paperID
stringlengths 36
36
| pwc_id
stringlengths 8
47
| arxiv_id
stringlengths 6
16
⌀ | nips_id
float64 | url_abs
stringlengths 18
329
| url_pdf
stringlengths 18
742
| title
stringlengths 8
325
| abstract
stringlengths 1
7.27k
⌀ | authors
stringlengths 2
7.06k
| published
stringlengths 10
10
⌀ | conference
stringlengths 12
47
⌀ | conference_url_abs
stringlengths 16
198
⌀ | conference_url_pdf
stringlengths 27
199
⌀ | proceeding
stringlengths 6
47
⌀ | taskID
stringlengths 7
1.44k
| areaID
stringclasses 688
values | embedding
stringlengths 9.26k
12.5k
| umap_embedding
stringlengths 29
44
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
42e05efa-5507-430c-9a9d-27e1772499d7 | weakly-supervised-action-transition-learning | 2205.15608 | null | https://arxiv.org/abs/2205.15608v1 | https://arxiv.org/pdf/2205.15608v1.pdf | Weakly-supervised Action Transition Learning for Stochastic Human Motion Prediction | We introduce the task of action-driven stochastic human motion prediction, which aims to predict multiple plausible future motions given a sequence of action labels and a short motion history. This differs from existing works, which predict motions that either do not respect any specific action category, or follow a single action label. In particular, addressing this task requires tackling two challenges: The transitions between the different actions must be smooth; the length of the predicted motion depends on the action sequence and varies significantly across samples. As we cannot realistically expect training data to cover sufficiently diverse action transitions and motion lengths, we propose an effective training strategy consisting of combining multiple motions from different actions and introducing a weak form of supervision to encourage smooth transitions. We then design a VAE-based model conditioned on both the observed motion and the action label sequence, allowing us to generate multiple plausible future motions of varying length. We illustrate the generality of our approach by exploring its use with two different temporal encoding models, namely RNNs and Transformers. Our approach outperforms baseline models constructed by adapting state-of-the-art single action-conditioned motion generation methods and stochastic human motion prediction approaches to our new task of action-driven stochastic motion prediction. Our code is available at https://github.com/wei-mao-2019/WAT. | ['Mathieu Salzmann', 'Miaomiao Liu', 'Wei Mao'] | 2022-05-31 | null | http://openaccess.thecvf.com//content/CVPR2022/html/Mao_Weakly-Supervised_Action_Transition_Learning_for_Stochastic_Human_Motion_Prediction_CVPR_2022_paper.html | http://openaccess.thecvf.com//content/CVPR2022/papers/Mao_Weakly-Supervised_Action_Transition_Learning_for_Stochastic_Human_Motion_Prediction_CVPR_2022_paper.pdf | cvpr-2022-1 | ['stochastic-human-motion-prediction'] | ['computer-vision'] | [ 6.01007998e-01 1.27639860e-01 -5.00276983e-01 -1.63647115e-01
-8.27272952e-01 -4.41129565e-01 9.55064237e-01 -6.08986616e-01
-1.89087838e-01 7.81586289e-01 8.83216500e-01 -2.02900529e-01
2.78463721e-01 -6.01413369e-01 -8.40385258e-01 -6.21571898e-01
-2.31452864e-02 4.98177767e-01 6.28020883e-01 -6.30777776e-02
2.32321560e-01 2.71888763e-01 -1.49533761e+00 5.43691218e-01
4.80791032e-01 4.87879217e-01 4.62723494e-01 1.15666854e+00
8.00022036e-02 1.30915630e+00 -2.26715490e-01 -4.24927510e-02
2.23131925e-01 -1.13203216e+00 -1.16573822e+00 2.96824723e-01
2.65406728e-01 -5.90156734e-01 -4.28059578e-01 4.40661043e-01
4.31710929e-01 6.46963000e-01 8.42867494e-01 -1.29164004e+00
-5.49975693e-01 5.15389621e-01 -2.31667981e-01 -3.70837450e-02
6.32250905e-01 6.62222803e-01 1.08369231e+00 -6.26296699e-01
1.11995709e+00 1.16126621e+00 5.25212526e-01 1.38547003e+00
-1.16819012e+00 -1.42069057e-01 3.85306865e-01 4.28335935e-01
-8.99196684e-01 -4.65182096e-01 6.59528613e-01 -6.38203979e-01
1.07525170e+00 1.38052329e-01 8.01976323e-01 1.75382149e+00
1.98447093e-01 1.11327744e+00 4.13389415e-01 -2.67932475e-01
4.03194308e-01 -6.25649989e-01 -5.67463100e-01 5.15759230e-01
-4.71913695e-01 1.13671094e-01 -5.24970770e-01 -1.19737156e-01
7.96892643e-01 -4.07887213e-02 -2.85747886e-01 -4.11086619e-01
-1.73039043e+00 6.62815988e-01 -7.04637468e-02 2.25475639e-01
-5.64164340e-01 6.20385051e-01 3.46425772e-01 -2.47293845e-01
2.02187389e-01 2.65222907e-01 -4.51241940e-01 -6.69408739e-01
-1.13584495e+00 6.85995996e-01 5.52504718e-01 9.68627214e-01
5.19583642e-01 1.58894584e-01 -7.16937542e-01 4.48371381e-01
1.17074601e-01 3.86768550e-01 6.63038015e-01 -1.64178813e+00
4.73005176e-01 -3.15870307e-02 6.21945143e-01 -6.13174617e-01
-9.97726172e-02 2.83850729e-01 -6.29501164e-01 1.89231142e-01
6.86391532e-01 -2.39553452e-01 -1.08238220e+00 1.94361091e+00
3.44373345e-01 7.44347334e-01 1.22218458e-02 8.53496850e-01
3.47895771e-01 9.69765484e-01 3.37848276e-01 -3.99632566e-02
6.96653306e-01 -1.50859761e+00 -6.15139306e-01 -3.03238720e-01
9.93650854e-01 -5.41732728e-01 1.07347953e+00 1.25396430e-01
-1.28387427e+00 -6.92762733e-01 -5.73459268e-01 -8.73454288e-02
2.46573970e-01 1.69476628e-01 3.33124638e-01 1.40309855e-01
-1.09084618e+00 9.42643940e-01 -1.33932042e+00 -2.98055559e-01
3.10036987e-01 6.38033599e-02 -1.21146463e-01 -1.09923542e-01
-9.68174398e-01 7.39280641e-01 2.75746912e-01 3.13552879e-02
-1.17569256e+00 -3.12001348e-01 -9.97763097e-01 -1.57697111e-01
3.00375044e-01 -1.08135736e+00 1.63292992e+00 -1.17199612e+00
-1.72563958e+00 3.64030600e-01 -6.12847567e-01 -4.96178448e-01
8.27683449e-01 -4.37579125e-01 -1.97336510e-01 1.42454147e-01
2.74464279e-01 1.20203602e+00 7.16698349e-01 -9.92808342e-01
-7.64533579e-01 2.82423198e-01 -1.74446329e-01 3.94840568e-01
2.12527782e-01 -1.26698017e-01 -5.66537976e-01 -8.34607124e-01
-3.76912594e-01 -1.26804531e+00 -6.79113388e-01 -3.23242843e-02
-4.83339071e-01 -1.00734234e-01 6.70003414e-01 -6.32258654e-01
1.30279112e+00 -1.79892969e+00 5.05281746e-01 -2.46718898e-01
-3.08531761e-01 1.85145169e-01 -4.62161064e-01 5.62433481e-01
3.80112901e-02 6.76226765e-02 -5.87034643e-01 -6.03990555e-01
3.30904275e-02 3.03177178e-01 -5.19357622e-01 1.80756137e-01
2.99526006e-01 1.10005486e+00 -1.29974782e+00 -4.69726205e-01
3.21654737e-01 4.01718855e-01 -6.67043626e-01 4.52528834e-01
-7.65488029e-01 1.05808318e+00 -5.18365085e-01 3.44988942e-01
1.06386065e-01 -3.74150753e-01 2.05397546e-01 3.67188603e-01
6.23353720e-02 4.38417137e-01 -1.14244246e+00 1.88536453e+00
-2.32872665e-01 5.54932237e-01 -6.73274398e-01 -6.26300693e-01
5.88832498e-01 5.52035630e-01 8.12765121e-01 -1.75944328e-01
-2.52762496e-01 4.55674268e-02 -1.80080891e-01 -6.22693539e-01
5.79936802e-01 -2.11045817e-01 6.21682219e-02 7.02578604e-01
-1.48008555e-01 -1.40925318e-01 1.99397966e-01 7.98360854e-02
1.26707363e+00 1.12133348e+00 3.02909493e-01 3.79326344e-01
4.62024093e-01 2.47596249e-01 8.65969539e-01 6.80850148e-01
-3.65177482e-01 9.93697047e-01 3.95895869e-01 -4.92799014e-01
-1.29996538e+00 -8.97914112e-01 5.83196938e-01 1.06005919e+00
3.61297876e-02 -4.41035271e-01 -6.77905321e-01 -7.75414467e-01
-4.31512594e-01 1.01918387e+00 -6.67844355e-01 -6.79556206e-02
-1.15115356e+00 -2.86034733e-01 3.40623319e-01 7.88730741e-01
1.18184060e-01 -1.75146306e+00 -9.04063940e-01 4.12143618e-01
-6.16979957e-01 -1.15458250e+00 -8.75316143e-01 -3.72916877e-01
-8.20495546e-01 -7.66394734e-01 -1.01123607e+00 -7.55496264e-01
3.67973328e-01 1.79984849e-02 1.24332118e+00 2.57076193e-02
7.16565251e-02 4.91027385e-01 -4.72735286e-01 7.34381601e-02
-7.23198295e-01 -1.20574934e-02 -1.21932723e-01 5.33596128e-02
8.89503658e-02 -4.77121562e-01 -8.81332278e-01 2.73304969e-01
-8.18065286e-01 5.71002781e-01 3.25209707e-01 7.85477042e-01
6.96119845e-01 -3.74522775e-01 2.78497964e-01 -6.45259798e-01
1.27570316e-01 -6.11252010e-01 -3.52726765e-02 1.87884897e-01
6.82514831e-02 1.48757473e-01 8.18137288e-01 -6.90990031e-01
-1.24564993e+00 6.80684566e-01 -2.32870549e-01 -5.05005419e-01
-5.03751755e-01 -2.42990106e-02 -2.69501768e-02 6.51606858e-01
4.95014340e-01 4.69722778e-01 -2.74504393e-01 -1.73190281e-01
6.98572338e-01 1.87936798e-01 6.49832428e-01 -4.74432558e-01
5.00189781e-01 6.79818869e-01 4.42154296e-02 -6.24907553e-01
-5.94337285e-01 -3.13944280e-01 -8.86233509e-01 -4.54334021e-01
1.27750337e+00 -7.93501139e-01 -3.20122182e-01 6.24787509e-01
-1.44177079e+00 -1.16627622e+00 -4.78487194e-01 5.81942260e-01
-1.34451652e+00 5.43523788e-01 -7.91271508e-01 -8.50925744e-01
-2.01423243e-02 -1.18670619e+00 1.29289782e+00 -1.42898038e-01
-8.36639762e-01 -1.02423704e+00 4.17036384e-01 1.34966895e-01
4.81280275e-02 5.12208879e-01 5.20243764e-01 -2.22801417e-01
-7.94518948e-01 1.16346762e-01 5.27081788e-01 6.32534996e-02
2.96239704e-01 2.19365239e-01 -4.81437266e-01 -1.02290818e-02
-2.99090922e-01 -4.68941450e-01 8.49312127e-01 7.29220212e-01
1.10833907e+00 -3.56267124e-01 -3.63137811e-01 4.71673340e-01
9.83274162e-01 1.90455884e-01 8.23984385e-01 3.62017721e-01
9.35002148e-01 8.21402967e-01 9.48408008e-01 5.91306508e-01
4.81055617e-01 9.06583309e-01 3.62342417e-01 3.02555561e-01
-2.40356162e-01 -6.83982551e-01 6.49870098e-01 4.70563561e-01
-3.79429758e-01 -4.91987705e-01 -9.11851525e-01 8.96925926e-01
-2.30805707e+00 -1.52160931e+00 -1.48940459e-01 2.07227588e+00
7.09250569e-01 -2.19018068e-02 5.56440413e-01 -1.34938225e-01
5.95754981e-01 5.07341146e-01 -6.36253178e-01 -2.54685163e-01
1.42612562e-01 -5.43897897e-02 3.09953362e-01 7.95857608e-01
-1.12355304e+00 1.23456430e+00 6.37957954e+00 7.22902477e-01
-9.50508416e-01 -1.53307289e-01 7.44466662e-01 -3.05485755e-01
-6.11035645e-01 1.79412380e-01 -7.05781758e-01 6.27532959e-01
1.07541370e+00 1.21044666e-01 2.41160214e-01 7.09530592e-01
7.20976949e-01 -3.02848816e-02 -1.21116996e+00 5.61491013e-01
-2.23452762e-01 -1.49197721e+00 3.57528925e-01 -1.17064968e-01
9.78157341e-01 -1.90496325e-01 -1.05749398e-01 1.47428364e-01
7.18100727e-01 -1.12174976e+00 9.95930672e-01 7.76422918e-01
6.10729039e-01 -4.06143934e-01 1.43355489e-01 6.55405641e-01
-1.40203416e+00 -5.14883585e-02 -1.19925970e-02 -1.70426428e-01
9.08055186e-01 6.57048598e-02 -5.61961830e-01 4.05977130e-01
3.98780286e-01 1.15076733e+00 -1.58291772e-01 7.45051920e-01
-5.28423071e-01 7.57478058e-01 7.11205378e-02 1.01146042e-01
4.57271397e-01 -1.66968986e-01 4.89719212e-01 1.21007740e+00
6.35778904e-01 1.20137848e-01 2.20629647e-01 6.62463665e-01
4.96890306e-01 -1.43766493e-01 -7.55111039e-01 6.51100427e-02
4.04862314e-01 6.84897244e-01 -5.84544301e-01 -5.05226791e-01
-4.59646076e-01 1.47607279e+00 2.00395778e-01 5.24815738e-01
-1.11405337e+00 2.49840498e-01 6.76126838e-01 9.36628431e-02
6.34982824e-01 -4.53636378e-01 -1.38185009e-01 -1.19409597e+00
-1.64791979e-02 -6.99809611e-01 2.32535630e-01 -7.63422191e-01
-8.03777099e-01 4.96109515e-01 2.09438801e-02 -1.71397936e+00
-1.15079188e+00 -2.41366014e-01 -8.90749514e-01 6.87478244e-01
-1.08845925e+00 -1.23289824e+00 4.07812707e-02 4.42585796e-01
1.04520190e+00 5.38886189e-02 6.14775598e-01 -1.23719513e-01
-3.59494954e-01 4.10671011e-02 -1.35969028e-01 -1.24434099e-01
6.10665798e-01 -1.17978454e+00 1.08580840e+00 1.00662351e+00
1.92694575e-01 6.09001666e-02 8.95208478e-01 -9.13354933e-01
-9.15167689e-01 -1.34273386e+00 1.20459187e+00 -8.16243172e-01
5.18132985e-01 -1.44452512e-01 -7.81666160e-01 1.07464349e+00
1.07839577e-01 1.15849974e-03 4.59625602e-01 -6.72405541e-01
1.49945676e-01 5.87079227e-01 -6.55937552e-01 1.12675524e+00
1.59472477e+00 -2.28464410e-01 -3.95757735e-01 2.99022168e-01
7.17598975e-01 -3.07832837e-01 -4.89978373e-01 3.41697842e-01
6.11040890e-01 -1.09324181e+00 1.07601953e+00 -8.34269166e-01
1.03970647e+00 -3.13450933e-01 -4.31585610e-02 -1.16289079e+00
-4.84541476e-01 -7.97593355e-01 -4.91975963e-01 8.26558352e-01
4.01617765e-01 5.70539013e-02 1.28717816e+00 7.32156515e-01
-1.62311852e-01 -9.28234279e-01 -7.14589238e-01 -8.48046541e-01
1.17750093e-01 -5.66403806e-01 4.98926401e-01 7.12790072e-01
-1.69287175e-01 1.73821971e-02 -1.08441091e+00 -1.02359541e-01
2.42511675e-01 1.27348825e-01 1.03117704e+00 -4.25876290e-01
-7.37604201e-01 -3.86418402e-01 -1.28721029e-01 -1.67273653e+00
3.23440611e-01 -4.30256516e-01 5.41009903e-01 -1.76383984e+00
6.06667362e-02 5.14606386e-02 1.44809797e-01 4.76733506e-01
-4.33478892e-01 -1.01017701e-02 3.58914077e-01 4.51292217e-01
-6.99758947e-01 9.57662523e-01 1.52512383e+00 1.28748685e-01
-3.96886408e-01 2.10804313e-01 -1.05873004e-01 8.06840062e-01
7.40873873e-01 -4.14102733e-01 -7.02161312e-01 -3.85216147e-01
-2.15087861e-01 5.11815369e-01 2.65619129e-01 -1.10297871e+00
1.32953286e-01 -7.96132803e-01 2.01939821e-01 -5.13021827e-01
5.12395799e-01 -4.13928986e-01 4.18160141e-01 6.93762422e-01
-6.66464925e-01 1.21568330e-01 -2.13404715e-01 7.32233107e-01
-4.28454429e-02 -2.92463675e-02 5.26407480e-01 -4.34777647e-01
-1.11336291e+00 4.87453878e-01 -7.66597092e-01 3.16195637e-02
1.20745301e+00 -4.47421998e-01 2.04803552e-02 -8.16384137e-01
-9.80933309e-01 2.53269166e-01 6.51424885e-01 4.75544870e-01
7.11068332e-01 -1.57600212e+00 -7.90772617e-01 -2.98813313e-01
-9.00241211e-02 3.41160037e-02 3.66734505e-01 5.38712859e-01
-4.87333924e-01 2.58293778e-01 -3.86530071e-01 -4.84863281e-01
-1.11000752e+00 5.52843213e-01 1.73690379e-01 -3.96562725e-01
-8.11337948e-01 7.81563461e-01 1.89891204e-01 -3.43802929e-01
2.14697458e-02 -2.12833121e-01 -2.11816996e-01 -4.05046850e-01
4.40360576e-01 5.75378239e-01 -7.07326531e-01 -9.78556037e-01
-2.22620264e-01 5.47921360e-01 3.53940964e-01 -5.76077819e-01
1.13768101e+00 -2.53196299e-01 4.00047302e-01 6.63121998e-01
9.26414847e-01 -1.73782438e-01 -2.10481286e+00 7.60999555e-03
8.70602280e-02 -4.59928840e-01 -7.66878724e-01 -3.77174795e-01
-7.56386101e-01 7.25550652e-01 8.21918175e-02 -3.35460275e-01
9.80120838e-01 -2.30265316e-03 1.26088750e+00 8.42136890e-02
3.31967384e-01 -1.02862346e+00 4.93305713e-01 6.12130523e-01
7.33195424e-01 -1.13958144e+00 -2.65142232e-01 -3.39057505e-01
-1.23081672e+00 9.77320373e-01 7.29626596e-01 -1.29261777e-01
2.71161348e-01 -6.82314038e-02 7.66486526e-02 1.99846610e-01
-1.04970610e+00 -2.91392952e-01 4.21600610e-01 7.12989926e-01
4.89481121e-01 4.25548591e-02 -3.47854793e-01 9.30573270e-02
-1.17823027e-01 2.84617603e-01 5.93073785e-01 1.10321891e+00
-3.74754250e-01 -1.32710099e+00 -1.57832637e-01 2.14799359e-01
-2.45726958e-01 4.21593860e-02 -3.57741863e-01 4.87483770e-01
9.75975096e-02 7.52733290e-01 1.94267891e-02 -4.81689155e-01
5.01514561e-02 2.20984489e-01 3.62918884e-01 -7.30915785e-01
-5.38468286e-02 3.93575355e-02 2.47998789e-01 -9.62970078e-01
-7.25336730e-01 -1.13649762e+00 -1.31261992e+00 -1.69825077e-01
4.32078362e-01 -2.29867309e-01 -9.17691458e-03 9.91020024e-01
3.88775408e-01 3.37482840e-01 4.37676549e-01 -1.34612870e+00
-4.12841707e-01 -8.10562789e-01 -2.29912162e-01 8.72558534e-01
4.92641360e-01 -4.40541089e-01 -1.18649378e-01 6.47659957e-01] | [7.330733776092529, -0.13229529559612274] |
6e3150b7-d251-4455-a09c-2428270f4cab | wesinger-data-augmented-singing-voice | 2203.1075 | null | https://arxiv.org/abs/2203.10750v5 | https://arxiv.org/pdf/2203.10750v5.pdf | WeSinger: Data-augmented Singing Voice Synthesis with Auxiliary Losses | In this paper, we develop a new multi-singer Chinese neural singing voice synthesis (SVS) system named WeSinger. To improve the accuracy and naturalness of synthesized singing voice, we design several specifical modules and techniques: 1) A deep bi-directional LSTM-based duration model with multi-scale rhythm loss and post-processing step; 2) A Transformer-alike acoustic model with progressive pitch-weighted decoder loss; 3) a 24 kHz pitch-aware LPCNet neural vocoder to produce high-quality singing waveforms; 4) A novel data augmentation method with multi-singer pre-training for stronger robustness and naturalness. To our knowledge, WeSinger is the first SVS system to adopt 24 kHz LPCNet and multi-singer pre-training simultaneously. Both quantitative and qualitative evaluation results demonstrate the effectiveness of WeSinger in terms of accuracy and naturalness, and WeSinger achieves state-of-the-art performance on the recent public Chinese singing corpus Opencpop\footnote{https://wenet.org.cn/opencpop/}. Some synthesized singing samples are available online\footnote{https://zzw922cn.github.io/wesinger/}. | ['Li Lu', 'Xinhui Li', 'Yibin Zheng', 'Zewang Zhang'] | 2022-03-21 | null | null | null | null | ['singing-voice-synthesis'] | ['speech'] | [-2.50974447e-01 -3.99410933e-01 7.49765188e-02 1.09846242e-01
-1.44803429e+00 -5.26150465e-01 6.09258451e-02 -5.74564159e-01
-1.26837611e-01 5.57939410e-01 4.60448533e-01 -1.74200386e-01
2.65077323e-01 -2.81302989e-01 -6.08215392e-01 -8.02214265e-01
7.40651786e-02 5.60298711e-02 -1.43225780e-02 -3.47856790e-01
-2.58245260e-01 8.30273032e-02 -1.56001282e+00 3.44245493e-01
9.71415699e-01 9.46936071e-01 5.16470492e-01 1.12138629e+00
3.61836791e-01 3.93196225e-01 -8.02773714e-01 -8.05949122e-02
2.41360188e-01 -8.67329955e-01 -4.09192175e-01 -5.77324212e-01
4.12013710e-01 -2.84629166e-01 -4.91167426e-01 7.78066695e-01
1.30386710e+00 4.14000899e-01 1.73731267e-01 -8.11122119e-01
-7.18240380e-01 1.07154024e+00 -1.41025875e-02 2.64080852e-01
1.36715755e-01 5.93296289e-01 1.33019519e+00 -1.13681352e+00
1.80456787e-01 9.56563413e-01 7.52831876e-01 8.52242649e-01
-9.90073204e-01 -1.16083241e+00 -5.20711064e-01 3.91088635e-01
-1.37698030e+00 -8.26574683e-01 1.07625520e+00 -7.45043680e-02
8.55579793e-01 6.58292890e-01 4.80556786e-01 1.32842207e+00
-2.43931532e-01 7.54680634e-01 9.15062726e-01 -3.89150172e-01
-6.01959042e-02 -3.16238195e-01 -1.01854600e-01 2.99859732e-01
-6.99715257e-01 3.28970581e-01 -1.03474092e+00 -1.41186891e-02
7.65662670e-01 -6.96422279e-01 -5.70109427e-01 7.85347044e-01
-1.30817163e+00 5.50993085e-01 8.68437588e-02 6.29939973e-01
-2.11598411e-01 3.22492898e-01 7.41394520e-01 3.89379829e-01
3.88421029e-01 7.01066792e-01 -2.91432053e-01 -4.97592390e-01
-1.15851784e+00 5.52547753e-01 6.86160803e-01 8.85206044e-01
5.91130294e-02 9.87572908e-01 -5.40059745e-01 1.45368040e+00
-1.52708590e-01 6.28967583e-01 9.14230108e-01 -1.14039814e+00
4.47407246e-01 -5.76774716e-01 -2.10575730e-01 -4.08973932e-01
-3.22583579e-02 -7.21576989e-01 -6.14422262e-01 -2.80610412e-01
9.53805074e-02 -3.91494989e-01 -4.73862112e-01 1.96370804e+00
-5.89459166e-02 4.85402316e-01 -6.51992783e-02 1.15110707e+00
1.20451045e+00 1.11731172e+00 -2.81192631e-01 -4.74134415e-01
1.11523819e+00 -1.41736305e+00 -1.17953420e+00 3.47951680e-01
3.02547477e-02 -1.09910369e+00 1.75397718e+00 5.23129463e-01
-1.51855421e+00 -1.01313949e+00 -1.07166672e+00 -2.86950618e-01
2.46912912e-01 5.35759091e-01 -1.24807039e-03 5.26826441e-01
