id
stringlengths
14
15
text
stringlengths
35
2.07k
embedding
sequence
source
stringlengths
61
154
59eb3f9cbcce-2
Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, is_duplicate_texts: Optional[bool] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. :param texts: Iterable of strings to add to the vectorstore. :param metadatas: Optional list of metadatas associated with the texts. :param is_duplicate_texts: Optional whether to duplicate texts. :param kwargs: vectorstore specific parameters. Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
[ 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 374, 71534, 80746, 25, 12536, 58, 2707, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 68416, 22755, 25, 39116, 315, 9246, 311, 923, 311, 279, 4724, 4412, 627, 68416, 2322, 329, 19907, 25, 12536, 1160, 315, 2322, 329, 19907, 5938, 449, 279, 22755, 627, 68416, 374, 71534, 80746, 25, 12536, 3508, 311, 23329, 22755, 627, 68416, 16901, 25, 4724, 4412, 3230, 5137, 627, 16851, 198, 861, 315, 14483, 505, 7999, 279, 22755, 1139, 279, 4724, 4412, 627, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.awadb.AwaDB.html
59eb3f9cbcce-3
Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. create_table(table_name: str, **kwargs: Any) → bool[source]¶ Create a new table. delete(ids: List[str]) → Optional[bool]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Optional[Embeddings] = None, table_name: str = 'langchain_awadb', log_and_data_dir: Optional[str] = None, client: Optional[awadb.Client] = None, **kwargs: Any) → AwaDB[source]¶
[ 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 3261, 5350, 16138, 1292, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1845, 76747, 60, 55609, 198, 4110, 264, 502, 2007, 627, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 12536, 58, 26566, 25624, 60, 284, 2290, 11, 2007, 1292, 25, 610, 284, 364, 5317, 8995, 55268, 40691, 518, 1515, 8543, 1807, 4432, 25, 12536, 17752, 60, 284, 2290, 11, 3016, 25, 12536, 58, 675, 40691, 11978, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 362, 10196, 3590, 76747, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.awadb.AwaDB.html
59eb3f9cbcce-4
Create an AwaDB vectorstore from a list of documents. If a log_and_data_dir specified, the table will be persisted there. Parameters documents (List[Document]) – List of documents to add to the vectorstore. embedding (Optional[Embeddings]) – Embedding function. Defaults to None. table_name (str) – Name of the table to create. log_and_data_dir (Optional[str]) – Directory to persist the table. client (Optional[awadb.Client]) – AwaDB client Returns AwaDB vectorstore. Return type AwaDB classmethod from_texts(texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, table_name: str = 'langchain_awadb', log_and_data_dir: Optional[str] = None, client: Optional[awadb.Client] = None, **kwargs: Any) → AwaDB[source]¶ Create an AwaDB vectorstore from a raw documents. Parameters texts (List[str]) – List of texts to add to the table. embedding (Optional[Embeddings]) – Embedding function. Defaults to None. metadatas (Optional[List[dict]]) – List of metadatas. Defaults to None. table_name (str) – Name of the table to create. log_and_data_dir (Optional[str]) – Directory of logging and persistence. client (Optional[awadb.Client]) – AwaDB client Returns AwaDB vectorstore. Return type AwaDB get_current_table(**kwargs: Any) → str[source]¶ Get the current table. list_tables(**kwargs: Any) → List[str][source]¶ List all the tables created by the client. load_local(table_name: str, **kwargs: Any) → bool[source]¶
[ 4110, 459, 362, 10196, 3590, 4724, 4412, 505, 264, 1160, 315, 9477, 627, 2746, 264, 1515, 8543, 1807, 4432, 5300, 11, 279, 2007, 690, 387, 54095, 1070, 627, 9905, 198, 51878, 320, 861, 58, 7676, 2526, 1389, 1796, 315, 9477, 311, 923, 311, 279, 4724, 4412, 627, 95711, 320, 15669, 58, 26566, 25624, 2526, 1389, 38168, 7113, 734, 13, 37090, 311, 2290, 627, 2048, 1292, 320, 496, 8, 1389, 4076, 315, 279, 2007, 311, 1893, 627, 848, 8543, 1807, 4432, 320, 15669, 17752, 2526, 1389, 18524, 311, 23135, 279, 2007, 627, 3045, 320, 15669, 58, 675, 40691, 11978, 2526, 1389, 362, 10196, 3590, 3016, 198, 16851, 198, 32, 10196, 3590, 4724, 4412, 627, 5715, 955, 198, 32, 10196, 3590, 198, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 12536, 58, 26566, 25624, 60, 284, 2290, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 2007, 1292, 25, 610, 284, 364, 5317, 8995, 55268, 40691, 518, 1515, 8543, 1807, 4432, 25, 12536, 17752, 60, 284, 2290, 11, 3016, 25, 12536, 58, 675, 40691, 11978, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 362, 10196, 3590, 76747, 60, 55609, 198, 4110, 459, 362, 10196, 3590, 4724, 4412, 505, 264, 7257, 9477, 627, 9905, 198, 87042, 320, 861, 17752, 2526, 1389, 1796, 315, 22755, 311, 923, 311, 279, 2007, 627, 95711, 320, 15669, 58, 26566, 25624, 2526, 1389, 38168, 7113, 734, 13, 37090, 311, 2290, 627, 4150, 329, 19907, 320, 15669, 53094, 58, 8644, 30716, 1389, 1796, 315, 2322, 329, 19907, 13, 37090, 311, 2290, 627, 2048, 1292, 320, 496, 8, 1389, 4076, 315, 279, 2007, 311, 1893, 627, 848, 8543, 1807, 4432, 320, 15669, 17752, 2526, 1389, 18524, 315, 8558, 323, 42056, 627, 3045, 320, 15669, 58, 675, 40691, 11978, 2526, 1389, 362, 10196, 3590, 3016, 198, 16851, 198, 32, 10196, 3590, 4724, 4412, 627, 5715, 955, 198, 32, 10196, 3590, 198, 456, 11327, 5350, 22551, 9872, 25, 5884, 8, 11651, 610, 76747, 60, 55609, 198, 1991, 279, 1510, 2007, 627, 1638, 36732, 22551, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 861, 682, 279, 12920, 3549, 555, 279, 3016, 627, 1096, 13876, 16138, 1292, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1845, 76747, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.awadb.AwaDB.html
59eb3f9cbcce-5
load_local(table_name: str, **kwargs: Any) → bool[source]¶ max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶
[ 1096, 13876, 16138, 1292, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1845, 76747, 60, 55609, 198, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.awadb.AwaDB.html
59eb3f9cbcce-6
Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. similarity_search_by_vector(embedding: Optional[List[float]] = None, k: int = 4, scores: Optional[list] = None, **kwargs: Any) → List[Document][source]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return docs and relevance scores, normalized on a scale from 0 to 1. 0 is dissimilar, 1 is most similar. similarity_search_with_score(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return docs and relevance scores, normalized on a scale from 0 to 1. 0 is dissimilar, 1 is most similar. use(table_name: str, **kwargs: Any) → bool[source]¶ Use the specified table. Don’t know the tables, please invoke list_tables.
[ 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 12536, 53094, 96481, 5163, 284, 2290, 11, 597, 25, 528, 284, 220, 19, 11, 12483, 25, 12536, 68723, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 323, 41961, 12483, 11, 30510, 389, 264, 5569, 505, 220, 15, 311, 220, 16, 627, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 323, 41961, 12483, 11, 30510, 389, 264, 5569, 505, 220, 15, 311, 220, 16, 627, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 817, 16138, 1292, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1845, 76747, 60, 55609, 198, 10464, 279, 5300, 2007, 13, 4418, 1431, 1440, 279, 12920, 11, 4587, 20466, 1160, 36732, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.awadb.AwaDB.html
cd3186dd6166-0
langchain.vectorstores.clickhouse.has_mul_sub_str¶ langchain.vectorstores.clickhouse.has_mul_sub_str(s: str, *args: Any) → bool[source]¶ Check if a string contains multiple substrings. :param s: string to check. :param *args: substrings to check. Returns True if all substrings are in the string, False otherwise.
[ 5317, 8995, 48203, 44569, 14798, 7830, 7001, 25989, 5341, 2966, 55609, 198, 5317, 8995, 48203, 44569, 14798, 7830, 7001, 25989, 5341, 2966, 1161, 25, 610, 11, 353, 2164, 25, 5884, 8, 11651, 1845, 76747, 60, 55609, 198, 4061, 422, 264, 925, 5727, 5361, 16146, 826, 627, 68416, 274, 25, 925, 311, 1817, 627, 68416, 353, 2164, 25, 16146, 826, 311, 1817, 627, 16851, 198, 2575, 422, 682, 16146, 826, 527, 304, 279, 925, 11, 3641, 6062, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clickhouse.has_mul_sub_str.html
afe7fc85dc4f-0
langchain.vectorstores.sklearn.SKLearnVectorStore¶ class langchain.vectorstores.sklearn.SKLearnVectorStore(embedding: Embeddings, *, persist_path: Optional[str] = None, serializer: Literal['json', 'bson', 'parquet'] = 'json', metric: str = 'cosine', **kwargs: Any)[source]¶ Bases: VectorStore A simple in-memory vector store based on the scikit-learn library NearestNeighbors implementation. Methods __init__(embedding, *[, persist_path, ...]) aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, ids]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector.
[ 5317, 8995, 48203, 44569, 40554, 12964, 92029, 24762, 3866, 6221, 55609, 198, 1058, 8859, 8995, 48203, 44569, 40554, 12964, 92029, 24762, 3866, 6221, 50825, 7113, 25, 38168, 25624, 11, 12039, 23135, 2703, 25, 12536, 17752, 60, 284, 2290, 11, 22508, 25, 50774, 681, 2285, 518, 364, 92823, 518, 364, 1768, 24181, 663, 284, 364, 2285, 518, 18767, 25, 610, 284, 364, 9594, 483, 518, 3146, 9872, 25, 5884, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 32, 4382, 304, 65196, 4724, 3637, 3196, 389, 279, 1156, 61503, 12, 12964, 6875, 198, 8989, 15795, 59186, 8292, 627, 18337, 198, 565, 2381, 3889, 95711, 11, 4194, 9, 38372, 4194, 40926, 2703, 11, 4194, 1131, 2608, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 11, 4194, 3447, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStore.html
afe7fc85dc4f-1
Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete(ids) Delete by vector ID. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas, ...]) Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param query: Text to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param embedding: Embedding to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. persist() search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Return docs most similar to query. similarity_search_by_vector(embedding[, k])
[ 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 340, 6571, 555, 4724, 3110, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 11, 4194, 1131, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 13, 7639, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 4315, 4183, 9477, 13, 551, 913, 3319, 25, 2991, 311, 1427, 709, 9477, 4528, 311, 13, 551, 913, 597, 25, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 13, 551, 913, 7963, 4803, 25, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 13, 551, 913, 12741, 27386, 25, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 3909, 315, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 3909, 311, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 13, 37090, 311, 220, 15, 13, 20, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 13, 7639, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 4315, 4183, 9477, 13, 551, 913, 40188, 25, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 13, 551, 913, 597, 25, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 13, 551, 913, 7963, 4803, 25, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 13, 551, 913, 12741, 27386, 25, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 3909, 315, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 3909, 311, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 13, 37090, 311, 220, 15, 13, 20, 627, 40926, 746, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2526 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStore.html
afe7fc85dc4f-2
Return docs most similar to query. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query, *[, k]) async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
[ 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15124, 49325, 10947, 6753, 10622, 10974, 11, 4194, 9, 38372, 4194, 74, 2608, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 87042, 1389, 39116, 315, 9246, 311, 923, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 1389, 12536, 1160, 315, 2322, 329, 19907, 5938, 449, 279, 22755, 627, 9872, 1389, 4724, 4412, 3230, 5137, 198, 16851, 198, 861, 315, 14483, 505, 7999, 279, 22755, 1139, 279, 4724, 4412, 627, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStore.html
afe7fc85dc4f-3
Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: List[str]) → Optional[bool]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful,
[ 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 11 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStore.html
afe7fc85dc4f-4
Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, persist_path: Optional[str] = None, **kwargs: Any) → SKLearnVectorStore[source]¶ Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param query: Text to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity
[ 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 23135, 2703, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 12343, 24762, 3866, 6221, 76747, 60, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 68416, 3319, 25, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 68416, 597, 25, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 68416, 7963, 4803, 25, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 68416, 12741, 27386, 25, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStore.html
afe7fc85dc4f-5
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param embedding: Embedding to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. persist() → None[source]¶ search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs
[ 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 68416, 40188, 25, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 68416, 597, 25, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 68416, 7963, 4803, 25, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 68416, 12741, 27386, 25, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 40926, 368, 11651, 2290, 76747, 60, 55609, 198, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStore.html
afe7fc85dc4f-6
filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, *, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶
[ 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 12039, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStore.html
18cfd3d955fd-0
langchain.vectorstores.docarray.base.DocArrayIndex¶ class langchain.vectorstores.docarray.base.DocArrayIndex(doc_index: BaseDocIndex, embedding: Embeddings)[source]¶ Bases: VectorStore, ABC Initialize a vector store from DocArray’s DocIndex. Methods __init__(doc_index, embedding) Initialize a vector store from DocArray's DocIndex. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete(ids) Delete by vector ID. from_documents(documents, embedding, **kwargs)
[ 5317, 8995, 48203, 44569, 24595, 1686, 9105, 43552, 1895, 1581, 55609, 198, 1058, 8859, 8995, 48203, 44569, 24595, 1686, 9105, 43552, 1895, 1581, 19702, 3644, 25, 5464, 9743, 1581, 11, 40188, 25, 38168, 25624, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 11, 19921, 198, 10130, 264, 4724, 3637, 505, 22452, 1895, 753, 22452, 1581, 627, 18337, 198, 565, 2381, 3889, 5349, 3644, 11, 4194, 95711, 340, 10130, 264, 4724, 3637, 505, 22452, 1895, 596, 22452, 1581, 627, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 340, 6571, 555, 4724, 3110, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 8 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.docarray.base.DocArrayIndex.html
18cfd3d955fd-1
Delete by vector ID. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Return docs most similar to query. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k]) Return docs most similar to query. Attributes doc_cls async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type
[ 6571, 555, 4724, 3110, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15124, 49325, 10947, 6753, 10622, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 10738, 198, 5349, 39756, 198, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.docarray.base.DocArrayIndex.html
18cfd3d955fd-2
Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type.
[ 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 87042, 1389, 39116, 315, 9246, 311, 923, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 1389, 12536, 1160, 315, 2322, 329, 19907, 5938, 449, 279, 22755, 627, 16851, 198, 861, 315, 14483, 505, 7999, 279, 22755, 1139, 279, 4724, 4412, 627, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.docarray.base.DocArrayIndex.html
18cfd3d955fd-3
Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: List[str]) → Optional[bool]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. abstract classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm.
[ 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 16647, 538, 4492, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.docarray.base.DocArrayIndex.html
18cfd3d955fd-4
fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document][source]¶
[ 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.docarray.base.DocArrayIndex.html
18cfd3d955fd-5
Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. property doc_cls: Type[BaseDoc]¶
[ 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 9477, 1455, 4528, 311, 279, 3319, 1495, 323, 198, 9594, 483, 6138, 304, 2273, 369, 1855, 627, 9230, 5573, 11105, 810, 38723, 627, 3784, 4733, 39756, 25, 4078, 58, 4066, 9743, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.docarray.base.DocArrayIndex.html
17e443edcf7d-0
langchain.vectorstores.starrocks.StarRocksSettings¶ class langchain.vectorstores.starrocks.StarRocksSettings(_env_file: Optional[Union[str, PathLike, List[Union[str, PathLike]], Tuple[Union[str, PathLike], ...]]] = '<object object>', _env_file_encoding: Optional[str] = None, _env_nested_delimiter: Optional[str] = None, _secrets_dir: Optional[Union[str, PathLike]] = None, *, host: str = 'localhost', port: int = 9030, username: str = 'root', password: str = '', column_map: Dict[str, str] = {'document': 'document', 'embedding': 'embedding', 'id': 'id', 'metadata': 'metadata'}, database: str = 'default', table: str = 'langchain')[source]¶ Bases: BaseSettings StarRocks Client Configuration Attribute: StarRocks_host (str)An URL to connect to MyScale backend.Defaults to ‘localhost’. StarRocks_port (int) : URL port to connect with HTTP. Defaults to 8443. username (str) : Username to login. Defaults to None. password (str) : Password to login. Defaults to None. database (str) : Database name to find the table. Defaults to ‘default’. table (str) : Table name to operate on. Defaults to ‘vector_table’. column_map (Dict)Column type map to project column name onto langchainsemantics. Must have keys: text, id, vector, must be same size to number of columns. For example: .. code-block:: python {‘id’: ‘text_id’, ‘embedding’: ‘text_embedding’, ‘document’: ‘text_plain’, ‘metadata’: ‘metadata_dictionary_in_json’, } Defaults to identity map.
