id
stringlengths
14
15
text
stringlengths
35
2.07k
embedding
sequence
source
stringlengths
61
154
a427a6bad22a-10
Returns Document results for search. Return type List[Document] similarity_search_by_vector(embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Document][source]¶ Perform a similarity search against the query string. Parameters embedding (List[float]) – The embedding vector to search. k (int, optional) – How many results to return. Defaults to 4. param (dict, optional) – The search params for the index type. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Returns Document results for search. Return type List[Document] similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Tuple[Document, float]][source]¶
[ 16851, 198, 7676, 3135, 369, 2778, 627, 5715, 955, 198, 861, 58, 7676, 933, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 1719, 25, 12536, 58, 8644, 60, 284, 2290, 11, 15522, 25, 12536, 17752, 60, 284, 2290, 11, 9829, 25, 12536, 19155, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 48051, 264, 38723, 2778, 2403, 279, 3319, 925, 627, 9905, 198, 95711, 320, 861, 96481, 2526, 1389, 578, 40188, 4724, 311, 2778, 627, 74, 320, 396, 11, 10309, 8, 1389, 2650, 1690, 3135, 311, 471, 13, 37090, 311, 220, 19, 627, 913, 320, 8644, 11, 10309, 8, 1389, 578, 2778, 3712, 369, 279, 1963, 955, 627, 16672, 311, 2290, 627, 9600, 320, 496, 11, 10309, 8, 1389, 82631, 7645, 13, 37090, 311, 2290, 627, 14482, 320, 396, 11, 10309, 8, 1389, 2650, 1317, 311, 3868, 1603, 9829, 1493, 627, 16672, 311, 2290, 627, 9872, 1389, 11348, 9472, 368, 16570, 6105, 627, 16851, 198, 7676, 3135, 369, 2778, 627, 5715, 955, 198, 861, 58, 7676, 933, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 1719, 25, 12536, 58, 8644, 60, 284, 2290, 11, 15522, 25, 12536, 17752, 60, 284, 2290, 11, 9829, 25, 12536, 19155, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.milvus.Milvus.html
a427a6bad22a-11
Perform a search on a query string and return results with score. For more information about the search parameters, take a look at the pymilvus documentation found here: https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md Parameters query (str) – The text being searched. k (int, optional) – The amount of results ot return. Defaults to 4. param (dict) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Return type List[float], List[Tuple[Document, any, any]] similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Perform a search on a query string and return results with score. For more information about the search parameters, take a look at the pymilvus documentation found here: https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md Parameters embedding (List[float]) – The embedding vector being searched. k (int, optional) – The amount of results ot return. Defaults to 4. param (dict) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments.
[ 48051, 264, 2778, 389, 264, 3319, 925, 323, 471, 3135, 449, 5573, 627, 2520, 810, 2038, 922, 279, 2778, 5137, 11, 1935, 264, 1427, 520, 279, 46860, 321, 85, 355, 198, 77403, 1766, 1618, 512, 2485, 1129, 73370, 85, 355, 4340, 10729, 73723, 4420, 1631, 321, 85, 355, 5574, 17, 13, 17, 13, 21, 14, 6618, 24042, 1020, 2329, 198, 9905, 198, 1663, 320, 496, 8, 1389, 578, 1495, 1694, 27600, 627, 74, 320, 396, 11, 10309, 8, 1389, 578, 3392, 315, 3135, 14479, 471, 13, 37090, 311, 220, 19, 627, 913, 320, 8644, 8, 1389, 578, 2778, 3712, 369, 279, 5300, 1963, 627, 16672, 311, 2290, 627, 9600, 320, 496, 11, 10309, 8, 1389, 82631, 7645, 13, 37090, 311, 2290, 627, 14482, 320, 396, 11, 10309, 8, 1389, 2650, 1317, 311, 3868, 1603, 9829, 1493, 627, 16672, 311, 2290, 627, 9872, 1389, 11348, 9472, 368, 16570, 6105, 627, 5715, 955, 198, 861, 96481, 1145, 1796, 20961, 6189, 58, 7676, 11, 904, 11, 904, 14623, 15124, 49325, 10947, 6753, 10622, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 1719, 25, 12536, 58, 8644, 60, 284, 2290, 11, 15522, 25, 12536, 17752, 60, 284, 2290, 11, 9829, 25, 12536, 19155, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 48051, 264, 2778, 389, 264, 3319, 925, 323, 471, 3135, 449, 5573, 627, 2520, 810, 2038, 922, 279, 2778, 5137, 11, 1935, 264, 1427, 520, 279, 46860, 321, 85, 355, 198, 77403, 1766, 1618, 512, 2485, 1129, 73370, 85, 355, 4340, 10729, 73723, 4420, 1631, 321, 85, 355, 5574, 17, 13, 17, 13, 21, 14, 6618, 24042, 1020, 2329, 198, 9905, 198, 95711, 320, 861, 96481, 2526, 1389, 578, 40188, 4724, 1694, 27600, 627, 74, 320, 396, 11, 10309, 8, 1389, 578, 3392, 315, 3135, 14479, 471, 13, 37090, 311, 220, 19, 627, 913, 320, 8644, 8, 1389, 578, 2778, 3712, 369, 279, 5300, 1963, 627, 16672, 311, 2290, 627, 9600, 320, 496, 11, 10309, 8, 1389, 82631, 7645, 13, 37090, 311, 2290, 627, 14482, 320, 396, 11, 10309, 8, 1389, 2650, 1317, 311, 3868, 1603, 9829, 1493, 627, 16672, 311, 2290, 627, 9872, 1389, 11348, 9472, 368, 16570, 6105, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.milvus.Milvus.html
a427a6bad22a-12
Defaults to None. kwargs – Collection.search() keyword arguments. Returns Result doc and score. Return type List[Tuple[Document, float]]
[ 16672, 311, 2290, 627, 9872, 1389, 11348, 9472, 368, 16570, 6105, 627, 16851, 198, 2122, 4733, 323, 5573, 627, 5715, 955, 198, 861, 20961, 6189, 58, 7676, 11, 2273, 5163 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.milvus.Milvus.html
72a1837327f1-0
langchain.vectorstores.qdrant.Qdrant¶ class langchain.vectorstores.qdrant.Qdrant(client: Any, collection_name: str, embeddings: Optional[Embeddings] = None, content_payload_key: str = 'page_content', metadata_payload_key: str = 'metadata', vector_name: Optional[str] = None, embedding_function: Optional[Callable] = None)[source]¶ Bases: VectorStore Wrapper around Qdrant vector database. To use you should have the qdrant-client package installed. Example from qdrant_client import QdrantClient from langchain import Qdrant client = QdrantClient() collection_name = "MyCollection" qdrant = Qdrant(client, collection_name, embedding_function) Initialize with necessary components. Methods __init__(client, collection_name[, ...]) Initialize with necessary components. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, ids, batch_size]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance.
[ 5317, 8995, 48203, 44569, 11608, 3696, 519, 10208, 3696, 519, 55609, 198, 1058, 8859, 8995, 48203, 44569, 11608, 3696, 519, 10208, 3696, 519, 13097, 25, 5884, 11, 4526, 1292, 25, 610, 11, 71647, 25, 12536, 58, 26566, 25624, 60, 284, 2290, 11, 2262, 33913, 3173, 25, 610, 284, 364, 2964, 7647, 518, 11408, 33913, 3173, 25, 610, 284, 364, 18103, 518, 4724, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 40188, 9353, 25, 12536, 58, 41510, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 11803, 2212, 1229, 3696, 519, 4724, 4729, 627, 1271, 1005, 499, 1288, 617, 279, 2874, 3696, 519, 31111, 6462, 10487, 627, 13617, 198, 1527, 2874, 3696, 519, 8342, 1179, 1229, 3696, 519, 3032, 198, 1527, 8859, 8995, 1179, 1229, 3696, 519, 198, 3045, 284, 1229, 3696, 519, 3032, 746, 13727, 1292, 284, 330, 5159, 6618, 702, 80, 3696, 519, 284, 1229, 3696, 519, 13097, 11, 4526, 1292, 11, 40188, 9353, 340, 10130, 449, 5995, 6956, 627, 18337, 198, 565, 2381, 3889, 3045, 11, 4194, 13727, 1292, 38372, 4194, 1131, 2608, 10130, 449, 5995, 6956, 627, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 11, 4194, 3447, 11, 4194, 14377, 2424, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.qdrant.Qdrant.html
72a1837327f1-1
Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete(ids) Delete by vector ID. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas, ...]) Construct Qdrant wrapper from a list of texts. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k, filter, ...]) Return docs most similar to query. similarity_search_by_vector(embedding[, k, ...]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k, ...]) Return docs most similar to query. similarity_search_with_score_by_vector(embedding) Return docs most similar to embedding vector. Attributes CONTENT_KEY METADATA_KEY VECTOR_NAME async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters
[ 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 340, 6571, 555, 4724, 3110, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 11, 4194, 1131, 2608, 29568, 1229, 3696, 519, 13564, 505, 264, 1160, 315, 22755, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 11, 4194, 5428, 11, 4194, 1131, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15124, 49325, 10947, 6753, 10622, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 6753, 10622, 3795, 12526, 50825, 7113, 340, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 10738, 198, 68972, 6738, 198, 45975, 40219, 6738, 198, 44787, 4813, 198, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.qdrant.Qdrant.html
72a1837327f1-2
Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[Sequence[str]] = None, batch_size: int = 64, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. Ids have to be uuid-like strings. batch_size – How many vectors upload per-request. Default: 64 Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶
[ 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 7309, 2424, 25, 528, 284, 220, 1227, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 87042, 1389, 39116, 315, 9246, 311, 923, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 1389, 12536, 1160, 315, 2322, 329, 19907, 5938, 449, 279, 22755, 627, 3447, 1389, 12536, 1160, 315, 14483, 311, 22712, 449, 279, 22755, 13, 5336, 82, 617, 311, 387, 198, 17566, 12970, 9246, 627, 14377, 2424, 1389, 2650, 1690, 23728, 8298, 824, 45908, 627, 3760, 25, 220, 1227, 198, 16851, 198, 861, 315, 14483, 505, 7999, 279, 22755, 1139, 279, 4724, 4412, 627, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.qdrant.Qdrant.html
72a1837327f1-3
Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: List[str]) → Optional[bool]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings.
[ 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.qdrant.Qdrant.html
72a1837327f1-4
Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[Sequence[str]] = None, location: Optional[str] = None, url: Optional[str] = None, port: Optional[int] = 6333, grpc_port: int = 6334, prefer_grpc: bool = False, https: Optional[bool] = None, api_key: Optional[str] = None, prefix: Optional[str] = None, timeout: Optional[float] = None, host: Optional[str] = None, path: Optional[str] = None, collection_name: Optional[str] = None, distance_func: str = 'Cosine', content_payload_key: str = 'page_content', metadata_payload_key: str = 'metadata', vector_name: Optional[str] = None, batch_size: int = 64, shard_number: Optional[int] = None, replication_factor: Optional[int] = None, write_consistency_factor: Optional[int] = None, on_disk_payload: Optional[bool] = None, hnsw_config: Optional[common_types.HnswConfigDiff] = None, optimizers_config: Optional[common_types.OptimizersConfigDiff] = None, wal_config: Optional[common_types.WalConfigDiff] = None, quantization_config: Optional[common_types.QuantizationConfig] = None, init_from: Optional[common_types.InitFrom] = None, **kwargs: Any) → Qdrant[source]¶ Construct Qdrant wrapper from a list of texts. Parameters texts – A list of texts to be indexed in Qdrant. embedding – A subclass of Embeddings, responsible for text vectorization. metadatas – An optional list of metadata. If provided it has to be of the same length as a list of texts.
[ 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3813, 25, 12536, 17752, 60, 284, 2290, 11, 2576, 25, 12536, 17752, 60, 284, 2290, 11, 2700, 25, 12536, 19155, 60, 284, 220, 23736, 18, 11, 49000, 8889, 25, 528, 284, 220, 23736, 19, 11, 10932, 16057, 4080, 25, 1845, 284, 3641, 11, 3788, 25, 12536, 58, 2707, 60, 284, 2290, 11, 6464, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 9436, 25, 12536, 17752, 60, 284, 2290, 11, 9829, 25, 12536, 96481, 60, 284, 2290, 11, 3552, 25, 12536, 17752, 60, 284, 2290, 11, 1853, 25, 12536, 17752, 60, 284, 2290, 11, 4526, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 6138, 9791, 25, 610, 284, 364, 55324, 483, 518, 2262, 33913, 3173, 25, 610, 284, 364, 2964, 7647, 518, 11408, 33913, 3173, 25, 610, 284, 364, 18103, 518, 4724, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 7309, 2424, 25, 528, 284, 220, 1227, 11, 53169, 5617, 25, 12536, 19155, 60, 284, 2290, 11, 48891, 19100, 25, 12536, 19155, 60, 284, 2290, 11, 3350, 33071, 48194, 19100, 25, 12536, 19155, 60, 284, 2290, 11, 389, 42787, 33913, 25, 12536, 58, 2707, 60, 284, 2290, 11, 96338, 2332, 5445, 25, 12536, 58, 5581, 9962, 3924, 77, 2332, 2714, 22499, 60, 284, 2290, 11, 7706, 12509, 5445, 25, 12536, 58, 5581, 9962, 8548, 418, 318, 12509, 2714, 22499, 60, 284, 2290, 11, 41926, 5445, 25, 12536, 58, 5581, 9962, 1196, 278, 2714, 22499, 60, 284, 2290, 11, 10484, 2065, 5445, 25, 12536, 58, 5581, 9962, 35007, 519, 2065, 2714, 60, 284, 2290, 11, 3003, 5791, 25, 12536, 58, 5581, 9962, 27947, 3915, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1229, 3696, 519, 76747, 60, 55609, 198, 29568, 1229, 3696, 519, 13564, 505, 264, 1160, 315, 22755, 627, 9905, 198, 87042, 1389, 362, 1160, 315, 22755, 311, 387, 31681, 304, 1229, 3696, 519, 627, 95711, 1389, 362, 38290, 315, 38168, 25624, 11, 8647, 369, 1495, 4724, 2065, 627, 4150, 329, 19907, 1389, 1556, 10309, 1160, 315, 11408, 13, 1442, 3984, 433, 706, 311, 387, 315, 279, 1890, 198, 4222, 439, 264, 1160, 315, 22755, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.qdrant.Qdrant.html
72a1837327f1-5
length as a list of texts. ids – Optional list of ids to associate with the texts. Ids have to be uuid-like strings. location – If :memory: - use in-memory Qdrant instance. If str - use it as a url parameter. If None - fallback to relying on host and port parameters. url – either host or str of “Optional[scheme], host, Optional[port], Optional[prefix]”. Default: None port – Port of the REST API interface. Default: 6333 grpc_port – Port of the gRPC interface. Default: 6334 prefer_grpc – If true - use gPRC interface whenever possible in custom methods. Default: False https – If true - use HTTPS(SSL) protocol. Default: None api_key – API key for authentication in Qdrant Cloud. Default: None prefix – If not None - add prefix to the REST URL path. Example: service/v1 will result in http://localhost:6333/service/v1/{qdrant-endpoint} for REST API. Default: None timeout – Timeout for REST and gRPC API requests. Default: 5.0 seconds for REST and unlimited for gRPC host – Host name of Qdrant service. If url and host are None, set to ‘localhost’. Default: None path – Path in which the vectors will be stored while using local mode. Default: None collection_name – Name of the Qdrant collection to be used. If not provided, it will be created randomly. Default: None distance_func – Distance function. One of: “Cosine” / “Euclid” / “Dot”. Default: “Cosine” content_payload_key – A payload key used to store the content of the document. Default: “page_content”
[ 4222, 439, 264, 1160, 315, 22755, 627, 3447, 1389, 12536, 1160, 315, 14483, 311, 22712, 449, 279, 22755, 13, 5336, 82, 617, 311, 387, 198, 17566, 12970, 9246, 627, 2588, 1389, 1442, 551, 17717, 25, 482, 1005, 304, 65196, 1229, 3696, 519, 2937, 627, 2746, 610, 482, 1005, 433, 439, 264, 2576, 5852, 627, 2746, 2290, 482, 33872, 311, 39661, 389, 3552, 323, 2700, 5137, 627, 1103, 1389, 3060, 3552, 477, 610, 315, 1054, 15669, 12144, 8218, 1145, 3552, 11, 12536, 97585, 1282, 15669, 11661, 5170, 60, 11453, 8058, 25, 2290, 198, 403, 1389, 5896, 315, 279, 26487, 5446, 3834, 13, 8058, 25, 220, 23736, 18, 198, 57685, 8889, 1389, 5896, 315, 279, 342, 30628, 3834, 13, 8058, 25, 220, 23736, 19, 198, 81160, 16057, 4080, 1389, 1442, 837, 482, 1005, 342, 6616, 34, 3834, 15716, 3284, 304, 2587, 5528, 627, 3760, 25, 3641, 198, 2485, 1389, 1442, 837, 482, 1005, 62144, 7, 23416, 8, 11766, 13, 8058, 25, 2290, 198, 2113, 3173, 1389, 5446, 1401, 369, 17066, 304, 1229, 3696, 519, 15161, 13, 8058, 25, 2290, 198, 12113, 1389, 1442, 539, 2290, 482, 923, 9436, 311, 279, 26487, 5665, 1853, 627, 13617, 25, 2532, 5574, 16, 690, 1121, 304, 198, 1277, 1129, 8465, 25, 23736, 18, 35286, 5574, 16, 9573, 80, 3696, 519, 13368, 2837, 92, 369, 26487, 5446, 627, 3760, 25, 2290, 198, 14482, 1389, 40480, 369, 26487, 323, 342, 30628, 5446, 7540, 627, 3760, 25, 220, 20, 13, 15, 6622, 369, 26487, 323, 27862, 369, 342, 30628, 198, 3875, 1389, 16492, 836, 315, 1229, 3696, 519, 2532, 13, 1442, 2576, 323, 3552, 527, 2290, 11, 743, 311, 198, 14336, 8465, 24535, 8058, 25, 2290, 198, 2398, 1389, 8092, 304, 902, 279, 23728, 690, 387, 9967, 1418, 1701, 2254, 3941, 627, 3760, 25, 2290, 198, 13727, 1292, 1389, 4076, 315, 279, 1229, 3696, 519, 4526, 311, 387, 1511, 13, 1442, 539, 3984, 345, 275, 690, 387, 3549, 27716, 13, 8058, 25, 2290, 198, 19909, 9791, 1389, 32235, 734, 13, 3861, 315, 25, 1054, 55324, 483, 863, 611, 1054, 55218, 76144, 863, 611, 1054, 35307, 863, 627, 3760, 25, 1054, 55324, 483, 89874, 1834, 33913, 3173, 1389, 362, 7885, 1401, 1511, 311, 3637, 279, 2262, 315, 279, 2246, 627, 3760, 25, 1054, 2964, 7647, 863 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.qdrant.Qdrant.html
72a1837327f1-6
Default: “page_content” metadata_payload_key – A payload key used to store the metadata of the document. Default: “metadata” vector_name – Name of the vector to be used internally in Qdrant. Default: None batch_size – How many vectors upload per-request. Default: 64 shard_number – Number of shards in collection. Default is 1, minimum is 1. replication_factor – Replication factor for collection. Default is 1, minimum is 1. Defines how many copies of each shard will be created. Have effect only in distributed mode. write_consistency_factor – Write consistency factor for collection. Default is 1, minimum is 1. Defines how many replicas should apply the operation for us to consider it successful. Increasing this number will make the collection more resilient to inconsistencies, but will also make it fail if not enough replicas are available. Does not have any performance impact. Have effect only in distributed mode. on_disk_payload – If true - point`s payload will not be stored in memory. It will be read from the disk every time it is requested. This setting saves RAM by (slightly) increasing the response time. Note: those payload values that are involved in filtering and are indexed - remain in RAM. hnsw_config – Params for HNSW index optimizers_config – Params for optimizer wal_config – Params for Write-Ahead-Log quantization_config – Params for quantization, if None - quantization will be disabled init_from – Use data stored in another collection to initialize this collection **kwargs – Additional arguments passed directly into REST client initialization This is a user-friendly interface that: 1. Creates embeddings, one for each text 2. Initializes the Qdrant database as an in-memory docstore by default
[ 3760, 25, 1054, 2964, 7647, 89874, 18103, 33913, 3173, 1389, 362, 7885, 1401, 1511, 311, 3637, 279, 11408, 315, 279, 2246, 627, 3760, 25, 1054, 18103, 89874, 3295, 1292, 1389, 4076, 315, 279, 4724, 311, 387, 1511, 34167, 304, 1229, 3696, 519, 627, 3760, 25, 2290, 198, 14377, 2424, 1389, 2650, 1690, 23728, 8298, 824, 45908, 627, 3760, 25, 220, 1227, 198, 939, 569, 5617, 1389, 5742, 315, 75210, 304, 4526, 13, 8058, 374, 220, 16, 11, 8187, 374, 220, 16, 627, 10200, 1728, 19100, 1389, 3402, 1728, 8331, 369, 4526, 13, 8058, 374, 220, 16, 11, 8187, 374, 220, 16, 627, 74916, 1268, 1690, 11236, 315, 1855, 53169, 690, 387, 3549, 627, 12389, 2515, 1193, 304, 4332, 3941, 627, 5040, 33071, 48194, 19100, 1389, 9842, 29237, 8331, 369, 4526, 13, 8058, 374, 220, 16, 11, 8187, 374, 220, 16, 627, 74916, 1268, 1690, 81901, 1288, 3881, 279, 5784, 369, 603, 311, 2980, 198, 275, 6992, 13, 74540, 420, 1396, 690, 1304, 279, 4526, 810, 198, 417, 321, 1188, 311, 92922, 11, 719, 690, 1101, 1304, 433, 3775, 422, 539, 3403, 198, 10200, 53310, 527, 2561, 627, 22186, 539, 617, 904, 5178, 5536, 627, 12389, 2515, 1193, 304, 4332, 3941, 627, 263, 42787, 33913, 1389, 1442, 837, 482, 1486, 40929, 7885, 690, 539, 387, 9967, 304, 5044, 627, 2181, 690, 387, 1373, 505, 279, 13668, 1475, 892, 433, 374, 11472, 627, 2028, 6376, 27024, 22813, 555, 320, 3306, 73048, 8, 7859, 279, 2077, 892, 627, 9290, 25, 1884, 7885, 2819, 430, 527, 6532, 304, 30770, 323, 527, 198, 98573, 482, 7293, 304, 22813, 627, 25105, 2332, 5445, 1389, 35452, 369, 473, 2507, 54, 1963, 198, 19680, 12509, 5445, 1389, 35452, 369, 26714, 198, 27495, 5445, 1389, 35452, 369, 9842, 6830, 2025, 12, 2250, 198, 31548, 2065, 5445, 1389, 35452, 369, 10484, 2065, 11, 422, 2290, 482, 10484, 2065, 690, 387, 8552, 198, 2381, 5791, 1389, 5560, 828, 9967, 304, 2500, 4526, 311, 9656, 420, 4526, 198, 334, 9872, 1389, 24086, 6105, 5946, 6089, 1139, 26487, 3016, 17923, 198, 2028, 374, 264, 1217, 22658, 3834, 430, 512, 16, 13, 15026, 71647, 11, 832, 369, 1855, 1495, 198, 17, 13, 32982, 279, 1229, 3696, 519, 4729, 439, 459, 304, 65196, 4733, 4412, 555, 1670 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.qdrant.Qdrant.html
72a1837327f1-7
2. Initializes the Qdrant database as an in-memory docstore by default (and overridable to a remote docstore) Adds the text embeddings to the Qdrant database This is intended to be a quick way to get started. Example from langchain import Qdrant from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() qdrant = Qdrant.from_texts(texts, embeddings, "localhost") max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4.