-9.81278062e-01 9.20994818e-01 -5.61842799e-01 2.86686003e-01
-4.85317595e-02 1.71383634e-01 5.24261780e-02 4.93046224e-01
-1.58681476e+00 3.36654723e-01 1.98983669e-01 5.68482932e-03
-1.08315003e+00 -1.01683605e+00 -6.20864749e-01 1.92343164e-02
3.00989360e-01 -4.27298814e-01 1.78394544e+00 -6.61681771e-01
-2.06240869e+00 3.68246257e-01 -3.21156055e-01 -3.83994043e-01
2.38377079e-01 -5.54862499e-01 -9.50872242e-01 8.32012370e-02
-5.35298102e-02 2.65690148e-01 9.31210399e-01 -1.00839162e+00
-3.73277813e-01 8.94030333e-02 -6.83645606e-01 2.98022479e-01
-5.26384413e-01 2.83834428e-01 -3.40016216e-01 -1.30358672e+00
-2.69984543e-01 -7.90623486e-01 2.33695075e-01 -5.71960390e-01
-7.20548868e-01 -2.58126199e-01 8.38832557e-01 -1.30079710e+00
1.88920474e+00 -2.17925835e+00 1.63852885e-01 -3.32993627e-01
-4.27309535e-02 8.33994746e-01 -3.96755457e-01 5.30861676e-01
7.83190504e-02 9.30340439e-02 -3.63109112e-01 -5.85270822e-01
9.82203707e-02 -5.76133132e-02 -6.31605983e-01 1.97854042e-01
1.51370049e-01 7.57355452e-01 -7.52674937e-01 -3.14074129e-01
9.19655114e-02 6.40706837e-01 -5.49060166e-01 5.62345684e-01
-1.50865465e-01 7.19481051e-01 2.04705164e-01 6.81216538e-01
3.68237108e-01 5.58165312e-01 -2.88507611e-01 -1.53262213e-01
-4.39276695e-01 9.62278366e-01 -1.09884882e+00 1.81721985e+00
-7.20945597e-01 5.30979276e-01 3.75712216e-01 -3.50024581e-01
1.10892177e+00 1.00639009e+00 1.74622700e-01 -4.47122008e-01
2.72271708e-02 7.99504340e-01 1.88131109e-01 -4.47254211e-01
8.22817087e-01 -4.81791019e-01 1.58594340e-01 9.16847512e-02
4.63858962e-01 -6.07626140e-01 -8.37930106e-03 -3.18161488e-01
7.91779160e-01 2.18314290e-01 -2.39931509e-01 -2.38293260e-01
5.42937875e-01 -4.96946126e-01 9.73602951e-01 4.35221851e-01
-1.73501670e-01 1.00970984e+00 4.01028357e-02 2.65384674e-01
-1.17682171e+00 -1.21993768e+00 -1.87097266e-01 1.23659885e+00
-4.90421653e-01 -6.26653194e-01 -9.20662880e-01 1.04093082e-01
-1.78145871e-01 8.96154344e-01 -4.42284271e-02 7.95371979e-02
-1.06953955e+00 -1.62046567e-01 1.39223683e+00 4.53243196e-01
3.33929956e-01 -1.49362075e+00 1.92229792e-01 4.94589597e-01
-4.82365817e-01 -9.84182775e-01 -1.41471291e+00 -2.76015531e-02
-5.40446699e-01 -4.61691648e-01 -1.13755882e+00 -1.05965948e+00
-3.15768778e-01 -9.40378010e-02 6.83167815e-01 -1.33672327e-01
3.65125425e-02 -1.43934220e-01 -3.40400279e-01 -3.72536361e-01
-6.90905392e-01 1.94200352e-01 6.76971972e-01 -1.46414533e-01
-6.24582879e-02 -9.14907038e-01 -5.62485456e-01 2.12675184e-01
-5.58990002e-01 -3.83191332e-02 1.46564141e-01 1.05218589e+00
8.09922695e-01 -1.83394089e-01 1.16987336e+00 -2.63438761e-01
1.00769341e+00 -1.69723123e-01 -4.55235511e-01 -2.66959488e-01
-2.53632545e-01 -5.63866258e-01 1.16513491e+00 -7.00951517e-01
-8.28990757e-01 -2.67373711e-01 -9.50399101e-01 -8.41874838e-01
1.13567077e-01 2.61851966e-01 -2.51302630e-01 3.71875256e-01
5.87125778e-01 4.62884575e-01 -8.00300166e-02 -9.02027786e-01
3.35982710e-01 1.13880825e+00 1.15893841e+00 -6.15604043e-01
8.69956732e-01 -2.92748779e-01 -4.37809139e-01 -1.32059860e+00
-6.23354316e-01 -4.52841640e-01 -3.45308810e-01 -1.05797328e-01
7.01477289e-01 -9.85879958e-01 -8.90508711e-01 7.32419312e-01
-1.13678503e+00 -6.71122491e-01 -4.27559435e-01 6.47652686e-01
-7.42393970e-01 4.31979716e-01 -1.24648511e+00 -8.93316507e-01
-1.10599267e+00 -1.05125690e+00 7.29400516e-01 1.11399107e-01
-1.98140889e-01 -5.37625015e-01 2.17667148e-01 5.48100650e-01
5.89033365e-01 3.39767113e-02 4.31514978e-01 -4.69815403e-01
-1.73900034e-02 2.42096797e-01 3.46328229e-01 1.15317440e+00
3.82147133e-02 2.68810391e-02 -1.54158533e+00 -2.96003968e-01
7.21852854e-02 -2.60662824e-01 7.23562241e-01 4.57840711e-01
1.27484012e+00 -4.89059269e-01 4.22170490e-01 7.28013217e-01
7.97084510e-01 2.74118543e-01 5.33501029e-01 -2.92639971e-01
8.18403244e-01 4.04335946e-01 5.60249329e-01 3.13739061e-01
1.86760634e-01 8.48947525e-01 -6.74042702e-02 1.09443732e-01
-7.12306321e-01 -6.17109299e-01 7.27899134e-01 2.14820981e+00
-2.62187600e-01 -2.06330404e-01 -5.70247591e-01 7.34483063e-01
-1.31516421e+00 -9.85255659e-01 -2.68262416e-01 2.32808042e+00
1.31244349e+00 -1.44861281e-01 5.21312773e-01 4.77318168e-01
7.69376755e-01 4.26626623e-01 -4.54796672e-01 -5.53653896e-01
-3.52171928e-01 6.26979887e-01 5.71836121e-02 5.67724943e-01
-9.37907994e-01 1.13881671e+00 4.82812500e+00 1.53115213e+00
-1.39232886e+00 5.33660769e-01 2.50557899e-01 -5.02057016e-01
-3.62334430e-01 -3.08628827e-01 -8.38168263e-01 6.25673711e-01
1.19040143e+00 -2.53566384e-01 8.74196470e-01 5.23240924e-01
5.99762678e-01 6.17359877e-01 -6.41725183e-01 1.01646399e+00
8.94145574e-03 -1.32915747e+00 -2.09519848e-01 -2.66685188e-01
5.95676839e-01 1.48251683e-01 2.30132207e-01 4.46979642e-01
-3.57938558e-01 -1.05538583e+00 1.10165656e+00 4.06738520e-01
1.45824075e+00 -7.86317408e-01 3.32620591e-01 1.54948607e-01
-1.50965571e+00 -2.08582859e-02 3.20846890e-03 1.05637155e-01
4.77686465e-01 3.01742852e-01 -7.19375610e-01 5.92069149e-01
5.73199034e-01 4.44293082e-01 7.88572580e-02 9.85209525e-01
-4.05313045e-01 1.53139842e+00 -2.70843536e-01 -6.47348315e-02
5.94724678e-02 1.89913735e-02 1.22804415e+00 1.46562660e+00
5.51986635e-01 8.56957808e-02 -2.71307707e-01 9.90724564e-01
-2.97957599e-01 2.24894688e-01 -1.76540762e-01 -3.76961648e-01
9.18449879e-01 1.11549890e+00 1.98750347e-01 -3.91036309e-02
-4.30302741e-03 8.71736586e-01 -2.00588703e-01 4.56700951e-01
-8.80378306e-01 -8.20082068e-01 8.47556591e-01 1.41486317e-01
2.52229422e-01 -4.66079056e-01 -2.03617573e-01 -8.61579597e-01
7.82363340e-02 -1.03416240e+00 3.61208357e-02 -7.45253205e-01
-1.17509389e+00 1.07514083e+00 -5.08585930e-01 -1.45263910e+00
-3.07817191e-01 -2.62151033e-01 -1.13416481e+00 1.22592127e+00
-1.30079722e+00 -1.27842879e+00 1.11220889e-01 5.03939033e-01
9.14852798e-01 -4.83644843e-01 9.69648302e-01 6.56085849e-01
-6.24930918e-01 9.50187325e-01 1.21810414e-01 -2.96225538e-03
9.00116742e-01 -1.32023740e+00 6.21873081e-01 8.02387655e-01
1.04263127e-01 3.52623582e-01 7.55172849e-01 -3.90931755e-01
-1.36671460e+00 -1.12341428e+00 1.02181602e+00 -9.42120329e-02
6.48332596e-01 -5.78523278e-01 -1.09921777e+00 2.58435905e-01
4.39019650e-01 -2.62708634e-01 6.86282575e-01 -8.01589489e-02
-4.80647758e-02 -3.14611554e-01 -6.80668354e-01 7.22501874e-01
8.41581345e-01 -9.04394925e-01 -5.68508565e-01 9.68731046e-02
1.29079354e+00 -6.12180710e-01 -1.13769889e+00 4.51416075e-01
5.45711696e-01 -7.23652720e-01 6.99352264e-01 -1.97037548e-01
2.78156072e-01 -4.29524064e-01 -2.71185786e-01 -1.49300754e+00
-9.51849893e-02 -1.42961454e+00 -1.93256423e-01 1.62909424e+00
5.18152058e-01 -3.50773394e-01 1.19111307e-01 -2.12305278e-01
-9.64042604e-01 -8.19026649e-01 -1.06942451e+00 -1.06712389e+00
3.02853614e-01 -7.07523286e-01 5.11135578e-01 7.76638627e-01
2.08727289e-02 3.28028411e-01 -8.63432825e-01 7.05700815e-02
3.10143411e-01 -1.23925544e-01 5.72225511e-01 -5.64673424e-01
-7.18094289e-01 -4.50391710e-01 3.61220777e-01 -9.41498578e-01
2.36534085e-02 -7.83348262e-01 2.61119485e-01 -1.06853330e+00
-4.18010950e-01 -2.95224518e-01 -3.29828322e-01 3.62243295e-01
-1.61861271e-01 3.82781446e-01 4.95699018e-01 1.61095351e-01
-1.16121948e-01 1.03641081e+00 1.49210477e+00 3.48906934e-01
-6.59740031e-01 3.48683864e-01 -3.26756001e-01 5.25454164e-01
9.79844093e-01 -2.42577597e-01 -5.49877584e-02 -2.65399873e-01
-5.97903907e-01 5.24728537e-01 1.53479904e-01 -1.12078178e+00
2.28149205e-01 3.60922694e-01 -1.88901171e-01 -6.90165460e-01
9.55525935e-01 1.42350480e-01 1.48008401e-02 4.55180466e-01
-3.55133533e-01 -1.72991976e-01 4.80371624e-01 -2.25062966e-02
-5.38407147e-01 -1.26615437e-02 8.88288736e-01 1.41130373e-01
-2.57819951e-01 2.16684103e-01 -3.17339867e-01 2.56451011e-01
2.35868692e-01 1.51342064e-01 -2.67308235e-01 -4.36046243e-01
-6.84362113e-01 -3.35008465e-03 -1.65918022e-01 6.09659672e-01
5.26664495e-01 -1.53522885e+00 -1.09118736e+00 2.20601529e-01
-1.68821424e-01 -2.55125552e-01 6.52763784e-01 8.66819084e-01
-3.33693057e-01 3.80849332e-01 4.06030864e-02 -1.87005430e-01
-1.40283644e+00 5.03148846e-02 4.58495319e-01 1.81170061e-01
-6.18007720e-01 1.02168632e+00 -4.64766026e-02 -6.36404634e-01
5.09072542e-01 -2.30844051e-01 1.51036708e-02 -1.06063269e-01
4.97995645e-01 7.21877694e-01 -4.62841317e-02 -7.40521133e-01
-4.60085012e-02 3.13315123e-01 3.17006111e-01 -5.09606481e-01
1.19300175e+00 3.68050560e-02 -1.06502734e-02 9.09327447e-01
1.04976547e+00 5.46027601e-01 -1.04576361e+00 -8.99820924e-02
-3.41407508e-01 -2.68447340e-01 1.63190320e-01 -9.51946199e-01
-8.70539010e-01 1.05380690e+00 2.92715818e-01 -2.65444480e-02
1.34879899e+00 -2.62382805e-01 1.64846289e+00 -8.26608911e-02
-1.97810054e-01 -1.26760554e+00 7.89583847e-02 7.64926374e-01
1.50588965e+00 -6.88861012e-01 -6.50631189e-01 -7.60235861e-02
-9.47958052e-01 1.08021510e+00 4.72307295e-01 -1.99028194e-01
6.12804472e-01 3.38873982e-01 2.96934932e-01 4.35246855e-01
-6.60987794e-01 -1.13559619e-01 4.21921849e-01 3.11737537e-01
7.05539703e-01 3.09709102e-01 -4.78102833e-01 1.26523173e+00
-8.83043945e-01 -1.64325684e-01 2.95226365e-01 4.74290848e-02
-2.06751108e-01 -1.15203547e+00 -4.10537571e-01 2.51647472e-01
-7.84397304e-01 -5.70425987e-01 -1.21307977e-01 2.55512416e-01
6.89709857e-02 1.09752059e+00 -1.44769624e-01 -8.35978508e-01
4.84638661e-01 1.40547276e-01 9.51201916e-02 -4.88492161e-01
-1.11152720e+00 7.91689515e-01 3.29751611e-01 -3.33760262e-01
2.53039151e-01 -5.95808446e-01 -1.26394749e+00 -2.12005243e-01
-4.63378459e-01 3.76103729e-01 6.55034602e-01 5.85345387e-01
3.06023747e-01 9.49247360e-01 1.00168431e+00 -9.47941959e-01
-7.43076205e-01 -1.38773096e+00 -8.97859454e-01 -2.34159995e-02
5.73333383e-01 -1.17517248e-01 -5.03191650e-01 -8.21957067e-02] | [15.498756408691406, 6.173089027404785] |
eca398bf-d277-46a6-b45d-28db4dd9ca88 | hierarchical-clustering-guided-re-id-with | 1910.12278 | null | https://arxiv.org/abs/1910.12278v2 | https://arxiv.org/pdf/1910.12278v2.pdf | Hierarchical Clustering with Hard-batch Triplet Loss for Person Re-identification | For most unsupervised person re-identification (re-ID), people often adopt unsupervised domain adaptation (UDA) method. UDA often train on the labeled source dataset and evaluate on the target dataset, which often focuses on learning differences between the source dataset and the target dataset to improve the generalization of the model. Base on these, we explore how to make use of the similarity of samples to conduct a fully unsupervised method which just trains on the unlabeled target dataset. Concretely, we propose a hierarchical clustering-guided re-ID (HCR) method. We use hierarchical clustering to generate pseudo labels and use these pseudo labels as monitors to conduct the training. In order to exclude hard examples and promote the convergence of the model, We use PK sampling in each iteration, which randomly selects a fixed number of samples from each cluster for training. We evaluate our model on Market-1501, DukeMTMC-reID and MSMT17. Results show that HCR gets the state-of-the-arts and achieves 55.3% mAP on Market-1501 and 46.8% mAP on DukeMTMC-reID. Our code will be released soon. | ['Kaiwei Zeng'] | 2019-10-27 | hierarchical-clustering-with-hard-batch | http://openaccess.thecvf.com/content_CVPR_2020/html/Zeng_Hierarchical_Clustering_With_Hard-Batch_Triplet_Loss_for_Person_Re-Identification_CVPR_2020_paper.html | http://openaccess.thecvf.com/content_CVPR_2020/papers/Zeng_Hierarchical_Clustering_With_Hard-Batch_Triplet_Loss_for_Person_Re-Identification_CVPR_2020_paper.pdf | cvpr-2020-6 | ['unsupervised-person-re-identification'] | ['computer-vision'] | [-1.06853597e-01 -4.33894731e-02 -1.35442942e-01 -6.71885490e-01
-4.94852304e-01 -2.35401377e-01 7.58657575e-01 -1.14446811e-01
-7.48151898e-01 7.44367421e-01 2.75490582e-01 8.88652503e-02
1.80927455e-01 -7.14585841e-01 -4.61454809e-01 -4.70947474e-01
1.18736289e-01 9.98196244e-01 2.64328979e-02 1.07168958e-01
-9.61328447e-02 -6.55786647e-03 -1.39819431e+00 2.01464631e-02
1.15382290e+00 4.38500315e-01 1.12707630e-01 4.30991143e-01
1.09544091e-01 4.52910095e-01 -5.07048845e-01 -5.81894636e-01
3.93180192e-01 -4.89416093e-01 -8.97425830e-01 1.03331886e-01
2.17349231e-01 -3.33043665e-01 -4.08172667e-01 1.19957376e+00
5.40047288e-01 2.99289197e-01 1.05214453e+00 -1.33207214e+00
-5.51106989e-01 7.55141199e-01 -6.71316862e-01 2.49769222e-02
2.03827322e-01 -2.70169731e-02 6.43698573e-01 -8.66099358e-01
4.88662213e-01 1.21421981e+00 7.99301624e-01 1.01184297e+00
-1.19408154e+00 -1.03780186e+00 2.51365691e-01 1.60924137e-01
-1.71125972e+00 -5.19940555e-01 6.35296047e-01 -4.90812033e-01
2.20369086e-01 2.51071136e-02 3.28126758e-01 1.16369200e+00
-6.09032094e-01 9.09085035e-01 1.22314894e+00 -4.65972602e-01
3.07933033e-01 2.96630204e-01 5.55955470e-01 2.68508494e-01
1.87933549e-01 1.17510848e-01 -2.47558400e-01 -7.57997259e-02
4.41754311e-01 2.20547497e-01 7.56467208e-02 -7.45255128e-02
-1.12047923e+00 6.69227123e-01 3.57441813e-01 1.09645873e-01
-1.20397307e-01 -3.60160619e-01 2.79040784e-01 1.26191393e-01
4.17822868e-01 1.52941495e-01 -2.22618103e-01 -5.20706289e-02
-9.55864727e-01 2.58620352e-01 5.90200365e-01 1.07179427e+00
9.91253495e-01 -5.01619875e-01 -1.75337419e-01 1.30981600e+00
2.16140047e-01 5.64084351e-01 8.66350055e-01 -6.54273331e-01
4.03399974e-01 8.18317533e-01 2.00038657e-01 -7.33962297e-01
-3.85063440e-01 -3.39639217e-01 -1.08533108e+00 -1.73929989e-01
4.40048426e-01 -3.15383196e-01 -1.24610233e+00 1.68884254e+00
2.83308923e-01 5.43046117e-01 1.13947801e-01 9.07189071e-01
6.55387878e-01 4.49723959e-01 2.19433665e-01 4.32043970e-02
9.90916789e-01 -1.06294394e+00 -3.17049712e-01 -2.46866167e-01
8.28565717e-01 -1.80880368e-01 1.04080343e+00 1.15309648e-01
-5.82984030e-01 -1.01159167e+00 -9.96128798e-01 1.72173232e-01
-4.95908439e-01 4.33840215e-01 1.70628950e-01 7.68343806e-01
-7.37132907e-01 5.17018557e-01 -7.08764672e-01 -6.19256496e-01
4.40286994e-01 3.61502618e-01 -3.29191715e-01 -4.03417349e-01
-1.14782262e+00 4.50028688e-01 6.33183837e-01 -1.29965454e-01
-9.02456462e-01 -6.01413429e-01 -6.31477773e-01 -2.64279157e-01
1.48893699e-01 -4.58063275e-01 1.04593611e+00 -8.83785963e-01
-1.33114195e+00 1.12422788e+00 -2.75830597e-01 -5.98003447e-01
7.56521046e-01 -1.90090716e-01 -6.65713549e-01 -1.85138121e-01
4.93220806e-01 9.22651649e-01 5.22858083e-01 -1.42294919e+00
-8.70984972e-01 -4.53531682e-01 -3.44335794e-01 2.10947692e-01
-5.20275354e-01 -1.77503511e-01 -8.59314501e-01 -5.63711405e-01
-2.27726754e-02 -1.23863161e+00 -2.03770682e-01 -7.74414301e-01
-6.66865349e-01 -3.91607940e-01 6.24201059e-01 -6.76893055e-01
1.17246461e+00 -2.16948318e+00 -1.49331078e-01 5.47052801e-01
2.78841168e-01 3.14975381e-01 -1.42879248e-01 1.56527907e-01
-9.98161733e-02 7.81279430e-02 -3.42470527e-01 -8.57782781e-01
-4.39573675e-02 1.35954261e-01 8.24631099e-03 3.47219139e-01
-3.39917064e-01 7.45446026e-01 -9.22620714e-01 -5.02961576e-01
8.09322596e-02 8.66501033e-02 -4.88014877e-01 3.61108333e-01
1.20666392e-01 7.15985835e-01 -4.03431594e-01 4.13578153e-01
8.18982542e-01 -2.45753691e-01 1.42795429e-01 -7.29206130e-02
2.53969450e-02 4.03789319e-02 -1.33626461e+00 1.45884895e+00
-5.13742343e-02 2.35265955e-01 -3.80535424e-01 -9.78952944e-01
9.81600642e-01 -1.21404193e-01 4.25015539e-01 -6.15307271e-01
1.27046257e-01 -8.54382478e-03 -1.46659106e-01 -2.00804412e-01
3.76445502e-01 7.89226890e-02 -1.12004943e-01 5.66842735e-01
-6.20040633e-02 7.84144104e-01 1.80982038e-01 3.42190444e-01
7.32476711e-01 -5.79544976e-02 7.71694481e-02 -3.07917774e-01
6.90088689e-01 -3.77187580e-02 7.43772626e-01 9.78933275e-01
-2.08047181e-01 7.68996894e-01 -4.78860177e-03 -3.25786859e-01
-1.10213983e+00 -1.12323821e+00 -1.90690830e-01 1.29273987e+00
2.75034636e-01 -4.55344498e-01 -1.05027533e+00 -1.08627951e+00
4.75448743e-02 6.18519306e-01 -7.94648170e-01 -1.58426344e-01
-4.10616845e-01 -1.00613594e+00 5.00871420e-01 4.33139592e-01
1.07085407e+00 -7.80437648e-01 1.49607450e-01 8.45327228e-03
-2.61057377e-01 -1.05934191e+00 -6.24332368e-01 -2.29829147e-01
-4.64277595e-01 -9.94002581e-01 -1.01378059e+00 -8.95643473e-01
1.02210689e+00 2.57795870e-01 8.55302513e-01 5.36682680e-02
1.99815445e-02 2.90408790e-01 -5.38365781e-01 -1.72820643e-01
-4.52719897e-01 5.66822231e-01 5.39998174e-01 4.08120096e-01
7.83125818e-01 -4.99982566e-01 -5.29948533e-01 7.68173456e-01
-4.56067652e-01 1.57984570e-01 3.56447250e-01 7.65470624e-01
4.40728605e-01 1.98985487e-01 7.48550117e-01 -1.28856695e+00
4.60349530e-01 -5.61526954e-01 -3.17345649e-01 2.98702866e-01
-8.00177813e-01 -1.11781672e-01 6.71679437e-01 -7.06472337e-01
-9.93124902e-01 2.00475037e-01 -5.74394539e-02 -4.00232673e-01
-4.24845278e-01 2.57557184e-01 -4.27661955e-01 2.44990945e-01
7.13213623e-01 2.82893449e-01 -1.41724810e-01 -7.27598071e-01
3.84421915e-01 1.26308572e+00 1.03917503e+00 -6.70875609e-01
1.04093921e+00 4.04553562e-01 -6.51461124e-01 -6.54848576e-01
-6.73034847e-01 -7.08799064e-01 -9.60004151e-01 -1.27491817e-01
9.23527479e-01 -1.16297209e+00 -6.18504524e-01 7.46573150e-01
-5.87087333e-01 -6.25865221e-01 2.53850240e-02 4.51378852e-01
-3.51131335e-02 3.52057308e-01 -4.38351125e-01 -7.72576809e-01
-2.42987126e-01 -8.37769210e-01 7.83097148e-01 5.57625711e-01
-2.88273454e-01 -9.12748635e-01 1.17920525e-01 4.12470251e-01
9.58967730e-02 -1.12295374e-01 4.40411121e-01 -1.20177722e+00
-2.10174862e-02 -4.28565532e-01 -3.66227090e-01 2.57361293e-01
2.98056632e-01 -4.53468412e-01 -1.02697802e+00 -5.84687769e-01
-4.31981534e-01 -2.45448381e-01 8.68928790e-01 7.87126720e-02
1.26401341e+00 -2.41267055e-01 -8.20528090e-01 5.60371161e-01
1.04096413e+00 8.84023309e-02 6.36148214e-01 4.39365178e-01
1.00424290e+00 6.17614508e-01 5.09371877e-01 4.17103887e-01
8.88284147e-01 6.78156197e-01 -2.14163974e-01 -4.80734147e-02
-1.97715294e-02 -7.33281076e-01 2.22937644e-01 5.80215335e-01
-1.61810860e-01 8.56542438e-02 -1.19287789e+00 5.85786104e-01
-1.85496628e+00 -7.80571401e-01 1.27693996e-01 2.54012489e+00
9.31024671e-01 2.30832994e-01 7.35754430e-01 -7.08093122e-02
1.21376479e+00 -3.47058564e-01 -7.00670540e-01 4.66474235e-01
1.14217252e-01 -2.09712088e-01 6.42938793e-01 4.85089123e-01
-1.27977705e+00 1.19201350e+00 5.80117559e+00 8.66145909e-01
-8.21485460e-01 1.45116359e-01 9.39379156e-01 1.46104202e-01
1.87727109e-01 -1.86669663e-01 -1.24047983e+00 9.95423198e-01
1.06815565e+00 -1.24412358e-01 4.97851610e-01 7.74244785e-01
4.56921421e-02 4.86389473e-02 -1.28682303e+00 1.35215306e+00
-7.51563057e-04 -7.94732571e-01 -1.02003373e-01 1.90142453e-01
1.02358520e+00 5.68349892e-03 -8.30781162e-02 6.49678707e-01
7.28114247e-01 -9.06810462e-01 3.18063319e-01 4.68090683e-01