[ 5317, 8995, 48203, 44569, 53682, 299, 14895, 7914, 277, 49, 26246, 6214, 55609, 198, 1058, 8859, 8995, 48203, 44569, 53682, 299, 14895, 7914, 277, 49, 26246, 6214, 2551, 3239, 2517, 25, 12536, 58, 33758, 17752, 11, 8092, 13246, 11, 1796, 58, 33758, 17752, 11, 8092, 13246, 21128, 25645, 58, 33758, 17752, 11, 8092, 13246, 1145, 2564, 5163, 60, 284, 3942, 1735, 1665, 20150, 721, 3239, 2517, 38713, 25, 12536, 17752, 60, 284, 2290, 11, 721, 3239, 67379, 18519, 18170, 25, 12536, 17752, 60, 284, 2290, 11, 721, 325, 53810, 4432, 25, 12536, 58, 33758, 17752, 11, 8092, 13246, 5163, 284, 2290, 11, 12039, 3552, 25, 610, 284, 364, 8465, 518, 2700, 25, 528, 284, 220, 23305, 15, 11, 6059, 25, 610, 284, 364, 2959, 518, 3636, 25, 610, 284, 9158, 3330, 5489, 25, 30226, 17752, 11, 610, 60, 284, 5473, 6190, 1232, 364, 6190, 518, 364, 95711, 1232, 364, 95711, 518, 364, 307, 1232, 364, 307, 518, 364, 18103, 1232, 364, 18103, 25762, 4729, 25, 610, 284, 364, 2309, 518, 2007, 25, 610, 284, 364, 5317, 8995, 13588, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 6214, 198, 12988, 49, 26246, 8589, 12499, 198, 3994, 512, 12988, 49, 26246, 13144, 320, 496, 8, 2127, 5665, 311, 4667, 311, 3092, 7092, 19713, 13578, 82, 311, 3451, 8465, 529, 627, 12988, 49, 26246, 8889, 320, 396, 8, 551, 5665, 2700, 311, 4667, 449, 10339, 13, 37090, 311, 220, 24344, 18, 627, 5223, 320, 496, 8, 551, 30645, 311, 5982, 13, 37090, 311, 2290, 627, 3918, 320, 496, 8, 551, 12642, 311, 5982, 13, 37090, 311, 2290, 627, 12494, 320, 496, 8, 551, 10199, 836, 311, 1505, 279, 2007, 13, 37090, 311, 3451, 2309, 529, 627, 2048, 320, 496, 8, 551, 6771, 836, 311, 14816, 389, 627, 16672, 311, 3451, 3295, 5350, 529, 627, 6361, 5489, 320, 13755, 8, 3006, 955, 2472, 311, 2447, 3330, 836, 8800, 8859, 8995, 7143, 37333, 13, 15832, 617, 7039, 25, 1495, 11, 887, 11, 4724, 345, 25849, 387, 1890, 1404, 311, 1396, 315, 8310, 13, 1789, 3187, 512, 497, 2082, 9612, 487, 10344, 198, 90, 14336, 307, 89213, 3451, 1342, 851, 529, 345, 14336, 95711, 89213, 3451, 1342, 52602, 529, 345, 14336, 6190, 89213, 3451, 1342, 42115, 529, 345, 14336, 18103, 89213, 3451, 18103, 43705, 1265, 9643, 529, 345, 534, 16672, 311, 9764, 2472, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.starrocks.StarRocksSettings.html
17e443edcf7d-1
‘metadata’: ‘metadata_dictionary_in_json’, } Defaults to identity map. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param column_map: Dict[str, str] = {'document': 'document', 'embedding': 'embedding', 'id': 'id', 'metadata': 'metadata'}¶ param database: str = 'default'¶ param host: str = 'localhost'¶ param password: str = ''¶ param port: int = 9030¶ param table: str = 'langchain'¶ param username: str = 'root'¶ model Config[source]¶ Bases: object env_file = '.env'¶ env_file_encoding = 'utf-8'¶ env_prefix = 'starrocks_'¶
[ 14336, 18103, 89213, 3451, 18103, 43705, 1265, 9643, 529, 345, 534, 16672, 311, 9764, 2472, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 3330, 5489, 25, 30226, 17752, 11, 610, 60, 284, 5473, 6190, 1232, 364, 6190, 518, 364, 95711, 1232, 364, 95711, 518, 364, 307, 1232, 364, 307, 518, 364, 18103, 1232, 364, 18103, 8439, 55609, 198, 913, 4729, 25, 610, 284, 364, 2309, 6, 55609, 198, 913, 3552, 25, 610, 284, 364, 8465, 6, 55609, 198, 913, 3636, 25, 610, 284, 3436, 55609, 198, 913, 2700, 25, 528, 284, 220, 23305, 15, 55609, 198, 913, 2007, 25, 610, 284, 364, 5317, 8995, 6, 55609, 198, 913, 6059, 25, 610, 284, 364, 2959, 6, 55609, 198, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 3239, 2517, 284, 6389, 3239, 6, 55609, 198, 3239, 2517, 38713, 284, 364, 4867, 12, 23, 6, 55609, 198, 3239, 14301, 284, 364, 12134, 299, 14895, 19893, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.starrocks.StarRocksSettings.html
a4d08c4e96a8-0
langchain.vectorstores.faiss.FAISS¶ class langchain.vectorstores.faiss.FAISS(embedding_function: ~typing.Callable, index: ~typing.Any, docstore: ~langchain.docstore.base.Docstore, index_to_docstore_id: ~typing.Dict[int, str], relevance_score_fn: ~typing.Optional[~typing.Callable[[float], float]] = <function _default_relevance_score_fn>, normalize_L2: bool = False)[source]¶ Bases: VectorStore Wrapper around FAISS vector database. To use, you should have the faiss python package installed. Example from langchain import FAISS faiss = FAISS(embedding_function, index, docstore, index_to_docstore_id) Initialize with necessary components. Methods __init__(embedding_function, index, ...[, ...]) Initialize with necessary components. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_embeddings(text_embeddings[, metadatas, ids]) Run more texts through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, ids]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance.
[ 5317, 8995, 48203, 44569, 64214, 1056, 1006, 15836, 1242, 55609, 198, 1058, 8859, 8995, 48203, 44569, 64214, 1056, 1006, 15836, 1242, 50825, 7113, 9353, 25, 4056, 90902, 28115, 481, 11, 1963, 25, 4056, 90902, 13614, 11, 4733, 4412, 25, 4056, 5317, 8995, 24595, 4412, 9105, 43552, 4412, 11, 1963, 2401, 19401, 4412, 851, 25, 4056, 90902, 72201, 19155, 11, 610, 1145, 41961, 10622, 15604, 25, 4056, 90902, 37464, 58, 93, 90902, 28115, 481, 15873, 3733, 1145, 2273, 5163, 284, 366, 1723, 721, 2309, 1311, 33194, 10622, 15604, 8226, 22436, 2406, 17, 25, 1845, 284, 3641, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 11803, 2212, 15358, 31949, 4724, 4729, 627, 1271, 1005, 11, 499, 1288, 617, 279, 2267, 1056, 10344, 6462, 10487, 627, 13617, 198, 1527, 8859, 8995, 1179, 15358, 31949, 198, 3716, 1056, 284, 15358, 31949, 50825, 7113, 9353, 11, 1963, 11, 4733, 4412, 11, 1963, 2401, 19401, 4412, 851, 340, 10130, 449, 5995, 6956, 627, 18337, 198, 565, 2381, 3889, 95711, 9353, 11, 4194, 1275, 11, 4194, 1131, 38372, 4194, 1131, 2608, 10130, 449, 5995, 6956, 627, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 64872, 7383, 64872, 38372, 4194, 4150, 329, 19907, 11, 4194, 3447, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 11, 4194, 3447, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.faiss.FAISS.html
a4d08c4e96a8-1
Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete(ids) Delete by vector ID. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_embeddings(text_embeddings, embedding) Construct FAISS wrapper from raw documents. from_texts(texts, embedding[, metadatas, ids]) Construct FAISS wrapper from raw documents. load_local(folder_path, embeddings[, index_name]) Load FAISS index, docstore, and index_to_docstore_id from disk. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_with_score_by_vector(...) Return docs and their similarity scores selected using the maximal marginal merge_from(target) Merge another FAISS object with the current one. save_local(folder_path[, index_name]) Save FAISS index, docstore, and index_to_docstore_id to disk. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k, filter, fetch_k]) Return docs most similar to query.
[ 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 340, 6571, 555, 4724, 3110, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 64872, 7383, 64872, 11, 4194, 95711, 340, 29568, 15358, 31949, 13564, 505, 7257, 9477, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 11, 4194, 3447, 2608, 29568, 15358, 31949, 13564, 505, 7257, 9477, 627, 1096, 13876, 35029, 2703, 11, 4194, 12529, 25624, 38372, 4194, 1275, 1292, 2608, 6003, 15358, 31949, 1963, 11, 4733, 4412, 11, 323, 1963, 2401, 19401, 4412, 851, 505, 13668, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 6753, 10622, 3795, 12526, 73893, 5715, 27437, 323, 872, 38723, 12483, 4183, 1701, 279, 54229, 32873, 198, 19590, 5791, 8807, 340, 53196, 2500, 15358, 31949, 1665, 449, 279, 1510, 832, 627, 6766, 13876, 35029, 2703, 38372, 4194, 1275, 1292, 2608, 8960, 15358, 31949, 1963, 11, 4733, 4412, 11, 323, 1963, 2401, 19401, 4412, 851, 311, 13668, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 11, 4194, 5428, 11, 4194, 9838, 4803, 2608, 5715, 27437, 1455, 4528, 311, 3319, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.faiss.FAISS.html
a4d08c4e96a8-2
Return docs most similar to query. similarity_search_by_vector(embedding[, k, ...]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k, ...]) Return docs most similar to query. similarity_search_with_score_by_vector(embedding) Return docs most similar to query. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_embeddings(text_embeddings: Iterable[Tuple[str, List[float]]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters text_embeddings – Iterable pairs of string and embedding to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of unique IDs. Returns
[ 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15124, 49325, 10947, 6753, 10622, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 6753, 10622, 3795, 12526, 50825, 7113, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 64872, 7383, 64872, 25, 39116, 20961, 6189, 17752, 11, 1796, 96481, 5163, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 1342, 64872, 1389, 39116, 13840, 315, 925, 323, 40188, 311, 198, 723, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 1389, 12536, 1160, 315, 2322, 329, 19907, 5938, 449, 279, 22755, 627, 3447, 1389, 12536, 1160, 315, 5016, 29460, 627, 16851 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.faiss.FAISS.html
a4d08c4e96a8-3
ids – Optional list of unique IDs. Returns List of ids from adding the texts into the vectorstore. add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of unique IDs. Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type.
[ 3447, 1389, 12536, 1160, 315, 5016, 29460, 627, 16851, 198, 861, 315, 14483, 505, 7999, 279, 22755, 1139, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 87042, 1389, 39116, 315, 9246, 311, 923, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 1389, 12536, 1160, 315, 2322, 329, 19907, 5938, 449, 279, 22755, 627, 3447, 1389, 12536, 1160, 315, 5016, 29460, 627, 16851, 198, 861, 315, 14483, 505, 7999, 279, 22755, 1139, 279, 4724, 4412, 627, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.faiss.FAISS.html
a4d08c4e96a8-4
Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: List[str]) → Optional[bool]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. classmethod from_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → FAISS[source]¶ Construct FAISS wrapper from raw documents. This is a user friendly interface that: Embeds documents. Creates an in memory docstore Initializes the FAISS database This is intended to be a quick way to get started. Example from langchain import FAISS from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) faiss = FAISS.from_embeddings(text_embedding_pairs, embeddings)
[ 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 27853, 505, 64872, 7383, 64872, 25, 1796, 20961, 6189, 17752, 11, 1796, 96481, 5163, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 15358, 31949, 76747, 60, 55609, 198, 29568, 15358, 31949, 13564, 505, 7257, 9477, 627, 2028, 374, 264, 1217, 11919, 3834, 430, 512, 26566, 82, 9477, 627, 55968, 459, 304, 5044, 4733, 4412, 198, 6475, 4861, 279, 15358, 31949, 4729, 198, 2028, 374, 10825, 311, 387, 264, 4062, 1648, 311, 636, 3940, 627, 13617, 198, 1527, 8859, 8995, 1179, 15358, 31949, 198, 1527, 8859, 8995, 41541, 25624, 1179, 5377, 15836, 26566, 25624, 198, 12529, 25624, 284, 5377, 15836, 26566, 25624, 746, 1342, 64872, 284, 71647, 41541, 77027, 7383, 82, 340, 1342, 52602, 37530, 284, 1160, 39349, 7383, 82, 11, 1495, 64872, 1192, 3716, 1056, 284, 15358, 31949, 6521, 64872, 7383, 52602, 37530, 11, 71647, 8 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.faiss.FAISS.html
a4d08c4e96a8-5
faiss = FAISS.from_embeddings(text_embedding_pairs, embeddings) classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → FAISS[source]¶ Construct FAISS wrapper from raw documents. This is a user friendly interface that: Embeds documents. Creates an in memory docstore Initializes the FAISS database This is intended to be a quick way to get started. Example from langchain import FAISS from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() faiss = FAISS.from_texts(texts, embeddings) classmethod load_local(folder_path: str, embeddings: Embeddings, index_name: str = 'index') → FAISS[source]¶ Load FAISS index, docstore, and index_to_docstore_id from disk. Parameters folder_path – folder path to load index, docstore, and index_to_docstore_id from. embeddings – Embeddings to use when generating queries index_name – for saving with a specific index file name max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, Any]] = None, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch before filtering (if needed) to pass to MMR algorithm.
[ 3716, 1056, 284, 15358, 31949, 6521, 64872, 7383, 52602, 37530, 11, 71647, 340, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 15358, 31949, 76747, 60, 55609, 198, 29568, 15358, 31949, 13564, 505, 7257, 9477, 627, 2028, 374, 264, 1217, 11919, 3834, 430, 512, 26566, 82, 9477, 627, 55968, 459, 304, 5044, 4733, 4412, 198, 6475, 4861, 279, 15358, 31949, 4729, 198, 2028, 374, 10825, 311, 387, 264, 4062, 1648, 311, 636, 3940, 627, 13617, 198, 1527, 8859, 8995, 1179, 15358, 31949, 198, 1527, 8859, 8995, 41541, 25624, 1179, 5377, 15836, 26566, 25624, 198, 12529, 25624, 284, 5377, 15836, 26566, 25624, 746, 3716, 1056, 284, 15358, 31949, 6521, 80746, 7383, 82, 11, 71647, 340, 27853, 2865, 13876, 35029, 2703, 25, 610, 11, 71647, 25, 38168, 25624, 11, 1963, 1292, 25, 610, 284, 364, 1275, 873, 11651, 15358, 31949, 76747, 60, 55609, 198, 6003, 15358, 31949, 1963, 11, 4733, 4412, 11, 323, 1963, 2401, 19401, 4412, 851, 505, 13668, 627, 9905, 198, 18135, 2703, 1389, 8695, 1853, 311, 2865, 1963, 11, 4733, 4412, 345, 438, 1963, 2401, 19401, 4412, 851, 505, 627, 12529, 25624, 1389, 38168, 25624, 311, 1005, 994, 24038, 20126, 198, 1275, 1292, 1389, 369, 14324, 449, 264, 3230, 1963, 1052, 836, 198, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 4141, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 1603, 30770, 320, 333, 4460, 8, 311, 198, 6519, 311, 386, 18953, 12384, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.faiss.FAISS.html
a4d08c4e96a8-6
pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, Any]] = None, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch before filtering to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_with_score_by_vector(embedding: List[float], *, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, Any]] = None) → List[Tuple[Document, float]][source]¶ Return docs and their similarity scores selected using the maximal marginalrelevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4.
[ 6519, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 4141, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 1603, 30770, 311, 198, 6519, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 6753, 10622, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 12039, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 4141, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 323, 872, 38723, 12483, 4183, 1701, 279, 54229, 32873, 265, 33194, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.faiss.FAISS.html
a4d08c4e96a8-7
k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch before filtering to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents and similarity scores selected by maximal marginalrelevance and score for each. merge_from(target: FAISS) → None[source]¶ Merge another FAISS object with the current one. Add the target FAISS to the current one. Parameters target – FAISS object you wish to merge into the current one Returns None. save_local(folder_path: str, index_name: str = 'index') → None[source]¶ Save FAISS index, docstore, and index_to_docstore_id to disk. Parameters folder_path – folder path to save index, docstore, and index_to_docstore_id to. index_name – for saving with a specific index file name search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. fetch_k – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20. Returns List of Documents most similar to the query.
[ 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 1603, 30770, 311, 198, 6519, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 323, 38723, 12483, 4183, 555, 54229, 32873, 265, 33194, 323, 5573, 369, 1855, 627, 19590, 5791, 8807, 25, 15358, 31949, 8, 11651, 2290, 76747, 60, 55609, 198, 53196, 2500, 15358, 31949, 1665, 449, 279, 1510, 832, 627, 2261, 279, 2218, 15358, 31949, 311, 279, 1510, 832, 627, 9905, 198, 5775, 1389, 15358, 31949, 1665, 499, 6562, 311, 11117, 1139, 279, 1510, 832, 198, 16851, 198, 4155, 627, 6766, 13876, 35029, 2703, 25, 610, 11, 1963, 1292, 25, 610, 284, 364, 1275, 873, 11651, 2290, 76747, 60, 55609, 198, 8960, 15358, 31949, 1963, 11, 4733, 4412, 11, 323, 1963, 2401, 19401, 4412, 851, 311, 13668, 627, 9905, 198, 18135, 2703, 1389, 8695, 1853, 311, 3665, 1963, 11, 4733, 4412, 345, 438, 1963, 2401, 19401, 4412, 851, 311, 627, 1275, 1292, 1389, 369, 14324, 449, 264, 3230, 1963, 1052, 836, 198, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 4141, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 5428, 1389, 320, 15669, 58, 13755, 17752, 11, 610, 5163, 1680, 12619, 555, 11408, 13, 37090, 311, 2290, 627, 9838, 4803, 1389, 320, 15669, 19155, 2526, 5742, 315, 45890, 311, 7963, 1603, 30770, 627, 16672, 311, 220, 508, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.faiss.FAISS.html
a4d08c4e96a8-8
Defaults to 20. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any) → List[Document][source]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. fetch_k – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20. Returns List of Documents most similar to the embedding. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4.
[ 16672, 311, 220, 508, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 4141, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 5428, 320, 15669, 58, 13755, 17752, 11, 610, 30716, 1389, 12619, 555, 11408, 13, 37090, 311, 2290, 627, 9838, 4803, 1389, 320, 15669, 19155, 2526, 5742, 315, 45890, 311, 7963, 1603, 30770, 627, 16672, 311, 220, 508, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 40188, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 4141, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.faiss.FAISS.html
a4d08c4e96a8-9
k – Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. fetch_k – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20. Returns List of documents most similar to the query text with L2 distance in float. Lower score represents more similarity. similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, filter: Optional[Dict[str, Any]] = None, fetch_k: int = 20, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return docs most similar to query. Parameters embedding – Embedding vector to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, Any]]) – Filter by metadata. Defaults to None. fetch_k – (Optional[int]) Number of Documents to fetch before filtering. Defaults to 20. **kwargs – kwargs to be passed to similarity search. Can include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of documents most similar to the query text and L2 distance in float for each. Lower score represents more similarity.
[ 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 5428, 320, 15669, 58, 13755, 17752, 11, 610, 30716, 1389, 12619, 555, 11408, 13, 37090, 311, 2290, 627, 9838, 4803, 1389, 320, 15669, 19155, 2526, 5742, 315, 45890, 311, 7963, 1603, 30770, 627, 16672, 311, 220, 508, 627, 16851, 198, 861, 315, 9477, 1455, 4528, 311, 279, 3319, 1495, 449, 198, 43, 17, 6138, 304, 2273, 13, 28636, 5573, 11105, 810, 38723, 627, 15124, 49325, 10947, 6753, 10622, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 4141, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 9905, 198, 95711, 1389, 38168, 7113, 4724, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 5428, 320, 15669, 58, 13755, 17752, 11, 5884, 30716, 1389, 12619, 555, 11408, 13, 37090, 311, 2290, 627, 9838, 4803, 1389, 320, 15669, 19155, 2526, 5742, 315, 45890, 311, 7963, 1603, 30770, 627, 16672, 311, 220, 508, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 3053, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 9477, 1455, 4528, 311, 279, 3319, 1495, 323, 445, 17, 6138, 198, 258, 2273, 369, 1855, 13, 28636, 5573, 11105, 810, 38723, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.faiss.FAISS.html
c6ff6ca1b0be-0
langchain.vectorstores.vectara.VectaraRetriever¶ class langchain.vectorstores.vectara.VectaraRetriever(*, vectorstore: Vectara, search_type: str = 'similarity', search_kwargs: dict = None)[source]¶ Bases: VectorStoreRetriever Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param search_kwargs: dict [Optional]¶ Search params. k: Number of Documents to return. Defaults to 5. lambda_val: lexical match parameter for hybrid search. filter: Dictionary of argument(s) to filter on metadata. For example a filter can be “doc.rating > 3.0 and part.lang = ‘deu’”} see https://docs.vectara.com/docs/search-apis/sql/filter-overview for more details. n_sentence_context: number of sentences before/after the matching segment to add param search_type: str = 'similarity'¶ param vectorstore: Vectara [Required]¶ async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Add documents to vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Add documents to vectorstore. add_texts(texts: List[str], metadatas: Optional[List[dict]] = None) → None[source]¶ Add text to the Vectara vectorstore. Parameters texts (List[str]) – The text metadatas (List[dict]) – Metadata dicts, must line up with existing store async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query.