[ 17, 13, 32982, 279, 1229, 3696, 519, 4729, 439, 459, 304, 65196, 4733, 4412, 555, 1670, 198, 61011, 927, 1907, 481, 311, 264, 8870, 4733, 4412, 340, 73211, 279, 1495, 71647, 311, 279, 1229, 3696, 519, 4729, 198, 2028, 374, 10825, 311, 387, 264, 4062, 1648, 311, 636, 3940, 627, 13617, 198, 1527, 8859, 8995, 1179, 1229, 3696, 519, 198, 1527, 8859, 8995, 41541, 25624, 1179, 5377, 15836, 26566, 25624, 198, 12529, 25624, 284, 5377, 15836, 26566, 25624, 746, 80, 3696, 519, 284, 1229, 3696, 519, 6521, 80746, 7383, 82, 11, 71647, 11, 330, 8465, 1158, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 16672, 311, 220, 508, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.qdrant.Qdrant.html
72a1837327f1-8
k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, filter: Optional[MetadataFilter] = None, search_params: Optional[common_types.SearchParams] = None, offset: int = 0, score_threshold: Optional[float] = None, consistency: Optional[common_types.ReadConsistency] = None, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Filter by metadata. Defaults to None. search_params – Additional search params offset – Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold – Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency – Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas
[ 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 4141, 25, 12536, 58, 14952, 5750, 60, 284, 2290, 11, 2778, 6887, 25, 12536, 58, 5581, 9962, 33003, 4975, 60, 284, 2290, 11, 4445, 25, 528, 284, 220, 15, 11, 5573, 22616, 25, 12536, 96481, 60, 284, 2290, 11, 29237, 25, 12536, 58, 5581, 9962, 6639, 15577, 48194, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 5428, 1389, 12619, 555, 11408, 13, 37090, 311, 2290, 627, 1874, 6887, 1389, 24086, 2778, 3712, 198, 3255, 1389, 17286, 315, 279, 1176, 1121, 311, 471, 627, 11356, 387, 1511, 311, 83074, 3135, 627, 9290, 25, 3544, 4445, 2819, 1253, 5353, 5178, 4819, 627, 12618, 22616, 1389, 19127, 264, 17832, 5573, 12447, 369, 279, 1121, 627, 2746, 4613, 11, 2753, 4528, 3135, 690, 539, 387, 6052, 627, 10793, 315, 279, 6052, 1121, 2643, 387, 5190, 477, 9333, 1109, 279, 198, 30002, 11911, 389, 279, 32235, 734, 1511, 627, 36, 1326, 13, 369, 76359, 38723, 1193, 5190, 12483, 690, 387, 6052, 627, 6387, 48194, 1389, 4557, 29237, 315, 279, 2778, 13, 38926, 1268, 1690, 81901, 1288, 387, 198, 16339, 1142, 1603, 13758, 279, 1121, 627, 6359, 512, 12, 528, 482, 1396, 315, 81901, 311, 3319, 11, 2819, 1288, 3118, 304, 682, 198, 16339, 1142, 81901 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.qdrant.Qdrant.html
72a1837327f1-9
- int - number of replicas to query, values should present in all queried replicas ’majority’ - query all replicas, but return values present in themajority of replicas ’quorum’ - query the majority of replicas, return values present inall of them ’all’ - query all replicas, and return values present in all replicas Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[MetadataFilter] = None, search_params: Optional[common_types.SearchParams] = None, offset: int = 0, score_threshold: Optional[float] = None, consistency: Optional[common_types.ReadConsistency] = None, **kwargs: Any) → List[Document][source]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding vector to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Filter by metadata. Defaults to None. search_params – Additional search params offset – Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold – Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency – Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas ’majority’ - query all replicas, but return values present in themajority of replicas
[ 12, 528, 482, 1396, 315, 81901, 311, 3319, 11, 2819, 1288, 3118, 304, 682, 198, 16339, 1142, 81901, 198, 4344, 3111, 488, 529, 482, 3319, 682, 81901, 11, 719, 471, 2819, 3118, 304, 1124, 3111, 488, 315, 81901, 198, 529, 447, 34106, 529, 482, 3319, 279, 8857, 315, 81901, 11, 471, 2819, 3118, 304, 543, 315, 1124, 198, 92748, 529, 482, 3319, 682, 81901, 11, 323, 471, 2819, 3118, 304, 682, 81901, 198, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 4141, 25, 12536, 58, 14952, 5750, 60, 284, 2290, 11, 2778, 6887, 25, 12536, 58, 5581, 9962, 33003, 4975, 60, 284, 2290, 11, 4445, 25, 528, 284, 220, 15, 11, 5573, 22616, 25, 12536, 96481, 60, 284, 2290, 11, 29237, 25, 12536, 58, 5581, 9962, 6639, 15577, 48194, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 4724, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 5428, 1389, 12619, 555, 11408, 13, 37090, 311, 2290, 627, 1874, 6887, 1389, 24086, 2778, 3712, 198, 3255, 1389, 17286, 315, 279, 1176, 1121, 311, 471, 627, 11356, 387, 1511, 311, 83074, 3135, 627, 9290, 25, 3544, 4445, 2819, 1253, 5353, 5178, 4819, 627, 12618, 22616, 1389, 19127, 264, 17832, 5573, 12447, 369, 279, 1121, 627, 2746, 4613, 11, 2753, 4528, 3135, 690, 539, 387, 6052, 627, 10793, 315, 279, 6052, 1121, 2643, 387, 5190, 477, 9333, 1109, 279, 198, 30002, 11911, 389, 279, 32235, 734, 1511, 627, 36, 1326, 13, 369, 76359, 38723, 1193, 5190, 12483, 690, 387, 6052, 627, 6387, 48194, 1389, 4557, 29237, 315, 279, 2778, 13, 38926, 1268, 1690, 81901, 1288, 387, 198, 16339, 1142, 1603, 13758, 279, 1121, 627, 6359, 512, 12, 528, 482, 1396, 315, 81901, 311, 3319, 11, 2819, 1288, 3118, 304, 682, 198, 16339, 1142, 81901, 198, 4344, 3111, 488, 529, 482, 3319, 682, 81901, 11, 719, 471, 2819, 3118, 304, 1124, 3111, 488, 315, 81901 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.qdrant.Qdrant.html
72a1837327f1-10
’majority’ - query all replicas, but return values present in themajority of replicas ’quorum’ - query the majority of replicas, return values present inall of them ’all’ - query all replicas, and return values present in all replicas Returns List of Documents most similar to the query. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, filter: Optional[MetadataFilter] = None, search_params: Optional[common_types.SearchParams] = None, offset: int = 0, score_threshold: Optional[float] = None, consistency: Optional[common_types.ReadConsistency] = None, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Filter by metadata. Defaults to None. search_params – Additional search params offset – Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold – Define a minimal score threshold for the result. If defined, less similar results will not be returned.
[ 4344, 3111, 488, 529, 482, 3319, 682, 81901, 11, 719, 471, 2819, 3118, 304, 1124, 3111, 488, 315, 81901, 198, 529, 447, 34106, 529, 482, 3319, 279, 8857, 315, 81901, 11, 471, 2819, 3118, 304, 543, 315, 1124, 198, 92748, 529, 482, 3319, 682, 81901, 11, 323, 471, 2819, 3118, 304, 682, 81901, 198, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 4141, 25, 12536, 58, 14952, 5750, 60, 284, 2290, 11, 2778, 6887, 25, 12536, 58, 5581, 9962, 33003, 4975, 60, 284, 2290, 11, 4445, 25, 528, 284, 220, 15, 11, 5573, 22616, 25, 12536, 96481, 60, 284, 2290, 11, 29237, 25, 12536, 58, 5581, 9962, 6639, 15577, 48194, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 5428, 1389, 12619, 555, 11408, 13, 37090, 311, 2290, 627, 1874, 6887, 1389, 24086, 2778, 3712, 198, 3255, 1389, 17286, 315, 279, 1176, 1121, 311, 471, 627, 11356, 387, 1511, 311, 83074, 3135, 627, 9290, 25, 3544, 4445, 2819, 1253, 5353, 5178, 4819, 627, 12618, 22616, 1389, 19127, 264, 17832, 5573, 12447, 369, 279, 1121, 627, 2746, 4613, 11, 2753, 4528, 3135, 690, 539, 387, 6052, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.qdrant.Qdrant.html
72a1837327f1-11
If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency – Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas ’majority’ - query all replicas, but return values present in themajority of replicas ’quorum’ - query the majority of replicas, return values present inall of them ’all’ - query all replicas, and return values present in all replicas Returns List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, filter: Optional[MetadataFilter] = None, search_params: Optional[common_types.SearchParams] = None, offset: int = 0, score_threshold: Optional[float] = None, consistency: Optional[common_types.ReadConsistency] = None, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding vector to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Filter by metadata. Defaults to None. search_params – Additional search params offset – Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold – Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used.
[ 2746, 4613, 11, 2753, 4528, 3135, 690, 539, 387, 6052, 627, 10793, 315, 279, 6052, 1121, 2643, 387, 5190, 477, 9333, 1109, 279, 198, 30002, 11911, 389, 279, 32235, 734, 1511, 627, 36, 1326, 13, 369, 76359, 38723, 1193, 5190, 12483, 690, 387, 6052, 627, 6387, 48194, 1389, 4557, 29237, 315, 279, 2778, 13, 38926, 1268, 1690, 81901, 1288, 387, 198, 16339, 1142, 1603, 13758, 279, 1121, 627, 6359, 512, 12, 528, 482, 1396, 315, 81901, 311, 3319, 11, 2819, 1288, 3118, 304, 682, 198, 16339, 1142, 81901, 198, 4344, 3111, 488, 529, 482, 3319, 682, 81901, 11, 719, 471, 2819, 3118, 304, 1124, 3111, 488, 315, 81901, 198, 529, 447, 34106, 529, 482, 3319, 279, 8857, 315, 81901, 11, 471, 2819, 3118, 304, 543, 315, 1124, 198, 92748, 529, 482, 3319, 682, 81901, 11, 323, 471, 2819, 3118, 304, 682, 81901, 198, 16851, 198, 861, 315, 9477, 1455, 4528, 311, 279, 3319, 1495, 323, 76359, 198, 19909, 304, 2273, 369, 1855, 627, 9230, 5573, 11105, 810, 38723, 627, 15124, 49325, 10947, 6753, 10622, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 4141, 25, 12536, 58, 14952, 5750, 60, 284, 2290, 11, 2778, 6887, 25, 12536, 58, 5581, 9962, 33003, 4975, 60, 284, 2290, 11, 4445, 25, 528, 284, 220, 15, 11, 5573, 22616, 25, 12536, 96481, 60, 284, 2290, 11, 29237, 25, 12536, 58, 5581, 9962, 6639, 15577, 48194, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 4724, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 5428, 1389, 12619, 555, 11408, 13, 37090, 311, 2290, 627, 1874, 6887, 1389, 24086, 2778, 3712, 198, 3255, 1389, 17286, 315, 279, 1176, 1121, 311, 471, 627, 11356, 387, 1511, 311, 83074, 3135, 627, 9290, 25, 3544, 4445, 2819, 1253, 5353, 5178, 4819, 627, 12618, 22616, 1389, 19127, 264, 17832, 5573, 12447, 369, 279, 1121, 627, 2746, 4613, 11, 2753, 4528, 3135, 690, 539, 387, 6052, 627, 10793, 315, 279, 6052, 1121, 2643, 387, 5190, 477, 9333, 1109, 279, 198, 30002, 11911, 389, 279, 32235, 734, 1511, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.qdrant.Qdrant.html
72a1837327f1-12
threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency – Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas ’majority’ - query all replicas, but return values present in themajority of replicas ’quorum’ - query the majority of replicas, return values present inall of them ’all’ - query all replicas, and return values present in all replicas Returns List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. CONTENT_KEY = 'page_content'¶ METADATA_KEY = 'metadata'¶ VECTOR_NAME = None¶
[ 30002, 11911, 389, 279, 32235, 734, 1511, 627, 36, 1326, 13, 369, 76359, 38723, 1193, 5190, 12483, 690, 387, 6052, 627, 6387, 48194, 1389, 4557, 29237, 315, 279, 2778, 13, 38926, 1268, 1690, 81901, 1288, 387, 198, 16339, 1142, 1603, 13758, 279, 1121, 627, 6359, 512, 12, 528, 482, 1396, 315, 81901, 311, 3319, 11, 2819, 1288, 3118, 304, 682, 198, 16339, 1142, 81901, 198, 4344, 3111, 488, 529, 482, 3319, 682, 81901, 11, 719, 471, 2819, 3118, 304, 1124, 3111, 488, 315, 81901, 198, 529, 447, 34106, 529, 482, 3319, 279, 8857, 315, 81901, 11, 471, 2819, 3118, 304, 543, 315, 1124, 198, 92748, 529, 482, 3319, 682, 81901, 11, 323, 471, 2819, 3118, 304, 682, 81901, 198, 16851, 198, 861, 315, 9477, 1455, 4528, 311, 279, 3319, 1495, 323, 76359, 198, 19909, 304, 2273, 369, 1855, 627, 9230, 5573, 11105, 810, 38723, 627, 68972, 6738, 284, 364, 2964, 7647, 6, 55609, 198, 45975, 40219, 6738, 284, 364, 18103, 6, 55609, 198, 44787, 4813, 284, 2290, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.qdrant.Qdrant.html
6198c80ac0f8-0
langchain.vectorstores.clarifai.Clarifai¶ class langchain.vectorstores.clarifai.Clarifai(user_id: Optional[str] = None, app_id: Optional[str] = None, pat: Optional[str] = None, number_of_docs: Optional[int] = None, api_base: Optional[str] = None)[source]¶ Bases: VectorStore Wrapper around Clarifai AI platform’s vector store. To use, you should have the clarifai python package installed. Example from langchain.vectorstores import Clarifai from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Clarifai("langchain_store", embeddings.embed_query) Initialize with Clarifai client. Parameters user_id (Optional[str], optional) – User ID. Defaults to None. app_id (Optional[str], optional) – App ID. Defaults to None. pat (Optional[str], optional) – Personal access token. Defaults to None. number_of_docs (Optional[int], optional) – Number of documents to return None. (during vector search. Defaults to) – api_base (Optional[str], optional) – API base. Defaults to None. Raises ValueError – If user ID, app ID or personal access token is not provided. Methods __init__([user_id, app_id, pat, ...]) Initialize with Clarifai client. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore.
[ 5317, 8995, 48203, 44569, 6894, 277, 333, 2192, 732, 14115, 333, 2192, 55609, 198, 1058, 8859, 8995, 48203, 44569, 6894, 277, 333, 2192, 732, 14115, 333, 2192, 4374, 851, 25, 12536, 17752, 60, 284, 2290, 11, 917, 851, 25, 12536, 17752, 60, 284, 2290, 11, 3352, 25, 12536, 17752, 60, 284, 2290, 11, 1396, 3659, 50792, 25, 12536, 19155, 60, 284, 2290, 11, 6464, 7806, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 11803, 2212, 31181, 333, 2192, 15592, 5452, 753, 4724, 3637, 627, 1271, 1005, 11, 499, 1288, 617, 279, 20064, 333, 2192, 10344, 6462, 10487, 627, 13617, 198, 1527, 8859, 8995, 48203, 44569, 1179, 31181, 333, 2192, 198, 1527, 8859, 8995, 41541, 25624, 5949, 2192, 1179, 5377, 15836, 26566, 25624, 198, 12529, 25624, 284, 5377, 15836, 26566, 25624, 746, 3295, 4412, 284, 31181, 333, 2192, 446, 5317, 8995, 15153, 498, 71647, 41541, 5857, 340, 10130, 449, 31181, 333, 2192, 3016, 627, 9905, 198, 882, 851, 320, 15669, 17752, 1145, 10309, 8, 1389, 2724, 3110, 13, 37090, 311, 2290, 627, 680, 851, 320, 15669, 17752, 1145, 10309, 8, 1389, 1883, 3110, 13, 37090, 311, 2290, 627, 4781, 320, 15669, 17752, 1145, 10309, 8, 1389, 19758, 2680, 4037, 13, 37090, 311, 2290, 627, 4174, 3659, 50792, 320, 15669, 19155, 1145, 10309, 8, 1389, 5742, 315, 9477, 311, 471, 198, 4155, 13, 320, 82977, 4724, 2778, 13, 37090, 311, 8, 1389, 720, 2113, 7806, 320, 15669, 17752, 1145, 10309, 8, 1389, 5446, 2385, 13, 37090, 311, 2290, 627, 36120, 198, 1150, 1480, 1389, 1442, 1217, 3110, 11, 917, 3110, 477, 4443, 2680, 4037, 374, 539, 3984, 627, 18337, 198, 565, 2381, 565, 2625, 882, 851, 11, 4194, 680, 851, 11, 4194, 4781, 11, 4194, 1131, 2608, 10130, 449, 31181, 333, 2192, 3016, 627, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
6198c80ac0f8-1
Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, ids]) Add texts to the Clarifai vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete(ids) Delete by vector ID. from_documents(documents[, embedding, ...]) Create a Clarifai vectorstore from a list of documents. from_texts(texts[, embedding, metadatas, ...]) Create a Clarifai vectorstore from a list of texts. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Run similarity search using Clarifai. similarity_search_by_vector(embedding[, k])
[ 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 11, 4194, 3447, 2608, 2261, 22755, 311, 279, 31181, 333, 2192, 4724, 4412, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 340, 6571, 555, 4724, 3110, 627, 1527, 77027, 19702, 2901, 38372, 4194, 95711, 11, 4194, 1131, 2608, 4110, 264, 31181, 333, 2192, 4724, 4412, 505, 264, 1160, 315, 9477, 627, 1527, 80746, 7383, 82, 38372, 4194, 95711, 11, 4194, 4150, 329, 19907, 11, 4194, 1131, 2608, 4110, 264, 31181, 333, 2192, 4724, 4412, 505, 264, 1160, 315, 22755, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 2608, 6869, 38723, 2778, 1701, 31181, 333, 2192, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2526 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
6198c80ac0f8-2
similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k, ...]) Run similarity search with score using Clarifai. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Add texts to the Clarifai vectorstore. This will push the text to a Clarifai application. Application use base workflow that create and store embedding for each text. Make sure you are using a base workflow that is compatible with text (such as Language Understanding). Parameters texts (Iterable[str]) – Texts to add to the vectorstore.
[ 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15124, 49325, 10947, 6753, 10622, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 6869, 38723, 2778, 449, 5573, 1701, 31181, 333, 2192, 627, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 2261, 22755, 311, 279, 31181, 333, 2192, 4724, 4412, 13, 1115, 690, 4585, 279, 1495, 198, 998, 264, 31181, 333, 2192, 3851, 627, 5095, 1005, 2385, 29388, 430, 1893, 323, 3637, 40188, 369, 1855, 1495, 627, 8238, 2771, 499, 527, 1701, 264, 2385, 29388, 430, 374, 18641, 449, 1495, 198, 1161, 1412, 439, 11688, 46551, 4390, 9905, 198, 87042, 320, 51735, 17752, 2526, 1389, 2991, 82, 311, 923, 311, 279, 4724, 4412, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
6198c80ac0f8-3
Parameters texts (Iterable[str]) – Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional) – Optional list of metadatas. ids (Optional[List[str]], optional) – Optional list of IDs. Returns List of IDs of the added texts. Return type List[str] async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query.