7.84097552e-01 -9.62391734e-01 7.49890089e-01 6.16994262e-01
-1.08005047e+00 -1.80851579e-01 -5.44623435e-01 8.31192136e-02
-8.77206847e-02 5.42285860e-01 -7.93347120e-01 4.74898189e-01
1.02091646e+00 9.42516506e-01 -9.42614913e-01 1.01317728e+00
-6.49128947e-03 7.29150951e-01 -3.96004707e-01 2.83800721e-01
-2.41443321e-01 -2.33338326e-01 1.42772332e-01 1.19804537e+00
7.08655640e-02 6.88691735e-02 5.79021633e-01 6.88137710e-01
-2.84830511e-01 -1.13955781e-01 -3.10569167e-01 2.26675987e-01
8.14786255e-01 1.03310585e+00 -4.79649097e-01 -6.72765076e-01
-2.84739673e-01 1.26988566e+00 4.33915615e-01 4.78341281e-01
-7.86525607e-01 -1.57331139e-01 4.03580815e-01 1.74378961e-01
4.45735417e-02 -6.02102652e-02 -1.22905456e-01 -1.22834921e+00
-1.49526045e-01 -8.77603650e-01 6.51317775e-01 -4.05639529e-01
-1.83702946e+00 5.26359737e-01 2.89005488e-01 -1.43737710e+00
-2.87479162e-01 -2.47493029e-01 -5.95870316e-01 8.87328207e-01
-1.28042555e+00 -1.13302302e+00 -4.73891318e-01 6.66816831e-01
2.64256030e-01 -5.11408806e-01 5.78465760e-01 4.89389390e-01
-9.10284400e-01 1.13058162e+00 2.17693076e-01 8.12340438e-01
1.05909896e+00 -1.22099543e+00 6.16731405e-01 7.96855807e-01
-1.79365307e-01 7.29155719e-01 3.57022166e-01 -8.34445894e-01
-6.76228821e-01 -1.43323970e+00 7.11451590e-01 -4.99918401e-01
2.43537501e-01 -6.22550368e-01 -9.24764752e-01 9.00891781e-01
-1.10754386e-01 -1.05019897e-01 7.32298136e-01 2.78240293e-01
-4.38509673e-01 -2.93737262e-01 -1.31658781e+00 7.07945704e-01
1.26140869e+00 -4.87646490e-01 -5.52728534e-01 2.02303723e-01
4.73796338e-01 -1.86637819e-01 -8.61585200e-01 3.80525619e-01
3.63305807e-01 -7.63042390e-01 9.80196536e-01 -4.66448247e-01
-1.84037932e-03 -5.02598286e-01 5.97917140e-02 -1.40567052e+00
-4.98984516e-01 -4.55924869e-01 1.31708980e-01 1.74657810e+00
3.41037810e-01 -8.10964406e-01 1.05143940e+00 9.67343330e-01
2.31323659e-01 -1.76457226e-01 -6.24026775e-01 -9.17905152e-01
1.39673561e-01 -1.84137121e-01 8.29458058e-01 1.14986932e+00
-2.10798439e-02 5.15012562e-01 -4.29479539e-01 3.25730979e-01
9.91695166e-01 -2.12495193e-01 1.16852117e+00 -1.43787491e+00
-1.21257089e-01 -9.94323045e-02 -1.83018506e-01 -1.33843815e+00
2.37754017e-01 -9.04234171e-01 1.59371234e-02 -1.15399957e+00
5.44217527e-01 -8.21010172e-01 -2.84206778e-01 5.33817708e-01
-4.40376014e-01 3.66037339e-01 2.30171338e-01 7.09761679e-01
-8.57292116e-01 5.00712454e-01 8.43182445e-01 -1.96126357e-01
-5.40343463e-01 1.36488959e-01 -7.70665705e-01 5.27949214e-01
8.87140810e-01 -4.49675888e-01 -3.49232405e-01 -1.47949010e-01
-4.43548828e-01 -4.65804219e-01 2.51361579e-01 -1.43782985e+00
4.50153470e-01 1.69517651e-01 7.54815936e-01 -5.72710156e-01
-2.06503784e-03 -6.27519667e-01 6.94718510e-02 2.63447434e-01
-5.20011425e-01 -1.37356624e-01 -1.79506406e-01 6.04912996e-01
3.42841409e-02 -2.08244517e-01 8.59652221e-01 -5.23034409e-02
-8.23650539e-01 5.30917227e-01 -3.30592543e-02 1.83652654e-01
8.91232133e-01 -2.06253991e-01 -1.86034724e-01 -2.20883474e-01
-7.96415925e-01 6.89342976e-01 7.06948042e-01 4.08797085e-01
2.98202366e-01 -1.54653049e+00 -9.29391384e-01 3.55036438e-01
4.03423011e-01 8.72970447e-02 3.13527972e-01 4.68546987e-01
-4.14500870e-02 1.17612168e-01 -6.10734858e-02 -6.06370986e-01
-1.09328127e+00 7.27807105e-01 3.91883820e-01 -1.81611821e-01
-6.04998469e-01 4.82319951e-01 3.11710238e-01 -7.99596131e-01
3.45568866e-01 2.86647797e-01 -4.29639161e-01 -2.23063514e-01
8.60838532e-01 5.18733144e-01 -3.60892355e-01 -7.22140968e-01
-4.11090910e-01 4.61966425e-01 -5.71994662e-01 -1.47736222e-01
9.53782320e-01 -3.31181854e-01 1.20999664e-01 2.88667649e-01
1.34542251e+00 -7.61781335e-02 -1.34980118e+00 -4.30995196e-01
1.53825387e-01 -2.84868717e-01 -4.00517792e-01 -7.85564363e-01
-8.96915138e-01 4.97654200e-01 9.17147219e-01 5.46035648e-04
9.06461418e-01 5.94726168e-02 7.91532218e-01 3.61979842e-01
3.52534741e-01 -1.37190616e+00 -1.24728799e-01 4.13488358e-01
3.57300848e-01 -1.38526785e+00 -7.95252174e-02 -2.70166993e-01
-7.41398573e-01 5.81334770e-01 8.59989047e-01 -9.58650708e-02
6.10953510e-01 -1.65491626e-01 1.48511276e-01 3.70911628e-01
-4.28334177e-02 -4.08445984e-01 2.06718564e-01 9.06250119e-01
8.68395790e-02 2.98349023e-01 -4.49830443e-02 9.07781184e-01
-3.92650396e-01 1.39686972e-01 8.48350003e-02 4.86487925e-01
-2.12443843e-01 -1.34535730e+00 -4.33417618e-01 4.49360132e-01
-1.84212804e-01 3.09238490e-02 -4.39313889e-01 6.43167436e-01
3.49381775e-01 1.02896607e+00 8.89011472e-02 -8.21103811e-01
3.09948862e-01 1.19383641e-01 1.10316485e-01 -6.33878410e-01
-2.97923237e-01 -1.23288639e-01 9.99547169e-02 -4.58926894e-02
-4.11277056e-01 -7.66370714e-01 -1.26995134e+00 -4.35393572e-01
5.93497269e-02 3.84540677e-01 2.33598575e-01 1.00552845e+00
4.22777832e-01 3.94322984e-02 8.25824559e-01 -7.40073264e-01
-3.80368292e-01 -1.25364089e+00 -5.58584929e-01 8.51716340e-01
9.16203931e-02 -5.63517928e-01 -3.24401855e-01 2.11644232e-01] | [14.825767517089844, 1.1026968955993652] |
8f096f49-fb2c-41fb-85a5-e35a7ce99e61 | differentiable-inductive-logic-programming-in | 2208.06652 | null | https://arxiv.org/abs/2208.06652v2 | https://arxiv.org/pdf/2208.06652v2.pdf | Differentiable Inductive Logic Programming in High-Dimensional Space | Synthesizing large logic programs through symbolic Inductive Logic Programming (ILP) typically requires intermediate definitions. However, cluttering the hypothesis space with intensional predicates typically degrades performance. In contrast, gradient descent provides an efficient way to find solutions within such high- dimensional spaces. Neuro-symbolic ILP approaches have not fully exploited this so far. We propose extending the {\delta}ILP approach to inductive synthesis with large-scale predicate invention, thus allowing us to exploit the efficacy of high-dimensional gradient descent. We show that large-scale predicate invention benefits differentiable inductive synthesis through gradient descent and allows one to learn solutions for tasks beyond the capabilities of existing neuro-symbolic ILP systems. Furthermore, we achieve these results without specifying the precise structure of the solution within the language bias. | ['Cezary Kaliszyk', 'David M. Cerna', 'Stanisław J. Purgał'] | 2022-08-13 | null | null | null | null | ['inductive-logic-programming'] | ['methodology'] | [ 1.27390325e-01 4.92513627e-01 -5.71188390e-01 -2.95164675e-01
-5.08435786e-01 -7.21816063e-01 4.89863724e-01 -7.22458065e-02
-2.08479077e-01 1.09790552e+00 -6.35865331e-02 -7.16999412e-01
-2.14858353e-01 -1.13690460e+00 -1.08295119e+00 -2.23491430e-01
-4.07449901e-01 6.70401871e-01 -9.64082628e-02 -4.45475042e-01
1.60180733e-01 6.87998235e-01 -1.61406529e+00 4.27392513e-01
9.65413153e-01 7.15777278e-01 -9.70894024e-02 4.54633296e-01
-5.78609407e-01 8.17219794e-01 -5.01268208e-01 -1.75748095e-01
3.13249469e-01 -2.84023851e-01 -6.68503463e-01 -6.55935168e-01
4.02595371e-01 -2.07270399e-01 -1.59362897e-01 1.05489206e+00
7.13916197e-02 1.01884156e-01 3.86366546e-01 -1.36776054e+00
-7.63869286e-01 1.39251351e+00 6.39434010e-02 -1.08375803e-01
3.75269771e-01 1.91612184e-01 1.36408317e+00 -7.92081416e-01
8.60763371e-01 1.49209321e+00 8.64963591e-01 5.81448734e-01
-1.65324092e+00 -8.08922708e-01 3.31102252e-01 -2.35668227e-01
-1.30594242e+00 -3.03480685e-01 9.86371100e-01 -2.51577944e-01
1.34819520e+00 2.13779807e-01 9.45848107e-01 8.58453214e-01
-1.44574061e-01 1.11127245e+00 9.33939874e-01 -5.07448137e-01
3.03598583e-01 2.82839090e-01 2.28638738e-01 1.20781469e+00
2.02697322e-01 3.58518928e-01 -4.27564591e-01 -2.58813292e-01
8.38630557e-01 -2.47504070e-01 4.15016785e-02 -4.98498350e-01
-1.22394073e+00 9.43599761e-01 5.60611486e-01 4.41445261e-01
-1.04312658e-01 8.19066703e-01 5.33011496e-01 5.09164333e-01
8.92921314e-02 1.59357321e+00 -6.38819277e-01 -2.80382112e-02
-9.84653711e-01 5.70647597e-01 1.07132518e+00 1.09463465e+00
8.26628387e-01 5.75098932e-01 -2.21435502e-01 4.08792228e-01
3.57061401e-02 3.87469143e-01 3.26266766e-01 -1.18933415e+00
4.70516533e-01 6.75549090e-01 -7.49708433e-03 -9.04077291e-01
-3.97069752e-01 -4.52087879e-01 -2.45197520e-01 2.74191797e-01
4.75801259e-01 -5.72253764e-01 -6.53868437e-01 1.96334684e+00
-4.35632728e-02 7.09562078e-02 2.83140689e-01 4.88347590e-01
3.74319971e-01 7.71450758e-01 -1.26332408e-02 -1.90389708e-01
8.07638705e-01 -8.75210702e-01 -4.95669782e-01 -2.17763513e-01
1.07252014e+00 2.33646154e-01 1.44578099e+00 4.33022857e-01
-1.21772349e+00 -2.04629347e-01 -1.19300568e+00 -1.01650961e-01
-6.44429982e-01 -7.95021877e-02 1.48812175e+00 7.45946348e-01
-1.12457144e+00 6.53569639e-01 -6.07859433e-01 3.30197453e-01
5.77762365e-01 7.91874707e-01 -8.36043581e-02 1.48306757e-01
-1.52924371e+00 8.90413105e-01 8.80538464e-01 -5.92682213e-02
-7.96219170e-01 -1.15125990e+00 -9.53161895e-01 3.68731134e-02
4.97540623e-01 -6.59581244e-01 1.04889166e+00 -1.24548912e+00
-1.67052758e+00 4.52553570e-01 4.81555909e-02 -7.43390918e-01
2.82065004e-01 -7.65141696e-02 3.95080969e-02 -2.56645530e-01
-2.12091178e-01 9.16646421e-01 6.47626877e-01 -1.05655313e+00
-3.21715206e-01 -2.67603584e-02 5.88782787e-01 1.09660670e-01
-2.20767438e-01 -9.68990102e-02 -1.38714053e-02 -3.77117693e-01
3.65994535e-02 -9.83389139e-01 -2.63005525e-01 -1.01363122e-01
-5.24195015e-01 -3.10896724e-01 5.29098392e-01 -8.79950374e-02
1.10169935e+00 -2.13857818e+00 3.41096222e-01 5.47464788e-01
2.26313382e-01 1.73771471e-01 -2.23537590e-02 4.17949744e-02
-1.46670178e-01 3.68213177e-01 -1.54170066e-01 6.86315447e-02
5.47883332e-01 3.61877501e-01 -7.14867294e-01 5.93641438e-02
4.40996677e-01 1.43726993e+00 -1.14831424e+00 -4.27298248e-01
-1.53695643e-01 -1.36726359e-02 -1.13524246e+00 -2.02488020e-01
-1.14831543e+00 -1.04555227e-01 -6.45717204e-01 7.25870430e-01
4.61893268e-02 -8.44048783e-02 4.15109277e-01 8.31023082e-02
-3.96965593e-02 2.92400897e-01 -1.06954372e+00 1.60667562e+00
-6.31425321e-01 7.16909409e-01 -2.04433009e-01 -1.02794683e+00
8.71735990e-01 -2.79078539e-03 1.57057300e-01 -4.98238176e-01
-5.18591665e-02 4.31309849e-01 1.39588580e-01 -1.34085238e-01
3.85333925e-01 -4.66839671e-01 -3.27828884e-01 2.67986745e-01
-4.07541171e-03 -4.95843917e-01 3.40497643e-01 -5.01123518e-02
1.01137972e+00 3.66290808e-01 -2.86657568e-02 -2.68322170e-01
2.60858476e-01 2.93258876e-01 6.23926401e-01 9.75489557e-01
3.84252280e-01 -1.84671238e-01 9.61702347e-01 -3.85024786e-01
-8.94025505e-01 -1.20021248e+00 -1.42217919e-01 1.36619997e+00
-2.20473304e-01 -3.53158593e-01 -5.50712764e-01 -6.32865131e-01
4.51037437e-01 1.19620788e+00 -5.15007913e-01 -1.57292843e-01
-8.39656711e-01 -4.54658508e-01 1.20991576e+00 6.48812711e-01
3.52748573e-01 -1.17300975e+00 -5.21084726e-01 2.27646112e-01
4.74076569e-01 -6.89652264e-01 1.20162673e-01 6.78642273e-01
-1.13398588e+00 -5.86692929e-01 -1.55745268e-01 -7.33125150e-01
7.45697796e-01 -7.82979965e-01 1.24203515e+00 -3.96091752e-02
-1.54852584e-01 1.02251634e-01 3.06786537e-01 -4.16836798e-01
-4.98611301e-01 2.21217915e-01 1.21856883e-01 -7.13077426e-01
2.49605834e-01 -8.04362237e-01 2.58638263e-01 -3.25266838e-01
-6.88568115e-01 1.89485833e-01 5.33977985e-01 1.02478039e+00
6.06955528e-01 1.35569513e-01 7.34086037e-01 -1.31206489e+00
9.03704882e-01 -4.44328845e-01 -1.07532036e+00 2.92455435e-01
-6.34650230e-01 7.70555973e-01 9.07487333e-01 -6.70734048e-01
-7.84842670e-01 -6.27303272e-02 1.43584788e-01 -4.50324535e-01
7.51907527e-02 8.27361405e-01 -2.66305562e-02 -1.78092673e-01
1.00562406e+00 8.08564276e-02 -1.41513288e-01 -3.05949803e-02
8.25098753e-01 -1.72804013e-01 3.85658413e-01 -1.36874986e+00
8.04520309e-01 2.33026575e-02 2.99712241e-01 -3.88810396e-01
-7.94719636e-01 5.04970491e-01 -3.32745045e-01 2.95767277e-01
5.67152500e-01 -5.98753214e-01 -8.50979745e-01 -1.87552109e-01
-1.04983497e+00 -7.91824341e-01 -7.44731784e-01 2.84886986e-01
-7.98434198e-01 -2.55097151e-01 -4.87652540e-01 -7.38581717e-01
-3.25345099e-02 -1.29709792e+00 5.37471175e-01 -1.35546744e-01
-5.58583319e-01 -1.19753432e+00 -1.85666144e-01 -2.31756568e-01
3.19284797e-01 4.62059736e-01 1.59623420e+00 -8.23949516e-01
-8.94216895e-01 -7.85111487e-02 -1.11583862e-02 2.38261700e-01
-1.49854109e-01 -8.71371329e-02 -6.91042066e-01 2.52552420e-01
-3.83979350e-01 -6.03127122e-01 6.93445265e-01 1.12311982e-01
1.37441838e+00 -5.41301668e-01 -4.66747582e-01 1.03903937e+00
1.20506573e+00 1.18702076e-01 3.43652070e-01 4.32090670e-01
6.87163413e-01 3.09121162e-01 4.12315667e-01 1.17684953e-01
1.61809102e-01 3.99762273e-01 1.64319977e-01 6.06101565e-02
4.72798459e-02 -5.25181711e-01 3.43706310e-01 -1.36055686e-02
1.83096901e-01 1.84792683e-01 -1.33635330e+00 4.33617502e-01
-1.68504155e+00 -8.28931391e-01 4.21117425e-01 1.68302321e+00
1.52459645e+00 5.31832337e-01 -1.72473043e-01 1.72474921e-01
1.73984647e-01 4.32729768e-03 -7.90689290e-01 -8.83998036e-01
-2.63256371e-01 5.89934051e-01 6.33226931e-01 6.96162820e-01
-8.98440659e-01 1.43323028e+00 7.43797684e+00 6.30677938e-01
-1.23255229e+00 -2.20030457e-01 2.83345789e-01 -4.01383758e-01
-8.77921879e-01 1.92875154e-02 -1.00360155e+00 1.52102947e-01
1.00367093e+00 -2.76302636e-01 9.88041818e-01 1.11108899e+00
-3.88245553e-01 1.10266641e-01 -1.82590806e+00 7.43857563e-01
-2.52834141e-01 -1.72885382e+00 9.89996865e-02 -1.57069668e-01
9.52130198e-01 -2.38718778e-01 5.16459703e-01 8.22148561e-01
7.58810282e-01 -1.37415016e+00 6.98161840e-01 4.27877218e-01
8.63519788e-01 -9.30417418e-01 3.03338878e-02 3.11098963e-01
-5.95677555e-01 -5.70543230e-01 -1.44588888e-01 -3.38542879e-01
-2.77386189e-01 5.31454086e-01 -1.01760018e+00 -9.06278118e-02
-2.82764714e-02 3.63474578e-01 -4.38642681e-01 2.72130072e-01
-5.49829781e-01 5.09091735e-01 -6.57578170e-01 -3.62909764e-01
5.90741694e-01 -8.87882635e-02 4.76599097e-01 1.26386237e+00
1.52707398e-01 -1.48280397e-01 1.81868404e-01 1.56866086e+00
-3.55062425e-01 -1.11221336e-01 -1.04673922e+00 -5.46513915e-01
4.66077626e-01 6.18154585e-01 -3.80925238e-01 -4.66100186e-01
-7.04241693e-02 4.16910768e-01 5.77684641e-01 4.69316691e-01
-8.13868582e-01 -4.87887114e-01 7.80003965e-01 -1.26386419e-01
2.58291543e-01 -4.11533445e-01 -8.38989437e-01 -1.07296538e+00
-9.43814516e-02 -1.16015875e+00 5.14367558e-02 -5.85712671e-01
-6.33576572e-01 4.54702713e-02 3.16897243e-01 -2.18582824e-01
-7.82776833e-01 -7.61491895e-01 -2.30465800e-01 9.62281227e-01
-1.23482382e+00 -1.06592107e+00 4.23373610e-01 4.57229435e-01
1.31974250e-01 -3.71773511e-01 1.03517878e+00 -9.08507258e-02
-4.43566769e-01 8.55507076e-01 -4.42681573e-02 1.02995016e-01
1.61163256e-01 -1.36841881e+00 1.71552032e-01 6.34940743e-01
7.74595067e-02 1.20372510e+00 7.75272429e-01 -6.15758061e-01
-2.09420323e+00 -9.45021033e-01 7.21921682e-01 -5.15988052e-01
9.00559068e-01 -4.34444368e-01 -6.21027768e-01 1.00264633e+00
-3.07298332e-01 -6.27941499e-03 4.10242409e-01 7.18029141e-01
-7.25951493e-01 -1.37887925e-01 -1.10213113e+00 1.08153450e+00
1.25436866e+00 -7.75713265e-01 -7.75601566e-01 4.91989434e-01
1.03839028e+00 -5.89703619e-01 -7.98387170e-01 4.14030194e-01
3.67083788e-01 -3.02638441e-01 1.25518429e+00 -1.03070605e+00
6.67866528e-01 -2.36169398e-01 -2.18379110e-01 -1.09342241e+00
-2.02940136e-01 -7.19449461e-01 -4.51017052e-01 7.75576174e-01
9.56654429e-01 -8.06315482e-01 9.50685322e-01 1.05038047e+00
-2.94195473e-01 -9.18612063e-01 -5.45611382e-01 -7.83672988e-01
5.50472379e-01 -6.97257221e-01 8.47613394e-01 9.37870681e-01
2.93261260e-01 2.25037739e-01 1.33159161e-01 7.71335047e-03
3.30838025e-01 4.87570018e-01 6.41658127e-01 -1.03096199e+00
-6.10629022e-01 -8.26698780e-01 -2.89811522e-01 -7.78161347e-01
1.12929451e+00 -1.48986793e+00 2.96895225e-02 -1.10031664e+00
-3.24202627e-01 -1.05175757e+00 -2.96987742e-01 8.80868137e-01
2.16260910e-01 -6.91461116e-02 9.62612405e-02 -1.54441163e-01
-3.86775285e-01 2.53700435e-01 1.00377786e+00 -2.53528029e-01
-4.61094052e-01 -4.51854318e-01 -9.14432585e-01 8.23929965e-01
8.44199777e-01 -2.72799224e-01 -7.15688705e-01 -4.89746094e-01
8.38310719e-01 -9.13370680e-03 2.36155689e-01 -9.49296594e-01
2.39028066e-01 -5.17040431e-01 4.35169548e-01 -1.42064884e-01
3.32841426e-01 -5.47265172e-01 9.49622244e-02 3.60090762e-01
-8.52874100e-01 -1.38235539e-01 5.81344128e-01 1.69259161e-01
-1.66320235e-01 -3.21584433e-01 5.66455126e-01 -3.70557606e-01
-8.55862677e-01 -1.70221534e-02 -2.25796178e-01 1.99247494e-01
7.37755179e-01 -1.22082494e-01 -8.77331421e-02 1.05119005e-01
-6.14669144e-01 2.81869829e-01 5.29172361e-01 -2.37333961e-02
6.12332225e-01 -1.27225053e+00 -2.74274021e-01 2.64325142e-01
-1.57687351e-01 1.43892139e-01 -5.91711938e-01 5.27905822e-01
-5.85935354e-01 5.89440644e-01 -2.87635863e-01 -2.31999725e-01
-8.28576684e-01 6.69434667e-01 4.37153935e-01 -3.98860455e-01
-5.41185319e-01 1.13112688e+00 1.62410274e-01 -6.81156814e-01
2.81509310e-01 -6.93730295e-01 2.28195041e-01 -1.88750494e-02
1.95051476e-01 -1.45054040e-02 -2.96688288e-01 1.09174475e-01
-2.37967089e-01 1.07497528e-01 5.41116558e-02 -2.84378529e-01
1.30512977e+00 6.24817669e-01 -3.71756047e-01 5.15579700e-01
1.12501991e+00 2.42987759e-02 -1.01912200e+00 -1.75509170e-01
2.95619071e-01 -5.58771193e-02 5.47957607e-02 -7.88194418e-01
-5.94443023e-01 6.88664615e-01 -8.63616616e-02 -1.26763582e-01
8.61117601e-01 -2.29345292e-01 4.27669287e-01 1.49192429e+00
3.99930149e-01 -1.08150876e+00 -1.02076633e-02 1.09074652e+00
7.65886247e-01 -8.41552913e-01 -3.21155973e-02 -1.33192226e-01
-2.96254516e-01 1.17553031e+00 4.65455025e-01 -4.08182830e-01
3.70270491e-01 7.44689226e-01 -4.58149284e-01 -1.17950790e-01
-9.20479298e-01 -3.27602401e-02 1.68831363e-01 5.07822812e-01
4.66765583e-01 1.98472425e-01 1.15087526e-02 4.96181160e-01
-5.81691504e-01 1.53926522e-01 2.06724778e-01 1.09475636e+00
-3.07953060e-01 -1.12880123e+00 -2.54292935e-01 4.60622609e-01
-4.49715048e-01 -4.77245480e-01 -2.94901967e-01 9.48131919e-01
1.82229906e-01 2.01746553e-01 -6.21066391e-02 -2.31107444e-01
2.02335209e-01 6.23898864e-01 8.80459964e-01 -8.63538980e-01
-7.42113292e-01 -6.47222757e-01 4.22238350e-01 -6.09300375e-01
2.64332116e-01 -4.86229867e-01 -1.74488330e+00 -1.77942693e-01
-7.32337758e-02 1.93693072e-01 8.15352023e-01 7.33267426e-01
2.15341404e-01 6.10137641e-01 1.68761596e-01 -6.44087315e-01
-6.82493210e-01 -3.43699068e-01 -3.50056171e-01 1.93433706e-02
3.91264886e-01 -7.14844227e-01 -1.50471523e-01 -1.29319280e-01] | [8.783377647399902, 7.174227237701416] |