[ 5317, 8995, 48203, 44569, 3211, 440, 5169, 5168, 440, 5169, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 48203, 44569, 3211, 440, 5169, 5168, 440, 5169, 12289, 462, 2099, 4163, 11, 4724, 4412, 25, 91256, 5169, 11, 2778, 1857, 25, 610, 284, 364, 15124, 49325, 518, 2778, 37335, 25, 6587, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 12289, 462, 2099, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 2778, 37335, 25, 6587, 510, 15669, 60, 55609, 198, 6014, 3712, 627, 74, 25, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 20, 627, 13231, 6320, 25, 78686, 2489, 5852, 369, 26038, 2778, 627, 5428, 25, 10685, 315, 5811, 1161, 8, 311, 4141, 389, 11408, 13, 1789, 3187, 264, 198, 5428, 649, 387, 1054, 5349, 49759, 871, 220, 18, 13, 15, 323, 961, 8178, 284, 3451, 451, 84, 529, 863, 92, 1518, 198, 2485, 1129, 14452, 3211, 440, 5169, 916, 27057, 24042, 12, 14041, 60782, 64624, 29352, 1068, 198, 2000, 810, 3649, 627, 77, 49432, 8634, 25, 1396, 315, 23719, 1603, 14, 10924, 279, 12864, 10449, 311, 923, 198, 913, 2778, 1857, 25, 610, 284, 364, 15124, 49325, 6, 55609, 198, 913, 4724, 4412, 25, 91256, 5169, 510, 8327, 60, 55609, 198, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 2261, 9477, 311, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 2261, 9477, 311, 4724, 4412, 627, 723, 80746, 7383, 82, 25, 1796, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 8, 11651, 2290, 76747, 60, 55609, 198, 2261, 1495, 311, 279, 91256, 5169, 4724, 4412, 627, 9905, 198, 87042, 320, 861, 17752, 2526, 1389, 578, 1495, 198, 4150, 329, 19907, 320, 861, 58, 8644, 2526, 1389, 34689, 98699, 11, 2011, 1584, 709, 449, 6484, 3637, 198, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.vectara.VectaraRetriever.html
c6ff6ca1b0be-1
Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents validator validate_search_type  »  all fields¶ Validate search type. allowed_search_types: ClassVar[Collection[str]] = ('similarity', 'similarity_score_threshold', 'mmr')¶ model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 16503, 9788, 10947, 1857, 4194, 8345, 4194, 682, 5151, 55609, 198, 18409, 2778, 955, 627, 21642, 10947, 9962, 25, 3308, 4050, 58, 6618, 17752, 5163, 284, 4417, 15124, 49325, 518, 364, 15124, 49325, 10622, 22616, 518, 364, 3906, 81, 873, 55609, 198, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.vectara.VectaraRetriever.html
911901074805-0
langchain.vectorstores.sklearn.SKLearnVectorStoreException¶ class langchain.vectorstores.sklearn.SKLearnVectorStoreException[source]¶ Bases: RuntimeError Exception raised by SKLearnVectorStore. add_note()¶ Exception.add_note(note) – add a note to the exception with_traceback()¶ Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. args¶
[ 5317, 8995, 48203, 44569, 40554, 12964, 92029, 24762, 3866, 6221, 1378, 55609, 198, 1058, 8859, 8995, 48203, 44569, 40554, 12964, 92029, 24762, 3866, 6221, 1378, 76747, 60, 55609, 198, 33, 2315, 25, 45643, 198, 1378, 9408, 555, 12343, 24762, 3866, 6221, 627, 723, 28306, 368, 55609, 198, 1378, 1388, 28306, 45151, 8, 1389, 198, 723, 264, 5296, 311, 279, 4788, 198, 4291, 24489, 1445, 368, 55609, 198, 1378, 18662, 24489, 1445, 62514, 8, 1389, 198, 751, 659, 4952, 15417, 1445, 565, 311, 16767, 323, 471, 659, 627, 2164, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStoreException.html
3a0ff8d4b745-0
langchain.vectorstores.starrocks.debug_output¶ langchain.vectorstores.starrocks.debug_output(s: Any) → None[source]¶ Print a debug message if DEBUG is True. :param s: The message to print
[ 5317, 8995, 48203, 44569, 53682, 299, 14895, 8042, 7800, 55609, 198, 5317, 8995, 48203, 44569, 53682, 299, 14895, 8042, 7800, 1161, 25, 5884, 8, 11651, 2290, 76747, 60, 55609, 198, 9171, 264, 7542, 1984, 422, 12946, 374, 3082, 627, 68416, 274, 25, 578, 1984, 311, 1194 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.starrocks.debug_output.html
513aa0af8490-0
langchain.vectorstores.zilliz.Zilliz¶ class langchain.vectorstores.zilliz.Zilliz(embedding_function: Embeddings, collection_name: str = 'LangChainCollection', connection_args: Optional[dict[str, Any]] = None, consistency_level: str = 'Session', index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: Optional[bool] = False)[source]¶ Bases: Milvus Initialize wrapper around the milvus vector database. In order to use this you need to have pymilvus installed and a running Milvus/Zilliz Cloud instance. See the following documentation for how to run a Milvus instance: https://milvus.io/docs/install_standalone-docker.md If looking for a hosted Milvus, take a looka this documentation: https://zilliz.com/cloud IF USING L2/IP metric IT IS HIGHLY SUGGESTED TO NORMALIZE YOUR DATA. Parameters embedding_function (Embeddings) – Function used to embed the text. collection_name (str) – Which Milvus collection to use. Defaults to “LangChainCollection”. connection_args (Optional[dict[str, any]]) – The connection args used for this class comes in the form of a dict, here are a few of the options: address (str): The actual address of Milvus instance. Example address: “localhost:19530” uri (str): The uri of Milvus instance. Example uri:”http://randomwebsite:19530”, “tcp:foobarsite:19530”, “https://ok.s3.south.com:19530”.
[ 5317, 8995, 48203, 44569, 4025, 484, 450, 13784, 484, 450, 55609, 198, 1058, 8859, 8995, 48203, 44569, 4025, 484, 450, 13784, 484, 450, 50825, 7113, 9353, 25, 38168, 25624, 11, 4526, 1292, 25, 610, 284, 364, 27317, 19368, 6618, 518, 3717, 8550, 25, 12536, 58, 8644, 17752, 11, 5884, 5163, 284, 2290, 11, 29237, 8438, 25, 610, 284, 364, 5396, 518, 1963, 6887, 25, 12536, 58, 8644, 60, 284, 2290, 11, 2778, 6887, 25, 12536, 58, 8644, 60, 284, 2290, 11, 6068, 21792, 25, 12536, 58, 2707, 60, 284, 3641, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 10357, 85, 355, 198, 10130, 13564, 2212, 279, 7625, 85, 355, 4724, 4729, 627, 644, 2015, 311, 1005, 420, 499, 1205, 311, 617, 46860, 321, 85, 355, 10487, 323, 264, 198, 28272, 10357, 85, 355, 73060, 484, 450, 15161, 2937, 627, 10031, 279, 2768, 9904, 369, 1268, 311, 1629, 264, 10357, 85, 355, 2937, 512, 2485, 1129, 73370, 85, 355, 4340, 27057, 58051, 1284, 85212, 1773, 13973, 22030, 198, 2746, 3411, 369, 264, 21685, 10357, 85, 355, 11, 1935, 264, 1427, 64, 420, 9904, 512, 2485, 1129, 89, 484, 450, 916, 58900, 198, 2843, 63151, 445, 17, 85538, 18767, 8871, 3507, 38717, 9109, 328, 3014, 82857, 1507, 5257, 53531, 3362, 21592, 14444, 627, 9905, 198, 95711, 9353, 320, 26566, 25624, 8, 1389, 5830, 1511, 311, 11840, 279, 1495, 627, 13727, 1292, 320, 496, 8, 1389, 16299, 10357, 85, 355, 4526, 311, 1005, 13, 37090, 311, 198, 2118, 27317, 19368, 6618, 863, 627, 7898, 8550, 320, 15669, 58, 8644, 17752, 11, 904, 30716, 1389, 578, 3717, 2897, 1511, 369, 198, 576, 538, 4131, 304, 279, 1376, 315, 264, 6587, 11, 1618, 527, 264, 2478, 315, 279, 2671, 512, 5102, 320, 496, 1680, 578, 5150, 2686, 315, 10357, 85, 355, 198, 4956, 13, 13688, 2686, 25, 1054, 8465, 25, 6280, 966, 89874, 6198, 320, 496, 1680, 578, 13371, 315, 10357, 85, 355, 2937, 13, 13688, 13371, 25, 863, 1277, 1129, 11719, 20050, 25, 6280, 966, 863, 345, 2118, 28260, 25, 831, 677, 1590, 635, 25, 6280, 966, 863, 345, 2118, 2485, 1129, 564, 516, 18, 516, 2969, 916, 25, 6280, 966, 11453 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
513aa0af8490-1
“https://ok.s3.south.com:19530”. host (str): The host of Milvus instance. Default at “localhost”,PyMilvus will fill in the default host if only port is provided. port (str/int): The port of Milvus instance. Default at 19530, PyMilvuswill fill in the default port if only host is provided. user (str): Use which user to connect to Milvus instance. If user andpassword are provided, we will add related header in every RPC call. password (str): Required when user is provided. The passwordcorresponding to the user. secure (bool): Default is false. If set to true, tls will be enabled. client_key_path (str): If use tls two-way authentication, need to write the client.key path. client_pem_path (str): If use tls two-way authentication, need towrite the client.pem path. ca_pem_path (str): If use tls two-way authentication, need to writethe ca.pem path. server_pem_path (str): If use tls one-way authentication, need towrite the server.pem path. server_name (str): If use tls, need to write the common name. consistency_level (str) – The consistency level to use for a collection. Defaults to “Session”. index_params (Optional[dict]) – Which index params to use. Defaults to HNSW/AUTOINDEX depending on service. search_params (Optional[dict]) – Which search params to use. Defaults to default of index. drop_old (Optional[bool]) – Whether to drop the current collection. Defaults to False. The connection args used for this class comes in the form of a dict, here are a few of the options:
[ 2118, 2485, 1129, 564, 516, 18, 516, 2969, 916, 25, 6280, 966, 863, 627, 3875, 320, 496, 1680, 578, 3552, 315, 10357, 85, 355, 2937, 13, 8058, 520, 1054, 8465, 9520, 14149, 60332, 85, 355, 690, 5266, 304, 279, 1670, 3552, 422, 1193, 2700, 374, 3984, 627, 403, 320, 496, 32214, 1680, 578, 2700, 315, 10357, 85, 355, 2937, 13, 8058, 520, 220, 6280, 966, 11, 5468, 60332, 85, 355, 14724, 5266, 304, 279, 1670, 2700, 422, 1193, 3552, 374, 3984, 627, 882, 320, 496, 1680, 5560, 902, 1217, 311, 4667, 311, 10357, 85, 355, 2937, 13, 1442, 1217, 323, 3918, 527, 3984, 11, 584, 690, 923, 5552, 4342, 304, 1475, 35108, 1650, 627, 3918, 320, 496, 1680, 12948, 994, 1217, 374, 3984, 13, 578, 3636, 6133, 6961, 287, 311, 279, 1217, 627, 26189, 320, 2707, 1680, 8058, 374, 905, 13, 1442, 743, 311, 837, 11, 56126, 690, 387, 9147, 627, 3045, 3173, 2703, 320, 496, 1680, 1442, 1005, 56126, 1403, 27896, 17066, 11, 1205, 311, 198, 5040, 279, 3016, 4840, 1853, 627, 3045, 623, 336, 2703, 320, 496, 1680, 1442, 1005, 56126, 1403, 27896, 17066, 11, 1205, 311, 5040, 279, 3016, 50473, 1853, 627, 936, 623, 336, 2703, 320, 496, 1680, 1442, 1005, 56126, 1403, 27896, 17066, 11, 1205, 311, 2155, 19030, 2211, 50473, 1853, 627, 4120, 623, 336, 2703, 320, 496, 1680, 1442, 1005, 56126, 832, 27896, 17066, 11, 1205, 311, 5040, 279, 3622, 50473, 1853, 627, 4120, 1292, 320, 496, 1680, 1442, 1005, 56126, 11, 1205, 311, 3350, 279, 4279, 836, 627, 6387, 48194, 8438, 320, 496, 8, 1389, 578, 29237, 2237, 311, 1005, 369, 264, 4526, 627, 16672, 311, 1054, 5396, 863, 627, 1275, 6887, 320, 15669, 58, 8644, 2526, 1389, 16299, 1963, 3712, 311, 1005, 13, 37090, 311, 198, 39, 2507, 54, 10576, 15773, 45431, 11911, 389, 2532, 627, 1874, 6887, 320, 15669, 58, 8644, 2526, 1389, 16299, 2778, 3712, 311, 1005, 13, 37090, 311, 198, 2309, 315, 1963, 627, 6861, 21792, 320, 15669, 58, 2707, 2526, 1389, 13440, 311, 6068, 279, 1510, 4526, 13, 37090, 198, 998, 3641, 627, 791, 3717, 2897, 1511, 369, 420, 538, 4131, 304, 279, 1376, 315, 264, 6587, 345, 6881, 527, 264, 2478, 315, 279, 2671, 25 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
513aa0af8490-2
here are a few of the options: address (str): The actual address of Milvusinstance. Example address: “localhost:19530” uri (str): The uri of Milvus instance. Example uri:“http://randomwebsite:19530”, “tcp:foobarsite:19530”, “https://ok.s3.south.com:19530”. host (str): The host of Milvus instance. Default at “localhost”,PyMilvus will fill in the default host if only port is provided. port (str/int): The port of Milvus instance. Default at 19530, PyMilvuswill fill in the default port if only host is provided. user (str): Use which user to connect to Milvus instance. If user andpassword are provided, we will add related header in every RPC call. password (str): Required when user is provided. The passwordcorresponding to the user. secure (bool): Default is false. If set to true, tls will be enabled. client_key_path (str): If use tls two-way authentication, need to write the client.key path. client_pem_path (str): If use tls two-way authentication, need towrite the client.pem path. ca_pem_path (str): If use tls two-way authentication, need to writethe ca.pem path. server_pem_path (str): If use tls one-way authentication, need towrite the server.pem path. server_name (str): If use tls, need to write the common name. Methods __init__(embedding_function[, ...]) Initialize wrapper around the milvus vector database. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas])
[ 6881, 527, 264, 2478, 315, 279, 2671, 512, 5102, 320, 496, 1680, 578, 5150, 2686, 315, 10357, 85, 355, 4956, 13, 13688, 2686, 25, 1054, 8465, 25, 6280, 966, 89874, 6198, 320, 496, 1680, 578, 13371, 315, 10357, 85, 355, 2937, 13, 13688, 13371, 25, 2118, 1277, 1129, 11719, 20050, 25, 6280, 966, 863, 345, 2118, 28260, 25, 831, 677, 1590, 635, 25, 6280, 966, 863, 345, 2118, 2485, 1129, 564, 516, 18, 516, 2969, 916, 25, 6280, 966, 863, 627, 3875, 320, 496, 1680, 578, 3552, 315, 10357, 85, 355, 2937, 13, 8058, 520, 1054, 8465, 9520, 14149, 60332, 85, 355, 690, 5266, 304, 279, 1670, 3552, 422, 1193, 2700, 374, 3984, 627, 403, 320, 496, 32214, 1680, 578, 2700, 315, 10357, 85, 355, 2937, 13, 8058, 520, 220, 6280, 966, 11, 5468, 60332, 85, 355, 14724, 5266, 304, 279, 1670, 2700, 422, 1193, 3552, 374, 3984, 627, 882, 320, 496, 1680, 5560, 902, 1217, 311, 4667, 311, 10357, 85, 355, 2937, 13, 1442, 1217, 323, 3918, 527, 3984, 11, 584, 690, 923, 5552, 4342, 304, 1475, 35108, 1650, 627, 3918, 320, 496, 1680, 12948, 994, 1217, 374, 3984, 13, 578, 3636, 6133, 6961, 287, 311, 279, 1217, 627, 26189, 320, 2707, 1680, 8058, 374, 905, 13, 1442, 743, 311, 837, 11, 56126, 690, 387, 9147, 627, 3045, 3173, 2703, 320, 496, 1680, 1442, 1005, 56126, 1403, 27896, 17066, 11, 1205, 311, 198, 5040, 279, 3016, 4840, 1853, 627, 3045, 623, 336, 2703, 320, 496, 1680, 1442, 1005, 56126, 1403, 27896, 17066, 11, 1205, 311, 5040, 279, 3016, 50473, 1853, 627, 936, 623, 336, 2703, 320, 496, 1680, 1442, 1005, 56126, 1403, 27896, 17066, 11, 1205, 311, 2155, 19030, 2211, 50473, 1853, 627, 4120, 623, 336, 2703, 320, 496, 1680, 1442, 1005, 56126, 832, 27896, 17066, 11, 1205, 311, 5040, 279, 3622, 50473, 1853, 627, 4120, 1292, 320, 496, 1680, 1442, 1005, 56126, 11, 1205, 311, 3350, 279, 4279, 836, 627, 18337, 198, 565, 2381, 3889, 95711, 9353, 38372, 4194, 1131, 2608, 10130, 13564, 2212, 279, 7625, 85, 355, 4724, 4729, 627, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2526 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
513aa0af8490-3
aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, timeout, ...]) Insert text data into Milvus. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete(ids) Delete by vector ID. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas, ...]) Create a Zilliz collection, indexes it with HNSW, and insert data. max_marginal_relevance_search(query[, k, ...]) Perform a search and return results that are reordered by MMR. max_marginal_relevance_search_by_vector(...) Perform a search and return results that are reordered by MMR. search(query, search_type, **kwargs)
[ 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 11, 4194, 14482, 11, 4194, 1131, 2608, 14099, 1495, 828, 1139, 10357, 85, 355, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 340, 6571, 555, 4724, 3110, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 11, 4194, 1131, 2608, 4110, 264, 1901, 484, 450, 4526, 11, 25998, 433, 449, 473, 2507, 54, 11, 323, 5774, 828, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 48051, 264, 2778, 323, 471, 3135, 430, 527, 50132, 555, 386, 18953, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 48051, 264, 2778, 323, 471, 3135, 430, 527, 50132, 555, 386, 18953, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 8 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
513aa0af8490-4
search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k, param, expr, ...]) Perform a similarity search against the query string. similarity_search_by_vector(embedding[, k, ...]) Perform a similarity search against the query string. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k, ...]) Perform a search on a query string and return results with score. similarity_search_with_score_by_vector(embedding) Perform a search on a query string and return results with score. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, timeout: Optional[int] = None, batch_size: int = 1000, **kwargs: Any) → List[str]¶
[ 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 11, 4194, 913, 11, 4194, 9600, 11, 4194, 1131, 2608, 48051, 264, 38723, 2778, 2403, 279, 3319, 925, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 11, 4194, 1131, 2608, 48051, 264, 38723, 2778, 2403, 279, 3319, 925, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15124, 49325, 10947, 6753, 10622, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 48051, 264, 2778, 389, 264, 3319, 925, 323, 471, 3135, 449, 5573, 627, 15124, 49325, 10947, 6753, 10622, 3795, 12526, 50825, 7113, 340, 48051, 264, 2778, 389, 264, 3319, 925, 323, 471, 3135, 449, 5573, 627, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 9829, 25, 12536, 19155, 60, 284, 2290, 11, 7309, 2424, 25, 528, 284, 220, 1041, 15, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
513aa0af8490-5
Insert text data into Milvus. Inserting data when the collection has not be made yet will result in creating a new Collection. The data of the first entity decides the schema of the new collection, the dim is extracted from the first embedding and the columns are decided by the first metadata dict. Metada keys will need to be present for all inserted values. At the moment there is no None equivalent in Milvus. Parameters texts (Iterable[str]) – The texts to embed, it is assumed that they all fit in memory. metadatas (Optional[List[dict]]) – Metadata dicts attached to each of the texts. Defaults to None. timeout (Optional[int]) – Timeout for each batch insert. Defaults to None. batch_size (int, optional) – Batch size to use for insertion. Defaults to 1000. Raises MilvusException – Failure to add texts Returns The resulting keys for each inserted element. Return type List[str] async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance.