[ 9905, 198, 87042, 320, 51735, 17752, 2526, 1389, 2991, 82, 311, 923, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 320, 15669, 53094, 58, 8644, 21128, 10309, 8, 1389, 12536, 1160, 315, 2322, 329, 19907, 627, 3447, 320, 15669, 53094, 17752, 21128, 10309, 8, 1389, 12536, 1160, 315, 29460, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
6198c80ac0f8-4
Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: List[str]) → Optional[bool]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Optional[Embeddings] = None, user_id: Optional[str] = None, app_id: Optional[str] = None, pat: Optional[str] = None, number_of_docs: Optional[int] = None, api_base: Optional[str] = None, **kwargs: Any) → Clarifai[source]¶ Create a Clarifai vectorstore from a list of documents. Parameters user_id (str) – User ID. app_id (str) – App ID. documents (List[Document]) – List of documents to add. pat (Optional[str]) – Personal access token. Defaults to None. number_of_docs (Optional[int]) – Number of documents to return None. (during vector search. Defaults to) – api_base (Optional[str]) – API base. Defaults to None. Returns Clarifai vectorstore. Return type Clarifai
[ 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 12536, 58, 26566, 25624, 60, 284, 2290, 11, 1217, 851, 25, 12536, 17752, 60, 284, 2290, 11, 917, 851, 25, 12536, 17752, 60, 284, 2290, 11, 3352, 25, 12536, 17752, 60, 284, 2290, 11, 1396, 3659, 50792, 25, 12536, 19155, 60, 284, 2290, 11, 6464, 7806, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 31181, 333, 2192, 76747, 60, 55609, 198, 4110, 264, 31181, 333, 2192, 4724, 4412, 505, 264, 1160, 315, 9477, 627, 9905, 198, 882, 851, 320, 496, 8, 1389, 2724, 3110, 627, 680, 851, 320, 496, 8, 1389, 1883, 3110, 627, 51878, 320, 861, 58, 7676, 2526, 1389, 1796, 315, 9477, 311, 923, 627, 4781, 320, 15669, 17752, 2526, 1389, 19758, 2680, 4037, 13, 37090, 311, 2290, 627, 4174, 3659, 50792, 320, 15669, 19155, 2526, 1389, 5742, 315, 9477, 311, 471, 198, 4155, 13, 320, 82977, 4724, 2778, 13, 37090, 311, 8, 1389, 720, 2113, 7806, 320, 15669, 17752, 2526, 1389, 5446, 2385, 13, 37090, 311, 2290, 627, 16851, 198, 100069, 333, 2192, 4724, 4412, 627, 5715, 955, 198, 100069, 333, 2192 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
6198c80ac0f8-5
Returns Clarifai vectorstore. Return type Clarifai classmethod from_texts(texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, user_id: Optional[str] = None, app_id: Optional[str] = None, pat: Optional[str] = None, number_of_docs: Optional[int] = None, api_base: Optional[str] = None, **kwargs: Any) → Clarifai[source]¶ Create a Clarifai vectorstore from a list of texts. Parameters user_id (str) – User ID. app_id (str) – App ID. texts (List[str]) – List of texts to add. pat (Optional[str]) – Personal access token. Defaults to None. number_of_docs (Optional[int]) – Number of documents to return None. (Defaults to) – api_base (Optional[str]) – API base. Defaults to None. metadatas (Optional[List[dict]]) – Optional list of metadatas. None. – Returns Clarifai vectorstore. Return type Clarifai max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding
[ 16851, 198, 100069, 333, 2192, 4724, 4412, 627, 5715, 955, 198, 100069, 333, 2192, 198, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 12536, 58, 26566, 25624, 60, 284, 2290, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 1217, 851, 25, 12536, 17752, 60, 284, 2290, 11, 917, 851, 25, 12536, 17752, 60, 284, 2290, 11, 3352, 25, 12536, 17752, 60, 284, 2290, 11, 1396, 3659, 50792, 25, 12536, 19155, 60, 284, 2290, 11, 6464, 7806, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 31181, 333, 2192, 76747, 60, 55609, 198, 4110, 264, 31181, 333, 2192, 4724, 4412, 505, 264, 1160, 315, 22755, 627, 9905, 198, 882, 851, 320, 496, 8, 1389, 2724, 3110, 627, 680, 851, 320, 496, 8, 1389, 1883, 3110, 627, 87042, 320, 861, 17752, 2526, 1389, 1796, 315, 22755, 311, 923, 627, 4781, 320, 15669, 17752, 2526, 1389, 19758, 2680, 4037, 13, 37090, 311, 2290, 627, 4174, 3659, 50792, 320, 15669, 19155, 2526, 1389, 5742, 315, 9477, 311, 471, 198, 4155, 13, 320, 16672, 311, 8, 1389, 720, 2113, 7806, 320, 15669, 17752, 2526, 1389, 5446, 2385, 13, 37090, 311, 2290, 627, 4150, 329, 19907, 320, 15669, 53094, 58, 8644, 30716, 1389, 12536, 1160, 315, 2322, 329, 19907, 627, 4155, 13, 1389, 720, 16851, 198, 100069, 333, 2192, 4724, 4412, 627, 5715, 955, 198, 100069, 333, 2192, 198, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
6198c80ac0f8-6
of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Run similarity search using Clarifai. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query and score for each similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to.
[ 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 6869, 38723, 2778, 1701, 31181, 333, 2192, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 323, 5573, 369, 1855, 198, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
6198c80ac0f8-7
Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Run similarity search with score using Clarifai. Parameters query (str) – Query text to search for. k (int) – Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. None. (Defaults to) – Returns List of documents most simmilar to the query text. Return type List[Document]
[ 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 4141, 25, 12536, 58, 8644, 60, 284, 2290, 11, 4573, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 6869, 38723, 2778, 449, 5573, 1701, 31181, 333, 2192, 627, 9905, 198, 1663, 320, 496, 8, 1389, 11615, 1495, 311, 2778, 369, 627, 74, 320, 396, 8, 1389, 5742, 315, 3135, 311, 471, 13, 37090, 311, 220, 19, 627, 5428, 320, 15669, 58, 13755, 17752, 11, 610, 30716, 1389, 12619, 555, 11408, 627, 4155, 13, 320, 16672, 311, 8, 1389, 720, 16851, 198, 861, 315, 9477, 1455, 1675, 76, 3653, 311, 279, 3319, 1495, 627, 5715, 955, 198, 861, 58, 7676, 60 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
4d06c14adde5-0
langchain.vectorstores.base.VectorStore¶ class langchain.vectorstores.base.VectorStore[source]¶ Bases: ABC Interface for vector stores. Methods __init__() aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete(ids) Delete by vector ID. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings.
[ 5317, 8995, 48203, 44569, 9105, 14621, 6221, 55609, 198, 1058, 8859, 8995, 48203, 44569, 9105, 14621, 6221, 76747, 60, 55609, 198, 33, 2315, 25, 19921, 198, 5160, 369, 4724, 10756, 627, 18337, 198, 565, 2381, 33716, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 340, 6571, 555, 4724, 3110, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.base.VectorStore.html
4d06c14adde5-1
Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Return docs most similar to query. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] abstract add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters
[ 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 16647, 923, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.base.VectorStore.html
4d06c14adde5-2
Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST[source]¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST[source]¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever[source]¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query.
[ 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 87042, 1389, 39116, 315, 9246, 311, 923, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 1389, 12536, 1160, 315, 2322, 329, 19907, 5938, 449, 279, 22755, 627, 9872, 1389, 4724, 4412, 3230, 5137, 198, 16851, 198, 861, 315, 14483, 505, 7999, 279, 22755, 1139, 279, 4724, 4412, 627, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 76747, 60, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 76747, 60, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 76747, 60, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.base.VectorStore.html
4d06c14adde5-3
Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return docs most similar to query. delete(ids: List[str]) → Optional[bool][source]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST[source]¶ Return VectorStore initialized from documents and embeddings. abstract classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST[source]¶ Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity.
[ 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 1483, 2484, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 76747, 60, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 16647, 538, 4492, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 76747, 60, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.base.VectorStore.html
4d06c14adde5-4
to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query using specified search type. abstract similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector.
[ 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 16647, 38723, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.base.VectorStore.html
4d06c14adde5-5
Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score)
[ 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 8 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.base.VectorStore.html
fbe1236d78b1-0
langchain.vectorstores.typesense.Typesense¶ class langchain.vectorstores.typesense.Typesense(typesense_client: Client, embedding: Embeddings, *, typesense_collection_name: Optional[str] = None, text_key: str = 'text')[source]¶ Bases: VectorStore Wrapper around Typesense vector search. To use, you should have the typesense python package installed. Example from langchain.embedding.openai import OpenAIEmbeddings from langchain.vectorstores import Typesense import typesense node = { "host": "localhost", # For Typesense Cloud use xxx.a1.typesense.net "port": "8108", # For Typesense Cloud use 443 "protocol": "http" # For Typesense Cloud use https } typesense_client = typesense.Client( { "nodes": [node], "api_key": "<API_KEY>", "connection_timeout_seconds": 2 } ) typesense_collection_name = "langchain-memory" embedding = OpenAIEmbeddings() vectorstore = Typesense( typesense_client=typesense_client, embedding=embedding, typesense_collection_name=typesense_collection_name, text_key="text", ) Initialize with Typesense client. Methods __init__(typesense_client, embedding, *[, ...]) Initialize with Typesense client. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore.
[ 5317, 8995, 48203, 44569, 24104, 1137, 30247, 1137, 55609, 198, 1058, 8859, 8995, 48203, 44569, 24104, 1137, 30247, 1137, 53713, 1137, 8342, 25, 8589, 11, 40188, 25, 38168, 25624, 11, 12039, 4595, 1137, 26071, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 1495, 3173, 25, 610, 284, 364, 1342, 13588, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 11803, 2212, 21431, 1137, 4724, 2778, 627, 1271, 1005, 11, 499, 1288, 617, 279, 4595, 1137, 10344, 6462, 10487, 627, 13617, 198, 1527, 8859, 8995, 68714, 5949, 2192, 1179, 5377, 15836, 26566, 25624, 198, 1527, 8859, 8995, 48203, 44569, 1179, 21431, 1137, 198, 475, 4595, 1137, 198, 3593, 284, 341, 262, 330, 3875, 794, 330, 8465, 498, 220, 674, 1789, 21431, 1137, 15161, 1005, 12599, 5973, 16, 24104, 1137, 5181, 198, 262, 330, 403, 794, 330, 19232, 23, 498, 996, 674, 1789, 21431, 1137, 15161, 1005, 220, 17147, 198, 262, 330, 17447, 794, 330, 1277, 1, 262, 674, 1789, 21431, 1137, 15161, 1005, 3788, 198, 534, 9426, 1137, 8342, 284, 4595, 1137, 11978, 1021, 262, 341, 415, 330, 20606, 794, 510, 3593, 1282, 415, 330, 2113, 3173, 794, 4145, 7227, 6738, 36552, 415, 330, 7898, 21179, 35925, 794, 220, 17, 198, 262, 457, 340, 9426, 1137, 26071, 1292, 284, 330, 5317, 8995, 65196, 702, 95711, 284, 5377, 15836, 26566, 25624, 746, 3295, 4412, 284, 21431, 1137, 1021, 262, 4595, 1137, 8342, 28, 9426, 1137, 8342, 345, 262, 40188, 28, 95711, 345, 262, 4595, 1137, 26071, 1292, 28, 9426, 1137, 26071, 1292, 345, 262, 1495, 3173, 429, 1342, 761, 340, 10130, 449, 21431, 1137, 3016, 627, 18337, 198, 565, 2381, 3889, 9426, 1137, 8342, 11, 4194, 95711, 11, 4194, 9, 38372, 4194, 1131, 2608, 10130, 449, 21431, 1137, 3016, 627, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
fbe1236d78b1-1
Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, ids]) Run more texts through the embedding and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete(ids) Delete by vector ID. from_client_params(embedding, *[, host, ...]) Initialize Typesense directly from client parameters. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas, ...]) Construct Typesense wrapper from raw text. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k, filter])
[ 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 11, 4194, 3447, 2608, 6869, 810, 22755, 1555, 279, 40188, 323, 923, 311, 279, 4724, 4412, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 340, 6571, 555, 4724, 3110, 627, 1527, 8342, 6887, 50825, 7113, 11, 4194, 9, 38372, 4194, 3875, 11, 4194, 1131, 2608, 10130, 21431, 1137, 6089, 505, 3016, 5137, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 11, 4194, 1131, 2608, 29568, 21431, 1137, 13564, 505, 7257, 1495, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 11, 4194, 5428, 2526 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
fbe1236d78b1-2
similarity_search(query[, k, filter]) Return typesense documents most similar to query. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k, filter]) Return typesense documents most similar to query, along with scores. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embedding and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. Returns
[ 15124, 49325, 10947, 10974, 38372, 4194, 74, 11, 4194, 5428, 2608, 5715, 4595, 1137, 9477, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15124, 49325, 10947, 6753, 10622, 10974, 38372, 4194, 74, 11, 4194, 5428, 2608, 5715, 4595, 1137, 9477, 1455, 4528, 311, 3319, 11, 3235, 449, 12483, 627, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 40188, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 87042, 1389, 39116, 315, 9246, 311, 923, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 1389, 12536, 1160, 315, 2322, 329, 19907, 5938, 449, 279, 22755, 627, 3447, 1389, 12536, 1160, 315, 14483, 311, 22712, 449, 279, 22755, 627, 16851 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
fbe1236d78b1-3
ids – Optional list of ids to associate with the texts. Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector.
[ 3447, 1389, 12536, 1160, 315, 14483, 311, 22712, 449, 279, 22755, 627, 16851, 198, 861, 315, 14483, 505, 7999, 279, 22755, 1139, 279, 4724, 4412, 627, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
fbe1236d78b1-4
Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: List[str]) → Optional[bool]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_client_params(embedding: Embeddings, *, host: str = 'localhost', port: Union[str, int] = '8108', protocol: str = 'http', typesense_api_key: Optional[str] = None, connection_timeout_seconds: int = 2, **kwargs: Any) → Typesense[source]¶ Initialize Typesense directly from client parameters. Example from langchain.embedding.openai import OpenAIEmbeddings from langchain.vectorstores import Typesense # Pass in typesense_api_key as kwarg or set env var "TYPESENSE_API_KEY". vectorstore = Typesense( OpenAIEmbeddings(), host="localhost", port="8108", protocol="http", typesense_collection_name="langchain-memory", ) classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings.
[ 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 27853, 505, 8342, 6887, 50825, 7113, 25, 38168, 25624, 11, 12039, 3552, 25, 610, 284, 364, 8465, 518, 2700, 25, 9323, 17752, 11, 528, 60, 284, 364, 19232, 23, 518, 11766, 25, 610, 284, 364, 1277, 518, 4595, 1137, 11959, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 3717, 21179, 35925, 25, 528, 284, 220, 17, 11, 3146, 9872, 25, 5884, 8, 11651, 21431, 1137, 76747, 60, 55609, 198, 10130, 21431, 1137, 6089, 505, 3016, 5137, 627, 13617, 198, 1527, 8859, 8995, 68714, 5949, 2192, 1179, 5377, 15836, 26566, 25624, 198, 1527, 8859, 8995, 48203, 44569, 1179, 21431, 1137, 198, 2, 10175, 304, 4595, 1137, 11959, 3173, 439, 30625, 867, 477, 743, 6233, 767, 330, 9692, 45856, 937, 11669, 6738, 23811, 3295, 4412, 284, 21431, 1137, 1021, 262, 5377, 15836, 26566, 25624, 3227, 262, 3552, 429, 8465, 761, 262, 2700, 429, 19232, 23, 761, 262, 11766, 429, 1277, 761, 262, 4595, 1137, 26071, 1292, 429, 5317, 8995, 65196, 761, 340, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
fbe1236d78b1-5
Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, typesense_client: Optional[Client] = None, typesense_client_params: Optional[dict] = None, typesense_collection_name: Optional[str] = None, text_key: str = 'text', **kwargs: Any) → Typesense[source]¶ Construct Typesense wrapper from raw text. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4.
[ 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 4595, 1137, 8342, 25, 12536, 58, 3032, 60, 284, 2290, 11, 4595, 1137, 8342, 6887, 25, 12536, 58, 8644, 60, 284, 2290, 11, 4595, 1137, 26071, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 1495, 3173, 25, 610, 284, 364, 1342, 518, 3146, 9872, 25, 5884, 8, 11651, 21431, 1137, 76747, 60, 55609, 198, 29568, 21431, 1137, 13564, 505, 7257, 1495, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
fbe1236d78b1-6
k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 10, filter: Optional[str] = '', **kwargs: Any) → List[Document][source]¶ Return typesense documents most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 10. Minimum 10 results would be returned. filter – typesense filter_by expression to filter documents on Returns List of Documents most similar to the query and score for each similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4.
[ 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 605, 11, 4141, 25, 12536, 17752, 60, 284, 9158, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 4595, 1137, 9477, 1455, 4528, 311, 3319, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 605, 627, 29795, 220, 605, 3135, 1053, 387, 6052, 627, 5428, 1389, 4595, 1137, 4141, 3795, 7645, 311, 4141, 9477, 389, 198, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 323, 5573, 369, 1855, 198, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
fbe1236d78b1-7
query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 10, filter: Optional[str] = '') → List[Tuple[Document, float]][source]¶ Return typesense documents most similar to query, along with scores. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 10. Minimum 10 results would be returned. filter – typesense filter_by expression to filter documents on Returns List of Documents most similar to the query and score for each
[ 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 605, 11, 4141, 25, 12536, 17752, 60, 284, 13760, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 4595, 1137, 9477, 1455, 4528, 311, 3319, 11, 3235, 449, 12483, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 605, 627, 29795, 220, 605, 3135, 1053, 387, 6052, 627, 5428, 1389, 4595, 1137, 4141, 3795, 7645, 311, 4141, 9477, 389, 198, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 323, 5573, 369, 1855 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
95b186987582-0
langchain.vectorstores.hologres.Hologres¶ class langchain.vectorstores.hologres.Hologres(connection_string: str, embedding_function: Embeddings, ndims: int = 1536, table_name: str = 'langchain_pg_embedding', pre_delete_table: bool = False, logger: Optional[Logger] = None)[source]¶ Bases: VectorStore VectorStore implementation using Hologres. connection_string is a hologres connection string. embedding_function any embedding function implementinglangchain.embeddings.base.Embeddings interface. ndims is the number of dimensions of the embedding output. table_name is the name of the table to store embeddings and data.(default: langchain_pg_embedding) - NOTE: The table will be created when initializing the store (if not exists) So, make sure the user has the right permissions to create tables. pre_delete_table if True, will delete the table if it exists.(default: False) - Useful for testing. Methods __init__(connection_string, embedding_function) aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_embeddings(texts, embeddings, metadatas, ...) Add embeddings to the vectorstore. add_texts(texts[, metadatas, ids]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas])
[ 5317, 8995, 48203, 44569, 870, 1640, 417, 3924, 1640, 417, 55609, 198, 1058, 8859, 8995, 48203, 44569, 870, 1640, 417, 3924, 1640, 417, 25119, 3991, 25, 610, 11, 40188, 9353, 25, 38168, 25624, 11, 15953, 5861, 25, 528, 284, 220, 9800, 21, 11, 2007, 1292, 25, 610, 284, 364, 5317, 8995, 59781, 52602, 518, 864, 11607, 5350, 25, 1845, 284, 3641, 11, 6050, 25, 12536, 58, 7547, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 3866, 6221, 8292, 1701, 473, 1640, 417, 627, 7898, 3991, 374, 264, 72927, 417, 3717, 925, 627, 95711, 9353, 904, 40188, 734, 25976, 5317, 8995, 41541, 25624, 9105, 58955, 25624, 3834, 627, 303, 5861, 374, 279, 1396, 315, 15696, 315, 279, 40188, 2612, 627, 2048, 1292, 374, 279, 836, 315, 279, 2007, 311, 3637, 71647, 323, 828, 13127, 2309, 25, 8859, 8995, 59781, 52602, 340, 12, 17160, 25, 578, 2007, 690, 387, 3549, 994, 58160, 279, 3637, 320, 333, 539, 6866, 340, 4516, 11, 1304, 2771, 279, 1217, 706, 279, 1314, 8709, 311, 1893, 12920, 627, 1762, 11607, 5350, 422, 3082, 11, 690, 3783, 279, 2007, 422, 433, 6866, 13127, 2309, 25, 3641, 340, 12, 51612, 369, 7649, 627, 18337, 198, 565, 2381, 3889, 7898, 3991, 11, 4194, 95711, 9353, 340, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 64872, 7383, 82, 11, 4194, 12529, 25624, 11, 4194, 4150, 329, 19907, 11, 4194, 32318, 2261, 71647, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 11, 4194, 3447, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2526 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.hologres.Hologres.html
95b186987582-1
afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. connection_string_from_db_params(host, port, ...) Return connection string from database parameters. create_table() create_vector_extension() delete(ids) Delete by vector ID. from_documents(documents, embedding[, ...]) Return VectorStore initialized from documents and embeddings. from_embeddings(text_embeddings, embedding) Construct Hologres wrapper from raw documents and pre- generated embeddings. from_existing_index(embedding[, ndims, ...]) Get intsance of an existing Hologres store.This method will return the instance of the store without inserting any new embeddings from_texts(texts, embedding[, metadatas, ...]) Return VectorStore initialized from texts and embeddings. get_connection_string(kwargs) max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type.
[ 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 7898, 3991, 5791, 8856, 6887, 20569, 11, 4194, 403, 11, 4194, 32318, 5715, 3717, 925, 505, 4729, 5137, 627, 3261, 5350, 746, 3261, 12526, 32135, 746, 4644, 44548, 340, 6571, 555, 4724, 3110, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 38372, 4194, 1131, 2608, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 64872, 7383, 64872, 11, 4194, 95711, 340, 29568, 473, 1640, 417, 13564, 505, 7257, 9477, 323, 864, 12, 8066, 71647, 627, 1527, 63730, 3644, 50825, 7113, 38372, 4194, 303, 5861, 11, 4194, 1131, 2608, 1991, 55824, 685, 315, 459, 6484, 473, 1640, 417, 3637, 29845, 1749, 690, 471, 279, 2937, 315, 279, 3637, 2085, 39398, 904, 502, 71647, 198, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 11, 4194, 1131, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 456, 16245, 3991, 71706, 340, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.hologres.Hologres.html
95b186987582-2
Return docs most similar to query using specified search type. similarity_search(query[, k, filter]) Run similarity search with Hologres with distance. similarity_search_by_vector(embedding[, k, ...]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k, filter]) Return docs most similar to query. similarity_search_with_score_by_vector(embedding) async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_embeddings(texts: Iterable[str], embeddings: List[List[float]], metadatas: List[dict], ids: List[str], **kwargs: Any) → None[source]¶ Add embeddings to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. embeddings – List of list of embedding vectors. metadatas – List of metadatas associated with the texts.