65fcee45-4de7-4f69-b367-3577e5cc709b | large-capacity-image-steganography-based-on | null | null | http://openaccess.thecvf.com//content/CVPR2021/html/Lu_Large-Capacity_Image_Steganography_Based_on_Invertible_Neural_Networks_CVPR_2021_paper.html | http://openaccess.thecvf.com//content/CVPR2021/papers/Lu_Large-Capacity_Image_Steganography_Based_on_Invertible_Neural_Networks_CVPR_2021_paper.pdf | Large-Capacity Image Steganography Based on Invertible Neural Networks | Many attempts have been made to hide information in images, where the main challenge is how to increase the payload capacity without the container image being detected as containing a message. In this paper, we propose a large-capacity Invertible Steganography Network (ISN) for image steganography. We take steganography and the recovery of hidden images as a pair of inverse problems on image domain transformation, and then introduce the forward and backward propagation operations of a single invertible network to leverage the image embedding and extracting problems. Sharing all parameters of our single ISN architecture enables us to efficiently generate both the container image and the revealed hidden image(s) with high quality. Moreover, in our architecture the capacity of image steganography is significantly improved by naturally increasing the number of channels of the hidden image branch. Comprehensive experiments demonstrate that with this significant improvement of the steganography capacity, our ISN achieves state-of-the-art in both visual and quantitative comparisons. | ['Paul L. Rosin', 'Tao Zhong', 'Rong Wang', 'Shao-Ping Lu'] | 2021-06-19 | null | null | null | cvpr-2021-1 | ['image-steganography'] | ['computer-vision'] | [ 1.17098415e+00 6.85163438e-01 3.88346352e-02 4.17784333e-01
-3.24971616e-01 -6.42965496e-01 5.44186473e-01 -7.68770695e-01
-2.57382005e-01 2.85611272e-01 -5.62142767e-02 -7.96071589e-01
3.93726856e-01 -9.52511072e-01 -7.74273992e-01 -9.13134933e-01
-3.21933895e-01 -3.27317476e-01 3.09958845e-01 -3.38455439e-01
1.89655900e-01 1.32208064e-01 -9.82125700e-01 2.46477827e-01
5.22331655e-01 9.58144903e-01 1.18320234e-01 9.12779629e-01
3.56736720e-01 9.14649665e-01 -4.13377821e-01 -3.82781863e-01
7.66143143e-01 -9.52823400e-01 -7.30220497e-01 4.94425327e-01
-1.75390989e-01 -6.99293554e-01 -8.03385615e-01 1.10270751e+00
3.67589325e-01 -6.22780204e-01 2.89764881e-01 -1.45295739e+00
-7.44267285e-01 7.85752118e-01 -6.15693629e-01 -2.31440172e-01
-2.75855213e-02 4.27560985e-01 4.98133928e-01 -5.44579625e-01
8.81040573e-01 9.16605413e-01 4.20244575e-01 4.20845538e-01
-1.14039874e+00 -1.08517110e+00 -5.30098975e-01 1.39135107e-01
-1.40921736e+00 -6.75362468e-01 6.45606399e-01 -4.30461653e-02
6.74342632e-01 3.35651129e-01 6.38101280e-01 6.23551190e-01
1.02047876e-01 2.34990850e-01 1.11714387e+00 -8.13071787e-01
-2.87122607e-01 3.84290159e-01 -8.93776059e-01 8.11842680e-01
4.12116170e-01 4.03303951e-01 -8.22748542e-02 1.81274459e-01
1.11028755e+00 -1.67264771e-02 -4.69135582e-01 -3.86691362e-01
-1.40931225e+00 9.74674523e-01 5.09180844e-01 2.27882788e-01
1.90329254e-02 6.29077792e-01 1.17511578e-01 7.35651493e-01
1.32278815e-01 2.47933894e-01 1.80124819e-01 3.71617168e-01
-7.79188037e-01 -3.23918670e-01 9.20984149e-01 1.10082614e+00
7.13103116e-01 1.11999542e-01 3.29665989e-01 -4.99549620e-02
3.45373005e-01 8.22363019e-01 -3.34595628e-02 -9.77991939e-01
5.25286734e-01 3.76018345e-01 -1.95478946e-01 -1.47313225e+00
1.22545548e-01 -2.44765431e-01 -1.12291932e+00 2.93547034e-01
2.50695497e-01 -1.24572024e-01 -8.79195273e-01 1.52803469e+00
1.91956028e-01 2.19900101e-01 4.64812160e-01 5.69355071e-01
3.61843497e-01 8.26475143e-01 -3.89295936e-01 -1.14157841e-01
1.47637415e+00 -9.17078018e-01 -6.31421328e-01 -3.89953852e-01
7.29193807e-01 -7.85040438e-01 3.96752983e-01 7.38282269e-03
-1.21597314e+00 -2.04880193e-01 -1.46589255e+00 -2.15960387e-02
-8.59839320e-02 -2.48798534e-01 2.51112968e-01 9.53283489e-01
-1.09722030e+00 2.70302594e-01 -4.27055746e-01 8.45345780e-02
3.62715960e-01 7.12271392e-01 -6.86725497e-01 -3.55579644e-01
-1.24111366e+00 5.27486861e-01 8.02804351e-01 4.31591868e-02
-7.93528259e-01 -4.11373079e-01 -9.35867071e-01 1.42309889e-01
4.27001238e-01 -6.09938323e-01 5.18961430e-01 -8.96878123e-01
-1.51371920e+00 9.05484200e-01 2.44706064e-01 -6.88277006e-01
6.33647561e-01 6.43536031e-01 -4.57394898e-01 5.58754086e-01
-2.57942259e-01 8.53848815e-01 1.23668599e+00 -1.39288902e+00
-6.64731920e-01 3.74042019e-02 -5.29160723e-02 -1.94419429e-01
-4.61403579e-01 -3.13741192e-02 -5.78600228e-01 -3.59647930e-01
3.23888540e-01 -1.50580609e+00 -1.62042901e-01 2.73787856e-01
-6.56667233e-01 6.93614602e-01 1.19178772e+00 -8.47942472e-01
1.11960137e+00 -2.44003153e+00 4.84666564e-02 5.53710699e-01
6.01434827e-01 3.74971271e-01 -3.86373401e-01 5.99245191e-01
-4.36166264e-02 6.25073314e-01 -2.45349452e-01 -1.51982874e-01
-1.82112247e-01 1.91794425e-01 -5.68771899e-01 8.64070892e-01
6.29009726e-03 1.24856341e+00 -6.21750057e-01 -5.17602086e-01
7.30842948e-02 6.96923912e-01 -5.93305409e-01 -3.16418037e-02
2.48252466e-01 6.56361997e-01 -1.03896484e-01 3.96938138e-02
1.05105019e+00 -6.99942648e-01 8.22604179e-01 5.46313822e-02
-3.90864722e-03 6.16739616e-02 -8.76764953e-01 1.14046812e+00
-3.29287410e-01 8.45170319e-01 9.08164959e-03 -6.11868680e-01
6.26346350e-01 4.88248914e-01 2.58131951e-01 -7.31557429e-01
2.05602303e-01 3.60166401e-01 1.43129483e-01 -3.70179474e-01
3.58813047e-01 -4.42114063e-02 -7.98078105e-02 8.26478660e-01
-2.98274189e-01 4.15489227e-02 -1.23117238e-01 1.99059963e-01
1.04783499e+00 -3.30892146e-01 1.66731164e-01 1.12817675e-01
5.57784796e-01 -2.06560835e-01 1.36526391e-01 6.65992856e-01
2.05208376e-01 3.82079810e-01 7.63942957e-01 -6.18597232e-02
-1.69163597e+00 -5.87404370e-01 4.65691745e-01 4.91845638e-01
5.36503315e-01 -2.54132688e-01 -7.78806448e-01 -3.63159329e-01
-4.43995982e-01 2.24556684e-01 -4.27753478e-01 -2.06223086e-01
-8.61253679e-01 -3.69886994e-01 9.37016129e-01 -1.07435703e-01
1.20170915e+00 -8.82519960e-01 -5.69684029e-01 -4.32066694e-02
-5.22521973e-01 -1.58965838e+00 -5.73084235e-01 -2.91435629e-01
-5.69818318e-01 -1.08464324e+00 -7.04783857e-01 -1.09408915e+00
1.06744277e+00 6.93802595e-01 4.63221580e-01 6.63405418e-01
-1.16430216e-01 -1.54572904e-01 -3.84945452e-01 -6.51841611e-02
-1.00951207e+00 7.22058415e-02 -4.95959848e-01 1.25269592e-01
-3.64052057e-01 -5.99457026e-01 -9.41527069e-01 5.35280764e-01
-1.38366175e+00 4.48582828e-01 8.08435857e-01 7.77426600e-01
1.91347942e-01 5.53731799e-01 -1.33583352e-01 -8.48472476e-01
-3.65774184e-02 -3.89877945e-01 -7.96139598e-01 1.36115691e-02
-7.65377045e-01 2.25342780e-01 3.31167579e-01 -4.29340780e-01
-5.38284004e-01 -4.95793298e-02 2.02188522e-01 -5.12110256e-02
5.11028409e-01 1.05162807e-01 -1.12116657e-01 -8.66189897e-01
2.22194791e-01 7.18604982e-01 5.92153728e-01 1.84802711e-02
4.62065697e-01 6.29174292e-01 4.57536519e-01 3.83160293e-01
1.51721382e+00 1.06616080e+00 3.07235122e-01 -6.85050428e-01
-1.42013505e-02 -1.07599601e-01 -3.42612088e-01 8.72631446e-02
8.32495391e-01 -9.68958259e-01 -1.09134114e+00 6.90764248e-01
-1.19928646e+00 -2.67855436e-01 5.31672537e-02 9.90723521e-02
-3.54335040e-01 7.18626559e-01 -5.04471719e-01 -5.53082824e-01
-3.33223045e-01 -1.30752242e+00 7.58719623e-01 -3.20029527e-01
4.01176095e-01 -1.02462482e+00 -3.94045830e-01 1.82944700e-01
7.13330150e-01 5.56603372e-01 8.27192366e-01 -6.83930609e-03
-1.26591170e+00 -2.57521123e-01 -6.44781172e-01 3.30254942e-01
3.27440612e-02 -6.41445160e-01 -6.18347585e-01 -7.58099973e-01
1.54950082e-01 7.46374801e-02 8.73828292e-01 -1.05142906e-01
8.30385685e-01 -9.08943534e-01 -3.28626752e-01 1.22321093e+00
1.69517159e+00 1.28583834e-01 1.47160888e+00 4.15709227e-01
5.72052836e-01 6.10297918e-01 -2.11775620e-02 2.67121226e-01
2.35023931e-01 5.83347738e-01 6.31908059e-01 -4.16997641e-01
-2.60159045e-01 -4.40036565e-01 6.19433284e-01 8.66188645e-01
-1.10586099e-01 -7.63823211e-01 -5.69553792e-01 3.95113051e-01
-1.42539561e+00 -1.11087847e+00 -9.38465372e-02 1.94686747e+00
6.01343155e-01 -3.46965045e-02 -3.17642719e-01 3.79086584e-01
9.15542364e-01 4.14639801e-01 -2.34703839e-01 -1.08191751e-01
-2.47427821e-01 -1.18020281e-01 1.38332510e+00 3.99526805e-01
-9.68450367e-01 8.16016138e-01 6.75333118e+00 8.08252335e-01
-1.30692542e+00 1.76372156e-01 4.37523693e-01 2.14506313e-01
-4.36487317e-01 4.10801828e-01 -4.76820648e-01 5.13677001e-01
9.59833622e-01 -1.29636690e-01 7.47496188e-01 2.79218048e-01
-1.00962028e-01 7.07747936e-02 -6.15159214e-01 8.87545943e-01
9.09509510e-02 -1.61511242e+00 2.83206180e-02 9.50073779e-01
7.96969414e-01 -4.09918606e-01 6.15401447e-01 -4.49890226e-01
1.68941721e-01 -1.05315518e+00 5.77870011e-01 -1.46547854e-01
1.54187119e+00 -5.99165380e-01 5.31280041e-01 2.04317048e-01
-9.83409822e-01 -1.54321983e-01 -2.67716885e-01 1.49458438e-01
2.76710123e-01 1.49464265e-01 -1.00574803e+00 4.15245980e-01
3.53880018e-01 3.99031967e-01 -2.11941063e-01 4.74156737e-01
-4.74773914e-01 6.69784725e-01 -3.09676558e-01 3.98421675e-01
3.51708293e-01 -7.43235499e-02 5.60228586e-01 8.34592760e-01
7.04093575e-01 1.41402915e-01 -1.10877454e-01 8.27490926e-01
-3.93315375e-01 -3.35113138e-01 -8.70495796e-01 -1.19259886e-01
4.08509552e-01 8.92614126e-01 -8.13428164e-01 -1.46460474e-01
-1.58485785e-01 1.33271432e+00 -5.06001711e-01 2.66041547e-01
-9.12242830e-01 -5.81310511e-01 3.25874209e-01 3.31489116e-01
8.16392481e-01 -3.50306302e-01 -1.11099996e-01 -9.99344110e-01
-7.68636316e-02 -9.58663762e-01 -1.28667086e-01 -5.30417085e-01
-3.27341974e-01 4.65791464e-01 -3.51579964e-01 -1.51056230e+00
-1.50474548e-01 -3.05881172e-01 -2.80210018e-01 5.50668120e-01
-2.03775859e+00 -1.40640438e+00 -2.50393718e-01 6.95736110e-01
-1.75225616e-01 -9.72949490e-02 6.75394475e-01 2.25973114e-01
-1.58133388e-01 7.32024908e-01 2.66538590e-01 4.43322182e-01
4.14252311e-01 -5.43300331e-01 7.46122420e-01 1.21313751e+00
-2.87745506e-01 3.74364614e-01 5.81523299e-01 -5.59861958e-01
-1.83635592e+00 -1.06673253e+00 7.12767422e-01 -5.89740113e-04
6.66250587e-01 -6.39522552e-01 -4.69432920e-01 9.15095985e-01
4.85039264e-01 6.55173585e-02 4.26369041e-01 -1.11445749e+00
-5.01065016e-01 2.46904358e-01 -1.13521528e+00 6.39394879e-01
1.12555182e+00 -6.31641865e-01 3.00452173e-01 2.88881660e-01
1.03585708e+00 -3.76610488e-01 -7.14529037e-01 -8.11364725e-02
6.88518763e-01 -8.16217005e-01 1.17997909e+00 3.13636884e-02
8.50255787e-01 -3.00052077e-01 -3.25893238e-02 -9.01791930e-01
-2.02255666e-01 -1.28515100e+00 7.22453371e-02 7.28402734e-01
4.20332491e-01 -9.75878596e-01 7.63549149e-01 8.76114815e-02
3.95411283e-01 -1.20048523e-01 -8.04142118e-01 -8.37475538e-01
-1.60096735e-01 -7.41832927e-02 8.23484421e-01 6.73064768e-01
-1.01447403e-01 -1.02263428e-01 -1.11258864e+00 4.79332775e-01
9.77285981e-01 -1.12947971e-01 9.46317434e-01 -7.09030867e-01
-2.55217105e-01 1.28016114e-01 -6.71216428e-01 -1.25378621e+00
-1.82054296e-01 -8.96764398e-01 -6.37089461e-02 -9.70007837e-01
1.97079986e-01 -5.92213690e-01 7.32229725e-02 4.30689216e-01
3.05295885e-01 1.01547909e+00 6.85677826e-01 6.63788497e-01
-3.62951398e-01 1.36217430e-01 1.59357762e+00 -1.68989390e-01
-1.87333697e-03 -3.84085476e-01 -8.99479687e-01 2.49579519e-01
7.30719745e-01 -9.03907597e-01 -4.31729019e-01 -5.91776848e-01
4.17741925e-01 3.05226862e-01 6.81988120e-01 -8.39404166e-01
3.96064311e-01 6.39516637e-02 5.33077307e-02 1.71590336e-02
2.54022449e-01 -1.09903765e+00 5.74812889e-01 1.09884930e+00
-1.43660054e-01 -2.87521720e-01 -1.69583470e-01 7.03562438e-01
-1.55113474e-01 1.73739120e-01 8.15303206e-01 -1.04443863e-01
-7.00020492e-01 2.22378463e-01 -2.49928057e-01 -3.42725575e-01
1.25223708e+00 -5.13252378e-01 -6.20950937e-01 -6.52444243e-01
-3.68130177e-01 -1.89446926e-01 8.47516179e-01 1.20397002e-01
9.03637648e-01 -1.14445865e+00 -8.23722541e-01 7.06985235e-01
-7.82321393e-02 -4.04661268e-01 2.59201854e-01 1.09599280e+00
-9.70951438e-01 4.67019469e-01 -2.54924089e-01 -4.66796279e-01
-1.48013067e+00 7.57946849e-01 1.68117538e-01 -5.45591533e-01
-7.13361263e-01 4.95238870e-01 2.70704985e-01 4.94204201e-02
-2.65424907e-01 2.05067918e-02 1.84697792e-01 -4.21926707e-01
7.45632768e-01 2.69858450e-01 -4.94053632e-01 -6.84504986e-01
4.92780916e-02 5.50566614e-01 8.59152675e-02 -1.67138547e-01
1.16413367e+00 -7.13353932e-01 -5.53366959e-01 -6.05794907e-01
1.64038372e+00 3.45977023e-02 -1.15124989e+00 -1.78718507e-01
-4.74816799e-01 -6.73541665e-01 1.22288004e-01 -2.25204527e-01
-1.32225382e+00 7.28443682e-01 5.27026296e-01 3.65588248e-01
1.21086884e+00 -2.10903704e-01 1.31710148e+00 1.12342007e-01
4.90128756e-01 -5.41973352e-01 6.00358285e-02 1.97572857e-01
4.59904969e-01 -1.16785836e+00 3.32892761e-02 -9.99327183e-01
-5.11073351e-01 1.10926175e+00 -3.20035875e-01 -5.22694401e-02
6.31517112e-01 4.26179558e-01 -1.62285924e-01 -1.66175559e-01
-3.65361035e-01 7.46256858e-02 -1.82296127e-01 7.03805149e-01
-3.33509535e-01 -8.67376253e-02 -4.68902253e-02 -2.56154776e-01
-9.17022303e-02 6.13286905e-02 9.78594184e-01 9.92229939e-01
-3.92278314e-01 -1.27975118e+00 -4.85838592e-01 -2.25420639e-01
-6.03360891e-01 -3.47675949e-01 -3.44029889e-02 8.87854993e-01
6.35549426e-03 1.08646250e+00 -3.19209583e-02 -7.02375829e-01
-2.97653586e-01 -5.37500262e-01 2.87931412e-01 -2.20947772e-01
-1.91871643e-01 -5.45308962e-02 -2.01864317e-01 -4.57860291e-01
-5.06708860e-01 2.91637741e-02 -1.07094431e+00 -1.03199315e+00
-5.80382049e-01 -1.12399109e-01 9.11428332e-01 6.89355731e-01
6.34320617e-01 3.68454784e-01 1.16638505e+00 -6.11925781e-01
-3.73397261e-01 -2.79096365e-01 -6.37453139e-01 2.32601345e-01
5.86421013e-01 8.72855186e-02 -5.71365535e-01 4.32149529e-01] | [4.343638896942139, 8.041733741760254] |
fb66b885-d3a1-47fd-81b5-1da68ac4ad4d | generating-adversarial-examples-with-an | 2007.00146 | null | https://arxiv.org/abs/2007.00146v1 | https://arxiv.org/pdf/2007.00146v1.pdf | Generating Adversarial Examples with an Optimized Quality | Deep learning models are widely used in a range of application areas, such as computer vision, computer security, etc. However, deep learning models are vulnerable to Adversarial Examples (AEs),carefully crafted samples to deceive those models. Recent studies have introduced new adversarial attack methods, but, to the best of our knowledge, none provided guaranteed quality for the crafted examples as part of their creation, beyond simple quality measures such as Misclassification Rate (MR). In this paper, we incorporateImage Quality Assessment (IQA) metrics into the design and generation process of AEs. We propose an evolutionary-based single- and multi-objective optimization approaches that generate AEs with high misclassification rate and explicitly improve the quality, thus indistinguishability, of the samples, while perturbing only a limited number of pixels. In particular, several IQA metrics, including edge analysis, Fourier analysis, and feature descriptors, are leveraged into the process of generating AEs. Unique characteristics of the evolutionary-based algorithm enable us to simultaneously optimize the misclassification rate and the IQA metrics of the AEs. In order to evaluate the performance of the proposed method, we conduct intensive experiments on different well-known benchmark datasets(MNIST, CIFAR, GTSRB, and Open Image Dataset V5), while considering various objective optimization configurations. The results obtained from our experiments, when compared with the exist-ing attack methods, validate our initial hypothesis that the use ofIQA metrics within generation process of AEs can substantially improve their quality, while maintaining high misclassification rate.Finally, transferability and human perception studies are provided, demonstrating acceptable performance. | ['David Mohaisen', 'Aminollah Khormali', 'DaeHun Nyang'] | 2020-06-30 | null | null | null | null | ['computer-security'] | ['miscellaneous'] | [ 3.37159723e-01 -2.41594106e-01 2.12016985e-01 -2.05540895e-01
-5.84154129e-01 -8.21465909e-01 5.93824208e-01 9.43781063e-02
-6.82941675e-01 6.99818134e-01 -2.94610620e-01 -2.77828664e-01
-3.05760354e-01 -9.15111482e-01 -7.64784694e-01 -7.95844197e-01
-1.29404619e-01 -2.15916753e-01 -1.46218777e-01 -2.10756525e-01
4.26540554e-01 6.05456412e-01 -1.43410003e+00 4.61969152e-02
1.14220524e+00 1.09530401e+00 -3.89663696e-01 6.45876050e-01
2.88194716e-01 4.54724818e-01 -1.04445148e+00 -8.55767310e-01
5.08004725e-01 -3.22925657e-01 -4.24334884e-01 -3.03899109e-01
2.38236189e-01 -2.77052790e-01 -3.74619991e-01 1.28378332e+00
7.72824585e-01 7.09369928e-02 5.83413661e-01 -1.39620078e+00
-6.72765613e-01 5.01331031e-01 -3.44709039e-01 3.72422069e-01
1.09329455e-01 5.38430572e-01 8.67939591e-01 -5.06592631e-01
2.18561545e-01 9.98218954e-01 6.76345944e-01 5.61801374e-01
-9.63752091e-01 -1.12934077e+00 -1.14625044e-01 2.89929599e-01
-1.47061384e+00 -2.54191518e-01 8.71744156e-01 -1.17794327e-01
6.49658918e-01 4.38037544e-01 5.11181891e-01 1.22189188e+00
6.73622847e-01 5.16836882e-01 1.28167617e+00 -2.31878862e-01
4.99707699e-01 3.19917977e-01 6.05647191e-02 5.83548009e-01
6.30455613e-01 7.18118787e-01 -3.65979195e-01 -2.03714371e-01
3.50630283e-01 -7.74738044e-02 -4.55007434e-01 -1.62661478e-01
-8.16205680e-01 8.67074192e-01 4.73105729e-01 1.20153747e-01
-4.01140153e-01 3.43494177e-01 3.55788201e-01 4.91421252e-01
7.52013475e-02 7.97352970e-01 -1.52824849e-01 -5.25884517e-02
-7.35315144e-01 1.81837291e-01 6.08027518e-01 5.05250335e-01
6.54555738e-01 4.32897925e-01 -5.01513004e-01 4.00513440e-01
1.46731690e-01 5.69801092e-01 7.05795109e-01 -4.35918421e-01
2.62093276e-01 5.55396557e-01 -2.16298297e-01 -1.27169323e+00
-8.66120756e-02 -7.31101573e-01 -8.55166435e-01 6.30984247e-01
5.88457398e-02 -3.86149019e-01 -1.09341741e+00 1.79711294e+00
2.34342396e-01 4.05452281e-01 3.88327271e-01 7.71605432e-01
6.74827397e-01 4.77950960e-01 1.57823451e-02 7.31738796e-03
1.21506345e+00 -6.06143832e-01 -5.90237141e-01 -4.51503657e-02
4.90900785e-01 -7.35409021e-01 9.97389555e-01 5.20698845e-01
-9.25784171e-01 -5.84266663e-01 -1.55506802e+00 4.70416784e-01
-4.33077246e-01 -1.64102670e-02 6.23298764e-01 1.39927840e+00
-6.96060896e-01 6.96410239e-01 -6.20809674e-01 2.05273047e-01
6.37343764e-01 5.47179520e-01 -3.88844818e-01 4.66095880e-02
-1.24435842e+00 8.56082618e-01 3.87222648e-01 1.06296025e-01
-1.29555571e+00 -8.34824324e-01 -5.84151089e-01 2.35938743e-01
9.26188752e-02 -5.45478821e-01 7.48982012e-01 -1.10529685e+00
-1.49143779e+00 5.18837512e-01 5.28992891e-01 -7.79007852e-01
6.15825534e-01 -1.45519003e-01 -6.32401407e-01 -4.61995462e-03
-5.40581644e-01 5.40967524e-01 1.00941503e+00 -1.17460573e+00
-4.85227048e-01 -3.30234975e-01 2.83821106e-01 5.16493991e-02
-7.31904566e-01 -1.23223267e-01 1.20687082e-01 -9.99210775e-01
-3.28145593e-01 -9.73006487e-01 -1.57986522e-01 -1.28367051e-01
-3.91293824e-01 4.07813579e-01 8.45862329e-01 -4.06113505e-01
1.11348343e+00 -2.33876538e+00 -4.31771986e-02 5.33378720e-01