[ 14099, 1495, 828, 1139, 10357, 85, 355, 627, 14099, 287, 828, 994, 279, 4526, 706, 539, 387, 1903, 3686, 690, 1121, 198, 258, 6968, 264, 502, 11348, 13, 578, 828, 315, 279, 1176, 5502, 28727, 198, 1820, 11036, 315, 279, 502, 4526, 11, 279, 5213, 374, 28532, 505, 279, 1176, 198, 95711, 323, 279, 8310, 527, 6773, 555, 279, 1176, 11408, 6587, 627, 35773, 2649, 7039, 690, 1205, 311, 387, 3118, 369, 682, 22306, 2819, 13, 2468, 198, 1820, 4545, 1070, 374, 912, 2290, 13890, 304, 10357, 85, 355, 627, 9905, 198, 87042, 320, 51735, 17752, 2526, 1389, 578, 22755, 311, 11840, 11, 433, 374, 19655, 198, 9210, 814, 682, 5052, 304, 5044, 627, 4150, 329, 19907, 320, 15669, 53094, 58, 8644, 30716, 1389, 34689, 98699, 12673, 311, 1855, 315, 198, 1820, 22755, 13, 37090, 311, 2290, 627, 14482, 320, 15669, 19155, 2526, 1389, 40480, 369, 1855, 7309, 5774, 13, 37090, 198, 998, 2290, 627, 14377, 2424, 320, 396, 11, 10309, 8, 1389, 35004, 1404, 311, 1005, 369, 37027, 627, 16672, 311, 220, 1041, 15, 627, 36120, 198, 60332, 85, 355, 1378, 1389, 33360, 311, 923, 22755, 198, 16851, 198, 791, 13239, 7039, 369, 1855, 22306, 2449, 627, 5715, 955, 198, 861, 17752, 933, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
513aa0af8490-6
Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: List[str]) → Optional[bool]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings.
[ 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
513aa0af8490-7
Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'LangChainCollection', connection_args: dict[str, Any] = {}, consistency_level: str = 'Session', index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: bool = False, **kwargs: Any) → Zilliz[source]¶ Create a Zilliz collection, indexes it with HNSW, and insert data. Parameters texts (List[str]) – Text data. embedding (Embeddings) – Embedding function. metadatas (Optional[List[dict]]) – Metadata for each text if it exists. Defaults to None. collection_name (str, optional) – Collection name to use. Defaults to “LangChainCollection”. connection_args (dict[str, Any], optional) – Connection args to use. Defaults to DEFAULT_MILVUS_CONNECTION. consistency_level (str, optional) – Which consistency level to use. Defaults to “Session”. index_params (Optional[dict], optional) – Which index_params to use. Defaults to None. search_params (Optional[dict], optional) – Which search params to use. Defaults to None. drop_old (Optional[bool], optional) – Whether to drop the collection with that name if it exists. Defaults to False. Returns Zilliz Vector Store Return type Zilliz
[ 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 4526, 1292, 25, 610, 284, 364, 27317, 19368, 6618, 518, 3717, 8550, 25, 6587, 17752, 11, 5884, 60, 284, 16857, 29237, 8438, 25, 610, 284, 364, 5396, 518, 1963, 6887, 25, 12536, 58, 8644, 60, 284, 2290, 11, 2778, 6887, 25, 12536, 58, 8644, 60, 284, 2290, 11, 6068, 21792, 25, 1845, 284, 3641, 11, 3146, 9872, 25, 5884, 8, 11651, 1901, 484, 450, 76747, 60, 55609, 198, 4110, 264, 1901, 484, 450, 4526, 11, 25998, 433, 449, 473, 2507, 54, 11, 323, 5774, 828, 627, 9905, 198, 87042, 320, 861, 17752, 2526, 1389, 2991, 828, 627, 95711, 320, 26566, 25624, 8, 1389, 38168, 7113, 734, 627, 4150, 329, 19907, 320, 15669, 53094, 58, 8644, 30716, 1389, 34689, 369, 1855, 1495, 422, 433, 6866, 627, 16672, 311, 2290, 627, 13727, 1292, 320, 496, 11, 10309, 8, 1389, 11348, 836, 311, 1005, 13, 37090, 311, 198, 2118, 27317, 19368, 6618, 863, 627, 7898, 8550, 320, 8644, 17752, 11, 5884, 1145, 10309, 8, 1389, 11278, 2897, 311, 1005, 13, 37090, 198, 998, 12221, 1267, 1750, 53, 2078, 41808, 627, 6387, 48194, 8438, 320, 496, 11, 10309, 8, 1389, 16299, 29237, 2237, 311, 1005, 13, 37090, 198, 998, 1054, 5396, 863, 627, 1275, 6887, 320, 15669, 58, 8644, 1145, 10309, 8, 1389, 16299, 1963, 6887, 311, 1005, 627, 16672, 311, 2290, 627, 1874, 6887, 320, 15669, 58, 8644, 1145, 10309, 8, 1389, 16299, 2778, 3712, 311, 1005, 627, 16672, 311, 2290, 627, 6861, 21792, 320, 15669, 58, 2707, 1145, 10309, 8, 1389, 13440, 311, 6068, 279, 4526, 449, 198, 9210, 836, 422, 433, 6866, 13, 37090, 311, 3641, 627, 16851, 198, 57, 484, 450, 4290, 9307, 198, 5715, 955, 198, 57, 484, 450 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
513aa0af8490-8
Returns Zilliz Vector Store Return type Zilliz max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Document]¶ Perform a search and return results that are reordered by MMR. Parameters query (str) – The text being searched. k (int, optional) – How many results to give. Defaults to 4. fetch_k (int, optional) – Total results to select k from. Defaults to 20. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5 param (dict, optional) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Returns Document results for search. Return type List[Document] max_marginal_relevance_search_by_vector(embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Document]¶ Perform a search and return results that are reordered by MMR. Parameters embedding (str) – The embedding vector being searched.
[ 16851, 198, 57, 484, 450, 4290, 9307, 198, 5715, 955, 198, 57, 484, 450, 198, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 1719, 25, 12536, 58, 8644, 60, 284, 2290, 11, 15522, 25, 12536, 17752, 60, 284, 2290, 11, 9829, 25, 12536, 19155, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 48051, 264, 2778, 323, 471, 3135, 430, 527, 50132, 555, 386, 18953, 627, 9905, 198, 1663, 320, 496, 8, 1389, 578, 1495, 1694, 27600, 627, 74, 320, 396, 11, 10309, 8, 1389, 2650, 1690, 3135, 311, 3041, 13, 37090, 311, 220, 19, 627, 9838, 4803, 320, 396, 11, 10309, 8, 1389, 10884, 3135, 311, 3373, 597, 505, 627, 16672, 311, 220, 508, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 198, 913, 320, 8644, 11, 10309, 8, 1389, 578, 2778, 3712, 369, 279, 5300, 1963, 627, 16672, 311, 2290, 627, 9600, 320, 496, 11, 10309, 8, 1389, 82631, 7645, 13, 37090, 311, 2290, 627, 14482, 320, 396, 11, 10309, 8, 1389, 2650, 1317, 311, 3868, 1603, 9829, 1493, 627, 16672, 311, 2290, 627, 9872, 1389, 11348, 9472, 368, 16570, 6105, 627, 16851, 198, 7676, 3135, 369, 2778, 627, 5715, 955, 198, 861, 58, 7676, 933, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1160, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 1719, 25, 12536, 58, 8644, 60, 284, 2290, 11, 15522, 25, 12536, 17752, 60, 284, 2290, 11, 9829, 25, 12536, 19155, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 48051, 264, 2778, 323, 471, 3135, 430, 527, 50132, 555, 386, 18953, 627, 9905, 198, 95711, 320, 496, 8, 1389, 578, 40188, 4724, 1694, 27600, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
513aa0af8490-9
Parameters embedding (str) – The embedding vector being searched. k (int, optional) – How many results to give. Defaults to 4. fetch_k (int, optional) – Total results to select k from. Defaults to 20. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5 param (dict, optional) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Returns Document results for search. Return type List[Document] search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Document]¶ Perform a similarity search against the query string. Parameters query (str) – The text to search. k (int, optional) – How many results to return. Defaults to 4. param (dict, optional) – The search params for the index type. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Returns Document results for search. Return type List[Document]
[ 9905, 198, 95711, 320, 496, 8, 1389, 578, 40188, 4724, 1694, 27600, 627, 74, 320, 396, 11, 10309, 8, 1389, 2650, 1690, 3135, 311, 3041, 13, 37090, 311, 220, 19, 627, 9838, 4803, 320, 396, 11, 10309, 8, 1389, 10884, 3135, 311, 3373, 597, 505, 627, 16672, 311, 220, 508, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 198, 913, 320, 8644, 11, 10309, 8, 1389, 578, 2778, 3712, 369, 279, 5300, 1963, 627, 16672, 311, 2290, 627, 9600, 320, 496, 11, 10309, 8, 1389, 82631, 7645, 13, 37090, 311, 2290, 627, 14482, 320, 396, 11, 10309, 8, 1389, 2650, 1317, 311, 3868, 1603, 9829, 1493, 627, 16672, 311, 2290, 627, 9872, 1389, 11348, 9472, 368, 16570, 6105, 627, 16851, 198, 7676, 3135, 369, 2778, 627, 5715, 955, 198, 861, 58, 7676, 933, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 1719, 25, 12536, 58, 8644, 60, 284, 2290, 11, 15522, 25, 12536, 17752, 60, 284, 2290, 11, 9829, 25, 12536, 19155, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 48051, 264, 38723, 2778, 2403, 279, 3319, 925, 627, 9905, 198, 1663, 320, 496, 8, 1389, 578, 1495, 311, 2778, 627, 74, 320, 396, 11, 10309, 8, 1389, 2650, 1690, 3135, 311, 471, 13, 37090, 311, 220, 19, 627, 913, 320, 8644, 11, 10309, 8, 1389, 578, 2778, 3712, 369, 279, 1963, 955, 627, 16672, 311, 2290, 627, 9600, 320, 496, 11, 10309, 8, 1389, 82631, 7645, 13, 37090, 311, 2290, 627, 14482, 320, 396, 11, 10309, 8, 1389, 2650, 1317, 311, 3868, 1603, 9829, 1493, 627, 16672, 311, 2290, 627, 9872, 1389, 11348, 9472, 368, 16570, 6105, 627, 16851, 198, 7676, 3135, 369, 2778, 627, 5715, 955, 198, 861, 58, 7676, 60 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
513aa0af8490-10
Returns Document results for search. Return type List[Document] similarity_search_by_vector(embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Document]¶ Perform a similarity search against the query string. Parameters embedding (List[float]) – The embedding vector to search. k (int, optional) – How many results to return. Defaults to 4. param (dict, optional) – The search params for the index type. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Returns Document results for search. Return type List[Document] similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Tuple[Document, float]]¶
[ 16851, 198, 7676, 3135, 369, 2778, 627, 5715, 955, 198, 861, 58, 7676, 933, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 1719, 25, 12536, 58, 8644, 60, 284, 2290, 11, 15522, 25, 12536, 17752, 60, 284, 2290, 11, 9829, 25, 12536, 19155, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 48051, 264, 38723, 2778, 2403, 279, 3319, 925, 627, 9905, 198, 95711, 320, 861, 96481, 2526, 1389, 578, 40188, 4724, 311, 2778, 627, 74, 320, 396, 11, 10309, 8, 1389, 2650, 1690, 3135, 311, 471, 13, 37090, 311, 220, 19, 627, 913, 320, 8644, 11, 10309, 8, 1389, 578, 2778, 3712, 369, 279, 1963, 955, 627, 16672, 311, 2290, 627, 9600, 320, 496, 11, 10309, 8, 1389, 82631, 7645, 13, 37090, 311, 2290, 627, 14482, 320, 396, 11, 10309, 8, 1389, 2650, 1317, 311, 3868, 1603, 9829, 1493, 627, 16672, 311, 2290, 627, 9872, 1389, 11348, 9472, 368, 16570, 6105, 627, 16851, 198, 7676, 3135, 369, 2778, 627, 5715, 955, 198, 861, 58, 7676, 933, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 1719, 25, 12536, 58, 8644, 60, 284, 2290, 11, 15522, 25, 12536, 17752, 60, 284, 2290, 11, 9829, 25, 12536, 19155, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
513aa0af8490-11
Perform a search on a query string and return results with score. For more information about the search parameters, take a look at the pymilvus documentation found here: https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md Parameters query (str) – The text being searched. k (int, optional) – The amount of results ot return. Defaults to 4. param (dict) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Return type List[float], List[Tuple[Document, any, any]] similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Tuple[Document, float]]¶ Perform a search on a query string and return results with score. For more information about the search parameters, take a look at the pymilvus documentation found here: https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md Parameters embedding (List[float]) – The embedding vector being searched. k (int, optional) – The amount of results ot return. Defaults to 4. param (dict) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Returns
[ 48051, 264, 2778, 389, 264, 3319, 925, 323, 471, 3135, 449, 5573, 627, 2520, 810, 2038, 922, 279, 2778, 5137, 11, 1935, 264, 1427, 520, 279, 46860, 321, 85, 355, 198, 77403, 1766, 1618, 512, 2485, 1129, 73370, 85, 355, 4340, 10729, 73723, 4420, 1631, 321, 85, 355, 5574, 17, 13, 17, 13, 21, 14, 6618, 24042, 1020, 2329, 198, 9905, 198, 1663, 320, 496, 8, 1389, 578, 1495, 1694, 27600, 627, 74, 320, 396, 11, 10309, 8, 1389, 578, 3392, 315, 3135, 14479, 471, 13, 37090, 311, 220, 19, 627, 913, 320, 8644, 8, 1389, 578, 2778, 3712, 369, 279, 5300, 1963, 627, 16672, 311, 2290, 627, 9600, 320, 496, 11, 10309, 8, 1389, 82631, 7645, 13, 37090, 311, 2290, 627, 14482, 320, 396, 11, 10309, 8, 1389, 2650, 1317, 311, 3868, 1603, 9829, 1493, 627, 16672, 311, 2290, 627, 9872, 1389, 11348, 9472, 368, 16570, 6105, 627, 5715, 955, 198, 861, 96481, 1145, 1796, 20961, 6189, 58, 7676, 11, 904, 11, 904, 14623, 15124, 49325, 10947, 6753, 10622, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 1719, 25, 12536, 58, 8644, 60, 284, 2290, 11, 15522, 25, 12536, 17752, 60, 284, 2290, 11, 9829, 25, 12536, 19155, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 48051, 264, 2778, 389, 264, 3319, 925, 323, 471, 3135, 449, 5573, 627, 2520, 810, 2038, 922, 279, 2778, 5137, 11, 1935, 264, 1427, 520, 279, 46860, 321, 85, 355, 198, 77403, 1766, 1618, 512, 2485, 1129, 73370, 85, 355, 4340, 10729, 73723, 4420, 1631, 321, 85, 355, 5574, 17, 13, 17, 13, 21, 14, 6618, 24042, 1020, 2329, 198, 9905, 198, 95711, 320, 861, 96481, 2526, 1389, 578, 40188, 4724, 1694, 27600, 627, 74, 320, 396, 11, 10309, 8, 1389, 578, 3392, 315, 3135, 14479, 471, 13, 37090, 311, 220, 19, 627, 913, 320, 8644, 8, 1389, 578, 2778, 3712, 369, 279, 5300, 1963, 627, 16672, 311, 2290, 627, 9600, 320, 496, 11, 10309, 8, 1389, 82631, 7645, 13, 37090, 311, 2290, 627, 14482, 320, 396, 11, 10309, 8, 1389, 2650, 1317, 311, 3868, 1603, 9829, 1493, 627, 16672, 311, 2290, 627, 9872, 1389, 11348, 9472, 368, 16570, 6105, 627, 16851 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
513aa0af8490-12
Defaults to None. kwargs – Collection.search() keyword arguments. Returns Result doc and score. Return type List[Tuple[Document, float]]
[ 16672, 311, 2290, 627, 9872, 1389, 11348, 9472, 368, 16570, 6105, 627, 16851, 198, 2122, 4733, 323, 5573, 627, 5715, 955, 198, 861, 20961, 6189, 58, 7676, 11, 2273, 5163 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
5bfc42a67b62-0
langchain.vectorstores.azuresearch.AzureSearch¶ class langchain.vectorstores.azuresearch.AzureSearch(azure_search_endpoint: str, azure_search_key: str, index_name: str, embedding_function: Callable, search_type: str = 'hybrid', semantic_configuration_name: Optional[str] = None, semantic_query_language: str = 'en-us', **kwargs: Any)[source]¶ Bases: VectorStore Initialize with necessary components. Methods __init__(azure_search_endpoint, ...[, ...]) Initialize with necessary components. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas]) Add texts data to an existing index. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query.
