id
stringlengths
14
15
text
stringlengths
35
2.07k
embedding
sequence
source
stringlengths
61
154
8a7391548d1d-0
langchain.document_loaders.confluence.ConfluenceLoader¶ class langchain.document_loaders.confluence.ConfluenceLoader(url: str, api_key: Optional[str] = None, username: Optional[str] = None, oauth2: Optional[dict] = None, token: Optional[str] = None, cloud: Optional[bool] = True, number_of_retries: Optional[int] = 3, min_retry_seconds: Optional[int] = 2, max_retry_seconds: Optional[int] = 10, confluence_kwargs: Optional[dict] = None)[source]¶ Bases: BaseLoader Load Confluence pages. Port of https://llamahub.ai/l/confluence This currently supports username/api_key, Oauth2 login or personal access token authentication. Specify a list page_ids and/or space_key to load in the corresponding pages into Document objects, if both are specified the union of both sets will be returned. You can also specify a boolean include_attachments to include attachments, this is set to False by default, if set to True all attachments will be downloaded and ConfluenceReader will extract the text from the attachments and add it to the Document object. Currently supported attachment types are: PDF, PNG, JPEG/JPG, SVG, Word and Excel. Confluence API supports difference format of page content. The storage format is the raw XML representation for storage. The view format is the HTML representation for viewing with macros are rendered as though it is viewed by users. You can pass a enum content_format argument to load() to specify the content format, this is set to ContentFormat.STORAGE by default. Hint: space_key and page_id can both be found in the URL of a page in Confluence - https://yoursite.atlassian.com/wiki/spaces/<space_key>/pages/<page_id> Example
[ 5317, 8995, 17926, 12693, 388, 2932, 41116, 4906, 41116, 9360, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 2932, 41116, 4906, 41116, 9360, 6659, 25, 610, 11, 6464, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 6059, 25, 12536, 17752, 60, 284, 2290, 11, 47515, 17, 25, 12536, 58, 8644, 60, 284, 2290, 11, 4037, 25, 12536, 17752, 60, 284, 2290, 11, 9624, 25, 12536, 58, 2707, 60, 284, 3082, 11, 1396, 3659, 1311, 4646, 25, 12536, 19155, 60, 284, 220, 18, 11, 1332, 63845, 35925, 25, 12536, 19155, 60, 284, 220, 17, 11, 1973, 63845, 35925, 25, 12536, 19155, 60, 284, 220, 605, 11, 390, 41116, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 9360, 198, 6003, 1221, 41116, 6959, 13, 5896, 315, 3788, 1129, 657, 309, 1494, 392, 41483, 13631, 32336, 41116, 198, 2028, 5131, 11815, 6059, 10729, 3173, 11, 507, 3322, 17, 5982, 477, 4443, 2680, 4037, 198, 46990, 627, 71152, 264, 1160, 2199, 8237, 323, 5255, 3634, 3173, 311, 2865, 304, 279, 12435, 6959, 1139, 198, 7676, 6302, 11, 422, 2225, 527, 5300, 279, 11552, 315, 2225, 7437, 690, 387, 6052, 627, 2675, 649, 1101, 14158, 264, 2777, 2997, 99681, 311, 2997, 34779, 11, 420, 198, 285, 743, 311, 3641, 555, 1670, 11, 422, 743, 311, 3082, 682, 34779, 690, 387, 24174, 323, 198, 1128, 41116, 5172, 690, 8819, 279, 1495, 505, 279, 34779, 323, 923, 433, 311, 279, 198, 7676, 1665, 13, 25122, 7396, 20581, 4595, 527, 25, 11612, 11, 42739, 11, 55662, 32801, 11637, 345, 65497, 11, 9506, 323, 21705, 627, 1128, 41116, 5446, 11815, 6811, 3645, 315, 2199, 2262, 13, 578, 5942, 3645, 374, 279, 198, 1059, 12138, 13340, 369, 5942, 13, 578, 1684, 3645, 374, 279, 9492, 13340, 369, 198, 1068, 287, 449, 38814, 527, 23188, 439, 3582, 433, 374, 19894, 555, 3932, 13, 1472, 649, 1522, 198, 64, 7773, 2262, 9132, 5811, 311, 2865, 368, 311, 14158, 279, 2262, 3645, 11, 420, 374, 198, 751, 311, 9059, 4152, 16009, 28808, 555, 1670, 627, 28085, 25, 3634, 3173, 323, 2199, 851, 649, 2225, 387, 1766, 304, 279, 5665, 315, 264, 2199, 304, 1221, 41116, 198, 12, 3788, 1129, 88, 2530, 635, 6990, 90697, 916, 26583, 27832, 2492, 23875, 8920, 3173, 18597, 11014, 23875, 2964, 851, 397, 13617 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
8a7391548d1d-1
Example from langchain.document_loaders import ConfluenceLoader loader = ConfluenceLoader( url="https://yoursite.atlassian.com/wiki", username="me", api_key="12345" ) documents = loader.load(space_key="SPACE",limit=50) Parameters url (str) – _description_ api_key (str, optional) – _description_, defaults to None username (str, optional) – _description_, defaults to None oauth2 (dict, optional) – _description_, defaults to {} token (str, optional) – _description_, defaults to None cloud (bool, optional) – _description_, defaults to True number_of_retries (Optional[int], optional) – How many times to retry, defaults to 3 min_retry_seconds (Optional[int], optional) – defaults to 2 max_retry_seconds (Optional[int], optional) – defaults to 10 confluence_kwargs (dict, optional) – additional kwargs to initialize confluence with Raises ValueError – Errors while validating input ImportError – Required dependencies not installed. Methods __init__(url[, api_key, username, oauth2, ...]) is_public_page(page) Check if a page is publicly accessible. lazy_load() A lazy loader for document content. load([space_key, page_ids, label, cql, ...]) param space_key Space key retrieved from a confluence URL, defaults to None load_and_split([text_splitter]) Load documents and split into chunks. paginate_request(retrieval_method, **kwargs) Paginate the various methods to retrieve groups of pages. process_attachment(page_id[, ocr_languages]) process_doc(link) process_image(link[, ocr_languages]) process_page(page, include_attachments, ...)
[ 13617, 198, 1527, 8859, 8995, 17926, 12693, 388, 1179, 1221, 41116, 9360, 198, 8520, 284, 1221, 41116, 9360, 1021, 262, 2576, 429, 2485, 1129, 88, 2530, 635, 6990, 90697, 916, 26583, 761, 262, 6059, 429, 2727, 761, 262, 6464, 3173, 429, 4513, 1774, 702, 340, 51878, 284, 16432, 5214, 61804, 3173, 429, 45741, 498, 9696, 28, 1135, 340, 9905, 198, 1103, 320, 496, 8, 1389, 721, 4789, 13220, 2113, 3173, 320, 496, 11, 10309, 8, 1389, 721, 4789, 7022, 17088, 311, 2290, 198, 5223, 320, 496, 11, 10309, 8, 1389, 721, 4789, 7022, 17088, 311, 2290, 198, 35463, 17, 320, 8644, 11, 10309, 8, 1389, 721, 4789, 7022, 17088, 311, 5731, 5963, 320, 496, 11, 10309, 8, 1389, 721, 4789, 7022, 17088, 311, 2290, 198, 12641, 320, 2707, 11, 10309, 8, 1389, 721, 4789, 7022, 17088, 311, 3082, 198, 4174, 3659, 1311, 4646, 320, 15669, 19155, 1145, 10309, 8, 1389, 2650, 1690, 3115, 311, 23515, 11, 17088, 311, 220, 18, 198, 1083, 63845, 35925, 320, 15669, 19155, 1145, 10309, 8, 1389, 17088, 311, 220, 17, 198, 2880, 63845, 35925, 320, 15669, 19155, 1145, 10309, 8, 1389, 17088, 311, 220, 605, 198, 444, 41116, 37335, 320, 8644, 11, 10309, 8, 1389, 5217, 16901, 311, 9656, 390, 41116, 449, 198, 36120, 198, 1150, 1480, 1389, 40356, 1418, 69772, 1988, 198, 11772, 1480, 1389, 12948, 20113, 539, 10487, 627, 18337, 198, 565, 2381, 3889, 1103, 38372, 4194, 2113, 3173, 11, 4194, 5223, 11, 4194, 35463, 17, 11, 4194, 1131, 2608, 285, 28173, 6257, 12293, 340, 4061, 422, 264, 2199, 374, 17880, 15987, 627, 50113, 12693, 746, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 2625, 8920, 3173, 11, 4194, 2964, 8237, 11, 4194, 1530, 11, 4194, 66, 1498, 11, 4194, 1131, 2608, 913, 3634, 3173, 198, 10115, 1401, 31503, 505, 264, 390, 41116, 5665, 11, 17088, 311, 2290, 198, 1096, 8543, 17489, 2625, 1342, 17489, 466, 2608, 6003, 9477, 323, 6859, 1139, 27855, 627, 39565, 8052, 5921, 9104, 838, 9209, 11, 4194, 334, 9872, 340, 48812, 3357, 279, 5370, 5528, 311, 17622, 5315, 315, 6959, 627, 4734, 41968, 12293, 851, 38372, 4194, 4309, 78676, 2608, 4734, 19401, 26461, 340, 4734, 5060, 26461, 38372, 4194, 4309, 78676, 2608, 4734, 6257, 12293, 11, 4194, 1012, 99681, 11, 4194, 33674 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
8a7391548d1d-2
process_image(link[, ocr_languages]) process_page(page, include_attachments, ...) process_pages(pages, ...[, ocr_languages]) Process a list of pages into a list of documents. process_pdf(link[, ocr_languages]) process_svg(link[, ocr_languages]) process_xls(link) validate_init_args([url, api_key, username, ...]) Validates proper combinations of init arguments is_public_page(page: dict) → bool[source]¶ Check if a page is publicly accessible. lazy_load() → Iterator[Document]¶ A lazy loader for document content. load(space_key: Optional[str] = None, page_ids: Optional[List[str]] = None, label: Optional[str] = None, cql: Optional[str] = None, include_restricted_content: bool = False, include_archived_content: bool = False, include_attachments: bool = False, include_comments: bool = False, content_format: ContentFormat = ContentFormat.STORAGE, limit: Optional[int] = 50, max_pages: Optional[int] = 1000, ocr_languages: Optional[str] = None) → List[Document][source]¶ Parameters space_key (Optional[str], optional) – Space key retrieved from a confluence URL, defaults to None page_ids (Optional[List[str]], optional) – List of specific page IDs to load, defaults to None label (Optional[str], optional) – Get all pages with this label, defaults to None cql (Optional[str], optional) – CQL Expression, defaults to None include_restricted_content (bool, optional) – defaults to False include_archived_content (bool, optional) – Whether to include archived content, defaults to False include_attachments (bool, optional) – defaults to False include_comments (bool, optional) – defaults to False
[ 4734, 5060, 26461, 38372, 4194, 4309, 78676, 2608, 4734, 6257, 12293, 11, 4194, 1012, 99681, 11, 4194, 32318, 4734, 22391, 99822, 11, 4194, 1131, 38372, 4194, 4309, 78676, 2608, 7575, 264, 1160, 315, 6959, 1139, 264, 1160, 315, 9477, 627, 4734, 41048, 26461, 38372, 4194, 4309, 78676, 2608, 4734, 77949, 26461, 38372, 4194, 4309, 78676, 2608, 4734, 3292, 4835, 26461, 340, 7212, 6265, 8550, 2625, 1103, 11, 4194, 2113, 3173, 11, 4194, 5223, 11, 4194, 1131, 2608, 4180, 988, 6300, 28559, 315, 3003, 6105, 198, 285, 28173, 6257, 12293, 25, 6587, 8, 11651, 1845, 76747, 60, 55609, 198, 4061, 422, 264, 2199, 374, 17880, 15987, 627, 50113, 12693, 368, 11651, 23887, 58, 7676, 60, 55609, 198, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 61804, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 2199, 8237, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 2440, 25, 12536, 17752, 60, 284, 2290, 11, 272, 1498, 25, 12536, 17752, 60, 284, 2290, 11, 2997, 1311, 74172, 7647, 25, 1845, 284, 3641, 11, 2997, 35430, 2270, 7647, 25, 1845, 284, 3641, 11, 2997, 99681, 25, 1845, 284, 3641, 11, 2997, 31459, 25, 1845, 284, 3641, 11, 2262, 9132, 25, 9059, 4152, 284, 9059, 4152, 16009, 28808, 11, 4017, 25, 12536, 19155, 60, 284, 220, 1135, 11, 1973, 22391, 25, 12536, 19155, 60, 284, 220, 1041, 15, 11, 297, 5192, 78676, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 9905, 198, 8920, 3173, 320, 15669, 17752, 1145, 10309, 8, 1389, 11746, 1401, 31503, 505, 264, 390, 41116, 5665, 11, 17088, 311, 2290, 198, 2964, 8237, 320, 15669, 53094, 17752, 21128, 10309, 8, 1389, 1796, 315, 3230, 2199, 29460, 311, 2865, 11, 17088, 311, 2290, 198, 1530, 320, 15669, 17752, 1145, 10309, 8, 1389, 2175, 682, 6959, 449, 420, 2440, 11, 17088, 311, 2290, 198, 66, 1498, 320, 15669, 17752, 1145, 10309, 8, 1389, 356, 3672, 16783, 11, 17088, 311, 2290, 198, 1012, 1311, 74172, 7647, 320, 2707, 11, 10309, 8, 1389, 17088, 311, 3641, 198, 1012, 35430, 2270, 7647, 320, 2707, 11, 10309, 8, 1389, 13440, 311, 2997, 53093, 2262, 345, 27854, 311, 3641, 198, 1012, 99681, 320, 2707, 11, 10309, 8, 1389, 17088, 311, 3641, 198, 1012, 31459, 320, 2707, 11, 10309, 8, 1389, 17088, 311, 3641 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
8a7391548d1d-3
include_comments (bool, optional) – defaults to False content_format (ContentFormat) – Specify content format, defaults to ContentFormat.STORAGE limit (int, optional) – Maximum number of pages to retrieve per request, defaults to 50 max_pages (int, optional) – Maximum number of pages to retrieve in total, defaults 1000 ocr_languages (str, optional) – The languages to use for the Tesseract agent. To use a language, you’ll first need to install the appropriate Tesseract language pack. Raises ValueError – _description_ ImportError – _description_ Returns _description_ Return type List[Document] load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load documents and split into chunks. paginate_request(retrieval_method: Callable, **kwargs: Any) → List[source]¶ Paginate the various methods to retrieve groups of pages. Unfortunately, due to page size, sometimes the Confluence API doesn’t match the limit value. If limit is >100 confluence seems to cap the response to 100. Also, due to the Atlassian Python package, we don’t get the “next” values from the “_links” key because they only return the value from the results key. So here, the pagination starts from 0 and goes until the max_pages, getting the limit number of pages with each request. We have to manually check if there are more docs based on the length of the returned list of pages, rather than just checking for the presence of a next key in the response like this page would have you do: https://developer.atlassian.com/server/confluence/pagination-in-the-rest-api/ Parameters retrieval_method (callable) – Function used to retrieve docs Returns List of documents Return type
[ 1012, 31459, 320, 2707, 11, 10309, 8, 1389, 17088, 311, 3641, 198, 1834, 9132, 320, 2831, 4152, 8, 1389, 48495, 2262, 3645, 11, 17088, 311, 9059, 4152, 16009, 28808, 198, 9696, 320, 396, 11, 10309, 8, 1389, 27697, 1396, 315, 6959, 311, 17622, 824, 1715, 11, 17088, 311, 220, 1135, 198, 2880, 22391, 320, 396, 11, 10309, 8, 1389, 27697, 1396, 315, 6959, 311, 17622, 304, 2860, 11, 17088, 220, 1041, 15, 198, 4309, 78676, 320, 496, 11, 10309, 8, 1389, 578, 15823, 311, 1005, 369, 279, 350, 83638, 8479, 13, 2057, 1005, 264, 198, 11789, 11, 499, 4805, 1176, 1205, 311, 4685, 279, 8475, 198, 51, 83638, 4221, 3854, 627, 36120, 198, 1150, 1480, 1389, 721, 4789, 13220, 11772, 1480, 1389, 721, 4789, 13220, 16851, 198, 11703, 13220, 5715, 955, 198, 861, 58, 7676, 933, 1096, 8543, 17489, 7383, 17489, 466, 25, 12536, 58, 1199, 20805, 466, 60, 284, 2290, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 6003, 9477, 323, 6859, 1139, 27855, 627, 39565, 8052, 5921, 9104, 838, 9209, 25, 54223, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 76747, 60, 55609, 198, 48812, 3357, 279, 5370, 5528, 311, 17622, 5315, 315, 6959, 627, 31140, 11, 4245, 311, 2199, 1404, 11, 7170, 279, 1221, 41116, 5446, 198, 73014, 1431, 2489, 279, 4017, 907, 13, 1442, 4017, 374, 220, 871, 1041, 390, 41116, 198, 325, 12116, 311, 2107, 279, 2077, 311, 220, 1041, 13, 7429, 11, 4245, 311, 279, 2468, 90697, 13325, 198, 1757, 11, 584, 1541, 1431, 636, 279, 1054, 3684, 863, 2819, 505, 279, 1054, 62, 16259, 863, 1401, 1606, 198, 20670, 1193, 471, 279, 907, 505, 279, 3135, 1401, 13, 2100, 1618, 11, 279, 29595, 198, 66976, 505, 220, 15, 323, 5900, 3156, 279, 1973, 22391, 11, 3794, 279, 4017, 1396, 198, 1073, 6959, 449, 1855, 1715, 13, 1226, 617, 311, 20684, 1817, 422, 1070, 198, 548, 810, 27437, 3196, 389, 279, 3160, 315, 279, 6052, 1160, 315, 6959, 11, 4856, 1109, 198, 4345, 13598, 369, 279, 9546, 315, 264, 1828, 1401, 304, 279, 2077, 1093, 420, 2199, 198, 41450, 617, 499, 656, 512, 2485, 1129, 35501, 6990, 90697, 916, 38355, 32336, 41116, 4420, 10569, 3502, 10826, 77333, 24851, 6018, 9905, 198, 265, 9104, 838, 9209, 320, 96292, 8, 1389, 5830, 1511, 311, 17622, 27437, 198, 16851, 198, 861, 315, 9477, 198, 5715, 955 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
8a7391548d1d-4
Returns List of documents Return type List process_attachment(page_id: str, ocr_languages: Optional[str] = None) → List[str][source]¶ process_doc(link: str) → str[source]¶ process_image(link: str, ocr_languages: Optional[str] = None) → str[source]¶ process_page(page: dict, include_attachments: bool, include_comments: bool, content_format: ContentFormat, ocr_languages: Optional[str] = None) → Document[source]¶ process_pages(pages: List[dict], include_restricted_content: bool, include_attachments: bool, include_comments: bool, content_format: ContentFormat, ocr_languages: Optional[str] = None) → List[Document][source]¶ Process a list of pages into a list of documents. process_pdf(link: str, ocr_languages: Optional[str] = None) → str[source]¶ process_svg(link: str, ocr_languages: Optional[str] = None) → str[source]¶ process_xls(link: str) → str[source]¶ static validate_init_args(url: Optional[str] = None, api_key: Optional[str] = None, username: Optional[str] = None, oauth2: Optional[dict] = None, token: Optional[str] = None) → Optional[List][source]¶ Validates proper combinations of init arguments
[ 16851, 198, 861, 315, 9477, 198, 5715, 955, 198, 861, 198, 4734, 41968, 12293, 851, 25, 610, 11, 297, 5192, 78676, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 4734, 19401, 26461, 25, 610, 8, 11651, 610, 76747, 60, 55609, 198, 4734, 5060, 26461, 25, 610, 11, 297, 5192, 78676, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 610, 76747, 60, 55609, 198, 4734, 6257, 12293, 25, 6587, 11, 2997, 99681, 25, 1845, 11, 2997, 31459, 25, 1845, 11, 2262, 9132, 25, 9059, 4152, 11, 297, 5192, 78676, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 12051, 76747, 60, 55609, 198, 4734, 22391, 99822, 25, 1796, 58, 8644, 1145, 2997, 1311, 74172, 7647, 25, 1845, 11, 2997, 99681, 25, 1845, 11, 2997, 31459, 25, 1845, 11, 2262, 9132, 25, 9059, 4152, 11, 297, 5192, 78676, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 7575, 264, 1160, 315, 6959, 1139, 264, 1160, 315, 9477, 627, 4734, 41048, 26461, 25, 610, 11, 297, 5192, 78676, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 610, 76747, 60, 55609, 198, 4734, 77949, 26461, 25, 610, 11, 297, 5192, 78676, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 610, 76747, 60, 55609, 198, 4734, 3292, 4835, 26461, 25, 610, 8, 11651, 610, 76747, 60, 55609, 198, 2020, 9788, 6265, 8550, 6659, 25, 12536, 17752, 60, 284, 2290, 11, 6464, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 6059, 25, 12536, 17752, 60, 284, 2290, 11, 47515, 17, 25, 12536, 58, 8644, 60, 284, 2290, 11, 4037, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 12536, 53094, 1483, 2484, 60, 55609, 198, 4180, 988, 6300, 28559, 315, 3003, 6105 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
c6844e2cb589-0
langchain.document_loaders.parsers.pdf.PDFMinerParser¶ class langchain.document_loaders.parsers.pdf.PDFMinerParser[source]¶ Bases: BaseBlobParser Parse PDFs with PDFMiner. Methods __init__() lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
[ 5317, 8995, 17926, 12693, 388, 76592, 16378, 1087, 5375, 6349, 261, 6707, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 76592, 16378, 1087, 5375, 6349, 261, 6707, 76747, 60, 55609, 198, 33, 2315, 25, 5464, 39085, 6707, 198, 14802, 11612, 82, 449, 11612, 6349, 261, 627, 18337, 198, 565, 2381, 33716, 50113, 21715, 69038, 340, 43, 1394, 1570, 4820, 279, 24295, 627, 6534, 69038, 340, 36, 1435, 398, 4820, 279, 24295, 1139, 264, 2246, 477, 9477, 627, 50113, 21715, 69038, 25, 50539, 8, 11651, 23887, 58, 7676, 1483, 2484, 60, 55609, 198, 43, 1394, 1570, 4820, 279, 24295, 627, 6534, 69038, 25, 50539, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 36, 1435, 398, 4820, 279, 24295, 1139, 264, 2246, 477, 9477, 627, 2028, 374, 264, 19679, 1749, 369, 21416, 4500, 4676, 627, 46067, 8522, 1288, 4799, 279, 16053, 21715, 1749, 4619, 627, 3214, 9031, 1288, 8965, 539, 927, 12, 1425, 420, 4820, 1749, 627, 9905, 198, 36212, 1389, 50539, 2937, 198, 16851, 198, 861, 315, 9477 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.parsers.pdf.PDFMinerParser.html
ef640147e6e9-0
langchain.document_loaders.pdf.PyMuPDFLoader¶ class langchain.document_loaders.pdf.PyMuPDFLoader(file_path: str)[source]¶ Bases: BasePDFLoader Loader that uses PyMuPDF to load PDF files. Initialize with file path. Methods __init__(file_path) Initialize with file path. lazy_load() A lazy loader for document content. load(**kwargs) Load file. load_and_split([text_splitter]) Load documents and split into chunks. Attributes source lazy_load() → Iterator[Document]¶ A lazy loader for document content. load(**kwargs: Optional[Any]) → List[Document][source]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load documents and split into chunks. property source: str¶
[ 5317, 8995, 17926, 12693, 388, 16378, 1087, 88, 40220, 24317, 9360, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 16378, 1087, 88, 40220, 24317, 9360, 4971, 2703, 25, 610, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 24317, 9360, 198, 9360, 430, 5829, 5468, 40220, 24317, 311, 2865, 11612, 3626, 627, 10130, 449, 1052, 1853, 627, 18337, 198, 565, 2381, 3889, 1213, 2703, 340, 10130, 449, 1052, 1853, 627, 50113, 12693, 746, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 22551, 9872, 340, 6003, 1052, 627, 1096, 8543, 17489, 2625, 1342, 17489, 466, 2608, 6003, 9477, 323, 6859, 1139, 27855, 627, 10738, 198, 2484, 198, 50113, 12693, 368, 11651, 23887, 58, 7676, 60, 55609, 198, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 22551, 9872, 25, 12536, 71401, 2526, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 6003, 1052, 627, 1096, 8543, 17489, 7383, 17489, 466, 25, 12536, 58, 1199, 20805, 466, 60, 284, 2290, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 6003, 9477, 323, 6859, 1139, 27855, 627, 3784, 2592, 25, 610, 55609 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.pdf.PyMuPDFLoader.html
8c8275e8ec2e-0
langchain.document_loaders.bibtex.BibtexLoader¶ class langchain.document_loaders.bibtex.BibtexLoader(file_path: str, *, parser: Optional[BibtexparserWrapper] = None, max_docs: Optional[int] = None, max_content_chars: Optional[int] = 4000, load_extra_metadata: bool = False, file_pattern: str = '[^:]+\\.pdf')[source]¶ Bases: BaseLoader Loads a bibtex file into a list of Documents. Each document represents one entry from the bibtex file. If a PDF file is present in the file bibtex field, the original PDF is loaded into the document text. If no such file entry is present, the abstract field is used instead. Initialize the BibtexLoader. Parameters file_path – Path to the bibtex file. max_docs – Max number of associated documents to load. Use -1 means no limit. Methods __init__(file_path, *[, parser, max_docs, ...]) Initialize the BibtexLoader. lazy_load() Load bibtex file using bibtexparser and get the article texts plus the load() Load bibtex file documents from the given bibtex file path. load_and_split([text_splitter]) Load documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Load bibtex file using bibtexparser and get the article texts plus the article metadata. See https://bibtexparser.readthedocs.io/en/master/ Returns a list of documents with the document.page_content in text format load() → List[Document][source]¶ Load bibtex file documents from the given bibtex file path.