1.67864524e-02 6.86171174e-01 -2.41856724e-01 1.13624848e-01
-1.51025698e-01 3.21787030e-01 -5.61805189e-01 -1.29875854e-01
1.49660945e-01 4.54393253e-02 -3.38105321e-01 5.45524120e-01
2.63709515e-01 9.80128109e-01 -5.87637544e-01 -1.94136705e-02
6.93708286e-02 5.82000971e-01 -6.05648994e-01 2.17814505e-01
6.96479380e-02 1.32756591e-01 -2.37503231e-01 4.16181684e-01
7.50445604e-01 3.16287577e-01 -2.16810063e-01 -3.47609371e-01
3.93990308e-01 -1.68467075e-01 -1.31693804e+00 1.27525401e+00
-4.80429053e-01 6.07997417e-01 -2.92049259e-01 -8.70681643e-01
8.48491549e-01 2.82312423e-01 1.98763922e-01 -6.46420062e-01
5.38226664e-01 8.90959129e-02 4.64731425e-01 -1.15257874e-01
4.85121936e-01 1.80615053e-01 -1.09093688e-01 5.81802189e-01
7.59014785e-02 -9.31437779e-03 -8.65737945e-02 -4.20068391e-04
1.10116601e+00 -3.14301640e-01 1.50101200e-01 -2.48374611e-01
7.55711257e-01 -1.45662829e-01 4.11655337e-01 7.94902086e-01
-3.53440017e-01 4.75098670e-01 1.70971617e-01 -3.12862605e-01
-9.12976563e-01 -1.01591551e+00 -1.41870067e-01 3.93576562e-01
3.23644847e-01 -1.38542250e-01 -1.01517546e+00 -7.57193387e-01
-9.60283503e-02 7.20008194e-01 -6.17786705e-01 -9.30014074e-01
-4.40051615e-01 -1.27574933e+00 1.22130573e+00 3.13777566e-01
7.99759805e-01 -1.03972244e+00 -9.15792644e-01 -4.37410697e-02
3.54601979e-01 -1.06117928e+00 -4.11363959e-01 -2.13921797e-02
-6.79673672e-01 -1.07717276e+00 -3.38528275e-01 -4.81377393e-01
7.07401574e-01 -1.32127166e-01 6.63803160e-01 3.18662077e-01
-5.63111126e-01 2.74994761e-01 -3.95644128e-01 -5.68931460e-01
-6.32210016e-01 -1.38328031e-01 7.06549585e-02 2.28426903e-01
1.61012262e-01 -5.69643140e-01 -6.24599576e-01 2.36927256e-01
-1.17709816e+00 -4.65549141e-01 8.28627348e-01 9.13283288e-01
3.82015318e-01 4.75454718e-01 4.75274384e-01 -6.02549016e-01
9.20093417e-01 -1.81540594e-01 -6.36259437e-01 3.08591396e-01
-8.17712069e-01 1.53041333e-01 9.01570678e-01 -7.71320581e-01
-7.16146052e-01 -4.38999414e-01 -2.52162933e-01 -5.16272306e-01
-2.14449652e-02 2.14380935e-01 -4.11331177e-01 -6.44977510e-01
8.96685660e-01 3.53722572e-01 -6.51455077e-04 -5.41272275e-02
2.04000562e-01 4.77751940e-01 5.04968762e-01 -4.33138192e-01
1.11784780e+00 3.25785249e-01 1.10936224e-01 -3.77877980e-01
-2.03105345e-01 2.09108189e-01 -2.53921468e-03 -7.67629370e-02
5.25749922e-01 -6.71404719e-01 -8.21533918e-01 8.20300341e-01
-7.82219410e-01 -1.06077800e-02 -1.74895644e-01 4.93274271e-01
-1.10413939e-01 3.93071055e-01 -3.65465403e-01 -7.38104522e-01
-8.20523560e-01 -1.46661520e+00 4.45454329e-01 3.72426450e-01
1.05197549e-01 -9.29209352e-01 -2.21786663e-01 2.07536101e-01
4.63306189e-01 6.16875589e-01 9.91628528e-01 -8.22790861e-01
-5.55096865e-01 -4.76687521e-01 3.53233106e-02 7.15958476e-01
8.10125545e-02 -1.20838508e-01 -1.12465715e+00 -5.38864017e-01
1.62750542e-01 -1.39084890e-01 6.51640832e-01 1.69726819e-01
1.29126918e+00 -4.28093702e-01 1.64337941e-02 9.30998027e-01
1.51169908e+00 5.23887217e-01 9.03526187e-01 3.62789989e-01
5.48926532e-01 1.29589915e-01 4.36404347e-01 4.35952932e-01
-9.72000286e-02 4.98070121e-01 6.67469621e-01 6.31691590e-02
-1.38130531e-01 1.69051867e-02 5.52240312e-01 3.72491688e-01
9.95654836e-02 -4.63776737e-01 -6.15483403e-01 2.45923355e-01
-1.24301541e+00 -8.69456768e-01 2.95067489e-01 2.32197380e+00
7.56686568e-01 4.27848995e-01 -3.20657283e-01 6.05953813e-01
5.66419780e-01 4.01986726e-02 -6.78477108e-01 -6.10824704e-01
-1.95697457e-01 5.97396672e-01 6.58109486e-01 2.63478994e-01
-1.02513623e+00 6.64618313e-01 5.89711809e+00 9.51890409e-01
-1.44769144e+00 -3.15826796e-02 7.95033813e-01 -1.36870205e-01
-5.08942366e-01 -2.19666034e-01 -5.69038451e-01 6.37144566e-01
9.39016700e-01 -3.39179158e-01 5.75752378e-01 7.39991546e-01
-1.19073026e-01 2.87262410e-01 -8.83653939e-01 1.02405727e+00
2.41367802e-01 -1.29208934e+00 1.27292007e-01 1.51608735e-01
6.66083574e-01 -4.02691036e-01 5.92751920e-01 2.44362608e-01
2.95296490e-01 -1.29851520e+00 6.89823329e-01 1.14394650e-01
5.80002308e-01 -1.24993074e+00 8.73416424e-01 1.38136325e-02
-7.16586769e-01 -3.50743979e-01 -1.62933439e-01 3.09878707e-01
-1.30881801e-01 5.18876851e-01 -7.01056719e-01 7.19708800e-01
7.03244567e-01 1.96207270e-01 -7.05314100e-01 9.57355440e-01
-2.65481830e-01 5.24572372e-01 -8.52581263e-02 -1.12028882e-01
2.09890246e-01 2.22633127e-03 6.73016310e-01 8.42089891e-01
3.89189214e-01 4.67164330e-02 -3.40938538e-01 9.29802120e-01
-2.89028585e-01 4.84388657e-02 -3.19412172e-01 -6.04843013e-02
5.86812258e-01 1.17683101e+00 -5.56442380e-01 1.12125628e-01
7.23359436e-02 8.78958523e-01 -7.32827783e-02 2.02743366e-01
-1.31384969e+00 -6.48799300e-01 9.08581197e-01 -3.55179191e-01
1.77162841e-01 -6.31896639e-03 -5.54611921e-01 -1.00035441e+00
2.47363895e-02 -1.47474492e+00 2.53240883e-01 -2.80295640e-01
-1.03674865e+00 9.13645387e-01 -1.63546443e-01 -1.19869530e+00
4.08173688e-02 -5.99570692e-01 -6.97109520e-01 7.90982723e-01
-1.57867229e+00 -8.42077672e-01 -4.33884233e-01 5.42380154e-01
2.41403967e-01 -5.79200208e-01 7.41428733e-01 4.39059526e-01
-8.42871130e-01 1.40463936e+00 -4.56479099e-03 1.79806203e-01
4.20221120e-01 -9.04509306e-01 5.31170845e-01 1.27760148e+00
2.89521307e-01 5.22269011e-01 7.08875000e-01 -3.44090253e-01
-1.47517908e+00 -1.03402042e+00 -9.18172393e-03 -2.13537976e-01
2.28496879e-01 -2.76362330e-01 -7.20733643e-01 1.21138126e-01
1.26850352e-01 6.70596585e-02 6.57650471e-01 -4.29435462e-01
-2.84534097e-01 -2.40881771e-01 -1.66958690e+00 6.63934648e-01
7.29146302e-01 -3.55528682e-01 -3.47044557e-01 -1.08886108e-01
6.13037050e-01 -3.98110986e-01 -9.26471472e-01 6.34871542e-01
5.29042780e-01 -9.78257716e-01 1.25494885e+00 -4.67420965e-01
2.82181650e-01 -2.45996937e-01 -1.82396561e-01 -1.40426505e+00
1.33736841e-02 -5.34870327e-01 -2.09160537e-01 1.13953960e+00
3.89937997e-01 -7.75228679e-01 7.61745214e-01 4.81884778e-01
-6.85951635e-02 -7.50108540e-01 -8.20047677e-01 -8.72788191e-01
8.68702605e-02 -3.32422823e-01 1.00376236e+00 8.08779061e-01
-5.26418090e-01 -1.89325765e-01 -3.24236959e-01 4.50112313e-01
6.25809908e-01 -2.09998906e-01 7.69111335e-01 -8.89233530e-01
-4.32452649e-01 -5.25291145e-01 -8.37515414e-01 -2.34716892e-01
5.84613271e-02 -6.48984611e-01 -2.29037464e-01 -7.17437863e-01
-1.48631170e-01 -6.10125840e-01 -5.82623661e-01 3.87603164e-01
-3.54068816e-01 4.64038521e-01 2.96960175e-01 -1.90352097e-01
1.28476501e-01 6.42139375e-01 1.04073274e+00 -3.22361588e-01
-8.15916061e-02 -3.35337780e-02 -7.15982437e-01 4.11683977e-01
8.76239836e-01 -7.69653797e-01 -7.02528775e-01 -3.48048627e-01
-7.67173537e-04 -5.56796253e-01 5.39129615e-01 -1.46978033e+00
1.16252415e-01 -2.89297104e-03 4.03074712e-01 5.25311492e-02
3.22854906e-01 -9.07972336e-01 3.63305181e-01 8.41956437e-01
-2.41043553e-01 2.45468527e-01 4.07711595e-01 4.24710095e-01
-2.87703723e-01 -3.40801686e-01 1.03088546e+00 1.37284636e-01
-6.56083524e-01 3.82636070e-01 -4.30501401e-02 6.63552135e-02
1.29836094e+00 -4.36773092e-01 -3.23913515e-01 -1.19481869e-01
-1.19623624e-01 -1.59473106e-01 4.28522050e-01 4.67724085e-01
7.50590563e-01 -1.20807397e+00 -7.49447346e-01 4.60822701e-01
-1.52176484e-01 -3.20552647e-01 2.36239702e-01 4.97675419e-01
-6.09882712e-01 1.29644141e-01 -5.17547727e-01 -3.57360244e-01
-1.23792350e+00 5.53171337e-01 5.63216925e-01 -2.31295392e-01
-3.66332769e-01 7.38573551e-01 -1.74571946e-03 -2.85449535e-01
3.46171588e-01 -1.18879445e-01 -1.54711500e-01 -1.82397738e-01
5.21881521e-01 3.50887805e-01 3.57034445e-01 -3.35231423e-01
-3.77766818e-01 3.85078162e-01 -1.69254579e-02 -5.81527054e-02
1.06451547e+00 3.11902761e-01 2.61493444e-01 -3.65231574e-01
1.20810819e+00 -3.29272007e-03 -1.04320443e+00 1.95037171e-01
-2.33598039e-01 -5.05239606e-01 3.14239204e-01 -8.54303777e-01
-1.42239082e+00 7.48209953e-01 1.15001142e+00 -8.80661886e-03
1.51044190e+00 -9.40758049e-01 8.89103532e-01 2.22754836e-01
3.37018311e-01 -8.23978841e-01 2.80625284e-01 1.43737450e-01
4.80589718e-01 -1.00562942e+00 -6.72644749e-02 -1.94709495e-01
-5.86131871e-01 8.23235869e-01 6.78952277e-01 -1.97946891e-01
4.72894132e-01 3.86003196e-01 2.61500254e-02 1.50137201e-01
-5.98285377e-01 2.42418498e-01 3.55894744e-01 5.87535977e-01
-1.00677930e-01 -1.79482371e-01 -3.82931411e-01 6.87714517e-01
-4.07274812e-01 -2.23813847e-01 6.48537576e-01 9.40903544e-01
-1.61242247e-01 -1.04521370e+00 -5.48549175e-01 2.39673451e-01
-7.73933291e-01 -1.82295665e-01 -7.55247697e-02 6.13424122e-01
2.06714049e-01 9.51468706e-01 -4.98698130e-02 -7.25176692e-01
2.60777414e-01 -2.79393375e-01 3.81874174e-01 -1.55644212e-02
-1.06593943e+00 -7.22354174e-01 -8.67281184e-02 -3.13539624e-01
-9.53700170e-02 -2.88197249e-01 -1.00832260e+00 -4.99957711e-01
-5.36341012e-01 1.83341801e-01 8.19309831e-01 8.97524536e-01
3.67595434e-01 6.21107697e-01 8.61487508e-01 -4.40985024e-01
-8.94381523e-01 -6.23448908e-01 -2.55238086e-01 5.60671389e-01
2.26534739e-01 -5.92038214e-01 -5.53205490e-01 -1.49917632e-01] | [5.499810218811035, 7.858671188354492] |
65e02393-84a3-4f99-a32d-8ef6416e13f2 | diffpack-a-torsional-diffusion-model-for | 2306.01794 | null | https://arxiv.org/abs/2306.01794v1 | https://arxiv.org/pdf/2306.01794v1.pdf | DiffPack: A Torsional Diffusion Model for Autoregressive Protein Side-Chain Packing | Proteins play a critical role in carrying out biological functions, and their 3D structures are essential in determining their functions. Accurately predicting the conformation of protein side-chains given their backbones is important for applications in protein structure prediction, design and protein-protein interactions. Traditional methods are computationally intensive and have limited accuracy, while existing machine learning methods treat the problem as a regression task and overlook the restrictions imposed by the constant covalent bond lengths and angles. In this work, we present DiffPack, a torsional diffusion model that learns the joint distribution of side-chain torsional angles, the only degrees of freedom in side-chain packing, by diffusing and denoising on the torsional space. To avoid issues arising from simultaneous perturbation of all four torsional angles, we propose autoregressively generating the four torsional angles from \c{hi}1 to \c{hi}4 and training diffusion models for each torsional angle. We evaluate the method on several benchmarks for protein side-chain packing and show that our method achieves improvements of 11.9% and 13.5% in angle accuracy on CASP13 and CASP14, respectively, with a significantly smaller model size (60x fewer parameters). Additionally, we show the effectiveness of our method in enhancing side-chain predictions in the AlphaFold2 model. Code will be available upon the accept. | ['Jian Tang', 'Sanchit Misra', 'Bozitao Zhong', 'Zuobai Zhang', 'Yangtian Zhan'] | 2023-06-01 | null | null | null | null | ['protein-structure-prediction'] | ['miscellaneous'] | [ 1.70745760e-01 -6.73645213e-02 -3.07781935e-01 -2.32555434e-01
-3.80206972e-01 -5.55060983e-01 1.31092936e-01 3.81023407e-01
-4.20483440e-01 1.21529734e+00 2.27704227e-01 -6.77603543e-01
3.09309453e-01 -3.45370620e-01 -8.09961200e-01 -1.39918089e+00
-3.67833406e-01 5.86794794e-01 3.09335321e-01 -1.66375026e-01
5.24070084e-01 7.67112553e-01 -8.39691043e-01 2.72607654e-01
9.77462053e-01 6.17564440e-01 1.75701350e-01 5.29841721e-01
8.41381624e-02 4.87591147e-01 -4.81843501e-01 -2.03310236e-01
-1.04959331e-01 -5.30900240e-01 -7.91159928e-01 -2.67679900e-01
1.40552029e-01 -6.29803762e-02 -2.91309394e-02 8.89311194e-01
6.84938550e-01 1.64903164e-01 9.85141873e-01 -4.53991205e-01
-4.99422967e-01 -1.58477724e-01 -6.70122564e-01 1.12868592e-01
3.45142901e-01 4.47970152e-01 9.93949711e-01 -7.39573479e-01
1.03100300e+00 9.96676624e-01 5.95805168e-01 4.39935654e-01
-1.75896931e+00 -4.94108200e-01 7.98563659e-02 4.86712456e-01
-1.14356601e+00 -1.56822473e-01 5.52554011e-01 -4.89919245e-01
1.75219369e+00 1.82359163e-02 6.58490419e-01 9.80750203e-01
9.03033793e-01 3.84825051e-01 8.44768286e-01 -2.40821496e-01
5.86935878e-01 -6.39328182e-01 1.73141867e-01 4.02798384e-01
1.36451632e-01 -1.58734918e-01 -6.30610824e-01 -7.31702030e-01
3.35431397e-01 2.24967882e-01 -4.65113938e-01 -7.16445982e-01
-1.07582080e+00 1.03210044e+00 2.59075344e-01 -2.94037491e-01
-6.51070893e-01 -1.48706675e-01 1.28508598e-01 4.67162207e-02
4.24335927e-01 4.75964457e-01 -8.60501468e-01 -4.05409932e-01
-6.12489581e-01 5.99620581e-01 9.50680554e-01 7.39057720e-01
5.41804194e-01 -5.89505196e-01 3.79452229e-01 6.37185574e-01
3.76756787e-01 4.52380121e-01 1.13228992e-01 -7.84647107e-01
1.72577664e-01 1.87998950e-01 4.28641021e-01 -7.47445464e-01
-7.07153320e-01 4.95052598e-02 -7.85590708e-01 2.23854542e-01
4.74574596e-01 -1.47525743e-01 -8.11058044e-01 1.48889720e+00
5.55831611e-01 -4.57612693e-01 6.67837784e-02 7.07254589e-01
3.32631946e-01 8.10387969e-01 1.41901135e-01 -7.79906213e-01
1.22713280e+00 -8.11857581e-01 -6.24299347e-01 2.27459416e-01
9.99076545e-01 -1.06632996e+00 3.73091221e-01 7.00461805e-01
-1.01456749e+00 -1.02072500e-01 -1.00169015e+00 -1.39949113e-01
3.81966680e-02 -2.08731845e-01 4.78048682e-01 4.21797335e-02
-4.53675210e-01 1.11117423e+00 -1.17461836e+00 -8.93316865e-02
1.51041776e-01 6.04787648e-01 -5.11289597e-01 1.43189430e-01
-9.86975014e-01 1.06230426e+00 3.57784837e-01 -2.59057701e-01
-3.41376901e-01 -7.64394879e-01 -3.45402420e-01 -1.66671440e-01
2.17586443e-01 -3.69780183e-01 1.10681999e+00 -5.72226405e-01
-1.29598081e+00 3.94543827e-01 -6.16782725e-01 -5.96700609e-01
2.28842571e-01 -3.09219360e-01 -1.01892620e-01 8.80002901e-02
-2.55214036e-01 6.50597930e-01 3.93895954e-01 -8.16704392e-01
-1.28730237e-01 -5.72038114e-01 -4.30037618e-01 3.67866039e-01
2.52297759e-01 -9.80603993e-02 1.07544018e-02 -6.12944067e-01
3.89837146e-01 -1.25734031e+00 -4.99349177e-01 9.07589868e-02
-4.41134155e-01 -6.85456097e-02 7.88632929e-01 -7.32194006e-01
1.06443501e+00 -1.73502564e+00 6.35591090e-01 3.78845364e-01
3.59233141e-01 4.98598665e-01 3.50173622e-01 8.69910836e-01
-3.22895527e-01 -2.21063390e-01 -2.08259657e-01 2.12267786e-01
-4.64559793e-01 2.24908873e-01 -6.54703602e-02 6.97811246e-01
9.17942524e-02 4.71297592e-01 -6.72322690e-01 3.89015786e-02
1.12999633e-01 8.65846992e-01 -8.87324274e-01 1.98757276e-01
-5.37273109e-01 5.93792439e-01 -5.37979603e-01 4.04601365e-01
9.80031013e-01 -4.91055548e-01 9.99557018e-01 -3.84091526e-01
-1.47622719e-01 5.61093867e-01 -8.34507465e-01 1.29304147e+00
3.10389966e-01 7.34980702e-02 -1.03689633e-01 -6.67844057e-01
9.78979886e-01 9.66566727e-02 7.28908420e-01 -4.84460413e-01
-1.43970162e-01 1.77631751e-01 5.98582149e-01 -3.38853925e-01
-8.60031173e-02 -2.96708286e-01 4.59433258e-01 4.65175182e-01
-9.52758938e-02 2.09505573e-01 1.53115407e-01 7.06178844e-02
1.11225247e+00 3.71093273e-01 5.76594591e-01 -2.75322616e-01
4.12557393e-01 1.43362254e-01 6.78627074e-01 4.37088534e-02
-6.26413673e-02 6.48920953e-01 9.95076597e-01 -8.49437237e-01
-1.37757528e+00 -6.16457403e-01 -3.38305295e-01 8.26526105e-01
-7.06210434e-02 -8.21842313e-01 -9.15003598e-01 -5.81174850e-01
2.44148538e-01 4.70975041e-01 -3.97668421e-01 -2.63076991e-01
-7.30336845e-01 -1.38068092e+00 1.54014528e-02 3.94718766e-01
1.03461035e-02 -1.00686026e+00 -4.37592238e-01 5.33338547e-01
-6.41407818e-03 -5.22309124e-01 -6.49408340e-01 7.66667604e-01
-1.01015353e+00 -1.35230935e+00 -6.95802093e-01 -4.95027751e-01
6.41993821e-01 2.79701561e-01 8.31779838e-01 8.22996274e-02
-3.95345896e-01 -5.26695490e-01 -1.30640268e-01 -8.46078098e-02
-3.21902543e-01 1.43412948e-01 1.59831271e-01 -3.96917880e-01
9.60032046e-01 -7.09506214e-01 -9.98747110e-01 4.87287372e-01
-5.92081547e-01 1.71021566e-01 4.19342220e-01 9.70427096e-01
1.00642955e+00 -4.33831424e-01 9.89001244e-02 -1.04840267e+00
4.42446768e-01 -3.98431182e-01 -5.72357178e-01 -1.03676215e-01
-7.29890168e-01 5.28001189e-01 6.61147773e-01 -2.98259974e-01
-8.97413790e-01 3.93002152e-01 -4.82896298e-01 3.94059811e-03
-1.54403150e-01 5.11737525e-01 -3.17072809e-01 -1.79769129e-01
4.26457196e-01 2.71487236e-01 3.74987781e-01 -8.44689250e-01
-5.43077961e-02 3.65868211e-01 3.19871157e-02 -6.51458025e-01
2.53297329e-01 1.84108138e-01 3.56503218e-01 -9.74573255e-01
-6.15093231e-01 -5.16128242e-01 -9.13347602e-01 2.83873558e-01
8.79086316e-01 -6.80352509e-01 -1.09579718e+00 5.23425400e-01
-1.29532099e+00 -1.06799603e-01 3.83020759e-01 6.44842505e-01
-6.01384759e-01 1.03971684e+00 -5.95478773e-01 -2.29017794e-01
-3.39694232e-01 -1.58389986e+00 8.82050097e-01 -5.45756929e-02
-6.72685683e-01 -9.09556091e-01 5.02424300e-01 4.80168819e-01
1.30454108e-01 2.66989112e-01 1.37669265e+00 -7.62090445e-01
-3.55109870e-01 1.45308435e-01 2.03058407e-01 2.45125234e-01
-6.37122169e-02 1.31953806e-01 -3.72230470e-01 -3.75676900e-01
-2.53559560e-01 -3.21796089e-01 9.77569938e-01 5.22542000e-01
9.78027225e-01 -2.92748123e-01 -6.03250027e-01 7.47910857e-01
1.12457538e+00 5.27364492e-01 6.28873646e-01 3.55610639e-01
7.05619991e-01 4.29449350e-01 7.03177333e-01 6.48980558e-01
-1.48081794e-01 8.89177799e-01 4.59668308e-01 2.90273838e-02
1.98321775e-01 -1.51942492e-01 3.79219294e-01 6.58165932e-01
-5.18008292e-01 -3.15778166e-01 -8.52773488e-01 -1.42274588e-01
-1.77670455e+00 -8.57126594e-01 -4.80658114e-01 2.19840407e+00
1.28723431e+00 2.06904933e-01 1.74560219e-01 -2.16383904e-01
4.22951043e-01 3.77206281e-02 -1.16810071e+00 -4.32320476e-01
-1.24418207e-01 3.34508806e-01 6.71155334e-01 8.18404436e-01
-8.65334749e-01 8.34423542e-01 6.68593359e+00 5.11129439e-01
-1.00572407e+00 -4.52628791e-01 4.29785341e-01 -3.50097895e-01
-7.18791783e-02 2.23908782e-01 -1.07132101e+00 6.76856160e-01
9.09625232e-01 4.80351090e-01 1.64560840e-01 7.16551363e-01
5.80883563e-01 -2.39721730e-01 -8.14156234e-01 4.55286950e-01
-4.17371988e-01 -1.52039850e+00 7.74202719e-02 6.18228972e-01
6.65819883e-01 -4.38940264e-02 -9.74805132e-02 -4.78393942e-01
1.27098812e-02 -1.02358532e+00 1.13518216e-01 4.53586161e-01
4.78616685e-01 -1.09756672e+00 6.30707741e-01 2.47730404e-01
-6.66523159e-01 5.34647524e-01 -5.04519522e-01 -1.53446617e-02
9.29848701e-02 7.31969059e-01 -8.66389096e-01 -3.23057994e-02
3.96397740e-01 7.81953573e-01 2.03592516e-02 6.28688395e-01
-2.12342769e-01 6.26715302e-01 -2.11845279e-01 -9.31942686e-02
7.54198283e-02 -7.41710722e-01 3.58191848e-01 9.11246657e-01
-1.52420074e-01 4.16826010e-01 1.36623278e-01 5.32326281e-01
-8.08267072e-02 1.28821433e-01 -1.48112461e-01 -3.85895520e-02
4.43687856e-01 7.37779677e-01 -5.58564484e-01 3.60632800e-02
-4.13359821e-01 9.49674964e-01 3.65128070e-01 5.16272247e-01
-7.81695902e-01 -6.12753034e-01 1.32589197e+00 3.68591845e-01
5.78072250e-01 -5.24086952e-01 3.75925034e-01 -9.60005224e-01
5.52205443e-02 -1.21062064e+00 -1.15407124e-01 -4.34987903e-01