[ 5317, 8995, 48203, 44569, 71340, 1874, 58927, 6014, 55609, 198, 1058, 8859, 8995, 48203, 44569, 71340, 1874, 58927, 6014, 7, 40595, 10947, 37799, 25, 610, 11, 77630, 10947, 3173, 25, 610, 11, 1963, 1292, 25, 610, 11, 40188, 9353, 25, 54223, 11, 2778, 1857, 25, 610, 284, 364, 8671, 16621, 518, 42833, 36826, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 42833, 5857, 30121, 25, 610, 284, 364, 268, 26766, 518, 3146, 9872, 25, 5884, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 10130, 449, 5995, 6956, 627, 18337, 198, 565, 2381, 3889, 40595, 10947, 37799, 11, 4194, 1131, 38372, 4194, 1131, 2608, 10130, 449, 5995, 6956, 627, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 2261, 22755, 828, 311, 459, 6484, 1963, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
5bfc42a67b62-1
asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete(ids) Delete by vector ID. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas, ...]) Return VectorStore initialized from texts and embeddings. hybrid_search(query[, k]) Returns the most similar indexed documents to the query text. hybrid_search_with_score(query[, k, filters]) Return docs most similar to query with an hybrid query. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. semantic_hybrid_search(query[, k]) Returns the most similar indexed documents to the query text. semantic_hybrid_search_with_score(query[, ...]) Return docs most similar to query with an hybrid query. similarity_search(query[, k]) Return docs most similar to query. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. vector_search(query[, k]) Returns the most similar indexed documents to the query text. vector_search_with_score(query[, k, filters]) Return docs most similar to query. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters
[ 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 340, 6571, 555, 4724, 3110, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 11, 4194, 1131, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 8671, 16621, 10947, 10974, 38372, 4194, 74, 2608, 16851, 279, 1455, 4528, 31681, 9477, 311, 279, 3319, 1495, 627, 8671, 16621, 10947, 6753, 10622, 10974, 38372, 4194, 74, 11, 4194, 25630, 2608, 5715, 27437, 1455, 4528, 311, 3319, 449, 459, 26038, 3319, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 48958, 1552, 94490, 10947, 10974, 38372, 4194, 74, 2608, 16851, 279, 1455, 4528, 31681, 9477, 311, 279, 3319, 1495, 627, 48958, 1552, 94490, 10947, 6753, 10622, 10974, 38372, 4194, 1131, 2608, 5715, 27437, 1455, 4528, 311, 3319, 449, 459, 26038, 3319, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 3295, 10947, 10974, 38372, 4194, 74, 2608, 16851, 279, 1455, 4528, 31681, 9477, 311, 279, 3319, 1495, 627, 3295, 10947, 6753, 10622, 10974, 38372, 4194, 74, 11, 4194, 25630, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
5bfc42a67b62-2
Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]¶ Add texts data to an existing index. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance.
[ 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 2261, 22755, 828, 311, 459, 6484, 1963, 627, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
5bfc42a67b62-3
Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: List[str]) → Optional[bool]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings.
[ 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
5bfc42a67b62-4
Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, azure_search_endpoint: str = '', azure_search_key: str = '', index_name: str = 'langchain-index', **kwargs: Any) → AzureSearch[source]¶ Return VectorStore initialized from texts and embeddings. hybrid_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Returns the most similar indexed documents to the query text. Parameters query (str) – The query text for which to find similar documents. k (int) – The number of documents to return. Default is 4. Returns A list of documents that are most similar to the query text. Return type List[Document] hybrid_search_with_score(query: str, k: int = 4, filters: Optional[str] = None) → List[Tuple[Document, float]][source]¶ Return docs most similar to query with an hybrid query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query and score for each max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm.
[ 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 77630, 10947, 37799, 25, 610, 284, 9158, 77630, 10947, 3173, 25, 610, 284, 9158, 1963, 1292, 25, 610, 284, 364, 5317, 8995, 22214, 518, 3146, 9872, 25, 5884, 8, 11651, 35219, 6014, 76747, 60, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 8671, 16621, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 16851, 279, 1455, 4528, 31681, 9477, 311, 279, 3319, 1495, 627, 9905, 198, 1663, 320, 496, 8, 1389, 578, 3319, 1495, 369, 902, 311, 1505, 4528, 9477, 627, 74, 320, 396, 8, 1389, 578, 1396, 315, 9477, 311, 471, 13, 8058, 374, 220, 19, 627, 16851, 198, 32, 1160, 315, 9477, 430, 527, 1455, 4528, 311, 279, 3319, 1495, 627, 5715, 955, 198, 861, 58, 7676, 933, 8671, 16621, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 13711, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 449, 459, 26038, 3319, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 323, 5573, 369, 1855, 198, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
5bfc42a67b62-5
fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. semantic_hybrid_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Returns the most similar indexed documents to the query text. Parameters query (str) – The query text for which to find similar documents. k (int) – The number of documents to return. Default is 4. Returns A list of documents that are most similar to the query text. Return type List[Document]
[ 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 48958, 1552, 94490, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 16851, 279, 1455, 4528, 31681, 9477, 311, 279, 3319, 1495, 627, 9905, 198, 1663, 320, 496, 8, 1389, 578, 3319, 1495, 369, 902, 311, 1505, 4528, 9477, 627, 74, 320, 396, 8, 1389, 578, 1396, 315, 9477, 311, 471, 13, 8058, 374, 220, 19, 627, 16851, 198, 32, 1160, 315, 9477, 430, 527, 1455, 4528, 311, 279, 3319, 1495, 627, 5715, 955, 198, 861, 58, 7676, 60 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
5bfc42a67b62-6
Return type List[Document] semantic_hybrid_search_with_score(query: str, k: int = 4, filters: Optional[str] = None) → List[Tuple[Document, float]][source]¶ Return docs most similar to query with an hybrid query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query and score for each similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) vector_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Returns the most similar indexed documents to the query text. Parameters
[ 5715, 955, 198, 861, 58, 7676, 933, 48958, 1552, 94490, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 13711, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 449, 459, 26038, 3319, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 323, 5573, 369, 1855, 198, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 3295, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 16851, 279, 1455, 4528, 31681, 9477, 311, 279, 3319, 1495, 627, 9905 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
5bfc42a67b62-7
Returns the most similar indexed documents to the query text. Parameters query (str) – The query text for which to find similar documents. k (int) – The number of documents to return. Default is 4. Returns A list of documents that are most similar to the query text. Return type List[Document] vector_search_with_score(query: str, k: int = 4, filters: Optional[str] = None) → List[Tuple[Document, float]][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query and score for each
[ 16851, 279, 1455, 4528, 31681, 9477, 311, 279, 3319, 1495, 627, 9905, 198, 1663, 320, 496, 8, 1389, 578, 3319, 1495, 369, 902, 311, 1505, 4528, 9477, 627, 74, 320, 396, 8, 1389, 578, 1396, 315, 9477, 311, 471, 13, 8058, 374, 220, 19, 627, 16851, 198, 32, 1160, 315, 9477, 430, 527, 1455, 4528, 311, 279, 3319, 1495, 627, 5715, 955, 198, 861, 58, 7676, 933, 3295, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 13711, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 323, 5573, 369, 1855 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
123e8e4eb860-0
langchain.vectorstores.myscale.MyScaleSettings¶ class langchain.vectorstores.myscale.MyScaleSettings(_env_file: Optional[Union[str, PathLike, List[Union[str, PathLike]], Tuple[Union[str, PathLike], ...]]] = '<object object>', _env_file_encoding: Optional[str] = None, _env_nested_delimiter: Optional[str] = None, _secrets_dir: Optional[Union[str, PathLike]] = None, *, host: str = 'localhost', port: int = 8443, username: Optional[str] = None, password: Optional[str] = None, index_type: str = 'IVFFLAT', index_param: Optional[Dict[str, str]] = None, column_map: Dict[str, str] = {'id': 'id', 'metadata': 'metadata', 'text': 'text', 'vector': 'vector'}, database: str = 'default', table: str = 'langchain', metric: str = 'cosine')[source]¶ Bases: BaseSettings MyScale Client Configuration Attribute: myscale_host (str)An URL to connect to MyScale backend.Defaults to ‘localhost’. myscale_port (int) : URL port to connect with HTTP. Defaults to 8443. username (str) : Username to login. Defaults to None. password (str) : Password to login. Defaults to None. index_type (str): index type string. index_param (dict): index build parameter. database (str) : Database name to find the table. Defaults to ‘default’. table (str) : Table name to operate on. Defaults to ‘vector_table’. metric (str)Metric to compute distance,supported are (‘l2’, ‘cosine’, ‘ip’). Defaults to ‘cosine’.
[ 5317, 8995, 48203, 44569, 749, 84009, 28152, 7092, 6214, 55609, 198, 1058, 8859, 8995, 48203, 44569, 749, 84009, 28152, 7092, 6214, 2551, 3239, 2517, 25, 12536, 58, 33758, 17752, 11, 8092, 13246, 11, 1796, 58, 33758, 17752, 11, 8092, 13246, 21128, 25645, 58, 33758, 17752, 11, 8092, 13246, 1145, 2564, 5163, 60, 284, 3942, 1735, 1665, 20150, 721, 3239, 2517, 38713, 25, 12536, 17752, 60, 284, 2290, 11, 721, 3239, 67379, 18519, 18170, 25, 12536, 17752, 60, 284, 2290, 11, 721, 325, 53810, 4432, 25, 12536, 58, 33758, 17752, 11, 8092, 13246, 5163, 284, 2290, 11, 12039, 3552, 25, 610, 284, 364, 8465, 518, 2700, 25, 528, 284, 220, 24344, 18, 11, 6059, 25, 12536, 17752, 60, 284, 2290, 11, 3636, 25, 12536, 17752, 60, 284, 2290, 11, 1963, 1857, 25, 610, 284, 364, 3166, 1785, 79998, 518, 1963, 4182, 25, 12536, 58, 13755, 17752, 11, 610, 5163, 284, 2290, 11, 3330, 5489, 25, 30226, 17752, 11, 610, 60, 284, 5473, 307, 1232, 364, 307, 518, 364, 18103, 1232, 364, 18103, 518, 364, 1342, 1232, 364, 1342, 518, 364, 3295, 1232, 364, 3295, 25762, 4729, 25, 610, 284, 364, 2309, 518, 2007, 25, 610, 284, 364, 5317, 8995, 518, 18767, 25, 610, 284, 364, 9594, 483, 13588, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 6214, 198, 5159, 7092, 8589, 12499, 198, 3994, 512, 8373, 2296, 13144, 320, 496, 8, 2127, 5665, 311, 4667, 311, 3092, 7092, 19713, 13578, 82, 311, 3451, 8465, 529, 627, 8373, 2296, 8889, 320, 396, 8, 551, 5665, 2700, 311, 4667, 449, 10339, 13, 37090, 311, 220, 24344, 18, 627, 5223, 320, 496, 8, 551, 30645, 311, 5982, 13, 37090, 311, 2290, 627, 3918, 320, 496, 8, 551, 12642, 311, 5982, 13, 37090, 311, 2290, 627, 1275, 1857, 320, 496, 1680, 1963, 955, 925, 627, 1275, 4182, 320, 8644, 1680, 1963, 1977, 5852, 627, 12494, 320, 496, 8, 551, 10199, 836, 311, 1505, 279, 2007, 13, 37090, 311, 3451, 2309, 529, 627, 2048, 320, 496, 8, 551, 6771, 836, 311, 14816, 389, 627, 16672, 311, 3451, 3295, 5350, 529, 627, 16282, 320, 496, 8, 55410, 311, 12849, 6138, 10900, 12796, 527, 320, 14336, 75, 17, 20182, 3451, 9594, 483, 20182, 3451, 575, 529, 570, 37090, 311, 3451, 9594, 483, 24535 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.myscale.MyScaleSettings.html
123e8e4eb860-1
column_map (Dict)Column type map to project column name onto langchainsemantics. Must have keys: text, id, vector, must be same size to number of columns. For example: .. code-block:: python {‘id’: ‘text_id’, ‘vector’: ‘text_embedding’, ‘text’: ‘text_plain’, ‘metadata’: ‘metadata_dictionary_in_json’, } Defaults to identity map. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param column_map: Dict[str, str] = {'id': 'id', 'metadata': 'metadata', 'text': 'text', 'vector': 'vector'}¶ param database: str = 'default'¶ param host: str = 'localhost'¶ param index_param: Optional[Dict[str, str]] = None¶ param index_type: str = 'IVFFLAT'¶ param metric: str = 'cosine'¶ param password: Optional[str] = None¶ param port: int = 8443¶ param table: str = 'langchain'¶ param username: Optional[str] = None¶ model Config[source]¶ Bases: object env_file = '.env'¶ env_file_encoding = 'utf-8'¶ env_prefix = 'myscale_'¶
[ 6361, 5489, 320, 13755, 8, 3006, 955, 2472, 311, 2447, 3330, 836, 8800, 8859, 8995, 7143, 37333, 13, 15832, 617, 7039, 25, 1495, 11, 887, 11, 4724, 345, 25849, 387, 1890, 1404, 311, 1396, 315, 8310, 13, 1789, 3187, 512, 497, 2082, 9612, 487, 10344, 198, 90, 14336, 307, 89213, 3451, 1342, 851, 529, 345, 14336, 3295, 89213, 3451, 1342, 52602, 529, 345, 14336, 1342, 89213, 3451, 1342, 42115, 529, 345, 14336, 18103, 89213, 3451, 18103, 43705, 1265, 9643, 529, 345, 534, 16672, 311, 9764, 2472, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 3330, 5489, 25, 30226, 17752, 11, 610, 60, 284, 5473, 307, 1232, 364, 307, 518, 364, 18103, 1232, 364, 18103, 518, 364, 1342, 1232, 364, 1342, 518, 364, 3295, 1232, 364, 3295, 8439, 55609, 198, 913, 4729, 25, 610, 284, 364, 2309, 6, 55609, 198, 913, 3552, 25, 610, 284, 364, 8465, 6, 55609, 198, 913, 1963, 4182, 25, 12536, 58, 13755, 17752, 11, 610, 5163, 284, 2290, 55609, 198, 913, 1963, 1857, 25, 610, 284, 364, 3166, 1785, 79998, 6, 55609, 198, 913, 18767, 25, 610, 284, 364, 9594, 483, 6, 55609, 198, 913, 3636, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 2700, 25, 528, 284, 220, 24344, 18, 55609, 198, 913, 2007, 25, 610, 284, 364, 5317, 8995, 6, 55609, 198, 913, 6059, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 3239, 2517, 284, 6389, 3239, 6, 55609, 198, 3239, 2517, 38713, 284, 364, 4867, 12, 23, 6, 55609, 198, 3239, 14301, 284, 364, 8373, 2296, 19893, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.myscale.MyScaleSettings.html
616d335039a6-0
langchain.vectorstores.redis.RedisVectorStoreRetriever¶ class langchain.vectorstores.redis.RedisVectorStoreRetriever(*, vectorstore: Redis, search_type: str = 'similarity', search_kwargs: dict = None, k: int = 4, score_threshold: float = 0.4)[source]¶ Bases: VectorStoreRetriever, BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param k: int = 4¶ param score_threshold: float = 0.4¶ param search_kwargs: dict [Optional]¶ param search_type: str = 'similarity'¶ param vectorstore: Redis [Required]¶ async aadd_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶ Add documents to vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶ Add documents to vectorstore. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents validator validate_search_type  »  all fields[source]¶ Validate search type.
[ 5317, 8995, 48203, 44569, 50979, 83498, 3866, 6221, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 48203, 44569, 50979, 83498, 3866, 6221, 12289, 462, 2099, 4163, 11, 4724, 4412, 25, 35258, 11, 2778, 1857, 25, 610, 284, 364, 15124, 49325, 518, 2778, 37335, 25, 6587, 284, 2290, 11, 597, 25, 528, 284, 220, 19, 11, 5573, 22616, 25, 2273, 284, 220, 15, 13, 19, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 12289, 462, 2099, 11, 65705, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 597, 25, 528, 284, 220, 19, 55609, 198, 913, 5573, 22616, 25, 2273, 284, 220, 15, 13, 19, 55609, 198, 913, 2778, 37335, 25, 6587, 510, 15669, 60, 55609, 198, 913, 2778, 1857, 25, 610, 284, 364, 15124, 49325, 6, 55609, 198, 913, 4724, 4412, 25, 35258, 510, 8327, 60, 55609, 198, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 2261, 9477, 311, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 2261, 9477, 311, 4724, 4412, 627, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 16503, 9788, 10947, 1857, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 2778, 955, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.redis.RedisVectorStoreRetriever.html
616d335039a6-1
validator validate_search_type  »  all fields[source]¶ Validate search type. allowed_search_types: ClassVar[Collection[str]] = ('similarity', 'similarity_score_threshold', 'mmr')¶ model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 16503, 9788, 10947, 1857, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 2778, 955, 627, 21642, 10947, 9962, 25, 3308, 4050, 58, 6618, 17752, 5163, 284, 4417, 15124, 49325, 518, 364, 15124, 49325, 10622, 22616, 518, 364, 3906, 81, 873, 55609, 198, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.redis.RedisVectorStoreRetriever.html
d2de3b6f73b3-0
langchain.vectorstores.sklearn.JsonSerializer¶ class langchain.vectorstores.sklearn.JsonSerializer(persist_path: str)[source]¶ Bases: BaseSerializer Serializes data in json using the json package from python standard library. Methods __init__(persist_path) extension() The file extension suggested by this serializer (without dot). load() Loads the data from the persist_path save(data) Saves the data to the persist_path classmethod extension() → str[source]¶ The file extension suggested by this serializer (without dot). load() → Any[source]¶ Loads the data from the persist_path save(data: Any) → None[source]¶ Saves the data to the persist_path
[ 5317, 8995, 48203, 44569, 40554, 12964, 13874, 14233, 55609, 198, 1058, 8859, 8995, 48203, 44569, 40554, 12964, 13874, 14233, 1319, 5082, 2703, 25, 610, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 14233, 198, 6040, 4861, 828, 304, 3024, 1701, 279, 3024, 6462, 505, 10344, 5410, 6875, 627, 18337, 198, 565, 2381, 3889, 40926, 2703, 340, 12709, 746, 791, 1052, 9070, 12090, 555, 420, 22508, 320, 30096, 13046, 4390, 1096, 746, 79617, 279, 828, 505, 279, 23135, 2703, 198, 6766, 2657, 340, 50, 4798, 279, 828, 311, 279, 23135, 2703, 198, 27853, 9070, 368, 11651, 610, 76747, 60, 55609, 198, 791, 1052, 9070, 12090, 555, 420, 22508, 320, 30096, 13046, 4390, 1096, 368, 11651, 5884, 76747, 60, 55609, 198, 79617, 279, 828, 505, 279, 23135, 2703, 198, 6766, 2657, 25, 5884, 8, 11651, 2290, 76747, 60, 55609, 198, 50, 4798, 279, 828, 311, 279, 23135, 2703 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.sklearn.JsonSerializer.html
182cf68d78fb-0
langchain.vectorstores.clickhouse.ClickhouseSettings¶ class langchain.vectorstores.clickhouse.ClickhouseSettings(_env_file: Optional[Union[str, PathLike, List[Union[str, PathLike]], Tuple[Union[str, PathLike], ...]]] = '<object object>', _env_file_encoding: Optional[str] = None, _env_nested_delimiter: Optional[str] = None, _secrets_dir: Optional[Union[str, PathLike]] = None, *, host: str = 'localhost', port: int = 8123, username: Optional[str] = None, password: Optional[str] = None, index_type: str = 'annoy', index_param: Optional[Union[List, Dict]] = ["'L2Distance'", 100], index_query_params: Dict[str, str] = {}, column_map: Dict[str, str] = {'document': 'document', 'embedding': 'embedding', 'id': 'id', 'metadata': 'metadata', 'uuid': 'uuid'}, database: str = 'default', table: str = 'langchain', metric: str = 'angular')[source]¶ Bases: BaseSettings ClickHouse Client Configuration Attribute: clickhouse_host (str)An URL to connect to MyScale backend.Defaults to ‘localhost’. clickhouse_port (int) : URL port to connect with HTTP. Defaults to 8443. username (str) : Username to login. Defaults to None. password (str) : Password to login. Defaults to None. index_type (str): index type string. index_param (list): index build parameter. index_query_params(dict): index query parameters. database (str) : Database name to find the table. Defaults to ‘default’. table (str) : Table name to operate on. Defaults to ‘vector_table’.