[ 5317, 8995, 17926, 12693, 388, 960, 20938, 327, 1823, 20938, 327, 9360, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 960, 20938, 327, 1823, 20938, 327, 9360, 4971, 2703, 25, 610, 11, 12039, 6871, 25, 12536, 33722, 20938, 327, 9854, 11803, 60, 284, 2290, 11, 1973, 50792, 25, 12536, 19155, 60, 284, 2290, 11, 1973, 7647, 38518, 25, 12536, 19155, 60, 284, 220, 3443, 15, 11, 2865, 32958, 23012, 25, 1845, 284, 3641, 11, 1052, 21957, 25, 610, 284, 18814, 61, 25, 7727, 68257, 12091, 13588, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 9360, 198, 79617, 264, 293, 20938, 327, 1052, 1139, 264, 1160, 315, 45890, 627, 4959, 2246, 11105, 832, 4441, 505, 279, 293, 20938, 327, 1052, 627, 2746, 264, 11612, 1052, 374, 3118, 304, 279, 1052, 293, 20938, 327, 2115, 11, 279, 4113, 11612, 198, 285, 6799, 1139, 279, 2246, 1495, 13, 1442, 912, 1778, 1052, 4441, 374, 3118, 345, 1820, 8278, 2115, 374, 1511, 4619, 627, 10130, 279, 426, 20938, 327, 9360, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 279, 293, 20938, 327, 1052, 627, 2880, 50792, 1389, 7639, 1396, 315, 5938, 9477, 311, 2865, 13, 5560, 482, 16, 3445, 198, 2201, 4017, 627, 18337, 198, 565, 2381, 3889, 1213, 2703, 11, 4194, 9, 38372, 4194, 9854, 11, 4194, 2880, 50792, 11, 4194, 1131, 2608, 10130, 279, 426, 20938, 327, 9360, 627, 50113, 12693, 746, 6003, 293, 20938, 327, 1052, 1701, 293, 20938, 327, 9854, 323, 636, 279, 4652, 22755, 5636, 279, 198, 1096, 746, 6003, 293, 20938, 327, 1052, 9477, 505, 279, 2728, 293, 20938, 327, 1052, 1853, 627, 1096, 8543, 17489, 2625, 1342, 17489, 466, 2608, 6003, 9477, 323, 6859, 1139, 27855, 627, 50113, 12693, 368, 11651, 23887, 58, 7676, 1483, 2484, 60, 55609, 198, 6003, 293, 20938, 327, 1052, 1701, 293, 20938, 327, 9854, 323, 636, 279, 4652, 22755, 5636, 279, 198, 7203, 11408, 627, 10031, 3788, 1129, 65, 20938, 327, 9854, 4217, 79371, 14460, 4340, 13920, 24184, 6018, 16851, 198, 64, 1160, 315, 9477, 449, 279, 2246, 10678, 7647, 304, 1495, 3645, 198, 1096, 368, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 6003, 293, 20938, 327, 1052, 9477, 505, 279, 2728, 293, 20938, 327, 1052, 1853, 13 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.bibtex.BibtexLoader.html
8c8275e8ec2e-1
Load bibtex file documents from the given bibtex file path. See https://bibtexparser.readthedocs.io/en/master/ Parameters file_path – the path to the bibtex file Returns a list of documents with the document.page_content in text format load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load documents and split into chunks.
[ 6003, 293, 20938, 327, 1052, 9477, 505, 279, 2728, 293, 20938, 327, 1052, 1853, 627, 10031, 3788, 1129, 65, 20938, 327, 9854, 4217, 79371, 14460, 4340, 13920, 24184, 6018, 9905, 198, 1213, 2703, 1389, 279, 1853, 311, 279, 293, 20938, 327, 1052, 198, 16851, 198, 64, 1160, 315, 9477, 449, 279, 2246, 10678, 7647, 304, 1495, 3645, 198, 1096, 8543, 17489, 7383, 17489, 466, 25, 12536, 58, 1199, 20805, 466, 60, 284, 2290, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 6003, 9477, 323, 6859, 1139, 27855, 13 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.bibtex.BibtexLoader.html
db63921f3b9d-0
langchain.document_loaders.unstructured.validate_unstructured_version¶ langchain.document_loaders.unstructured.validate_unstructured_version(min_unstructured_version: str) → None[source]¶ Raises an error if the unstructured version does not exceed the specified minimum.
[ 5317, 8995, 17926, 12693, 388, 6441, 52243, 20090, 5012, 52243, 9625, 55609, 198, 5317, 8995, 17926, 12693, 388, 6441, 52243, 20090, 5012, 52243, 9625, 14478, 5012, 52243, 9625, 25, 610, 8, 11651, 2290, 76747, 60, 55609, 198, 36120, 459, 1493, 422, 279, 653, 52243, 2373, 1587, 539, 12771, 279, 198, 54534, 8187, 13 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.unstructured.validate_unstructured_version.html
f80942041627-0
langchain.document_loaders.excel.UnstructuredExcelLoader¶ class langchain.document_loaders.excel.UnstructuredExcelLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load Microsoft Excel files. Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for document content. load() Load file. load_and_split([text_splitter]) Load documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for document content. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load documents and split into chunks.
[ 5317, 8995, 17926, 12693, 388, 2272, 3757, 10840, 52243, 20656, 9360, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 2272, 3757, 10840, 52243, 20656, 9360, 4971, 2703, 25, 610, 11, 3941, 25, 610, 284, 364, 15698, 518, 3146, 359, 52243, 37335, 25, 5884, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 1252, 52243, 1738, 9360, 198, 9360, 430, 5829, 653, 52243, 311, 2865, 5210, 21705, 3626, 627, 10130, 449, 1052, 1853, 627, 18337, 198, 565, 2381, 3889, 1213, 2703, 38372, 4194, 8684, 2608, 10130, 449, 1052, 1853, 627, 50113, 12693, 746, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 746, 6003, 1052, 627, 1096, 8543, 17489, 2625, 1342, 17489, 466, 2608, 6003, 9477, 323, 6859, 1139, 27855, 627, 50113, 12693, 368, 11651, 23887, 58, 7676, 60, 55609, 198, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 368, 11651, 1796, 58, 7676, 60, 55609, 198, 6003, 1052, 627, 1096, 8543, 17489, 7383, 17489, 466, 25, 12536, 58, 1199, 20805, 466, 60, 284, 2290, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 6003, 9477, 323, 6859, 1139, 27855, 13 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.excel.UnstructuredExcelLoader.html
6915be2869ea-0
langchain.document_loaders.whatsapp_chat.WhatsAppChatLoader¶ class langchain.document_loaders.whatsapp_chat.WhatsAppChatLoader(path: str)[source]¶ Bases: BaseLoader Loader that loads WhatsApp messages text file. Initialize with path. Methods __init__(path) Initialize with path. lazy_load() A lazy loader for document content. load() Load documents. load_and_split([text_splitter]) Load documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for document content. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load documents and split into chunks.
[ 5317, 8995, 17926, 12693, 388, 47836, 72544, 36153, 18951, 1900, 2213, 16047, 9360, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 47836, 72544, 36153, 18951, 1900, 2213, 16047, 9360, 5698, 25, 610, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 9360, 198, 9360, 430, 21577, 41113, 6743, 1495, 1052, 627, 10130, 449, 1853, 627, 18337, 198, 565, 2381, 3889, 2398, 340, 10130, 449, 1853, 627, 50113, 12693, 746, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 746, 6003, 9477, 627, 1096, 8543, 17489, 2625, 1342, 17489, 466, 2608, 6003, 9477, 323, 6859, 1139, 27855, 627, 50113, 12693, 368, 11651, 23887, 58, 7676, 60, 55609, 198, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 368, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 6003, 9477, 627, 1096, 8543, 17489, 7383, 17489, 466, 25, 12536, 58, 1199, 20805, 466, 60, 284, 2290, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 6003, 9477, 323, 6859, 1139, 27855, 13 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.whatsapp_chat.WhatsAppChatLoader.html
eaf9333a0058-0
langchain.document_loaders.parsers.grobid.ServerUnavailableException¶ class langchain.document_loaders.parsers.grobid.ServerUnavailableException[source]¶ Bases: Exception add_note()¶ Exception.add_note(note) – add a note to the exception with_traceback()¶ Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. args¶
[ 5317, 8995, 17926, 12693, 388, 76592, 1326, 299, 21301, 23858, 94028, 1378, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 76592, 1326, 299, 21301, 23858, 94028, 1378, 76747, 60, 55609, 198, 33, 2315, 25, 4204, 198, 723, 28306, 368, 55609, 198, 1378, 1388, 28306, 45151, 8, 1389, 198, 723, 264, 5296, 311, 279, 4788, 198, 4291, 24489, 1445, 368, 55609, 198, 1378, 18662, 24489, 1445, 62514, 8, 1389, 198, 751, 659, 4952, 15417, 1445, 565, 311, 16767, 323, 471, 659, 627, 2164, 55609 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.parsers.grobid.ServerUnavailableException.html
1cc80c0ec26e-0
langchain.document_loaders.youtube.GoogleApiYoutubeLoader¶ class langchain.document_loaders.youtube.GoogleApiYoutubeLoader(google_api_client: GoogleApiClient, channel_name: Optional[str] = None, video_ids: Optional[List[str]] = None, add_video_info: bool = True, captions_language: str = 'en', continue_on_failure: bool = False)[source]¶ Bases: BaseLoader Loader that loads all Videos from a Channel To use, you should have the googleapiclient,youtube_transcript_api python package installed. As the service needs a google_api_client, you first have to initialize the GoogleApiClient. Additionally you have to either provide a channel name or a list of videoids “https://developers.google.com/docs/api/quickstart/python” Example from langchain.document_loaders import GoogleApiClient from langchain.document_loaders import GoogleApiYoutubeLoader google_api_client = GoogleApiClient( service_account_path=Path("path_to_your_sec_file.json") ) loader = GoogleApiYoutubeLoader( google_api_client=google_api_client, channel_name = "CodeAesthetic" ) load.load() Methods __init__(google_api_client[, channel_name, ...]) lazy_load() A lazy loader for document content. load() Load documents. load_and_split([text_splitter]) Load documents and split into chunks. validate_channel_or_videoIds_is_set(values) Validate that either folder_id or document_ids is set, but not both. Attributes add_video_info captions_language channel_name continue_on_failure video_ids google_api_client lazy_load() → Iterator[Document]¶ A lazy loader for document content. load() → List[Document][source]¶ Load documents.
[ 5317, 8995, 17926, 12693, 388, 20751, 61493, 6700, 92767, 9360, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 20751, 61493, 6700, 92767, 9360, 3348, 2738, 11959, 8342, 25, 5195, 57684, 11, 5613, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 2835, 8237, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 923, 20402, 3186, 25, 1845, 284, 3082, 11, 78888, 30121, 25, 610, 284, 364, 268, 518, 3136, 4570, 44718, 25, 1845, 284, 3641, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 9360, 198, 9360, 430, 21577, 682, 20114, 505, 264, 13740, 198, 1271, 1005, 11, 499, 1288, 617, 279, 11819, 391, 292, 1477, 7509, 10432, 8124, 1250, 11959, 198, 12958, 6462, 10487, 627, 2170, 279, 2532, 3966, 264, 11819, 11959, 8342, 11, 499, 1176, 617, 311, 9656, 198, 1820, 5195, 57684, 627, 50674, 499, 617, 311, 3060, 3493, 264, 5613, 836, 477, 264, 1160, 315, 23895, 17390, 198, 2118, 2485, 1129, 65405, 5831, 916, 27057, 10729, 14, 28863, 2527, 24147, 89874, 13617, 198, 1527, 8859, 8995, 17926, 12693, 388, 1179, 5195, 57684, 198, 1527, 8859, 8995, 17926, 12693, 388, 1179, 5195, 6700, 92767, 9360, 198, 17943, 11959, 8342, 284, 5195, 57684, 1021, 262, 2532, 13808, 2703, 28, 1858, 446, 2398, 2401, 4271, 414, 17687, 2517, 4421, 1158, 340, 8520, 284, 5195, 6700, 92767, 9360, 1021, 262, 11819, 11959, 8342, 28, 17943, 11959, 8342, 345, 262, 5613, 1292, 284, 330, 2123, 32, 71109, 702, 340, 1096, 5214, 746, 18337, 198, 565, 2381, 3889, 17943, 11959, 8342, 38372, 4194, 10327, 1292, 11, 4194, 1131, 2608, 50113, 12693, 746, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 746, 6003, 9477, 627, 1096, 8543, 17489, 2625, 1342, 17489, 466, 2608, 6003, 9477, 323, 6859, 1139, 27855, 627, 7212, 14913, 8908, 20402, 12990, 7037, 2667, 20706, 340, 18409, 430, 3060, 8695, 851, 477, 2246, 8237, 374, 743, 11, 719, 539, 2225, 627, 10738, 198, 723, 20402, 3186, 198, 44303, 919, 30121, 198, 10327, 1292, 198, 9726, 4570, 44718, 198, 10191, 8237, 198, 17943, 11959, 8342, 198, 50113, 12693, 368, 11651, 23887, 58, 7676, 60, 55609, 198, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 368, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 6003, 9477, 13 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.youtube.GoogleApiYoutubeLoader.html
1cc80c0ec26e-1
load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load documents and split into chunks. classmethod validate_channel_or_videoIds_is_set(values: Dict[str, Any]) → Dict[str, Any][source]¶ Validate that either folder_id or document_ids is set, but not both. add_video_info: bool = True¶ captions_language: str = 'en'¶ channel_name: Optional[str] = None¶ continue_on_failure: bool = False¶ google_api_client: langchain.document_loaders.youtube.GoogleApiClient¶ video_ids: Optional[List[str]] = None¶
[ 1096, 368, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 6003, 9477, 627, 1096, 8543, 17489, 7383, 17489, 466, 25, 12536, 58, 1199, 20805, 466, 60, 284, 2290, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 6003, 9477, 323, 6859, 1139, 27855, 627, 27853, 9788, 14913, 8908, 20402, 12990, 7037, 2667, 20706, 25, 30226, 17752, 11, 5884, 2526, 11651, 30226, 17752, 11, 5884, 1483, 2484, 60, 55609, 198, 18409, 430, 3060, 8695, 851, 477, 2246, 8237, 374, 743, 11, 719, 539, 2225, 627, 723, 20402, 3186, 25, 1845, 284, 3082, 55609, 198, 44303, 919, 30121, 25, 610, 284, 364, 268, 6, 55609, 198, 10327, 1292, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 9726, 4570, 44718, 25, 1845, 284, 3641, 55609, 198, 17943, 11959, 8342, 25, 8859, 8995, 17926, 12693, 388, 20751, 61493, 57684, 55609, 198, 10191, 8237, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.youtube.GoogleApiYoutubeLoader.html
5f3cecb2522f-0
langchain.document_loaders.parsers.pdf.PyPDFParser¶ class langchain.document_loaders.parsers.pdf.PyPDFParser(password: Optional[Union[str, bytes]] = None)[source]¶ Bases: BaseBlobParser Loads a PDF with pypdf and chunks at character level. Methods __init__([password]) lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
[ 5317, 8995, 17926, 12693, 388, 76592, 16378, 1087, 88, 24317, 6707, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 76592, 16378, 1087, 88, 24317, 6707, 23608, 25, 12536, 58, 33758, 17752, 11, 5943, 5163, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 39085, 6707, 198, 79617, 264, 11612, 449, 281, 1100, 3013, 323, 27855, 520, 3752, 2237, 627, 18337, 198, 565, 2381, 565, 2625, 3918, 2608, 50113, 21715, 69038, 340, 43, 1394, 1570, 4820, 279, 24295, 627, 6534, 69038, 340, 36, 1435, 398, 4820, 279, 24295, 1139, 264, 2246, 477, 9477, 627, 50113, 21715, 69038, 25, 50539, 8, 11651, 23887, 58, 7676, 1483, 2484, 60, 55609, 198, 43, 1394, 1570, 4820, 279, 24295, 627, 6534, 69038, 25, 50539, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 36, 1435, 398, 4820, 279, 24295, 1139, 264, 2246, 477, 9477, 627, 2028, 374, 264, 19679, 1749, 369, 21416, 4500, 4676, 627, 46067, 8522, 1288, 4799, 279, 16053, 21715, 1749, 4619, 627, 3214, 9031, 1288, 8965, 539, 927, 12, 1425, 420, 4820, 1749, 627, 9905, 198, 36212, 1389, 50539, 2937, 198, 16851, 198, 861, 315, 9477 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.parsers.pdf.PyPDFParser.html
4030dda7dd3f-0
langchain.document_loaders.facebook_chat.concatenate_rows¶ langchain.document_loaders.facebook_chat.concatenate_rows(row: dict) → str[source]¶ Combine message information in a readable format ready to be used.
