 45478, 5446, 627, 2028, 538, 374, 264, 13564, 2212, 279, 473, 36368, 16680, 1495, 9659, 45478, 5446, 627, 2181, 374, 1511, 311, 7068, 1495, 505, 264, 2728, 10137, 627, 10738, 512, 12, 1973, 6046, 29938, 25, 578, 7340, 1396, 315, 11460, 311, 7068, 627, 12, 1948, 4803, 25, 578, 1396, 315, 1948, 12934, 11460, 311, 2980, 994, 24038, 1495, 627, 12, 1948, 623, 25, 578, 40944, 19463, 12447, 369, 24038, 1495, 627, 12, 14595, 623, 25, 578, 14595, 19463, 12447, 369, 24038, 1495, 627, 12, 9499, 25, 578, 9499, 311, 1005, 994, 24038, 1495, 627, 12, 54515, 83386, 25, 578, 54515, 16750, 311, 1005, 994, 24038, 1495, 627, 12, 3009, 59832, 25, 362, 1160, 315, 3009, 24630, 311, 1005, 994, 24038, 1495, 627, 12, 10533, 25, 578, 10533, 311, 1005, 994, 24038, 1495, 627, 12, 45478, 12284, 2975, 25, 578, 5665, 315, 279, 45478, 3622, 311, 1005, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html
67a5a9e0f47d-1
- inference_server_url: The URL of the inference server to use. - timeout: The timeout value in seconds to use while connecting to inference server. - server_kwargs: The keyword arguments to pass to the inference server. - client: The client object used to communicate with the inference server. - async_client: The async client object used to communicate with the server. Methods: - _call: Generates text based on a given prompt and stop sequences. - _acall: Async generates text based on a given prompt and stop sequences. - _llm_type: Returns the type of LLM. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param async_client: Any = None¶ param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param client: Any = None¶ param inference_server_url: str = ''¶ param max_new_tokens: int = 512¶ param repetition_penalty: Optional[float] = None¶ param seed: Optional[int] = None¶ param server_kwargs: Dict[str, Any] [Optional]¶ param stop_sequences: List[str] [Optional]¶ param stream: bool = False¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.8¶ param timeout: int = 120¶ param top_k: Optional[int] = None¶ param top_p: Optional[float] = 0.95¶ param typical_p: Optional[float] = 0.95¶ param verbose: bool [Optional]¶ Whether to print out response text.
[ 12, 45478, 12284, 2975, 25, 578, 5665, 315, 279, 45478, 3622, 311, 1005, 627, 12, 9829, 25, 578, 9829, 907, 304, 6622, 311, 1005, 1418, 21583, 311, 45478, 3622, 627, 12, 3622, 37335, 25, 578, 16570, 6105, 311, 1522, 311, 279, 45478, 3622, 627, 12, 3016, 25, 578, 3016, 1665, 1511, 311, 19570, 449, 279, 45478, 3622, 627, 12, 3393, 8342, 25, 578, 3393, 3016, 1665, 1511, 311, 19570, 449, 279, 3622, 627, 18337, 512, 12, 721, 6797, 25, 53592, 1495, 3196, 389, 264, 2728, 10137, 323, 3009, 24630, 627, 12, 721, 582, 543, 25, 22149, 27983, 1495, 3196, 389, 264, 2728, 10137, 323, 3009, 24630, 627, 12, 721, 657, 76, 1857, 25, 5295, 279, 955, 315, 445, 11237, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 3393, 8342, 25, 5884, 284, 2290, 55609, 198, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 3016, 25, 5884, 284, 2290, 55609, 198, 913, 45478, 12284, 2975, 25, 610, 284, 3436, 55609, 198, 913, 1973, 6046, 29938, 25, 528, 284, 220, 8358, 55609, 198, 913, 54515, 83386, 25, 12536, 96481, 60, 284, 2290, 55609, 198, 913, 10533, 25, 12536, 19155, 60, 284, 2290, 55609, 198, 913, 3622, 37335, 25, 30226, 17752, 11, 5884, 60, 510, 15669, 60, 55609, 198, 913, 3009, 59832, 25, 1796, 17752, 60, 510, 15669, 60, 55609, 198, 913, 4365, 25, 1845, 284, 3641, 55609, 198, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 9499, 25, 2273, 284, 220, 15, 13, 23, 55609, 198, 913, 9829, 25, 528, 284, 220, 4364, 55609, 198, 913, 1948, 4803, 25, 12536, 19155, 60, 284, 2290, 55609, 198, 913, 1948, 623, 25, 12536, 96481, 60, 284, 220, 15, 13, 2721, 55609, 198, 913, 14595, 623, 25, 12536, 96481, 60, 284, 220, 15, 13, 2721, 55609, 198, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html
67a5a9e0f47d-2
param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
[ 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html
67a5a9e0f47d-3
Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html
67a5a9e0f47d-4
property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html
80e32b4580da-0
langchain.llms.huggingface_hub.HuggingFaceHub¶ class langchain.llms.huggingface_hub.HuggingFaceHub(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: Any = None, repo_id: str = 'gpt2', task: Optional[str] = None, model_kwargs: Optional[dict] = None, huggingfacehub_api_token: Optional[str] = None)[source]¶ Bases: LLM Wrapper around HuggingFaceHub models. To use, you should have the huggingface_hub python package installed, and the environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or pass it as a named parameter to the constructor. Only supports text-generation, text2text-generation and summarization for now. Example from langchain.llms import HuggingFaceHub hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param huggingfacehub_api_token: Optional[str] = None¶ param model_kwargs: Optional[dict] = None¶ Key word arguments to pass to the model. param repo_id: str = 'gpt2'¶ Model name to use. param tags: Optional[List[str]] = None¶ Tags to add to the run trace.
[ 5317, 8995, 60098, 1026, 870, 36368, 1594, 95096, 3924, 36368, 16680, 19876, 55609, 198, 1058, 8859, 8995, 60098, 1026, 870, 36368, 1594, 95096, 3924, 36368, 16680, 19876, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 5884, 284, 2290, 11, 16246, 851, 25, 610, 284, 364, 70, 418, 17, 518, 3465, 25, 12536, 17752, 60, 284, 2290, 11, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 11, 305, 36368, 1594, 27780, 11959, 6594, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 473, 36368, 16680, 19876, 220, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 305, 36368, 1594, 95096, 10344, 6462, 10487, 11, 323, 279, 198, 24175, 3977, 473, 3014, 50537, 20342, 39, 4594, 11669, 19199, 743, 449, 701, 5446, 4037, 11, 477, 1522, 198, 275, 439, 264, 7086, 5852, 311, 279, 4797, 627, 7456, 11815, 1495, 43927, 11, 1495, 17, 1342, 43927, 323, 29385, 2065, 369, 1457, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 473, 36368, 16680, 19876, 198, 45854, 284, 473, 36368, 16680, 19876, 51708, 851, 429, 70, 418, 17, 498, 305, 36368, 1594, 27780, 11959, 6594, 429, 2465, 24851, 16569, 1158, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 305, 36368, 1594, 27780, 11959, 6594, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 55609, 198, 1622, 3492, 6105, 311, 1522, 311, 279, 1646, 627, 913, 16246, 851, 25, 610, 284, 364, 70, 418, 17, 6, 55609, 198, 1747, 836, 311, 1005, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.huggingface_hub.HuggingFaceHub.html
80e32b4580da-1
param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param task: Optional[str] = None¶ Task to call the model with. Should be a task that returns generated_text or summary_text. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM.
[ 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 3465, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 6396, 311, 1650, 279, 1646, 449, 627, 15346, 387, 264, 3465, 430, 4780, 8066, 4424, 477, 12399, 4424, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.huggingface_hub.HuggingFaceHub.html
80e32b4580da-2
dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting.
[ 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.huggingface_hub.HuggingFaceHub.html
80e32b4580da-3
This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.huggingface_hub.HuggingFaceHub.html
3d4083c366ac-0
langchain.llms.cohere.Cohere¶ class langchain.llms.cohere.Cohere(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: Any = None, model: Optional[str] = None, max_tokens: int = 256, temperature: float = 0.75, k: int = 0, p: int = 1, frequency_penalty: float = 0.0, presence_penalty: float = 0.0, truncate: Optional[str] = None, max_retries: int = 10, cohere_api_key: Optional[str] = None, stop: Optional[List[str]] = None)[source]¶ Bases: LLM Wrapper around Cohere large language models. To use, you should have the cohere python package installed, and the environment variable COHERE_API_KEY set with your API key, or pass it as a named parameter to the constructor. Example from langchain.llms import Cohere cohere = Cohere(model="gptd-instruct-tft", cohere_api_key="my-api-key") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param cohere_api_key: Optional[str] = None¶ param frequency_penalty: float = 0.0¶ Penalizes repeated tokens according to frequency. Between 0 and 1. param k: int = 0¶
[ 5317, 8995, 60098, 1026, 522, 2319, 486, 732, 2319, 486, 55609, 198, 1058, 8859, 8995, 60098, 1026, 522, 2319, 486, 732, 2319, 486, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 5884, 284, 2290, 11, 1646, 25, 12536, 17752, 60, 284, 2290, 11, 1973, 29938, 25, 528, 284, 220, 4146, 11, 9499, 25, 2273, 284, 220, 15, 13, 2075, 11, 597, 25, 528, 284, 220, 15, 11, 281, 25, 528, 284, 220, 16, 11, 11900, 83386, 25, 2273, 284, 220, 15, 13, 15, 11, 9546, 83386, 25, 2273, 284, 220, 15, 13, 15, 11, 57872, 25, 12536, 17752, 60, 284, 2290, 11, 1973, 1311, 4646, 25, 528, 284, 220, 605, 11, 1080, 6881, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 84675, 486, 3544, 4221, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 1080, 6881, 10344, 6462, 10487, 11, 323, 279, 198, 24175, 3977, 7432, 4678, 11669, 6738, 743, 449, 701, 5446, 1401, 11, 477, 1522, 198, 275, 439, 264, 7086, 5852, 311, 279, 4797, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 84675, 486, 198, 1030, 6881, 284, 84675, 486, 7790, 429, 70, 418, 67, 3502, 1257, 2442, 728, 498, 1080, 6881, 11959, 3173, 429, 2465, 24851, 16569, 1158, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 1080, 6881, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 11900, 83386, 25, 2273, 284, 220, 15, 13, 15, 55609, 198, 29305, 278, 4861, 11763, 11460, 4184, 311, 11900, 13, 28232, 220, 15, 323, 220, 16, 627, 913, 597, 25, 528, 284, 220, 15, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.cohere.Cohere.html
3d4083c366ac-1
param k: int = 0¶ Number of most likely tokens to consider at each step. param max_retries: int = 10¶ Maximum number of retries to make when generating. param max_tokens: int = 256¶ Denotes the number of tokens to predict per generation. param model: Optional[str] = None¶ Model name to use. param p: int = 1¶ Total probability mass of tokens to consider at each step. param presence_penalty: float = 0.0¶ Penalizes repeated tokens. Between 0 and 1. param stop: Optional[List[str]] = None¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.75¶ A non-negative float that tunes the degree of randomness in generation. param truncate: Optional[str] = None¶ Specify how the client handles inputs longer than the maximum token length: Truncate from START, END or NONE param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
[ 913, 597, 25, 528, 284, 220, 15, 55609, 198, 2903, 315, 1455, 4461, 11460, 311, 2980, 520, 1855, 3094, 627, 913, 1973, 1311, 4646, 25, 528, 284, 220, 605, 55609, 198, 28409, 1396, 315, 61701, 311, 1304, 994, 24038, 627, 913, 1973, 29938, 25, 528, 284, 220, 4146, 55609, 198, 24539, 6429, 279, 1396, 315, 11460, 311, 7168, 824, 9659, 627, 913, 1646, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 1747, 836, 311, 1005, 627, 913, 281, 25, 528, 284, 220, 16, 55609, 198, 7749, 19463, 3148, 315, 11460, 311, 2980, 520, 1855, 3094, 627, 913, 9546, 83386, 25, 2273, 284, 220, 15, 13, 15, 55609, 198, 29305, 278, 4861, 11763, 11460, 13, 28232, 220, 15, 323, 220, 16, 627, 913, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 9499, 25, 2273, 284, 220, 15, 13, 2075, 55609, 198, 32, 2536, 62035, 2273, 430, 55090, 279, 8547, 315, 87790, 304, 9659, 627, 913, 57872, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 71152, 1268, 279, 3016, 13777, 11374, 5129, 1109, 279, 7340, 4037, 198, 4222, 25, 1183, 27998, 505, 21673, 11, 11424, 477, 43969, 198, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.cohere.Cohere.html
3d4083c366ac-2
Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text.