[ 5317, 8995, 48203, 44569, 14798, 7830, 11566, 7830, 6214, 55609, 198, 1058, 8859, 8995, 48203, 44569, 14798, 7830, 11566, 7830, 6214, 2551, 3239, 2517, 25, 12536, 58, 33758, 17752, 11, 8092, 13246, 11, 1796, 58, 33758, 17752, 11, 8092, 13246, 21128, 25645, 58, 33758, 17752, 11, 8092, 13246, 1145, 2564, 5163, 60, 284, 3942, 1735, 1665, 20150, 721, 3239, 2517, 38713, 25, 12536, 17752, 60, 284, 2290, 11, 721, 3239, 67379, 18519, 18170, 25, 12536, 17752, 60, 284, 2290, 11, 721, 325, 53810, 4432, 25, 12536, 58, 33758, 17752, 11, 8092, 13246, 5163, 284, 2290, 11, 12039, 3552, 25, 610, 284, 364, 8465, 518, 2700, 25, 528, 284, 220, 19270, 18, 11, 6059, 25, 12536, 17752, 60, 284, 2290, 11, 3636, 25, 12536, 17752, 60, 284, 2290, 11, 1963, 1857, 25, 610, 284, 364, 1036, 2303, 518, 1963, 4182, 25, 12536, 58, 33758, 53094, 11, 30226, 5163, 284, 4482, 6, 43, 17, 15121, 23612, 220, 1041, 1145, 1963, 5857, 6887, 25, 30226, 17752, 11, 610, 60, 284, 16857, 3330, 5489, 25, 30226, 17752, 11, 610, 60, 284, 5473, 6190, 1232, 364, 6190, 518, 364, 95711, 1232, 364, 95711, 518, 364, 307, 1232, 364, 307, 518, 364, 18103, 1232, 364, 18103, 518, 364, 17566, 1232, 364, 17566, 25762, 4729, 25, 610, 284, 364, 2309, 518, 2007, 25, 610, 284, 364, 5317, 8995, 518, 18767, 25, 610, 284, 364, 4328, 13588, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 6214, 198, 2677, 29707, 8589, 12499, 198, 3994, 512, 3763, 7830, 13144, 320, 496, 8, 2127, 5665, 311, 4667, 311, 3092, 7092, 19713, 13578, 82, 311, 3451, 8465, 529, 627, 3763, 7830, 8889, 320, 396, 8, 551, 5665, 2700, 311, 4667, 449, 10339, 13, 37090, 311, 220, 24344, 18, 627, 5223, 320, 496, 8, 551, 30645, 311, 5982, 13, 37090, 311, 2290, 627, 3918, 320, 496, 8, 551, 12642, 311, 5982, 13, 37090, 311, 2290, 627, 1275, 1857, 320, 496, 1680, 1963, 955, 925, 627, 1275, 4182, 320, 1638, 1680, 1963, 1977, 5852, 627, 1275, 5857, 6887, 32378, 1680, 1963, 3319, 5137, 627, 12494, 320, 496, 8, 551, 10199, 836, 311, 1505, 279, 2007, 13, 37090, 311, 3451, 2309, 529, 627, 2048, 320, 496, 8, 551, 6771, 836, 311, 14816, 389, 627, 16672, 311, 3451, 3295, 5350, 24535 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clickhouse.ClickhouseSettings.html
182cf68d78fb-1
table (str) : Table name to operate on. Defaults to ‘vector_table’. metric (str)Metric to compute distance,supported are (‘angular’, ‘euclidean’, ‘manhattan’, ‘hamming’, ‘dot’). Defaults to ‘angular’. https://github.com/spotify/annoy/blob/main/src/annoymodule.cc#L149-L169 column_map (Dict)Column type map to project column name onto langchainsemantics. Must have keys: text, id, vector, must be same size to number of columns. For example: .. code-block:: python {‘id’: ‘text_id’, ‘uuid’: ‘global_unique_id’ ‘embedding’: ‘text_embedding’, ‘document’: ‘text_plain’, ‘metadata’: ‘metadata_dictionary_in_json’, } Defaults to identity map. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param column_map: Dict[str, str] = {'document': 'document', 'embedding': 'embedding', 'id': 'id', 'metadata': 'metadata', 'uuid': 'uuid'}¶ param database: str = 'default'¶ param host: str = 'localhost'¶ param index_param: Optional[Union[List, Dict]] = ["'L2Distance'", 100]¶ param index_query_params: Dict[str, str] = {}¶ param index_type: str = 'annoy'¶ param metric: str = 'angular'¶ param password: Optional[str] = None¶ param port: int = 8123¶ param table: str = 'langchain'¶ param username: Optional[str] = None¶ model Config[source]¶ Bases: object env_file = '.env'¶
[ 2048, 320, 496, 8, 551, 6771, 836, 311, 14816, 389, 627, 16672, 311, 3451, 3295, 5350, 529, 627, 16282, 320, 496, 8, 55410, 311, 12849, 6138, 10900, 12796, 527, 320, 14336, 4328, 20182, 3451, 20732, 51178, 20182, 3451, 1543, 26405, 20182, 3451, 5721, 5424, 529, 345, 14336, 16510, 529, 570, 37090, 311, 3451, 4328, 529, 627, 2485, 1129, 5316, 916, 14, 88488, 14, 1036, 2303, 35927, 15711, 13743, 14, 22278, 1631, 1793, 28912, 2, 43, 10161, 8288, 11739, 198, 6361, 5489, 320, 13755, 8, 3006, 955, 2472, 311, 2447, 3330, 836, 8800, 8859, 8995, 7143, 37333, 13, 15832, 617, 7039, 25, 1495, 11, 887, 11, 4724, 345, 25849, 387, 1890, 1404, 311, 1396, 315, 8310, 13, 1789, 3187, 512, 497, 2082, 9612, 487, 10344, 198, 90, 14336, 307, 89213, 3451, 1342, 851, 529, 345, 14336, 17566, 89213, 3451, 9951, 21912, 851, 529, 198, 14336, 95711, 89213, 3451, 1342, 52602, 529, 345, 14336, 6190, 89213, 3451, 1342, 42115, 529, 345, 14336, 18103, 89213, 3451, 18103, 43705, 1265, 9643, 529, 345, 534, 16672, 311, 9764, 2472, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 3330, 5489, 25, 30226, 17752, 11, 610, 60, 284, 5473, 6190, 1232, 364, 6190, 518, 364, 95711, 1232, 364, 95711, 518, 364, 307, 1232, 364, 307, 518, 364, 18103, 1232, 364, 18103, 518, 364, 17566, 1232, 364, 17566, 8439, 55609, 198, 913, 4729, 25, 610, 284, 364, 2309, 6, 55609, 198, 913, 3552, 25, 610, 284, 364, 8465, 6, 55609, 198, 913, 1963, 4182, 25, 12536, 58, 33758, 53094, 11, 30226, 5163, 284, 4482, 6, 43, 17, 15121, 23612, 220, 1041, 60, 55609, 198, 913, 1963, 5857, 6887, 25, 30226, 17752, 11, 610, 60, 284, 4792, 55609, 198, 913, 1963, 1857, 25, 610, 284, 364, 1036, 2303, 6, 55609, 198, 913, 18767, 25, 610, 284, 364, 4328, 6, 55609, 198, 913, 3636, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 2700, 25, 528, 284, 220, 19270, 18, 55609, 198, 913, 2007, 25, 610, 284, 364, 5317, 8995, 6, 55609, 198, 913, 6059, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 3239, 2517, 284, 6389, 3239, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clickhouse.ClickhouseSettings.html
182cf68d78fb-2
model Config[source]¶ Bases: object env_file = '.env'¶ env_file_encoding = 'utf-8'¶ env_prefix = 'clickhouse_'¶
[ 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 3239, 2517, 284, 6389, 3239, 6, 55609, 198, 3239, 2517, 38713, 284, 364, 4867, 12, 23, 6, 55609, 198, 3239, 14301, 284, 364, 3763, 7830, 19893, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clickhouse.ClickhouseSettings.html
86ce5a50c6fd-0
langchain.vectorstores.starrocks.has_mul_sub_str¶ langchain.vectorstores.starrocks.has_mul_sub_str(s: str, *args: Any) → bool[source]¶ Check if a string has multiple substrings. :param s: The string to check :param *args: The substrings to check for in the string Returns True if all substrings are present in the string, False otherwise Return type bool
[ 5317, 8995, 48203, 44569, 53682, 299, 14895, 7001, 25989, 5341, 2966, 55609, 198, 5317, 8995, 48203, 44569, 53682, 299, 14895, 7001, 25989, 5341, 2966, 1161, 25, 610, 11, 353, 2164, 25, 5884, 8, 11651, 1845, 76747, 60, 55609, 198, 4061, 422, 264, 925, 706, 5361, 16146, 826, 627, 68416, 274, 25, 578, 925, 311, 1817, 198, 68416, 353, 2164, 25, 578, 16146, 826, 311, 1817, 369, 304, 279, 925, 198, 16851, 198, 2575, 422, 682, 16146, 826, 527, 3118, 304, 279, 925, 11, 3641, 6062, 198, 5715, 955, 198, 2707 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.starrocks.has_mul_sub_str.html
e93efd9d561f-0
langchain.vectorstores.weaviate.Weaviate¶ class langchain.vectorstores.weaviate.Weaviate(client: ~typing.Any, index_name: str, text_key: str, embedding: ~typing.Optional[~langchain.embeddings.base.Embeddings] = None, attributes: ~typing.Optional[~typing.List[str]] = None, relevance_score_fn: ~typing.Optional[~typing.Callable[[float], float]] = <function _default_score_normalizer>, by_text: bool = True)[source]¶ Bases: VectorStore Wrapper around Weaviate vector database. To use, you should have the weaviate-client python package installed. Example import weaviate from langchain.vectorstores import Weaviate client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...) weaviate = Weaviate(client, index_name, text_key) Initialize with Weaviate client. Methods __init__(client, index_name, text_key[, ...]) Initialize with Weaviate client. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas]) Upload texts with metadata (properties) to Weaviate. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...])
[ 5317, 8995, 48203, 44569, 31339, 6321, 349, 23210, 6321, 349, 55609, 198, 1058, 8859, 8995, 48203, 44569, 31339, 6321, 349, 23210, 6321, 349, 13097, 25, 4056, 90902, 13614, 11, 1963, 1292, 25, 610, 11, 1495, 3173, 25, 610, 11, 40188, 25, 4056, 90902, 37464, 58, 93, 5317, 8995, 41541, 25624, 9105, 58955, 25624, 60, 284, 2290, 11, 8365, 25, 4056, 90902, 37464, 58, 93, 90902, 5937, 17752, 5163, 284, 2290, 11, 41961, 10622, 15604, 25, 4056, 90902, 37464, 58, 93, 90902, 28115, 481, 15873, 3733, 1145, 2273, 5163, 284, 366, 1723, 721, 2309, 10622, 14300, 3213, 8226, 555, 4424, 25, 1845, 284, 3082, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 11803, 2212, 1226, 6321, 349, 4724, 4729, 627, 1271, 1005, 11, 499, 1288, 617, 279, 584, 6321, 349, 31111, 10344, 6462, 10487, 627, 13617, 198, 475, 584, 6321, 349, 198, 1527, 8859, 8995, 48203, 44569, 1179, 1226, 6321, 349, 198, 3045, 284, 584, 6321, 349, 11978, 6659, 51964, 24656, 1204, 12739, 8253, 40, 2390, 8159, 8073, 53368, 906, 6321, 349, 284, 1226, 6321, 349, 13097, 11, 1963, 1292, 11, 1495, 3173, 340, 10130, 449, 1226, 6321, 349, 3016, 627, 18337, 198, 565, 2381, 3889, 3045, 11, 4194, 1275, 1292, 11, 4194, 1342, 3173, 38372, 4194, 1131, 2608, 10130, 449, 1226, 6321, 349, 3016, 627, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 14165, 22755, 449, 11408, 320, 13495, 8, 311, 1226, 6321, 349, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2526 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.weaviate.Weaviate.html
e93efd9d561f-1
amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete(ids) Delete by vector IDs. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas]) Construct Weaviate wrapper from raw documents. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Return docs most similar to query. similarity_search_by_text(query[, k]) Return docs most similar to query. similarity_search_by_vector(embedding[, k]) Look up similar documents by embedding vector in Weaviate. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k]) Return list of documents most similar to the query text and cosine distance in float for each.
[ 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 340, 6571, 555, 4724, 29460, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 29568, 1226, 6321, 349, 13564, 505, 7257, 9477, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 4424, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 10596, 709, 4528, 9477, 555, 40188, 4724, 304, 1226, 6321, 349, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15124, 49325, 10947, 6753, 10622, 10974, 38372, 4194, 74, 2608, 5715, 1160, 315, 9477, 1455, 4528, 311, 279, 3319, 1495, 323, 76359, 6138, 304, 2273, 369, 1855, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.weaviate.Weaviate.html
e93efd9d561f-2
Return list of documents most similar to the query text and cosine distance in float for each. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]¶ Upload texts with metadata (properties) to Weaviate. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
[ 5715, 1160, 315, 9477, 1455, 4528, 311, 279, 3319, 1495, 323, 76359, 6138, 304, 2273, 369, 1855, 627, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 14165, 22755, 449, 11408, 320, 13495, 8, 311, 1226, 6321, 349, 627, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.weaviate.Weaviate.html
e93efd9d561f-3
Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: List[str]) → None[source]¶ Delete by vector IDs. Parameters ids – List of ids to delete. classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → Weaviate[source]¶ Construct Weaviate wrapper from raw documents. This is a user-friendly interface that: Embeds documents. Creates a new index for the embeddings in the Weaviate instance.
[ 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 25, 1796, 17752, 2526, 11651, 2290, 76747, 60, 55609, 198, 6571, 555, 4724, 29460, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1226, 6321, 349, 76747, 60, 55609, 198, 29568, 1226, 6321, 349, 13564, 505, 7257, 9477, 627, 2028, 374, 264, 1217, 22658, 3834, 430, 512, 26566, 82, 9477, 627, 55968, 264, 502, 1963, 369, 279, 71647, 304, 279, 1226, 6321, 349, 2937, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.weaviate.Weaviate.html
e93efd9d561f-4
Embeds documents. Creates a new index for the embeddings in the Weaviate instance. Adds the documents to the newly created Weaviate index. This is intended to be a quick way to get started. Example from langchain.vectorstores.weaviate import Weaviate from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() weaviate = Weaviate.from_texts( texts, embeddings, weaviate_url="http://localhost:8080" ) max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to.
[ 26566, 82, 9477, 627, 55968, 264, 502, 1963, 369, 279, 71647, 304, 279, 1226, 6321, 349, 2937, 627, 73211, 279, 9477, 311, 279, 13945, 3549, 1226, 6321, 349, 1963, 627, 2028, 374, 10825, 311, 387, 264, 4062, 1648, 311, 636, 3940, 627, 13617, 198, 1527, 8859, 8995, 48203, 44569, 31339, 6321, 349, 1179, 1226, 6321, 349, 198, 1527, 8859, 8995, 41541, 25624, 1179, 5377, 15836, 26566, 25624, 198, 12529, 25624, 284, 5377, 15836, 26566, 25624, 746, 906, 6321, 349, 284, 1226, 6321, 349, 6521, 80746, 1021, 262, 22755, 345, 262, 71647, 345, 262, 584, 6321, 349, 2975, 429, 1277, 1129, 8465, 25, 11770, 15, 702, 340, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.weaviate.Weaviate.html
e93efd9d561f-5
among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_by_text(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document][source]¶ Look up similar documents by embedding vector in Weaviate. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters
[ 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 627, 15124, 49325, 10947, 3795, 4424, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 10596, 709, 4528, 9477, 555, 40188, 4724, 304, 1226, 6321, 349, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.weaviate.Weaviate.html
e93efd9d561f-6
0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return list of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity.