[ 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 11, 4194, 5428, 2608, 6869, 38723, 2778, 449, 473, 1640, 417, 449, 6138, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15124, 49325, 10947, 6753, 10622, 10974, 38372, 4194, 74, 11, 4194, 5428, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 6753, 10622, 3795, 12526, 50825, 7113, 340, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 64872, 7383, 82, 25, 39116, 17752, 1145, 71647, 25, 1796, 53094, 96481, 21128, 2322, 329, 19907, 25, 1796, 58, 8644, 1145, 14483, 25, 1796, 17752, 1145, 3146, 9872, 25, 5884, 8, 11651, 2290, 76747, 60, 55609, 198, 2261, 71647, 311, 279, 4724, 4412, 627, 9905, 198, 87042, 1389, 39116, 315, 9246, 311, 923, 311, 279, 4724, 4412, 627, 12529, 25624, 1389, 1796, 315, 1160, 315, 40188, 23728, 627, 4150, 329, 19907, 1389, 1796, 315, 2322, 329, 19907, 5938, 449, 279, 22755, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.hologres.Hologres.html
95b186987582-3
metadatas – List of metadatas associated with the texts. kwargs – vectorstore specific parameters add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type.
[ 4150, 329, 19907, 1389, 1796, 315, 2322, 329, 19907, 5938, 449, 279, 22755, 627, 9872, 1389, 4724, 4412, 3230, 5137, 198, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 87042, 1389, 39116, 315, 9246, 311, 923, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 1389, 12536, 1160, 315, 2322, 329, 19907, 5938, 449, 279, 22755, 627, 9872, 1389, 4724, 4412, 3230, 5137, 198, 16851, 198, 861, 315, 14483, 505, 7999, 279, 22755, 1139, 279, 4724, 4412, 627, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.hologres.Hologres.html
95b186987582-4
Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. classmethod connection_string_from_db_params(host: str, port: int, database: str, user: str, password: str) → str[source]¶ Return connection string from database parameters. create_table() → None[source]¶ create_vector_extension() → None[source]¶ delete(ids: List[str]) → Optional[bool]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, ndims: int = 1536, table_name: str = 'langchain_pg_embedding', ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) → Hologres[source]¶ Return VectorStore initialized from documents and embeddings. Postgres connection string is required “Either pass it as a parameter or set the HOLOGRES_CONNECTION_STRING environment variable.
[ 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 27853, 3717, 3991, 5791, 8856, 6887, 20569, 25, 610, 11, 2700, 25, 528, 11, 4729, 25, 610, 11, 1217, 25, 610, 11, 3636, 25, 610, 8, 11651, 610, 76747, 60, 55609, 198, 5715, 3717, 925, 505, 4729, 5137, 627, 3261, 5350, 368, 11651, 2290, 76747, 60, 55609, 198, 3261, 12526, 32135, 368, 11651, 2290, 76747, 60, 55609, 198, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 15953, 5861, 25, 528, 284, 220, 9800, 21, 11, 2007, 1292, 25, 610, 284, 364, 5317, 8995, 59781, 52602, 518, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 864, 11607, 26071, 25, 1845, 284, 3641, 11, 3146, 9872, 25, 5884, 8, 11651, 473, 1640, 417, 76747, 60, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 4226, 18297, 3717, 925, 374, 2631, 198, 2118, 50344, 1522, 433, 439, 264, 5852, 198, 269, 743, 279, 31350, 7391, 7157, 41808, 12563, 4676, 3977, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.hologres.Hologres.html
95b186987582-5
“Either pass it as a parameter or set the HOLOGRES_CONNECTION_STRING environment variable. classmethod from_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ndims: int = 1536, table_name: str = 'langchain_pg_embedding', ids: Optional[List[str]] = None, pre_delete_table: bool = False, **kwargs: Any) → Hologres[source]¶ Construct Hologres wrapper from raw documents and pre- generated embeddings. Return VectorStore initialized from documents and embeddings. Postgres connection string is required “Either pass it as a parameter or set the HOLOGRES_CONNECTION_STRING environment variable. Example from langchain import Hologres from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) faiss = Hologres.from_embeddings(text_embedding_pairs, embeddings) classmethod from_existing_index(embedding: Embeddings, ndims: int = 1536, table_name: str = 'langchain_pg_embedding', pre_delete_table: bool = False, **kwargs: Any) → Hologres[source]¶ Get intsance of an existing Hologres store.This method will return the instance of the store without inserting any new embeddings classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ndims: int = 1536, table_name: str = 'langchain_pg_embedding', ids: Optional[List[str]] = None, pre_delete_table: bool = False, **kwargs: Any) → Hologres[source]¶ Return VectorStore initialized from texts and embeddings. Postgres connection string is required
[ 2118, 50344, 1522, 433, 439, 264, 5852, 198, 269, 743, 279, 31350, 7391, 7157, 41808, 12563, 4676, 3977, 627, 27853, 505, 64872, 7383, 64872, 25, 1796, 20961, 6189, 17752, 11, 1796, 96481, 5163, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 15953, 5861, 25, 528, 284, 220, 9800, 21, 11, 2007, 1292, 25, 610, 284, 364, 5317, 8995, 59781, 52602, 518, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 864, 11607, 5350, 25, 1845, 284, 3641, 11, 3146, 9872, 25, 5884, 8, 11651, 473, 1640, 417, 76747, 60, 55609, 198, 29568, 473, 1640, 417, 13564, 505, 7257, 9477, 323, 864, 7058, 16583, 71647, 627, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 4226, 18297, 3717, 925, 374, 2631, 198, 2118, 50344, 1522, 433, 439, 264, 5852, 198, 269, 743, 279, 31350, 7391, 7157, 41808, 12563, 4676, 3977, 627, 13617, 198, 1527, 8859, 8995, 1179, 473, 1640, 417, 198, 1527, 8859, 8995, 41541, 25624, 1179, 5377, 15836, 26566, 25624, 198, 12529, 25624, 284, 5377, 15836, 26566, 25624, 746, 1342, 64872, 284, 71647, 41541, 77027, 7383, 82, 340, 1342, 52602, 37530, 284, 1160, 39349, 7383, 82, 11, 1495, 64872, 1192, 3716, 1056, 284, 473, 1640, 417, 6521, 64872, 7383, 52602, 37530, 11, 71647, 340, 27853, 505, 63730, 3644, 50825, 7113, 25, 38168, 25624, 11, 15953, 5861, 25, 528, 284, 220, 9800, 21, 11, 2007, 1292, 25, 610, 284, 364, 5317, 8995, 59781, 52602, 518, 864, 11607, 5350, 25, 1845, 284, 3641, 11, 3146, 9872, 25, 5884, 8, 11651, 473, 1640, 417, 76747, 60, 55609, 198, 1991, 55824, 685, 315, 459, 6484, 473, 1640, 417, 3637, 29845, 1749, 690, 198, 693, 279, 2937, 315, 279, 3637, 2085, 39398, 904, 502, 198, 12529, 25624, 198, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 15953, 5861, 25, 528, 284, 220, 9800, 21, 11, 2007, 1292, 25, 610, 284, 364, 5317, 8995, 59781, 52602, 518, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 864, 11607, 5350, 25, 1845, 284, 3641, 11, 3146, 9872, 25, 5884, 8, 11651, 473, 1640, 417, 76747, 60, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 4226, 18297, 3717, 925, 374, 2631 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.hologres.Hologres.html
95b186987582-6
Return VectorStore initialized from texts and embeddings. Postgres connection string is required “Either pass it as a parameter or set the HOLOGRES_CONNECTION_STRING environment variable. classmethod get_connection_string(kwargs: Dict[str, Any]) → str[source]¶ max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns
[ 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 4226, 18297, 3717, 925, 374, 2631, 198, 2118, 50344, 1522, 433, 439, 264, 5852, 198, 269, 743, 279, 31350, 7391, 7157, 41808, 12563, 4676, 3977, 627, 27853, 636, 16245, 3991, 71706, 25, 30226, 17752, 11, 5884, 2526, 11651, 610, 76747, 60, 55609, 198, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.hologres.Hologres.html
95b186987582-7
Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any) → List[Document][source]¶ Run similarity search with Hologres with distance. Parameters query (str) – Query text to search for. k (int) – Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None, **kwargs: Any) → List[Document][source]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns
[ 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 4141, 25, 12536, 58, 8644, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 6869, 38723, 2778, 449, 473, 1640, 417, 449, 6138, 627, 9905, 198, 1663, 320, 496, 8, 1389, 11615, 1495, 311, 2778, 369, 627, 74, 320, 396, 8, 1389, 5742, 315, 3135, 311, 471, 13, 37090, 311, 220, 19, 627, 5428, 320, 15669, 58, 13755, 17752, 11, 610, 30716, 1389, 12619, 555, 11408, 13, 37090, 311, 2290, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 4141, 25, 12536, 58, 8644, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 5428, 320, 15669, 58, 13755, 17752, 11, 610, 30716, 1389, 12619, 555, 11408, 13, 37090, 311, 2290, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.hologres.Hologres.html
95b186987582-8
filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None) → List[Tuple[Document, float]][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query and score for each similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None) → List[Tuple[Document, float]][source]¶
[ 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 4141, 25, 12536, 58, 8644, 60, 284, 2290, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 5428, 320, 15669, 58, 13755, 17752, 11, 610, 30716, 1389, 12619, 555, 11408, 13, 37090, 311, 2290, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 323, 5573, 369, 1855, 198, 15124, 49325, 10947, 6753, 10622, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 4141, 25, 12536, 58, 8644, 60, 284, 2290, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.hologres.Hologres.html
6aeb83cd23bb-0
langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch¶ class langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch(opensearch_url: str, index_name: str, embedding_function: Embeddings, **kwargs: Any)[source]¶ Bases: VectorStore Wrapper around OpenSearch as a vector database. Example from langchain import OpenSearchVectorSearch opensearch_vector_search = OpenSearchVectorSearch( "http://localhost:9200", "embeddings", embedding_function ) Initialize with necessary components. Methods __init__(opensearch_url, index_name, ...) Initialize with necessary components. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, ids, bulk_size]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k])
[ 5317, 8995, 48203, 44569, 12298, 1137, 1132, 12526, 10947, 13250, 6014, 3866, 6014, 55609, 198, 1058, 8859, 8995, 48203, 44569, 12298, 1137, 1132, 12526, 10947, 13250, 6014, 3866, 6014, 17534, 1137, 1132, 2975, 25, 610, 11, 1963, 1292, 25, 610, 11, 40188, 9353, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 11803, 2212, 5377, 6014, 439, 264, 4724, 4729, 627, 13617, 198, 1527, 8859, 8995, 1179, 5377, 6014, 3866, 6014, 198, 454, 1137, 1132, 12526, 10947, 284, 5377, 6014, 3866, 6014, 1021, 262, 330, 1277, 1129, 8465, 25, 18485, 15, 761, 262, 330, 12529, 25624, 761, 262, 40188, 9353, 198, 340, 10130, 449, 5995, 6956, 627, 18337, 198, 565, 2381, 3889, 454, 1137, 1132, 2975, 11, 4194, 1275, 1292, 11, 4194, 32318, 10130, 449, 5995, 6956, 627, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 11, 4194, 3447, 11, 4194, 68242, 2424, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2526 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
6aeb83cd23bb-1
asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete(ids) Delete by vector ID. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas, ...]) Construct OpenSearchVectorSearch wrapper from raw documents. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Return docs most similar to query. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k]) Return docs and it's scores most similar to query. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore.
[ 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 340, 6571, 555, 4724, 3110, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 11, 4194, 1131, 2608, 29568, 5377, 6014, 3866, 6014, 13564, 505, 7257, 9477, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15124, 49325, 10947, 6753, 10622, 10974, 38372, 4194, 74, 2608, 5715, 27437, 323, 433, 596, 12483, 1455, 4528, 311, 3319, 627, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
6aeb83cd23bb-2
Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, bulk_size: int = 500, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. bulk_size – Bulk API request count; Default: 500 Returns List of ids from adding the texts into the vectorstore. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
[ 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 20155, 2424, 25, 528, 284, 220, 2636, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 87042, 1389, 39116, 315, 9246, 311, 923, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 1389, 12536, 1160, 315, 2322, 329, 19907, 5938, 449, 279, 22755, 627, 3447, 1389, 12536, 1160, 315, 14483, 311, 22712, 449, 279, 22755, 627, 68242, 2424, 1389, 62020, 5446, 1715, 1797, 26, 8058, 25, 220, 2636, 198, 16851, 198, 861, 315, 14483, 505, 7999, 279, 22755, 1139, 279, 4724, 4412, 627, 15669, 18161, 25, 3295, 5121, 25, 12051, 2115, 71647, 527, 9967, 304, 13, 37090, 311, 198, 2118, 3295, 5121, 863, 627, 1342, 5121, 25, 12051, 2115, 279, 1495, 315, 279, 2246, 374, 9967, 304, 13, 37090, 198, 998, 1054, 1342, 863, 627, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
6aeb83cd23bb-3
Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: List[str]) → Optional[bool]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any) → OpenSearchVectorSearch[source]¶ Construct OpenSearchVectorSearch wrapper from raw documents. Example
[ 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 20155, 2424, 25, 528, 284, 220, 2636, 11, 3146, 9872, 25, 5884, 8, 11651, 5377, 6014, 3866, 6014, 76747, 60, 55609, 198, 29568, 5377, 6014, 3866, 6014, 13564, 505, 7257, 9477, 627, 13617 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
6aeb83cd23bb-4
Construct OpenSearchVectorSearch wrapper from raw documents. Example from langchain import OpenSearchVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() opensearch_vector_search = OpenSearchVectorSearch.from_texts( texts, embeddings, opensearch_url="http://localhost:9200" ) OpenSearch by default supports Approximate Search powered by nmslib, faiss and lucene engines recommended for large datasets. Also supports brute force search through Script Scoring and Painless Scripting. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. Optional Keyword Args for Approximate Search:engine: “nmslib”, “faiss”, “lucene”; default: “nmslib” space_type: “l2”, “l1”, “cosinesimil”, “linf”, “innerproduct”; default: “l2” ef_search: Size of the dynamic list used during k-NN searches. Higher values lead to more accurate but slower searches; default: 512 ef_construction: Size of the dynamic list used during k-NN graph creation. Higher values lead to more accurate graph but slower indexing speed; default: 512 m: Number of bidirectional links created for each new element. Large impact on memory consumption. Between 2 and 100; default: 16 Keyword Args for Script Scoring or Painless Scripting:is_appx_search: False max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → list[langchain.schema.Document][source]¶
[ 29568, 5377, 6014, 3866, 6014, 13564, 505, 7257, 9477, 627, 13617, 198, 1527, 8859, 8995, 1179, 5377, 6014, 3866, 6014, 198, 1527, 8859, 8995, 41541, 25624, 1179, 5377, 15836, 26566, 25624, 198, 12529, 25624, 284, 5377, 15836, 26566, 25624, 746, 454, 1137, 1132, 12526, 10947, 284, 5377, 6014, 3866, 6014, 6521, 80746, 1021, 262, 22755, 345, 262, 71647, 345, 262, 1200, 1137, 1132, 2975, 429, 1277, 1129, 8465, 25, 18485, 15, 702, 340, 5109, 6014, 555, 1670, 11815, 44919, 3509, 7694, 23134, 555, 308, 1026, 2808, 11, 2267, 1056, 198, 438, 27016, 1994, 21787, 11349, 369, 3544, 30525, 13, 7429, 11815, 65198, 5457, 198, 1874, 1555, 14025, 2522, 5620, 323, 393, 16864, 14025, 287, 627, 15669, 18161, 25, 3295, 5121, 25, 12051, 2115, 71647, 527, 9967, 304, 13, 37090, 311, 198, 2118, 3295, 5121, 863, 627, 1342, 5121, 25, 12051, 2115, 279, 1495, 315, 279, 2246, 374, 9967, 304, 13, 37090, 198, 998, 1054, 1342, 863, 627, 15669, 50070, 18161, 369, 44919, 3509, 7694, 25, 8680, 25, 1054, 77, 1026, 2808, 9520, 1054, 3716, 1056, 9520, 1054, 75, 59154, 66545, 1670, 25, 1054, 77, 1026, 2808, 89874, 8920, 1857, 25, 1054, 75, 17, 9520, 1054, 75, 16, 9520, 1054, 9594, 1572, 318, 321, 9520, 1054, 3817, 69, 9520, 1054, 4481, 3107, 66545, 1670, 25, 1054, 75, 17, 89874, 830, 10947, 25, 8645, 315, 279, 8915, 1160, 1511, 2391, 597, 12, 9944, 27573, 13, 35321, 2819, 198, 27152, 311, 810, 13687, 719, 29493, 27573, 26, 1670, 25, 220, 8358, 198, 830, 3464, 3099, 25, 8645, 315, 279, 8915, 1160, 1511, 2391, 597, 12, 9944, 4876, 9886, 627, 88545, 2819, 3063, 311, 810, 13687, 4876, 719, 29493, 53080, 4732, 280, 2309, 25, 220, 8358, 198, 76, 25, 5742, 315, 14435, 45770, 7902, 3549, 369, 1855, 502, 2449, 13, 20902, 5536, 198, 263, 5044, 15652, 13, 28232, 220, 17, 323, 220, 1041, 26, 1670, 25, 220, 845, 198, 35581, 18161, 369, 14025, 2522, 5620, 477, 393, 16864, 14025, 287, 25, 285, 8354, 87, 10947, 25, 3641, 198, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1160, 58, 5317, 8995, 31992, 27352, 1483, 2484, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
6aeb83cd23bb-5
Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. By default, supports Approximate Search.