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.cohere.Cohere.html
3d4083c366ac-3
Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.cohere.Cohere.html
3d4083c366ac-4
Configuration for this pydantic object. extra = 'forbid'¶
[ 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.cohere.Cohere.html
dc33c6e7377e-0
langchain.llms.nlpcloud.NLPCloud¶ class langchain.llms.nlpcloud.NLPCloud(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: Any = None, model_name: str = 'finetuned-gpt-neox-20b', temperature: float = 0.7, min_length: int = 1, max_length: int = 256, length_no_input: bool = True, remove_input: bool = True, remove_end_sequence: bool = True, bad_words: List[str] = [], top_p: int = 1, top_k: int = 50, repetition_penalty: float = 1.0, length_penalty: float = 1.0, do_sample: bool = True, num_beams: int = 1, early_stopping: bool = False, num_return_sequences: int = 1, nlpcloud_api_key: Optional[str] = None)[source]¶ Bases: LLM Wrapper around NLPCloud large language models. To use, you should have the nlpcloud python package installed, and the environment variable NLPCLOUD_API_KEY set with your API key. Example from langchain.llms import NLPCloud nlpcloud = NLPCloud(model="gpt-neox-20b") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param bad_words: List[str] = []¶ List of tokens not allowed to be generated. param cache: Optional[bool] = None¶
[ 5317, 8995, 60098, 1026, 1276, 13855, 12641, 2112, 43, 4977, 53278, 55609, 198, 1058, 8859, 8995, 60098, 1026, 1276, 13855, 12641, 2112, 43, 4977, 53278, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 5884, 284, 2290, 11, 1646, 1292, 25, 610, 284, 364, 5589, 295, 49983, 2427, 418, 41078, 5241, 12, 508, 65, 518, 9499, 25, 2273, 284, 220, 15, 13, 22, 11, 1332, 5228, 25, 528, 284, 220, 16, 11, 1973, 5228, 25, 528, 284, 220, 4146, 11, 3160, 6673, 6022, 25, 1845, 284, 3082, 11, 4148, 6022, 25, 1845, 284, 3082, 11, 4148, 6345, 24667, 25, 1845, 284, 3082, 11, 3958, 19518, 25, 1796, 17752, 60, 284, 10277, 1948, 623, 25, 528, 284, 220, 16, 11, 1948, 4803, 25, 528, 284, 220, 1135, 11, 54515, 83386, 25, 2273, 284, 220, 16, 13, 15, 11, 3160, 83386, 25, 2273, 284, 220, 16, 13, 15, 11, 656, 17949, 25, 1845, 284, 3082, 11, 1661, 21960, 4214, 25, 528, 284, 220, 16, 11, 4216, 1284, 7153, 25, 1845, 284, 3641, 11, 1661, 12794, 59832, 25, 528, 284, 220, 16, 11, 308, 13855, 12641, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 33260, 4977, 53278, 3544, 4221, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 308, 13855, 12641, 10344, 6462, 10487, 11, 323, 279, 198, 24175, 3977, 33260, 4977, 48745, 11669, 6738, 743, 449, 701, 5446, 1401, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 33260, 4977, 53278, 198, 77, 13855, 12641, 284, 33260, 4977, 53278, 7790, 429, 70, 418, 41078, 5241, 12, 508, 65, 1158, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 3958, 19518, 25, 1796, 17752, 60, 284, 3132, 55609, 198, 861, 315, 11460, 539, 5535, 311, 387, 8066, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.nlpcloud.NLPCloud.html
dc33c6e7377e-1
param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param do_sample: bool = True¶ Whether to use sampling (True) or greedy decoding. param early_stopping: bool = False¶ Whether to stop beam search at num_beams sentences. param length_no_input: bool = True¶ Whether min_length and max_length should include the length of the input. param length_penalty: float = 1.0¶ Exponential penalty to the length. param max_length: int = 256¶ The maximum number of tokens to generate in the completion. param min_length: int = 1¶ The minimum number of tokens to generate in the completion. param model_name: str = 'finetuned-gpt-neox-20b'¶ Model name to use. param nlpcloud_api_key: Optional[str] = None¶ param num_beams: int = 1¶ Number of beams for beam search. param num_return_sequences: int = 1¶ How many completions to generate for each prompt. param remove_end_sequence: bool = True¶ Whether or not to remove the end sequence token. param remove_input: bool = True¶ Remove input text from API response param repetition_penalty: float = 1.0¶ Penalizes repeated tokens. 1.0 means no penalty. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.7¶ What sampling temperature to use. param top_k: int = 50¶ The number of highest probability tokens to keep for top-k filtering. param top_p: int = 1¶ Total probability mass of tokens to consider at each step.
[ 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 656, 17949, 25, 1845, 284, 3082, 55609, 198, 25729, 311, 1005, 25936, 320, 2575, 8, 477, 57080, 48216, 627, 913, 4216, 1284, 7153, 25, 1845, 284, 3641, 55609, 198, 25729, 311, 3009, 24310, 2778, 520, 1661, 21960, 4214, 23719, 627, 913, 3160, 6673, 6022, 25, 1845, 284, 3082, 55609, 198, 25729, 1332, 5228, 323, 1973, 5228, 1288, 2997, 279, 3160, 315, 279, 1988, 627, 913, 3160, 83386, 25, 2273, 284, 220, 16, 13, 15, 55609, 198, 849, 60925, 16750, 311, 279, 3160, 627, 913, 1973, 5228, 25, 528, 284, 220, 4146, 55609, 198, 791, 7340, 1396, 315, 11460, 311, 7068, 304, 279, 9954, 627, 913, 1332, 5228, 25, 528, 284, 220, 16, 55609, 198, 791, 8187, 1396, 315, 11460, 311, 7068, 304, 279, 9954, 627, 913, 1646, 1292, 25, 610, 284, 364, 5589, 295, 49983, 2427, 418, 41078, 5241, 12, 508, 65, 6, 55609, 198, 1747, 836, 311, 1005, 627, 913, 308, 13855, 12641, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1661, 21960, 4214, 25, 528, 284, 220, 16, 55609, 198, 2903, 315, 51045, 369, 24310, 2778, 627, 913, 1661, 12794, 59832, 25, 528, 284, 220, 16, 55609, 198, 4438, 1690, 3543, 919, 311, 7068, 369, 1855, 10137, 627, 913, 4148, 6345, 24667, 25, 1845, 284, 3082, 55609, 198, 25729, 477, 539, 311, 4148, 279, 842, 8668, 4037, 627, 913, 4148, 6022, 25, 1845, 284, 3082, 55609, 198, 13319, 1988, 1495, 505, 5446, 2077, 198, 913, 54515, 83386, 25, 2273, 284, 220, 16, 13, 15, 55609, 198, 29305, 278, 4861, 11763, 11460, 13, 220, 16, 13, 15, 3445, 912, 16750, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 9499, 25, 2273, 284, 220, 15, 13, 22, 55609, 198, 3923, 25936, 9499, 311, 1005, 627, 913, 1948, 4803, 25, 528, 284, 220, 1135, 55609, 198, 791, 1396, 315, 8592, 19463, 11460, 311, 2567, 369, 1948, 12934, 30770, 627, 913, 1948, 623, 25, 528, 284, 220, 16, 55609, 198, 7749, 19463, 3148, 315, 11460, 311, 2980, 520, 1855, 3094, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.nlpcloud.NLPCloud.html
dc33c6e7377e-2
Total probability mass of tokens to consider at each step. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
[ 7749, 19463, 3148, 315, 11460, 311, 2980, 520, 1855, 3094, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.nlpcloud.NLPCloud.html
dc33c6e7377e-3
Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.nlpcloud.NLPCloud.html
dc33c6e7377e-4
property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.nlpcloud.NLPCloud.html
c4008245a115-0
langchain.llms.modal.Modal¶ class langchain.llms.modal.Modal(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, endpoint_url: str = '', model_kwargs: Dict[str, Any] = None)[source]¶ Bases: LLM Wrapper around Modal large language models. To use, you should have the modal-client python package installed. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example from langchain.llms import Modal modal = Modal(endpoint_url="") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param endpoint_url: str = ''¶ model endpoint to use param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input.
[ 5317, 8995, 60098, 1026, 29605, 24002, 278, 55609, 198, 1058, 8859, 8995, 60098, 1026, 29605, 24002, 278, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 15233, 2975, 25, 610, 284, 9158, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 22017, 3544, 4221, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 13531, 31111, 10344, 6462, 10487, 627, 8780, 5137, 430, 527, 2764, 311, 387, 5946, 311, 279, 1650, 649, 387, 5946, 198, 258, 11, 1524, 422, 539, 21650, 6924, 389, 420, 538, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 22017, 198, 5785, 284, 22017, 55969, 2975, 64841, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 15233, 2975, 25, 610, 284, 3436, 55609, 198, 2590, 15233, 311, 1005, 198, 913, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 510, 15669, 60, 55609, 198, 39, 18938, 904, 1646, 5137, 2764, 369, 1893, 1650, 539, 198, 94732, 398, 5300, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.modal.Modal.html
c4008245a115-1
Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator build_extra  »  all fields[source]¶ Build extra kwargs from additional params that were passed in. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶
[ 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 1977, 32958, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 11313, 5066, 16901, 505, 5217, 3712, 430, 1051, 5946, 304, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.modal.Modal.html
c4008245a115-2
Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids.
[ 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.modal.Modal.html
c4008245a115-3
Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic config. extra = 'forbid'¶
[ 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 2242, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.modal.Modal.html
395a6f07d6b3-0
langchain.llms.promptlayer_openai.PromptLayerOpenAIChat¶ class langchain.llms.promptlayer_openai.PromptLayerOpenAIChat(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: Any = None, model_name: str = 'gpt-3.5-turbo', model_kwargs: Dict[str, Any] = None, openai_api_key: Optional[str] = None, openai_api_base: Optional[str] = None, openai_proxy: Optional[str] = None, max_retries: int = 6, prefix_messages: List = None, streaming: bool = False, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', pl_tags: Optional[List[str]] = None, return_pl_id: Optional[bool] = False)[source]¶ Bases: OpenAIChat Wrapper around OpenAI large language models. To use, you should have the openai and promptlayer python package installed, and the environment variable OPENAI_API_KEY and PROMPTLAYER_API_KEY set with your openAI API key and promptlayer key respectively. All parameters that can be passed to the OpenAIChat LLM can also be passed here. The PromptLayerOpenAIChat adds two optional Parameters pl_tags – List of strings to tag the request with. return_pl_id – If True, the PromptLayer request ID will be returned in the generation_info field of the Generation object. Example from langchain.llms import PromptLayerOpenAIChat
[ 5317, 8995, 60098, 1026, 66499, 10546, 11563, 2192, 1087, 15091, 9368, 5109, 15836, 16047, 55609, 198, 1058, 8859, 8995, 60098, 1026, 66499, 10546, 11563, 2192, 1087, 15091, 9368, 5109, 15836, 16047, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 5884, 284, 2290, 11, 1646, 1292, 25, 610, 284, 364, 70, 418, 12, 18, 13, 20, 2442, 324, 754, 518, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 284, 2290, 11, 1825, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 1825, 2192, 11959, 7806, 25, 12536, 17752, 60, 284, 2290, 11, 1825, 2192, 30812, 25, 12536, 17752, 60, 284, 2290, 11, 1973, 1311, 4646, 25, 528, 284, 220, 21, 11, 9436, 24321, 25, 1796, 284, 2290, 11, 17265, 25, 1845, 284, 3641, 11, 5535, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 13822, 1681, 17752, 5163, 284, 16857, 834, 21642, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 11348, 17752, 5163, 284, 364, 543, 518, 628, 16735, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 471, 6451, 851, 25, 12536, 58, 2707, 60, 284, 3641, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5377, 15836, 16047, 198, 11803, 2212, 5377, 15836, 3544, 4221, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 1825, 2192, 323, 10137, 10546, 10344, 198, 1757, 10487, 11, 323, 279, 4676, 3977, 30941, 15836, 11669, 6738, 198, 438, 68788, 2898, 43, 15108, 11669, 6738, 743, 449, 701, 1825, 15836, 5446, 1401, 323, 198, 41681, 10546, 1401, 15947, 627, 2460, 5137, 430, 649, 387, 5946, 311, 279, 5377, 15836, 16047, 445, 11237, 649, 1101, 198, 1395, 5946, 1618, 13, 578, 60601, 9368, 5109, 15836, 16047, 11621, 1403, 10309, 198, 9905, 198, 501, 16735, 1389, 1796, 315, 9246, 311, 4877, 279, 1715, 449, 627, 693, 6451, 851, 1389, 1442, 3082, 11, 279, 60601, 9368, 1715, 3110, 690, 387, 198, 78691, 304, 279, 9659, 3186, 2115, 315, 279, 198, 38238, 1665, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 60601, 9368, 5109, 15836, 16047 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAIChat.html
395a6f07d6b3-1
Generation object. Example from langchain.llms import PromptLayerOpenAIChat openaichat = PromptLayerOpenAIChat(model_name="gpt-3.5-turbo") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param allowed_special: Union[Literal['all'], AbstractSet[str]] = {}¶ Set of special tokens that are allowed。 param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param disallowed_special: Union[Literal['all'], Collection[str]] = 'all'¶ Set of special tokens that are not allowed。 param max_retries: int = 6¶ Maximum number of retries to make when generating. param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param model_name: str = 'gpt-3.5-turbo'¶ Model name to use. param openai_api_base: Optional[str] = None¶ param openai_api_key: Optional[str] = None¶ param openai_proxy: Optional[str] = None¶ param pl_tags: Optional[List[str]] = None¶ param prefix_messages: List [Optional]¶ Series of messages for Chat input. param return_pl_id: Optional[bool] = False¶ param streaming: bool = False¶ Whether to stream the results or not. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text.