[ 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 1160, 315, 9477, 1455, 4528, 311, 279, 3319, 198, 1342, 323, 76359, 6138, 304, 2273, 369, 1855, 627, 9230, 5573, 11105, 810, 38723, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.weaviate.Weaviate.html
687707ff151e-0
langchain.vectorstores.starrocks.get_named_result¶ langchain.vectorstores.starrocks.get_named_result(connection: Any, query: str) → List[dict[str, Any]][source]¶ Get a named result from a query. :param connection: The connection to the database :param query: The query to execute Returns The result of the query Return type List[dict[str, Any]]
[ 5317, 8995, 48203, 44569, 53682, 299, 14895, 673, 72934, 5400, 55609, 198, 5317, 8995, 48203, 44569, 53682, 299, 14895, 673, 72934, 5400, 25119, 25, 5884, 11, 3319, 25, 610, 8, 11651, 1796, 58, 8644, 17752, 11, 5884, 28819, 2484, 60, 55609, 198, 1991, 264, 7086, 1121, 505, 264, 3319, 627, 68416, 3717, 25, 578, 3717, 311, 279, 4729, 198, 68416, 3319, 25, 578, 3319, 311, 9203, 198, 16851, 198, 791, 1121, 315, 279, 3319, 198, 5715, 955, 198, 861, 58, 8644, 17752, 11, 5884, 5163 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.starrocks.get_named_result.html
c633099ad496-0
langchain.vectorstores.clickhouse.Clickhouse¶ class langchain.vectorstores.clickhouse.Clickhouse(embedding: Embeddings, config: Optional[ClickhouseSettings] = None, **kwargs: Any)[source]¶ Bases: VectorStore Wrapper around ClickHouse vector database You need a clickhouse-connect python package, and a valid account to connect to ClickHouse. ClickHouse can not only search with simple vector indexes, it also supports complex query with multiple conditions, constraints and even sub-queries. For more information, please visit[ClickHouse official site](https://clickhouse.com/clickhouse) ClickHouse Wrapper to LangChain embedding_function (Embeddings): config (ClickHouseSettings): Configuration to ClickHouse Client Other keyword arguments will pass into [clickhouse-connect](https://docs.clickhouse.com/) Methods __init__(embedding[, config]) ClickHouse Wrapper to LangChain aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, batch_size, ids]) Insert more texts through the embeddings and add to the VectorStore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...)
[ 5317, 8995, 48203, 44569, 14798, 7830, 11566, 7830, 55609, 198, 1058, 8859, 8995, 48203, 44569, 14798, 7830, 11566, 7830, 50825, 7113, 25, 38168, 25624, 11, 2242, 25, 12536, 58, 2677, 7830, 6214, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 11803, 2212, 9369, 29707, 4724, 4729, 198, 2675, 1205, 264, 4299, 7830, 86570, 10344, 6462, 11, 323, 264, 2764, 2759, 198, 998, 4667, 311, 9369, 29707, 627, 2677, 29707, 649, 539, 1193, 2778, 449, 4382, 4724, 25998, 345, 275, 1101, 11815, 6485, 3319, 449, 5361, 4787, 345, 66412, 323, 1524, 1207, 12, 43935, 627, 2520, 810, 2038, 11, 4587, 4034, 58, 2677, 29707, 4033, 2816, 9725, 2485, 1129, 3763, 7830, 916, 2971, 1228, 7830, 340, 2677, 29707, 36588, 311, 23272, 19368, 198, 95711, 9353, 320, 26566, 25624, 997, 1710, 320, 2677, 29707, 6214, 1680, 12499, 311, 9369, 29707, 8589, 198, 11663, 16570, 6105, 690, 1522, 1139, 198, 58, 3763, 7830, 86570, 9725, 2485, 1129, 14452, 14798, 7830, 916, 54660, 18337, 198, 565, 2381, 3889, 95711, 38372, 4194, 1710, 2608, 2677, 29707, 36588, 311, 23272, 19368, 198, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 11, 4194, 14377, 2424, 11, 4194, 3447, 2608, 14099, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4290, 6221, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 48627 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clickhouse.Clickhouse.html
c633099ad496-1
amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete(ids) Delete by vector ID. drop() Helper function: Drop data escape_str(value) from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas, ...]) Create ClickHouse wrapper with existing texts max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k, where_str]) Perform a similarity search with ClickHouse similarity_search_by_vector(embedding[, k, ...]) Perform a similarity search with ClickHouse by vectors similarity_search_with_relevance_scores(query) Perform a similarity search with ClickHouse Attributes metadata_column async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str]
[ 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 340, 6571, 555, 4724, 3110, 627, 6861, 746, 5628, 734, 25, 16110, 828, 198, 13295, 2966, 3764, 340, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 11, 4194, 1131, 2608, 4110, 9369, 29707, 13564, 449, 6484, 22755, 198, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 11, 4194, 2940, 2966, 2608, 48051, 264, 38723, 2778, 449, 9369, 29707, 198, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 11, 4194, 1131, 2608, 48051, 264, 38723, 2778, 449, 9369, 29707, 555, 23728, 198, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 48051, 264, 38723, 2778, 449, 9369, 29707, 198, 10738, 198, 18103, 8918, 198, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 60 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clickhouse.Clickhouse.html
c633099ad496-2
Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, batch_size: int = 32, ids: Optional[Iterable[str]] = None, **kwargs: Any) → List[str][source]¶ Insert more texts through the embeddings and add to the VectorStore. Parameters texts – Iterable of strings to add to the VectorStore. ids – Optional list of ids to associate with the texts. batch_size – Batch size of insertion metadata – Optional column data to be inserted Returns List of ids from adding the texts into the VectorStore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
[ 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 7309, 2424, 25, 528, 284, 220, 843, 11, 14483, 25, 12536, 58, 51735, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 14099, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4290, 6221, 627, 9905, 198, 87042, 1389, 39116, 315, 9246, 311, 923, 311, 279, 4290, 6221, 627, 3447, 1389, 12536, 1160, 315, 14483, 311, 22712, 449, 279, 22755, 627, 14377, 2424, 1389, 35004, 1404, 315, 37027, 198, 18103, 1389, 12536, 3330, 828, 311, 387, 22306, 198, 16851, 198, 861, 315, 14483, 505, 7999, 279, 22755, 1139, 279, 4290, 6221, 627, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clickhouse.Clickhouse.html
c633099ad496-3
Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: List[str]) → Optional[bool]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] drop() → None[source]¶ Helper function: Drop data escape_str(value: str) → str[source]¶ classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings.
[ 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 6861, 368, 11651, 2290, 76747, 60, 55609, 198, 5628, 734, 25, 16110, 828, 198, 13295, 2966, 3764, 25, 610, 8, 11651, 610, 76747, 60, 55609, 198, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clickhouse.Clickhouse.html
c633099ad496-4
Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, config: Optional[ClickhouseSettings] = None, text_ids: Optional[Iterable[str]] = None, batch_size: int = 32, **kwargs: Any) → Clickhouse[source]¶ Create ClickHouse wrapper with existing texts Parameters embedding_function (Embeddings) – Function to extract text embedding texts (Iterable[str]) – List or tuple of strings to be added config (ClickHouseSettings, Optional) – ClickHouse configuration text_ids (Optional[Iterable], optional) – IDs for the texts. Defaults to None. batch_size (int, optional) – Batchsize when transmitting data to ClickHouse. Defaults to 32. metadata (List[dict], optional) – metadata to texts. Defaults to None. into (Other keyword arguments will pass) – [clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api) Returns ClickHouse Index max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns
[ 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 13755, 71401, 11, 5884, 5163, 60, 284, 2290, 11, 2242, 25, 12536, 58, 2677, 7830, 6214, 60, 284, 2290, 11, 1495, 8237, 25, 12536, 58, 51735, 17752, 5163, 284, 2290, 11, 7309, 2424, 25, 528, 284, 220, 843, 11, 3146, 9872, 25, 5884, 8, 11651, 9369, 7830, 76747, 60, 55609, 198, 4110, 9369, 29707, 13564, 449, 6484, 22755, 198, 9905, 198, 95711, 9353, 320, 26566, 25624, 8, 1389, 5830, 311, 8819, 1495, 40188, 198, 87042, 320, 51735, 17752, 2526, 1389, 1796, 477, 14743, 315, 9246, 311, 387, 3779, 198, 1710, 320, 2677, 29707, 6214, 11, 12536, 8, 1389, 9369, 29707, 6683, 198, 1342, 8237, 320, 15669, 58, 51735, 1145, 10309, 8, 1389, 29460, 369, 279, 22755, 627, 16672, 311, 2290, 627, 14377, 2424, 320, 396, 11, 10309, 8, 1389, 35004, 2190, 994, 78768, 828, 311, 9369, 29707, 627, 16672, 311, 220, 843, 627, 18103, 320, 861, 58, 8644, 1145, 10309, 8, 1389, 11408, 311, 22755, 13, 37090, 311, 2290, 627, 18614, 320, 11663, 16570, 6105, 690, 1522, 8, 1389, 510, 3763, 7830, 86570, 9725, 2485, 1129, 3763, 7830, 916, 27057, 13920, 32214, 14750, 811, 24147, 2, 3763, 7830, 86570, 77590, 24851, 340, 16851, 198, 2677, 29707, 8167, 198, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clickhouse.Clickhouse.html
c633099ad496-5
Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any) → List[Document][source]¶ Perform a similarity search with ClickHouse Parameters query (str) – query string k (int, optional) – Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional) – where condition string. Defaults to None. NOTE – Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use {self.metadata_column}.attribute instead of attribute alone. The default name for it is metadata. Returns List of Documents Return type List[Document]
[ 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 1405, 2966, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 48051, 264, 38723, 2778, 449, 9369, 29707, 198, 9905, 198, 1663, 320, 496, 8, 1389, 3319, 925, 198, 74, 320, 396, 11, 10309, 8, 1389, 7054, 735, 19228, 311, 17622, 13, 37090, 311, 220, 19, 627, 2940, 2966, 320, 15669, 17752, 1145, 10309, 8, 1389, 1405, 3044, 925, 627, 16672, 311, 2290, 627, 28892, 1389, 5321, 656, 539, 1095, 842, 8865, 311, 5266, 420, 323, 2744, 387, 8010, 198, 1073, 8029, 26127, 13, 3277, 14892, 449, 2322, 329, 19907, 11, 6227, 311, 198, 817, 314, 726, 28644, 8918, 7966, 9294, 4619, 315, 7180, 198, 32676, 13, 578, 1670, 836, 369, 433, 374, 11408, 627, 16851, 198, 861, 315, 45890, 198, 5715, 955, 198, 861, 58, 7676, 60 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clickhouse.Clickhouse.html
c633099ad496-6
Returns List of Documents Return type List[Document] similarity_search_by_vector(embedding: List[float], k: int = 4, where_str: Optional[str] = None, **kwargs: Any) → List[Document][source]¶ Perform a similarity search with ClickHouse by vectors Parameters query (str) – query string k (int, optional) – Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional) – where condition string. Defaults to None. NOTE – Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use {self.metadata_column}.attribute instead of attribute alone. The default name for it is metadata. Returns List of (Document, similarity) Return type List[Document] similarity_search_with_relevance_scores(query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Perform a similarity search with ClickHouse Parameters query (str) – query string k (int, optional) – Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional) – where condition string. Defaults to None. NOTE – Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use {self.metadata_column}.attribute instead of attribute alone. The default name for it is metadata. Returns List of documents Return type List[Document] property metadata_column: str¶
[ 16851, 198, 861, 315, 45890, 198, 5715, 955, 198, 861, 58, 7676, 933, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 1405, 2966, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 48051, 264, 38723, 2778, 449, 9369, 29707, 555, 23728, 198, 9905, 198, 1663, 320, 496, 8, 1389, 3319, 925, 198, 74, 320, 396, 11, 10309, 8, 1389, 7054, 735, 19228, 311, 17622, 13, 37090, 311, 220, 19, 627, 2940, 2966, 320, 15669, 17752, 1145, 10309, 8, 1389, 1405, 3044, 925, 627, 16672, 311, 2290, 627, 28892, 1389, 5321, 656, 539, 1095, 842, 8865, 311, 5266, 420, 323, 2744, 387, 8010, 198, 1073, 8029, 26127, 13, 3277, 14892, 449, 2322, 329, 19907, 11, 6227, 311, 198, 817, 314, 726, 28644, 8918, 7966, 9294, 4619, 315, 7180, 198, 32676, 13, 578, 1670, 836, 369, 433, 374, 11408, 627, 16851, 198, 861, 315, 320, 7676, 11, 38723, 340, 5715, 955, 198, 861, 58, 7676, 933, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 1405, 2966, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 48051, 264, 38723, 2778, 449, 9369, 29707, 198, 9905, 198, 1663, 320, 496, 8, 1389, 3319, 925, 198, 74, 320, 396, 11, 10309, 8, 1389, 7054, 735, 19228, 311, 17622, 13, 37090, 311, 220, 19, 627, 2940, 2966, 320, 15669, 17752, 1145, 10309, 8, 1389, 1405, 3044, 925, 627, 16672, 311, 2290, 627, 28892, 1389, 5321, 656, 539, 1095, 842, 8865, 311, 5266, 420, 323, 2744, 387, 8010, 198, 1073, 8029, 26127, 13, 3277, 14892, 449, 2322, 329, 19907, 11, 6227, 311, 198, 817, 314, 726, 28644, 8918, 7966, 9294, 4619, 315, 7180, 198, 32676, 13, 578, 1670, 836, 369, 433, 374, 11408, 627, 16851, 198, 861, 315, 9477, 198, 5715, 955, 198, 861, 58, 7676, 933, 3784, 11408, 8918, 25, 610, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clickhouse.Clickhouse.html
45c08dfe9a79-0
langchain.vectorstores.annoy.dependable_annoy_import¶ langchain.vectorstores.annoy.dependable_annoy_import() → Any[source]¶ Import annoy if available, otherwise raise error.
[ 5317, 8995, 48203, 44569, 13, 1036, 2303, 60334, 481, 52970, 2303, 18941, 55609, 198, 5317, 8995, 48203, 44569, 13, 1036, 2303, 60334, 481, 52970, 2303, 18941, 368, 11651, 5884, 76747, 60, 55609, 198, 11772, 38292, 422, 2561, 11, 6062, 4933, 1493, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.annoy.dependable_annoy_import.html
468bdf7cb93d-0
langchain.vectorstores.cassandra.Cassandra¶ class langchain.vectorstores.cassandra.Cassandra(embedding: Embeddings, session: Session, keyspace: str, table_name: str, ttl_seconds: int | None = None)[source]¶ Bases: VectorStore Wrapper around Cassandra embeddings platform. There is no notion of a default table name, since each embedding function implies its own vector dimension, which is part of the schema. Example from langchain.vectorstores import Cassandra from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() session = ... keyspace = 'my_keyspace' vectorstore = Cassandra(embeddings, session, keyspace, 'my_doc_archive') Methods __init__(embedding, session, keyspace, ...) aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, ids]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs)
[ 5317, 8995, 48203, 44569, 522, 71193, 732, 71193, 55609, 198, 1058, 8859, 8995, 48203, 44569, 522, 71193, 732, 71193, 50825, 7113, 25, 38168, 25624, 11, 3882, 25, 9343, 11, 7039, 1330, 25, 610, 11, 2007, 1292, 25, 610, 11, 55032, 35925, 25, 528, 765, 2290, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 11803, 2212, 82342, 71647, 5452, 627, 3947, 374, 912, 23035, 315, 264, 1670, 2007, 836, 11, 2533, 1855, 40188, 198, 1723, 24897, 1202, 1866, 4724, 13167, 11, 902, 374, 961, 315, 279, 11036, 627, 13617, 198, 1527, 8859, 8995, 48203, 44569, 1179, 82342, 198, 1527, 8859, 8995, 41541, 25624, 5949, 2192, 1179, 5377, 15836, 26566, 25624, 198, 12529, 25624, 284, 5377, 15836, 26566, 25624, 746, 6045, 284, 12515, 798, 8920, 284, 364, 2465, 3173, 8920, 1270, 3295, 4412, 284, 82342, 50825, 25624, 11, 3882, 11, 7039, 1330, 11, 364, 2465, 19401, 43973, 1329, 18337, 198, 565, 2381, 3889, 95711, 11, 4194, 6045, 11, 4194, 798, 8920, 11, 4194, 32318, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 11, 4194, 3447, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 8 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
468bdf7cb93d-1
asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. clear() Empty the collection. delete(ids) Delete by vector ID. delete_by_document_id(document_id) delete_collection() Just an alias for clear (to better align with other VectorStore implementations). from_documents(documents, embedding, **kwargs) Create a Cassandra vectorstore from a document list. from_texts(texts, embedding[, metadatas]) Create a Cassandra vectorstore from raw texts. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param query: Text to look up documents similar to. :param k: Number of Documents to return. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Optional. max_marginal_relevance_search_by_vector(...)
[ 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 7574, 746, 3606, 279, 4526, 627, 4644, 44548, 340, 6571, 555, 4724, 3110, 627, 4644, 3795, 27326, 851, 15649, 851, 340, 4644, 26071, 746, 10156, 459, 15904, 369, 2867, 320, 998, 2731, 5398, 449, 1023, 4290, 6221, 39437, 4390, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 4110, 264, 82342, 4724, 4412, 505, 264, 2246, 1160, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 4110, 264, 82342, 4724, 4412, 505, 7257, 22755, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 13, 7639, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 4315, 4183, 9477, 13, 551, 913, 3319, 25, 2991, 311, 1427, 709, 9477, 4528, 311, 13, 551, 913, 597, 25, 5742, 315, 45890, 311, 471, 13, 551, 913, 7963, 4803, 25, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 13, 551, 913, 12741, 27386, 25, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 3909, 315, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 3909, 311, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 13, 12536, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 48627 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
468bdf7cb93d-2
max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param embedding: Embedding to look up documents similar to. :param k: Number of Documents to return. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Return docs most similar to query. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k]) similarity_search_with_score_by_vector(embedding) Return docs most similar to embedding vector. similarity_search_with_score_id(query[, k]) similarity_search_with_score_id_by_vector(...) Return docs most similar to embedding vector. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore.
[ 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 13, 7639, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 4315, 4183, 9477, 13, 551, 913, 40188, 25, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 13, 551, 913, 597, 25, 5742, 315, 45890, 311, 471, 13, 551, 913, 7963, 4803, 25, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 13, 551, 913, 12741, 27386, 25, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 3909, 315, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 3909, 311, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15124, 49325, 10947, 6753, 10622, 10974, 38372, 4194, 74, 2608, 15124, 49325, 10947, 6753, 10622, 3795, 12526, 50825, 7113, 340, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 10622, 851, 10974, 38372, 4194, 74, 2608, 15124, 49325, 10947, 6753, 10622, 851, 3795, 12526, 73893, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
468bdf7cb93d-3
Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts (Iterable[str]) – Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional) – Optional list of metadatas. ids (Optional[List[str]], optional) – Optional list of IDs. Returns List of IDs of the added texts. Return type List[str] async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance.
[ 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 87042, 320, 51735, 17752, 2526, 1389, 2991, 82, 311, 923, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 320, 15669, 53094, 58, 8644, 21128, 10309, 8, 1389, 12536, 1160, 315, 2322, 329, 19907, 627, 3447, 320, 15669, 53094, 17752, 21128, 10309, 8, 1389, 12536, 1160, 315, 29460, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
468bdf7cb93d-4
Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. clear() → None[source]¶ Empty the collection. delete(ids: List[str]) → Optional[bool]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] delete_by_document_id(document_id: str) → None[source]¶ delete_collection() → None[source]¶ Just an alias for clear (to better align with other VectorStore implementations). classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → CVST[source]¶ Create a Cassandra vectorstore from a document list.