[ 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 16672, 311, 220, 508, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 1383, 1670, 11, 11815, 44919, 3509, 7694, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
6aeb83cd23bb-6
Return docs most similar to query. By default, supports Approximate Search. Also supports Script Scoring and Painless Scripting. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. metadata_field: Document field that metadata is stored in. Defaults to “metadata”. Can be set to a special value “*” to include the entire document. Optional Args for Approximate Search:search_type: “approximate_search”; default: “approximate_search” boolean_filter: A Boolean filter consists of a Boolean query that contains a k-NN query and a filter. subquery_clause: Query clause on the knn vector field; default: “must” lucene_filter: the Lucene algorithm decides whether to perform an exact k-NN search with pre-filtering or an approximate search with modified post-filtering. Optional Args for Script Scoring Search:search_type: “script_scoring”; default: “approximate_search” space_type: “l2”, “l1”, “linf”, “cosinesimil”, “innerproduct”, “hammingbit”; default: “l2” pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {“match_all”: {}} Optional Args for Painless Scripting Search:search_type: “painless_scripting”; default: “approximate_search” space_type: “l2Squared”, “l1Norm”, “cosineSimilarity”; default: “l2Squared” pre_filter: script_score query to pre-filter documents before identifying
[ 5715, 27437, 1455, 4528, 311, 3319, 627, 1383, 1670, 11, 11815, 44919, 3509, 7694, 627, 13699, 11815, 14025, 2522, 5620, 323, 393, 16864, 14025, 287, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 627, 15669, 18161, 25, 3295, 5121, 25, 12051, 2115, 71647, 527, 9967, 304, 13, 37090, 311, 198, 2118, 3295, 5121, 863, 627, 1342, 5121, 25, 12051, 2115, 279, 1495, 315, 279, 2246, 374, 9967, 304, 13, 37090, 198, 998, 1054, 1342, 863, 627, 18103, 5121, 25, 12051, 2115, 430, 11408, 374, 9967, 304, 13, 37090, 311, 198, 2118, 18103, 863, 627, 6854, 387, 743, 311, 264, 3361, 907, 1054, 9, 863, 311, 2997, 279, 4553, 2246, 627, 15669, 18161, 369, 44919, 3509, 7694, 25, 1874, 1857, 25, 1054, 49153, 3509, 10947, 66545, 1670, 25, 1054, 49153, 3509, 10947, 89874, 6245, 8901, 25, 362, 7137, 4141, 17610, 315, 264, 7137, 3319, 430, 198, 13676, 264, 597, 12, 9944, 3319, 323, 264, 4141, 627, 2008, 1663, 58630, 25, 11615, 22381, 389, 279, 1168, 77, 4724, 2115, 26, 1670, 25, 1054, 25849, 89874, 75, 59154, 8901, 25, 279, 14103, 1994, 12384, 28727, 3508, 311, 2804, 459, 4839, 198, 74, 12, 9944, 2778, 449, 864, 33548, 287, 477, 459, 45968, 2778, 449, 11041, 198, 2252, 33548, 287, 627, 15669, 18161, 369, 14025, 2522, 5620, 7694, 25, 1874, 1857, 25, 1054, 2334, 13473, 5620, 66545, 1670, 25, 1054, 49153, 3509, 10947, 89874, 8920, 1857, 25, 1054, 75, 17, 9520, 1054, 75, 16, 9520, 1054, 3817, 69, 9520, 1054, 9594, 1572, 318, 321, 9520, 1054, 4481, 3107, 863, 345, 2118, 5721, 5424, 4590, 66545, 1670, 25, 1054, 75, 17, 89874, 1762, 8901, 25, 5429, 10622, 3319, 311, 864, 33548, 9477, 1603, 25607, 198, 70611, 19228, 26, 1670, 25, 314, 2118, 6481, 5823, 57633, 4792, 534, 15669, 18161, 369, 393, 16864, 14025, 287, 7694, 25, 1874, 1857, 25, 1054, 79, 16864, 15002, 287, 66545, 1670, 25, 1054, 49153, 3509, 10947, 89874, 8920, 1857, 25, 1054, 75, 17, 89394, 9520, 1054, 75, 16, 26042, 9520, 1054, 9594, 483, 35502, 488, 66545, 1670, 25, 1054, 75, 17, 89394, 89874, 1762, 8901, 25, 5429, 10622, 3319, 311, 864, 33548, 9477, 1603, 25607 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
6aeb83cd23bb-7
pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {“match_all”: {}} similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return docs and it’s scores most similar to query. By default, supports Approximate Search. Also supports Script Scoring and Painless Scripting. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents along with its scores most similar to the query. Optional Args:same as similarity_search
[ 1762, 8901, 25, 5429, 10622, 3319, 311, 864, 33548, 9477, 1603, 25607, 198, 70611, 19228, 26, 1670, 25, 314, 2118, 6481, 5823, 57633, 4792, 534, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 323, 433, 753, 12483, 1455, 4528, 311, 3319, 627, 1383, 1670, 11, 11815, 44919, 3509, 7694, 627, 13699, 11815, 14025, 2522, 5620, 323, 393, 16864, 14025, 287, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 3235, 449, 1202, 12483, 1455, 4528, 311, 279, 3319, 627, 15669, 18161, 14835, 373, 439, 38723, 10947 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
68598a981156-0
langchain.vectorstores.deeplake.DeepLake¶ class langchain.vectorstores.deeplake.DeepLake(dataset_path: str = './deeplake/', token: Optional[str] = None, embedding_function: Optional[Embeddings] = None, read_only: bool = False, ingestion_batch_size: int = 1000, num_workers: int = 0, verbose: bool = True, exec_option: str = 'python', **kwargs: Any)[source]¶ Bases: VectorStore Wrapper around Deep Lake, a data lake for deep learning applications. We integrated deeplake’s similarity search and filtering for fast prototyping, Now, it supports Tensor Query Language (TQL) for production use cases over billion rows. Why Deep Lake? Not only stores embeddings, but also the original data with version control. Serverless, doesn’t require another service and can be used with majorcloud providers (S3, GCS, etc.) More than just a multi-modal vector store. You can use the datasetto fine-tune your own LLM models. To use, you should have the deeplake python package installed. Example from langchain.vectorstores import DeepLake from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = DeepLake("langchain_store", embeddings.embed_query) Creates an empty DeepLakeVectorStore or loads an existing one. The DeepLakeVectorStore is located at the specified path. Examples >>> # Create a vector store with default tensors >>> deeplake_vectorstore = DeepLake( ... path = <path_for_storing_Data>, ... ) >>> >>> # Create a vector store in the Deep Lake Managed Tensor Database >>> data = DeepLake( ... path = "hub://org_id/dataset_name",
[ 5317, 8995, 48203, 44569, 2337, 68, 501, 731, 56702, 82389, 55609, 198, 1058, 8859, 8995, 48203, 44569, 2337, 68, 501, 731, 56702, 82389, 31635, 2703, 25, 610, 284, 2825, 58994, 501, 731, 14688, 4037, 25, 12536, 17752, 60, 284, 2290, 11, 40188, 9353, 25, 12536, 58, 26566, 25624, 60, 284, 2290, 11, 1373, 18917, 25, 1845, 284, 3641, 11, 88447, 14876, 2424, 25, 528, 284, 220, 1041, 15, 11, 1661, 44657, 25, 528, 284, 220, 15, 11, 14008, 25, 1845, 284, 3082, 11, 3969, 9869, 25, 610, 284, 364, 12958, 518, 3146, 9872, 25, 5884, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 11803, 2212, 18682, 11940, 11, 264, 828, 22553, 369, 5655, 6975, 8522, 627, 1687, 18751, 45833, 501, 731, 753, 38723, 2778, 323, 30770, 369, 5043, 1760, 67247, 345, 7184, 11, 433, 11815, 27127, 11615, 11688, 320, 51, 3672, 8, 369, 5788, 1005, 5157, 198, 2017, 7239, 7123, 627, 10445, 18682, 11940, 5380, 2688, 1193, 10756, 71647, 11, 719, 1101, 279, 4113, 828, 449, 2373, 2585, 627, 5592, 1752, 11, 3250, 1431, 1397, 2500, 2532, 323, 649, 387, 1511, 449, 3682, 12641, 12850, 320, 50, 18, 11, 480, 6546, 11, 5099, 29275, 7816, 1109, 1120, 264, 7447, 26177, 4724, 3637, 13, 1472, 649, 1005, 279, 10550, 998, 7060, 2442, 2957, 701, 1866, 445, 11237, 4211, 627, 1271, 1005, 11, 499, 1288, 617, 279, 45833, 501, 731, 10344, 6462, 10487, 627, 13617, 198, 1527, 8859, 8995, 48203, 44569, 1179, 18682, 82389, 198, 1527, 8859, 8995, 41541, 25624, 5949, 2192, 1179, 5377, 15836, 26566, 25624, 198, 12529, 25624, 284, 5377, 15836, 26566, 25624, 746, 3295, 4412, 284, 18682, 82389, 446, 5317, 8995, 15153, 498, 71647, 41541, 5857, 340, 55968, 459, 4384, 18682, 82389, 3866, 6221, 477, 21577, 459, 6484, 832, 627, 791, 18682, 82389, 3866, 6221, 374, 7559, 520, 279, 5300, 1853, 627, 41481, 198, 20761, 674, 4324, 264, 4724, 3637, 449, 1670, 78187, 198, 20761, 45833, 501, 731, 12526, 4412, 284, 18682, 82389, 1021, 1131, 286, 1853, 284, 366, 2398, 5595, 1284, 5620, 18296, 12803, 1131, 1763, 2511, 397, 20761, 674, 4324, 264, 4724, 3637, 304, 279, 18682, 11940, 61844, 27127, 10199, 198, 20761, 828, 284, 18682, 82389, 1021, 1131, 286, 1853, 284, 330, 27780, 1129, 1813, 851, 3529, 8534, 1292, 498 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.deeplake.DeepLake.html
68598a981156-1
... path = "hub://org_id/dataset_name", ... exec_option = "tensor_db", ... ) Parameters dataset_path (str) – Path to existing dataset or where to create a new one. Defaults to _LANGCHAIN_DEFAULT_DEEPLAKE_PATH. token (str, optional) – Activeloop token, for fetching credentials to the dataset at path if it is a Deep Lake dataset. Tokens are normally autogenerated. Optional. embedding_function (str, optional) – Function to convert either documents or query. Optional. read_only (bool) – Open dataset in read-only mode. Default is False. ingestion_batch_size (int) – During data ingestion, data is divided into batches. Batch size is the size of each batch. Default is 1000. num_workers (int) – Number of workers to use during data ingestion. Default is 0. verbose (bool) – Print dataset summary after each operation. Default is True. exec_option (str) – DeepLakeVectorStore supports 3 ways to perform searching - “python”, “compute_engine”, “tensor_db”. Default is “python”. - python - Pure-python implementation that runs on the client. WARNING: using this with big datasets can lead to memory issues. Data can be stored anywhere. - compute_engine - C++ implementation of the Deep Lake Compute Engine that runs on the client. Can be used for any data stored in or connected to Deep Lake. Not for in-memory or local datasets. - tensor_db - Hosted Managed Tensor Database that is responsible for storage and query execution. Only for data stored in the Deep Lake Managed Database. Use runtime = {“db_engine”: True} during dataset creation. **kwargs – Other optional keyword arguments. Raises ValueError – If some condition is not met.
[ 1131, 286, 1853, 284, 330, 27780, 1129, 1813, 851, 3529, 8534, 1292, 761, 1131, 286, 3969, 9869, 284, 330, 47211, 8856, 761, 1131, 1763, 9905, 198, 22090, 2703, 320, 496, 8, 1389, 8092, 311, 6484, 10550, 477, 1405, 311, 1893, 198, 64, 502, 832, 13, 37090, 311, 721, 20598, 91833, 14131, 2952, 36, 2989, 26553, 8103, 627, 5963, 320, 496, 11, 10309, 8, 1389, 15050, 20782, 454, 4037, 11, 369, 45334, 16792, 198, 998, 279, 10550, 520, 1853, 422, 433, 374, 264, 18682, 11940, 10550, 627, 30400, 527, 14614, 82933, 13, 12536, 627, 95711, 9353, 320, 496, 11, 10309, 8, 1389, 5830, 311, 5625, 198, 50998, 9477, 477, 3319, 13, 12536, 627, 888, 18917, 320, 2707, 8, 1389, 5377, 10550, 304, 1373, 15744, 3941, 13, 8058, 374, 3641, 627, 287, 43598, 14876, 2424, 320, 396, 8, 1389, 12220, 828, 88447, 11, 828, 374, 18255, 198, 18614, 45892, 13, 35004, 1404, 374, 279, 1404, 315, 1855, 7309, 627, 3760, 374, 220, 1041, 15, 627, 2470, 44657, 320, 396, 8, 1389, 5742, 315, 7487, 311, 1005, 2391, 828, 88447, 627, 3760, 374, 220, 15, 627, 15228, 320, 2707, 8, 1389, 8377, 10550, 12399, 1306, 1855, 5784, 627, 3760, 374, 3082, 627, 12010, 9869, 320, 496, 8, 1389, 18682, 82389, 3866, 6221, 11815, 220, 18, 5627, 311, 2804, 198, 1874, 287, 482, 1054, 12958, 9520, 1054, 28806, 25860, 9520, 1054, 47211, 8856, 863, 627, 3760, 374, 1054, 12958, 863, 627, 12, 10344, 482, 30688, 73029, 8292, 430, 8640, 389, 279, 3016, 627, 33804, 25, 1701, 420, 449, 2466, 30525, 649, 3063, 311, 5044, 198, 18934, 13, 2956, 649, 387, 9967, 12660, 627, 12, 12849, 25860, 482, 356, 1044, 8292, 315, 279, 18682, 11940, 23426, 198, 4674, 430, 8640, 389, 279, 3016, 13, 3053, 387, 1511, 369, 904, 828, 9967, 304, 198, 269, 8599, 311, 18682, 11940, 13, 2876, 369, 304, 65196, 477, 2254, 30525, 627, 12, 16000, 8856, 482, 16492, 291, 61844, 27127, 10199, 430, 374, 198, 417, 43419, 369, 5942, 323, 3319, 11572, 13, 8442, 369, 828, 9967, 304, 198, 1820, 18682, 11940, 61844, 10199, 13, 5560, 15964, 284, 314, 2118, 2042, 25860, 57633, 3082, 92, 2391, 198, 22090, 9886, 627, 334, 9872, 1389, 7089, 10309, 16570, 6105, 627, 36120, 198, 1150, 1480, 1389, 1442, 1063, 3044, 374, 539, 2322, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.deeplake.DeepLake.html
68598a981156-2
Raises ValueError – If some condition is not met. Methods __init__([dataset_path, token, ...]) Creates an empty DeepLakeVectorStore or loads an existing one. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, ids]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete([ids, filter, delete_all]) Delete the entities in the dataset. delete_dataset() Delete the collection. force_delete_by_path(path) Force delete dataset by path. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings.
[ 36120, 198, 1150, 1480, 1389, 1442, 1063, 3044, 374, 539, 2322, 627, 18337, 198, 565, 2381, 565, 2625, 22090, 2703, 11, 4194, 5963, 11, 4194, 1131, 2608, 55968, 459, 4384, 18682, 82389, 3866, 6221, 477, 21577, 459, 6484, 832, 627, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 11, 4194, 3447, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 2625, 3447, 11, 4194, 5428, 11, 4194, 4644, 5823, 2608, 6571, 279, 15086, 304, 279, 10550, 627, 4644, 19536, 746, 6571, 279, 4526, 627, 9009, 11607, 3795, 2703, 5698, 340, 19085, 3783, 10550, 555, 1853, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.deeplake.DeepLake.html
68598a981156-3
Return VectorStore initialized from documents and embeddings. from_texts(texts[, embedding, metadatas, ...]) Create a Deep Lake dataset from a raw documents. max_marginal_relevance_search(query[, k, ...]) Return docs selected using maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Return docs most similar to query. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k]) Run similarity search with Deep Lake with distance returned. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str]
[ 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 80746, 7383, 82, 38372, 4194, 95711, 11, 4194, 4150, 329, 19907, 11, 4194, 1131, 2608, 4110, 264, 18682, 11940, 10550, 505, 264, 7257, 9477, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15124, 49325, 10947, 6753, 10622, 10974, 38372, 4194, 74, 2608, 6869, 38723, 2778, 449, 18682, 11940, 449, 6138, 6052, 627, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 60 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.deeplake.DeepLake.html
68598a981156-4
Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Examples >>> ids = deeplake_vectorstore.add_texts( ... texts = <list_of_texts>, ... metadatas = <list_of_metadata_jsons>, ... ids = <list_of_ids>, ... ) Parameters texts (Iterable[str]) – Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional) – Optional list of metadatas. ids (Optional[List[str]], optional) – Optional list of IDs. **kwargs – other optional keyword arguments. Returns List of IDs of the added texts. Return type List[str] async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance.
[ 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 41481, 198, 20761, 14483, 284, 45833, 501, 731, 12526, 4412, 1388, 80746, 1021, 1131, 257, 22755, 284, 366, 1638, 3659, 80746, 12803, 1131, 257, 2322, 329, 19907, 284, 366, 1638, 3659, 23012, 9643, 82, 12803, 1131, 257, 14483, 284, 366, 1638, 3659, 8237, 12803, 1131, 1763, 9905, 198, 87042, 320, 51735, 17752, 2526, 1389, 2991, 82, 311, 923, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 320, 15669, 53094, 58, 8644, 21128, 10309, 8, 1389, 12536, 1160, 315, 2322, 329, 19907, 627, 3447, 320, 15669, 53094, 17752, 21128, 10309, 8, 1389, 12536, 1160, 315, 29460, 627, 334, 9872, 1389, 1023, 10309, 16570, 6105, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.deeplake.DeepLake.html
68598a981156-5
Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: Any[List[str], None] = None, filter: Any[Dict[str, str], None] = None, delete_all: Any[bool, None] = None) → bool[source]¶ Delete the entities in the dataset. Parameters ids (Optional[List[str]], optional) – The document_ids to delete. Defaults to None. filter (Optional[Dict[str, str]], optional) – The filter to delete by. Defaults to None. delete_all (Optional[bool], optional) – Whether to drop the dataset. Defaults to None. Returns Whether the delete operation was successful. Return type bool delete_dataset() → None[source]¶ Delete the collection.
[ 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 25, 5884, 53094, 17752, 1145, 2290, 60, 284, 2290, 11, 4141, 25, 5884, 58, 13755, 17752, 11, 610, 1145, 2290, 60, 284, 2290, 11, 3783, 5823, 25, 5884, 58, 2707, 11, 2290, 60, 284, 2290, 8, 11651, 1845, 76747, 60, 55609, 198, 6571, 279, 15086, 304, 279, 10550, 627, 9905, 198, 3447, 320, 15669, 53094, 17752, 21128, 10309, 8, 1389, 578, 2246, 8237, 311, 3783, 627, 16672, 311, 2290, 627, 5428, 320, 15669, 58, 13755, 17752, 11, 610, 21128, 10309, 8, 1389, 578, 4141, 311, 3783, 555, 627, 16672, 311, 2290, 627, 4644, 5823, 320, 15669, 58, 2707, 1145, 10309, 8, 1389, 13440, 311, 6068, 279, 10550, 627, 16672, 311, 2290, 627, 16851, 198, 25729, 279, 3783, 5784, 574, 6992, 627, 5715, 955, 198, 2707, 198, 4644, 19536, 368, 11651, 2290, 76747, 60, 55609, 198, 6571, 279, 4526, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.deeplake.DeepLake.html
68598a981156-6
Return type bool delete_dataset() → None[source]¶ Delete the collection. classmethod force_delete_by_path(path: str) → None[source]¶ Force delete dataset by path. Parameters path (str) – path of the dataset to delete. Raises ValueError – if deeplake is not installed. classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, dataset_path: str = './deeplake/', **kwargs: Any) → DeepLake[source]¶ Create a Deep Lake dataset from a raw documents. If a dataset_path is specified, the dataset will be persisted in that location, otherwise by default at ./deeplake Examples: >>> # Search using an embedding >>> vector_store = DeepLake.from_texts( … texts = <the_texts_that_you_want_to_embed>, … embedding_function = <embedding_function_for_query>, … k = <number_of_items_to_return>, … exec_option = <preferred_exec_option>, … ) Parameters dataset_path (str) – The full path to the dataset. Can be: Deep Lake cloud path of the form hub://username/dataset_name.To write to Deep Lake cloud datasets, ensure that you are logged in to Deep Lake (use ‘activeloop login’ from command line) AWS S3 path of the form s3://bucketname/path/to/dataset.Credentials are required in either the environment Google Cloud Storage path of the formgcs://bucketname/path/to/dataset Credentials are required in either the environment
[ 5715, 955, 198, 2707, 198, 4644, 19536, 368, 11651, 2290, 76747, 60, 55609, 198, 6571, 279, 4526, 627, 27853, 5457, 11607, 3795, 2703, 5698, 25, 610, 8, 11651, 2290, 76747, 60, 55609, 198, 19085, 3783, 10550, 555, 1853, 627, 9905, 198, 2398, 320, 496, 8, 1389, 1853, 315, 279, 10550, 311, 3783, 627, 36120, 198, 1150, 1480, 1389, 422, 45833, 501, 731, 374, 539, 10487, 627, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 12536, 58, 26566, 25624, 60, 284, 2290, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 10550, 2703, 25, 610, 284, 2825, 58994, 501, 731, 14688, 3146, 9872, 25, 5884, 8, 11651, 18682, 82389, 76747, 60, 55609, 198, 4110, 264, 18682, 11940, 10550, 505, 264, 7257, 9477, 627, 2746, 264, 10550, 2703, 374, 5300, 11, 279, 10550, 690, 387, 54095, 304, 430, 3813, 345, 61036, 555, 1670, 520, 13288, 58994, 501, 731, 198, 41481, 512, 20761, 674, 7694, 1701, 459, 40188, 198, 20761, 4724, 15153, 284, 18682, 82389, 6521, 80746, 1021, 1981, 286, 22755, 284, 366, 1820, 80746, 71297, 71556, 1704, 519, 2401, 24967, 12803, 1981, 286, 40188, 9353, 284, 366, 95711, 9353, 5595, 5857, 12803, 1981, 286, 597, 284, 366, 4174, 3659, 12408, 2401, 12794, 12803, 1981, 286, 3969, 9869, 284, 366, 74586, 18937, 9869, 12803, 1981, 1763, 9905, 198, 22090, 2703, 320, 496, 8, 1389, 720, 791, 2539, 1853, 311, 279, 10550, 13, 3053, 387, 512, 34564, 11940, 9624, 1853, 315, 279, 1376, 19240, 1129, 5223, 3529, 8534, 1292, 3354, 3350, 311, 18682, 11940, 9624, 30525, 345, 28389, 430, 499, 527, 14042, 304, 311, 18682, 11940, 198, 48462, 3451, 9035, 20782, 454, 5982, 529, 505, 3290, 1584, 340, 37236, 328, 18, 1853, 315, 279, 1376, 274, 18, 1129, 31510, 609, 52076, 33529, 3529, 8534, 732, 16112, 527, 2631, 304, 3060, 279, 4676, 198, 14783, 15161, 15035, 1853, 315, 279, 1376, 70, 4942, 1129, 31510, 609, 52076, 33529, 3529, 8534, 62360, 527, 2631, 198, 258, 3060, 279, 4676 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.deeplake.DeepLake.html
68598a981156-7
in either the environment Local file system path of the form ./path/to/dataset or~/path/to/dataset or path/to/dataset. In-memory path of the form mem://path/to/dataset which doesn’tsave the dataset, but keeps it in memory instead. Should be used only for testing as it does not persist. texts (List[Document]) – List of documents to add. embedding (Optional[Embeddings]) – Embedding function. Defaults to None. Note, in other places, it is called embedding_function. metadatas (Optional[List[dict]]) – List of metadatas. Defaults to None. ids (Optional[List[str]]) – List of document IDs. Defaults to None. **kwargs – Additional keyword arguments. Returns Deep Lake dataset. Return type DeepLake Raises ValueError – If ‘embedding’ is provided in kwargs. This is deprecated, please use embedding_function instead. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, exec_option: Optional[str] = None, **kwargs: Any) → List[Document][source]¶ Return docs selected using maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Examples: >>> # Search using an embedding >>> data = vector_store.max_marginal_relevance_search( … query = <query_to_search>, … embedding_function = <embedding_function_for_query>, … k = <number_of_items_to_return>, … exec_option = <preferred_exec_option>, … ) Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents for MMR algorithm.