[ 38238, 1665, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 60601, 9368, 5109, 15836, 16047, 198, 2569, 64, 718, 266, 284, 60601, 9368, 5109, 15836, 16047, 7790, 1292, 429, 70, 418, 12, 18, 13, 20, 2442, 324, 754, 1158, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 5535, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 13822, 1681, 17752, 5163, 284, 4792, 55609, 198, 1681, 315, 3361, 11460, 430, 527, 5535, 9174, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 834, 21642, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 11348, 17752, 5163, 284, 364, 543, 6, 55609, 198, 1681, 315, 3361, 11460, 430, 527, 539, 5535, 9174, 913, 1973, 1311, 4646, 25, 528, 284, 220, 21, 55609, 198, 28409, 1396, 315, 61701, 311, 1304, 994, 24038, 627, 913, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 510, 15669, 60, 55609, 198, 39, 18938, 904, 1646, 5137, 2764, 369, 1893, 1650, 539, 21650, 5300, 627, 913, 1646, 1292, 25, 610, 284, 364, 70, 418, 12, 18, 13, 20, 2442, 324, 754, 6, 55609, 198, 1747, 836, 311, 1005, 627, 913, 1825, 2192, 11959, 7806, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1825, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1825, 2192, 30812, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 628, 16735, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 913, 9436, 24321, 25, 1796, 510, 15669, 60, 55609, 198, 26625, 315, 6743, 369, 13149, 1988, 627, 913, 471, 6451, 851, 25, 12536, 58, 2707, 60, 284, 3641, 55609, 198, 913, 17265, 25, 1845, 284, 3641, 55609, 198, 25729, 311, 4365, 279, 3135, 477, 539, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAIChat.html
395a6f07d6b3-2
param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator build_extra  »  all fields¶ Build extra kwargs from additional params that were passed in. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
[ 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 1977, 32958, 4194, 8345, 4194, 682, 5151, 55609, 198, 11313, 5066, 16901, 505, 5217, 3712, 430, 1051, 5946, 304, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAIChat.html
395a6f07d6b3-3
Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token IDs using the tiktoken package. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 29460, 1701, 279, 87272, 5963, 6462, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAIChat.html
395a6f07d6b3-4
property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAIChat.html
2fbf6115c291-0
langchain.llms.vertexai.VertexAI¶ class langchain.llms.vertexai.VertexAI(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: _LanguageModel = None, model_name: str = 'text-bison', temperature: float = 0.0, max_output_tokens: int = 128, top_p: float = 0.95, top_k: int = 40, stop: Optional[List[str]] = None, project: Optional[str] = None, location: str = 'us-central1', credentials: Any = None, request_parallelism: int = 5, tuned_model_name: Optional[str] = None)[source]¶ Bases: _VertexAICommon, LLM Wrapper around Google Vertex AI large language models. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param credentials: Any = None¶ The default custom credentials (google.auth.credentials.Credentials) to use param location: str = 'us-central1'¶ The default location to use when making API calls. param max_output_tokens: int = 128¶ Token limit determines the maximum amount of text output from one prompt. param model_name: str = 'text-bison'¶ The name of the Vertex AI large language model. param project: Optional[str] = None¶ The default GCP project to use when making Vertex API calls.
[ 5317, 8995, 60098, 1026, 48375, 2192, 73694, 15836, 55609, 198, 1058, 8859, 8995, 60098, 1026, 48375, 2192, 73694, 15836, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 721, 14126, 1747, 284, 2290, 11, 1646, 1292, 25, 610, 284, 364, 1342, 1481, 3416, 518, 9499, 25, 2273, 284, 220, 15, 13, 15, 11, 1973, 7800, 29938, 25, 528, 284, 220, 4386, 11, 1948, 623, 25, 2273, 284, 220, 15, 13, 2721, 11, 1948, 4803, 25, 528, 284, 220, 1272, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 2447, 25, 12536, 17752, 60, 284, 2290, 11, 3813, 25, 610, 284, 364, 355, 85181, 16, 518, 16792, 25, 5884, 284, 2290, 11, 1715, 61725, 2191, 25, 528, 284, 220, 20, 11, 33519, 5156, 1292, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 721, 8484, 15836, 11076, 11, 445, 11237, 198, 11803, 2212, 5195, 24103, 15592, 3544, 4221, 4211, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 16792, 25, 5884, 284, 2290, 55609, 198, 791, 1670, 2587, 16792, 320, 17943, 9144, 75854, 732, 16112, 8, 311, 1005, 198, 913, 3813, 25, 610, 284, 364, 355, 85181, 16, 6, 55609, 198, 791, 1670, 3813, 311, 1005, 994, 3339, 5446, 6880, 627, 913, 1973, 7800, 29938, 25, 528, 284, 220, 4386, 55609, 198, 3404, 4017, 27667, 279, 7340, 3392, 315, 1495, 2612, 505, 832, 10137, 627, 913, 1646, 1292, 25, 610, 284, 364, 1342, 1481, 3416, 6, 55609, 198, 791, 836, 315, 279, 24103, 15592, 3544, 4221, 1646, 627, 913, 2447, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 791, 1670, 480, 7269, 2447, 311, 1005, 994, 3339, 24103, 5446, 6880, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.vertexai.VertexAI.html
2fbf6115c291-1
The default GCP project to use when making Vertex API calls. param request_parallelism: int = 5¶ The amount of parallelism allowed for requests issued to VertexAI models. param stop: Optional[List[str]] = None¶ Optional list of stop words to use when generating. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.0¶ Sampling temperature, it controls the degree of randomness in token selection. param top_k: int = 40¶ How the model selects tokens for output, the next token is selected from param top_p: float = 0.95¶ Tokens are selected from most probable to least until the sum of their param tuned_model_name: Optional[str] = None¶ The name of a tuned model. If provided, model_name is ignored. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult.
[ 791, 1670, 480, 7269, 2447, 311, 1005, 994, 3339, 24103, 5446, 6880, 627, 913, 1715, 61725, 2191, 25, 528, 284, 220, 20, 55609, 198, 791, 3392, 315, 15638, 2191, 5535, 369, 7540, 11136, 311, 24103, 15836, 4211, 627, 913, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 15669, 1160, 315, 3009, 4339, 311, 1005, 994, 24038, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 9499, 25, 2273, 284, 220, 15, 13, 15, 55609, 198, 99722, 9499, 11, 433, 11835, 279, 8547, 315, 87790, 304, 4037, 6727, 627, 913, 1948, 4803, 25, 528, 284, 220, 1272, 55609, 198, 4438, 279, 1646, 50243, 11460, 369, 2612, 11, 279, 1828, 4037, 374, 4183, 505, 198, 913, 1948, 623, 25, 2273, 284, 220, 15, 13, 2721, 55609, 198, 30400, 527, 4183, 505, 1455, 35977, 311, 3325, 3156, 279, 2694, 315, 872, 198, 913, 33519, 5156, 1292, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 791, 836, 315, 264, 33519, 1646, 13, 1442, 3984, 11, 1646, 1292, 374, 12305, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.vertexai.VertexAI.html
2fbf6115c291-2
Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶
[ 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.vertexai.VertexAI.html
2fbf6115c291-3
Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that the python package exists in environment. property is_codey_model: bool¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. task_executor: ClassVar[Optional[Executor]] = None¶ model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 279, 10344, 6462, 6866, 304, 4676, 627, 3784, 374, 4229, 88, 5156, 25, 1845, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 8366, 82307, 25, 3308, 4050, 58, 15669, 58, 26321, 5163, 284, 2290, 55609, 198, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.vertexai.VertexAI.html
7b92b4c527c5-0
langchain.llms.openai.AzureOpenAI¶ class langchain.llms.openai.AzureOpenAI(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: Any = None, model: str = 'text-davinci-003', temperature: float = 0.7, max_tokens: int = 256, top_p: float = 1, frequency_penalty: float = 0, presence_penalty: float = 0, n: int = 1, best_of: int = 1, model_kwargs: Dict[str, Any] = None, openai_api_key: Optional[str] = None, openai_api_base: Optional[str] = None, openai_organization: Optional[str] = None, openai_proxy: Optional[str] = None, batch_size: int = 20, request_timeout: Optional[Union[float, Tuple[float, float]]] = None, logit_bias: Optional[Dict[str, float]] = None, max_retries: int = 6, streaming: bool = False, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', tiktoken_model_name: Optional[str] = None, deployment_name: str = '', openai_api_type: str = 'azure', openai_api_version: str = '')[source]¶ Bases: BaseOpenAI Wrapper around Azure-specific OpenAI large language models. To use, you should have the openai python package installed, and the environment variable OPENAI_API_KEY set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed
[ 5317, 8995, 60098, 1026, 5949, 2192, 58927, 5109, 15836, 55609, 198, 1058, 8859, 8995, 60098, 1026, 5949, 2192, 58927, 5109, 15836, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 5884, 284, 2290, 11, 1646, 25, 610, 284, 364, 1342, 1773, 402, 49697, 12, 6268, 518, 9499, 25, 2273, 284, 220, 15, 13, 22, 11, 1973, 29938, 25, 528, 284, 220, 4146, 11, 1948, 623, 25, 2273, 284, 220, 16, 11, 11900, 83386, 25, 2273, 284, 220, 15, 11, 9546, 83386, 25, 2273, 284, 220, 15, 11, 308, 25, 528, 284, 220, 16, 11, 1888, 3659, 25, 528, 284, 220, 16, 11, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 284, 2290, 11, 1825, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 1825, 2192, 11959, 7806, 25, 12536, 17752, 60, 284, 2290, 11, 1825, 2192, 83452, 25, 12536, 17752, 60, 284, 2290, 11, 1825, 2192, 30812, 25, 12536, 17752, 60, 284, 2290, 11, 7309, 2424, 25, 528, 284, 220, 508, 11, 1715, 21179, 25, 12536, 58, 33758, 96481, 11, 25645, 96481, 11, 2273, 5163, 60, 284, 2290, 11, 1515, 275, 37481, 25, 12536, 58, 13755, 17752, 11, 2273, 5163, 284, 2290, 11, 1973, 1311, 4646, 25, 528, 284, 220, 21, 11, 17265, 25, 1845, 284, 3641, 11, 5535, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 13822, 1681, 17752, 5163, 284, 16857, 834, 21642, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 11348, 17752, 5163, 284, 364, 543, 518, 87272, 5963, 5156, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 24047, 1292, 25, 610, 284, 9158, 1825, 2192, 11959, 1857, 25, 610, 284, 364, 40595, 518, 1825, 2192, 11959, 9625, 25, 610, 284, 364, 13588, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 5109, 15836, 198, 11803, 2212, 35219, 19440, 5377, 15836, 3544, 4221, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 1825, 2192, 10344, 6462, 10487, 11, 323, 279, 198, 24175, 3977, 30941, 15836, 11669, 6738, 743, 449, 701, 5446, 1401, 627, 8780, 5137, 430, 527, 2764, 311, 387, 5946, 311, 279, 1825, 2192, 2581, 1650, 649, 387, 5946 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.AzureOpenAI.html
7b92b4c527c5-1
Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example from langchain.llms import AzureOpenAI openai = AzureOpenAI(model_name="text-davinci-003") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param allowed_special: Union[Literal['all'], AbstractSet[str]] = {}¶ Set of special tokens that are allowed。 param batch_size: int = 20¶ Batch size to use when passing multiple documents to generate. param best_of: int = 1¶ Generates best_of completions server-side and returns the “best”. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param deployment_name: str = ''¶ Deployment name to use. param disallowed_special: Union[Literal['all'], Collection[str]] = 'all'¶ Set of special tokens that are not allowed。 param frequency_penalty: float = 0¶ Penalizes repeated tokens according to frequency. param logit_bias: Optional[Dict[str, float]] [Optional]¶ Adjust the probability of specific tokens being generated. param max_retries: int = 6¶ Maximum number of retries to make when generating. param max_tokens: int = 256¶ The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size. param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified.