[ 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7574, 368, 11651, 2290, 76747, 60, 55609, 198, 3606, 279, 4526, 627, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 4644, 3795, 27326, 851, 15649, 851, 25, 610, 8, 11651, 2290, 76747, 60, 55609, 198, 4644, 26071, 368, 11651, 2290, 76747, 60, 55609, 198, 10156, 459, 15904, 369, 2867, 198, 12464, 2731, 5398, 449, 1023, 4290, 6221, 39437, 4390, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 14499, 790, 76747, 60, 55609, 198, 4110, 264, 82342, 4724, 4412, 505, 264, 2246, 1160, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
468bdf7cb93d-5
Create a Cassandra vectorstore from a document list. No support for specifying text IDs Returns a Cassandra vectorstore. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → CVST[source]¶ Create a Cassandra vectorstore from raw texts. No support for specifying text IDs Returns a Cassandra vectorstore. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param query: Text to look up documents similar to. :param k: Number of Documents to return. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Optional. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param embedding: Embedding to look up documents similar to. :param k: Number of Documents to return. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree
[ 4110, 264, 82342, 4724, 4412, 505, 264, 2246, 1160, 627, 2822, 1862, 369, 38938, 1495, 29460, 198, 16851, 198, 64, 82342, 4724, 4412, 627, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 14499, 790, 76747, 60, 55609, 198, 4110, 264, 82342, 4724, 4412, 505, 7257, 22755, 627, 2822, 1862, 369, 38938, 1495, 29460, 198, 16851, 198, 64, 82342, 4724, 4412, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 68416, 3319, 25, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 68416, 597, 25, 5742, 315, 45890, 311, 471, 627, 68416, 7963, 4803, 25, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 68416, 12741, 27386, 25, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 15669, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 68416, 40188, 25, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 68416, 597, 25, 5742, 315, 45890, 311, 471, 627, 68416, 7963, 4803, 25, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 68416, 12741, 27386, 25, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
468bdf7cb93d-6
:param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶
[ 68416, 12741, 27386, 25, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
468bdf7cb93d-7
similarity_search_with_score_by_vector(embedding: List[float], k: int = 4) → List[Tuple[Document, float]][source]¶ Return docs most similar to embedding vector. No support for filter query (on metadata) along with vector search. Parameters embedding (str) – Embedding to look up documents similar to. k (int) – Number of Documents to return. Defaults to 4. Returns List of (Document, score), the most similar to the query vector. similarity_search_with_score_id(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float, str]][source]¶ similarity_search_with_score_id_by_vector(embedding: List[float], k: int = 4) → List[Tuple[Document, float, str]][source]¶ Return docs most similar to embedding vector. No support for filter query (on metadata) along with vector search. Parameters embedding (str) – Embedding to look up documents similar to. k (int) – Number of Documents to return. Defaults to 4. Returns List of (Document, score, id), the most similar to the query vector.
[ 15124, 49325, 10947, 6753, 10622, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 2822, 1862, 369, 4141, 3319, 320, 263, 11408, 8, 3235, 449, 4724, 2778, 627, 9905, 198, 95711, 320, 496, 8, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 320, 396, 8, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 320, 7676, 11, 5573, 705, 279, 1455, 4528, 311, 279, 3319, 4724, 627, 15124, 49325, 10947, 6753, 10622, 851, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 11, 610, 28819, 2484, 60, 55609, 198, 15124, 49325, 10947, 6753, 10622, 851, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 11, 610, 28819, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 2822, 1862, 369, 4141, 3319, 320, 263, 11408, 8, 3235, 449, 4724, 2778, 627, 9905, 198, 95711, 320, 496, 8, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 320, 396, 8, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 320, 7676, 11, 5573, 11, 887, 705, 279, 1455, 4528, 311, 279, 3319, 4724, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
8b236bbc9d98-0
langchain.schema.BaseRetriever¶ class langchain.schema.BaseRetriever[source]¶ Bases: ABC Base interface for a retriever. Methods __init__() aget_relevant_documents(query, *[, callbacks]) Asynchronously get documents relevant to a query. get_relevant_documents(query, *[, callbacks]) Retrieve documents relevant to a query. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document][source]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document][source]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents
[ 5317, 8995, 31992, 13316, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 31992, 13316, 12289, 462, 2099, 76747, 60, 55609, 198, 33, 2315, 25, 19921, 198, 4066, 3834, 369, 264, 10992, 424, 627, 18337, 198, 565, 2381, 33716, 85163, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 456, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 88765, 9477, 9959, 311, 264, 3319, 627, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477 ]
https://langchain.readthedocs.io/en/latest/schema/langchain.schema.BaseRetriever.html
7feeaed70a76-0
langchain.schema.OutputParserException¶ class langchain.schema.OutputParserException(error: Any, observation: str | None = None, llm_output: str | None = None, send_to_llm: bool = False)[source]¶ Bases: ValueError Exception that output parsers should raise to signify a parsing error. This exists to differentiate parsing errors from other code or execution errors that also may arise inside the output parser. OutputParserExceptions will be available to catch and handle in ways to fix the parsing error, while other errors will be raised. add_note()¶ Exception.add_note(note) – add a note to the exception with_traceback()¶ Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. args¶
[ 5317, 8995, 31992, 35346, 6707, 1378, 55609, 198, 1058, 8859, 8995, 31992, 35346, 6707, 1378, 6524, 25, 5884, 11, 22695, 25, 610, 765, 2290, 284, 2290, 11, 9507, 76, 7800, 25, 610, 765, 2290, 284, 2290, 11, 3708, 2401, 44095, 76, 25, 1845, 284, 3641, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 15764, 198, 1378, 430, 2612, 88173, 1288, 4933, 311, 89522, 264, 23115, 1493, 627, 2028, 6866, 311, 54263, 23115, 6103, 505, 1023, 2082, 477, 11572, 6103, 198, 9210, 1101, 1253, 31889, 4871, 279, 2612, 6871, 13, 9442, 6707, 66680, 690, 387, 198, 10547, 311, 2339, 323, 3790, 304, 5627, 311, 5155, 279, 23115, 1493, 11, 1418, 1023, 198, 7805, 690, 387, 9408, 627, 723, 28306, 368, 55609, 198, 1378, 1388, 28306, 45151, 8, 1389, 198, 723, 264, 5296, 311, 279, 4788, 198, 4291, 24489, 1445, 368, 55609, 198, 1378, 18662, 24489, 1445, 62514, 8, 1389, 198, 751, 659, 4952, 15417, 1445, 565, 311, 16767, 323, 471, 659, 627, 2164, 55609 ]
https://langchain.readthedocs.io/en/latest/schema/langchain.schema.OutputParserException.html
1d023f59e837-0
langchain.schema.FunctionMessage¶ class langchain.schema.FunctionMessage(*, content: str, additional_kwargs: dict = None, name: str)[source]¶ Bases: BaseMessage Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param additional_kwargs: dict [Optional]¶ param content: str [Required]¶ param name: str [Required]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ This class is LangChain serializable. property type: str¶ Type of the message, used for serialization. model Config¶ Bases: object extra = 'ignore'¶
[ 5317, 8995, 31992, 31647, 2097, 55609, 198, 1058, 8859, 8995, 31992, 31647, 2097, 4163, 11, 2262, 25, 610, 11, 5217, 37335, 25, 6587, 284, 2290, 11, 836, 25, 610, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 2097, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 5217, 37335, 25, 6587, 510, 15669, 60, 55609, 198, 913, 2262, 25, 610, 510, 8327, 60, 55609, 198, 913, 836, 25, 610, 510, 8327, 60, 55609, 198, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 2028, 538, 374, 23272, 19368, 6275, 8499, 627, 3784, 955, 25, 610, 55609, 198, 941, 315, 279, 1984, 11, 1511, 369, 48543, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 15824, 284, 364, 13431, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/schema/langchain.schema.FunctionMessage.html
91036536010f-0
langchain.schema.AIMessage¶ class langchain.schema.AIMessage(*, content: str, additional_kwargs: dict = None, example: bool = False)[source]¶ Bases: BaseMessage Type of message that is spoken by the AI. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param additional_kwargs: dict [Optional]¶ param content: str [Required]¶ param example: bool = False¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ This class is LangChain serializable. property type: str¶ Type of the message, used for serialization. model Config¶ Bases: object extra = 'ignore'¶
[ 5317, 8995, 31992, 885, 1829, 808, 55609, 198, 1058, 8859, 8995, 31992, 885, 1829, 808, 4163, 11, 2262, 25, 610, 11, 5217, 37335, 25, 6587, 284, 2290, 11, 3187, 25, 1845, 284, 3641, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 2097, 198, 941, 315, 1984, 430, 374, 22066, 555, 279, 15592, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 5217, 37335, 25, 6587, 510, 15669, 60, 55609, 198, 913, 2262, 25, 610, 510, 8327, 60, 55609, 198, 913, 3187, 25, 1845, 284, 3641, 55609, 198, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 2028, 538, 374, 23272, 19368, 6275, 8499, 627, 3784, 955, 25, 610, 55609, 198, 941, 315, 279, 1984, 11, 1511, 369, 48543, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 15824, 284, 364, 13431, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/schema/langchain.schema.AIMessage.html
6813683d492f-0
langchain.schema.BaseMessage¶ class langchain.schema.BaseMessage(*, content: str, additional_kwargs: dict = None)[source]¶ Bases: Serializable Message object. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param additional_kwargs: dict [Optional]¶ param content: str [Required]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ This class is LangChain serializable. abstract property type: str¶ Type of the message, used for serialization. model Config¶ Bases: object extra = 'ignore'¶
[ 5317, 8995, 31992, 13316, 2097, 55609, 198, 1058, 8859, 8995, 31992, 13316, 2097, 4163, 11, 2262, 25, 610, 11, 5217, 37335, 25, 6587, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 25901, 198, 2097, 1665, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 5217, 37335, 25, 6587, 510, 15669, 60, 55609, 198, 913, 2262, 25, 610, 510, 8327, 60, 55609, 198, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 2028, 538, 374, 23272, 19368, 6275, 8499, 627, 16647, 3424, 955, 25, 610, 55609, 198, 941, 315, 279, 1984, 11, 1511, 369, 48543, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 15824, 284, 364, 13431, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/schema/langchain.schema.BaseMessage.html
573e067c1554-0
langchain.schema.Document¶ class langchain.schema.Document(*, page_content: str, metadata: dict = None)[source]¶ Bases: Serializable Interface for interacting with a document. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param metadata: dict [Optional]¶ param page_content: str [Required]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object extra = 'ignore'¶
[ 5317, 8995, 31992, 27352, 55609, 198, 1058, 8859, 8995, 31992, 27352, 4163, 11, 2199, 7647, 25, 610, 11, 11408, 25, 6587, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 25901, 198, 5160, 369, 45830, 449, 264, 2246, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 11408, 25, 6587, 510, 15669, 60, 55609, 198, 913, 2199, 7647, 25, 610, 510, 8327, 60, 55609, 198, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 15824, 284, 364, 13431, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/schema/langchain.schema.Document.html
5f533863bce8-0
langchain.schema.messages_to_dict¶ langchain.schema.messages_to_dict(messages: List[BaseMessage]) → List[dict][source]¶ Convert messages to dict. Parameters messages – List of messages to convert. Returns List of dicts.
[ 5317, 8995, 31992, 26381, 2401, 5356, 55609, 198, 5317, 8995, 31992, 26381, 2401, 5356, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 1796, 58, 8644, 1483, 2484, 60, 55609, 198, 12281, 6743, 311, 6587, 627, 9905, 198, 16727, 1389, 1796, 315, 6743, 311, 5625, 627, 16851, 198, 861, 315, 98699, 13 ]
https://langchain.readthedocs.io/en/latest/schema/langchain.schema.messages_to_dict.html
e660acdd4761-0
langchain.schema.BaseMemory¶ class langchain.schema.BaseMemory[source]¶ Bases: Serializable, ABC Base interface for memory in chains. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. abstract clear() → None[source]¶ Clear memory contents. abstract load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any][source]¶ Return key-value pairs given the text input to the chain. If None, return all memories abstract save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]¶ Save the context of this model run to memory. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. abstract property memory_variables: List[str]¶ Input keys this memory class will load dynamically. model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 5317, 8995, 31992, 13316, 10869, 55609, 198, 1058, 8859, 8995, 31992, 13316, 10869, 76747, 60, 55609, 198, 33, 2315, 25, 25901, 11, 19921, 198, 4066, 3834, 369, 5044, 304, 27271, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 16647, 2867, 368, 11651, 2290, 76747, 60, 55609, 198, 14335, 5044, 8970, 627, 16647, 2865, 19745, 29282, 35099, 25, 30226, 17752, 11, 5884, 2526, 11651, 30226, 17752, 11, 5884, 1483, 2484, 60, 55609, 198, 5715, 1401, 19625, 13840, 2728, 279, 1495, 1988, 311, 279, 8957, 627, 2746, 2290, 11, 471, 682, 19459, 198, 16647, 3665, 8634, 35099, 25, 30226, 17752, 11, 5884, 1145, 16674, 25, 30226, 17752, 11, 610, 2526, 11651, 2290, 76747, 60, 55609, 198, 8960, 279, 2317, 315, 420, 1646, 1629, 311, 5044, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 16647, 3424, 5044, 29282, 25, 1796, 17752, 60, 55609, 198, 2566, 7039, 420, 5044, 538, 690, 2865, 43111, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/schema/langchain.schema.BaseMemory.html
717f3bf1ee65-0
langchain.schema.PromptValue¶ class langchain.schema.PromptValue[source]¶ Bases: Serializable, ABC Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ abstract to_messages() → List[BaseMessage][source]¶ Return prompt as messages. abstract to_string() → str[source]¶ Return prompt as string. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object extra = 'ignore'¶
[ 5317, 8995, 31992, 1087, 15091, 1150, 55609, 198, 1058, 8859, 8995, 31992, 1087, 15091, 1150, 76747, 60, 55609, 198, 33, 2315, 25, 25901, 11, 19921, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16647, 311, 24321, 368, 11651, 1796, 58, 4066, 2097, 1483, 2484, 60, 55609, 198, 5715, 10137, 439, 6743, 627, 16647, 311, 3991, 368, 11651, 610, 76747, 60, 55609, 198, 5715, 10137, 439, 925, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 15824, 284, 364, 13431, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/schema/langchain.schema.PromptValue.html
bf3aa5bbad00-0
langchain.schema.AgentFinish¶ class langchain.schema.AgentFinish(return_values: dict, log: str)[source]¶ Bases: NamedTuple Agent’s return value. Create new instance of AgentFinish(return_values, log) Methods __init__() count(value, /) Return number of occurrences of value. index(value[, start, stop]) Return first index of value. Attributes log Alias for field number 1 return_values Alias for field number 0 count(value, /)¶ Return number of occurrences of value. index(value, start=0, stop=9223372036854775807, /)¶ Return first index of value. Raises ValueError if the value is not present. log: str¶ Alias for field number 1 return_values: dict¶ Alias for field number 0
[ 5317, 8995, 31992, 89969, 26748, 55609, 198, 1058, 8859, 8995, 31992, 89969, 26748, 36206, 9324, 25, 6587, 11, 1515, 25, 610, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 41559, 29781, 198, 17230, 753, 471, 907, 627, 4110, 502, 2937, 315, 21372, 26748, 36206, 9324, 11, 1515, 340, 18337, 198, 565, 2381, 33716, 1868, 3764, 11, 4194, 54660, 5715, 1396, 315, 57115, 315, 907, 627, 1275, 3764, 38372, 4194, 2527, 11, 4194, 9684, 2608, 5715, 1176, 1963, 315, 907, 627, 10738, 198, 848, 198, 23555, 369, 2115, 1396, 220, 16, 198, 693, 9324, 198, 23555, 369, 2115, 1396, 220, 15, 198, 1868, 3764, 11, 611, 8, 55609, 198, 5715, 1396, 315, 57115, 315, 907, 627, 1275, 3764, 11, 1212, 28, 15, 11, 3009, 28, 20275, 17609, 9639, 23717, 21144, 18216, 22, 11, 611, 8, 55609, 198, 5715, 1176, 1963, 315, 907, 627, 36120, 15764, 422, 279, 907, 374, 539, 3118, 627, 848, 25, 610, 55609, 198, 23555, 369, 2115, 1396, 220, 16, 198, 693, 9324, 25, 6587, 55609, 198, 23555, 369, 2115, 1396, 220, 15 ]
https://langchain.readthedocs.io/en/latest/schema/langchain.schema.AgentFinish.html
4a24861d0c29-0
langchain.schema.LLMResult¶ class langchain.schema.LLMResult(*, generations: List[List[Generation]], llm_output: Optional[dict] = None, run: Optional[List[RunInfo]] = None)[source]¶ Bases: BaseModel Class that contains all relevant information for an LLM Result. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param generations: List[List[langchain.schema.Generation]] [Required]¶ List of the things generated. This is List[List[]] because each input could have multiple generations. param llm_output: Optional[dict] = None¶ For arbitrary LLM provider specific output. param run: Optional[List[langchain.schema.RunInfo]] = None¶ Run metadata. flatten() → List[LLMResult][source]¶ Flatten generations into a single list.
[ 5317, 8995, 31992, 1236, 11237, 2122, 55609, 198, 1058, 8859, 8995, 31992, 1236, 11237, 2122, 4163, 11, 22540, 25, 1796, 53094, 58, 38238, 21128, 9507, 76, 7800, 25, 12536, 58, 8644, 60, 284, 2290, 11, 1629, 25, 12536, 53094, 58, 6869, 1767, 5163, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 65705, 198, 1999, 430, 5727, 682, 9959, 2038, 369, 459, 445, 11237, 5832, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 22540, 25, 1796, 53094, 58, 5317, 8995, 31992, 67616, 5163, 510, 8327, 60, 55609, 198, 861, 315, 279, 2574, 8066, 13, 1115, 374, 1796, 53094, 1318, 60, 1606, 198, 9739, 1988, 1436, 617, 5361, 22540, 627, 913, 9507, 76, 7800, 25, 12536, 58, 8644, 60, 284, 2290, 55609, 198, 2520, 25142, 445, 11237, 9287, 3230, 2612, 627, 913, 1629, 25, 12536, 53094, 58, 5317, 8995, 31992, 17123, 1767, 5163, 284, 2290, 55609, 198, 6869, 11408, 627, 48166, 368, 11651, 1796, 58, 4178, 44, 2122, 1483, 2484, 60, 55609, 198, 3968, 14795, 22540, 1139, 264, 3254, 1160, 13 ]
https://langchain.readthedocs.io/en/latest/schema/langchain.schema.LLMResult.html