[ 258, 3060, 279, 4676, 198, 7469, 1052, 1887, 1853, 315, 279, 1376, 13288, 2398, 33529, 3529, 8534, 477, 23549, 2398, 33529, 3529, 8534, 477, 1853, 33529, 3529, 8534, 627, 644, 65196, 1853, 315, 279, 1376, 1871, 1129, 2398, 33529, 3529, 8534, 902, 3250, 1431, 6766, 279, 10550, 11, 719, 13912, 433, 304, 5044, 4619, 627, 15346, 387, 1511, 1193, 369, 7649, 439, 433, 1587, 539, 23135, 627, 87042, 320, 861, 58, 7676, 2526, 1389, 1796, 315, 9477, 311, 923, 627, 95711, 320, 15669, 58, 26566, 25624, 2526, 1389, 38168, 7113, 734, 13, 37090, 311, 2290, 627, 9290, 11, 304, 1023, 7634, 11, 433, 374, 2663, 40188, 9353, 627, 4150, 329, 19907, 320, 15669, 53094, 58, 8644, 30716, 1389, 1796, 315, 2322, 329, 19907, 13, 37090, 311, 2290, 627, 3447, 320, 15669, 53094, 17752, 30716, 1389, 1796, 315, 2246, 29460, 13, 37090, 311, 2290, 627, 334, 9872, 1389, 24086, 16570, 6105, 627, 16851, 198, 34564, 11940, 10550, 627, 5715, 955, 198, 34564, 82389, 198, 36120, 198, 1150, 1480, 1389, 1442, 3451, 95711, 529, 374, 3984, 304, 16901, 13, 1115, 374, 32690, 345, 262, 4587, 1005, 40188, 9353, 4619, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3969, 9869, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 41481, 512, 20761, 674, 7694, 1701, 459, 40188, 198, 20761, 828, 284, 4724, 15153, 6817, 722, 867, 992, 1311, 33194, 10947, 1021, 1981, 286, 3319, 284, 366, 1663, 2401, 10947, 12803, 1981, 286, 40188, 9353, 284, 366, 95711, 9353, 5595, 5857, 12803, 1981, 286, 597, 284, 366, 4174, 3659, 12408, 2401, 12794, 12803, 1981, 286, 3969, 9869, 284, 366, 74586, 18937, 9869, 12803, 1981, 1763, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 369, 386, 18953, 12384, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.deeplake.DeepLake.html
68598a981156-8
fetch_k – Number of Documents for MMR algorithm. lambda_mult – Value between 0 and 1. 0 corresponds to maximum diversity and 1 to minimum. Defaults to 0.5. exec_option (str) – Supports 3 ways to perform searching. - “python” - Pure-python implementation running on the client. Can be used for data stored anywhere. WARNING: using this option with big datasets is discouraged due to potential memory issues. ”compute_engine” - Performant C++ implementation of the DeepLake Compute Engine. Runs on the client and can be used for any data stored in or connected to Deep Lake. It cannot be used with in-memory or local datasets. ”tensor_db” - Performant, fully-hosted Managed Tensor Database.Responsible for storage and query execution. Only available for data stored in the Deep Lake Managed Database. To store datasets in this database, specify runtime = {“db_engine”: True} during dataset creation. **kwargs – Additional keyword arguments Returns List of Documents selected by maximal marginal relevance. Raises ValueError – when MRR search is on but embedding function is not specified. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, exec_option: Optional[str] = None, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected docs. Examples: >>> data = vector_store.max_marginal_relevance_search_by_vector( … embedding=<your_embedding>, … fetch_k=<elements_to_fetch_before_mmr_search>, … k=<number_of_items_to_return>,
[ 9838, 4803, 1389, 5742, 315, 45890, 369, 386, 18953, 12384, 627, 13231, 27386, 1389, 5273, 1990, 220, 15, 323, 220, 16, 13, 220, 15, 34310, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 627, 16672, 311, 220, 15, 13, 20, 627, 12010, 9869, 320, 496, 8, 1389, 67546, 220, 18, 5627, 311, 2804, 15389, 627, 12, 1054, 12958, 863, 482, 30688, 73029, 8292, 4401, 389, 279, 3016, 627, 6854, 387, 1511, 369, 828, 9967, 12660, 13, 27577, 25, 1701, 420, 198, 2091, 449, 2466, 30525, 374, 64770, 4245, 311, 4754, 198, 17717, 4819, 627, 863, 28806, 25860, 863, 482, 26050, 519, 356, 1044, 8292, 315, 279, 18682, 82389, 23426, 8364, 13, 51090, 389, 279, 3016, 323, 649, 387, 1511, 369, 198, 3852, 828, 9967, 304, 477, 8599, 311, 18682, 11940, 13, 1102, 4250, 387, 198, 2656, 449, 304, 65196, 477, 2254, 30525, 627, 863, 47211, 8856, 863, 482, 26050, 519, 11, 7373, 39689, 291, 61844, 27127, 10199, 8542, 43419, 369, 5942, 323, 3319, 11572, 13, 8442, 2561, 198, 2000, 828, 9967, 304, 279, 18682, 11940, 61844, 10199, 13, 2057, 3637, 198, 66646, 304, 420, 4729, 11, 14158, 198, 23051, 284, 314, 2118, 2042, 25860, 57633, 3082, 92, 2391, 10550, 9886, 627, 334, 9872, 1389, 24086, 16570, 6105, 198, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 36120, 198, 1150, 1480, 1389, 994, 386, 8268, 2778, 374, 389, 719, 40188, 734, 374, 198, 262, 539, 5300, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3969, 9869, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 13, 7639, 2931, 32873, 198, 265, 33194, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 4315, 4183, 27437, 627, 41481, 512, 20761, 828, 284, 4724, 15153, 6817, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 1021, 1981, 286, 40188, 39798, 22479, 52602, 12803, 1981, 286, 7963, 4803, 39798, 22138, 2401, 12066, 24638, 722, 21620, 10947, 12803, 1981, 286, 597, 39798, 4174, 3659, 12408, 2401, 12794, 8226 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.deeplake.DeepLake.html
68598a981156-9
… k=<number_of_items_to_return>, … exec_option=<preferred_exec_option>, … ) Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch for MMR algorithm. lambda_mult – Number between 0 and 1 determining the degree of diversity. 0 corresponds to max diversity and 1 to min diversity. Defaults to 0.5. exec_option (str) – DeepLakeVectorStore supports 3 ways for searching. Could be “python”, “compute_engine” or “tensor_db”. Defaults to “python”. - “python” - Pure-python implementation running on the client. Can be used for data stored anywhere. WARNING: using this option with big datasets is discouraged due to potential memory issues. ”compute_engine” - Performant C++ implementation of the DeepLake Compute Engine. Runs on the client and can be used for any data stored in or connected to Deep Lake. It cannot be used with in-memory or local datasets. ”tensor_db” - Performant, fully-hosted Managed Tensor Database.Responsible for storage and query execution. Only available for data stored in the Deep Lake Managed Database. To store datasets in this database, specify runtime = {“db_engine”: True} during dataset creation. **kwargs – Additional keyword arguments. Returns List[Documents] - A list of documents. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. Examples >>> # Search using an embedding
[ 1981, 286, 597, 39798, 4174, 3659, 12408, 2401, 12794, 12803, 1981, 286, 3969, 9869, 39798, 74586, 18937, 9869, 12803, 1981, 1763, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 369, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 26679, 279, 8547, 315, 20057, 627, 15, 34310, 311, 1973, 20057, 323, 220, 16, 311, 1332, 20057, 13, 37090, 311, 220, 15, 13, 20, 627, 12010, 9869, 320, 496, 8, 1389, 18682, 82389, 3866, 6221, 11815, 220, 18, 5627, 369, 15389, 627, 13191, 387, 1054, 12958, 9520, 1054, 28806, 25860, 863, 477, 1054, 47211, 8856, 11453, 37090, 311, 198, 2118, 12958, 863, 627, 12, 1054, 12958, 863, 482, 30688, 73029, 8292, 4401, 389, 279, 3016, 627, 6854, 387, 1511, 369, 828, 9967, 12660, 13, 27577, 25, 1701, 420, 198, 2091, 449, 2466, 30525, 374, 64770, 4245, 311, 4754, 198, 17717, 4819, 627, 863, 28806, 25860, 863, 482, 26050, 519, 356, 1044, 8292, 315, 279, 18682, 82389, 23426, 8364, 13, 51090, 389, 279, 3016, 323, 649, 387, 1511, 369, 198, 3852, 828, 9967, 304, 477, 8599, 311, 18682, 11940, 13, 1102, 4250, 387, 1511, 198, 4291, 304, 65196, 477, 2254, 30525, 627, 863, 47211, 8856, 863, 482, 26050, 519, 11, 7373, 39689, 291, 61844, 27127, 10199, 8542, 43419, 369, 5942, 323, 3319, 11572, 13, 8442, 2561, 369, 198, 695, 9967, 304, 279, 18682, 11940, 61844, 10199, 13, 2057, 3637, 30525, 198, 258, 420, 4729, 11, 14158, 15964, 284, 314, 2118, 2042, 25860, 57633, 3082, 534, 82977, 10550, 9886, 627, 334, 9872, 1389, 24086, 16570, 6105, 627, 16851, 198, 861, 58, 28242, 60, 482, 362, 1160, 315, 9477, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 41481, 198, 20761, 674, 7694, 1701, 459, 40188 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.deeplake.DeepLake.html
68598a981156-10
Return docs most similar to query. Examples >>> # Search using an embedding >>> data = vector_store.similarity_search( ... query=<your_query>, ... k=<num_items>, ... exec_option=<preferred_exec_option>, ... ) >>> # Run tql search: >>> data = vector_store.tql_search( ... tql_query="SELECT * WHERE id == <id>", ... exec_option="compute_engine", ... ) Parameters k (int) – Number of Documents to return. Defaults to 4. query (str) – Text to look up similar documents. **kwargs – Additional keyword arguments include: embedding (Callable): Embedding function to use. Defaults to None. distance_metric (str): ‘L2’ for Euclidean, ‘L1’ for Nuclear, ‘max’ for L-infinity, ‘cos’ for cosine, ‘dot’ for dot product. Defaults to ‘L2’. filter (Union[Dict, Callable], optional): Additional filterbefore embedding search. - Dict: Key-value search on tensors of htype json, (sample must satisfy all key-value filters) Dict = {“tensor_1”: {“key”: value}, “tensor_2”: {“key”: value}} Function: Compatible with deeplake.filter. Defaults to None. exec_option (str): Supports 3 ways to perform searching.’python’, ‘compute_engine’, or ‘tensor_db’. Defaults to ‘python’. - ‘python’: Pure-python implementation for the client. WARNING: not recommended for big datasets. ’compute_engine’: C++ implementation of the Compute Engine forthe client. Not for in-memory or local datasets. ’tensor_db’: Managed Tensor Database for storage and query.Only for data in Deep Lake Managed Database. Use runtime = {“db_engine”: True} during dataset creation.
[ 5715, 27437, 1455, 4528, 311, 3319, 627, 41481, 198, 20761, 674, 7694, 1701, 459, 40188, 198, 20761, 828, 284, 4724, 15153, 29716, 49325, 10947, 1021, 1131, 257, 3319, 39798, 22479, 5857, 12803, 1131, 257, 597, 39798, 2470, 12408, 12803, 1131, 257, 3969, 9869, 39798, 74586, 18937, 9869, 12803, 1131, 1763, 20761, 674, 6588, 259, 1498, 2778, 512, 20761, 828, 284, 4724, 15153, 739, 1498, 10947, 1021, 1131, 257, 259, 1498, 5857, 429, 4963, 353, 5401, 887, 624, 366, 307, 36552, 1131, 257, 3969, 9869, 429, 28806, 25860, 761, 1131, 1763, 9905, 198, 74, 320, 396, 8, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 1663, 320, 496, 8, 1389, 2991, 311, 1427, 709, 4528, 9477, 627, 334, 9872, 1389, 24086, 16570, 6105, 2997, 512, 95711, 320, 41510, 1680, 38168, 7113, 734, 311, 1005, 13, 37090, 311, 2290, 627, 19909, 42394, 320, 496, 1680, 3451, 43, 17, 529, 369, 22730, 51178, 11, 3451, 43, 16, 529, 369, 38544, 11, 3451, 2880, 529, 198, 2000, 445, 3502, 20482, 11, 3451, 9594, 529, 369, 76359, 11, 3451, 16510, 529, 369, 13046, 2027, 627, 16672, 311, 3451, 43, 17, 529, 627, 5428, 320, 33758, 58, 13755, 11, 54223, 1145, 10309, 1680, 24086, 4141, 15145, 40188, 2778, 627, 12, 30226, 25, 5422, 19625, 2778, 389, 78187, 315, 305, 1337, 3024, 345, 34068, 2011, 27651, 682, 1401, 19625, 13711, 340, 13755, 284, 314, 2118, 47211, 62, 16, 57633, 314, 2118, 798, 57633, 907, 2186, 1054, 47211, 62, 17, 57633, 314, 2118, 798, 57633, 907, 11498, 5263, 25, 67365, 449, 45833, 501, 731, 7081, 627, 16672, 311, 2290, 627, 12010, 9869, 320, 496, 1680, 67546, 220, 18, 5627, 311, 2804, 15389, 14639, 12958, 20182, 3451, 28806, 25860, 20182, 477, 3451, 47211, 8856, 24535, 37090, 311, 3451, 12958, 529, 627, 12, 3451, 12958, 89213, 30688, 73029, 8292, 369, 279, 3016, 627, 33804, 25, 539, 11349, 369, 2466, 30525, 627, 529, 28806, 25860, 89213, 356, 1044, 8292, 315, 279, 23426, 8364, 369, 1820, 3016, 13, 2876, 369, 304, 65196, 477, 2254, 30525, 627, 1431, 3890, 8856, 89213, 61844, 27127, 10199, 369, 5942, 323, 3319, 13, 7456, 369, 828, 304, 18682, 11940, 61844, 10199, 627, 10464, 15964, 284, 314, 2118, 2042, 25860, 57633, 3082, 92, 2391, 10550, 9886, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.deeplake.DeepLake.html
68598a981156-11
Use runtime = {“db_engine”: True} during dataset creation. Returns List of Documents most similar to the query vector. Return type List[Document] similarity_search_by_vector(embedding: Union[List[float], ndarray], k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to embedding vector. Examples >>> # Search using an embedding >>> data = vector_store.similarity_search_by_vector( ... embedding=<your_embedding>, ... k=<num_items_to_return>, ... exec_option=<preferred_exec_option>, ... ) Parameters embedding (Union[List[float], np.ndarray]) – Embedding to find similar docs. k (int) – Number of Documents to return. Defaults to 4. **kwargs – Additional keyword arguments including: filter (Union[Dict, Callable], optional): Additional filter before embedding search. - Dict - Key-value search on tensors of htype json. True if all key-value filters are satisfied. Dict = {“tensor_name_1”: {“key”: value}, ”tensor_name_2”: {“key”: value}} Function - Any function compatible withdeeplake.filter. Defaults to None. exec_option (str): Options for search execution include”python”, “compute_engine”, or “tensor_db”. Defaults to “python”. - “python” - Pure-python implementation running on the client. Can be used for data stored anywhere. WARNING: using this option with big datasets is discouraged due to potential memory issues. ”compute_engine” - Performant C++ implementation of the DeepLake Compute Engine. Runs on the client and can be used for any data stored in or connected to Deep Lake. It cannot be used with in-memory or local datasets.
[ 10464, 15964, 284, 314, 2118, 2042, 25860, 57633, 3082, 92, 2391, 10550, 9886, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 5715, 955, 198, 861, 58, 7676, 933, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 9323, 53094, 96481, 1145, 67983, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 41481, 198, 20761, 674, 7694, 1701, 459, 40188, 198, 20761, 828, 284, 4724, 15153, 29716, 49325, 10947, 3795, 12526, 1021, 1131, 262, 40188, 39798, 22479, 52602, 12803, 1131, 262, 597, 39798, 2470, 12408, 2401, 12794, 12803, 1131, 262, 3969, 9869, 39798, 74586, 18937, 9869, 12803, 1131, 1763, 9905, 198, 95711, 320, 33758, 53094, 96481, 1145, 2660, 36649, 2526, 1389, 38168, 7113, 311, 1505, 4528, 27437, 627, 74, 320, 396, 8, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 24086, 16570, 6105, 2737, 512, 5428, 320, 33758, 58, 13755, 11, 54223, 1145, 10309, 997, 30119, 4141, 1603, 40188, 2778, 627, 12, 30226, 482, 5422, 19625, 2778, 389, 78187, 315, 305, 1337, 3024, 13, 3082, 198, 333, 682, 1401, 19625, 13711, 527, 20097, 627, 13755, 284, 314, 2118, 47211, 1292, 62, 16, 57633, 314, 2118, 798, 57633, 907, 1613, 863, 47211, 1292, 62, 17, 57633, 314, 2118, 798, 57633, 907, 11498, 5263, 482, 5884, 734, 18641, 449, 58994, 501, 731, 7081, 627, 16672, 311, 2290, 627, 12010, 9869, 320, 496, 1680, 14908, 369, 2778, 11572, 2997, 863, 12958, 9520, 1054, 28806, 25860, 9520, 477, 1054, 47211, 8856, 11453, 37090, 311, 198, 2118, 12958, 863, 627, 12, 1054, 12958, 863, 482, 30688, 73029, 8292, 4401, 389, 279, 3016, 627, 6854, 387, 1511, 369, 828, 9967, 12660, 13, 27577, 25, 1701, 420, 198, 2091, 449, 2466, 30525, 374, 64770, 4245, 311, 4754, 198, 17717, 4819, 627, 863, 28806, 25860, 863, 482, 26050, 519, 356, 1044, 8292, 315, 279, 18682, 82389, 23426, 8364, 13, 51090, 389, 279, 3016, 323, 649, 387, 1511, 369, 198, 3852, 828, 9967, 304, 477, 8599, 311, 18682, 11940, 13, 1102, 4250, 387, 198, 2656, 449, 304, 65196, 477, 2254, 30525, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.deeplake.DeepLake.html
68598a981156-12
used with in-memory or local datasets. ”tensor_db” - Performant, fully-hosted Managed Tensor Database.Responsible for storage and query execution. Only available for data stored in the Deep Lake Managed Database. To store datasets in this database, specify runtime = {“db_engine”: True} during dataset creation. distance_metric (str): L2 for Euclidean, L1 for Nuclear,max for L-infinity distance, cos for cosine similarity, ‘dot’ for dot product. Defaults to L2. Returns List of Documents most similar to the query vector. Return type List[Document] similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Run similarity search with Deep Lake with distance returned. Examples: >>> data = vector_store.similarity_search_with_score( … query=<your_query>, … embedding=<your_embedding_function> … k=<number_of_items_to_return>, … exec_option=<preferred_exec_option>, … ) Parameters query (str) – Query text to search for. k (int) – Number of results to return. Defaults to 4.
[ 2656, 449, 304, 65196, 477, 2254, 30525, 627, 863, 47211, 8856, 863, 482, 26050, 519, 11, 7373, 39689, 291, 61844, 27127, 10199, 8542, 43419, 369, 5942, 323, 3319, 11572, 13, 8442, 2561, 198, 2000, 828, 9967, 304, 279, 18682, 11940, 61844, 10199, 627, 1271, 3637, 30525, 304, 420, 4729, 11, 14158, 198, 23051, 284, 314, 2118, 2042, 25860, 57633, 3082, 92, 2391, 10550, 9886, 627, 19909, 42394, 320, 496, 1680, 445, 17, 369, 22730, 51178, 11, 445, 16, 369, 38544, 35951, 369, 445, 3502, 20482, 6138, 11, 8119, 369, 76359, 38723, 345, 14336, 16510, 529, 369, 13046, 2027, 13, 37090, 311, 445, 17, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 5715, 955, 198, 861, 58, 7676, 933, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 6869, 38723, 2778, 449, 18682, 11940, 449, 6138, 6052, 627, 41481, 512, 20761, 828, 284, 4724, 15153, 29716, 49325, 10947, 6753, 10622, 1021, 1981, 257, 3319, 39798, 22479, 5857, 12803, 1981, 257, 40188, 39798, 22479, 52602, 9353, 397, 1981, 257, 597, 39798, 4174, 3659, 12408, 2401, 12794, 12803, 1981, 257, 3969, 9869, 39798, 74586, 18937, 9869, 12803, 1981, 1763, 9905, 198, 1663, 320, 496, 8, 1389, 11615, 1495, 311, 2778, 369, 627, 74, 320, 396, 8, 1389, 5742, 315, 3135, 311, 471, 13, 37090, 311, 220, 19, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.deeplake.DeepLake.html
68598a981156-13
k (int) – Number of results to return. Defaults to 4. **kwargs – Additional keyword arguments. Some of these arguments are: distance_metric: L2 for Euclidean, L1 for Nuclear, max L-infinity distance, cos for cosine similarity, ‘dot’ for dot product. Defaults to L2. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.embedding_function (Callable): Embedding function to use. Defaults to None. exec_option (str): DeepLakeVectorStore supports 3 ways to performsearching. It could be either “python”, “compute_engine” or “tensor_db”. Defaults to “python”. - “python” - Pure-python implementation running on the client. Can be used for data stored anywhere. WARNING: using this option with big datasets is discouraged due to potential memory issues. ”compute_engine” - Performant C++ implementation of the DeepLake Compute Engine. Runs on the client and can be used for any data stored in or connected to Deep Lake. It cannot be used with in-memory or local datasets. ”tensor_db” - Performant, fully-hosted Managed Tensor Database.Responsible for storage and query execution. Only available for data stored in the Deep Lake Managed Database. To store datasets in this database, specify runtime = {“db_engine”: True} during dataset creation. Returns List of documents most similar to the querytext with distance in float. Return type List[Tuple[Document, float]]
[ 74, 320, 396, 8, 1389, 5742, 315, 3135, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 24086, 16570, 6105, 13, 4427, 315, 1521, 6105, 527, 512, 19909, 42394, 25, 445, 17, 369, 22730, 51178, 11, 445, 16, 369, 38544, 11, 1973, 445, 3502, 20482, 198, 19909, 11, 8119, 369, 76359, 38723, 11, 3451, 16510, 529, 369, 13046, 2027, 627, 16672, 311, 445, 17, 627, 5428, 320, 15669, 58, 13755, 17752, 11, 610, 5163, 1680, 12619, 555, 11408, 13, 37090, 311, 2290, 68714, 9353, 320, 41510, 1680, 38168, 7113, 734, 311, 1005, 13, 37090, 198, 998, 2290, 627, 12010, 9869, 320, 496, 1680, 18682, 82389, 3866, 6221, 11815, 220, 18, 5627, 311, 2804, 1874, 287, 13, 1102, 1436, 387, 3060, 1054, 12958, 9520, 1054, 28806, 25860, 863, 477, 198, 2118, 47211, 8856, 11453, 37090, 311, 1054, 12958, 863, 627, 12, 1054, 12958, 863, 482, 30688, 73029, 8292, 4401, 389, 279, 3016, 627, 6854, 387, 1511, 369, 828, 9967, 12660, 13, 27577, 25, 1701, 420, 198, 2091, 449, 2466, 30525, 374, 64770, 4245, 311, 4754, 198, 17717, 4819, 627, 863, 28806, 25860, 863, 482, 26050, 519, 356, 1044, 8292, 315, 279, 18682, 82389, 23426, 8364, 13, 51090, 389, 279, 3016, 323, 649, 387, 1511, 369, 198, 3852, 828, 9967, 304, 477, 8599, 311, 18682, 11940, 13, 1102, 4250, 387, 1511, 198, 4291, 304, 65196, 477, 2254, 30525, 627, 863, 47211, 8856, 863, 482, 26050, 519, 11, 7373, 39689, 291, 61844, 27127, 10199, 8542, 43419, 369, 5942, 323, 3319, 11572, 13, 8442, 2561, 369, 198, 695, 9967, 304, 279, 18682, 11940, 61844, 10199, 13, 2057, 3637, 30525, 198, 258, 420, 4729, 11, 14158, 15964, 284, 314, 2118, 2042, 25860, 57633, 3082, 534, 82977, 10550, 9886, 627, 16851, 198, 861, 315, 9477, 1455, 4528, 311, 279, 3319, 1342, 449, 6138, 304, 2273, 627, 5715, 955, 198, 861, 20961, 6189, 58, 7676, 11, 2273, 5163 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.deeplake.DeepLake.html
8381a8230946-0
langchain.vectorstores.redis.Redis¶ class langchain.vectorstores.redis.Redis(redis_url: str, index_name: str, embedding_function: ~typing.Callable, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', relevance_score_fn: ~typing.Optional[~typing.Callable[[float], float]] = <function _default_relevance_score>, **kwargs: ~typing.Any)[source]¶ Bases: VectorStore Wrapper around Redis vector database. To use, you should have the redis python package installed. Example from langchain.vectorstores import Redis from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Redis( redis_url="redis://username:password@localhost:6379" index_name="my-index", embedding_function=embeddings.embed_query, ) Initialize with necessary components. Methods __init__(redis_url, index_name, ...[, ...]) Initialize with necessary components. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, embeddings, ...]) Add more texts to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...])