-9.47493792e-01 1.43648088e-01 -2.82324612e-01 -5.59121072e-01
-1.63303480e-01 -1.05073655e+00 -3.10548872e-01 1.07853746e+00
-1.34066653e+00 -5.25841534e-01 3.39063406e-01 1.18295789e-01
2.43955895e-01 5.86831234e-02 1.03371108e+00 -6.59450814e-02
-5.40043175e-01 3.06001276e-01 1.03459918e+00 -4.10543054e-01
1.03304124e+00 -1.31548619e+00 5.17863750e-01 1.67246222e-01
-5.04567146e-01 9.73826230e-01 1.20954263e+00 -9.81659412e-01
-1.54796886e+00 -8.16063941e-01 1.03264892e+00 -1.33126706e-01
4.40225512e-01 -3.63736451e-01 -1.33190763e+00 4.06050414e-01
-6.51000366e-02 -1.50573283e-01 1.20242143e+00 3.46873775e-02
-2.06255704e-01 5.13077438e-01 -1.04434848e+00 4.29064244e-01
9.11224604e-01 -1.52039737e-01 -4.05652046e-01 6.85044706e-01
5.09586811e-01 -3.34318757e-01 -1.24832201e+00 2.11588591e-01
6.44951105e-01 -1.10671663e+00 1.09180474e+00 -1.01077688e+00
1.70108661e-01 -2.78514385e-01 -4.92154136e-02 -1.10234320e+00
-4.46085840e-01 -8.75025630e-01 -5.07013023e-01 3.72172773e-01
5.17656684e-01 -6.58235133e-01 1.13454390e+00 4.82934743e-01
-5.00791371e-02 -1.18081307e+00 -8.24280798e-01 -3.53185833e-01
4.08452302e-01 2.28689000e-01 2.43325040e-01 6.11797154e-01
1.81657091e-01 5.24739444e-01 -3.93228501e-01 -1.47427395e-01
4.49803740e-01 9.98844504e-02 5.77677608e-01 -1.20787990e+00
-5.36015451e-01 -4.12901267e-02 -1.58593059e-01 -1.40342057e+00
-1.69176068e-02 -6.01121366e-01 -2.54011452e-01 -1.10217512e+00
3.94394666e-01 -5.97705059e-02 5.91224544e-02 5.14273405e-01
3.30164693e-02 -1.15397282e-01 -2.28800774e-01 5.30403912e-01
-5.08043349e-01 6.57533586e-01 1.34396863e+00 5.97162358e-02
-2.13865906e-01 -4.46551032e-02 -3.06653827e-01 7.43296087e-01
7.43433893e-01 -5.24341762e-01 -1.68783620e-01 1.23799071e-01
2.21877024e-01 -9.25527140e-02 -1.56953543e-01 -6.47252142e-01
-9.29301828e-02 -3.14284414e-01 6.25187218e-01 -7.53843725e-01
5.18073678e-01 -5.25030851e-01 2.16658100e-01 8.26552629e-01
-2.41867676e-01 2.38547519e-01 1.00957807e-02 6.86898232e-01
1.44688427e-01 -2.03322638e-02 1.00429082e+00 9.48760472e-03
6.83173239e-02 2.30418175e-01 -8.43631446e-01 -7.15560187e-03
1.08280170e+00 -7.62629509e-02 -1.00096367e-01 -4.33411170e-03
-1.11443508e+00 -8.35464746e-02 9.94489849e-01 -1.73960268e-01
4.63751167e-01 -8.29528689e-01 -3.64318013e-01 3.68035793e-01
-1.21871099e-01 -3.69965890e-03 7.96699822e-02 8.82354081e-01
-1.12847400e+00 7.47213602e-01 -1.46373823e-01 -5.02481878e-01
-1.76550698e+00 5.44912279e-01 3.58641744e-01 -3.26113790e-01
-4.49784607e-01 6.07921004e-01 3.39940703e-03 -2.02858865e-01
2.06512675e-01 -2.69763350e-01 1.18211739e-01 -6.18403144e-02
5.62583148e-01 4.31324333e-01 2.60839432e-01 -7.30017543e-01
-4.39780772e-01 6.18586361e-01 -8.37605059e-01 6.06157541e-01
1.57938910e+00 2.65948802e-01 -1.19863011e-01 -1.75105423e-01
1.33464062e+00 -1.47712573e-01 -1.61566830e+00 -8.45263675e-02
-8.69687274e-02 -1.33153364e-01 -1.45131901e-01 -7.92020738e-01
-4.86784756e-01 9.02222157e-01 4.73786414e-01 -3.35128963e-01
5.78229189e-01 -8.08371529e-02 1.06796110e+00 7.76309609e-01
2.15284318e-01 -9.31772590e-01 -9.17164385e-02 6.17737651e-01
4.82082427e-01 -1.04255891e+00 3.82990032e-01 -3.38450044e-01
-6.34050071e-01 1.32936275e+00 2.78972596e-01 -5.07300645e-02
4.47970271e-01 2.04039037e-01 -7.42619857e-02 -1.99246600e-01
-1.07777822e+00 3.73847842e-01 3.74659747e-02 6.54871464e-01
1.00307143e+00 -4.51328270e-02 -4.82836604e-01 7.64634833e-02
1.36907086e-01 -2.66559780e-01 2.10288435e-01 1.29207182e+00
-8.28072667e-01 -1.78436661e+00 -3.61980677e-01 1.69165090e-01
-6.06060743e-01 -2.41067857e-01 -7.81558216e-01 5.67795515e-01
-1.20545611e-01 5.98405659e-01 -3.05990934e-01 2.15767380e-02
1.84619561e-01 2.77956784e-01 6.46815121e-01 -3.57363015e-01
-3.12723786e-01 4.21984702e-01 1.59697458e-02 -4.81560886e-01
-2.67418176e-01 -8.51558566e-01 -1.62798262e+00 -6.91410482e-01
-4.88865286e-01 5.15549779e-01 4.47764575e-01 8.41591835e-01
8.67272377e-01 5.45153618e-02 3.51279616e-01 -8.03943098e-01
-1.02719390e+00 -8.33079159e-01 -6.29001081e-01 3.62819791e-01
4.12213296e-01 -7.99875081e-01 -2.15487361e-01 -6.93745306e-03] | [4.804259300231934, 5.537286281585693] |
02741630-db45-445b-93bc-5d855ae51deb | pack-together-entity-and-relation-extraction | 2109.06067 | null | https://arxiv.org/abs/2109.06067v5 | https://arxiv.org/pdf/2109.06067v5.pdf | Packed Levitated Marker for Entity and Relation Extraction | Recent entity and relation extraction works focus on investigating how to obtain a better span representation from the pre-trained encoder. However, a major limitation of existing works is that they ignore the interrelation between spans (pairs). In this work, we propose a novel span representation approach, named Packed Levitated Markers (PL-Marker), to consider the interrelation between the spans (pairs) by strategically packing the markers in the encoder. In particular, we propose a neighborhood-oriented packing strategy, which considers the neighbor spans integrally to better model the entity boundary information. Furthermore, for those more complicated span pair classification tasks, we design a subject-oriented packing strategy, which packs each subject and all its objects to model the interrelation between the same-subject span pairs. The experimental results show that, with the enhanced marker feature, our model advances baselines on six NER benchmarks, and obtains a 4.1%-4.3% strict relation F1 improvement with higher speed over previous state-of-the-art models on ACE04 and ACE05. | ['Maosong Sun', 'Peng Li', 'Yankai Lin', 'Deming Ye'] | 2021-09-13 | null | https://aclanthology.org/2022.acl-long.337 | https://aclanthology.org/2022.acl-long.337.pdf | acl-2022-5 | ['joint-entity-and-relation-extraction'] | ['natural-language-processing'] | [-5.16652279e-02 3.44938785e-01 -6.05993927e-01 -2.93870419e-01
-5.89360356e-01 -3.68090719e-01 1.69266969e-01 3.79674464e-01
-3.18274677e-01 8.46328020e-01 5.08153677e-01 -9.76159871e-02
-1.52131766e-01 -8.83866727e-01 -8.24272275e-01 -3.40595424e-01
-3.19269925e-01 3.02201867e-01 4.63746667e-01 -1.67902380e-01
4.15107645e-02 3.24572921e-01 -1.08621919e+00 1.58297122e-01
1.14766312e+00 1.07011867e+00 1.60700068e-01 4.00846377e-02
-1.40955895e-01 6.82695031e-01 -6.88874006e-01 -6.27098978e-01
7.41805509e-02 -2.10006475e-01 -1.11302745e+00 -1.45372480e-01
3.07907224e-01 -3.56706053e-01 -6.62055075e-01 8.28234315e-01
3.13976824e-01 8.39577243e-02 3.53731692e-01 -1.01733243e+00
-8.94178569e-01 1.21995974e+00 -8.14426124e-01 3.52491200e-01
3.21108550e-01 -3.12090248e-01 1.40404856e+00 -6.30230546e-01
5.62024474e-01 1.04338908e+00 7.04382539e-01 2.07902819e-01
-1.00623989e+00 -4.14103180e-01 2.74350941e-01 5.78197181e-01
-1.69475257e+00 -3.60941619e-01 7.72526026e-01 6.22009486e-02
1.25148141e+00 3.90586376e-01 3.99400979e-01 7.05535412e-01
3.93776931e-02 8.43825459e-01 7.20161021e-01 -4.70358759e-01
-6.25558272e-02 -2.70998746e-01 5.41655838e-01 6.89793885e-01
5.11898279e-01 -1.44827724e-01 -3.95835251e-01 -1.49847865e-01
4.08361584e-01 -1.75400093e-01 -5.86551428e-01 -1.67356983e-01
-1.08121800e+00 5.78586936e-01 7.48813033e-01 3.45261574e-01
-4.08109486e-01 1.50011396e-02 4.03102279e-01 -2.05334485e-01
4.77920204e-01 4.80504215e-01 -4.62287039e-01 -1.23444915e-01
-1.06428134e+00 2.88300723e-01 9.02582526e-01 1.41055691e+00
6.95701301e-01 -4.10555959e-01 -6.20746851e-01 8.43590021e-01
1.57093957e-01 6.24419600e-02 9.30373669e-02 -6.89099789e-01
1.07420933e+00 8.24539721e-01 -2.13984307e-02 -8.26966882e-01
-4.96675968e-01 -5.94187737e-01 -7.66133428e-01 -6.64996147e-01
1.65552542e-01 -1.80851683e-01 -8.46426427e-01 1.84632480e+00
2.68824548e-01 3.09980899e-01 1.23683423e-01 7.51547456e-01
9.10037100e-01 5.30649006e-01 2.80805081e-01 -2.76343256e-01
1.92288780e+00 -1.27101970e+00 -8.83251131e-01 -3.56222987e-01
8.64499271e-01 -5.35566092e-01 7.46920586e-01 -1.43455476e-01
-1.26006687e+00 -5.17832696e-01 -1.27293777e+00 -3.98094386e-01
-3.84724021e-01 2.98796564e-01 7.63561726e-01 2.43317679e-01
-6.14851713e-01 8.94483149e-01 -7.62045920e-01 -1.50582686e-01
4.00197238e-01 2.29563996e-01 -2.94039845e-01 -1.25527173e-01
-1.70785904e+00 1.01177454e+00 7.76409745e-01 2.32228100e-01
-1.28803641e-01 -9.09068882e-01 -1.26592541e+00 4.41635013e-01
7.29183793e-01 -5.30179381e-01 1.02268922e+00 -1.31816670e-01
-8.74021471e-01 5.80229342e-01 -5.06031156e-01 -6.36263907e-01
1.86472416e-01 -4.36333477e-01 -6.18794799e-01 1.20301679e-01
7.66360760e-03 6.04159653e-01 -5.76166958e-02 -1.06745005e+00
-4.63309109e-01 -1.52927533e-01 3.18063051e-01 3.47275794e-01
-3.96024942e-01 2.49276102e-01 -7.41187751e-01 -7.33137190e-01
9.85814780e-02 -7.77460754e-01 -1.27280220e-01 -3.98669451e-01
-6.95104361e-01 -6.96462095e-01 5.94450414e-01 -8.99061441e-01
2.05991244e+00 -2.17994833e+00 1.87869638e-01 -6.17553033e-02
3.37255925e-01 5.20704687e-01 7.27396458e-02 6.56570435e-01
-8.98365211e-03 3.65888089e-01 -1.67425320e-01 -4.94338542e-01
1.27781227e-01 2.02341810e-01 -2.28383273e-01 6.08796142e-02
4.60842311e-01 1.08913434e+00 -8.79953086e-01 -8.65432382e-01
-3.03264588e-01 2.47191846e-01 -3.02401274e-01 1.87507108e-01
-7.67341405e-02 -1.77858368e-01 -3.15339953e-01 5.58845878e-01
8.06031227e-01 -2.87107140e-01 3.67783219e-01 -4.48945105e-01
5.55112213e-02 9.09306228e-01 -9.30388570e-01 1.80660713e+00
-1.75199106e-01 3.98417652e-01 -3.12227190e-01 -6.61760688e-01
1.00339603e+00 3.02274555e-01 4.58238691e-01 -5.37326992e-01
-6.18715510e-02 1.38344899e-01 1.85376689e-01 -4.12548661e-01
9.13422763e-01 3.35058719e-01 -2.84529954e-01 8.66899192e-02
-5.82397804e-02 5.97718418e-01 6.04963362e-01 2.09272072e-01
1.30679047e+00 1.78746313e-01 3.95904720e-01 -1.85734227e-01
5.57729602e-01 -3.00227731e-01 1.12222886e+00 3.10773432e-01
-2.99743593e-01 4.95843649e-01 8.58340085e-01 -4.62001681e-01
-8.15306425e-01 -9.18569326e-01 -1.94562197e-01 7.29788005e-01
3.30454826e-01 -9.10744131e-01 -8.19113612e-01 -9.85458910e-01
-4.59144153e-02 6.71329319e-01 -5.99372625e-01 -2.40269542e-01
-1.12157381e+00 -6.92705512e-01 7.38925338e-01 1.10547352e+00
7.71805227e-01 -1.02227509e+00 -4.85756606e-01 3.55388254e-01
-4.56237942e-01 -1.31195521e+00 -7.38192916e-01 3.47893506e-01
-6.26394331e-01 -8.75922680e-01 -5.81832469e-01 -9.55706477e-01
3.66594255e-01 6.20531216e-02 1.20167601e+00 1.69681445e-01
1.33247554e-01 -5.46658218e-01 -6.28336906e-01 -4.68889773e-02
2.57434636e-01 6.48752451e-01 -3.34976315e-01 -3.84304017e-01
6.76836908e-01 -5.57285607e-01 -5.84483683e-01 4.17890102e-01
-5.50866067e-01 9.54701230e-02 7.14031696e-01 8.08266163e-01
5.97444654e-01 9.93564632e-03 7.22621083e-01 -1.03736472e+00
4.13792312e-01 -4.81027514e-01 -2.00900678e-02 7.18078196e-01
-5.94150841e-01 3.07736605e-01 6.86735034e-01 -3.06871116e-01
-8.89366388e-01 -2.73123443e-01 3.71306539e-02 -3.18847299e-01
3.76983732e-02 6.97061956e-01 -6.84305668e-01 5.12276053e-01
1.73479885e-01 -5.31313829e-02 -4.88150716e-01 -5.61765313e-01
3.15239161e-01 6.79395616e-01 4.52094615e-01 -7.93880939e-01
4.29925561e-01 -3.96647044e-02 -6.35234341e-02 -2.45332196e-01
-9.69540119e-01 -3.46853763e-01 -5.75966060e-01 4.24474388e-01
7.59266555e-01 -9.20632780e-01 -5.71350515e-01 9.42416340e-02
-1.40370989e+00 -2.09668148e-02 -2.47182518e-01 3.62908036e-01
-1.65934503e-01 5.82446039e-01 -1.02878821e+00 -5.02031267e-01
-5.68898916e-01 -1.09577107e+00 1.02541530e+00 5.52116454e-01
-4.92520511e-01 -6.13338947e-01 -2.35475272e-01 2.56905764e-01
1.01480082e-01 1.85297579e-01 1.04768646e+00 -8.62431824e-01
-4.55575198e-01 6.68499665e-03 -6.13401473e-01 6.26468807e-02
-1.69753190e-02 -3.72186512e-01 -5.60809374e-01 3.67978401e-02
-4.05673236e-01 -4.85339388e-02 9.79972363e-01 -1.36254698e-01
1.27321100e+00 -3.32533628e-01 -7.14524269e-01 6.43892467e-01
1.24034166e+00 3.30071509e-01 9.50929344e-01 3.02357644e-01
8.05465281e-01 6.19280636e-01 8.00573945e-01 2.18301699e-01
7.78167725e-01 7.62689173e-01 2.17395037e-01 9.08225402e-02
-3.28083575e-01 -4.59144861e-01 5.46775870e-02 7.96073854e-01
-2.72448838e-01 -5.45698225e-01 -6.76508188e-01 7.18986869e-01
-1.83972085e+00 -7.84989119e-01 -1.35158002e-01 1.85085225e+00
1.06310999e+00 3.17710221e-01 -3.95372364e-04 2.53547639e-01
7.85171628e-01 5.56669652e-01 -4.11427557e-01 -4.38535839e-01
-6.42286688e-02 3.10072452e-01 5.81000626e-01 1.79842919e-01
-1.27720141e+00 1.00131691e+00 5.39939785e+00 9.85898077e-01
-5.40008008e-01 -1.17785059e-01 5.55035233e-01 1.49041399e-01
-3.01812828e-01 1.97000384e-01 -1.33312619e+00 7.33775735e-01
8.85320604e-01 -9.95287523e-02 2.24366978e-01 7.06955016e-01
-1.66368827e-01 -2.80285124e-02 -1.37524927e+00 5.63016534e-01
1.72916412e-01 -1.08903074e+00 -2.66410947e-01 2.36687675e-01
3.76414865e-01 -4.36254591e-01 -2.58284956e-01 4.68322963e-01
1.20869037e-02 -8.58334601e-01 6.50715530e-01 5.67073107e-01
6.75830781e-01 -9.53973830e-01 9.49888229e-01 2.28665605e-01
-1.61471832e+00 1.43914014e-01 -3.80511850e-01 1.38912261e-01
3.94118339e-01 6.56405568e-01 -5.42435408e-01 1.07499993e+00
6.08115494e-01 5.81120849e-01 -4.71204221e-01 1.03667879e+00
-4.21534747e-01 6.41790330e-01 -2.76069522e-01 -1.67818498e-02
-8.28343444e-03 -4.19850573e-02 3.66639435e-01 1.27207255e+00
2.22791448e-01 7.75635540e-02 2.27075517e-01 8.58156323e-01
-3.55170637e-01 -2.87906043e-02 -2.05288351e-01 4.71596196e-02
1.07664645e+00 1.10930002e+00 -5.61779916e-01 -2.68673718e-01
-4.51455146e-01 8.15575838e-01 9.43884730e-01 1.26018420e-01
-1.15159357e+00 -9.25082684e-01 4.53299999e-01 4.67590056e-02
7.12304771e-01 -2.65566587e-01 -3.87132078e-01 -9.64451551e-01
4.82932091e-01 -6.50408149e-01 5.45435846e-01 -4.42609608e-01
-1.10333467e+00 7.65749156e-01 1.96228117e-01 -9.76338923e-01
2.78907865e-02 -1.88216224e-01 -6.67592824e-01 1.03530812e+00
-1.52500653e+00 -1.30709362e+00 -1.54931294e-02 -1.67390909e-02
2.78516799e-01 2.91199863e-01 7.60660410e-01 4.76338238e-01
-9.38472211e-01 1.01274586e+00 -3.75727028e-01 4.46679026e-01
6.30823791e-01 -1.30151701e+00 4.50058401e-01 9.15172338e-01
1.92351967e-01 8.58931243e-01 2.98348516e-01 -7.43900597e-01
-1.03602135e+00 -1.11454558e+00 1.57681084e+00 -1.52711272e-01
5.16146123e-01 -3.50563824e-01 -1.15300739e+00 8.66878569e-01
5.15361845e-01 2.61627942e-01 8.01158369e-01 5.28827608e-01
-5.76243401e-01 -2.25465506e-01 -8.71816099e-01 6.28423512e-01
1.55152476e+00 -2.25328639e-01 -9.74610448e-01 -4.41133119e-02
1.11820674e+00 -5.63331127e-01 -1.19412696e+00 6.94422364e-01
2.75824368e-01 -6.24875784e-01 9.09199357e-01 -5.22049785e-01
6.44315124e-01 -3.50028783e-01 -1.16795138e-01 -1.25554025e+00
-4.61733192e-01 -5.73484600e-01 -9.02752101e-01 1.80787873e+00
5.10401845e-01 -2.97672927e-01 7.78544366e-01 5.61202228e-01
-5.84142327e-01 -1.46343780e+00 -8.04122925e-01 -1.00620770e+00
1.55287469e-02 3.96773145e-02 1.17762911e+00 7.03456759e-01
3.58578861e-01 5.02766907e-01 -4.13147449e-01 2.22695380e-01
2.59161413e-01 4.44742322e-01 1.91227630e-01 -8.74343753e-01
-2.86384732e-01 -2.70412117e-01 -2.37109676e-01 -1.39474916e+00
2.90440798e-01 -8.77001166e-01 7.23047778e-02 -1.57830393e+00
1.32223845e-01 -7.35849321e-01 -4.90162641e-01 6.89938188e-01
-7.02096343e-01 -1.34756431e-01 2.60609746e-01 6.90875053e-02
-8.87347043e-01 5.18640995e-01 1.16047287e+00 4.80327830e-02
-1.87975824e-01 -3.45807195e-01 -9.95759606e-01 5.08977413e-01
7.65977085e-01 -4.06824291e-01 -2.39029512e-01 -6.68488741e-01
7.51602091e-03 1.12922825e-02 8.01540464e-02 -9.95191395e-01
3.38799506e-01 -1.12134758e-02 3.53573710e-01 -8.83996010e-01
2.40849644e-01 -7.45548487e-01 2.67652888e-02 2.14476451e-01
-3.25198472e-01 1.36534452e-01 3.01005244e-02 4.52708006e-01
-2.85386682e-01 -4.93590832e-01 2.32566029e-01 1.38524041e-01
-6.20619953e-01 3.67774338e-01 2.92431563e-01 2.77016819e-01
1.16055691e+00 1.55765012e-01 -7.01295614e-01 2.08637834e-01
-5.25788426e-01 5.69919765e-01 1.95903972e-01 2.86814988e-01
3.36249292e-01 -1.50182688e+00 -5.80832601e-01 -4.58035246e-02
1.33303612e-01 4.24577206e-01 2.96379954e-01 6.21796310e-01
-3.70811731e-01 4.13448274e-01 1.43421486e-01 -3.14022563e-02
-1.15515530e+00 8.07184994e-01 -2.35250755e-03 -1.07805097e+00
-6.72274411e-01 8.37444901e-01 -1.41689584e-01 1.24766722e-01
2.94304878e-01 -4.47941750e-01 -3.18935782e-01 8.37582126e-02
5.51726162e-01 4.74712610e-01 8.34763199e-02 -5.53974032e-01
-4.22893852e-01 3.22671652e-01 -5.12035131e-01 3.85660082e-01
1.25967431e+00 -5.39443037e-03 -1.57004476e-01 1.20473802e-01
1.14119542e+00 1.64895773e-01 -1.13915157e+00 -4.97676790e-01
5.17361641e-01 -3.27203691e-01 -2.64997929e-01 -7.13919401e-01
-1.08639622e+00 6.92788243e-01 -1.48405507e-01 2.95211643e-01
1.12870336e+00 1.97244346e-01 1.36237669e+00 8.11797753e-02
4.14655268e-01 -9.31963861e-01 -4.22408015e-01 5.90966642e-01
7.25215256e-01 -7.61636734e-01 1.89395919e-01 -1.04725254e+00
-6.10491812e-01 7.94536889e-01 8.62613440e-01 -8.56079012e-02
4.44516093e-01 3.52597773e-01 -5.53434551e-01 -4.43216562e-02
-6.31716549e-01 -3.36850017e-01 4.44961339e-01 3.13530535e-01
6.20553792e-01 2.51272261e-01 -9.31140780e-01 1.13687539e+00
-2.47153640e-01 -1.54020280e-01 -4.98150550e-02 1.01918209e+00
-3.01366687e-01 -1.48560929e+00 3.79926264e-02 4.96061057e-01
-6.21835530e-01 -4.04090732e-01 -1.27049506e-01 7.75930166e-01
5.57077050e-01 7.83496976e-01 2.36706972e-01 -4.16552275e-01
5.75519204e-01 2.14586452e-01 4.71881062e-01 -6.55833721e-01
-6.46334887e-01 -1.15847290e-02 5.39931476e-01 -3.73161763e-01
-2.11779729e-01 -6.55721843e-01 -1.42056048e+00 -2.93312818e-01
-6.24574602e-01 3.93019795e-01 1.26119614e-01 8.80069554e-01
7.05972373e-01 7.69711912e-01 4.90002126e-01 -2.86150634e-01
-5.16038418e-01 -1.28631115e+00 -6.42559350e-01 3.61636758e-01
-1.14280768e-01 -8.30620110e-01 -4.92272787e-02 -2.29143858e-01] | [9.406478881835938, 8.96382999420166] |