[ 5317, 8995, 17926, 12693, 388, 20172, 36153, 39859, 11189, 55609, 198, 5317, 8995, 17926, 12693, 388, 20172, 36153, 39859, 11189, 7991, 25, 6587, 8, 11651, 610, 76747, 60, 55609, 198, 82214, 1984, 2038, 304, 264, 34898, 3645, 5644, 311, 387, 1511, 13 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.facebook_chat.concatenate_rows.html
005aff82fed1-0
langchain.document_loaders.whatsapp_chat.concatenate_rows¶ langchain.document_loaders.whatsapp_chat.concatenate_rows(date: str, sender: str, text: str) → str[source]¶ Combine message information in a readable format ready to be used.
[ 5317, 8995, 17926, 12693, 388, 47836, 72544, 36153, 39859, 11189, 55609, 198, 5317, 8995, 17926, 12693, 388, 47836, 72544, 36153, 39859, 11189, 12237, 25, 610, 11, 4750, 25, 610, 11, 1495, 25, 610, 8, 11651, 610, 76747, 60, 55609, 198, 82214, 1984, 2038, 304, 264, 34898, 3645, 5644, 311, 387, 1511, 13 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.whatsapp_chat.concatenate_rows.html
0c9671599bb0-0
langchain.document_loaders.unstructured.UnstructuredBaseLoader¶ class langchain.document_loaders.unstructured.UnstructuredBaseLoader(mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: BaseLoader, ABC Loader that uses unstructured to load files. Initialize with file path. Methods __init__([mode]) Initialize with file path. lazy_load() A lazy loader for document content. load() Load file. load_and_split([text_splitter]) Load documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for document content. load() → List[Document][source]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load documents and split into chunks.
[ 5317, 8995, 17926, 12693, 388, 6441, 52243, 10840, 52243, 4066, 9360, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 6441, 52243, 10840, 52243, 4066, 9360, 32456, 25, 610, 284, 364, 15698, 518, 3146, 359, 52243, 37335, 25, 5884, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 9360, 11, 19921, 198, 9360, 430, 5829, 653, 52243, 311, 2865, 3626, 627, 10130, 449, 1052, 1853, 627, 18337, 198, 565, 2381, 565, 2625, 8684, 2608, 10130, 449, 1052, 1853, 627, 50113, 12693, 746, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 746, 6003, 1052, 627, 1096, 8543, 17489, 2625, 1342, 17489, 466, 2608, 6003, 9477, 323, 6859, 1139, 27855, 627, 50113, 12693, 368, 11651, 23887, 58, 7676, 60, 55609, 198, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 368, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 6003, 1052, 627, 1096, 8543, 17489, 7383, 17489, 466, 25, 12536, 58, 1199, 20805, 466, 60, 284, 2290, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 6003, 9477, 323, 6859, 1139, 27855, 13 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.unstructured.UnstructuredBaseLoader.html
bf792e304978-0
langchain.document_loaders.parsers.grobid.GrobidParser¶ class langchain.document_loaders.parsers.grobid.GrobidParser(segment_sentences: bool, grobid_server: str = 'http://localhost:8070/api/processFulltextDocument')[source]¶ Bases: BaseBlobParser Loader that uses Grobid to load article PDF files. Methods __init__(segment_sentences[, grobid_server]) lazy_parse(blob) Lazy parsing interface. parse(blob) Eagerly parse the blob into a document or documents. process_xml(file_path, xml_data, ...) Process the XML file from Grobin. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazy parsing interface. Subclasses are required to implement this method. Parameters blob – Blob instance Returns Generator of documents parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents process_xml(file_path: str, xml_data: str, segment_sentences: bool) → Iterator[Document][source]¶ Process the XML file from Grobin.
[ 5317, 8995, 17926, 12693, 388, 76592, 1326, 299, 21301, 1246, 299, 21301, 6707, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 76592, 1326, 299, 21301, 1246, 299, 21301, 6707, 65237, 77003, 25, 1845, 11, 10707, 21301, 12284, 25, 610, 284, 364, 1277, 1129, 8465, 25, 23178, 15, 10729, 87880, 9619, 1342, 7676, 13588, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 39085, 6707, 198, 9360, 430, 5829, 18370, 21301, 311, 2865, 4652, 11612, 3626, 627, 18337, 198, 565, 2381, 3889, 24044, 77003, 38372, 4194, 42511, 21301, 12284, 2608, 50113, 21715, 69038, 340, 40866, 23115, 3834, 627, 6534, 69038, 340, 36, 1435, 398, 4820, 279, 24295, 1139, 264, 2246, 477, 9477, 627, 4734, 24796, 4971, 2703, 11, 4194, 6591, 1807, 11, 4194, 32318, 7575, 279, 12138, 1052, 505, 18370, 7006, 627, 50113, 21715, 69038, 25, 50539, 8, 11651, 23887, 58, 7676, 1483, 2484, 60, 55609, 198, 40866, 23115, 3834, 627, 3214, 9031, 527, 2631, 311, 4305, 420, 1749, 627, 9905, 198, 36212, 1389, 50539, 2937, 198, 16851, 198, 12846, 315, 9477, 198, 6534, 69038, 25, 50539, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 36, 1435, 398, 4820, 279, 24295, 1139, 264, 2246, 477, 9477, 627, 2028, 374, 264, 19679, 1749, 369, 21416, 4500, 4676, 627, 46067, 8522, 1288, 4799, 279, 16053, 21715, 1749, 4619, 627, 3214, 9031, 1288, 8965, 539, 927, 12, 1425, 420, 4820, 1749, 627, 9905, 198, 36212, 1389, 50539, 2937, 198, 16851, 198, 861, 315, 9477, 198, 4734, 24796, 4971, 2703, 25, 610, 11, 8562, 1807, 25, 610, 11, 10449, 77003, 25, 1845, 8, 11651, 23887, 58, 7676, 1483, 2484, 60, 55609, 198, 7575, 279, 12138, 1052, 505, 18370, 7006, 13 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.parsers.grobid.GrobidParser.html
bec7acf3153d-0
langchain.document_loaders.notebook.NotebookLoader¶ class langchain.document_loaders.notebook.NotebookLoader(path: str, include_outputs: bool = False, max_output_length: int = 10, remove_newline: bool = False, traceback: bool = False)[source]¶ Bases: BaseLoader Loader that loads .ipynb notebook files. Initialize with path. Methods __init__(path[, include_outputs, ...]) Initialize with path. lazy_load() A lazy loader for document content. load() Load documents. load_and_split([text_splitter]) Load documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for document content. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load documents and split into chunks.
[ 5317, 8995, 17926, 12693, 388, 41431, 2239, 70028, 2239, 9360, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 41431, 2239, 70028, 2239, 9360, 5698, 25, 610, 11, 2997, 36289, 25, 1845, 284, 3641, 11, 1973, 7800, 5228, 25, 528, 284, 220, 605, 11, 4148, 6046, 1074, 25, 1845, 284, 3641, 11, 47158, 25, 1845, 284, 3641, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 9360, 198, 9360, 430, 21577, 662, 575, 1910, 65, 38266, 3626, 627, 10130, 449, 1853, 627, 18337, 198, 565, 2381, 3889, 2398, 38372, 4194, 1012, 36289, 11, 4194, 1131, 2608, 10130, 449, 1853, 627, 50113, 12693, 746, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 746, 6003, 9477, 627, 1096, 8543, 17489, 2625, 1342, 17489, 466, 2608, 6003, 9477, 323, 6859, 1139, 27855, 627, 50113, 12693, 368, 11651, 23887, 58, 7676, 60, 55609, 198, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 368, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 6003, 9477, 627, 1096, 8543, 17489, 7383, 17489, 466, 25, 12536, 58, 1199, 20805, 466, 60, 284, 2290, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 6003, 9477, 323, 6859, 1139, 27855, 13 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.notebook.NotebookLoader.html
a52b603347a0-0
langchain.document_loaders.blob_loaders.schema.BlobLoader¶ class langchain.document_loaders.blob_loaders.schema.BlobLoader[source]¶ Bases: ABC Abstract interface for blob loaders implementation. Implementer should be able to load raw content from a storage system according to some criteria and return the raw content lazily as a stream of blobs. Methods __init__() yield_blobs() A lazy loader for raw data represented by LangChain's Blob object. abstract yield_blobs() → Iterable[Blob][source]¶ A lazy loader for raw data represented by LangChain’s Blob object. Returns A generator over blobs
[ 5317, 8995, 17926, 12693, 388, 97381, 12693, 388, 31992, 1823, 1718, 9360, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 97381, 12693, 388, 31992, 1823, 1718, 9360, 76747, 60, 55609, 198, 33, 2315, 25, 19921, 198, 16328, 3834, 369, 24295, 69674, 8292, 627, 64080, 261, 1288, 387, 3025, 311, 2865, 7257, 2262, 505, 264, 5942, 1887, 4184, 198, 998, 1063, 13186, 323, 471, 279, 7257, 2262, 65536, 1570, 439, 264, 4365, 315, 77999, 627, 18337, 198, 565, 2381, 33716, 30796, 890, 69264, 746, 32, 16053, 16432, 369, 7257, 828, 15609, 555, 23272, 19368, 596, 50539, 1665, 627, 16647, 7692, 890, 69264, 368, 11651, 39116, 33722, 1718, 1483, 2484, 60, 55609, 198, 32, 16053, 16432, 369, 7257, 828, 15609, 555, 23272, 19368, 753, 50539, 1665, 627, 16851, 198, 32, 14143, 927, 77999 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.blob_loaders.schema.BlobLoader.html
df5bef360958-0
langchain.document_loaders.azlyrics.AZLyricsLoader¶ class langchain.document_loaders.azlyrics.AZLyricsLoader(web_path: Union[str, List[str]], header_template: Optional[dict] = None, verify: Optional[bool] = True, proxies: Optional[dict] = None)[source]¶ Bases: WebBaseLoader Loader that loads AZLyrics webpages. Initialize with webpage path. Methods __init__(web_path[, header_template, ...]) Initialize with webpage path. aload() Load text from the urls in web_path async into Documents. fetch_all(urls) Fetch all urls concurrently with rate limiting. lazy_load() Lazy load text from the url(s) in web_path. load() Load webpage. load_and_split([text_splitter]) Load documents and split into chunks. scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls[, parser]) Fetch all urls, then return soups for all results. Attributes bs_get_text_kwargs kwargs for beatifulsoup4 get_text default_parser Default parser to use for BeautifulSoup. raise_for_status Raise an exception if http status code denotes an error. requests_kwargs kwargs for requests requests_per_second Max number of concurrent requests to make. web_path aload() → List[Document]¶ Load text from the urls in web_path async into Documents. async fetch_all(urls: List[str]) → Any¶ Fetch all urls concurrently with rate limiting. lazy_load() → Iterator[Document]¶ Lazy load text from the url(s) in web_path. load() → List[Document][source]¶ Load webpage.
[ 5317, 8995, 17926, 12693, 388, 13, 1394, 398, 6329, 885, 57, 48412, 6329, 9360, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 13, 1394, 398, 6329, 885, 57, 48412, 6329, 9360, 40869, 2703, 25, 9323, 17752, 11, 1796, 17752, 21128, 4342, 8864, 25, 12536, 58, 8644, 60, 284, 2290, 11, 10356, 25, 12536, 58, 2707, 60, 284, 3082, 11, 60465, 25, 12536, 58, 8644, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5000, 4066, 9360, 198, 9360, 430, 21577, 31976, 48412, 6329, 3566, 11014, 627, 10130, 449, 45710, 1853, 627, 18337, 198, 565, 2381, 3889, 2984, 2703, 38372, 4194, 2775, 8864, 11, 4194, 1131, 2608, 10130, 449, 45710, 1853, 627, 55496, 746, 6003, 1495, 505, 279, 31084, 304, 3566, 2703, 3393, 1139, 45890, 627, 9838, 5823, 92282, 340, 21373, 682, 31084, 79126, 449, 4478, 33994, 627, 50113, 12693, 746, 40866, 2865, 1495, 505, 279, 2576, 1161, 8, 304, 3566, 2703, 627, 1096, 746, 6003, 45710, 627, 1096, 8543, 17489, 2625, 1342, 17489, 466, 2608, 6003, 9477, 323, 6859, 1139, 27855, 627, 2445, 20432, 2625, 9854, 2608, 3407, 20432, 828, 505, 45710, 323, 471, 433, 304, 37010, 3645, 627, 2445, 20432, 5823, 92282, 38372, 4194, 9854, 2608, 21373, 682, 31084, 11, 1243, 471, 5945, 1725, 369, 682, 3135, 627, 10738, 198, 1302, 3138, 4424, 37335, 198, 9872, 369, 9567, 5092, 90642, 19, 636, 4424, 198, 2309, 19024, 198, 3760, 6871, 311, 1005, 369, 37010, 627, 19223, 5595, 4878, 198, 94201, 459, 4788, 422, 1795, 2704, 2082, 72214, 459, 1493, 627, 37342, 37335, 198, 9872, 369, 7540, 198, 37342, 5796, 30744, 198, 6102, 1396, 315, 35135, 7540, 311, 1304, 627, 2984, 2703, 198, 55496, 368, 11651, 1796, 58, 7676, 60, 55609, 198, 6003, 1495, 505, 279, 31084, 304, 3566, 2703, 3393, 1139, 45890, 627, 7847, 7963, 5823, 92282, 25, 1796, 17752, 2526, 11651, 5884, 55609, 198, 21373, 682, 31084, 79126, 449, 4478, 33994, 627, 50113, 12693, 368, 11651, 23887, 58, 7676, 60, 55609, 198, 40866, 2865, 1495, 505, 279, 2576, 1161, 8, 304, 3566, 2703, 627, 1096, 368, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 6003, 45710, 13 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.azlyrics.AZLyricsLoader.html
df5bef360958-1
load() → List[Document][source]¶ Load webpage. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load documents and split into chunks. scrape(parser: Optional[str] = None) → Any¶ Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) → List[Any]¶ Fetch all urls, then return soups for all results. bs_get_text_kwargs: Dict[str, Any] = {}¶ kwargs for beatifulsoup4 get_text default_parser: str = 'html.parser'¶ Default parser to use for BeautifulSoup. raise_for_status: bool = False¶ Raise an exception if http status code denotes an error. requests_kwargs: Dict[str, Any] = {}¶ kwargs for requests requests_per_second: int = 2¶ Max number of concurrent requests to make. property web_path: str¶ web_paths: List[str]¶
[ 1096, 368, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 6003, 45710, 627, 1096, 8543, 17489, 7383, 17489, 466, 25, 12536, 58, 1199, 20805, 466, 60, 284, 2290, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 6003, 9477, 323, 6859, 1139, 27855, 627, 2445, 20432, 36435, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 5884, 55609, 198, 3407, 20432, 828, 505, 45710, 323, 471, 433, 304, 37010, 3645, 627, 2445, 20432, 5823, 92282, 25, 1796, 17752, 1145, 6871, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 1796, 71401, 60, 55609, 198, 21373, 682, 31084, 11, 1243, 471, 5945, 1725, 369, 682, 3135, 627, 1302, 3138, 4424, 37335, 25, 30226, 17752, 11, 5884, 60, 284, 4792, 55609, 198, 9872, 369, 9567, 5092, 90642, 19, 636, 4424, 198, 2309, 19024, 25, 610, 284, 364, 1580, 26699, 6, 55609, 198, 3760, 6871, 311, 1005, 369, 37010, 627, 19223, 5595, 4878, 25, 1845, 284, 3641, 55609, 198, 94201, 459, 4788, 422, 1795, 2704, 2082, 72214, 459, 1493, 627, 37342, 37335, 25, 30226, 17752, 11, 5884, 60, 284, 4792, 55609, 198, 9872, 369, 7540, 198, 37342, 5796, 30744, 25, 528, 284, 220, 17, 55609, 198, 6102, 1396, 315, 35135, 7540, 311, 1304, 627, 3784, 3566, 2703, 25, 610, 55609, 198, 2984, 25124, 25, 1796, 17752, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.azlyrics.AZLyricsLoader.html
0fc1eea36e97-0
langchain.document_loaders.pyspark_dataframe.PySparkDataFrameLoader¶ class langchain.document_loaders.pyspark_dataframe.PySparkDataFrameLoader(spark_session: Optional[SparkSession] = None, df: Optional[Any] = None, page_content_column: str = 'text', fraction_of_memory: float = 0.1)[source]¶ Bases: BaseLoader Load PySpark DataFrames Initialize with a Spark DataFrame object. Methods __init__([spark_session, df, ...]) Initialize with a Spark DataFrame object. get_num_rows() Gets the amount of "feasible" rows for the DataFrame lazy_load() A lazy loader for document content. load() Load from the dataframe. load_and_split([text_splitter]) Load documents and split into chunks. get_num_rows() → Tuple[int, int][source]¶ Gets the amount of “feasible” rows for the DataFrame lazy_load() → Iterator[Document][source]¶ A lazy loader for document content. load() → List[Document][source]¶ Load from the dataframe. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load documents and split into chunks.