[ 5317, 8995, 48203, 44569, 50979, 83498, 55609, 198, 1058, 8859, 8995, 48203, 44569, 50979, 83498, 98776, 2975, 25, 610, 11, 1963, 1292, 25, 610, 11, 40188, 9353, 25, 4056, 90902, 28115, 481, 11, 2262, 3173, 25, 610, 284, 364, 1834, 518, 11408, 3173, 25, 610, 284, 364, 18103, 518, 4724, 3173, 25, 610, 284, 364, 1834, 12526, 518, 41961, 10622, 15604, 25, 4056, 90902, 37464, 58, 93, 90902, 28115, 481, 15873, 3733, 1145, 2273, 5163, 284, 366, 1723, 721, 2309, 1311, 33194, 10622, 8226, 3146, 9872, 25, 4056, 90902, 13614, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 11803, 2212, 35258, 4724, 4729, 627, 1271, 1005, 11, 499, 1288, 617, 279, 21540, 10344, 6462, 10487, 627, 13617, 198, 1527, 8859, 8995, 48203, 44569, 1179, 35258, 198, 1527, 8859, 8995, 41541, 25624, 1179, 5377, 15836, 26566, 25624, 198, 12529, 25624, 284, 5377, 15836, 26566, 25624, 746, 3295, 4412, 284, 35258, 1021, 262, 21540, 2975, 429, 22496, 1129, 5223, 25, 3918, 31, 8465, 25, 21788, 24, 702, 262, 1963, 1292, 429, 2465, 22214, 761, 262, 40188, 9353, 28, 12529, 25624, 41541, 5857, 345, 340, 10130, 449, 5995, 6956, 627, 18337, 198, 565, 2381, 3889, 22496, 2975, 11, 4194, 1275, 1292, 11, 4194, 1131, 38372, 4194, 1131, 2608, 10130, 449, 5995, 6956, 627, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 11, 4194, 12529, 25624, 11, 4194, 1131, 2608, 2261, 810, 22755, 311, 279, 4724, 4412, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2526 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
8381a8230946-1
amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete(ids, **kwargs) Delete a Redis entry. drop_index(index_name, delete_documents, ...) Drop a Redis search index. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_existing_index(embedding, index_name[, ...]) Connect to an existing Redis index. from_texts(texts, embedding[, metadatas, ...]) Create a Redis vectorstore from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in Redis. 3. Adds the documents to the newly created Redis index. This is intended to be a quick way to get started. .. rubric:: Example. from_texts_return_keys(texts, embedding[, ...]) Create a Redis vectorstore from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in Redis. 3. Adds the documents to the newly created Redis index. 4. Returns the keys of the newly created documents. This is intended to be a quick way to get started. .. rubric:: Example.
[ 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 11, 4194, 334, 9872, 340, 6571, 264, 35258, 4441, 627, 6861, 3644, 7343, 1292, 11, 4194, 4644, 77027, 11, 4194, 32318, 20463, 264, 35258, 2778, 1963, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 63730, 3644, 50825, 7113, 11, 4194, 1275, 1292, 38372, 4194, 1131, 2608, 14953, 311, 459, 6484, 35258, 1963, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 11, 4194, 1131, 2608, 4110, 264, 35258, 4724, 4412, 505, 7257, 9477, 13, 1115, 374, 264, 1217, 22658, 3834, 430, 25, 257, 220, 16, 13, 38168, 82, 9477, 13, 220, 17, 13, 15026, 264, 502, 1963, 369, 279, 71647, 304, 35258, 13, 220, 18, 13, 25483, 279, 9477, 311, 279, 13945, 3549, 35258, 1963, 13, 1115, 374, 10825, 311, 387, 264, 4062, 1648, 311, 636, 3940, 13, 5354, 10485, 2265, 487, 13688, 627, 1527, 80746, 12794, 12919, 7383, 82, 11, 4194, 95711, 38372, 4194, 1131, 2608, 4110, 264, 35258, 4724, 4412, 505, 7257, 9477, 13, 1115, 374, 264, 1217, 22658, 3834, 430, 25, 257, 220, 16, 13, 38168, 82, 9477, 13, 220, 17, 13, 15026, 264, 502, 1963, 369, 279, 71647, 304, 35258, 13, 220, 18, 13, 25483, 279, 9477, 311, 279, 13945, 3549, 35258, 1963, 13, 220, 19, 13, 5295, 279, 7039, 315, 279, 13945, 3549, 9477, 13, 1115, 374, 10825, 311, 387, 264, 4062, 1648, 311, 636, 3940, 13, 5354, 10485, 2265, 487, 13688, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
8381a8230946-2
max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Returns the most similar indexed documents to the query text. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_limit_score(query[, k, ...]) Returns the most similar indexed documents to the query text within the score_threshold range. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k]) Return docs most similar to query. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str]
[ 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 2608, 16851, 279, 1455, 4528, 31681, 9477, 311, 279, 3319, 1495, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 15106, 10622, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 16851, 279, 1455, 4528, 31681, 9477, 311, 279, 3319, 1495, 2949, 279, 5573, 22616, 2134, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15124, 49325, 10947, 6753, 10622, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 60 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
8381a8230946-3
Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, embeddings: Optional[List[List[float]]] = None, batch_size: int = 1000, **kwargs: Any) → List[str][source]¶ Add more texts to the vectorstore. Parameters texts (Iterable[str]) – Iterable of strings/text to add to the vectorstore. metadatas (Optional[List[dict]], optional) – Optional list of metadatas. Defaults to None. embeddings (Optional[List[List[float]]], optional) – Optional pre-generated embeddings. Defaults to None. keys (List[str]) or ids (List[str]) – Identifiers of entries. Defaults to None. batch_size (int, optional) – Batch size to use for writes. Defaults to 1000. Returns List of ids added to the vectorstore Return type List[str] async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance.
[ 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 71647, 25, 12536, 53094, 53094, 96481, 5163, 60, 284, 2290, 11, 7309, 2424, 25, 528, 284, 220, 1041, 15, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 2261, 810, 22755, 311, 279, 4724, 4412, 627, 9905, 198, 87042, 320, 51735, 17752, 2526, 1389, 39116, 315, 9246, 37371, 311, 923, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 320, 15669, 53094, 58, 8644, 21128, 10309, 8, 1389, 12536, 1160, 315, 2322, 329, 19907, 627, 16672, 311, 2290, 627, 12529, 25624, 320, 15669, 53094, 53094, 96481, 5163, 1145, 10309, 8, 1389, 12536, 864, 16581, 198, 12529, 25624, 13, 37090, 311, 2290, 627, 10786, 320, 861, 17752, 2526, 477, 14483, 320, 861, 17752, 2526, 1389, 23322, 12099, 315, 10925, 627, 16672, 311, 2290, 627, 14377, 2424, 320, 396, 11, 10309, 8, 1389, 35004, 1404, 311, 1005, 369, 14238, 13, 37090, 311, 220, 1041, 15, 627, 16851, 198, 861, 315, 14483, 3779, 311, 279, 4724, 4412, 198, 5715, 955, 198, 861, 17752, 933, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
8381a8230946-4
Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → RedisVectorStoreRetriever[source]¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. static delete(ids: List[str], **kwargs: Any) → bool[source]¶ Delete a Redis entry. Parameters ids – List of ids (keys) to delete. Returns Whether or not the deletions were successful. Return type bool static drop_index(index_name: str, delete_documents: bool, **kwargs: Any) → bool[source]¶ Drop a Redis search index. Parameters index_name (str) – Name of the index to drop. delete_documents (bool) – Whether to drop the associated documents. Returns Whether or not the drop was successful. Return type bool
[ 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 35258, 3866, 6221, 12289, 462, 2099, 76747, 60, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 2020, 3783, 44548, 25, 1796, 17752, 1145, 3146, 9872, 25, 5884, 8, 11651, 1845, 76747, 60, 55609, 198, 6571, 264, 35258, 4441, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 320, 10786, 8, 311, 3783, 627, 16851, 198, 25729, 477, 539, 279, 19825, 919, 1051, 6992, 627, 5715, 955, 198, 2707, 198, 2020, 6068, 3644, 7343, 1292, 25, 610, 11, 3783, 77027, 25, 1845, 11, 3146, 9872, 25, 5884, 8, 11651, 1845, 76747, 60, 55609, 198, 20463, 264, 35258, 2778, 1963, 627, 9905, 198, 1275, 1292, 320, 496, 8, 1389, 4076, 315, 279, 1963, 311, 6068, 627, 4644, 77027, 320, 2707, 8, 1389, 13440, 311, 6068, 279, 5938, 9477, 627, 16851, 198, 25729, 477, 539, 279, 6068, 574, 6992, 627, 5715, 955, 198, 2707 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
8381a8230946-5
Returns Whether or not the drop was successful. Return type bool classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. classmethod from_existing_index(embedding: Embeddings, index_name: str, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', **kwargs: Any) → Redis[source]¶ Connect to an existing Redis index. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, index_name: Optional[str] = None, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', **kwargs: Any) → Redis[source]¶ Create a Redis vectorstore from raw documents. This is a user-friendly interface that: Embeds documents. Creates a new index for the embeddings in Redis. Adds the documents to the newly created Redis index. This is intended to be a quick way to get started. .. rubric:: Example classmethod from_texts_return_keys(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, index_name: Optional[str] = None, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', distance_metric: Literal['COSINE', 'IP', 'L2'] = 'COSINE', **kwargs: Any) → Tuple[Redis, List[str]][source]¶ Create a Redis vectorstore from raw documents. This is a user-friendly interface that: Embeds documents. Creates a new index for the embeddings in Redis. Adds the documents to the newly created Redis index.
[ 16851, 198, 25729, 477, 539, 279, 6068, 574, 6992, 627, 5715, 955, 198, 2707, 198, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 27853, 505, 63730, 3644, 50825, 7113, 25, 38168, 25624, 11, 1963, 1292, 25, 610, 11, 2262, 3173, 25, 610, 284, 364, 1834, 518, 11408, 3173, 25, 610, 284, 364, 18103, 518, 4724, 3173, 25, 610, 284, 364, 1834, 12526, 518, 3146, 9872, 25, 5884, 8, 11651, 35258, 76747, 60, 55609, 198, 14953, 311, 459, 6484, 35258, 1963, 627, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 1963, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 2262, 3173, 25, 610, 284, 364, 1834, 518, 11408, 3173, 25, 610, 284, 364, 18103, 518, 4724, 3173, 25, 610, 284, 364, 1834, 12526, 518, 3146, 9872, 25, 5884, 8, 11651, 35258, 76747, 60, 55609, 198, 4110, 264, 35258, 4724, 4412, 505, 7257, 9477, 627, 2028, 374, 264, 1217, 22658, 3834, 430, 512, 26566, 82, 9477, 627, 55968, 264, 502, 1963, 369, 279, 71647, 304, 35258, 627, 73211, 279, 9477, 311, 279, 13945, 3549, 35258, 1963, 627, 2028, 374, 10825, 311, 387, 264, 4062, 1648, 311, 636, 3940, 627, 497, 10485, 2265, 487, 13688, 198, 27853, 505, 80746, 12794, 12919, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 1963, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 2262, 3173, 25, 610, 284, 364, 1834, 518, 11408, 3173, 25, 610, 284, 364, 18103, 518, 4724, 3173, 25, 610, 284, 364, 1834, 12526, 518, 6138, 42394, 25, 50774, 681, 34, 3204, 4069, 518, 364, 3378, 518, 364, 43, 17, 663, 284, 364, 34, 3204, 4069, 518, 3146, 9872, 25, 5884, 8, 11651, 25645, 58, 49237, 11, 1796, 17752, 28819, 2484, 60, 55609, 198, 4110, 264, 35258, 4724, 4412, 505, 7257, 9477, 627, 2028, 374, 264, 1217, 22658, 3834, 430, 512, 26566, 82, 9477, 627, 55968, 264, 502, 1963, 369, 279, 71647, 304, 35258, 627, 73211, 279, 9477, 311, 279, 13945, 3549, 35258, 1963, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
8381a8230946-6
Adds the documents to the newly created Redis index. Returns the keys of the newly created documents. This is intended to be a quick way to get started. .. rubric:: Example max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance.
[ 73211, 279, 9477, 311, 279, 13945, 3549, 35258, 1963, 627, 16851, 279, 7039, 315, 279, 13945, 3549, 9477, 627, 2028, 374, 10825, 311, 387, 264, 4062, 1648, 311, 636, 3940, 627, 497, 10485, 2265, 487, 13688, 198, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
8381a8230946-7
Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Returns the most similar indexed documents to the query text. Parameters query (str) – The query text for which to find similar documents. k (int) – The number of documents to return. Default is 4. Returns A list of documents that are most similar to the query text. Return type List[Document] similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_limit_score(query: str, k: int = 4, score_threshold: float = 0.2, **kwargs: Any) → List[Document][source]¶ Returns the most similar indexed documents to the query text within the score_threshold range. Parameters query (str) – The query text for which to find similar documents. k (int) – The number of documents to return. Default is 4. score_threshold (float) – The minimum matching score required for a document 0.2. (to be considered a match. Defaults to) – similarity (Because the similarity calculation algorithm is based on cosine) – :param : :param the smaller the angle: :param the higher the similarity.: Returns
[ 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 16851, 279, 1455, 4528, 31681, 9477, 311, 279, 3319, 1495, 627, 9905, 198, 1663, 320, 496, 8, 1389, 578, 3319, 1495, 369, 902, 311, 1505, 4528, 9477, 627, 74, 320, 396, 8, 1389, 578, 1396, 315, 9477, 311, 471, 13, 8058, 374, 220, 19, 627, 16851, 198, 32, 1160, 315, 9477, 430, 527, 1455, 4528, 311, 279, 3319, 1495, 627, 5715, 955, 198, 861, 58, 7676, 933, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 15124, 49325, 10947, 15106, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 5573, 22616, 25, 2273, 284, 220, 15, 13, 17, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 16851, 279, 1455, 4528, 31681, 9477, 311, 279, 3319, 1495, 2949, 279, 198, 12618, 22616, 2134, 627, 9905, 198, 1663, 320, 496, 8, 1389, 578, 3319, 1495, 369, 902, 311, 1505, 4528, 9477, 627, 74, 320, 396, 8, 1389, 578, 1396, 315, 9477, 311, 471, 13, 8058, 374, 220, 19, 627, 12618, 22616, 320, 3733, 8, 1389, 578, 8187, 12864, 5573, 2631, 369, 264, 2246, 198, 15, 13, 17, 13, 320, 998, 387, 6646, 264, 2489, 13, 37090, 311, 8, 1389, 720, 15124, 49325, 320, 18433, 279, 38723, 22702, 12384, 374, 3196, 389, 76359, 8, 1389, 720, 68416, 6394, 68416, 279, 9333, 279, 9392, 512, 68416, 279, 5190, 279, 38723, 13, 512, 16851 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
8381a8230946-8
:param : :param the smaller the angle: :param the higher the similarity.: Returns A list of documents that are most similar to the query text, including the match score for each document. Return type List[Document] Note If there are no documents that satisfy the score_threshold value, an empty list is returned. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4) → List[Tuple[Document, float]][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query and score for each
[ 68416, 6394, 68416, 279, 9333, 279, 9392, 512, 68416, 279, 5190, 279, 38723, 13, 512, 16851, 198, 32, 1160, 315, 9477, 430, 527, 1455, 4528, 311, 279, 3319, 1495, 345, 16564, 279, 2489, 5573, 369, 1855, 2246, 627, 5715, 955, 198, 861, 58, 7676, 933, 9290, 198, 2746, 1070, 527, 912, 9477, 430, 27651, 279, 5573, 22616, 907, 345, 276, 4384, 1160, 374, 6052, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 323, 5573, 369, 1855 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
b8bb6ef73da7-0
langchain.vectorstores.singlestoredb.SingleStoreDBRetriever¶ class langchain.vectorstores.singlestoredb.SingleStoreDBRetriever(*, vectorstore: SingleStoreDB, search_type: str = 'similarity', search_kwargs: dict = None, k: int = 4)[source]¶ Bases: VectorStoreRetriever Retriever for SingleStoreDB vector stores. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param k: int = 4¶ param search_kwargs: dict [Optional]¶ param search_type: str = 'similarity'¶ param vectorstore: langchain.vectorstores.singlestoredb.SingleStoreDB [Required]¶ async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Add documents to vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Add documents to vectorstore. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents validator validate_search_type  »  all fields¶ Validate search type. allowed_search_types: ClassVar[Collection[str]] = ('similarity',)¶ model Config¶ Bases: object
[ 5317, 8995, 48203, 44569, 33401, 4412, 2042, 23993, 6221, 3590, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 48203, 44569, 33401, 4412, 2042, 23993, 6221, 3590, 12289, 462, 2099, 4163, 11, 4724, 4412, 25, 11579, 6221, 3590, 11, 2778, 1857, 25, 610, 284, 364, 15124, 49325, 518, 2778, 37335, 25, 6587, 284, 2290, 11, 597, 25, 528, 284, 220, 19, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 12289, 462, 2099, 198, 12289, 462, 2099, 369, 11579, 6221, 3590, 4724, 10756, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 597, 25, 528, 284, 220, 19, 55609, 198, 913, 2778, 37335, 25, 6587, 510, 15669, 60, 55609, 198, 913, 2778, 1857, 25, 610, 284, 364, 15124, 49325, 6, 55609, 198, 913, 4724, 4412, 25, 8859, 8995, 48203, 44569, 33401, 4412, 2042, 23993, 6221, 3590, 510, 8327, 60, 55609, 198, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 2261, 9477, 311, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 2261, 9477, 311, 4724, 4412, 627, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 16503, 9788, 10947, 1857, 4194, 8345, 4194, 682, 5151, 55609, 198, 18409, 2778, 955, 627, 21642, 10947, 9962, 25, 3308, 4050, 58, 6618, 17752, 5163, 284, 4417, 15124, 49325, 518, 8, 55609, 198, 2590, 5649, 55609, 198, 33, 2315, 25, 1665 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.singlestoredb.SingleStoreDBRetriever.html
b8bb6ef73da7-1
model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.singlestoredb.SingleStoreDBRetriever.html
dcad6a77d565-0
langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch¶ class langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch(embedding: Embeddings, config: AlibabaCloudOpenSearchSettings, **kwargs: Any)[source]¶ Bases: VectorStore Alibaba Cloud OpenSearch Vector Store Methods __init__(embedding, config, **kwargs) aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. create_results(json_result) create_results_with_score(json_result) delete(ids) Delete by vector ID.
[ 5317, 8995, 48203, 44569, 49762, 12641, 10499, 1137, 1132, 885, 2808, 12273, 16440, 5109, 6014, 55609, 198, 1058, 8859, 8995, 48203, 44569, 49762, 12641, 10499, 1137, 1132, 885, 2808, 12273, 16440, 5109, 6014, 50825, 7113, 25, 38168, 25624, 11, 2242, 25, 55464, 16440, 5109, 6014, 6214, 11, 3146, 9872, 25, 5884, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 2149, 29360, 15161, 5377, 6014, 4290, 9307, 198, 18337, 198, 565, 2381, 3889, 95711, 11, 4194, 1710, 11, 4194, 334, 9872, 340, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 3261, 13888, 9488, 5400, 340, 3261, 13888, 6753, 10622, 9488, 5400, 340, 4644, 44548, 340, 6571, 555, 4724, 3110, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch.html
dcad6a77d565-1
create_results_with_score(json_result) delete(ids) Delete by vector ID. from_documents(documents, embedding[, ids, ...]) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas, config]) Return VectorStore initialized from texts and embeddings. inner_embedding_query(embedding[, ...]) max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k, search_filter]) Return docs most similar to query. similarity_search_by_vector(embedding[, k, ...]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns
[ 3261, 13888, 6753, 10622, 9488, 5400, 340, 4644, 44548, 340, 6571, 555, 4724, 3110, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 38372, 4194, 3447, 11, 4194, 1131, 2608, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 11, 4194, 1710, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 4481, 52602, 5857, 50825, 7113, 38372, 4194, 1131, 2608, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 11, 4194, 1874, 8901, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch.html
dcad6a77d565-2
(List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type.