c199e93f-f70b-4463-9b6d-72ba4eaabb31 | sscu-net-spatial-spectral-collaborative | 2203.06375 | null | https://arxiv.org/abs/2203.06375v2 | https://arxiv.org/pdf/2203.06375v2.pdf | SSCU-Net: Spatial-Spectral Collaborative Unmixing Network for Hyperspectral Images | Linear spectral unmixing is an essential technique in hyperspectral image processing and interpretation. In recent years, deep learning-based approaches have shown great promise in hyperspectral unmixing, in particular, unsupervised unmixing methods based on autoencoder networks are a recent trend. The autoencoder model, which automatically learns low-dimensional representations (abundances) and reconstructs data with their corresponding bases (endmembers), has achieved superior performance in hyperspectral unmixing. In this article, we explore the effective utilization of spatial and spectral information in autoencoder-based unmixing networks. Important findings on the use of spatial and spectral information in the autoencoder framework are discussed. Inspired by these findings, we propose a spatial-spectral collaborative unmixing network, called SSCU-Net, which learns a spatial autoencoder network and a spectral autoencoder network in an end-to-end manner to more effectively improve the unmixing performance. SSCU-Net is a two-stream deep network and shares an alternating architecture, where the two autoencoder networks are efficiently trained in a collaborative way for estimation of endmembers and abundances. Meanwhile, we propose a new spatial autoencoder network by introducing a superpixel segmentation method based on abundance information, which greatly facilitates the employment of spatial information and improves the accuracy of unmixing network. Moreover, extensive ablation studies are carried out to investigate the performance gain of SSCU-Net. Experimental results on both synthetic and real hyperspectral data sets illustrate the effectiveness and competitiveness of the proposed SSCU-Net compared with several state-of-the-art hyperspectral unmixing methods. | ['Lin Qi', 'Qian Du', 'Xinbo Gao', 'Junyu Dong', 'Feng Gao'] | 2022-03-12 | null | null | null | null | ['hyperspectral-unmixing'] | ['computer-vision'] | [ 3.41877371e-01 -6.45642102e-01 8.84432867e-02 6.35320023e-02
-2.11254358e-01 -3.74848545e-01 4.72017080e-01 -3.21780354e-01
-1.99392378e-01 5.91928244e-01 2.65270263e-01 -2.33424455e-02
-3.47981155e-01 -9.58589613e-01 -5.79652071e-01 -1.37516344e+00
1.39875993e-01 1.94301143e-01 -5.66574037e-01 -2.09238231e-01
-3.34298342e-01 5.61491668e-01 -1.75456846e+00 1.37735978e-01
1.30667281e+00 9.83055174e-01 4.51903671e-01 3.25383514e-01
-8.36663917e-02 6.09546125e-01 -3.78728807e-01 2.06756189e-01
5.49420238e-01 -5.51892042e-01 -2.48324633e-01 5.67988932e-01
4.46649909e-01 -5.98047733e-01 -6.24517202e-01 1.37577963e+00
5.76281786e-01 4.53899741e-01 7.77567923e-01 -1.02180362e+00
-7.36466885e-01 8.15988541e-01 -7.39232361e-01 -1.11586660e-01
-5.53593278e-01 1.07437536e-01 7.59184778e-01 -5.52735090e-01
-1.15341231e-01 8.14849019e-01 7.48622656e-01 -4.25815731e-02
-1.01735759e+00 -8.64725232e-01 -8.38068575e-02 3.18530165e-02
-1.58884704e+00 -1.44180790e-01 8.79242241e-01 -5.64614296e-01
7.76827455e-01 1.66155025e-01 9.94287014e-01 6.74864531e-01
-1.17982276e-01 6.83820724e-01 1.20766366e+00 -4.61771637e-01
1.80294365e-01 -2.95038313e-01 -3.53515632e-02 4.28242743e-01
3.92911106e-01 5.96444488e-01 -2.56988764e-01 6.01402775e-04
9.86972332e-01 6.82408094e-01 -6.14871264e-01 -1.72918484e-01
-1.16804838e+00 7.65991330e-01 1.06673253e+00 4.14206266e-01
-8.44832242e-01 -8.63210559e-02 -9.26949903e-02 1.78392343e-02
7.71982312e-01 4.20933992e-01 -1.22414734e-02 6.29253089e-01
-1.23129773e+00 -5.92043959e-02 2.25384340e-01 5.67183435e-01
1.15218890e+00 5.26247680e-01 1.92692086e-01 1.15312874e+00
3.64716083e-01 8.13024640e-01 9.17137325e-01 -6.83870196e-01
8.92613083e-02 7.02087045e-01 2.66659483e-02 -8.18434119e-01
-3.58781189e-01 -6.99291229e-01 -1.35275972e+00 3.09244365e-01
-2.97765940e-01 -3.47630411e-01 -9.55965579e-01 1.29515696e+00
1.49745122e-01 7.90283561e-01 5.77027440e-01 1.20743728e+00
6.38693571e-01 1.21737766e+00 1.51823834e-01 -3.43022138e-01
9.82572138e-01 -1.07689130e+00 -8.82984102e-01 -2.01743335e-01
2.82605261e-01 -5.13429523e-01 3.44137669e-01 1.89863428e-01
-4.87907737e-01 -5.56805253e-01 -1.32708609e+00 2.44080022e-01
-6.53980494e-01 4.46053207e-01 9.38515067e-01 5.14145255e-01
-7.03038573e-01 8.21048141e-01 -8.05685759e-01 -1.98794886e-01
4.55916137e-01 2.26465181e-01 -4.09856975e-01 9.73580405e-03
-1.12951016e+00 4.65412378e-01 1.14307761e+00 4.48683113e-01
-9.66299772e-01 -6.05324447e-01 -8.04860234e-01 2.17543110e-01
-4.10980247e-02 -6.70068800e-01 7.73872375e-01 -1.58603096e+00
-1.55960667e+00 3.36415738e-01 1.02147646e-01 -2.44095817e-01
-1.03736587e-01 1.67898349e-02 -8.77589703e-01 3.77873868e-01
3.85236442e-02 6.35550380e-01 1.08989275e+00 -1.32665384e+00
-7.35029340e-01 -5.28678179e-01 -3.50789487e-01 5.87923646e-01
-1.00520015e+00 -4.35671479e-01 1.86531618e-01 -8.71243000e-01
3.95522922e-01 -6.95219874e-01 -1.34979412e-01 -3.19798559e-01
-2.10072562e-01 2.43678629e-01 9.12837029e-01 -7.92693079e-01
1.05623543e+00 -2.20186114e+00 3.69600415e-01 2.18933031e-01
2.43721709e-01 4.42056477e-01 -2.95987606e-01 2.99021006e-01
-6.18784606e-01 -2.33444870e-01 -8.89713049e-01 -8.94029960e-02
-1.86483935e-01 2.25157931e-01 -3.23078096e-01 6.93603218e-01
4.69391905e-02 7.29839206e-01 -1.00965583e+00 8.71774703e-02
5.79557717e-01 6.40051007e-01 -9.95269790e-02 4.61902231e-01
-2.80624807e-01 2.93848097e-01 2.05459688e-02 7.44977772e-01
9.95884418e-01 -2.44371578e-01 2.75678426e-01 -6.35480285e-01
-4.84947264e-01 -5.51235616e-01 -1.15674078e+00 1.76837325e+00
-3.96818638e-01 4.36608881e-01 2.60122836e-01 -1.15307546e+00
6.57752454e-01 4.65848386e-01 6.21687353e-01 -2.82994598e-01
1.65299982e-01 4.12064493e-01 -1.43725052e-01 -4.74048704e-01
3.89408112e-01 -7.65767217e-01 6.77160680e-01 4.06135231e-01
3.75370473e-01 -1.67128667e-01 -1.29119484e-02 -3.04297835e-01
2.29386359e-01 -2.31888029e-03 2.28680909e-01 -4.11855251e-01
4.56486195e-01 1.38554692e-01 1.50694534e-01 3.69221836e-01
-1.11668929e-02 5.91705620e-01 -4.19957936e-01 -4.27199185e-01
-1.04768336e+00 -6.92924023e-01 -2.62176454e-01 8.51162732e-01
3.44540656e-01 2.07839206e-01 -6.30884647e-01 -1.80594251e-01
-1.85669474e-02 4.55567449e-01 -5.12718022e-01 -8.27941597e-02
1.20939195e-01 -1.52040732e+00 5.25457263e-01 5.77186227e-01
8.43766391e-01 -9.23658371e-01 1.10001350e-02 3.58569741e-01
-3.07447821e-01 -7.55496919e-01 -8.07993710e-02 2.82302380e-01
-1.06320453e+00 -8.62163901e-01 -9.16109443e-01 -6.86192334e-01
6.66068494e-01 7.75396287e-01 4.16997313e-01 -3.69734377e-01
-1.42334968e-01 9.78144538e-03 -4.21277791e-01 -6.04904056e-01
-2.49727368e-01 9.42776538e-03 1.70471728e-01 5.33333778e-01
4.50556129e-01 -1.06546819e+00 -6.39802396e-01 1.55374810e-01
-1.67549539e+00 1.27470329e-01 8.49741697e-01 8.83163929e-01
6.52184129e-01 7.52729237e-01 3.60715389e-01 -6.10351682e-01
4.10104662e-01 -7.48458683e-01 -7.37488151e-01 1.03933349e-01
-4.73639876e-01 -9.32753384e-02 6.72227740e-01 -2.85024047e-01
-1.27018011e+00 1.26775667e-01 -1.06175371e-01 -8.21503699e-01
-3.39216888e-01 9.53419626e-01 -2.90108562e-01 -2.47836173e-01
8.96809518e-01 6.50318861e-01 3.47071439e-01 -3.80272150e-01
4.41732764e-01 1.19217467e+00 6.81632400e-01 -1.12790674e-01
9.75192547e-01 8.65307987e-01 -2.18668669e-01 -1.30928791e+00
-8.11761916e-01 -9.59547043e-01 -6.06545687e-01 -2.04300150e-01
9.22277927e-01 -1.62664056e+00 -3.49236876e-01 1.00534332e+00
-7.99697995e-01 -4.65859294e-01 -1.96320847e-01 7.07835257e-01
-2.84659088e-01 5.86848974e-01 -4.51548696e-01 -7.48647749e-01
-4.35107738e-01 -9.23770130e-01 9.04202998e-01 4.85947698e-01
4.88225073e-01 -1.06918359e+00 6.18407540e-02 4.50612962e-01
4.62386578e-01 3.40577513e-01 5.66833377e-01 -3.51266533e-01
-3.67909074e-01 -2.39431128e-01 -3.55413884e-01 7.53398836e-01
4.85362172e-01 -1.66847751e-01 -1.18971801e+00 -2.72660792e-01
1.39897838e-01 -2.40487739e-01 1.16263616e+00 6.97669566e-01
1.23438585e+00 -2.90217280e-01 -1.64825812e-01 1.05557632e+00
1.93781865e+00 2.34697104e-01 6.97845101e-01 2.54489273e-01
1.09829104e+00 4.70631570e-01 -4.67542699e-03 5.22425592e-01
-1.10850848e-01 -1.08342580e-01 8.83483887e-01 -4.34609652e-01
9.65797529e-02 -1.29886553e-01 2.27431282e-01 9.94278550e-01
-4.33237076e-01 -2.93044537e-01 -5.45760155e-01 5.59128225e-01
-1.96242917e+00 -1.25686002e+00 -8.45353603e-02 1.96550107e+00
6.48848891e-01 -8.17422986e-01 -1.32864818e-01 2.50667483e-01
9.13438916e-01 5.74370205e-01 -5.62451363e-01 5.03269553e-01
-6.94481730e-01 2.12246671e-01 6.16787791e-01 4.24305022e-01
-1.54467607e+00 9.10400510e-01 5.66127872e+00 8.39121401e-01
-1.48634565e+00 2.84476936e-01 3.98895770e-01 1.79844573e-01
-2.36554623e-01 -3.22793424e-01 -2.18137354e-01 3.91474187e-01
7.48133183e-01 3.56916308e-01 1.00820017e+00 6.56335413e-01
1.46964222e-01 1.52756959e-01 -3.68418813e-01 1.12472486e+00
2.59144664e-01 -1.37039948e+00 2.36327544e-01 -9.19754803e-03
1.21767950e+00 3.36195111e-01 6.22814037e-02 -5.27732149e-02
3.00543785e-01 -1.05051219e+00 4.69808847e-01 5.14908612e-01
7.29415178e-01 -7.70159185e-01 9.12900567e-01 3.51882070e-01
-1.09981155e+00 -3.30435246e-01 -7.35285461e-01 -2.52779633e-01
-1.06074288e-01 9.69204068e-01 -2.10801631e-01 9.94670212e-01
5.21150827e-01 1.12933445e+00 -4.17305492e-02 1.04460585e+00
-3.89584601e-01 6.99880123e-01 -3.81788582e-01 2.74482638e-01
4.70370770e-01 -9.93458629e-01 4.68620539e-01 1.03830326e+00
6.16289258e-01 5.36518157e-01 1.74301341e-02 1.00949597e+00
-1.30890369e-01 7.57457390e-02 -5.09344101e-01 -6.19642437e-01
3.34394395e-01 1.48857856e+00 -4.04418141e-01 -4.67756778e-01
-2.18797356e-01 1.05984032e+00 -9.77286026e-02 6.77752733e-01
-5.40241003e-01 -2.55588263e-01 8.50995839e-01 -1.41735226e-01
3.32057565e-01 -4.83241342e-02 -2.72028637e-03 -1.39182007e+00
-4.18618768e-01 -9.07503724e-01 2.61255205e-01 -1.14759362e+00
-1.50298762e+00 6.11191690e-01 -1.72629595e-01 -1.41746080e+00
2.26723507e-01 -1.00994372e+00 -5.29667497e-01 1.12560356e+00
-1.81019366e+00 -1.31746650e+00 -9.64477420e-01 5.89147091e-01
2.00388461e-01 -4.05754864e-01 9.98783410e-01 1.61026880e-01
-8.98596585e-01 -2.12108508e-01 8.95144463e-01 1.31340176e-01
4.15976644e-01 -1.12415791e+00 -3.90816033e-01 1.09940958e+00
1.43336907e-01 4.73200262e-01 2.59025872e-01 -4.46728915e-01
-1.16507292e+00 -1.69082510e+00 2.87367832e-02 2.28876978e-01
7.30796993e-01 3.27020168e-01 -8.01075101e-01 6.96609139e-01
4.34086025e-01 1.61465034e-01 1.20223904e+00 -2.50400543e-01
-1.77455306e-01 -5.09164095e-01 -8.72383595e-01 4.55083042e-01
6.84232593e-01 -6.34640932e-01 -3.04574877e-01 5.93604267e-01
5.65119445e-01 -1.78764373e-01 -1.03687680e+00 5.54814994e-01
5.25236189e-01 -1.04299200e+00 9.06388104e-01 -2.39733621e-01
7.63730586e-01 -7.89107323e-01 -2.62440920e-01 -1.86271667e+00
-7.54852951e-01 -2.44977772e-01 -1.85606107e-01 7.46387064e-01
2.16764897e-01 -7.90839374e-01 5.60214341e-01 -1.71110526e-01
-4.08378184e-01 -2.41842195e-01 -3.83802176e-01 -6.11646771e-01
-3.31191868e-02 -1.10987186e-01 9.90905941e-01 1.32409799e+00
-1.75703079e-01 9.98968631e-02 -4.55067813e-01 8.05958688e-01
6.72763169e-01 2.87269920e-01 2.89841920e-01 -1.28371465e+00
-2.19701424e-01 -6.09967947e-01 -8.72198045e-02 -8.74805391e-01
4.52091098e-01 -9.62203324e-01 5.64365797e-02 -1.43994451e+00
1.09380983e-01 5.65012582e-02 -5.52096784e-01 5.39983690e-01
-4.17313308e-01 3.81722838e-01 -2.21808195e-01 5.60946047e-01
8.62415507e-02 9.28964436e-01 1.02745056e+00 -7.74540007e-01
-3.23510140e-01 -2.59026349e-01 -7.56926596e-01 4.81169045e-01
8.91316652e-01 -5.65527678e-02 -3.17068756e-01 -6.50865972e-01
-2.15655789e-02 -1.14902213e-01 1.79893523e-01 -1.29548025e+00
1.83451802e-01 -2.11156324e-01 6.53811395e-01 -4.12704319e-01
1.65540278e-01 -1.20700240e+00 5.45601606e-01 1.24704234e-01
1.68703303e-01 -5.46635151e-01 4.09927875e-01 5.81702769e-01
-6.99116409e-01 -3.46273720e-01 6.28036559e-01 -2.18021005e-01
-9.61974382e-01 7.85738885e-01 -3.65694642e-01 -9.10378516e-01
8.82164717e-01 -2.70003974e-01 -1.70169398e-01 -1.14991002e-01
-5.36392808e-01 -5.16544431e-02 3.09229940e-01 -6.26420453e-02
5.01232743e-01 -1.28320813e+00 -7.10754335e-01 3.73367637e-01
3.28117311e-01 1.84907511e-01 6.40988410e-01 6.85197651e-01
-1.04362559e+00 1.97952852e-01 -4.09953058e-01 -4.99937534e-01
-6.40515029e-01 5.56345701e-01 7.99178839e-01 -1.15548670e-02
-9.75362509e-02 7.93763757e-01 2.85144299e-01 -7.11696744e-01
-2.42329687e-01 -1.13703713e-01 -3.04819822e-01 2.28158578e-01
6.06404006e-01 3.78284633e-01 1.07662551e-01 -7.42432475e-01
2.17871517e-01 3.00793320e-01 5.76470137e-01 6.63349852e-02
1.63622189e+00 -2.06980612e-02 -7.93239117e-01 2.45949581e-01
1.08690619e+00 -3.35605085e-01 -1.48539984e+00 -2.72707343e-01
-7.31602430e-01 -1.68219045e-01 6.88454986e-01 -7.66067266e-01
-1.30241406e+00 9.98625457e-01 7.90478647e-01 2.46435925e-01
1.57448769e+00 -6.20276272e-01 5.60160279e-01 2.55706370e-01
-1.68995723e-01 -9.16321158e-01 -1.76188827e-01 2.56527543e-01
7.05598533e-01 -1.51521778e+00 5.91405630e-02 -2.92401642e-01
-3.36418122e-01 1.32670188e+00 4.85943049e-01 4.31885980e-02
6.84742987e-01 -1.68230012e-02 2.91296870e-01 -1.63178340e-01
2.63606220e-01 -4.19833302e-01 2.33297482e-01 5.70351005e-01
2.23093852e-01 6.37289226e-01 3.00639242e-01 5.36433697e-01
-7.17323599e-03 -1.13364495e-01 1.68753549e-01 4.77461189e-01
-6.14040613e-01 -7.04665542e-01 -7.94315636e-01 4.64776605e-01
7.41257817e-02 -4.25132364e-01 -7.45735765e-02 3.21765184e-01
4.14873064e-01 8.55209053e-01 1.94814831e-01 -4.90109742e-01
-2.52101254e-02 8.01796317e-02 1.54669642e-01 -4.96073306e-01
-1.95751831e-01 2.95332372e-01 -5.63258886e-01 2.22350545e-02
-1.01846373e+00 -2.17062131e-01 -7.68106937e-01 -1.76100656e-01
-7.33378828e-01 1.78689614e-01 7.19404578e-01 9.83241260e-01
2.42411703e-01 6.20523214e-01 7.18588591e-01 -1.38354146e+00
-3.90506566e-01 -1.39400768e+00 -1.27558970e+00 2.56965071e-01
4.10994262e-01 -3.63375902e-01 -4.67344224e-01 2.48134732e-01] | [10.085527420043945, -1.9552838802337646] |
40a9c9f3-73ee-4676-837c-89aec430340b | surgical-video-motion-magnification-with | 2009.07432 | null | https://arxiv.org/abs/2009.07432v1 | https://arxiv.org/pdf/2009.07432v1.pdf | Surgical Video Motion Magnification with Suppression of Instrument Artefacts | Video motion magnification could directly highlight subsurface blood vessels in endoscopic video in order to prevent inadvertent damage and bleeding. Applying motion filters to the full surgical image is however sensitive to residual motion from the surgical instruments and can impede practical application due to aberration motion artefacts. By storing the temporal filter response from local spatial frequency information for a single cardiovascular cycle prior to tool introduction to the scene, a filter can be used to determine if motion magnification should be active for a spatial region of the surgical image. In this paper, we propose a strategy to reduce aberration due to non-physiological motion for surgical video motion magnification. We present promising results on endoscopic transnasal transsphenoidal pituitary surgery with a quantitative comparison to recent methods using Structural Similarity (SSIM), as well as qualitative analysis by comparing spatio-temporal cross sections of the videos and individual frames. | ['Neil L. Dorward', 'Danail Stoyanov', 'Mirek Janatka', 'Hani J. Marcus'] | 2020-09-16 | null | null | null | null | ['motion-magnification'] | ['computer-vision'] | [ 1.94980815e-01 8.06605890e-02 8.93633366e-02 1.89511567e-01
-1.13478631e-01 -8.26488674e-01 3.04734319e-01 1.02716111e-01
-7.74322152e-01 3.18024099e-01 5.64879775e-01 -2.43878603e-01
-2.28625506e-01 -2.47829497e-01 -4.62140322e-01 -8.29995453e-01
-3.23583931e-01 -3.59828174e-01 4.64121014e-01 -5.48985414e-02
4.73020792e-01 6.97019696e-01 -1.33931136e+00 4.31476355e-01
3.76848131e-01 4.87464219e-01 3.09106469e-01 9.47612822e-01
3.29783410e-01 4.75557685e-01 -6.57817841e-01 1.51863202e-01
3.95087540e-01 -8.45345259e-01 -5.21738291e-01 9.72281992e-02
4.25644606e-01 -5.07494688e-01 -3.28993320e-01 1.28239214e+00
4.93458241e-01 1.47988766e-01 3.47293556e-01 -5.20463586e-01
1.50089547e-01 3.51702720e-01 -5.86929560e-01 8.28575194e-01
5.16472220e-01 2.45827377e-01 7.87618011e-03 -7.51445293e-01
1.32159734e+00 7.58272171e-01 5.02975523e-01 4.52460945e-01
-1.29131591e+00 -1.20102689e-01 -1.91096753e-01 1.76982582e-01
-8.76815796e-01 -2.19424620e-01 4.57448393e-01 -6.42831922e-01
7.81548560e-01 4.30730253e-01 1.07205367e+00 3.21517289e-01
9.27400887e-01 1.50425866e-01 8.84064853e-01 -6.05644763e-01
-1.54900760e-03 9.23222676e-02 -3.79234493e-01 8.15819681e-01
3.10220629e-01 6.75266147e-01 -3.91166389e-01 -1.36250988e-01
1.04173994e+00 -1.87459499e-01 -1.18415022e+00 -4.75995481e-01
-1.35042799e+00 6.01388633e-01 4.15552020e-01 7.98038244e-01
-4.11944747e-01 -1.43710122e-01 5.08607030e-01 4.46318179e-01
1.01305349e-02 7.53475964e-01 4.15475070e-02 -1.59583613e-01
-7.31569111e-01 -2.94974566e-01 5.71952105e-01 4.93285120e-01
2.80243028e-02 -1.68152347e-01 -4.71459851e-02 1.80104494e-01
1.98431447e-01 -1.87424116e-03 9.15489495e-01 -8.66245449e-01
-1.74493402e-01 3.23434114e-01 6.72041997e-02 -9.11901951e-01
-7.55623281e-01 -9.57332626e-02 -4.30148572e-01 7.87988484e-01
5.85248053e-01 -3.31022926e-02 -7.63123930e-01 1.04075062e+00
5.13376415e-01 2.05464259e-01 7.11870417e-02 1.14791071e+00
8.49223733e-01 3.59175682e-01 -3.62345934e-01 -8.62270832e-01
1.31450546e+00 -6.98079944e-01 -8.12870562e-01 -6.19307114e-03
9.15179551e-01 -1.23997009e+00 8.21343124e-01 5.05859554e-01
-1.28350234e+00 -1.84583694e-01 -1.10198116e+00 1.53392032e-01
2.97697961e-01 1.53895527e-01 1.68495983e-01 6.65600657e-01
-9.53347504e-01 6.37662351e-01 -1.24191463e+00 -4.03191000e-01
-1.78283557e-01 5.89522719e-01 -5.09895086e-01 1.58621117e-01
-4.50623125e-01 1.03563261e+00 2.99385935e-01 2.98444837e-01
-3.15348148e-01 -9.81807351e-01 -8.98793519e-01 -5.45781069e-02
1.58110708e-01 -6.12301528e-01 1.26164520e+00 -7.02200949e-01
-1.80846083e+00 8.95348251e-01 -1.23804212e-01 -5.36487699e-01
6.15824699e-01 1.18851602e-01 -1.93223372e-01 7.78987706e-01
-6.79658175e-01 3.05563629e-01 7.88911283e-01 -8.66712987e-01
-7.39362776e-01 -2.22835347e-01 2.86639631e-01 2.83823371e-01
3.16706784e-02 2.34513596e-01 -1.94936350e-01 -6.77030325e-01
3.90212834e-01 -1.15162373e+00 -2.96943367e-01 2.24902689e-01
1.16342165e-01 6.62510455e-01 6.41755462e-01 -7.31514692e-01
1.35839105e+00 -2.29159260e+00 2.72810310e-01 6.89304695e-02
2.07981989e-02 3.21264535e-01 1.14970794e-02 1.73230171e-01
-1.94295168e-01 -2.40888700e-01 2.50433087e-01 3.47202599e-01
-7.91854799e-01 -1.32182077e-01 4.31892946e-02 1.21109092e+00
-5.66335261e-01 5.57670176e-01 -8.60043049e-01 -2.84495443e-01
4.94913340e-01 5.63740075e-01 -7.35553920e-01 -3.29120345e-02
3.54091763e-01 8.08010161e-01 8.67094547e-02 3.83538455e-01
6.25491917e-01 3.74632269e-01 1.29836172e-01 -6.81157649e-01
-5.01636147e-01 -2.35975534e-02 -8.39313090e-01 1.74123704e+00
-5.08197367e-01 7.98183739e-01 4.17505175e-01 -6.55829966e-01
2.65366375e-01 5.14878571e-01 6.33819401e-01 -8.41271043e-01
3.89166087e-01 4.84524697e-01 3.92588407e-01 -7.10753202e-01
3.03832382e-01 -6.26969695e-01 3.73600304e-01 7.86983892e-02
-5.28094247e-02 -1.36679083e-01 3.80910039e-01 -9.50080454e-02