[ 5317, 8995, 17926, 12693, 388, 558, 1065, 29836, 78670, 1087, 88, 68583, 100038, 9360, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 558, 1065, 29836, 78670, 1087, 88, 68583, 100038, 9360, 23398, 847, 12596, 25, 12536, 58, 68583, 5396, 60, 284, 2290, 11, 6907, 25, 12536, 71401, 60, 284, 2290, 11, 2199, 7647, 8918, 25, 610, 284, 364, 1342, 518, 19983, 3659, 19745, 25, 2273, 284, 220, 15, 13, 16, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 9360, 198, 6003, 5468, 68583, 2956, 35145, 198, 10130, 449, 264, 27565, 46886, 1665, 627, 18337, 198, 565, 2381, 565, 2625, 54882, 12596, 11, 4194, 3013, 11, 4194, 1131, 2608, 10130, 449, 264, 27565, 46886, 1665, 627, 456, 4369, 11189, 746, 50458, 279, 3392, 315, 330, 90377, 1260, 1, 7123, 369, 279, 46886, 198, 50113, 12693, 746, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 746, 6003, 505, 279, 39328, 627, 1096, 8543, 17489, 2625, 1342, 17489, 466, 2608, 6003, 9477, 323, 6859, 1139, 27855, 627, 456, 4369, 11189, 368, 11651, 25645, 19155, 11, 528, 1483, 2484, 60, 55609, 198, 50458, 279, 3392, 315, 1054, 90377, 1260, 863, 7123, 369, 279, 46886, 198, 50113, 12693, 368, 11651, 23887, 58, 7676, 1483, 2484, 60, 55609, 198, 32, 16053, 16432, 369, 2246, 2262, 627, 1096, 368, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 6003, 505, 279, 39328, 627, 1096, 8543, 17489, 7383, 17489, 466, 25, 12536, 58, 1199, 20805, 466, 60, 284, 2290, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 6003, 9477, 323, 6859, 1139, 27855, 13 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.pyspark_dataframe.PySparkDataFrameLoader.html
67be1eefabda-0
langchain.document_loaders.parsers.pdf.PyPDFium2Parser¶ class langchain.document_loaders.parsers.pdf.PyPDFium2Parser[source]¶ Bases: BaseBlobParser Parse PDFs with PyPDFium2. Initialize the parser. Methods __init__() Initialize the parser. lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
[ 5317, 8995, 17926, 12693, 388, 76592, 16378, 1087, 88, 24317, 2411, 17, 6707, 55609, 198, 1058, 8859, 8995, 17926, 12693, 388, 76592, 16378, 1087, 88, 24317, 2411, 17, 6707, 76747, 60, 55609, 198, 33, 2315, 25, 5464, 39085, 6707, 198, 14802, 11612, 82, 449, 5468, 24317, 2411, 17, 627, 10130, 279, 6871, 627, 18337, 198, 565, 2381, 33716, 10130, 279, 6871, 627, 50113, 21715, 69038, 340, 43, 1394, 1570, 4820, 279, 24295, 627, 6534, 69038, 340, 36, 1435, 398, 4820, 279, 24295, 1139, 264, 2246, 477, 9477, 627, 50113, 21715, 69038, 25, 50539, 8, 11651, 23887, 58, 7676, 1483, 2484, 60, 55609, 198, 43, 1394, 1570, 4820, 279, 24295, 627, 6534, 69038, 25, 50539, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 36, 1435, 398, 4820, 279, 24295, 1139, 264, 2246, 477, 9477, 627, 2028, 374, 264, 19679, 1749, 369, 21416, 4500, 4676, 627, 46067, 8522, 1288, 4799, 279, 16053, 21715, 1749, 4619, 627, 3214, 9031, 1288, 8965, 539, 927, 12, 1425, 420, 4820, 1749, 627, 9905, 198, 36212, 1389, 50539, 2937, 198, 16851, 198, 861, 315, 9477 ]
https://langchain.readthedocs.io/en/latest/document_loaders/langchain.document_loaders.parsers.pdf.PyPDFium2Parser.html
2c061c05ce2c-0
langchain.graphs.networkx_graph.parse_triples¶ langchain.graphs.networkx_graph.parse_triples(knowledge_str: str) → List[KnowledgeTriple][source]¶ Parse knowledge triples from the knowledge string.
[ 5317, 8995, 10996, 82, 21216, 87, 15080, 4736, 3631, 38558, 55609, 198, 5317, 8995, 10996, 82, 21216, 87, 15080, 4736, 3631, 38558, 6097, 52286, 2966, 25, 610, 8, 11651, 1796, 58, 81434, 83926, 1483, 2484, 60, 55609, 198, 14802, 6677, 89661, 505, 279, 6677, 925, 13 ]
https://langchain.readthedocs.io/en/latest/graphs/langchain.graphs.networkx_graph.parse_triples.html
ece6e43742a0-0
langchain.graphs.networkx_graph.KnowledgeTriple¶ class langchain.graphs.networkx_graph.KnowledgeTriple(subject: str, predicate: str, object_: str)[source]¶ Bases: NamedTuple A triple in the graph. Create new instance of KnowledgeTriple(subject, predicate, object_) Methods __init__() count(value, /) Return number of occurrences of value. from_string(triple_string) Create a KnowledgeTriple from a string. index(value[, start, stop]) Return first index of value. Attributes object_ Alias for field number 2 predicate Alias for field number 1 subject Alias for field number 0 count(value, /)¶ Return number of occurrences of value. classmethod from_string(triple_string: str) → KnowledgeTriple[source]¶ Create a KnowledgeTriple from a string. index(value, start=0, stop=9223372036854775807, /)¶ Return first index of value. Raises ValueError if the value is not present. object_: str¶ Alias for field number 2 predicate: str¶ Alias for field number 1 subject: str¶ Alias for field number 0
[ 5317, 8995, 10996, 82, 21216, 87, 15080, 11606, 52286, 83926, 55609, 198, 1058, 8859, 8995, 10996, 82, 21216, 87, 15080, 11606, 52286, 83926, 30228, 25, 610, 11, 25269, 25, 610, 11, 1665, 24089, 610, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 41559, 29781, 198, 32, 24657, 304, 279, 4876, 627, 4110, 502, 2937, 315, 33025, 83926, 30228, 11, 25269, 11, 1665, 24262, 18337, 198, 565, 2381, 33716, 1868, 3764, 11, 4194, 54660, 5715, 1396, 315, 57115, 315, 907, 627, 1527, 3991, 7779, 3863, 3991, 340, 4110, 264, 33025, 83926, 505, 264, 925, 627, 1275, 3764, 38372, 4194, 2527, 11, 4194, 9684, 2608, 5715, 1176, 1963, 315, 907, 627, 10738, 198, 1735, 13220, 23555, 369, 2115, 1396, 220, 17, 198, 62885, 198, 23555, 369, 2115, 1396, 220, 16, 198, 11760, 198, 23555, 369, 2115, 1396, 220, 15, 198, 1868, 3764, 11, 611, 8, 55609, 198, 5715, 1396, 315, 57115, 315, 907, 627, 27853, 505, 3991, 7779, 3863, 3991, 25, 610, 8, 11651, 33025, 83926, 76747, 60, 55609, 198, 4110, 264, 33025, 83926, 505, 264, 925, 627, 1275, 3764, 11, 1212, 28, 15, 11, 3009, 28, 20275, 17609, 9639, 23717, 21144, 18216, 22, 11, 611, 8, 55609, 198, 5715, 1176, 1963, 315, 907, 627, 36120, 15764, 422, 279, 907, 374, 539, 3118, 627, 1735, 24089, 610, 55609, 198, 23555, 369, 2115, 1396, 220, 17, 198, 62885, 25, 610, 55609, 198, 23555, 369, 2115, 1396, 220, 16, 198, 11760, 25, 610, 55609, 198, 23555, 369, 2115, 1396, 220, 15 ]
https://langchain.readthedocs.io/en/latest/graphs/langchain.graphs.networkx_graph.KnowledgeTriple.html
18709f8b53f6-0
langchain.graphs.networkx_graph.get_entities¶ langchain.graphs.networkx_graph.get_entities(entity_str: str) → List[str][source]¶ Extract entities from entity string.
[ 5317, 8995, 10996, 82, 21216, 87, 15080, 673, 48477, 55609, 198, 5317, 8995, 10996, 82, 21216, 87, 15080, 673, 48477, 17803, 2966, 25, 610, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 30059, 15086, 505, 5502, 925, 13 ]
https://langchain.readthedocs.io/en/latest/graphs/langchain.graphs.networkx_graph.get_entities.html
2090b9740ead-0
langchain.llms.pipelineai.PipelineAI¶ class langchain.llms.pipelineai.PipelineAI(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, pipeline_key: str = '', pipeline_kwargs: Dict[str, Any] = None, pipeline_api_key: Optional[str] = None)[source]¶ Bases: LLM, BaseModel Wrapper around PipelineAI large language models. To use, you should have the pipeline-ai python package installed, and the environment variable PIPELINE_API_KEY set with your API key. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example from langchain import PipelineAI pipeline = PipelineAI(pipeline_key="") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param pipeline_api_key: Optional[str] = None¶ param pipeline_key: str = ''¶ The id or tag of the target pipeline param pipeline_kwargs: Dict[str, Any] [Optional]¶ Holds any pipeline parameters valid for create call not explicitly specified. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text.
[ 5317, 8995, 60098, 1026, 58833, 2192, 1087, 8966, 15836, 55609, 198, 1058, 8859, 8995, 60098, 1026, 58833, 2192, 1087, 8966, 15836, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 15660, 3173, 25, 610, 284, 9158, 15660, 37335, 25, 30226, 17752, 11, 5884, 60, 284, 2290, 11, 15660, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 11, 65705, 198, 11803, 2212, 42007, 15836, 3544, 4221, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 15660, 12, 2192, 10344, 6462, 10487, 345, 438, 279, 4676, 3977, 72774, 8429, 11669, 6738, 743, 449, 701, 5446, 1401, 627, 8780, 5137, 430, 527, 2764, 311, 387, 5946, 311, 279, 1650, 649, 387, 5946, 198, 258, 11, 1524, 422, 539, 21650, 6924, 389, 420, 538, 627, 13617, 198, 1527, 8859, 8995, 1179, 42007, 15836, 198, 52358, 284, 42007, 15836, 1319, 8966, 3173, 64841, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 15660, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 15660, 3173, 25, 610, 284, 3436, 55609, 198, 791, 887, 477, 4877, 315, 279, 2218, 15660, 198, 913, 15660, 37335, 25, 30226, 17752, 11, 5884, 60, 510, 15669, 60, 55609, 198, 39, 18938, 904, 15660, 5137, 2764, 369, 1893, 1650, 539, 198, 94732, 398, 5300, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.pipelineai.PipelineAI.html
2090b9740ead-1
param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator build_extra  »  all fields[source]¶ Build extra kwargs from additional params that were passed in. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
[ 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 1977, 32958, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 11313, 5066, 16901, 505, 5217, 3712, 430, 1051, 5946, 304, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.pipelineai.PipelineAI.html
2090b9740ead-2
Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.pipelineai.PipelineAI.html
2090b9740ead-3
property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic config. extra = 'forbid'¶
[ 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 2242, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.pipelineai.PipelineAI.html
326ba4aa3ed6-0
langchain.llms.ai21.AI21¶ class langchain.llms.ai21.AI21(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, model: str = 'j2-jumbo-instruct', temperature: float = 0.7, maxTokens: int = 256, minTokens: int = 0, topP: float = 1.0, presencePenalty: AI21PenaltyData = AI21PenaltyData(scale=0, applyToWhitespaces=True, applyToPunctuations=True, applyToNumbers=True, applyToStopwords=True, applyToEmojis=True), countPenalty: AI21PenaltyData = AI21PenaltyData(scale=0, applyToWhitespaces=True, applyToPunctuations=True, applyToNumbers=True, applyToStopwords=True, applyToEmojis=True), frequencyPenalty: AI21PenaltyData = AI21PenaltyData(scale=0, applyToWhitespaces=True, applyToPunctuations=True, applyToNumbers=True, applyToStopwords=True, applyToEmojis=True), numResults: int = 1, logitBias: Optional[Dict[str, float]] = None, ai21_api_key: Optional[str] = None, stop: Optional[List[str]] = None, base_url: Optional[str] = None)[source]¶ Bases: LLM Wrapper around AI21 large language models. To use, you should have the environment variable AI21_API_KEY set with your API key. Example from langchain.llms import AI21 ai21 = AI21(model="j2-jumbo-instruct")
[ 5317, 8995, 60098, 1026, 41483, 1691, 89878, 1691, 55609, 198, 1058, 8859, 8995, 60098, 1026, 41483, 1691, 89878, 1691, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 1646, 25, 610, 284, 364, 73, 17, 13636, 49709, 3502, 1257, 518, 9499, 25, 2273, 284, 220, 15, 13, 22, 11, 1973, 30400, 25, 528, 284, 220, 4146, 11, 1332, 30400, 25, 528, 284, 220, 15, 11, 1948, 47, 25, 2273, 284, 220, 16, 13, 15, 11, 9546, 29305, 10231, 25, 15592, 1691, 29305, 10231, 1061, 284, 15592, 1691, 29305, 10231, 1061, 43173, 28, 15, 11, 3881, 1271, 1671, 3695, 28438, 3702, 11, 3881, 1271, 47, 20526, 38170, 3702, 11, 3881, 1271, 28336, 3702, 11, 3881, 1271, 10903, 5880, 3702, 11, 3881, 1271, 2321, 84528, 3702, 705, 1797, 29305, 10231, 25, 15592, 1691, 29305, 10231, 1061, 284, 15592, 1691, 29305, 10231, 1061, 43173, 28, 15, 11, 3881, 1271, 1671, 3695, 28438, 3702, 11, 3881, 1271, 47, 20526, 38170, 3702, 11, 3881, 1271, 28336, 3702, 11, 3881, 1271, 10903, 5880, 3702, 11, 3881, 1271, 2321, 84528, 3702, 705, 11900, 29305, 10231, 25, 15592, 1691, 29305, 10231, 1061, 284, 15592, 1691, 29305, 10231, 1061, 43173, 28, 15, 11, 3881, 1271, 1671, 3695, 28438, 3702, 11, 3881, 1271, 47, 20526, 38170, 3702, 11, 3881, 1271, 28336, 3702, 11, 3881, 1271, 10903, 5880, 3702, 11, 3881, 1271, 2321, 84528, 3702, 705, 1661, 10001, 25, 528, 284, 220, 16, 11, 1515, 275, 83652, 25, 12536, 58, 13755, 17752, 11, 2273, 5163, 284, 2290, 11, 16796, 1691, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 2385, 2975, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 15592, 1691, 3544, 4221, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 4676, 3977, 15592, 1691, 11669, 6738, 198, 751, 449, 701, 5446, 1401, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 15592, 1691, 198, 2192, 1691, 284, 15592, 1691, 7790, 429, 73, 17, 13636, 49709, 3502, 1257, 909 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.ai21.AI21.html
326ba4aa3ed6-1
ai21 = AI21(model="j2-jumbo-instruct") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param ai21_api_key: Optional[str] = None¶ param base_url: Optional[str] = None¶ Base url to use, if None decides based on model name. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param countPenalty: langchain.llms.ai21.AI21PenaltyData = AI21PenaltyData(scale=0, applyToWhitespaces=True, applyToPunctuations=True, applyToNumbers=True, applyToStopwords=True, applyToEmojis=True)¶ Penalizes repeated tokens according to count. param frequencyPenalty: langchain.llms.ai21.AI21PenaltyData = AI21PenaltyData(scale=0, applyToWhitespaces=True, applyToPunctuations=True, applyToNumbers=True, applyToStopwords=True, applyToEmojis=True)¶ Penalizes repeated tokens according to frequency. param logitBias: Optional[Dict[str, float]] = None¶ Adjust the probability of specific tokens being generated. param maxTokens: int = 256¶ The maximum number of tokens to generate in the completion. param minTokens: int = 0¶ The minimum number of tokens to generate in the completion. param model: str = 'j2-jumbo-instruct'¶ Model name to use. param numResults: int = 1¶ How many completions to generate for each prompt.
[ 2192, 1691, 284, 15592, 1691, 7790, 429, 73, 17, 13636, 49709, 3502, 1257, 1158, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 16796, 1691, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 2385, 2975, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 4066, 2576, 311, 1005, 11, 422, 2290, 28727, 3196, 389, 1646, 836, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 1797, 29305, 10231, 25, 8859, 8995, 60098, 1026, 41483, 1691, 89878, 1691, 29305, 10231, 1061, 284, 15592, 1691, 29305, 10231, 1061, 43173, 28, 15, 11, 3881, 1271, 1671, 3695, 28438, 3702, 11, 3881, 1271, 47, 20526, 38170, 3702, 11, 3881, 1271, 28336, 3702, 11, 3881, 1271, 10903, 5880, 3702, 11, 3881, 1271, 2321, 84528, 3702, 8, 55609, 198, 29305, 278, 4861, 11763, 11460, 4184, 311, 1797, 627, 913, 11900, 29305, 10231, 25, 8859, 8995, 60098, 1026, 41483, 1691, 89878, 1691, 29305, 10231, 1061, 284, 15592, 1691, 29305, 10231, 1061, 43173, 28, 15, 11, 3881, 1271, 1671, 3695, 28438, 3702, 11, 3881, 1271, 47, 20526, 38170, 3702, 11, 3881, 1271, 28336, 3702, 11, 3881, 1271, 10903, 5880, 3702, 11, 3881, 1271, 2321, 84528, 3702, 8, 55609, 198, 29305, 278, 4861, 11763, 11460, 4184, 311, 11900, 627, 913, 1515, 275, 83652, 25, 12536, 58, 13755, 17752, 11, 2273, 5163, 284, 2290, 55609, 198, 39716, 279, 19463, 315, 3230, 11460, 1694, 8066, 627, 913, 1973, 30400, 25, 528, 284, 220, 4146, 55609, 198, 791, 7340, 1396, 315, 11460, 311, 7068, 304, 279, 9954, 627, 913, 1332, 30400, 25, 528, 284, 220, 15, 55609, 198, 791, 8187, 1396, 315, 11460, 311, 7068, 304, 279, 9954, 627, 913, 1646, 25, 610, 284, 364, 73, 17, 13636, 49709, 3502, 1257, 6, 55609, 198, 1747, 836, 311, 1005, 627, 913, 1661, 10001, 25, 528, 284, 220, 16, 55609, 198, 4438, 1690, 3543, 919, 311, 7068, 369, 1855, 10137, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.ai21.AI21.html
326ba4aa3ed6-2
How many completions to generate for each prompt. param presencePenalty: langchain.llms.ai21.AI21PenaltyData = AI21PenaltyData(scale=0, applyToWhitespaces=True, applyToPunctuations=True, applyToNumbers=True, applyToStopwords=True, applyToEmojis=True)¶ Penalizes repeated tokens. param stop: Optional[List[str]] = None¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.7¶ What sampling temperature to use. param topP: float = 1.0¶ Total probability mass of tokens to consider at each step. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
[ 4438, 1690, 3543, 919, 311, 7068, 369, 1855, 10137, 627, 913, 9546, 29305, 10231, 25, 8859, 8995, 60098, 1026, 41483, 1691, 89878, 1691, 29305, 10231, 1061, 284, 15592, 1691, 29305, 10231, 1061, 43173, 28, 15, 11, 3881, 1271, 1671, 3695, 28438, 3702, 11, 3881, 1271, 47, 20526, 38170, 3702, 11, 3881, 1271, 28336, 3702, 11, 3881, 1271, 10903, 5880, 3702, 11, 3881, 1271, 2321, 84528, 3702, 8, 55609, 198, 29305, 278, 4861, 11763, 11460, 627, 913, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 9499, 25, 2273, 284, 220, 15, 13, 22, 55609, 198, 3923, 25936, 9499, 311, 1005, 627, 913, 1948, 47, 25, 2273, 284, 220, 16, 13, 15, 55609, 198, 7749, 19463, 3148, 315, 11460, 311, 2980, 520, 1855, 3094, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.ai21.AI21.html
326ba4aa3ed6-3
Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python
[ 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.ai21.AI21.html
326ba4aa3ed6-4
Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.ai21.AI21.html
5926f56b426f-0
langchain.llms.aviary.Aviary¶ class langchain.llms.aviary.Aviary(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, model: str = 'amazon/LightGPT', aviary_url: Optional[str] = None, aviary_token: Optional[str] = None, use_prompt_format: bool = True, version: Optional[str] = None)[source]¶ Bases: LLM Allow you to use an Aviary. Aviary is a backend for hosted models. You can find out more about aviary at http://github.com/ray-project/aviary To get a list of the models supported on an aviary, follow the instructions on the web site to install the aviary CLI and then use: aviary models AVIARY_URL and AVIARY_TOKEN environement variables must be set. Example from langchain.llms import Aviary os.environ["AVIARY_URL"] = "<URL>" os.environ["AVIARY_TOKEN"] = "<TOKEN>" light = Aviary(model='amazon/LightGPT') output = light('How do you make fried rice?') Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param aviary_token: Optional[str] = None¶ param aviary_url: Optional[str] = None¶ param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶
[ 5317, 8995, 60098, 1026, 85652, 661, 885, 10176, 661, 55609, 198, 1058, 8859, 8995, 60098, 1026, 85652, 661, 885, 10176, 661, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 1646, 25, 610, 284, 364, 73853, 7586, 492, 38, 2898, 518, 99288, 661, 2975, 25, 12536, 17752, 60, 284, 2290, 11, 99288, 661, 6594, 25, 12536, 17752, 60, 284, 2290, 11, 1005, 62521, 9132, 25, 1845, 284, 3082, 11, 2373, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 19118, 499, 311, 1005, 459, 7671, 72, 661, 627, 10066, 72, 661, 374, 264, 19713, 369, 21685, 4211, 13, 1472, 649, 198, 3990, 704, 810, 922, 99288, 661, 520, 198, 1277, 1129, 5316, 916, 7534, 352, 34796, 14, 6321, 661, 198, 1271, 636, 264, 1160, 315, 279, 4211, 7396, 389, 459, 198, 6321, 661, 11, 1833, 279, 11470, 389, 279, 3566, 2816, 311, 198, 12527, 279, 99288, 661, 40377, 323, 1243, 1005, 512, 6321, 661, 4211, 198, 8253, 40, 8812, 8159, 323, 12431, 40, 8812, 19199, 50026, 1133, 7482, 2011, 387, 743, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 7671, 72, 661, 198, 437, 24656, 1204, 8253, 40, 8812, 8159, 1365, 284, 4145, 3222, 19681, 437, 24656, 1204, 8253, 40, 8812, 19199, 1365, 284, 4145, 63953, 19681, 4238, 284, 7671, 72, 661, 7790, 1151, 73853, 7586, 492, 38, 2898, 1329, 3081, 284, 3177, 493, 4438, 656, 499, 1304, 41951, 20228, 30, 1329, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 99288, 661, 6594, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 99288, 661, 2975, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.aviary.Aviary.html
5926f56b426f-1
param callbacks: Callbacks = None¶ param model: str = 'amazon/LightGPT'¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param use_prompt_format: bool = True¶ param verbose: bool [Optional]¶ Whether to print out response text. param version: Optional[str] = None¶ __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM.