[ 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 87042, 1389, 39116, 315, 9246, 311, 923, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 1389, 12536, 1160, 315, 2322, 329, 19907, 5938, 449, 279, 22755, 627, 9872, 1389, 4724, 4412, 3230, 5137, 198, 16851, 198, 861, 315, 14483, 505, 7999, 279, 22755, 1139, 279, 4724, 4412, 627, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch.html
dcad6a77d565-3
Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. create_results(json_result: Dict[str, Any]) → List[Document][source]¶ create_results_with_score(json_result: Dict[str, Any]) → List[Tuple[Document, float]][source]¶ delete(ids: List[str]) → Optional[bool]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, ids: Optional[List[str]] = None, config: Optional[AlibabaCloudOpenSearchSettings] = None, **kwargs: Any) → AlibabaCloudOpenSearch[source]¶ Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, config: Optional[AlibabaCloudOpenSearchSettings] = None, **kwargs: Any) → AlibabaCloudOpenSearch[source]¶ Return VectorStore initialized from texts and embeddings. inner_embedding_query(embedding: List[float], search_filter: Optional[Dict[str, Any]] = None, k: int = 4) → Dict[str, Any][source]¶
[ 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 3261, 13888, 9488, 5400, 25, 30226, 17752, 11, 5884, 2526, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 3261, 13888, 6753, 10622, 9488, 5400, 25, 30226, 17752, 11, 5884, 2526, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 2242, 25, 12536, 58, 2149, 29360, 16440, 5109, 6014, 6214, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 55464, 16440, 5109, 6014, 76747, 60, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 2242, 25, 12536, 58, 2149, 29360, 16440, 5109, 6014, 6214, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 55464, 16440, 5109, 6014, 76747, 60, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 4481, 52602, 5857, 50825, 7113, 25, 1796, 96481, 1145, 2778, 8901, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 11, 597, 25, 528, 284, 220, 19, 8, 11651, 30226, 17752, 11, 5884, 1483, 2484, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch.html
dcad6a77d565-4
max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type.
[ 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch.html
dcad6a77d565-5
Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, search_filter: Optional[Dict[str, Any]] = None, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. similarity_search_by_vector(embedding: List[float], k: int = 4, search_filter: Optional[dict] = None, **kwargs: Any) → List[Document][source]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, search_filter: Optional[dict] = None, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score)
[ 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 2778, 8901, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 2778, 8901, 25, 12536, 58, 8644, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 2778, 8901, 25, 12536, 58, 8644, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 8 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch.html
f56c341e9333-0
langchain.vectorstores.base.VectorStoreRetriever¶ class langchain.vectorstores.base.VectorStoreRetriever(*, vectorstore: VectorStore, search_type: str = 'similarity', search_kwargs: dict = None)[source]¶ Bases: BaseRetriever, BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param search_kwargs: dict [Optional]¶ param search_type: str = 'similarity'¶ param vectorstore: langchain.vectorstores.base.VectorStore [Required]¶ async aadd_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶ Add documents to vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶ Add documents to vectorstore. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents validator validate_search_type  »  all fields[source]¶ Validate search type. allowed_search_types: ClassVar[Collection[str]] = ('similarity', 'similarity_score_threshold', 'mmr')¶ model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 5317, 8995, 48203, 44569, 9105, 14621, 6221, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 48203, 44569, 9105, 14621, 6221, 12289, 462, 2099, 4163, 11, 4724, 4412, 25, 4290, 6221, 11, 2778, 1857, 25, 610, 284, 364, 15124, 49325, 518, 2778, 37335, 25, 6587, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 11, 65705, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 2778, 37335, 25, 6587, 510, 15669, 60, 55609, 198, 913, 2778, 1857, 25, 610, 284, 364, 15124, 49325, 6, 55609, 198, 913, 4724, 4412, 25, 8859, 8995, 48203, 44569, 9105, 14621, 6221, 510, 8327, 60, 55609, 198, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 2261, 9477, 311, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 2261, 9477, 311, 4724, 4412, 627, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 16503, 9788, 10947, 1857, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 2778, 955, 627, 21642, 10947, 9962, 25, 3308, 4050, 58, 6618, 17752, 5163, 284, 4417, 15124, 49325, 518, 364, 15124, 49325, 10622, 22616, 518, 364, 3906, 81, 873, 55609, 198, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.base.VectorStoreRetriever.html
96791fb04925-0
langchain.vectorstores.lancedb.LanceDB¶ class langchain.vectorstores.lancedb.LanceDB(connection: Any, embedding: Embeddings, vector_key: Optional[str] = 'vector', id_key: Optional[str] = 'id', text_key: Optional[str] = 'text')[source]¶ Bases: VectorStore Wrapper around LanceDB vector database. To use, you should have lancedb python package installed. Example db = lancedb.connect('./lancedb') table = db.open_table('my_table') vectorstore = LanceDB(table, embedding_function) vectorstore.add_texts(['text1', 'text2']) result = vectorstore.similarity_search('text1') Initialize with Lance DB connection Methods __init__(connection, embedding[, ...]) Initialize with Lance DB connection aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, ids]) Turn texts into embedding and add it to the database afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs)
[ 5317, 8995, 48203, 44569, 929, 4979, 65, 1236, 685, 3590, 55609, 198, 1058, 8859, 8995, 48203, 44569, 929, 4979, 65, 1236, 685, 3590, 25119, 25, 5884, 11, 40188, 25, 38168, 25624, 11, 4724, 3173, 25, 12536, 17752, 60, 284, 364, 3295, 518, 887, 3173, 25, 12536, 17752, 60, 284, 364, 307, 518, 1495, 3173, 25, 12536, 17752, 60, 284, 364, 1342, 13588, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 11803, 2212, 50031, 3590, 4724, 4729, 627, 1271, 1005, 11, 499, 1288, 617, 326, 4979, 65, 10344, 6462, 10487, 627, 13617, 198, 2042, 284, 326, 4979, 65, 11034, 8447, 75, 4979, 65, 1329, 2048, 284, 3000, 5949, 5350, 493, 2465, 5350, 1329, 3295, 4412, 284, 50031, 3590, 16138, 11, 40188, 9353, 340, 3295, 4412, 1388, 80746, 6561, 1342, 16, 518, 364, 1342, 17, 7519, 1407, 284, 4724, 4412, 29716, 49325, 10947, 493, 1342, 16, 1329, 10130, 449, 50031, 6078, 3717, 198, 18337, 198, 565, 2381, 3889, 7898, 11, 4194, 95711, 38372, 4194, 1131, 2608, 10130, 449, 50031, 6078, 3717, 198, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 11, 4194, 3447, 2608, 19952, 22755, 1139, 40188, 323, 923, 433, 311, 279, 4729, 198, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 8 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.lancedb.LanceDB.html
96791fb04925-1
asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete(ids) Delete by vector ID. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas, ...]) Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Return documents most similar to the query similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore.
[ 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 340, 6571, 555, 4724, 3110, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 11, 4194, 1131, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 9477, 1455, 4528, 311, 279, 3319, 198, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.lancedb.LanceDB.html
96791fb04925-2
Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Turn texts into embedding and add it to the database Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. Returns List of ids of the added texts. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
[ 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 19952, 22755, 1139, 40188, 323, 923, 433, 311, 279, 4729, 198, 9905, 198, 87042, 1389, 39116, 315, 9246, 311, 923, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 1389, 12536, 1160, 315, 2322, 329, 19907, 5938, 449, 279, 22755, 627, 3447, 1389, 12536, 1160, 315, 14483, 311, 22712, 449, 279, 22755, 627, 16851, 198, 861, 315, 14483, 315, 279, 3779, 22755, 627, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.lancedb.LanceDB.html
96791fb04925-3
Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: List[str]) → Optional[bool]¶ Delete by vector ID. Parameters ids – List of ids to delete. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, connection: Any = None, vector_key: Optional[str] = 'vector', id_key: Optional[str] = 'id', text_key: Optional[str] = 'text', **kwargs: Any) → LanceDB[source]¶ Return VectorStore initialized from texts and embeddings.
[ 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 25, 1796, 17752, 2526, 11651, 12536, 58, 2707, 60, 55609, 198, 6571, 555, 4724, 3110, 627, 9905, 198, 3447, 1389, 1796, 315, 14483, 311, 3783, 627, 16851, 198, 2575, 422, 37166, 374, 6992, 345, 4139, 6062, 11, 2290, 422, 539, 11798, 627, 5715, 955, 198, 15669, 58, 2707, 933, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3717, 25, 5884, 284, 2290, 11, 4724, 3173, 25, 12536, 17752, 60, 284, 364, 3295, 518, 887, 3173, 25, 12536, 17752, 60, 284, 364, 307, 518, 1495, 3173, 25, 12536, 17752, 60, 284, 364, 1342, 518, 3146, 9872, 25, 5884, 8, 11651, 50031, 3590, 76747, 60, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.lancedb.LanceDB.html
96791fb04925-4
Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type.
[ 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.lancedb.LanceDB.html
96791fb04925-5
Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return documents most similar to the query Parameters query – String to query the vectorstore with. k – Number of documents to return. Returns List of documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score)
[ 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 9477, 1455, 4528, 311, 279, 3319, 198, 9905, 198, 1663, 1389, 935, 311, 3319, 279, 4724, 4412, 449, 627, 74, 1389, 5742, 315, 9477, 311, 471, 627, 16851, 198, 861, 315, 9477, 1455, 4528, 311, 279, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 8 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.lancedb.LanceDB.html
0599d060c1dd-0
langchain.vectorstores.pinecone.Pinecone¶ class langchain.vectorstores.pinecone.Pinecone(index: Any, embedding_function: Callable, text_key: str, namespace: Optional[str] = None)[source]¶ Bases: VectorStore Wrapper around Pinecone vector database. To use, you should have the pinecone-client python package installed. Example from langchain.vectorstores import Pinecone from langchain.embeddings.openai import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") index = pinecone.Index("langchain-demo") embeddings = OpenAIEmbeddings() vectorstore = Pinecone(index, embeddings.embed_query, "text") Initialize with Pinecone client. Methods __init__(index, embedding_function, text_key) Initialize with Pinecone client. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, ids, ...]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...)
[ 5317, 8995, 48203, 44569, 558, 483, 59182, 1087, 483, 59182, 55609, 198, 1058, 8859, 8995, 48203, 44569, 558, 483, 59182, 1087, 483, 59182, 7343, 25, 5884, 11, 40188, 9353, 25, 54223, 11, 1495, 3173, 25, 610, 11, 4573, 25, 12536, 17752, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 4290, 6221, 198, 11803, 2212, 42609, 59182, 4724, 4729, 627, 1271, 1005, 11, 499, 1288, 617, 279, 34697, 59182, 31111, 10344, 6462, 10487, 627, 13617, 198, 1527, 8859, 8995, 48203, 44569, 1179, 42609, 59182, 198, 1527, 8859, 8995, 41541, 25624, 5949, 2192, 1179, 5377, 15836, 26566, 25624, 198, 475, 34697, 59182, 198, 2, 578, 4676, 1288, 387, 279, 832, 5300, 1828, 311, 279, 5446, 1401, 198, 2, 304, 701, 42609, 59182, 2393, 198, 39138, 59182, 8435, 25865, 3173, 429, 12488, 498, 4676, 429, 34193, 1275, 284, 34697, 59182, 18844, 446, 5317, 8995, 59993, 1158, 12529, 25624, 284, 5377, 15836, 26566, 25624, 746, 3295, 4412, 284, 42609, 59182, 7343, 11, 71647, 41541, 5857, 11, 330, 1342, 1158, 10130, 449, 42609, 59182, 3016, 627, 18337, 198, 565, 2381, 3889, 1275, 11, 4194, 95711, 9353, 11, 4194, 1342, 3173, 340, 10130, 449, 42609, 59182, 3016, 627, 64, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 11, 4194, 334, 9872, 340, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 11, 4194, 3447, 11, 4194, 1131, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 64, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 64, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 2608, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 48627 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.pinecone.Pinecone.html
0599d060c1dd-1
amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete(ids[, namespace]) Delete by vector IDs. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_existing_index(index_name, embedding[, ...]) Load pinecone vectorstore from index name. from_texts(texts, embedding[, metadatas, ...]) Construct Pinecone wrapper from raw documents. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k, filter, namespace]) Return pinecone documents most similar to query. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k, ...]) Return pinecone documents most similar to query, along with scores. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶
[ 90727, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 340, 521, 1132, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 300, 318, 49325, 10947, 10974, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 3319, 627, 300, 318, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 300, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 38372, 4194, 2280, 2608, 6571, 555, 4724, 29460, 627, 1527, 77027, 19702, 2901, 11, 4194, 95711, 11, 4194, 334, 9872, 340, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 1527, 63730, 3644, 7343, 1292, 11, 4194, 95711, 38372, 4194, 1131, 2608, 6003, 34697, 59182, 4724, 4412, 505, 1963, 836, 627, 1527, 80746, 7383, 82, 11, 4194, 95711, 38372, 4194, 4150, 329, 19907, 11, 4194, 1131, 2608, 29568, 42609, 59182, 13564, 505, 7257, 9477, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 73893, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 1874, 10974, 11, 4194, 1874, 1857, 11, 4194, 334, 9872, 340, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 38372, 4194, 74, 11, 4194, 5428, 11, 4194, 2280, 2608, 5715, 34697, 59182, 9477, 1455, 4528, 311, 3319, 627, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 38372, 4194, 74, 2608, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 340, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15124, 49325, 10947, 6753, 10622, 10974, 38372, 4194, 74, 11, 4194, 1131, 2608, 5715, 34697, 59182, 9477, 1455, 4528, 311, 3319, 11, 3235, 449, 12483, 627, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.pinecone.Pinecone.html
0599d060c1dd-2
Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, namespace: Optional[str] = None, batch_size: int = 32, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. namespace – Optional pinecone namespace to add the texts to. Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings.
[ 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 7847, 264, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 60, 55609, 198, 6869, 810, 9477, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 10490, 58, 7676, 60, 320, 51878, 8, 1389, 45890, 311, 923, 311, 279, 4724, 4412, 627, 16851, 198, 861, 315, 29460, 315, 279, 3779, 22755, 627, 5715, 955, 198, 861, 17752, 933, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 4573, 25, 12536, 17752, 60, 284, 2290, 11, 7309, 2424, 25, 528, 284, 220, 843, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 4724, 4412, 627, 9905, 198, 87042, 1389, 39116, 315, 9246, 311, 923, 311, 279, 4724, 4412, 627, 4150, 329, 19907, 1389, 12536, 1160, 315, 2322, 329, 19907, 5938, 449, 279, 22755, 627, 3447, 1389, 12536, 1160, 315, 14483, 311, 22712, 449, 279, 22755, 627, 2280, 1389, 12536, 34697, 59182, 4573, 311, 923, 279, 22755, 311, 627, 16851, 198, 861, 315, 14483, 505, 7999, 279, 22755, 1139, 279, 4724, 4412, 627, 7847, 538, 4492, 264, 1527, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 7847, 538, 4492, 264, 1527, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.pinecone.Pinecone.html
0599d060c1dd-3
Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: List[str], namespace: Optional[str] = None) → None[source]¶ Delete by vector IDs. :param ids: List of ids to delete. classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings.
[ 5715, 4290, 6221, 17719, 505, 22755, 323, 71647, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 7847, 1097, 710, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 300, 1311, 9104, 424, 22551, 9872, 25, 5884, 8, 11651, 4290, 6221, 12289, 462, 2099, 55609, 198, 7847, 264, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 7847, 439, 318, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 7847, 439, 318, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 7847, 439, 318, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 627, 4644, 44548, 25, 1796, 17752, 1145, 4573, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 2290, 76747, 60, 55609, 198, 6571, 555, 4724, 29460, 627, 68416, 14483, 25, 1796, 315, 14483, 311, 3783, 627, 27853, 505, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 40188, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 650, 790, 55609, 198, 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.pinecone.Pinecone.html
0599d060c1dd-4
Return VectorStore initialized from documents and embeddings. classmethod from_existing_index(index_name: str, embedding: Embeddings, text_key: str = 'text', namespace: Optional[str] = None) → Pinecone[source]¶ Load pinecone vectorstore from index name. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 32, text_key: str = 'text', index_name: Optional[str] = None, namespace: Optional[str] = None, **kwargs: Any) → Pinecone[source]¶ Construct Pinecone wrapper from raw documents. This is a user friendly interface that: Embeds documents. Adds the documents to a provided Pinecone index This is intended to be a quick way to get started. Example from langchain import Pinecone from langchain.embeddings import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") embeddings = OpenAIEmbeddings() pinecone = Pinecone.from_texts( texts, embeddings, index_name="langchain-demo" ) max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4.
[ 5715, 4290, 6221, 17719, 505, 9477, 323, 71647, 627, 27853, 505, 63730, 3644, 7343, 1292, 25, 610, 11, 40188, 25, 38168, 25624, 11, 1495, 3173, 25, 610, 284, 364, 1342, 518, 4573, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 42609, 59182, 76747, 60, 55609, 198, 6003, 34697, 59182, 4724, 4412, 505, 1963, 836, 627, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 40188, 25, 38168, 25624, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 11, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 7309, 2424, 25, 528, 284, 220, 843, 11, 1495, 3173, 25, 610, 284, 364, 1342, 518, 1963, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 4573, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 42609, 59182, 76747, 60, 55609, 198, 29568, 42609, 59182, 13564, 505, 7257, 9477, 627, 2028, 374, 264, 1217, 11919, 3834, 430, 512, 26566, 82, 9477, 627, 73211, 279, 9477, 311, 264, 3984, 42609, 59182, 1963, 198, 2028, 374, 10825, 311, 387, 264, 4062, 1648, 311, 636, 3940, 627, 13617, 198, 1527, 8859, 8995, 1179, 42609, 59182, 198, 1527, 8859, 8995, 41541, 25624, 1179, 5377, 15836, 26566, 25624, 198, 475, 34697, 59182, 198, 2, 578, 4676, 1288, 387, 279, 832, 5300, 1828, 311, 279, 5446, 1401, 198, 2, 304, 701, 42609, 59182, 2393, 198, 39138, 59182, 8435, 25865, 3173, 429, 12488, 498, 4676, 429, 34193, 12529, 25624, 284, 5377, 15836, 26566, 25624, 746, 39138, 59182, 284, 42609, 59182, 6521, 80746, 1021, 262, 22755, 345, 262, 71647, 345, 262, 1963, 1292, 429, 5317, 8995, 59993, 702, 340, 2880, 722, 867, 992, 1311, 33194, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 4141, 25, 12536, 58, 8644, 60, 284, 2290, 11, 4573, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.pinecone.Pinecone.html
0599d060c1dd-5
k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any) → List[Document][source]¶ Return pinecone documents most similar to query. Parameters query – Text to look up documents similar to.
[ 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 2880, 722, 867, 992, 1311, 33194, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 7963, 4803, 25, 528, 284, 220, 508, 11, 12741, 27386, 25, 2273, 284, 220, 15, 13, 20, 11, 4141, 25, 12536, 58, 8644, 60, 284, 2290, 11, 4573, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 27437, 4183, 1701, 279, 54229, 32873, 41961, 627, 6102, 2931, 32873, 41961, 7706, 4861, 369, 38723, 311, 3319, 3651, 20057, 198, 77405, 4183, 9477, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 9838, 4803, 1389, 5742, 315, 45890, 311, 7963, 311, 1522, 311, 386, 18953, 12384, 627, 13231, 27386, 1389, 5742, 1990, 220, 15, 323, 220, 16, 430, 27667, 279, 8547, 198, 1073, 20057, 4315, 279, 3135, 449, 220, 15, 12435, 198, 998, 7340, 20057, 323, 220, 16, 311, 8187, 20057, 627, 16672, 311, 220, 15, 13, 20, 627, 16851, 198, 861, 315, 45890, 4183, 555, 54229, 32873, 41961, 627, 1874, 10974, 25, 610, 11, 2778, 1857, 25, 610, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 3319, 1701, 5300, 2778, 955, 627, 15124, 49325, 10947, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 4141, 25, 12536, 58, 8644, 60, 284, 2290, 11, 4573, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 5715, 34697, 59182, 9477, 1455, 4528, 311, 3319, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 13 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.pinecone.Pinecone.html
0599d060c1dd-6
Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Dictionary of argument(s) to filter on metadata namespace – Namespace to search in. Default will search in ‘’ namespace. Returns List of Documents most similar to the query and score for each similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None) → List[Tuple[Document, float]][source]¶ Return pinecone documents most similar to query, along with scores. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Dictionary of argument(s) to filter on metadata
[ 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 5428, 1389, 10685, 315, 5811, 1161, 8, 311, 4141, 389, 11408, 198, 2280, 1389, 43062, 311, 2778, 304, 13, 8058, 690, 2778, 304, 3451, 529, 4573, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 323, 5573, 369, 1855, 198, 15124, 49325, 10947, 3795, 12526, 50825, 7113, 25, 1796, 96481, 1145, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 5715, 27437, 1455, 4528, 311, 40188, 4724, 627, 9905, 198, 95711, 1389, 38168, 7113, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 16851, 198, 861, 315, 45890, 1455, 4528, 311, 279, 3319, 4724, 627, 15124, 49325, 10947, 6753, 1311, 33194, 28297, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 5163, 55609, 198, 5715, 27437, 323, 41961, 12483, 304, 279, 2134, 510, 15, 11, 220, 16, 27218, 15, 374, 14091, 79962, 11, 220, 16, 374, 1455, 4528, 627, 9905, 198, 1663, 1389, 1988, 1495, 198, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 334, 9872, 1389, 16901, 311, 387, 5946, 311, 38723, 2778, 13, 12540, 2997, 512, 12618, 22616, 25, 12536, 11, 264, 19596, 1486, 907, 1990, 220, 15, 311, 220, 16, 311, 198, 5428, 279, 13239, 743, 315, 31503, 27437, 198, 16851, 198, 861, 315, 350, 29423, 315, 320, 5349, 11, 38723, 10622, 340, 15124, 49325, 10947, 6753, 10622, 10974, 25, 610, 11, 597, 25, 528, 284, 220, 19, 11, 4141, 25, 12536, 58, 8644, 60, 284, 2290, 11, 4573, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 1796, 20961, 6189, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 34697, 59182, 9477, 1455, 4528, 311, 3319, 11, 3235, 449, 12483, 627, 9905, 198, 1663, 1389, 2991, 311, 1427, 709, 9477, 4528, 311, 627, 74, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 220, 19, 627, 5428, 1389, 10685, 315, 5811, 1161, 8, 311, 4141, 389, 11408 ]
https://langchain.readthedocs.io/en/latest/vectorstores/langchain.vectorstores.pinecone.Pinecone.html