[ 8780, 5137, 430, 527, 2764, 311, 387, 5946, 311, 279, 1825, 2192, 2581, 1650, 649, 387, 5946, 198, 258, 11, 1524, 422, 539, 21650, 6924, 389, 420, 538, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 35219, 5109, 15836, 198, 2569, 2192, 284, 35219, 5109, 15836, 7790, 1292, 429, 1342, 1773, 402, 49697, 12, 6268, 1158, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 5535, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 13822, 1681, 17752, 5163, 284, 4792, 55609, 198, 1681, 315, 3361, 11460, 430, 527, 5535, 9174, 913, 7309, 2424, 25, 528, 284, 220, 508, 55609, 198, 21753, 1404, 311, 1005, 994, 12579, 5361, 9477, 311, 7068, 627, 913, 1888, 3659, 25, 528, 284, 220, 16, 55609, 198, 5648, 988, 1888, 3659, 3543, 919, 3622, 25034, 323, 4780, 279, 1054, 16241, 863, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 24047, 1292, 25, 610, 284, 3436, 55609, 198, 76386, 836, 311, 1005, 627, 913, 834, 21642, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 11348, 17752, 5163, 284, 364, 543, 6, 55609, 198, 1681, 315, 3361, 11460, 430, 527, 539, 5535, 9174, 913, 11900, 83386, 25, 2273, 284, 220, 15, 55609, 198, 29305, 278, 4861, 11763, 11460, 4184, 311, 11900, 627, 913, 1515, 275, 37481, 25, 12536, 58, 13755, 17752, 11, 2273, 5163, 510, 15669, 60, 55609, 198, 39716, 279, 19463, 315, 3230, 11460, 1694, 8066, 627, 913, 1973, 1311, 4646, 25, 528, 284, 220, 21, 55609, 198, 28409, 1396, 315, 61701, 311, 1304, 994, 24038, 627, 913, 1973, 29938, 25, 528, 284, 220, 4146, 55609, 198, 791, 7340, 1396, 315, 11460, 311, 7068, 304, 279, 9954, 627, 12, 16, 4780, 439, 1690, 11460, 439, 3284, 2728, 279, 10137, 323, 198, 1820, 4211, 54229, 2317, 1404, 627, 913, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 510, 15669, 60, 55609, 198, 39, 18938, 904, 1646, 5137, 2764, 369, 1893, 1650, 539, 21650, 5300, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.AzureOpenAI.html
7b92b4c527c5-2
Holds any model parameters valid for create call not explicitly specified. param model_name: str = 'text-davinci-003' (alias 'model')¶ Model name to use. param n: int = 1¶ How many completions to generate for each prompt. param openai_api_base: Optional[str] = None¶ param openai_api_key: Optional[str] = None¶ param openai_api_type: str = 'azure'¶ param openai_api_version: str = ''¶ param openai_organization: Optional[str] = None¶ param openai_proxy: Optional[str] = None¶ param presence_penalty: float = 0¶ Penalizes repeated tokens. param request_timeout: Optional[Union[float, Tuple[float, float]]] = None¶ Timeout for requests to OpenAI completion API. Default is 600 seconds. param streaming: bool = False¶ Whether to stream the results or not. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.7¶ What sampling temperature to use. param tiktoken_model_name: Optional[str] = None¶ The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here.
[ 39, 18938, 904, 1646, 5137, 2764, 369, 1893, 1650, 539, 21650, 5300, 627, 913, 1646, 1292, 25, 610, 284, 364, 1342, 1773, 402, 49697, 12, 6268, 6, 320, 15305, 364, 2590, 873, 55609, 198, 1747, 836, 311, 1005, 627, 913, 308, 25, 528, 284, 220, 16, 55609, 198, 4438, 1690, 3543, 919, 311, 7068, 369, 1855, 10137, 627, 913, 1825, 2192, 11959, 7806, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1825, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1825, 2192, 11959, 1857, 25, 610, 284, 364, 40595, 6, 55609, 198, 913, 1825, 2192, 11959, 9625, 25, 610, 284, 3436, 55609, 198, 913, 1825, 2192, 83452, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1825, 2192, 30812, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 9546, 83386, 25, 2273, 284, 220, 15, 55609, 198, 29305, 278, 4861, 11763, 11460, 627, 913, 1715, 21179, 25, 12536, 58, 33758, 96481, 11, 25645, 96481, 11, 2273, 5163, 60, 284, 2290, 55609, 198, 7791, 369, 7540, 311, 5377, 15836, 9954, 5446, 13, 8058, 374, 220, 5067, 6622, 627, 913, 17265, 25, 1845, 284, 3641, 55609, 198, 25729, 311, 4365, 279, 3135, 477, 539, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 9499, 25, 2273, 284, 220, 15, 13, 22, 55609, 198, 3923, 25936, 9499, 311, 1005, 627, 913, 87272, 5963, 5156, 1292, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 791, 1646, 836, 311, 1522, 311, 87272, 5963, 994, 1701, 420, 538, 627, 51, 1609, 5963, 374, 1511, 311, 1797, 279, 1396, 315, 11460, 304, 9477, 311, 80799, 198, 49818, 311, 387, 1234, 264, 3738, 4017, 13, 3296, 1670, 11, 994, 743, 311, 2290, 11, 420, 690, 198, 1395, 279, 1890, 439, 279, 40188, 1646, 836, 13, 4452, 11, 1070, 527, 1063, 5157, 198, 2940, 499, 1253, 1390, 311, 1005, 420, 38168, 7113, 538, 449, 264, 1646, 836, 539, 198, 18717, 555, 87272, 5963, 13, 1115, 649, 2997, 994, 1701, 35219, 71647, 477, 198, 9493, 1701, 832, 315, 279, 1690, 1646, 12850, 430, 29241, 459, 5377, 15836, 12970, 198, 7227, 719, 449, 2204, 4211, 13, 763, 1884, 5157, 11, 304, 2015, 311, 5766, 1493, 287, 198, 9493, 87272, 5963, 374, 2663, 11, 499, 649, 14158, 264, 1646, 836, 311, 1005, 1618, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.AzureOpenAI.html
7b92b4c527c5-3
when tiktoken is called, you can specify a model name to use here. param top_p: float = 1¶ Total probability mass of tokens to consider at each step. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator build_extra  »  all fields¶ Build extra kwargs from additional params that were passed in. create_llm_result(choices: Any, prompts: List[str], token_usage: Dict[str, int]) → LLMResult¶ Create the LLMResult from the choices and prompts. dict(**kwargs: Any) → Dict¶
[ 9493, 87272, 5963, 374, 2663, 11, 499, 649, 14158, 264, 1646, 836, 311, 1005, 1618, 627, 913, 1948, 623, 25, 2273, 284, 220, 16, 55609, 198, 7749, 19463, 3148, 315, 11460, 311, 2980, 520, 1855, 3094, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 1977, 32958, 4194, 8345, 4194, 682, 5151, 55609, 198, 11313, 5066, 16901, 505, 5217, 3712, 430, 1051, 5946, 304, 627, 3261, 44095, 76, 5400, 92383, 25, 5884, 11, 52032, 25, 1796, 17752, 1145, 4037, 32607, 25, 30226, 17752, 11, 528, 2526, 11651, 445, 11237, 2122, 55609, 198, 4110, 279, 445, 11237, 2122, 505, 279, 11709, 323, 52032, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.AzureOpenAI.html
7b92b4c527c5-4
dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_sub_prompts(params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None) → List[List[str]]¶ Get the sub prompts for llm call. get_token_ids(text: str) → List[int]¶ Get the token IDs using the tiktoken package. max_tokens_for_prompt(prompt: str) → int¶ Calculate the maximum number of tokens possible to generate for a prompt. Parameters prompt – The prompt to pass into the model. Returns The maximum number of tokens to generate for a prompt. Example max_tokens = openai.max_token_for_prompt("Tell me a joke.") static modelname_to_contextsize(modelname: str) → int¶ Calculate the maximum number of tokens possible to generate for a model. Parameters modelname – The modelname we want to know the context size for. Returns The maximum context size Example
[ 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 5341, 48977, 13044, 9094, 25, 30226, 17752, 11, 5884, 1145, 52032, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 8, 11651, 1796, 53094, 17752, 5163, 55609, 198, 1991, 279, 1207, 52032, 369, 9507, 76, 1650, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 29460, 1701, 279, 87272, 5963, 6462, 627, 2880, 29938, 5595, 62521, 73353, 25, 610, 8, 11651, 528, 55609, 198, 48966, 279, 7340, 1396, 315, 11460, 3284, 311, 7068, 369, 264, 10137, 627, 9905, 198, 41681, 1389, 578, 10137, 311, 1522, 1139, 279, 1646, 627, 16851, 198, 791, 7340, 1396, 315, 11460, 311, 7068, 369, 264, 10137, 627, 13617, 198, 2880, 29938, 284, 1825, 2192, 6817, 6594, 5595, 62521, 446, 41551, 757, 264, 22380, 13352, 2020, 1646, 609, 2401, 8634, 2190, 7790, 609, 25, 610, 8, 11651, 528, 55609, 198, 48966, 279, 7340, 1396, 315, 11460, 3284, 311, 7068, 369, 264, 1646, 627, 9905, 198, 2590, 609, 1389, 578, 1646, 609, 584, 1390, 311, 1440, 279, 2317, 1404, 369, 627, 16851, 198, 791, 7340, 2317, 1404, 198, 13617 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.AzureOpenAI.html
7b92b4c527c5-5
Returns The maximum context size Example max_tokens = openai.modelname_to_contextsize("text-davinci-003") predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. prep_streaming_params(stop: Optional[List[str]] = None) → Dict[str, Any]¶ Prepare the params for streaming. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. stream(prompt: str, stop: Optional[List[str]] = None) → Generator¶ Call OpenAI with streaming flag and return the resulting generator. BETA: this is a beta feature while we figure out the right abstraction. Once that happens, this interface could change. Parameters prompt – The prompts to pass into the model. stop – Optional list of stop words to use when generating. Returns A generator representing the stream of tokens from OpenAI. Example generator = openai.stream("Tell me a joke.") for token in generator: yield token to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_azure_settings  »  all fields[source]¶
[ 16851, 198, 791, 7340, 2317, 1404, 198, 13617, 198, 2880, 29938, 284, 1825, 2192, 3272, 609, 2401, 8634, 2190, 446, 1342, 1773, 402, 49697, 12, 6268, 1158, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 72874, 12962, 287, 6887, 61270, 25, 12536, 53094, 17752, 5163, 284, 2290, 8, 11651, 30226, 17752, 11, 5884, 60, 55609, 198, 51690, 279, 3712, 369, 17265, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 4116, 73353, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 8, 11651, 29458, 55609, 198, 7368, 5377, 15836, 449, 17265, 5292, 323, 471, 279, 13239, 14143, 627, 33, 21352, 25, 420, 374, 264, 13746, 4668, 1418, 584, 7216, 704, 279, 1314, 59851, 627, 12805, 430, 8741, 11, 420, 3834, 1436, 2349, 627, 9905, 198, 41681, 1389, 578, 52032, 311, 1522, 1139, 279, 1646, 627, 9684, 1389, 12536, 1160, 315, 3009, 4339, 311, 1005, 994, 24038, 627, 16851, 198, 32, 14143, 14393, 279, 4365, 315, 11460, 505, 5377, 15836, 627, 13617, 198, 36951, 284, 1825, 2192, 15307, 446, 41551, 757, 264, 22380, 13352, 2000, 4037, 304, 14143, 512, 262, 7692, 4037, 198, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 62, 40595, 11090, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.AzureOpenAI.html
7b92b4c527c5-6
validator validate_azure_settings  »  all fields[source]¶ validator validate_environment  »  all fields¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. property max_context_size: int¶ Get max context size for this model. model Config¶ Bases: object Configuration for this pydantic object. allow_population_by_field_name = True¶
[ 16503, 9788, 62, 40595, 11090, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 3784, 1973, 8634, 2424, 25, 528, 55609, 198, 1991, 1973, 2317, 1404, 369, 420, 1646, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 7331, 75672, 3795, 5121, 1292, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.AzureOpenAI.html
5ccab1621d09-0
langchain.llms.deepinfra.DeepInfra¶ class langchain.llms.deepinfra.DeepInfra(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, model_id: str = 'google/flan-t5-xl', model_kwargs: Optional[dict] = None, deepinfra_api_token: Optional[str] = None)[source]¶ Bases: LLM Wrapper around DeepInfra deployed models. To use, you should have the requests python package installed, and the environment variable DEEPINFRA_API_TOKEN set with your API token, or pass it as a named parameter to the constructor. Only supports text-generation and text2text-generation for now. Example from langchain.llms import DeepInfra di = DeepInfra(model_id="google/flan-t5-xl", deepinfra_api_token="my-api-key") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param deepinfra_api_token: Optional[str] = None¶ param model_id: str = 'google/flan-t5-xl'¶ param model_kwargs: Optional[dict] = None¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text.