[ 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 1646, 25, 610, 284, 364, 73853, 7586, 492, 38, 2898, 6, 55609, 198, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 1005, 62521, 9132, 25, 1845, 284, 3082, 55609, 198, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 913, 2373, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.aviary.Aviary.html
5926f56b426f-2
dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting.
[ 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.aviary.Aviary.html
5926f56b426f-3
This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.aviary.Aviary.html
3a744f2abb6e-0
langchain.llms.ctransformers.CTransformers¶ class langchain.llms.ctransformers.CTransformers(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: Any = None, model: str, model_type: Optional[str] = None, model_file: Optional[str] = None, config: Optional[Dict[str, Any]] = None, lib: Optional[str] = None)[source]¶ Bases: LLM Wrapper around the C Transformers LLM interface. To use, you should have the ctransformers python package installed. See https://github.com/marella/ctransformers Example from langchain.llms import CTransformers llm = CTransformers(model="/path/to/ggml-gpt-2.bin", model_type="gpt2") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param config: Optional[Dict[str, Any]] = None¶ The config parameters. See https://github.com/marella/ctransformers#config param lib: Optional[str] = None¶ The path to a shared library or one of avx2, avx, basic. param model: str [Required]¶ The path to a model file or directory or the name of a Hugging Face Hub model repo. param model_file: Optional[str] = None¶
[ 5317, 8995, 60098, 1026, 13, 10820, 598, 630, 388, 732, 9140, 388, 55609, 198, 1058, 8859, 8995, 60098, 1026, 13, 10820, 598, 630, 388, 732, 9140, 388, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 5884, 284, 2290, 11, 1646, 25, 610, 11, 1646, 1857, 25, 12536, 17752, 60, 284, 2290, 11, 1646, 2517, 25, 12536, 17752, 60, 284, 2290, 11, 2242, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 11, 3127, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 279, 356, 81632, 445, 11237, 3834, 627, 1271, 1005, 11, 499, 1288, 617, 279, 272, 4806, 388, 10344, 6462, 10487, 627, 10031, 3788, 1129, 5316, 916, 3262, 76031, 14, 10820, 598, 630, 388, 198, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 356, 9140, 388, 198, 657, 76, 284, 356, 9140, 388, 7790, 6039, 2398, 33529, 4951, 70, 1029, 2427, 418, 12, 17, 30494, 498, 1646, 1857, 429, 70, 418, 17, 1158, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 2242, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 55609, 198, 791, 2242, 5137, 627, 10031, 3788, 1129, 5316, 916, 3262, 76031, 14, 10820, 598, 630, 388, 2, 1710, 198, 913, 3127, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 791, 1853, 311, 264, 6222, 6875, 477, 832, 315, 1860, 87, 17, 11, 1860, 87, 11, 6913, 627, 913, 1646, 25, 610, 510, 8327, 60, 55609, 198, 791, 1853, 311, 264, 1646, 1052, 477, 6352, 477, 279, 836, 315, 264, 473, 36368, 19109, 27636, 198, 2590, 16246, 627, 913, 1646, 2517, 25, 12536, 17752, 60, 284, 2290, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.ctransformers.CTransformers.html
3a744f2abb6e-1
model repo. param model_file: Optional[str] = None¶ The name of the model file in repo or directory. param model_type: Optional[str] = None¶ The model type. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM.
[ 2590, 16246, 627, 913, 1646, 2517, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 791, 836, 315, 279, 1646, 1052, 304, 16246, 477, 6352, 627, 913, 1646, 1857, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 791, 1646, 955, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.ctransformers.CTransformers.html
3a744f2abb6e-2
dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting.
[ 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.ctransformers.CTransformers.html
3a744f2abb6e-3
This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that ctransformers package is installed. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 272, 4806, 388, 6462, 374, 10487, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.ctransformers.CTransformers.html
f4b0df31ff60-0
langchain.llms.databricks.get_default_host¶ langchain.llms.databricks.get_default_host() → str[source]¶ Gets the default Databricks workspace hostname. Raises an error if the hostname cannot be automatically determined.
[ 5317, 8995, 60098, 1026, 32112, 78889, 673, 10198, 13144, 55609, 198, 5317, 8995, 60098, 1026, 32112, 78889, 673, 10198, 13144, 368, 11651, 610, 76747, 60, 55609, 198, 50458, 279, 1670, 423, 2143, 78889, 28614, 29215, 627, 36120, 459, 1493, 422, 279, 29215, 4250, 387, 9651, 11075, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.databricks.get_default_host.html
d008eaa7d269-0
langchain.llms.sagemaker_endpoint.ContentHandlerBase¶ class langchain.llms.sagemaker_endpoint.ContentHandlerBase[source]¶ Bases: Generic[INPUT_TYPE, OUTPUT_TYPE] A handler class to transform input from LLM to a format that SageMaker endpoint expects. Similarily, the class also handles transforming output from the SageMaker endpoint to a format that LLM class expects. Methods __init__() transform_input(prompt, model_kwargs) Transforms the input to a format that model can accept as the request Body. transform_output(output) Transforms the output from the model to string that the LLM class expects. Attributes accepts The MIME type of the response data returned from endpoint content_type The MIME type of the input data passed to endpoint abstract transform_input(prompt: INPUT_TYPE, model_kwargs: Dict) → bytes[source]¶ Transforms the input to a format that model can accept as the request Body. Should return bytes or seekable file like object in the format specified in the content_type request header. abstract transform_output(output: bytes) → OUTPUT_TYPE[source]¶ Transforms the output from the model to string that the LLM class expects. accepts: Optional[str] = 'text/plain'¶ The MIME type of the response data returned from endpoint content_type: Optional[str] = 'text/plain'¶ The MIME type of the input data passed to endpoint
[ 5317, 8995, 60098, 1026, 516, 15003, 4506, 37799, 12900, 3126, 4066, 55609, 198, 1058, 8859, 8995, 60098, 1026, 516, 15003, 4506, 37799, 12900, 3126, 4066, 76747, 60, 55609, 198, 33, 2315, 25, 21981, 58, 30521, 4283, 11, 32090, 4283, 933, 32, 7158, 538, 311, 5276, 1988, 505, 445, 11237, 311, 264, 198, 2293, 430, 54384, 34359, 15233, 25283, 13, 22196, 1570, 345, 1820, 538, 1101, 13777, 46890, 2612, 505, 279, 198, 50, 425, 34359, 15233, 311, 264, 3645, 430, 445, 11237, 538, 25283, 627, 18337, 198, 565, 2381, 33716, 4806, 6022, 73353, 11, 4194, 2590, 37335, 340, 9140, 82, 279, 1988, 311, 264, 3645, 430, 1646, 649, 4287, 439, 279, 1715, 14285, 627, 4806, 7800, 11304, 340, 9140, 82, 279, 2612, 505, 279, 1646, 311, 925, 430, 279, 445, 11237, 538, 25283, 627, 10738, 198, 10543, 82, 198, 791, 58577, 955, 315, 279, 2077, 828, 6052, 505, 15233, 198, 1834, 1857, 198, 791, 58577, 955, 315, 279, 1988, 828, 5946, 311, 15233, 198, 16647, 5276, 6022, 73353, 25, 27241, 4283, 11, 1646, 37335, 25, 30226, 8, 11651, 5943, 76747, 60, 55609, 198, 9140, 82, 279, 1988, 311, 264, 3645, 430, 1646, 649, 4287, 198, 300, 279, 1715, 14285, 13, 12540, 471, 5943, 477, 6056, 481, 1052, 198, 4908, 1665, 304, 279, 3645, 5300, 304, 279, 2262, 1857, 198, 2079, 4342, 627, 16647, 5276, 7800, 11304, 25, 5943, 8, 11651, 32090, 4283, 76747, 60, 55609, 198, 9140, 82, 279, 2612, 505, 279, 1646, 311, 925, 430, 198, 1820, 445, 11237, 538, 25283, 627, 10543, 82, 25, 12536, 17752, 60, 284, 364, 1342, 38071, 6, 55609, 198, 791, 58577, 955, 315, 279, 2077, 828, 6052, 505, 15233, 198, 1834, 1857, 25, 12536, 17752, 60, 284, 364, 1342, 38071, 6, 55609, 198, 791, 58577, 955, 315, 279, 1988, 828, 5946, 311, 15233 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.sagemaker_endpoint.ContentHandlerBase.html
badeff55f12e-0
langchain.llms.base.LLM¶ class langchain.llms.base.LLM(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None)[source]¶ Bases: BaseLLM LLM class that expect subclasses to implement a simpler call method. The purpose of this class is to expose a simpler interface for working with LLMs, rather than expect the user to implement the full _generate method. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None¶ param callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
[ 5317, 8995, 60098, 1026, 9105, 1236, 11237, 55609, 198, 1058, 8859, 8995, 60098, 1026, 9105, 1236, 11237, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 4178, 44, 198, 4178, 44, 538, 430, 1755, 69283, 311, 4305, 264, 35388, 1650, 1749, 627, 791, 7580, 315, 420, 538, 374, 311, 29241, 264, 35388, 3834, 369, 3318, 198, 4291, 445, 11237, 82, 11, 4856, 1109, 1755, 279, 1217, 311, 4305, 279, 2539, 721, 19927, 1749, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 5317, 8995, 72134, 9105, 13316, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 12536, 58, 33758, 53094, 58, 5317, 8995, 72134, 9105, 13316, 7646, 3126, 1145, 8859, 8995, 72134, 9105, 13316, 7646, 2087, 5163, 284, 2290, 55609, 198, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.base.LLM.html
badeff55f12e-1
Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text.
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.base.LLM.html
badeff55f12e-2
Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.base.LLM.html
48773037688a-0
langchain.llms.databricks.Databricks¶ class langchain.llms.databricks.Databricks(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, host: str = None, api_token: str = None, endpoint_name: Optional[str] = None, cluster_id: Optional[str] = None, cluster_driver_port: Optional[str] = None, model_kwargs: Optional[Dict[str, Any]] = None, transform_input_fn: Optional[Callable] = None, transform_output_fn: Optional[Callable[[...], str]] = None)[source]¶ Bases: LLM LLM wrapper around a Databricks serving endpoint or a cluster driver proxy app. It supports two endpoint types: Serving endpoint (recommended for both production and development). We assume that an LLM was registered and deployed to a serving endpoint. To wrap it as an LLM you must have “Can Query” permission to the endpoint. Set endpoint_name accordingly and do not set cluster_id and cluster_driver_port. The expected model signature is: inputs: [{"name": "prompt", "type": "string"}, {"name": "stop", "type": "list[string]"}] outputs: [{"type": "string"}] Cluster driver proxy app (recommended for interactive development). One can load an LLM on a Databricks interactive cluster and start a local HTTP server on the driver node to serve the model at / using HTTP POST method with JSON input/output. Please use a port number between [3000, 8000] and let the server listen to
[ 5317, 8995, 60098, 1026, 32112, 78889, 920, 2143, 78889, 55609, 198, 1058, 8859, 8995, 60098, 1026, 32112, 78889, 920, 2143, 78889, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3552, 25, 610, 284, 2290, 11, 6464, 6594, 25, 610, 284, 2290, 11, 15233, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 10879, 851, 25, 12536, 17752, 60, 284, 2290, 11, 10879, 21250, 8889, 25, 12536, 17752, 60, 284, 2290, 11, 1646, 37335, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 11, 5276, 6022, 15604, 25, 12536, 58, 41510, 60, 284, 2290, 11, 5276, 7800, 15604, 25, 12536, 58, 41510, 15873, 1131, 1145, 610, 5163, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 4178, 44, 13564, 2212, 264, 423, 2143, 78889, 13788, 15233, 477, 264, 10879, 5696, 13594, 917, 627, 2181, 11815, 1403, 15233, 4595, 512, 50, 20073, 15233, 320, 86447, 369, 2225, 5788, 323, 4500, 4390, 1687, 9855, 430, 459, 445, 11237, 574, 9879, 323, 27167, 311, 264, 13788, 15233, 627, 1271, 15411, 433, 439, 459, 445, 11237, 499, 2011, 617, 1054, 6854, 11615, 863, 8041, 311, 279, 15233, 627, 1681, 15233, 1292, 28178, 323, 656, 539, 743, 10879, 851, 323, 198, 19386, 21250, 8889, 627, 791, 3685, 1646, 12223, 374, 512, 25986, 512, 58, 5018, 609, 794, 330, 41681, 498, 330, 1337, 794, 330, 928, 7260, 5324, 609, 794, 330, 9684, 498, 330, 1337, 794, 330, 1638, 14359, 60, 9388, 933, 42106, 25, 62853, 1337, 794, 330, 928, 9388, 933, 29778, 5696, 13594, 917, 320, 86447, 369, 21416, 4500, 4390, 4054, 649, 2865, 459, 445, 11237, 389, 264, 423, 2143, 78889, 21416, 10879, 323, 1212, 264, 2254, 10339, 198, 4120, 389, 279, 5696, 2494, 311, 8854, 279, 1646, 520, 611, 1701, 10339, 13165, 1749, 198, 4291, 4823, 1988, 48116, 627, 5618, 1005, 264, 2700, 1396, 1990, 510, 3101, 15, 11, 220, 4728, 15, 60, 323, 1095, 279, 3622, 9020, 311 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.databricks.Databricks.html
48773037688a-1
the driver IP address or simply 0.0.0.0 instead of localhost only. To wrap it as an LLM you must have “Can Attach To” permission to the cluster. Set cluster_id and cluster_driver_port and do not set endpoint_name. The expected server schema (using JSON schema) is: inputs: {"type": "object", "properties": { "prompt": {"type": "string"}, "stop": {"type": "array", "items": {"type": "string"}}}, "required": ["prompt"]}` outputs: {"type": "string"} If the endpoint model signature is different or you want to set extra params, you can use transform_input_fn and transform_output_fn to apply necessary transformations before and after the query. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param api_token: str [Optional]¶ Databricks personal access token. If not provided, the default value is determined by the DATABRICKS_TOKEN environment variable if present, or an automatically generated temporary token if running inside a Databricks notebook attached to an interactive cluster in “single user” or “no isolation shared” mode. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param cluster_driver_port: Optional[str] = None¶ The port number used by the HTTP server running on the cluster driver node. The server should listen on the driver IP address or simply 0.0.0.0 to connect. We recommend the server using a port number between [3000, 8000]. param cluster_id: Optional[str] = None¶
[ 1820, 5696, 6933, 2686, 477, 5042, 220, 15, 13, 15, 13, 15, 13, 15, 4619, 315, 48522, 1193, 627, 1271, 15411, 433, 439, 459, 445, 11237, 499, 2011, 617, 1054, 6854, 49484, 2057, 863, 8041, 311, 279, 10879, 627, 1681, 10879, 851, 323, 10879, 21250, 8889, 323, 656, 539, 743, 15233, 1292, 627, 791, 3685, 3622, 11036, 320, 985, 4823, 11036, 8, 374, 512, 25986, 512, 5018, 1337, 794, 330, 1735, 761, 330, 13495, 794, 341, 262, 330, 41681, 794, 5324, 1337, 794, 330, 928, 7260, 262, 330, 9684, 794, 5324, 1337, 794, 330, 1686, 498, 330, 3699, 794, 5324, 1337, 794, 330, 928, 32075, 1613, 330, 6413, 794, 4482, 41681, 1365, 32357, 42106, 25, 5324, 1337, 794, 330, 928, 17122, 2746, 279, 15233, 1646, 12223, 374, 2204, 477, 499, 1390, 311, 743, 5066, 3712, 345, 9514, 649, 1005, 5276, 6022, 15604, 323, 5276, 7800, 15604, 311, 3881, 5995, 198, 4806, 811, 1603, 323, 1306, 279, 3319, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6464, 6594, 25, 610, 510, 15669, 60, 55609, 198, 35, 2143, 78889, 4443, 2680, 4037, 627, 2746, 539, 3984, 11, 279, 1670, 907, 374, 11075, 555, 198, 1820, 423, 20133, 49, 10915, 50, 19199, 4676, 3977, 422, 3118, 11, 477, 198, 276, 9651, 8066, 13643, 4037, 422, 4401, 4871, 264, 423, 2143, 78889, 198, 10179, 2239, 12673, 311, 459, 21416, 10879, 304, 1054, 15698, 1217, 863, 477, 198, 2118, 2201, 31398, 6222, 863, 3941, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 10879, 21250, 8889, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 791, 2700, 1396, 1511, 555, 279, 10339, 3622, 4401, 389, 279, 10879, 5696, 2494, 627, 791, 3622, 1288, 9020, 389, 279, 5696, 6933, 2686, 477, 5042, 220, 15, 13, 15, 13, 15, 13, 15, 311, 4667, 627, 1687, 7079, 279, 3622, 1701, 264, 2700, 1396, 1990, 510, 3101, 15, 11, 220, 4728, 15, 27218, 913, 10879, 851, 25, 12536, 17752, 60, 284, 2290, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.databricks.Databricks.html
48773037688a-2
param cluster_id: Optional[str] = None¶ ID of the cluster if connecting to a cluster driver proxy app. If neither endpoint_name nor cluster_id is not provided and the code runs inside a Databricks notebook attached to an interactive cluster in “single user” or “no isolation shared” mode, the current cluster ID is used as default. You must not set both endpoint_name and cluster_id. param endpoint_name: Optional[str] = None¶ Name of the model serving endpont. You must specify the endpoint name to connect to a model serving endpoint. You must not set both endpoint_name and cluster_id. param host: str [Optional]¶ Databricks workspace hostname. If not provided, the default value is determined by the DATABRICKS_HOST environment variable if present, or the hostname of the current Databricks workspace if running inside a Databricks notebook attached to an interactive cluster in “single user” or “no isolation shared” mode. param model_kwargs: Optional[Dict[str, Any]] = None¶ Extra parameters to pass to the endpoint. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param transform_input_fn: Optional[Callable] = None¶ A function that transforms {prompt, stop, **kwargs} into a JSON-compatible request object that the endpoint accepts. For example, you can apply a prompt template to the input prompt. param transform_output_fn: Optional[Callable[[...], str]] = None¶ A function that transforms the output from the endpoint to the generated text. param verbose: bool [Optional]¶ Whether to print out response text.
[ 913, 10879, 851, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 926, 315, 279, 10879, 422, 21583, 311, 264, 10879, 5696, 13594, 917, 627, 2746, 14188, 15233, 1292, 6463, 10879, 851, 374, 539, 3984, 323, 279, 2082, 8640, 198, 42450, 264, 423, 2143, 78889, 38266, 12673, 311, 459, 21416, 10879, 304, 1054, 15698, 1217, 89874, 269, 1054, 2201, 31398, 6222, 863, 3941, 11, 279, 1510, 10879, 3110, 374, 1511, 439, 1670, 627, 2675, 2011, 539, 743, 2225, 15233, 1292, 323, 10879, 851, 627, 913, 15233, 1292, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 678, 315, 279, 1646, 13788, 842, 79, 546, 627, 2675, 2011, 14158, 279, 15233, 836, 311, 4667, 311, 264, 1646, 13788, 15233, 627, 2675, 2011, 539, 743, 2225, 15233, 1292, 323, 10879, 851, 627, 913, 3552, 25, 610, 510, 15669, 60, 55609, 198, 35, 2143, 78889, 28614, 29215, 627, 2746, 539, 3984, 11, 279, 1670, 907, 374, 11075, 555, 198, 1820, 423, 20133, 49, 10915, 50, 17656, 4676, 3977, 422, 3118, 11, 477, 198, 1820, 29215, 315, 279, 1510, 423, 2143, 78889, 28614, 422, 4401, 4871, 198, 64, 423, 2143, 78889, 38266, 12673, 311, 459, 21416, 10879, 304, 1054, 15698, 1217, 89874, 269, 1054, 2201, 31398, 6222, 863, 3941, 627, 913, 1646, 37335, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 55609, 198, 11873, 5137, 311, 1522, 311, 279, 15233, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 5276, 6022, 15604, 25, 12536, 58, 41510, 60, 284, 2290, 55609, 198, 32, 734, 430, 29575, 314, 41681, 11, 3009, 11, 3146, 9872, 92, 1139, 264, 4823, 81315, 198, 2079, 1665, 430, 279, 15233, 27441, 627, 2520, 3187, 11, 499, 649, 3881, 264, 10137, 3896, 311, 279, 1988, 10137, 627, 913, 5276, 7800, 15604, 25, 12536, 58, 41510, 15873, 1131, 1145, 610, 5163, 284, 2290, 55609, 198, 32, 734, 430, 29575, 279, 2612, 505, 279, 15233, 311, 279, 8066, 1495, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.databricks.Databricks.html
48773037688a-3
param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
[ 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.databricks.Databricks.html
48773037688a-4
Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_cluster_driver_port  »  cluster_driver_port[source]¶ validator set_cluster_id  »  cluster_id[source]¶ validator set_model_kwargs  »  model_kwargs[source]¶ validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 29541, 21250, 8889, 4194, 8345, 4194, 10879, 21250, 8889, 76747, 60, 55609, 198, 16503, 743, 29541, 851, 4194, 8345, 4194, 10879, 851, 76747, 60, 55609, 198, 16503, 743, 5156, 37335, 4194, 8345, 4194, 1646, 37335, 76747, 60, 55609, 198, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.databricks.Databricks.html
48773037688a-5
to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object extra = 'forbid'¶ underscore_attrs_are_private = True¶
[ 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 15824, 284, 364, 2000, 21301, 6, 55609, 198, 55033, 40678, 57955, 27345, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.databricks.Databricks.html
d0069712e7c7-0
langchain.llms.openllm.IdentifyingParams¶ class langchain.llms.openllm.IdentifyingParams[source]¶ Bases: TypedDict Methods __init__(*args, **kwargs) clear() copy() fromkeys([value]) Create a new dictionary with keys from iterable and values set to value. get(key[, default]) Return the value for key if key is in the dictionary, else default. items() keys() pop(k[,d]) If the key is not found, return the default if given; otherwise, raise a KeyError. popitem() Remove and return a (key, value) pair as a 2-tuple. setdefault(key[, default]) Insert key with a value of default if key is not in the dictionary. update([E, ]**F) If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] values() Attributes model_name model_id server_url server_type embedded llm_kwargs clear() → None.  Remove all items from D.¶ copy() → a shallow copy of D¶ fromkeys(value=None, /)¶ Create a new dictionary with keys from iterable and values set to value. get(key, default=None, /)¶ Return the value for key if key is in the dictionary, else default. items() → a set-like object providing a view on D's items¶ keys() → a set-like object providing a view on D's keys¶
[ 5317, 8995, 60098, 1026, 5949, 657, 76, 6580, 306, 7922, 4975, 55609, 198, 1058, 8859, 8995, 60098, 1026, 5949, 657, 76, 6580, 306, 7922, 4975, 76747, 60, 55609, 198, 33, 2315, 25, 51654, 13755, 198, 18337, 198, 565, 2381, 69106, 2164, 11, 4194, 334, 9872, 340, 7574, 746, 8728, 746, 1527, 10786, 2625, 970, 2608, 4110, 264, 502, 11240, 449, 7039, 505, 51934, 323, 2819, 743, 311, 907, 627, 456, 4962, 38372, 4194, 2309, 2608, 5715, 279, 907, 369, 1401, 422, 1401, 374, 304, 279, 11240, 11, 775, 1670, 627, 3699, 746, 10786, 746, 8539, 6097, 38372, 67, 2608, 2746, 279, 1401, 374, 539, 1766, 11, 471, 279, 1670, 422, 2728, 26, 6062, 11, 4933, 264, 39194, 627, 8539, 1224, 746, 13319, 323, 471, 264, 320, 798, 11, 907, 8, 6857, 439, 264, 220, 17, 2442, 6189, 627, 751, 2309, 4962, 38372, 4194, 2309, 2608, 14099, 1401, 449, 264, 907, 315, 1670, 422, 1401, 374, 539, 304, 279, 11240, 627, 2443, 2625, 36, 11, 4194, 79441, 37, 340, 2746, 469, 374, 3118, 323, 706, 264, 662, 10786, 368, 1749, 11, 1243, 1587, 25, 220, 369, 597, 304, 469, 25, 423, 6874, 60, 284, 469, 6874, 60, 1442, 469, 374, 3118, 323, 37856, 264, 662, 10786, 368, 1749, 11, 1243, 1587, 25, 220, 369, 597, 11, 348, 304, 469, 25, 423, 6874, 60, 284, 348, 763, 3060, 1162, 11, 420, 374, 8272, 555, 25, 369, 597, 304, 435, 25, 220, 423, 6874, 60, 284, 435, 6874, 933, 3745, 746, 10738, 198, 2590, 1292, 198, 2590, 851, 198, 4120, 2975, 198, 4120, 1857, 198, 70964, 198, 657, 76, 37335, 198, 7574, 368, 11651, 2290, 13, 4194, 11016, 682, 3673, 505, 423, 13, 55609, 198, 8728, 368, 11651, 264, 26682, 3048, 315, 423, 55609, 198, 1527, 10786, 3764, 5980, 11, 611, 8, 55609, 198, 4110, 264, 502, 11240, 449, 7039, 505, 51934, 323, 2819, 743, 311, 907, 627, 456, 4962, 11, 1670, 5980, 11, 611, 8, 55609, 198, 5715, 279, 907, 369, 1401, 422, 1401, 374, 304, 279, 11240, 11, 775, 1670, 627, 3699, 368, 11651, 264, 743, 12970, 1665, 8405, 264, 1684, 389, 423, 596, 3673, 55609, 198, 10786, 368, 11651, 264, 743, 12970, 1665, 8405, 264, 1684, 389, 423, 596, 7039, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openllm.IdentifyingParams.html
d0069712e7c7-1
keys() → a set-like object providing a view on D's keys¶ pop(k[, d]) → v, remove specified key and return the corresponding value.¶ If the key is not found, return the default if given; otherwise, raise a KeyError. popitem()¶ Remove and return a (key, value) pair as a 2-tuple. Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty. setdefault(key, default=None, /)¶ Insert key with a value of default if key is not in the dictionary. Return the value for key if key is in the dictionary, else default. update([E, ]**F) → None.  Update D from dict/iterable E and F.¶ If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] values() → an object providing a view on D's values¶ embedded: bool¶ llm_kwargs: Dict[str, Any]¶ model_id: Optional[str]¶ model_name: str¶ server_type: Optional[Literal['http', 'grpc']]¶ server_url: Optional[str]¶
[ 10786, 368, 11651, 264, 743, 12970, 1665, 8405, 264, 1684, 389, 423, 596, 7039, 55609, 198, 8539, 6097, 38372, 294, 2526, 11651, 348, 11, 4148, 5300, 1401, 323, 471, 279, 12435, 907, 13, 55609, 198, 2746, 279, 1401, 374, 539, 1766, 11, 471, 279, 1670, 422, 2728, 26, 6062, 345, 19223, 264, 39194, 627, 8539, 1224, 368, 55609, 198, 13319, 323, 471, 264, 320, 798, 11, 907, 8, 6857, 439, 264, 220, 17, 2442, 6189, 627, 55328, 527, 6052, 304, 445, 27088, 320, 4354, 3502, 11, 1176, 9994, 8, 2015, 627, 36120, 39194, 422, 279, 6587, 374, 4384, 627, 751, 2309, 4962, 11, 1670, 5980, 11, 611, 8, 55609, 198, 14099, 1401, 449, 264, 907, 315, 1670, 422, 1401, 374, 539, 304, 279, 11240, 627, 5715, 279, 907, 369, 1401, 422, 1401, 374, 304, 279, 11240, 11, 775, 1670, 627, 2443, 2625, 36, 11, 2331, 334, 37, 8, 11651, 2290, 13, 4194, 5666, 423, 505, 6587, 14, 2058, 481, 469, 323, 435, 13, 55609, 198, 2746, 469, 374, 3118, 323, 706, 264, 662, 10786, 368, 1749, 11, 1243, 1587, 25, 220, 369, 597, 304, 469, 25, 423, 6874, 60, 284, 469, 6874, 933, 2746, 469, 374, 3118, 323, 37856, 264, 662, 10786, 368, 1749, 11, 1243, 1587, 25, 220, 369, 597, 11, 348, 304, 469, 25, 423, 6874, 60, 284, 348, 198, 644, 3060, 1162, 11, 420, 374, 8272, 555, 25, 369, 597, 304, 435, 25, 220, 423, 6874, 60, 284, 435, 6874, 933, 3745, 368, 11651, 459, 1665, 8405, 264, 1684, 389, 423, 596, 2819, 55609, 198, 70964, 25, 1845, 55609, 198, 657, 76, 37335, 25, 30226, 17752, 11, 5884, 60, 55609, 198, 2590, 851, 25, 12536, 17752, 60, 55609, 198, 2590, 1292, 25, 610, 55609, 198, 4120, 1857, 25, 12536, 58, 17802, 681, 1277, 518, 364, 57685, 31940, 55609, 198, 4120, 2975, 25, 12536, 17752, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openllm.IdentifyingParams.html
f74b9a11afa7-0
langchain.llms.gpt4all.GPT4All¶ class langchain.llms.gpt4all.GPT4All(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, model: str, backend: Optional[str] = None, n_ctx: int = 512, n_parts: int = - 1, seed: int = 0, f16_kv: bool = False, logits_all: bool = False, vocab_only: bool = False, use_mlock: bool = False, embedding: bool = False, n_threads: Optional[int] = 4, n_predict: Optional[int] = 256, temp: Optional[float] = 0.8, top_p: Optional[float] = 0.95, top_k: Optional[int] = 40, echo: Optional[bool] = False, stop: Optional[List[str]] = [], repeat_last_n: Optional[int] = 64, repeat_penalty: Optional[float] = 1.3, n_batch: int = 1, streaming: bool = False, context_erase: float = 0.5, allow_download: bool = False, client: Any = None)[source]¶ Bases: LLM Wrapper around GPT4All language models. To use, you should have the gpt4all python package installed, the pre-trained model file, and the model’s config information. Example from langchain.llms import GPT4All model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8) # Simplest invocation response = model("Once upon a time, ")
[ 5317, 8995, 60098, 1026, 1326, 418, 19, 543, 1246, 2898, 19, 2460, 55609, 198, 1058, 8859, 8995, 60098, 1026, 1326, 418, 19, 543, 1246, 2898, 19, 2460, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 1646, 25, 610, 11, 19713, 25, 12536, 17752, 60, 284, 2290, 11, 308, 15498, 25, 528, 284, 220, 8358, 11, 308, 34317, 25, 528, 284, 482, 220, 16, 11, 10533, 25, 528, 284, 220, 15, 11, 282, 845, 98166, 25, 1845, 284, 3641, 11, 61888, 5823, 25, 1845, 284, 3641, 11, 24757, 18917, 25, 1845, 284, 3641, 11, 1005, 722, 1039, 25, 1845, 284, 3641, 11, 40188, 25, 1845, 284, 3641, 11, 308, 30825, 25, 12536, 19155, 60, 284, 220, 19, 11, 308, 27913, 25, 12536, 19155, 60, 284, 220, 4146, 11, 2798, 25, 12536, 96481, 60, 284, 220, 15, 13, 23, 11, 1948, 623, 25, 12536, 96481, 60, 284, 220, 15, 13, 2721, 11, 1948, 4803, 25, 12536, 19155, 60, 284, 220, 1272, 11, 1722, 25, 12536, 58, 2707, 60, 284, 3641, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 10277, 13454, 12473, 1107, 25, 12536, 19155, 60, 284, 220, 1227, 11, 13454, 83386, 25, 12536, 96481, 60, 284, 220, 16, 13, 18, 11, 308, 14876, 25, 528, 284, 220, 16, 11, 17265, 25, 1845, 284, 3641, 11, 2317, 86616, 25, 2273, 284, 220, 15, 13, 20, 11, 2187, 37039, 25, 1845, 284, 3641, 11, 3016, 25, 5884, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 480, 2898, 19, 2460, 4221, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 342, 418, 19, 543, 10344, 6462, 10487, 11, 279, 198, 1762, 70024, 1646, 1052, 11, 323, 279, 1646, 753, 2242, 2038, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 480, 2898, 19, 2460, 198, 2590, 284, 480, 2898, 19, 2460, 7790, 27518, 6644, 4951, 418, 19, 543, 29344, 30494, 498, 308, 15498, 28, 8358, 11, 308, 30825, 28, 23, 340, 2, 9170, 267, 29796, 198, 2376, 284, 1646, 446, 12805, 5304, 264, 892, 11, 12590 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.gpt4all.GPT4All.html
f74b9a11afa7-1
# Simplest invocation response = model("Once upon a time, ") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param allow_download: bool = False¶ If model does not exist in ~/.cache/gpt4all/, download it. param backend: Optional[str] = None¶ param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param context_erase: float = 0.5¶ Leave (n_ctx * context_erase) tokens starting from beginning if the context has run out. param echo: Optional[bool] = False¶ Whether to echo the prompt. param embedding: bool = False¶ Use embedding mode only. param f16_kv: bool = False¶ Use half-precision for key/value cache. param logits_all: bool = False¶ Return logits for all tokens, not just the last token. param model: str [Required]¶ Path to the pre-trained GPT4All model file. param n_batch: int = 1¶ Batch size for prompt processing. param n_ctx: int = 512¶ Token context window. param n_parts: int = -1¶ Number of parts to split the model into. If -1, the number of parts is automatically determined. param n_predict: Optional[int] = 256¶ The maximum number of tokens to generate. param n_threads: Optional[int] = 4¶ Number of threads to use. param repeat_last_n: Optional[int] = 64¶ Last n tokens to penalize param repeat_penalty: Optional[float] = 1.3¶ The penalty to apply to repeated tokens.
[ 2, 9170, 267, 29796, 198, 2376, 284, 1646, 446, 12805, 5304, 264, 892, 11, 14501, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 2187, 37039, 25, 1845, 284, 3641, 55609, 198, 2746, 1646, 1587, 539, 3073, 304, 41058, 9544, 4951, 418, 19, 543, 35645, 4232, 433, 627, 913, 19713, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 2317, 86616, 25, 2273, 284, 220, 15, 13, 20, 55609, 198, 22586, 320, 77, 15498, 353, 2317, 86616, 8, 11460, 198, 40389, 505, 7314, 422, 279, 2317, 706, 1629, 704, 627, 913, 1722, 25, 12536, 58, 2707, 60, 284, 3641, 55609, 198, 25729, 311, 1722, 279, 10137, 627, 913, 40188, 25, 1845, 284, 3641, 55609, 198, 10464, 40188, 3941, 1193, 627, 913, 282, 845, 98166, 25, 1845, 284, 3641, 55609, 198, 10464, 4376, 12, 28281, 369, 1401, 58642, 6636, 627, 913, 61888, 5823, 25, 1845, 284, 3641, 55609, 198, 5715, 61888, 369, 682, 11460, 11, 539, 1120, 279, 1566, 4037, 627, 913, 1646, 25, 610, 510, 8327, 60, 55609, 198, 1858, 311, 279, 864, 70024, 480, 2898, 19, 2460, 1646, 1052, 627, 913, 308, 14876, 25, 528, 284, 220, 16, 55609, 198, 21753, 1404, 369, 10137, 8863, 627, 913, 308, 15498, 25, 528, 284, 220, 8358, 55609, 198, 3404, 2317, 3321, 627, 913, 308, 34317, 25, 528, 284, 482, 16, 55609, 198, 2903, 315, 5596, 311, 6859, 279, 1646, 1139, 627, 2746, 482, 16, 11, 279, 1396, 315, 5596, 374, 9651, 11075, 627, 913, 308, 27913, 25, 12536, 19155, 60, 284, 220, 4146, 55609, 198, 791, 7340, 1396, 315, 11460, 311, 7068, 627, 913, 308, 30825, 25, 12536, 19155, 60, 284, 220, 19, 55609, 198, 2903, 315, 14906, 311, 1005, 627, 913, 13454, 12473, 1107, 25, 12536, 19155, 60, 284, 220, 1227, 55609, 198, 5966, 308, 11460, 311, 47426, 553, 198, 913, 13454, 83386, 25, 12536, 96481, 60, 284, 220, 16, 13, 18, 55609, 198, 791, 16750, 311, 3881, 311, 11763, 11460, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.gpt4all.GPT4All.html
f74b9a11afa7-2
The penalty to apply to repeated tokens. param seed: int = 0¶ Seed. If -1, a random seed is used. param stop: Optional[List[str]] = []¶ A list of strings to stop generation when encountered. param streaming: bool = False¶ Whether to stream the results or not. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temp: Optional[float] = 0.8¶ The temperature to use for sampling. param top_k: Optional[int] = 40¶ The top-k value to use for sampling. param top_p: Optional[float] = 0.95¶ The top-p value to use for sampling. param use_mlock: bool = False¶ Force system to keep model in RAM. param verbose: bool [Optional]¶ Whether to print out response text. param vocab_only: bool = False¶ Only load the vocabulary, no weights. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶
[ 791, 16750, 311, 3881, 311, 11763, 11460, 627, 913, 10533, 25, 528, 284, 220, 15, 55609, 198, 42571, 13, 1442, 482, 16, 11, 264, 4288, 10533, 374, 1511, 627, 913, 3009, 25, 12536, 53094, 17752, 5163, 284, 3132, 55609, 198, 32, 1160, 315, 9246, 311, 3009, 9659, 994, 23926, 627, 913, 17265, 25, 1845, 284, 3641, 55609, 198, 25729, 311, 4365, 279, 3135, 477, 539, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 2798, 25, 12536, 96481, 60, 284, 220, 15, 13, 23, 55609, 198, 791, 9499, 311, 1005, 369, 25936, 627, 913, 1948, 4803, 25, 12536, 19155, 60, 284, 220, 1272, 55609, 198, 791, 1948, 12934, 907, 311, 1005, 369, 25936, 627, 913, 1948, 623, 25, 12536, 96481, 60, 284, 220, 15, 13, 2721, 55609, 198, 791, 1948, 2320, 907, 311, 1005, 369, 25936, 627, 913, 1005, 722, 1039, 25, 1845, 284, 3641, 55609, 198, 19085, 1887, 311, 2567, 1646, 304, 22813, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 913, 24757, 18917, 25, 1845, 284, 3641, 55609, 198, 7456, 2865, 279, 36018, 11, 912, 14661, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.gpt4all.GPT4All.html
f74b9a11afa7-3
Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶
[ 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.gpt4all.GPT4All.html
f74b9a11afa7-4
Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that the python package exists in the environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 279, 10344, 6462, 6866, 304, 279, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.gpt4all.GPT4All.html
faa73cc1156f-0
langchain.llms.azureml_endpoint.AzureMLOnlineEndpoint¶ class langchain.llms.azureml_endpoint.AzureMLOnlineEndpoint(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, endpoint_url: str = '', endpoint_api_key: str = '', deployment_name: str = '', http_client: Any = None, content_formatter: Any = None, model_kwargs: Optional[dict] = None)[source]¶ Bases: LLM, BaseModel Wrapper around Azure ML Hosted models using Managed Online Endpoints. Example azure_llm = AzureMLModel( endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score", endpoint_api_key="my-api-key", deployment_name="my-deployment-name", content_formatter=content_formatter, ) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param content_formatter: Any = None¶ The content formatter that provides an input and output transform function to handle formats between the LLM and the endpoint param deployment_name: str = ''¶ Deployment Name for Endpoint. Should be passed to constructor or specified as env var AZUREML_DEPLOYMENT_NAME. param endpoint_api_key: str = ''¶ Authentication Key for Endpoint. Should be passed to constructor or specified as env var AZUREML_ENDPOINT_API_KEY. param endpoint_url: str = ''¶
[ 5317, 8995, 60098, 1026, 71340, 1029, 37799, 58927, 44, 1623, 77, 1074, 28480, 55609, 198, 1058, 8859, 8995, 60098, 1026, 71340, 1029, 37799, 58927, 44, 1623, 77, 1074, 28480, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 15233, 2975, 25, 610, 284, 9158, 15233, 11959, 3173, 25, 610, 284, 9158, 24047, 1292, 25, 610, 284, 9158, 1795, 8342, 25, 5884, 284, 2290, 11, 2262, 75065, 25, 5884, 284, 2290, 11, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 11, 65705, 198, 11803, 2212, 35219, 20187, 16492, 291, 4211, 1701, 61844, 8267, 4060, 7862, 627, 13617, 198, 40595, 44095, 76, 284, 35219, 2735, 1747, 1021, 262, 15233, 2975, 429, 2485, 1129, 27, 22479, 13368, 2837, 14611, 27, 22479, 21276, 14611, 258, 2251, 58509, 71340, 916, 2754, 2202, 761, 262, 15233, 11959, 3173, 429, 2465, 24851, 16569, 761, 262, 24047, 1292, 429, 2465, 6953, 53899, 11753, 761, 262, 2262, 75065, 28, 1834, 75065, 345, 340, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 2262, 75065, 25, 5884, 284, 2290, 55609, 198, 791, 2262, 25851, 430, 5825, 459, 1988, 323, 2612, 198, 4806, 734, 311, 3790, 20447, 1990, 279, 445, 11237, 323, 198, 1820, 15233, 198, 913, 24047, 1292, 25, 610, 284, 3436, 55609, 198, 76386, 4076, 369, 48369, 13, 12540, 387, 5946, 311, 4797, 477, 5300, 439, 198, 3239, 767, 31976, 4622, 2735, 2952, 72924, 5441, 4813, 627, 913, 15233, 11959, 3173, 25, 610, 284, 3436, 55609, 198, 19855, 5422, 369, 48369, 13, 12540, 387, 5946, 311, 4797, 477, 5300, 439, 198, 3239, 767, 31976, 4622, 2735, 49856, 11669, 6738, 627, 913, 15233, 2975, 25, 610, 284, 3436, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.azureml_endpoint.AzureMLOnlineEndpoint.html
faa73cc1156f-1
env var AZUREML_ENDPOINT_API_KEY. param endpoint_url: str = ''¶ URL of pre-existing Endpoint. Should be passed to constructor or specified as env var AZUREML_ENDPOINT_URL. param model_kwargs: Optional[dict] = None¶ Key word arguments to pass to the model. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM.