[ 5317, 8995, 60098, 1026, 22597, 93417, 56702, 19998, 969, 55609, 198, 1058, 8859, 8995, 60098, 1026, 22597, 93417, 56702, 19998, 969, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 1646, 851, 25, 610, 284, 364, 17943, 59403, 276, 2442, 20, 32046, 518, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 11, 5655, 93417, 11959, 6594, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 18682, 19998, 969, 27167, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 7540, 10344, 6462, 10487, 11, 323, 279, 198, 24175, 3977, 3467, 9377, 37509, 5726, 11669, 19199, 743, 449, 701, 5446, 4037, 11, 477, 1522, 198, 275, 439, 264, 7086, 5852, 311, 279, 4797, 627, 7456, 11815, 1495, 43927, 323, 1495, 17, 1342, 43927, 369, 1457, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 18682, 19998, 969, 198, 8747, 284, 18682, 19998, 969, 7790, 851, 429, 17943, 59403, 276, 2442, 20, 32046, 761, 504, 5655, 93417, 11959, 6594, 429, 2465, 24851, 16569, 1158, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 5655, 93417, 11959, 6594, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1646, 851, 25, 610, 284, 364, 17943, 59403, 276, 2442, 20, 32046, 6, 55609, 198, 913, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 55609, 198, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.deepinfra.DeepInfra.html
5ccab1621d09-1
param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
[ 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.deepinfra.DeepInfra.html
5ccab1621d09-2
Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.deepinfra.DeepInfra.html
5ccab1621d09-3
property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.deepinfra.DeepInfra.html
d507c7831080-0
langchain.llms.azureml_endpoint.DollyContentFormatter¶ class langchain.llms.azureml_endpoint.DollyContentFormatter[source]¶ Bases: ContentFormatterBase Content handler for the Dolly-v2-12b model Methods __init__() format_request_payload(prompt, model_kwargs) Formats the request body according to the input schema of the model. format_response_payload(output) Formats the response body according to the output schema of the model. Attributes accepts The MIME type of the response data returned form the endpoint content_type The MIME type of the input data passed to the endpoint format_request_payload(prompt: str, model_kwargs: Dict) → bytes[source]¶ Formats the request body according to the input schema of the model. Returns bytes or seekable file like object in the format specified in the content_type request header. format_response_payload(output: bytes) → str[source]¶ Formats the response body according to the output schema of the model. Returns the data type that is received from the response. accepts: Optional[str] = 'application/json'¶ The MIME type of the response data returned form the endpoint content_type: Optional[str] = 'application/json'¶ The MIME type of the input data passed to the endpoint
[ 5317, 8995, 60098, 1026, 71340, 1029, 37799, 920, 8788, 2831, 14517, 55609, 198, 1058, 8859, 8995, 60098, 1026, 71340, 1029, 37799, 920, 8788, 2831, 14517, 76747, 60, 55609, 198, 33, 2315, 25, 9059, 14517, 4066, 198, 2831, 7158, 369, 279, 423, 8788, 8437, 17, 12, 717, 65, 1646, 198, 18337, 198, 565, 2381, 33716, 2293, 8052, 33913, 73353, 11, 4194, 2590, 37335, 340, 45699, 279, 1715, 2547, 4184, 311, 279, 1988, 11036, 315, 279, 1646, 627, 2293, 9852, 33913, 11304, 340, 45699, 279, 2077, 2547, 4184, 311, 279, 2612, 11036, 315, 279, 1646, 627, 10738, 198, 10543, 82, 198, 791, 58577, 955, 315, 279, 2077, 828, 6052, 1376, 279, 15233, 198, 1834, 1857, 198, 791, 58577, 955, 315, 279, 1988, 828, 5946, 311, 279, 15233, 198, 2293, 8052, 33913, 73353, 25, 610, 11, 1646, 37335, 25, 30226, 8, 11651, 5943, 76747, 60, 55609, 198, 45699, 279, 1715, 2547, 4184, 311, 279, 1988, 11036, 315, 198, 1820, 1646, 13, 5295, 5943, 477, 6056, 481, 1052, 1093, 1665, 304, 279, 198, 2293, 5300, 304, 279, 2262, 1857, 1715, 4342, 627, 2293, 9852, 33913, 11304, 25, 5943, 8, 11651, 610, 76747, 60, 55609, 198, 45699, 279, 2077, 2547, 4184, 311, 279, 2612, 198, 17801, 315, 279, 1646, 13, 5295, 279, 828, 955, 430, 374, 198, 42923, 505, 279, 2077, 627, 10543, 82, 25, 12536, 17752, 60, 284, 364, 5242, 9108, 6, 55609, 198, 791, 58577, 955, 315, 279, 2077, 828, 6052, 1376, 279, 15233, 198, 1834, 1857, 25, 12536, 17752, 60, 284, 364, 5242, 9108, 6, 55609, 198, 791, 58577, 955, 315, 279, 1988, 828, 5946, 311, 279, 15233 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.azureml_endpoint.DollyContentFormatter.html
3e93f2fbaa49-0
langchain.llms.forefrontai.ForefrontAI¶ class langchain.llms.forefrontai.ForefrontAI(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, endpoint_url: str = '', temperature: float = 0.7, length: int = 256, top_p: float = 1.0, top_k: int = 40, repetition_penalty: int = 1, forefrontai_api_key: Optional[str] = None, base_url: Optional[str] = None)[source]¶ Bases: LLM Wrapper around ForefrontAI large language models. To use, you should have the environment variable FOREFRONTAI_API_KEY set with your API key. Example from langchain.llms import ForefrontAI forefrontai = ForefrontAI(endpoint_url="") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param base_url: Optional[str] = None¶ Base url to use, if None decides based on model name. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param endpoint_url: str = ''¶ Model name to use. param forefrontai_api_key: Optional[str] = None¶ param length: int = 256¶ The maximum number of tokens to generate in the completion. param repetition_penalty: int = 1¶ Penalizes repeated tokens according to frequency. param tags: Optional[List[str]] = None¶ Tags to add to the run trace.
[ 5317, 8995, 60098, 1026, 55669, 7096, 2192, 10749, 7096, 15836, 55609, 198, 1058, 8859, 8995, 60098, 1026, 55669, 7096, 2192, 10749, 7096, 15836, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 15233, 2975, 25, 610, 284, 9158, 9499, 25, 2273, 284, 220, 15, 13, 22, 11, 3160, 25, 528, 284, 220, 4146, 11, 1948, 623, 25, 2273, 284, 220, 16, 13, 15, 11, 1948, 4803, 25, 528, 284, 220, 1272, 11, 54515, 83386, 25, 528, 284, 220, 16, 11, 52301, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 2385, 2975, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 8371, 7096, 15836, 3544, 4221, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 4676, 3977, 45023, 10725, 10443, 15836, 11669, 6738, 198, 751, 449, 701, 5446, 1401, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 8371, 7096, 15836, 198, 1348, 7096, 2192, 284, 8371, 7096, 15836, 55969, 2975, 64841, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 2385, 2975, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 4066, 2576, 311, 1005, 11, 422, 2290, 28727, 3196, 389, 1646, 836, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 15233, 2975, 25, 610, 284, 3436, 55609, 198, 1747, 836, 311, 1005, 627, 913, 52301, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 3160, 25, 528, 284, 220, 4146, 55609, 198, 791, 7340, 1396, 315, 11460, 311, 7068, 304, 279, 9954, 627, 913, 54515, 83386, 25, 528, 284, 220, 16, 55609, 198, 29305, 278, 4861, 11763, 11460, 4184, 311, 11900, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.forefrontai.ForefrontAI.html
3e93f2fbaa49-1
param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.7¶ What sampling temperature to use. param top_k: int = 40¶ The number of highest probability vocabulary tokens to keep for top-k-filtering. param top_p: float = 1.0¶ Total probability mass of tokens to consider at each step. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM.
[ 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 9499, 25, 2273, 284, 220, 15, 13, 22, 55609, 198, 3923, 25936, 9499, 311, 1005, 627, 913, 1948, 4803, 25, 528, 284, 220, 1272, 55609, 198, 791, 1396, 315, 8592, 19463, 36018, 11460, 311, 198, 13397, 369, 1948, 12934, 33548, 287, 627, 913, 1948, 623, 25, 2273, 284, 220, 16, 13, 15, 55609, 198, 7749, 19463, 3148, 315, 11460, 311, 2980, 520, 1855, 3094, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.forefrontai.ForefrontAI.html
3e93f2fbaa49-2
dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting.
[ 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.forefrontai.ForefrontAI.html
3e93f2fbaa49-3
This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.forefrontai.ForefrontAI.html
484ee1624185-0
langchain.llms.openai.OpenAI¶ class langchain.llms.openai.OpenAI(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: Any = None, model: str = 'text-davinci-003', temperature: float = 0.7, max_tokens: int = 256, top_p: float = 1, frequency_penalty: float = 0, presence_penalty: float = 0, n: int = 1, best_of: int = 1, model_kwargs: Dict[str, Any] = None, openai_api_key: Optional[str] = None, openai_api_base: Optional[str] = None, openai_organization: Optional[str] = None, openai_proxy: Optional[str] = None, batch_size: int = 20, request_timeout: Optional[Union[float, Tuple[float, float]]] = None, logit_bias: Optional[Dict[str, float]] = None, max_retries: int = 6, streaming: bool = False, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', tiktoken_model_name: Optional[str] = None)[source]¶ Bases: BaseOpenAI Wrapper around OpenAI large language models. To use, you should have the openai python package installed, and the environment variable OPENAI_API_KEY set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example from langchain.llms import OpenAI
[ 5317, 8995, 60098, 1026, 5949, 2192, 13250, 15836, 55609, 198, 1058, 8859, 8995, 60098, 1026, 5949, 2192, 13250, 15836, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 5884, 284, 2290, 11, 1646, 25, 610, 284, 364, 1342, 1773, 402, 49697, 12, 6268, 518, 9499, 25, 2273, 284, 220, 15, 13, 22, 11, 1973, 29938, 25, 528, 284, 220, 4146, 11, 1948, 623, 25, 2273, 284, 220, 16, 11, 11900, 83386, 25, 2273, 284, 220, 15, 11, 9546, 83386, 25, 2273, 284, 220, 15, 11, 308, 25, 528, 284, 220, 16, 11, 1888, 3659, 25, 528, 284, 220, 16, 11, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 284, 2290, 11, 1825, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 1825, 2192, 11959, 7806, 25, 12536, 17752, 60, 284, 2290, 11, 1825, 2192, 83452, 25, 12536, 17752, 60, 284, 2290, 11, 1825, 2192, 30812, 25, 12536, 17752, 60, 284, 2290, 11, 7309, 2424, 25, 528, 284, 220, 508, 11, 1715, 21179, 25, 12536, 58, 33758, 96481, 11, 25645, 96481, 11, 2273, 5163, 60, 284, 2290, 11, 1515, 275, 37481, 25, 12536, 58, 13755, 17752, 11, 2273, 5163, 284, 2290, 11, 1973, 1311, 4646, 25, 528, 284, 220, 21, 11, 17265, 25, 1845, 284, 3641, 11, 5535, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 13822, 1681, 17752, 5163, 284, 16857, 834, 21642, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 11348, 17752, 5163, 284, 364, 543, 518, 87272, 5963, 5156, 1292, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 5109, 15836, 198, 11803, 2212, 5377, 15836, 3544, 4221, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 1825, 2192, 10344, 6462, 10487, 11, 323, 279, 198, 24175, 3977, 30941, 15836, 11669, 6738, 743, 449, 701, 5446, 1401, 627, 8780, 5137, 430, 527, 2764, 311, 387, 5946, 311, 279, 1825, 2192, 2581, 1650, 649, 387, 5946, 198, 258, 11, 1524, 422, 539, 21650, 6924, 389, 420, 538, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 5377, 15836 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.OpenAI.html
484ee1624185-1
Example from langchain.llms import OpenAI openai = OpenAI(model_name="text-davinci-003") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param allowed_special: Union[Literal['all'], AbstractSet[str]] = {}¶ Set of special tokens that are allowed。 param batch_size: int = 20¶ Batch size to use when passing multiple documents to generate. param best_of: int = 1¶ Generates best_of completions server-side and returns the “best”. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param client: Any = None¶ param disallowed_special: Union[Literal['all'], Collection[str]] = 'all'¶ Set of special tokens that are not allowed。 param frequency_penalty: float = 0¶ Penalizes repeated tokens according to frequency. param logit_bias: Optional[Dict[str, float]] [Optional]¶ Adjust the probability of specific tokens being generated. param max_retries: int = 6¶ Maximum number of retries to make when generating. param max_tokens: int = 256¶ The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size. param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param model_name: str = 'text-davinci-003' (alias 'model')¶ Model name to use. param n: int = 1¶ How many completions to generate for each prompt.