[ 3239, 767, 31976, 4622, 2735, 49856, 11669, 6738, 627, 913, 15233, 2975, 25, 610, 284, 3436, 55609, 198, 3222, 315, 864, 50457, 48369, 13, 12540, 387, 5946, 311, 4797, 477, 5300, 439, 198, 3239, 767, 31976, 4622, 2735, 49856, 8159, 627, 913, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 55609, 198, 1622, 3492, 6105, 311, 1522, 311, 279, 1646, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.azureml_endpoint.AzureMLOnlineEndpoint.html
faa73cc1156f-2
dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting.
[ 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.azureml_endpoint.AzureMLOnlineEndpoint.html
faa73cc1156f-3
This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_client  »  http_client[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 8342, 4194, 8345, 4194, 1795, 8342, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.azureml_endpoint.AzureMLOnlineEndpoint.html
182132f70ebe-0
langchain.llms.huggingface_endpoint.HuggingFaceEndpoint¶ class langchain.llms.huggingface_endpoint.HuggingFaceEndpoint(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, endpoint_url: str = '', task: Optional[str] = None, model_kwargs: Optional[dict] = None, huggingfacehub_api_token: Optional[str] = None)[source]¶ Bases: LLM Wrapper around HuggingFaceHub Inference Endpoints. To use, you should have the huggingface_hub python package installed, and the environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or pass it as a named parameter to the constructor. Only supports text-generation and text2text-generation for now. Example from langchain.llms import HuggingFaceEndpoint endpoint_url = ( "https://abcdefghijklmnop.us-east-1.aws.endpoints.huggingface.cloud" ) hf = HuggingFaceEndpoint( endpoint_url=endpoint_url, huggingfacehub_api_token="my-api-key" ) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param endpoint_url: str = ''¶ Endpoint URL to use. param huggingfacehub_api_token: Optional[str] = None¶ param model_kwargs: Optional[dict] = None¶ Key word arguments to pass to the model.
[ 5317, 8995, 60098, 1026, 870, 36368, 1594, 37799, 3924, 36368, 16680, 28480, 55609, 198, 1058, 8859, 8995, 60098, 1026, 870, 36368, 1594, 37799, 3924, 36368, 16680, 28480, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 15233, 2975, 25, 610, 284, 9158, 3465, 25, 12536, 17752, 60, 284, 2290, 11, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 11, 305, 36368, 1594, 27780, 11959, 6594, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 473, 36368, 16680, 19876, 763, 2251, 4060, 7862, 627, 1271, 1005, 11, 499, 1288, 617, 279, 305, 36368, 1594, 95096, 10344, 6462, 10487, 11, 323, 279, 198, 24175, 3977, 473, 3014, 50537, 20342, 39, 4594, 11669, 19199, 743, 449, 701, 5446, 4037, 11, 477, 1522, 198, 275, 439, 264, 7086, 5852, 311, 279, 4797, 627, 7456, 11815, 1495, 43927, 323, 1495, 17, 1342, 43927, 369, 1457, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 473, 36368, 16680, 28480, 198, 33640, 2975, 284, 2456, 262, 330, 2485, 1129, 66202, 22680, 40607, 12, 16, 36266, 5183, 7862, 870, 36368, 1594, 17365, 702, 340, 45854, 284, 473, 36368, 16680, 28480, 1021, 262, 15233, 2975, 28, 33640, 2975, 345, 262, 305, 36368, 1594, 27780, 11959, 6594, 429, 2465, 24851, 16569, 702, 340, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 15233, 2975, 25, 610, 284, 3436, 55609, 198, 28480, 5665, 311, 1005, 627, 913, 305, 36368, 1594, 27780, 11959, 6594, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 55609, 198, 1622, 3492, 6105, 311, 1522, 311, 279, 1646, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.huggingface_endpoint.HuggingFaceEndpoint.html
182132f70ebe-1
Key word arguments to pass to the model. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param task: Optional[str] = None¶ Task to call the model with. Should be a task that returns generated_text or summary_text. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM.
[ 1622, 3492, 6105, 311, 1522, 311, 279, 1646, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 3465, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 6396, 311, 1650, 279, 1646, 449, 627, 15346, 387, 264, 3465, 430, 4780, 8066, 4424, 477, 12399, 4424, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.huggingface_endpoint.HuggingFaceEndpoint.html
182132f70ebe-2
dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting.
[ 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.huggingface_endpoint.HuggingFaceEndpoint.html
182132f70ebe-3
This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.huggingface_endpoint.HuggingFaceEndpoint.html
c0ee403bcdb0-0
langchain.llms.manifest.ManifestWrapper¶ class langchain.llms.manifest.ManifestWrapper(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: Any = None, llm_kwargs: Optional[Dict] = None)[source]¶ Bases: LLM Wrapper around HazyResearch’s Manifest library. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param llm_kwargs: Optional[Dict] = None¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
[ 5317, 8995, 60098, 1026, 21697, 7107, 73372, 11803, 55609, 198, 1058, 8859, 8995, 60098, 1026, 21697, 7107, 73372, 11803, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 5884, 284, 2290, 11, 9507, 76, 37335, 25, 12536, 58, 13755, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 473, 13933, 28528, 753, 40461, 6875, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 9507, 76, 37335, 25, 12536, 58, 13755, 60, 284, 2290, 55609, 198, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.manifest.ManifestWrapper.html
c0ee403bcdb0-1
Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text.
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.manifest.ManifestWrapper.html
c0ee403bcdb0-2
Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.manifest.ManifestWrapper.html
4da9d9bd15eb-0
langchain.llms.aviary.get_completions¶ langchain.llms.aviary.get_completions(model: str, prompt: str, use_prompt_format: bool = True, version: str = '') → Dict[str, Union[str, float, int]][source]¶ Get completions from Aviary models.
[ 5317, 8995, 60098, 1026, 85652, 661, 673, 3038, 11053, 919, 55609, 198, 5317, 8995, 60098, 1026, 85652, 661, 673, 3038, 11053, 919, 7790, 25, 610, 11, 10137, 25, 610, 11, 1005, 62521, 9132, 25, 1845, 284, 3082, 11, 2373, 25, 610, 284, 13760, 11651, 30226, 17752, 11, 9323, 17752, 11, 2273, 11, 528, 28819, 2484, 60, 55609, 198, 1991, 3543, 919, 505, 7671, 72, 661, 4211, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.aviary.get_completions.html
1de06fa18214-0
langchain.llms.databricks.get_default_api_token¶ langchain.llms.databricks.get_default_api_token() → str[source]¶ Gets the default Databricks personal access token. Raises an error if the token cannot be automatically determined.
[ 5317, 8995, 60098, 1026, 32112, 78889, 673, 10198, 11959, 6594, 55609, 198, 5317, 8995, 60098, 1026, 32112, 78889, 673, 10198, 11959, 6594, 368, 11651, 610, 76747, 60, 55609, 198, 50458, 279, 1670, 423, 2143, 78889, 4443, 2680, 4037, 627, 36120, 459, 1493, 422, 279, 4037, 4250, 387, 9651, 11075, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.databricks.get_default_api_token.html
2b233b7257e7-0
langchain.llms.sagemaker_endpoint.SagemakerEndpoint¶ class langchain.llms.sagemaker_endpoint.SagemakerEndpoint(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: Any = None, endpoint_name: str = '', region_name: str = '', credentials_profile_name: Optional[str] = None, content_handler: LLMContentHandler, model_kwargs: Optional[Dict] = None, endpoint_kwargs: Optional[Dict] = None)[source]¶ Bases: LLM Wrapper around custom Sagemaker Inference Endpoints. To use, you must supply the endpoint name from your deployed Sagemaker model & the region where it is deployed. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Sagemaker endpoint. See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param content_handler: langchain.llms.sagemaker_endpoint.LLMContentHandler [Required]¶ The content handler class that provides an input and
[ 5317, 8995, 60098, 1026, 516, 15003, 4506, 37799, 815, 15003, 4506, 28480, 55609, 198, 1058, 8859, 8995, 60098, 1026, 516, 15003, 4506, 37799, 815, 15003, 4506, 28480, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 5884, 284, 2290, 11, 15233, 1292, 25, 610, 284, 9158, 5654, 1292, 25, 610, 284, 9158, 16792, 14108, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 2262, 10393, 25, 445, 11237, 2831, 3126, 11, 1646, 37335, 25, 12536, 58, 13755, 60, 284, 2290, 11, 15233, 37335, 25, 12536, 58, 13755, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 2587, 328, 15003, 4506, 763, 2251, 4060, 7862, 627, 1271, 1005, 11, 499, 2011, 8312, 279, 15233, 836, 505, 701, 27167, 198, 50, 15003, 4506, 1646, 612, 279, 5654, 1405, 433, 374, 27167, 627, 1271, 34289, 11, 279, 24124, 3016, 5829, 279, 2768, 5528, 311, 198, 28172, 7167, 2865, 16792, 512, 2485, 1129, 65, 2117, 18, 29871, 916, 5574, 16, 86686, 10729, 34249, 4951, 35805, 14, 33453, 2628, 198, 2746, 264, 3230, 41307, 5643, 1288, 387, 1511, 11, 499, 2011, 1522, 198, 1820, 836, 315, 279, 5643, 505, 279, 41058, 8805, 14, 33453, 1052, 430, 374, 311, 387, 1511, 627, 8238, 2771, 279, 16792, 611, 13073, 1511, 617, 279, 2631, 10396, 311, 198, 5323, 279, 328, 15003, 4506, 15233, 627, 10031, 25, 3788, 1129, 14452, 36266, 18771, 916, 39251, 1428, 34249, 34611, 42110, 73456, 623, 43138, 2628, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 2262, 10393, 25, 8859, 8995, 60098, 1026, 516, 15003, 4506, 37799, 1236, 11237, 2831, 3126, 510, 8327, 60, 55609, 198, 791, 2262, 7158, 538, 430, 5825, 459, 1988, 323 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.sagemaker_endpoint.SagemakerEndpoint.html
2b233b7257e7-1
The content handler class that provides an input and output transform functions to handle formats between LLM and the endpoint. param credentials_profile_name: Optional[str] = None¶ The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html param endpoint_kwargs: Optional[Dict] = None¶ Optional attributes passed to the invoke_endpoint function. See `boto3`_. docs for more info. .. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html> param endpoint_name: str = ''¶ The name of the endpoint from the deployed Sagemaker model. Must be unique within an AWS Region. param model_kwargs: Optional[Dict] = None¶ Key word arguments to pass to the model. param region_name: str = ''¶ The aws region where the Sagemaker model is deployed, eg. us-west-2. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input.
[ 791, 2262, 7158, 538, 430, 5825, 459, 1988, 323, 198, 3081, 5276, 5865, 311, 3790, 20447, 1990, 445, 11237, 198, 438, 279, 15233, 627, 913, 16792, 14108, 1292, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 791, 836, 315, 279, 5643, 304, 279, 41058, 8805, 14, 33453, 477, 41058, 8805, 15072, 3626, 11, 902, 198, 4752, 3060, 2680, 7039, 477, 3560, 2038, 5300, 627, 2746, 539, 5300, 11, 279, 1670, 41307, 5643, 477, 11, 422, 389, 459, 21283, 17, 2937, 345, 33453, 505, 6654, 6061, 690, 387, 1511, 627, 10031, 25, 3788, 1129, 65, 2117, 18, 29871, 916, 5574, 16, 86686, 10729, 34249, 4951, 35805, 14, 33453, 2628, 198, 913, 15233, 37335, 25, 12536, 58, 13755, 60, 284, 2290, 55609, 198, 15669, 8365, 5946, 311, 279, 20466, 37799, 198, 1723, 13, 3580, 1595, 65, 2117, 18, 63, 5056, 27437, 369, 810, 3630, 627, 497, 721, 65, 2117, 18, 25, 366, 2485, 1129, 65, 2117, 18, 29871, 916, 5574, 16, 86686, 10729, 34249, 9199, 2628, 397, 913, 15233, 1292, 25, 610, 284, 3436, 55609, 198, 791, 836, 315, 279, 15233, 505, 279, 27167, 328, 15003, 4506, 1646, 627, 32876, 387, 5016, 2949, 459, 24124, 17593, 627, 913, 1646, 37335, 25, 12536, 58, 13755, 60, 284, 2290, 55609, 198, 1622, 3492, 6105, 311, 1522, 311, 279, 1646, 627, 913, 5654, 1292, 25, 610, 284, 3436, 55609, 198, 791, 32621, 5654, 1405, 279, 328, 15003, 4506, 1646, 374, 27167, 11, 8866, 13, 603, 38702, 12, 17, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.sagemaker_endpoint.SagemakerEndpoint.html
2b233b7257e7-2
Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶
[ 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.sagemaker_endpoint.SagemakerEndpoint.html
2b233b7257e7-3
get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that AWS credentials to and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids.
[ 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 24124, 16792, 311, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.sagemaker_endpoint.SagemakerEndpoint.html
2b233b7257e7-4
Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.sagemaker_endpoint.SagemakerEndpoint.html
20678d2c20fe-0
langchain.llms.beam.Beam¶ class langchain.llms.beam.Beam(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, model_name: str = '', name: str = '', cpu: str = '', memory: str = '', gpu: str = '', python_version: str = '', python_packages: List[str] = [], max_length: str = '', url: str = '', model_kwargs: Dict[str, Any] = None, beam_client_id: str = '', beam_client_secret: str = '', app_id: Optional[str] = None)[source]¶ Bases: LLM Wrapper around Beam API for gpt2 large language model. To use, you should have the beam-sdk python package installed, and the environment variable BEAM_CLIENT_ID set with your client id and BEAM_CLIENT_SECRET set with your client secret. Information on how to get these is available here: https://docs.beam.cloud/account/api-keys. The wrapper can then be called as follows, where the name, cpu, memory, gpu, python version, and python packages can be updated accordingly. Once deployed, the instance can be called. Example llm = Beam(model_name="gpt2", name="langchain-gpt2", cpu=8, memory="32Gi", gpu="A10G", python_version="python3.8", python_packages=[ "diffusers[torch]>=0.10", "transformers", "torch", "pillow", "accelerate", "safetensors", "xformers",],
[ 5317, 8995, 60098, 1026, 8809, 309, 1823, 14922, 55609, 198, 1058, 8859, 8995, 60098, 1026, 8809, 309, 1823, 14922, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 1646, 1292, 25, 610, 284, 9158, 836, 25, 610, 284, 9158, 17769, 25, 610, 284, 9158, 5044, 25, 610, 284, 9158, 39534, 25, 610, 284, 9158, 10344, 9625, 25, 610, 284, 9158, 10344, 42974, 25, 1796, 17752, 60, 284, 10277, 1973, 5228, 25, 610, 284, 9158, 2576, 25, 610, 284, 9158, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 284, 2290, 11, 24310, 8342, 851, 25, 610, 284, 9158, 24310, 8342, 22729, 25, 610, 284, 9158, 917, 851, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 51230, 5446, 369, 342, 418, 17, 3544, 4221, 1646, 627, 1271, 1005, 11, 499, 1288, 617, 279, 24310, 36578, 10344, 6462, 10487, 345, 438, 279, 4676, 3977, 7354, 1428, 23337, 3533, 743, 449, 701, 3016, 887, 198, 438, 7354, 1428, 23337, 32508, 743, 449, 701, 3016, 6367, 13, 8245, 389, 1268, 198, 998, 636, 1521, 374, 2561, 1618, 25, 3788, 1129, 14452, 8809, 309, 17365, 49020, 10729, 77209, 627, 791, 13564, 649, 1243, 387, 2663, 439, 11263, 11, 1405, 279, 836, 11, 17769, 11, 5044, 11, 39534, 345, 12958, 2373, 11, 323, 10344, 14519, 649, 387, 6177, 28178, 13, 9843, 27167, 345, 1820, 2937, 649, 387, 2663, 627, 13617, 198, 657, 76, 284, 51230, 7790, 1292, 429, 70, 418, 17, 761, 262, 836, 429, 5317, 8995, 2427, 418, 17, 761, 262, 17769, 28, 23, 345, 262, 5044, 429, 843, 47941, 761, 262, 39534, 429, 32, 605, 38, 761, 262, 10344, 9625, 429, 12958, 18, 13, 23, 761, 262, 10344, 42974, 34299, 286, 330, 13798, 4312, 58, 28514, 74875, 15, 13, 605, 761, 286, 330, 4806, 388, 761, 286, 330, 28514, 761, 286, 330, 50946, 363, 761, 286, 330, 44988, 59768, 761, 286, 330, 82, 2642, 295, 27627, 761, 286, 330, 87, 630, 388, 498, 1145 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.beam.Beam.html
20678d2c20fe-1
"safetensors", "xformers",], max_length=50) llm._deploy() call_result = llm._call(input) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param app_id: Optional[str] = None¶ param beam_client_id: str = ''¶ param beam_client_secret: str = ''¶ param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param cpu: str = ''¶ param gpu: str = ''¶ param max_length: str = ''¶ param memory: str = ''¶ param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param model_name: str = ''¶ param name: str = ''¶ param python_packages: List[str] = []¶ param python_version: str = ''¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param url: str = ''¶ model endpoint to use param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶
[ 41887, 2642, 295, 27627, 761, 286, 330, 87, 630, 388, 498, 1282, 262, 1973, 5228, 28, 1135, 340, 657, 76, 1462, 36894, 746, 6797, 5400, 284, 9507, 76, 1462, 6797, 5498, 340, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 917, 851, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 24310, 8342, 851, 25, 610, 284, 3436, 55609, 198, 913, 24310, 8342, 22729, 25, 610, 284, 3436, 55609, 198, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 17769, 25, 610, 284, 3436, 55609, 198, 913, 39534, 25, 610, 284, 3436, 55609, 198, 913, 1973, 5228, 25, 610, 284, 3436, 55609, 198, 913, 5044, 25, 610, 284, 3436, 55609, 198, 913, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 510, 15669, 60, 55609, 198, 39, 18938, 904, 1646, 5137, 2764, 369, 1893, 1650, 539, 198, 94732, 398, 5300, 627, 913, 1646, 1292, 25, 610, 284, 3436, 55609, 198, 913, 836, 25, 610, 284, 3436, 55609, 198, 913, 10344, 42974, 25, 1796, 17752, 60, 284, 3132, 55609, 198, 913, 10344, 9625, 25, 610, 284, 3436, 55609, 198, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 2576, 25, 610, 284, 3436, 55609, 198, 2590, 15233, 311, 1005, 198, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.beam.Beam.html
20678d2c20fe-2
Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ app_creation() → None[source]¶ Creates a Python file which will contain your Beam app definition. async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator build_extra  »  all fields[source]¶ Build extra kwargs from additional params that were passed in. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 680, 47263, 368, 11651, 2290, 76747, 60, 55609, 198, 55968, 264, 13325, 1052, 902, 690, 6782, 701, 51230, 917, 7419, 627, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 1977, 32958, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 11313, 5066, 16901, 505, 5217, 3712, 430, 1051, 5946, 304, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.beam.Beam.html
20678d2c20fe-3
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. run_creation() → None[source]¶ Creates a Python file which will be deployed on beam. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property authorization: str¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶
[ 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6236, 47263, 368, 11651, 2290, 76747, 60, 55609, 198, 55968, 264, 13325, 1052, 902, 690, 387, 27167, 389, 24310, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 3784, 24645, 25, 610, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.beam.Beam.html
20678d2c20fe-4
property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic config. extra = 'forbid'¶
[ 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 2242, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.beam.Beam.html
bbba48e1749a-0
langchain.llms.rwkv.RWKV¶ class langchain.llms.rwkv.RWKV(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, model: str, tokens_path: str, strategy: str = 'cpu fp32', rwkv_verbose: bool = True, temperature: float = 1.0, top_p: float = 0.5, penalty_alpha_frequency: float = 0.4, penalty_alpha_presence: float = 0.4, CHUNK_LEN: int = 256, max_tokens_per_generation: int = 256, client: Any = None, tokenizer: Any = None, pipeline: Any = None, model_tokens: Any = None, model_state: Any = None)[source]¶ Bases: LLM, BaseModel Wrapper around RWKV language models. To use, you should have the rwkv python package installed, the pre-trained model file, and the model’s config information. Example from langchain.llms import RWKV model = RWKV(model="./models/rwkv-3b-fp16.bin", strategy="cpu fp32") # Simplest invocation response = model("Once upon a time, ") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param CHUNK_LEN: int = 256¶ Batch size for prompt processing. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param max_tokens_per_generation: int = 256¶
[ 5317, 8995, 60098, 1026, 1783, 86, 44508, 2056, 69416, 53, 55609, 198, 1058, 8859, 8995, 60098, 1026, 1783, 86, 44508, 2056, 69416, 53, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 1646, 25, 610, 11, 11460, 2703, 25, 610, 11, 8446, 25, 610, 284, 364, 16881, 12276, 843, 518, 27082, 44508, 69021, 25, 1845, 284, 3082, 11, 9499, 25, 2273, 284, 220, 16, 13, 15, 11, 1948, 623, 25, 2273, 284, 220, 15, 13, 20, 11, 16750, 27731, 41232, 25, 2273, 284, 220, 15, 13, 19, 11, 16750, 27731, 57503, 25, 2273, 284, 220, 15, 13, 19, 11, 99717, 15906, 25, 528, 284, 220, 4146, 11, 1973, 29938, 5796, 65291, 25, 528, 284, 220, 4146, 11, 3016, 25, 5884, 284, 2290, 11, 47058, 25, 5884, 284, 2290, 11, 15660, 25, 5884, 284, 2290, 11, 1646, 29938, 25, 5884, 284, 2290, 11, 1646, 4486, 25, 5884, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 11, 65705, 198, 11803, 2212, 47306, 83807, 4221, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 27082, 44508, 10344, 6462, 10487, 11, 279, 198, 1762, 70024, 1646, 1052, 11, 323, 279, 1646, 753, 2242, 2038, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 47306, 83807, 198, 2590, 284, 47306, 83807, 7790, 27518, 6644, 7534, 86, 44508, 12, 18, 65, 2269, 79, 845, 30494, 498, 8446, 429, 16881, 12276, 843, 1158, 2, 9170, 267, 29796, 198, 2376, 284, 1646, 446, 12805, 5304, 264, 892, 11, 14501, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 99717, 15906, 25, 528, 284, 220, 4146, 55609, 198, 21753, 1404, 369, 10137, 8863, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 1973, 29938, 5796, 65291, 25, 528, 284, 220, 4146, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.rwkv.RWKV.html
bbba48e1749a-1
param max_tokens_per_generation: int = 256¶ Maximum number of tokens to generate. param model: str [Required]¶ Path to the pre-trained RWKV model file. param penalty_alpha_frequency: float = 0.4¶ Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model’s likelihood to repeat the same line verbatim.. param penalty_alpha_presence: float = 0.4¶ Positive values penalize new tokens based on whether they appear in the text so far, increasing the model’s likelihood to talk about new topics.. param rwkv_verbose: bool = True¶ Print debug information. param strategy: str = 'cpu fp32'¶ Token context window. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 1.0¶ The temperature to use for sampling. param tokens_path: str [Required]¶ Path to the RWKV tokens file. param top_p: float = 0.5¶ The top-p value to use for sampling. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
[ 913, 1973, 29938, 5796, 65291, 25, 528, 284, 220, 4146, 55609, 198, 28409, 1396, 315, 11460, 311, 7068, 627, 913, 1646, 25, 610, 510, 8327, 60, 55609, 198, 1858, 311, 279, 864, 70024, 47306, 83807, 1646, 1052, 627, 913, 16750, 27731, 41232, 25, 2273, 284, 220, 15, 13, 19, 55609, 198, 36590, 2819, 47426, 553, 502, 11460, 3196, 389, 872, 6484, 11900, 198, 258, 279, 1495, 779, 3117, 11, 44649, 279, 1646, 753, 29736, 311, 13454, 279, 1890, 198, 1074, 2807, 55848, 35047, 913, 16750, 27731, 57503, 25, 2273, 284, 220, 15, 13, 19, 55609, 198, 36590, 2819, 47426, 553, 502, 11460, 3196, 389, 3508, 814, 5101, 198, 258, 279, 1495, 779, 3117, 11, 7859, 279, 1646, 753, 29736, 311, 3137, 922, 198, 943, 13650, 35047, 913, 27082, 44508, 69021, 25, 1845, 284, 3082, 55609, 198, 9171, 7542, 2038, 627, 913, 8446, 25, 610, 284, 364, 16881, 12276, 843, 6, 55609, 198, 3404, 2317, 3321, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 9499, 25, 2273, 284, 220, 16, 13, 15, 55609, 198, 791, 9499, 311, 1005, 369, 25936, 627, 913, 11460, 2703, 25, 610, 510, 8327, 60, 55609, 198, 1858, 311, 279, 47306, 83807, 11460, 1052, 627, 913, 1948, 623, 25, 2273, 284, 220, 15, 13, 20, 55609, 198, 791, 1948, 2320, 907, 311, 1005, 369, 25936, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.rwkv.RWKV.html
bbba48e1749a-2
Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text.
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.rwkv.RWKV.html
bbba48e1749a-3
Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. run_rnn(_tokens: List[str], newline_adj: int = 0) → Any[source]¶ rwkv_generate(prompt: str) → str[source]¶ save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that the python package exists in the environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶
[ 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6236, 99700, 2551, 31666, 25, 1796, 17752, 1145, 40127, 43659, 25, 528, 284, 220, 15, 8, 11651, 5884, 76747, 60, 55609, 198, 32868, 44508, 49951, 73353, 25, 610, 8, 11651, 610, 76747, 60, 55609, 198, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 279, 10344, 6462, 6866, 304, 279, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.rwkv.RWKV.html
bbba48e1749a-4
property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.rwkv.RWKV.html
1e265abd1285-0
langchain.llms.writer.Writer¶ class langchain.llms.writer.Writer(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, writer_org_id: Optional[str] = None, model_id: str = 'palmyra-instruct', min_tokens: Optional[int] = None, max_tokens: Optional[int] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, stop: Optional[List[str]] = None, presence_penalty: Optional[float] = None, repetition_penalty: Optional[float] = None, best_of: Optional[int] = None, logprobs: bool = False, n: Optional[int] = None, writer_api_key: Optional[str] = None, base_url: Optional[str] = None)[source]¶ Bases: LLM Wrapper around Writer large language models. To use, you should have the environment variable WRITER_API_KEY and WRITER_ORG_ID set with your API key and organization ID respectively. Example from langchain import Writer writer = Writer(model_id="palmyra-base") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param base_url: Optional[str] = None¶ Base url to use, if None decides based on model name. param best_of: Optional[int] = None¶ Generates this many completions server-side and returns the “best”. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param logprobs: bool = False¶
[ 5317, 8995, 60098, 1026, 31932, 48938, 55609, 198, 1058, 8859, 8995, 60098, 1026, 31932, 48938, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 7061, 36683, 851, 25, 12536, 17752, 60, 284, 2290, 11, 1646, 851, 25, 610, 284, 364, 19866, 2465, 969, 3502, 1257, 518, 1332, 29938, 25, 12536, 19155, 60, 284, 2290, 11, 1973, 29938, 25, 12536, 19155, 60, 284, 2290, 11, 9499, 25, 12536, 96481, 60, 284, 2290, 11, 1948, 623, 25, 12536, 96481, 60, 284, 2290, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 9546, 83386, 25, 12536, 96481, 60, 284, 2290, 11, 54515, 83386, 25, 12536, 96481, 60, 284, 2290, 11, 1888, 3659, 25, 12536, 19155, 60, 284, 2290, 11, 1515, 782, 1302, 25, 1845, 284, 3641, 11, 308, 25, 12536, 19155, 60, 284, 2290, 11, 7061, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 2385, 2975, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 198, 11803, 2212, 30504, 3544, 4221, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 4676, 3977, 25321, 25764, 11669, 6738, 323, 198, 18408, 25764, 20424, 38, 3533, 743, 449, 701, 5446, 1401, 323, 7471, 3110, 15947, 627, 13617, 198, 1527, 8859, 8995, 1179, 30504, 198, 18688, 284, 30504, 7790, 851, 429, 19866, 2465, 969, 31113, 1158, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 2385, 2975, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 4066, 2576, 311, 1005, 11, 422, 2290, 28727, 3196, 389, 1646, 836, 627, 913, 1888, 3659, 25, 12536, 19155, 60, 284, 2290, 55609, 198, 5648, 988, 420, 1690, 3543, 919, 3622, 25034, 323, 4780, 279, 1054, 16241, 863, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 1515, 782, 1302, 25, 1845, 284, 3641, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.writer.Writer.html
1e265abd1285-1
param callbacks: Callbacks = None¶ param logprobs: bool = False¶ Whether to return log probabilities. param max_tokens: Optional[int] = None¶ Maximum number of tokens to generate. param min_tokens: Optional[int] = None¶ Minimum number of tokens to generate. param model_id: str = 'palmyra-instruct'¶ Model name to use. param n: Optional[int] = None¶ How many completions to generate. param presence_penalty: Optional[float] = None¶ Penalizes repeated tokens regardless of frequency. param repetition_penalty: Optional[float] = None¶ Penalizes repeated tokens according to frequency. param stop: Optional[List[str]] = None¶ Sequences when completion generation will stop. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: Optional[float] = None¶ What sampling temperature to use. param top_p: Optional[float] = None¶ Total probability mass of tokens to consider at each step. param verbose: bool [Optional]¶ Whether to print out response text. param writer_api_key: Optional[str] = None¶ Writer API key. param writer_org_id: Optional[str] = None¶ Writer organization ID. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶
[ 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 1515, 782, 1302, 25, 1845, 284, 3641, 55609, 198, 25729, 311, 471, 1515, 49316, 627, 913, 1973, 29938, 25, 12536, 19155, 60, 284, 2290, 55609, 198, 28409, 1396, 315, 11460, 311, 7068, 627, 913, 1332, 29938, 25, 12536, 19155, 60, 284, 2290, 55609, 198, 29795, 1396, 315, 11460, 311, 7068, 627, 913, 1646, 851, 25, 610, 284, 364, 19866, 2465, 969, 3502, 1257, 6, 55609, 198, 1747, 836, 311, 1005, 627, 913, 308, 25, 12536, 19155, 60, 284, 2290, 55609, 198, 4438, 1690, 3543, 919, 311, 7068, 627, 913, 9546, 83386, 25, 12536, 96481, 60, 284, 2290, 55609, 198, 29305, 278, 4861, 11763, 11460, 15851, 315, 11900, 627, 913, 54515, 83386, 25, 12536, 96481, 60, 284, 2290, 55609, 198, 29305, 278, 4861, 11763, 11460, 4184, 311, 11900, 627, 913, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 1542, 45045, 994, 9954, 9659, 690, 3009, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 9499, 25, 12536, 96481, 60, 284, 2290, 55609, 198, 3923, 25936, 9499, 311, 1005, 627, 913, 1948, 623, 25, 12536, 96481, 60, 284, 2290, 55609, 198, 7749, 19463, 3148, 315, 11460, 311, 2980, 520, 1855, 3094, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 913, 7061, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 6628, 5446, 1401, 627, 913, 7061, 36683, 851, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 6628, 7471, 3110, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.writer.Writer.html
1e265abd1285-2
Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text.
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.writer.Writer.html
1e265abd1285-3
Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and organization id exist in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 7471, 887, 3073, 304, 4676, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.writer.Writer.html
1e265abd1285-4
Configuration for this pydantic object. extra = 'forbid'¶
[ 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.writer.Writer.html
05e8e554f6ac-0
langchain.llms.openai.OpenAIChat¶ class langchain.llms.openai.OpenAIChat(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, client: Any = None, model_name: str = 'gpt-3.5-turbo', model_kwargs: Dict[str, Any] = None, openai_api_key: Optional[str] = None, openai_api_base: Optional[str] = None, openai_proxy: Optional[str] = None, max_retries: int = 6, prefix_messages: List = None, streaming: bool = False, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all')[source]¶ Bases: BaseLLM Wrapper around OpenAI Chat large language models. To use, you should have the openai python package installed, and the environment variable OPENAI_API_KEY set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example from langchain.llms import OpenAIChat openaichat = OpenAIChat(model_name="gpt-3.5-turbo") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param allowed_special: Union[Literal['all'], AbstractSet[str]] = {}¶ Set of special tokens that are allowed。 param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶
[ 5317, 8995, 60098, 1026, 5949, 2192, 13250, 15836, 16047, 55609, 198, 1058, 8859, 8995, 60098, 1026, 5949, 2192, 13250, 15836, 16047, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3016, 25, 5884, 284, 2290, 11, 1646, 1292, 25, 610, 284, 364, 70, 418, 12, 18, 13, 20, 2442, 324, 754, 518, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 284, 2290, 11, 1825, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 1825, 2192, 11959, 7806, 25, 12536, 17752, 60, 284, 2290, 11, 1825, 2192, 30812, 25, 12536, 17752, 60, 284, 2290, 11, 1973, 1311, 4646, 25, 528, 284, 220, 21, 11, 9436, 24321, 25, 1796, 284, 2290, 11, 17265, 25, 1845, 284, 3641, 11, 5535, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 13822, 1681, 17752, 5163, 284, 16857, 834, 21642, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 11348, 17752, 5163, 284, 364, 543, 13588, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 4178, 44, 198, 11803, 2212, 5377, 15836, 13149, 3544, 4221, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 1825, 2192, 10344, 6462, 10487, 11, 323, 279, 198, 24175, 3977, 30941, 15836, 11669, 6738, 743, 449, 701, 5446, 1401, 627, 8780, 5137, 430, 527, 2764, 311, 387, 5946, 311, 279, 1825, 2192, 2581, 1650, 649, 387, 5946, 198, 258, 11, 1524, 422, 539, 21650, 6924, 389, 420, 538, 627, 13617, 198, 1527, 8859, 8995, 60098, 1026, 1179, 5377, 15836, 16047, 198, 2569, 64, 718, 266, 284, 5377, 15836, 16047, 7790, 1292, 429, 70, 418, 12, 18, 13, 20, 2442, 324, 754, 1158, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 5535, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 13822, 1681, 17752, 5163, 284, 4792, 55609, 198, 1681, 315, 3361, 11460, 430, 527, 5535, 9174, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.OpenAIChat.html
05e8e554f6ac-1
param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param disallowed_special: Union[Literal['all'], Collection[str]] = 'all'¶ Set of special tokens that are not allowed。 param max_retries: int = 6¶ Maximum number of retries to make when generating. param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param model_name: str = 'gpt-3.5-turbo'¶ Model name to use. param openai_api_base: Optional[str] = None¶ param openai_api_key: Optional[str] = None¶ param openai_proxy: Optional[str] = None¶ param prefix_messages: List [Optional]¶ Series of messages for Chat input. param streaming: bool = False¶ Whether to stream the results or not. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
[ 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 834, 21642, 42729, 25, 9323, 58, 17802, 681, 543, 4181, 11348, 17752, 5163, 284, 364, 543, 6, 55609, 198, 1681, 315, 3361, 11460, 430, 527, 539, 5535, 9174, 913, 1973, 1311, 4646, 25, 528, 284, 220, 21, 55609, 198, 28409, 1396, 315, 61701, 311, 1304, 994, 24038, 627, 913, 1646, 37335, 25, 30226, 17752, 11, 5884, 60, 510, 15669, 60, 55609, 198, 39, 18938, 904, 1646, 5137, 2764, 369, 1893, 1650, 539, 21650, 5300, 627, 913, 1646, 1292, 25, 610, 284, 364, 70, 418, 12, 18, 13, 20, 2442, 324, 754, 6, 55609, 198, 1747, 836, 311, 1005, 627, 913, 1825, 2192, 11959, 7806, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1825, 2192, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 1825, 2192, 30812, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 9436, 24321, 25, 1796, 510, 15669, 60, 55609, 198, 26625, 315, 6743, 369, 13149, 1988, 627, 913, 17265, 25, 1845, 284, 3641, 55609, 198, 25729, 311, 4365, 279, 3135, 477, 539, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.OpenAIChat.html
05e8e554f6ac-2
Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator build_extra  »  all fields[source]¶ Build extra kwargs from additional params that were passed in. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int][source]¶
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 1977, 32958, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 11313, 5066, 16901, 505, 5217, 3712, 430, 1051, 5946, 304, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 1483, 2484, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/llms/langchain.llms.openai.OpenAIChat.html