[ 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 5377, 15836, 198, 2569, 2192, 284, 5377, 15836, 7790, 1292, 429, 1342, 1773, 402, 49697, 12, 6268, 1158, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 5535, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 13822, 1681, 17752, 5163, 284, 4792, 55609, 198, 1681, 315, 3361, 11460, 430, 527, 5535, 9174, 913, 7309, 2424, 25, 528, 284, 220, 508, 55609, 198, 21753, 1404, 311, 1005, 994, 12579, 5361, 9477, 311, 7068, 627, 913, 1888, 3659, 25, 528, 284, 220, 16, 55609, 198, 5648, 988, 1888, 3659, 3543, 919, 3622, 25034, 323, 4780, 279, 1054, 16241, 863, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 3016, 25, 5884, 284, 2290, 55609, 198, 913, 834, 21642, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 11348, 17752, 5163, 284, 364, 543, 6, 55609, 198, 1681, 315, 3361, 11460, 430, 527, 539, 5535, 9174, 913, 11900, 83386, 25, 2273, 284, 220, 15, 55609, 198, 29305, 278, 4861, 11763, 11460, 4184, 311, 11900, 627, 913, 1515, 275, 37481, 25, 12536, 58, 13755, 17752, 11, 2273, 5163, 510, 15669, 60, 55609, 198, 39716, 279, 19463, 315, 3230, 11460, 1694, 8066, 627, 913, 1973, 1311, 4646, 25, 528, 284, 220, 21, 55609, 198, 28409, 1396, 315, 61701, 311, 1304, 994, 24038, 627, 913, 1973, 29938, 25, 528, 284, 220, 4146, 55609, 198, 791, 7340, 1396, 315, 11460, 311, 7068, 304, 279, 9954, 627, 12, 16, 4780, 439, 1690, 11460, 439, 3284, 2728, 279, 10137, 323, 198, 1820, 4211, 54229, 2317, 1404, 627, 913, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 510, 15669, 60, 55609, 198, 39, 18938, 904, 1646, 5137, 2764, 369, 1893, 1650, 539, 21650, 5300, 627, 913, 1646, 1292, 25, 610, 284, 364, 1342, 1773, 402, 49697, 12, 6268, 6, 320, 15305, 364, 2590, 873, 55609, 198, 1747, 836, 311, 1005, 627, 913, 308, 25, 528, 284, 220, 16, 55609, 198, 4438, 1690, 3543, 919, 311, 7068, 369, 1855, 10137, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.OpenAI.html
484ee1624185-2
param n: int = 1¶ How many completions to generate for each prompt. param openai_api_base: Optional[str] = None¶ param openai_api_key: Optional[str] = None¶ param openai_organization: Optional[str] = None¶ param openai_proxy: Optional[str] = None¶ param presence_penalty: float = 0¶ Penalizes repeated tokens. param request_timeout: Optional[Union[float, Tuple[float, float]]] = None¶ Timeout for requests to OpenAI completion API. Default is 600 seconds. param streaming: bool = False¶ Whether to stream the results or not. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.7¶ What sampling temperature to use. param tiktoken_model_name: Optional[str] = None¶ The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here. param top_p: float = 1¶ Total probability mass of tokens to consider at each step. param verbose: bool [Optional]¶ Whether to print out response text.
[ 913, 308, 25, 528, 284, 220, 16, 55609, 198, 4438, 1690, 3543, 919, 311, 7068, 369, 1855, 10137, 627, 913, 1825, 2192, 11959, 7806, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1825, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1825, 2192, 83452, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1825, 2192, 30812, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 9546, 83386, 25, 2273, 284, 220, 15, 55609, 198, 29305, 278, 4861, 11763, 11460, 627, 913, 1715, 21179, 25, 12536, 58, 33758, 96481, 11, 25645, 96481, 11, 2273, 5163, 60, 284, 2290, 55609, 198, 7791, 369, 7540, 311, 5377, 15836, 9954, 5446, 13, 8058, 374, 220, 5067, 6622, 627, 913, 17265, 25, 1845, 284, 3641, 55609, 198, 25729, 311, 4365, 279, 3135, 477, 539, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 9499, 25, 2273, 284, 220, 15, 13, 22, 55609, 198, 3923, 25936, 9499, 311, 1005, 627, 913, 87272, 5963, 5156, 1292, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 791, 1646, 836, 311, 1522, 311, 87272, 5963, 994, 1701, 420, 538, 627, 51, 1609, 5963, 374, 1511, 311, 1797, 279, 1396, 315, 11460, 304, 9477, 311, 80799, 198, 49818, 311, 387, 1234, 264, 3738, 4017, 13, 3296, 1670, 11, 994, 743, 311, 2290, 11, 420, 690, 198, 1395, 279, 1890, 439, 279, 40188, 1646, 836, 13, 4452, 11, 1070, 527, 1063, 5157, 198, 2940, 499, 1253, 1390, 311, 1005, 420, 38168, 7113, 538, 449, 264, 1646, 836, 539, 198, 18717, 555, 87272, 5963, 13, 1115, 649, 2997, 994, 1701, 35219, 71647, 477, 198, 9493, 1701, 832, 315, 279, 1690, 1646, 12850, 430, 29241, 459, 5377, 15836, 12970, 198, 7227, 719, 449, 2204, 4211, 13, 763, 1884, 5157, 11, 304, 2015, 311, 5766, 1493, 287, 198, 9493, 87272, 5963, 374, 2663, 11, 499, 649, 14158, 264, 1646, 836, 311, 1005, 1618, 627, 913, 1948, 623, 25, 2273, 284, 220, 16, 55609, 198, 7749, 19463, 3148, 315, 11460, 311, 2980, 520, 1855, 3094, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.OpenAI.html
484ee1624185-3
param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator build_extra  »  all fields¶ Build extra kwargs from additional params that were passed in. create_llm_result(choices: Any, prompts: List[str], token_usage: Dict[str, int]) → LLMResult¶ Create the LLMResult from the choices and prompts. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM.
[ 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 1977, 32958, 4194, 8345, 4194, 682, 5151, 55609, 198, 11313, 5066, 16901, 505, 5217, 3712, 430, 1051, 5946, 304, 627, 3261, 44095, 76, 5400, 92383, 25, 5884, 11, 52032, 25, 1796, 17752, 1145, 4037, 32607, 25, 30226, 17752, 11, 528, 2526, 11651, 445, 11237, 2122, 55609, 198, 4110, 279, 445, 11237, 2122, 505, 279, 11709, 323, 52032, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.OpenAI.html
484ee1624185-4
dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_sub_prompts(params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None) → List[List[str]]¶ Get the sub prompts for llm call. get_token_ids(text: str) → List[int]¶ Get the token IDs using the tiktoken package. max_tokens_for_prompt(prompt: str) → int¶ Calculate the maximum number of tokens possible to generate for a prompt. Parameters prompt – The prompt to pass into the model. Returns The maximum number of tokens to generate for a prompt. Example max_tokens = openai.max_token_for_prompt("Tell me a joke.") static modelname_to_contextsize(modelname: str) → int¶ Calculate the maximum number of tokens possible to generate for a model. Parameters modelname – The modelname we want to know the context size for. Returns The maximum context size Example
[ 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 5341, 48977, 13044, 9094, 25, 30226, 17752, 11, 5884, 1145, 52032, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 8, 11651, 1796, 53094, 17752, 5163, 55609, 198, 1991, 279, 1207, 52032, 369, 9507, 76, 1650, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 29460, 1701, 279, 87272, 5963, 6462, 627, 2880, 29938, 5595, 62521, 73353, 25, 610, 8, 11651, 528, 55609, 198, 48966, 279, 7340, 1396, 315, 11460, 3284, 311, 7068, 369, 264, 10137, 627, 9905, 198, 41681, 1389, 578, 10137, 311, 1522, 1139, 279, 1646, 627, 16851, 198, 791, 7340, 1396, 315, 11460, 311, 7068, 369, 264, 10137, 627, 13617, 198, 2880, 29938, 284, 1825, 2192, 6817, 6594, 5595, 62521, 446, 41551, 757, 264, 22380, 13352, 2020, 1646, 609, 2401, 8634, 2190, 7790, 609, 25, 610, 8, 11651, 528, 55609, 198, 48966, 279, 7340, 1396, 315, 11460, 3284, 311, 7068, 369, 264, 1646, 627, 9905, 198, 2590, 609, 1389, 578, 1646, 609, 584, 1390, 311, 1440, 279, 2317, 1404, 369, 627, 16851, 198, 791, 7340, 2317, 1404, 198, 13617 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.OpenAI.html
484ee1624185-5
Returns The maximum context size Example max_tokens = openai.modelname_to_contextsize("text-davinci-003") predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. prep_streaming_params(stop: Optional[List[str]] = None) → Dict[str, Any]¶ Prepare the params for streaming. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. stream(prompt: str, stop: Optional[List[str]] = None) → Generator¶ Call OpenAI with streaming flag and return the resulting generator. BETA: this is a beta feature while we figure out the right abstraction. Once that happens, this interface could change. Parameters prompt – The prompts to pass into the model. stop – Optional list of stop words to use when generating. Returns A generator representing the stream of tokens from OpenAI. Example generator = openai.stream("Tell me a joke.") for token in generator: yield token to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields¶
[ 16851, 198, 791, 7340, 2317, 1404, 198, 13617, 198, 2880, 29938, 284, 1825, 2192, 3272, 609, 2401, 8634, 2190, 446, 1342, 1773, 402, 49697, 12, 6268, 1158, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 72874, 12962, 287, 6887, 61270, 25, 12536, 53094, 17752, 5163, 284, 2290, 8, 11651, 30226, 17752, 11, 5884, 60, 55609, 198, 51690, 279, 3712, 369, 17265, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 4116, 73353, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 8, 11651, 29458, 55609, 198, 7368, 5377, 15836, 449, 17265, 5292, 323, 471, 279, 13239, 14143, 627, 33, 21352, 25, 420, 374, 264, 13746, 4668, 1418, 584, 7216, 704, 279, 1314, 59851, 627, 12805, 430, 8741, 11, 420, 3834, 1436, 2349, 627, 9905, 198, 41681, 1389, 578, 52032, 311, 1522, 1139, 279, 1646, 627, 9684, 1389, 12536, 1160, 315, 3009, 4339, 311, 1005, 994, 24038, 627, 16851, 198, 32, 14143, 14393, 279, 4365, 315, 11460, 505, 5377, 15836, 627, 13617, 198, 36951, 284, 1825, 2192, 15307, 446, 41551, 757, 264, 22380, 13352, 2000, 4037, 304, 14143, 512, 262, 7692, 4037, 198, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.OpenAI.html
484ee1624185-6
validator validate_environment  »  all fields¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. property max_context_size: int¶ Get max context size for this model. model Config¶ Bases: object Configuration for this pydantic object. allow_population_by_field_name = True¶
[ 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 3784, 1973, 8634, 2424, 25, 528, 55609, 198, 1991, 1973, 2317, 1404, 369, 420, 1646, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 7331, 75672, 3795, 5121, 1292, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.OpenAI.html
de9f4885de6a-0
langchain.llms.google_palm.GooglePalm¶ class langchain.llms.google_palm.GooglePalm(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: Any = None, google_api_key: Optional[str] = None, model_name: str = 'models/text-bison-001', temperature: float = 0.7, top_p: Optional[float] = None, top_k: Optional[int] = None, max_output_tokens: Optional[int] = None, n: int = 1)[source]¶ Bases: BaseLLM, BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param google_api_key: Optional[str] = None¶ param max_output_tokens: Optional[int] = None¶ Maximum number of tokens to include in a candidate. Must be greater than zero. If unset, will default to 64. param model_name: str = 'models/text-bison-001'¶ Model name to use. param n: int = 1¶ Number of chat completions to generate for each prompt. Note that the API may not return the full n completions if duplicates are generated. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.7¶ Run inference with this temperature. Must by in the closed interval [0.0, 1.0].
[ 5317, 8995, 60098, 1026, 5831, 623, 7828, 61493, 47, 7828, 55609, 198, 1058, 8859, 8995, 60098, 1026, 5831, 623, 7828, 61493, 47, 7828, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 5884, 284, 2290, 11, 11819, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 1646, 1292, 25, 610, 284, 364, 6644, 37371, 1481, 3416, 12, 4119, 518, 9499, 25, 2273, 284, 220, 15, 13, 22, 11, 1948, 623, 25, 12536, 96481, 60, 284, 2290, 11, 1948, 4803, 25, 12536, 19155, 60, 284, 2290, 11, 1973, 7800, 29938, 25, 12536, 19155, 60, 284, 2290, 11, 308, 25, 528, 284, 220, 16, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 4178, 44, 11, 65705, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 11819, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1973, 7800, 29938, 25, 12536, 19155, 60, 284, 2290, 55609, 198, 28409, 1396, 315, 11460, 311, 2997, 304, 264, 9322, 13, 15832, 387, 7191, 1109, 7315, 627, 2746, 18484, 11, 690, 1670, 311, 220, 1227, 627, 913, 1646, 1292, 25, 610, 284, 364, 6644, 37371, 1481, 3416, 12, 4119, 6, 55609, 198, 1747, 836, 311, 1005, 627, 913, 308, 25, 528, 284, 220, 16, 55609, 198, 2903, 315, 6369, 3543, 919, 311, 7068, 369, 1855, 10137, 13, 7181, 430, 279, 5446, 1253, 198, 1962, 471, 279, 2539, 308, 3543, 919, 422, 43428, 527, 8066, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 9499, 25, 2273, 284, 220, 15, 13, 22, 55609, 198, 6869, 45478, 449, 420, 9499, 13, 15832, 555, 304, 279, 8036, 10074, 198, 58, 15, 13, 15, 11, 220, 16, 13, 15, 948 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.google_palm.GooglePalm.html
de9f4885de6a-1
[0.0, 1.0]. param top_k: Optional[int] = None¶ Decode using top-k sampling: consider the set of top_k most probable tokens. Must be positive. param top_p: Optional[float] = None¶ Decode using nucleus sampling: consider the smallest set of tokens whose probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶
[ 58, 15, 13, 15, 11, 220, 16, 13, 15, 27218, 913, 1948, 4803, 25, 12536, 19155, 60, 284, 2290, 55609, 198, 33664, 1701, 1948, 12934, 25936, 25, 2980, 279, 743, 315, 1948, 4803, 1455, 35977, 11460, 627, 32876, 387, 6928, 627, 913, 1948, 623, 25, 12536, 96481, 60, 284, 2290, 55609, 198, 33664, 1701, 62607, 25936, 25, 2980, 279, 25655, 743, 315, 11460, 6832, 198, 88540, 2694, 374, 520, 3325, 1948, 623, 13, 15832, 387, 304, 279, 8036, 10074, 510, 15, 13, 15, 11, 220, 16, 13, 15, 27218, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.google_palm.GooglePalm.html
de9f4885de6a-2
Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it.
[ 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.google_palm.GooglePalm.html
de9f4885de6a-3
validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate api key, python package exists. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 6464, 1401, 11, 10344, 6462, 6866, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.google_palm.GooglePalm.html
d35b2c96038d-0
langchain.llms.openai.BaseOpenAI¶ class langchain.llms.openai.BaseOpenAI(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: Any = None, model: str = 'text-davinci-003', temperature: float = 0.7, max_tokens: int = 256, top_p: float = 1, frequency_penalty: float = 0, presence_penalty: float = 0, n: int = 1, best_of: int = 1, model_kwargs: Dict[str, Any] = None, openai_api_key: Optional[str] = None, openai_api_base: Optional[str] = None, openai_organization: Optional[str] = None, openai_proxy: Optional[str] = None, batch_size: int = 20, request_timeout: Optional[Union[float, Tuple[float, float]]] = None, logit_bias: Optional[Dict[str, float]] = None, max_retries: int = 6, streaming: bool = False, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', tiktoken_model_name: Optional[str] = None)[source]¶ Bases: BaseLLM Wrapper around OpenAI large language models. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param allowed_special: Union[Literal['all'], AbstractSet[str]] = {}¶ Set of special tokens that are allowed。 param batch_size: int = 20¶
[ 5317, 8995, 60098, 1026, 5949, 2192, 13316, 5109, 15836, 55609, 198, 1058, 8859, 8995, 60098, 1026, 5949, 2192, 13316, 5109, 15836, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 5884, 284, 2290, 11, 1646, 25, 610, 284, 364, 1342, 1773, 402, 49697, 12, 6268, 518, 9499, 25, 2273, 284, 220, 15, 13, 22, 11, 1973, 29938, 25, 528, 284, 220, 4146, 11, 1948, 623, 25, 2273, 284, 220, 16, 11, 11900, 83386, 25, 2273, 284, 220, 15, 11, 9546, 83386, 25, 2273, 284, 220, 15, 11, 308, 25, 528, 284, 220, 16, 11, 1888, 3659, 25, 528, 284, 220, 16, 11, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 284, 2290, 11, 1825, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 1825, 2192, 11959, 7806, 25, 12536, 17752, 60, 284, 2290, 11, 1825, 2192, 83452, 25, 12536, 17752, 60, 284, 2290, 11, 1825, 2192, 30812, 25, 12536, 17752, 60, 284, 2290, 11, 7309, 2424, 25, 528, 284, 220, 508, 11, 1715, 21179, 25, 12536, 58, 33758, 96481, 11, 25645, 96481, 11, 2273, 5163, 60, 284, 2290, 11, 1515, 275, 37481, 25, 12536, 58, 13755, 17752, 11, 2273, 5163, 284, 2290, 11, 1973, 1311, 4646, 25, 528, 284, 220, 21, 11, 17265, 25, 1845, 284, 3641, 11, 5535, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 13822, 1681, 17752, 5163, 284, 16857, 834, 21642, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 11348, 17752, 5163, 284, 364, 543, 518, 87272, 5963, 5156, 1292, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 4178, 44, 198, 11803, 2212, 5377, 15836, 3544, 4221, 4211, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 5535, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 13822, 1681, 17752, 5163, 284, 4792, 55609, 198, 1681, 315, 3361, 11460, 430, 527, 5535, 9174, 913, 7309, 2424, 25, 528, 284, 220, 508, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.BaseOpenAI.html
d35b2c96038d-1
Set of special tokens that are allowed。 param batch_size: int = 20¶ Batch size to use when passing multiple documents to generate. param best_of: int = 1¶ Generates best_of completions server-side and returns the “best”. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param disallowed_special: Union[Literal['all'], Collection[str]] = 'all'¶ Set of special tokens that are not allowed。 param frequency_penalty: float = 0¶ Penalizes repeated tokens according to frequency. param logit_bias: Optional[Dict[str, float]] [Optional]¶ Adjust the probability of specific tokens being generated. param max_retries: int = 6¶ Maximum number of retries to make when generating. param max_tokens: int = 256¶ The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size. param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param model_name: str = 'text-davinci-003' (alias 'model')¶ Model name to use. param n: int = 1¶ How many completions to generate for each prompt. param openai_api_base: Optional[str] = None¶ param openai_api_key: Optional[str] = None¶ param openai_organization: Optional[str] = None¶ param openai_proxy: Optional[str] = None¶ param presence_penalty: float = 0¶ Penalizes repeated tokens. param request_timeout: Optional[Union[float, Tuple[float, float]]] = None¶
[ 1681, 315, 3361, 11460, 430, 527, 5535, 9174, 913, 7309, 2424, 25, 528, 284, 220, 508, 55609, 198, 21753, 1404, 311, 1005, 994, 12579, 5361, 9477, 311, 7068, 627, 913, 1888, 3659, 25, 528, 284, 220, 16, 55609, 198, 5648, 988, 1888, 3659, 3543, 919, 3622, 25034, 323, 4780, 279, 1054, 16241, 863, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 834, 21642, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 11348, 17752, 5163, 284, 364, 543, 6, 55609, 198, 1681, 315, 3361, 11460, 430, 527, 539, 5535, 9174, 913, 11900, 83386, 25, 2273, 284, 220, 15, 55609, 198, 29305, 278, 4861, 11763, 11460, 4184, 311, 11900, 627, 913, 1515, 275, 37481, 25, 12536, 58, 13755, 17752, 11, 2273, 5163, 510, 15669, 60, 55609, 198, 39716, 279, 19463, 315, 3230, 11460, 1694, 8066, 627, 913, 1973, 1311, 4646, 25, 528, 284, 220, 21, 55609, 198, 28409, 1396, 315, 61701, 311, 1304, 994, 24038, 627, 913, 1973, 29938, 25, 528, 284, 220, 4146, 55609, 198, 791, 7340, 1396, 315, 11460, 311, 7068, 304, 279, 9954, 627, 12, 16, 4780, 439, 1690, 11460, 439, 3284, 2728, 279, 10137, 323, 198, 1820, 4211, 54229, 2317, 1404, 627, 913, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 510, 15669, 60, 55609, 198, 39, 18938, 904, 1646, 5137, 2764, 369, 1893, 1650, 539, 21650, 5300, 627, 913, 1646, 1292, 25, 610, 284, 364, 1342, 1773, 402, 49697, 12, 6268, 6, 320, 15305, 364, 2590, 873, 55609, 198, 1747, 836, 311, 1005, 627, 913, 308, 25, 528, 284, 220, 16, 55609, 198, 4438, 1690, 3543, 919, 311, 7068, 369, 1855, 10137, 627, 913, 1825, 2192, 11959, 7806, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1825, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1825, 2192, 83452, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1825, 2192, 30812, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 9546, 83386, 25, 2273, 284, 220, 15, 55609, 198, 29305, 278, 4861, 11763, 11460, 627, 913, 1715, 21179, 25, 12536, 58, 33758, 96481, 11, 25645, 96481, 11, 2273, 5163, 60, 284, 2290, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.BaseOpenAI.html
d35b2c96038d-2
param request_timeout: Optional[Union[float, Tuple[float, float]]] = None¶ Timeout for requests to OpenAI completion API. Default is 600 seconds. param streaming: bool = False¶ Whether to stream the results or not. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.7¶ What sampling temperature to use. param tiktoken_model_name: Optional[str] = None¶ The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here. param top_p: float = 1¶ Total probability mass of tokens to consider at each step. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input.
[ 913, 1715, 21179, 25, 12536, 58, 33758, 96481, 11, 25645, 96481, 11, 2273, 5163, 60, 284, 2290, 55609, 198, 7791, 369, 7540, 311, 5377, 15836, 9954, 5446, 13, 8058, 374, 220, 5067, 6622, 627, 913, 17265, 25, 1845, 284, 3641, 55609, 198, 25729, 311, 4365, 279, 3135, 477, 539, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 9499, 25, 2273, 284, 220, 15, 13, 22, 55609, 198, 3923, 25936, 9499, 311, 1005, 627, 913, 87272, 5963, 5156, 1292, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 791, 1646, 836, 311, 1522, 311, 87272, 5963, 994, 1701, 420, 538, 627, 51, 1609, 5963, 374, 1511, 311, 1797, 279, 1396, 315, 11460, 304, 9477, 311, 80799, 198, 49818, 311, 387, 1234, 264, 3738, 4017, 13, 3296, 1670, 11, 994, 743, 311, 2290, 11, 420, 690, 198, 1395, 279, 1890, 439, 279, 40188, 1646, 836, 13, 4452, 11, 1070, 527, 1063, 5157, 198, 2940, 499, 1253, 1390, 311, 1005, 420, 38168, 7113, 538, 449, 264, 1646, 836, 539, 198, 18717, 555, 87272, 5963, 13, 1115, 649, 2997, 994, 1701, 35219, 71647, 477, 198, 9493, 1701, 832, 315, 279, 1690, 1646, 12850, 430, 29241, 459, 5377, 15836, 12970, 198, 7227, 719, 449, 2204, 4211, 13, 763, 1884, 5157, 11, 304, 2015, 311, 5766, 1493, 287, 198, 9493, 87272, 5963, 374, 2663, 11, 499, 649, 14158, 264, 1646, 836, 311, 1005, 1618, 627, 913, 1948, 623, 25, 2273, 284, 220, 16, 55609, 198, 7749, 19463, 3148, 315, 11460, 311, 2980, 520, 1855, 3094, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.BaseOpenAI.html
d35b2c96038d-3
Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator build_extra  »  all fields[source]¶ Build extra kwargs from additional params that were passed in. create_llm_result(choices: Any, prompts: List[str], token_usage: Dict[str, int]) → LLMResult[source]¶ Create the LLMResult from the choices and prompts. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
[ 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 1977, 32958, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 11313, 5066, 16901, 505, 5217, 3712, 430, 1051, 5946, 304, 627, 3261, 44095, 76, 5400, 92383, 25, 5884, 11, 52032, 25, 1796, 17752, 1145, 4037, 32607, 25, 30226, 17752, 11, 528, 2526, 11651, 445, 11237, 2122, 76747, 60, 55609, 198, 4110, 279, 445, 11237, 2122, 505, 279, 11709, 323, 52032, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.BaseOpenAI.html
d35b2c96038d-4
Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_sub_prompts(params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None) → List[List[str]][source]¶ Get the sub prompts for llm call. get_token_ids(text: str) → List[int][source]¶ Get the token IDs using the tiktoken package. max_tokens_for_prompt(prompt: str) → int[source]¶ Calculate the maximum number of tokens possible to generate for a prompt. Parameters prompt – The prompt to pass into the model. Returns The maximum number of tokens to generate for a prompt. Example max_tokens = openai.max_token_for_prompt("Tell me a joke.") static modelname_to_contextsize(modelname: str) → int[source]¶ Calculate the maximum number of tokens possible to generate for a model. Parameters modelname – The modelname we want to know the context size for. Returns The maximum context size Example max_tokens = openai.modelname_to_contextsize("text-davinci-003") predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text.
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 5341, 48977, 13044, 9094, 25, 30226, 17752, 11, 5884, 1145, 52032, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 8, 11651, 1796, 53094, 17752, 28819, 2484, 60, 55609, 198, 1991, 279, 1207, 52032, 369, 9507, 76, 1650, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 1483, 2484, 60, 55609, 198, 1991, 279, 4037, 29460, 1701, 279, 87272, 5963, 6462, 627, 2880, 29938, 5595, 62521, 73353, 25, 610, 8, 11651, 528, 76747, 60, 55609, 198, 48966, 279, 7340, 1396, 315, 11460, 3284, 311, 7068, 369, 264, 10137, 627, 9905, 198, 41681, 1389, 578, 10137, 311, 1522, 1139, 279, 1646, 627, 16851, 198, 791, 7340, 1396, 315, 11460, 311, 7068, 369, 264, 10137, 627, 13617, 198, 2880, 29938, 284, 1825, 2192, 6817, 6594, 5595, 62521, 446, 41551, 757, 264, 22380, 13352, 2020, 1646, 609, 2401, 8634, 2190, 7790, 609, 25, 610, 8, 11651, 528, 76747, 60, 55609, 198, 48966, 279, 7340, 1396, 315, 11460, 3284, 311, 7068, 369, 264, 1646, 627, 9905, 198, 2590, 609, 1389, 578, 1646, 609, 584, 1390, 311, 1440, 279, 2317, 1404, 369, 627, 16851, 198, 791, 7340, 2317, 1404, 198, 13617, 198, 2880, 29938, 284, 1825, 2192, 3272, 609, 2401, 8634, 2190, 446, 1342, 1773, 402, 49697, 12, 6268, 1158, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.BaseOpenAI.html
d35b2c96038d-5
Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. prep_streaming_params(stop: Optional[List[str]] = None) → Dict[str, Any][source]¶ Prepare the params for streaming. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. stream(prompt: str, stop: Optional[List[str]] = None) → Generator[source]¶ Call OpenAI with streaming flag and return the resulting generator. BETA: this is a beta feature while we figure out the right abstraction. Once that happens, this interface could change. Parameters prompt – The prompts to pass into the model. stop – Optional list of stop words to use when generating. Returns A generator representing the stream of tokens from OpenAI. Example generator = openai.stream("Tell me a joke.") for token in generator: yield token to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor.
[ 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 72874, 12962, 287, 6887, 61270, 25, 12536, 53094, 17752, 5163, 284, 2290, 8, 11651, 30226, 17752, 11, 5884, 1483, 2484, 60, 55609, 198, 51690, 279, 3712, 369, 17265, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 4116, 73353, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 8, 11651, 29458, 76747, 60, 55609, 198, 7368, 5377, 15836, 449, 17265, 5292, 323, 471, 279, 13239, 14143, 627, 33, 21352, 25, 420, 374, 264, 13746, 4668, 1418, 584, 7216, 704, 279, 1314, 59851, 627, 12805, 430, 8741, 11, 420, 3834, 1436, 2349, 627, 9905, 198, 41681, 1389, 578, 52032, 311, 1522, 1139, 279, 1646, 627, 9684, 1389, 12536, 1160, 315, 3009, 4339, 311, 1005, 994, 24038, 627, 16851, 198, 32, 14143, 14393, 279, 4365, 315, 11460, 505, 5377, 15836, 627, 13617, 198, 36951, 284, 1825, 2192, 15307, 446, 41551, 757, 264, 22380, 13352, 2000, 4037, 304, 14143, 512, 262, 7692, 4037, 198, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.BaseOpenAI.html
d35b2c96038d-6
serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. property max_context_size: int¶ Get max context size for this model. model Config[source]¶ Bases: object Configuration for this pydantic object. allow_population_by_field_name = True¶
[ 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 3784, 1973, 8634, 2424, 25, 528, 55609, 198, 1991, 1973, 2317, 1404, 369, 420, 1646, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 7331, 75672, 3795, 5121, 1292, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.BaseOpenAI.html
118421debe0c-0
langchain.llms.human.HumanInputLLM¶ class langchain.llms.human.HumanInputLLM(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, input_func: Callable = None, prompt_func: Callable[[str], None] = None, separator: str = '\n', input_kwargs: Mapping[str, Any] = {}, prompt_kwargs: Mapping[str, Any] = {})[source]¶ Bases: LLM A LLM wrapper which returns user input as the response. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param input_func: Callable [Optional]¶ param input_kwargs: Mapping[str, Any] = {}¶ param prompt_func: Callable[[str], None] [Optional]¶ param prompt_kwargs: Mapping[str, Any] = {}¶ param separator: str = '\n'¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input.
[ 5317, 8995, 60098, 1026, 870, 7282, 3924, 7282, 2566, 4178, 44, 55609, 198, 1058, 8859, 8995, 60098, 1026, 870, 7282, 3924, 7282, 2566, 4178, 44, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 1988, 9791, 25, 54223, 284, 2290, 11, 10137, 9791, 25, 54223, 15873, 496, 1145, 2290, 60, 284, 2290, 11, 25829, 25, 610, 284, 5307, 77, 518, 1988, 37335, 25, 39546, 17752, 11, 5884, 60, 284, 16857, 10137, 37335, 25, 39546, 17752, 11, 5884, 60, 284, 4792, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 32, 445, 11237, 13564, 902, 4780, 1217, 1988, 439, 279, 2077, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 1988, 9791, 25, 54223, 510, 15669, 60, 55609, 198, 913, 1988, 37335, 25, 39546, 17752, 11, 5884, 60, 284, 4792, 55609, 198, 913, 10137, 9791, 25, 54223, 15873, 496, 1145, 2290, 60, 510, 15669, 60, 55609, 198, 913, 10137, 37335, 25, 39546, 17752, 11, 5884, 60, 284, 4792, 55609, 198, 913, 25829, 25, 610, 284, 5307, 77, 6, 55609, 198, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.human.HumanInputLLM.html
118421debe0c-1
Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶
[ 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.human.HumanInputLLM.html
118421debe0c-2
get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶
[ 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.human.HumanInputLLM.html
118421debe0c-3
property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.human.HumanInputLLM.html
209211477b34-0
langchain.llms.sagemaker_endpoint.LLMContentHandler¶ class langchain.llms.sagemaker_endpoint.LLMContentHandler[source]¶ Bases: ContentHandlerBase[str, str] Content handler for LLM class. Methods __init__() transform_input(prompt, model_kwargs) Transforms the input to a format that model can accept as the request Body. transform_output(output) Transforms the output from the model to string that the LLM class expects. Attributes accepts The MIME type of the response data returned from endpoint content_type The MIME type of the input data passed to endpoint abstract transform_input(prompt: INPUT_TYPE, model_kwargs: Dict) → bytes¶ Transforms the input to a format that model can accept as the request Body. Should return bytes or seekable file like object in the format specified in the content_type request header. abstract transform_output(output: bytes) → OUTPUT_TYPE¶ Transforms the output from the model to string that the LLM class expects. accepts: Optional[str] = 'text/plain'¶ The MIME type of the response data returned from endpoint content_type: Optional[str] = 'text/plain'¶ The MIME type of the input data passed to endpoint
[ 5317, 8995, 60098, 1026, 516, 15003, 4506, 37799, 1236, 11237, 2831, 3126, 55609, 198, 1058, 8859, 8995, 60098, 1026, 516, 15003, 4506, 37799, 1236, 11237, 2831, 3126, 76747, 60, 55609, 198, 33, 2315, 25, 9059, 3126, 4066, 17752, 11, 610, 933, 2831, 7158, 369, 445, 11237, 538, 627, 18337, 198, 565, 2381, 33716, 4806, 6022, 73353, 11, 4194, 2590, 37335, 340, 9140, 82, 279, 1988, 311, 264, 3645, 430, 1646, 649, 4287, 439, 279, 1715, 14285, 627, 4806, 7800, 11304, 340, 9140, 82, 279, 2612, 505, 279, 1646, 311, 925, 430, 279, 445, 11237, 538, 25283, 627, 10738, 198, 10543, 82, 198, 791, 58577, 955, 315, 279, 2077, 828, 6052, 505, 15233, 198, 1834, 1857, 198, 791, 58577, 955, 315, 279, 1988, 828, 5946, 311, 15233, 198, 16647, 5276, 6022, 73353, 25, 27241, 4283, 11, 1646, 37335, 25, 30226, 8, 11651, 5943, 55609, 198, 9140, 82, 279, 1988, 311, 264, 3645, 430, 1646, 649, 4287, 198, 300, 279, 1715, 14285, 13, 12540, 471, 5943, 477, 6056, 481, 1052, 198, 4908, 1665, 304, 279, 3645, 5300, 304, 279, 2262, 1857, 198, 2079, 4342, 627, 16647, 5276, 7800, 11304, 25, 5943, 8, 11651, 32090, 4283, 55609, 198, 9140, 82, 279, 2612, 505, 279, 1646, 311, 925, 430, 198, 1820, 445, 11237, 538, 25283, 627, 10543, 82, 25, 12536, 17752, 60, 284, 364, 1342, 38071, 6, 55609, 198, 791, 58577, 955, 315, 279, 2077, 828, 6052, 505, 15233, 198, 1834, 1857, 25, 12536, 17752, 60, 284, 364, 1342, 38071, 6, 55609, 198, 791, 58577, 955, 315, 279, 1988, 828, 5946, 311, 15233 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.sagemaker_endpoint.LLMContentHandler.html
b7151905407f-0
langchain.llms.aviary.get_models¶ langchain.llms.aviary.get_models() → List[str][source]¶ List available models
[ 5317, 8995, 60098, 1026, 85652, 661, 673, 31892, 55609, 198, 5317, 8995, 60098, 1026, 85652, 661, 673, 31892, 368, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 861, 2561, 4211 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.aviary.get_models.html
9c05e59c0c6d-0
langchain.llms.base.update_cache¶ langchain.llms.base.update_cache(existing_prompts: Dict[int, List], llm_string: str, missing_prompt_idxs: List[int], new_results: LLMResult, prompts: List[str]) → Optional[dict][source]¶ Update the cache and get the LLM output.
[ 5317, 8995, 60098, 1026, 9105, 5430, 11790, 55609, 198, 5317, 8995, 60098, 1026, 9105, 5430, 11790, 95714, 48977, 13044, 25, 30226, 19155, 11, 1796, 1145, 9507, 76, 3991, 25, 610, 11, 7554, 62521, 69746, 25, 1796, 19155, 1145, 502, 13888, 25, 445, 11237, 2122, 11, 52032, 25, 1796, 17752, 2526, 11651, 12536, 58, 8644, 1483, 2484, 60, 55609, 198, 4387, 279, 6636, 323, 636, 279, 445, 11237, 2612, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.base.update_cache.html
ed2728354986-0
langchain.llms.stochasticai.StochasticAI¶ class langchain.llms.stochasticai.StochasticAI(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, api_url: str = '', model_kwargs: Dict[str, Any] = None, stochasticai_api_key: Optional[str] = None)[source]¶ Bases: LLM Wrapper around StochasticAI large language models. To use, you should have the environment variable STOCHASTICAI_API_KEY set with your API key. Example from langchain.llms import StochasticAI stochasticai = StochasticAI(api_url="") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param api_url: str = ''¶ Model name to use. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param stochasticai_api_key: Optional[str] = None¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input.
[ 5317, 8995, 60098, 1026, 1258, 67054, 2192, 7914, 67054, 15836, 55609, 198, 1058, 8859, 8995, 60098, 1026, 1258, 67054, 2192, 7914, 67054, 15836, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 6464, 2975, 25, 610, 284, 9158, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 284, 2290, 11, 96340, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 800, 67054, 15836, 3544, 4221, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 4676, 3977, 4015, 46, 2198, 6483, 1341, 15836, 11669, 6738, 198, 751, 449, 701, 5446, 1401, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 800, 67054, 15836, 198, 267, 67054, 2192, 284, 800, 67054, 15836, 25865, 2975, 64841, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6464, 2975, 25, 610, 284, 3436, 55609, 198, 1747, 836, 311, 1005, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 510, 15669, 60, 55609, 198, 39, 18938, 904, 1646, 5137, 2764, 369, 1893, 1650, 539, 198, 94732, 398, 5300, 627, 913, 96340, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.stochasticai.StochasticAI.html