7.61987507e-01 -5.81230037e-02 4.87809360e-01 -7.77503550e-01
7.15313852e-01 2.54000753e-01 1.44227028e-01 3.20170432e-01
-3.67732853e-01 5.09891152e-01 5.35397887e-01 -6.77502871e-01
-8.73486400e-01 -5.57830155e-01 -3.45298946e-01 -3.55795994e-02
6.21385217e-01 -2.98672259e-01 -7.55196035e-01 -3.60551298e-01
-2.73411453e-01 3.48696202e-01 -7.02108681e-01 -4.52436358e-01
-8.82022858e-01 -4.07059848e-01 -2.99192101e-01 8.22801888e-02
-1.58664256e-01 -6.65906549e-01 -1.45251465e+00 3.62499058e-01
-1.41051158e-01 -1.04680216e+00 -7.34471262e-01 -2.32952297e-01
-1.16591275e+00 -1.28472757e+00 -7.25545108e-01 -6.34640336e-01
8.75857115e-01 5.67624152e-01 6.16965175e-01 1.65276416e-02
-8.76449227e-01 3.69031191e-01 -1.44777596e-01 -2.03433037e-01
-7.91671336e-01 -6.33843303e-01 6.78791627e-02 -2.28757456e-01
5.04527465e-02 -2.49722615e-01 -1.13066423e+00 5.57793260e-01
-8.58210266e-01 5.79341687e-02 1.73612684e-01 7.44656205e-01
3.68837982e-01 -1.31081745e-01 -4.59810615e-01 -4.14074630e-01
2.54390299e-01 2.22784549e-01 -1.12590337e+00 -1.89999804e-01
-1.07114650e-01 -1.63595736e-01 5.17728508e-01 -5.39825201e-01
-9.28788602e-01 -1.11836255e-01 3.47897261e-01 -4.76313382e-01
1.77934423e-01 4.92896646e-01 8.77060890e-01 -5.71978688e-01
1.04175341e+00 -1.14890151e-01 6.12009764e-01 5.49979955e-02
-2.20598623e-01 -9.62541439e-03 6.51071906e-01 3.65621984e-01
4.66391027e-01 1.19163454e+00 2.77479112e-01 -1.14507651e+00
-3.33689541e-01 -8.03351343e-01 -5.99124253e-01 -4.99709785e-01
9.05504525e-01 -6.44051313e-01 -9.15566385e-01 -3.99587527e-02
-8.87307584e-01 -6.70462996e-02 -3.44345987e-01 1.35604584e+00
-5.19287467e-01 4.90889013e-01 -7.97635853e-01 -4.31756079e-01
-1.58987027e-02 -1.34688234e+00 7.33558178e-01 4.74099129e-01
-1.69754952e-01 -1.33228755e+00 -2.88739093e-02 -2.61791021e-01
4.20340478e-01 4.72267270e-01 6.10399961e-01 1.93425640e-01
-7.25709736e-01 -3.05998355e-01 3.64591688e-01 7.75498003e-02
1.68503791e-01 3.02356273e-01 -6.65640891e-01 -6.41275883e-01
5.98040938e-01 5.77560484e-01 6.36204243e-01 1.22111189e+00
5.56959033e-01 -1.44507945e-01 -4.82719123e-01 9.02054608e-01
1.51480031e+00 4.55826730e-01 8.00016999e-01 4.96981651e-01
-6.99030980e-02 7.70609319e-01 1.02842498e+00 2.68118888e-01
-7.77524054e-01 6.47402704e-01 3.88624102e-01 -3.62840414e-01
-2.50106364e-01 2.59607971e-01 4.10393685e-01 5.22571087e-01
-3.68717134e-01 3.80252674e-02 -3.81001383e-01 4.77999091e-01
-1.21823335e+00 -9.33897018e-01 -3.34254593e-01 2.72908473e+00
3.77190650e-01 3.19037288e-02 4.74558584e-02 -1.18431084e-01
5.92471898e-01 -2.50954658e-01 -1.28189266e-01 -2.80697763e-01
1.15242012e-01 -1.62950248e-01 8.01670969e-01 9.15295601e-01
-8.37680936e-01 2.03686431e-01 6.66729641e+00 4.01002139e-01
-1.63742697e+00 -3.48858163e-02 -4.08501662e-02 -6.65221870e-01
-1.48852766e-01 -3.89139839e-02 -5.79460442e-01 3.46322834e-01
7.30202377e-01 -3.95114660e-01 5.19465320e-02 3.14527422e-01
5.09369552e-01 -7.82912433e-01 -8.06563735e-01 9.51955497e-01
1.30281165e-01 -1.56901467e+00 -3.20915967e-01 4.93852228e-01
3.94065112e-01 -1.58615917e-01 -7.54790530e-02 -5.65318823e-01
-7.23455429e-01 -6.37744725e-01 3.63789320e-01 3.91790718e-01
6.81808531e-01 -4.83613104e-01 6.83029354e-01 1.20374344e-01
-8.44194353e-01 -1.92074150e-01 -3.58482659e-01 3.19241524e-01
5.17737210e-01 4.21579063e-01 -9.59761262e-01 2.54347891e-01
5.26315153e-01 4.16476905e-01 -8.07061493e-02 1.55901349e+00
2.51846343e-01 4.64908928e-02 -3.62635076e-01 2.37316430e-01
2.09847257e-01 -3.18629354e-01 1.11372578e+00 9.03126419e-01
7.22363472e-01 1.64964229e-01 -3.27517927e-01 3.39726597e-01
7.40341961e-01 2.18980610e-01 -4.88453716e-01 1.14656024e-01
-2.57856935e-01 1.20170307e+00 -1.22073960e+00 -1.71699703e-01
-7.57024884e-01 1.03113580e+00 -5.87702870e-01 3.08253437e-01
-5.52408576e-01 -2.74304718e-01 4.49757129e-01 4.60503727e-01
1.95202902e-02 -2.81427145e-01 1.56842917e-01 -1.12433565e+00
7.83392787e-02 -3.47655147e-01 4.59350765e-01 -6.52180791e-01
-1.38631761e-01 5.53414226e-01 -1.05621785e-01 -1.82257390e+00
-7.45171541e-03 -9.66883361e-01 -6.09407783e-01 7.40607560e-01
-1.38368881e+00 -4.42991406e-01 -4.38320041e-01 3.33633870e-01
3.67035002e-01 1.79377511e-01 6.80288851e-01 1.93028636e-02
1.80750251e-01 5.87659404e-02 -1.61696027e-03 -5.59050441e-01
9.12178278e-01 -1.16387069e+00 -1.89825311e-01 9.41334724e-01
-1.60644919e-01 5.18993258e-01 1.23296118e+00 -4.47551578e-01
-1.18926513e+00 -2.18420908e-01 7.32339203e-01 -2.51339585e-01
6.41340792e-01 1.25997588e-02 -7.09383309e-01 5.05026996e-01
3.20893019e-01 6.18837178e-02 7.11259604e-01 -6.22521877e-01
4.54045624e-01 1.80527285e-01 -1.28773332e+00 7.42847383e-01
6.28647566e-01 -1.71514288e-01 -5.80827534e-01 4.29907054e-01
5.01514256e-01 -1.12177658e+00 -9.57495093e-01 4.04432386e-01
7.65828490e-01 -1.32883811e+00 8.54429245e-01 -1.19599111e-01
2.66348958e-01 -4.32618529e-01 6.00968778e-01 -1.44333053e+00
-2.80188769e-01 -1.27479231e+00 3.80811840e-01 1.75987095e-01
2.64129460e-01 -6.38916194e-01 6.77550793e-01 2.62523592e-01
-4.22270507e-01 -1.63506359e-01 -9.73682582e-01 -5.44116139e-01
-2.56120771e-01 3.12188029e-01 -3.16158235e-01 5.81456006e-01
8.00730348e-01 -3.21657509e-01 5.45702688e-02 4.91209179e-01
2.39929676e-01 7.49140605e-02 3.70187640e-01 -8.99182856e-01
-2.63538867e-01 -4.34841305e-01 -8.20749938e-01 -6.06147647e-01
-5.56132019e-01 -6.25887871e-01 -1.41971990e-01 -1.25095952e+00
-8.94592032e-02 3.84613633e-01 1.20110601e-01 -2.46709898e-01
2.16284961e-01 4.18631405e-01 1.10196188e-01 1.97300583e-01
3.56504828e-01 -5.69877476e-02 1.89998293e+00 4.14493769e-01
-5.94606757e-01 1.62750959e-01 -1.51936963e-01 8.18297267e-01
3.26997757e-01 -3.78302038e-01 -4.68373060e-01 2.88152415e-02
2.47582138e-01 4.81574446e-01 3.74687940e-01 -9.17561114e-01
5.33103347e-01 2.20221922e-01 8.95902067e-02 -3.21370184e-01
1.76974028e-01 -9.51733410e-01 3.22261482e-01 1.31468964e+00
3.23831737e-02 1.25029847e-01 4.76073682e-01 5.44671714e-01
-5.22431254e-01 -6.11013055e-01 1.29701769e+00 -3.37366849e-01
-4.28525209e-01 -1.37925595e-01 -8.28246832e-01 -4.81972396e-01
1.26688147e+00 -7.08062470e-01 -2.94834822e-01 -1.42716691e-01
-1.41387272e+00 -2.76298910e-01 7.72329032e-01 5.98204695e-02
6.05002940e-01 -7.80637443e-01 -4.01208460e-01 5.77034593e-01
5.09946942e-02 -3.16513151e-01 8.79813254e-01 1.83526850e+00
-1.39056158e+00 5.37317693e-01 -1.83008298e-01 -8.98584783e-01
-1.78090382e+00 7.23577678e-01 9.00988162e-01 1.09341756e-01
-1.22195053e+00 1.00933826e+00 3.81108403e-01 4.51083422e-01
1.50457978e-01 -9.76388395e-01 -3.51406991e-01 -7.04194605e-02
9.26896274e-01 1.13006584e-01 3.28126967e-01 -4.67659116e-01
-1.20622210e-01 9.59191024e-01 -1.71354339e-01 -6.18436933e-02
7.50575483e-01 -5.76330423e-01 -1.65656116e-02 2.35591516e-01
1.08036673e+00 3.50670874e-01 -1.30574632e+00 2.69913375e-02
-3.18394482e-01 -9.63632107e-01 3.35821718e-01 -6.70383215e-01
-1.04906821e+00 7.27859795e-01 8.03399682e-01 2.88566530e-01
1.32827449e+00 -1.50063962e-01 3.88921261e-01 -2.77913541e-01
2.72748858e-01 -1.03731823e+00 -6.62058666e-02 -7.08126426e-02
8.79271567e-01 -7.51535475e-01 6.37103245e-02 -9.30762827e-01
-4.34773773e-01 1.53102255e+00 9.97414961e-02 -1.71859130e-01
8.49251688e-01 5.37915349e-01 3.09375226e-01 -2.17367560e-01
-4.65416878e-01 1.07067667e-01 3.39030325e-01 3.92799377e-01
5.24503291e-01 -3.37276697e-01 -8.50716054e-01 -2.82837182e-01
-6.63677454e-02 2.07392901e-01 1.31414711e+00 1.04051411e+00
-4.96499449e-01 -6.01572454e-01 -2.08137333e-01 -5.13807125e-02
-6.37599289e-01 1.67589024e-01 3.09384972e-01 8.58849943e-01
-2.18994766e-01 6.04782879e-01 8.93308818e-02 3.91700655e-01
7.78232515e-01 -3.87670100e-01 9.88432288e-01 -4.38260019e-01
-7.96218932e-01 9.25448418e-01 5.62254451e-02 -9.57464278e-01
-7.48350322e-01 -7.80700326e-01 -1.30067110e+00 -6.31120726e-02
-3.14140379e-01 1.47680536e-01 9.18205380e-01 4.10784960e-01
8.54796544e-02 6.53439939e-01 1.78820655e-01 -1.06279039e+00
-2.11182624e-01 -6.35450244e-01 -8.02612305e-01 2.76162714e-01
7.91372418e-01 -5.26710391e-01 -9.33609009e-01 1.71304718e-01] | [13.826096534729004, -3.0549190044403076] |
fc71477c-5f1e-4d39-82b2-72a21c391520 | to-find-waldo-you-need-contextual-cues-1 | null | null | https://aclanthology.org/2022.acl-short.39 | https://aclanthology.org/2022.acl-short.39.pdf | To Find Waldo You Need Contextual Cues: Debiasing Who’s Waldo | We present a debiased dataset for the Person-centric Visual Grounding (PCVG) task first proposed by Cui et al. (2021) in the Who’s Waldo dataset. Given an image and a caption, PCVG requires pairing up a person’s name mentioned in a caption with a bounding box that points to the person in the image. We find that the original Who’s Waldo dataset compiled for this task contains a large number of biased samples that are solvable simply by heuristic methods; for instance, in many cases the first name in the sentence corresponds to the largest bounding box, or the sequence of names in the sentence corresponds to an exact left-to-right order in the image. Naturally, models trained on these biased data lead to over-estimation of performance on the benchmark. To enforce models being correct for the correct reasons, we design automated tools to filter and debias the original dataset by ruling out all examples of insufficient context, such as those with no verb or with a long chain of conjunct names in their captions. Our experiments show that our new sub-sampled dataset contains less bias with much lowered heuristic performances and widened gaps between heuristic and supervised methods. We also demonstrate the same benchmark model trained on our debiased training set outperforms that trained on the original biased (and larger) training set on our debiased test set. We argue our debiased dataset offers the PCVG task a more practical baseline for reliable benchmarking and future improvements. | ['Chitta Baral', 'Yezhou Yang', 'Tejas Gokhale', 'Pratyay Banerjee', 'Yiran Luo'] | null | null | null | null | acl-2022-5 | ['person-centric-visual-grounding'] | ['computer-vision'] | [ 2.13498518e-01 3.12110543e-01 -2.87019640e-01 -3.62592131e-01
-9.47869062e-01 -9.09996331e-01 7.44058549e-01 -1.00263841e-01
-4.51952338e-01 9.28064048e-01 4.58996207e-01 -4.24365997e-01
-4.84471060e-02 -3.96755368e-01 -9.28586900e-01 -3.97651821e-01
3.30206573e-01 9.13489819e-01 1.37868956e-01 -1.26293629e-01
2.60792077e-01 2.35427737e-01 -1.54500067e+00 5.90677023e-01
6.16277039e-01 8.88487458e-01 9.82441604e-02 5.06546199e-01
7.89933652e-02 5.89434266e-01 -7.69939303e-01 -8.15584362e-01
4.62138295e-01 -6.37172043e-01 -1.03169107e+00 2.94983983e-01
1.47240317e+00 -2.24828243e-01 -1.87510207e-01 1.02612638e+00
2.93410361e-01 -1.76160172e-01 6.92908645e-01 -1.48863196e+00
-7.50593781e-01 4.86549973e-01 -5.95784485e-01 9.84990150e-02
4.73156720e-01 4.14680272e-01 1.29928625e+00 -9.14040089e-01
1.28543806e+00 1.29131055e+00 6.33444905e-01 8.52693856e-01
-1.44649148e+00 -4.05816883e-01 1.63031980e-01 3.01612258e-01
-1.28462064e+00 -2.59427220e-01 3.78675222e-01 -6.21010184e-01
6.52523339e-01 5.70966303e-01 4.87819284e-01 1.41609049e+00
-3.21722746e-01 7.06237018e-01 1.26951981e+00 -4.22025353e-01
4.44275178e-02 2.54317880e-01 2.96198010e-01 6.48915172e-01
4.95592892e-01 1.49626702e-01 -5.69532394e-01 -2.09883630e-01
4.29008573e-01 -4.53525007e-01 -3.56022894e-01 -6.30571127e-01
-1.60071480e+00 6.46723986e-01 5.25216877e-01 1.09141476e-01
-3.94566134e-02 7.90252164e-02 3.64559531e-01 1.33190110e-01
1.93066418e-01 9.62848783e-01 -3.87299180e-01 1.10971279e-01
-1.22442722e+00 6.83972538e-01 7.63159215e-01 1.12617695e+00
7.24757016e-01 -5.59306562e-01 -6.20023847e-01 6.16595268e-01
-3.41767877e-01 5.17829716e-01 1.37790382e-01 -1.26844287e+00
6.74019337e-01 6.62151694e-01 6.34610415e-01 -9.78796721e-01
-2.10235745e-01 -4.87125993e-01 -5.96251369e-01 8.85575637e-02
1.11637235e+00 5.84412068e-02 -1.01625955e+00 1.85657299e+00
1.02575392e-01 -3.89725059e-01 -2.01695636e-01 1.28529716e+00
7.05477834e-01 4.22541618e-01 7.87174180e-02 2.37197746e-02
1.47577715e+00 -1.00952697e+00 -4.16661143e-01 -6.54100299e-01
6.95231974e-01 -5.87368250e-01 1.47920549e+00 3.51376832e-01
-8.14459562e-01 -4.08064693e-01 -8.59756649e-01 -2.55349606e-01
-3.86607170e-01 1.51170030e-01 3.66253585e-01 4.06258285e-01
-1.04917753e+00 5.07990658e-01 -1.50634840e-01 -6.51310503e-01
4.28520948e-01 1.24618255e-01 -4.81585503e-01 -3.27856570e-01
-1.08140087e+00 1.12248766e+00 2.82492667e-01 -1.63889498e-01
-9.21089649e-01 -5.91113865e-01 -7.14262784e-01 -1.53766379e-01
6.58670783e-01 -7.91547835e-01 1.11765063e+00 -1.44676232e+00
-4.87974942e-01 1.70683348e+00 -1.80386797e-01 -5.87543368e-01
1.11127675e+00 -2.81096071e-01 -1.33507982e-01 2.28643343e-01
5.03541946e-01 1.13427293e+00 9.63800430e-01 -1.39215779e+00
-5.53312659e-01 -3.74515533e-01 1.32303551e-01 4.15255763e-02
-1.67543013e-02 1.03141956e-01 -5.76615751e-01 -5.41129172e-01
1.71167795e-02 -1.04268837e+00 1.23618051e-01 2.93343589e-02
-6.86217666e-01 -2.22553670e-01 6.66323423e-01 -7.41095901e-01
1.20563924e+00 -2.12655759e+00 2.00451091e-01 -1.38412528e-02
2.70801902e-01 9.57762003e-02 -1.99386641e-01 2.42641002e-01
-2.27167904e-01 2.99765199e-01 -1.75081879e-01 -3.56498361e-01
1.59799099e-01 2.07005143e-01 -4.71278995e-01 6.06480658e-01
5.63607886e-02 8.97145033e-01 -1.07605517e+00 -8.80521894e-01
-1.10846132e-01 -4.92917486e-02 -6.15030169e-01 2.15466097e-01
-3.78853023e-01 3.23558062e-01 7.24965781e-02 5.41251421e-01
5.19637465e-01 -4.05124247e-01 -1.58685669e-02 -3.29790026e-01
-6.91880053e-03 1.76900387e-01 -1.05166543e+00 1.30070674e+00
-9.60864276e-02 7.77172685e-01 -2.37115715e-02 -4.79476541e-01
6.56167090e-01 -1.05583675e-01 -4.26425636e-02 -4.99597043e-01
-2.03246742e-01 3.79751146e-01 -1.74830467e-01 -5.01989663e-01
5.96958399e-01 -8.54676068e-02 -2.58725047e-01 2.87311614e-01
-5.79165935e-04 -3.68229747e-01 4.97192085e-01 4.85052735e-01
1.06865168e+00 2.15921924e-01 1.44383207e-01 -4.07714248e-01
5.04332304e-01 5.43777585e-01 4.11333740e-01 1.20047641e+00
-4.52719450e-01 1.04645038e+00 9.42404091e-01 -6.95349157e-01
-1.44724464e+00 -8.87156487e-01 -1.03961609e-01 1.11534381e+00
2.01728061e-01 -4.40007508e-01 -9.67067957e-01 -1.01503289e+00
6.04939908e-02 9.89403486e-01 -8.87315035e-01 6.29011840e-02
-4.93438125e-01 -3.06122243e-01 5.70963562e-01 2.78235108e-01
4.07962441e-01 -1.08480752e+00 -6.37765765e-01 -2.31386557e-01
-3.58712345e-01 -1.10582936e+00 -7.46022046e-01 1.01385131e-01
-4.15376574e-01 -1.32429242e+00 -8.48547220e-01 -7.50302792e-01
8.94129455e-01 3.55207473e-02 1.54822075e+00 1.59616515e-01
-6.73918203e-02 2.53382832e-01 -2.11969748e-01 -1.27997875e-01
-4.03174847e-01 1.02408595e-01 -1.97423190e-01 -4.17016335e-02
3.75416994e-01 2.23728955e-01 -5.72630048e-01 5.92590451e-01
-6.84826612e-01 2.70243168e-01 2.98700035e-01 1.03053987e+00
4.62278485e-01 -5.86211443e-01 1.63109124e-01 -1.02669382e+00
3.06410015e-01 -2.18897641e-01 -7.12617576e-01 3.25503677e-01
-5.27662694e-01 3.52072567e-01 4.08717185e-01 -3.74614626e-01
-7.02940524e-01 7.04987645e-02 3.34636390e-01 -3.95948499e-01
-2.38950908e-01 6.52733371e-02 -1.71714842e-01 4.26618695e-01
9.86841977e-01 1.43836229e-03 -1.84643075e-01 -4.00968283e-01
3.99560541e-01 6.22764409e-01 9.21307862e-01 -8.23088109e-01
7.25483537e-01 4.72461253e-01 -3.23629417e-02 -4.24333096e-01
-1.37476897e+00 -3.93140137e-01 -5.92552781e-01 -2.08491907e-01
8.20795059e-01 -7.75970340e-01 -3.96892518e-01 2.20527053e-01
-1.47412109e+00 -3.07876527e-01 -1.69420809e-01 1.59983873e-01
-6.34556770e-01 2.28679240e-01 -2.85950184e-01 -5.31607270e-01
-7.93873444e-02 -1.10795510e+00 1.32044590e+00 -2.11066037e-01
-7.83012569e-01 -5.94366193e-01 -1.28083214e-01 7.03013837e-01
1.42604560e-01 3.10577393e-01 1.00550926e+00 -7.25813031e-01
-5.18919110e-01 -2.80053735e-01 -5.17216444e-01 4.56518888e-01
-2.04276741e-01 1.32767074e-02 -8.18051696e-01 -2.82249659e-01
-3.79905641e-01 -5.27427495e-01 1.01454282e+00 3.45470197e-02
1.03548384e+00 -4.34905201e-01 -3.67855638e-01 5.32707632e-01
1.33901894e+00 -3.11193377e-01 5.93111217e-01 6.67031646e-01
7.28089869e-01 8.58731449e-01 5.91903865e-01 -7.62737915e-02
1.97436154e-01 7.23571956e-01 6.92718148e-01 2.08469834e-02
-2.26638496e-01 -4.13418919e-01 2.20156774e-01 -1.26386911e-01
1.56643525e-01 -1.89553052e-01 -1.14721441e+00 9.92183745e-01
-1.74700415e+00 -1.05977833e+00 -3.87220740e-01 2.48921180e+00
9.78258014e-01 2.23582774e-01 1.91153377e-01 -9.63052660e-02
1.14070964e+00 1.99185014e-01 -2.98902869e-01 -2.23571077e-01
-3.68190020e-01 -1.90360650e-01 6.00275517e-01 5.77877998e-01
-1.12984776e+00 1.02004743e+00 6.71924925e+00 6.77871406e-01
-7.58269548e-01 4.77224216e-02 7.95961738e-01 -3.33696723e-01
-2.65783966e-01 7.96581581e-02 -9.44187999e-01 5.80249250e-01
6.56020164e-01 -7.76435584e-02 5.53214610e-01 8.78327489e-01
2.71116011e-02 -3.04824084e-01 -1.58127809e+00 1.11858916e+00
3.52057010e-01 -1.34783316e+00 1.73031390e-01 1.31234229e-01
8.97191644e-01 -1.53517976e-01 4.01970483e-02 2.04135045e-01
2.25538775e-01 -1.28273869e+00 1.27779949e+00 2.91041076e-01
8.44960988e-01 -5.26584566e-01 7.49791622e-01 2.34614208e-01
-4.60532308e-01 6.39052838e-02 -1.34760380e-01 -7.01075494e-02
-1.12974949e-01 5.25400043e-01 -8.06788564e-01 1.46246299e-01
7.18777955e-01 3.99900317e-01 -1.05720985e+00 9.15603459e-01
-3.48592818e-01 5.01724660e-01 -8.27425048e-02 -3.95918116e-02
3.78522247e-01 -5.17683662e-02 7.56298184e-01 1.18670666e+00
1.18178591e-01 -3.26530367e-01 -1.19240627e-01 9.00632083e-01
-2.67694265e-01 -6.39803857e-02 -7.73722291e-01 1.66115776e-01
3.24415624e-01 1.11199176e+00 -5.73619962e-01 -5.63178718e-01
-3.82556111e-01 9.61259723e-01 4.78469938e-01 3.76760662e-01
-9.58160520e-01 -1.56533524e-01 4.72537160e-01 5.51989317e-01
3.70313615e-01 6.93817288e-02 -3.87601525e-01 -1.02866018e+00
1.06576681e-01 -1.12841201e+00 6.49663150e-01 -1.32677817e+00
-1.31950283e+00 6.41623676e-01 1.82116076e-01 -9.35822308e-01
-2.29720518e-01 -7.59034216e-01 -5.64700216e-02 8.77181590e-01
-1.08908761e+00 -1.03302026e+00 -4.78942662e-01 4.16598439e-01
3.04240495e-01 2.14080438e-01 4.28081572e-01 1.24921963e-01
-4.53076810e-01 4.18445945e-01 -2.77612567e-01 2.36943975e-01
1.08615446e+00 -1.42694640e+00 2.95081526e-01 8.51805568e-01
1.91969976e-01 6.45915151e-01 1.23332024e+00 -6.21387541e-01
-8.86009336e-01 -1.09907556e+00 1.14172029e+00 -1.14480186e+00
6.31783903e-01 -3.84423673e-01 -7.64913261e-01 9.42623198e-01
3.21116447e-01 8.01857188e-02 -9.82410647e-03 -1.62302461e-02
-6.99676335e-01 -1.94039252e-02 -1.15240216e+00 7.07328677e-01
1.25298512e+00 -5.06628335e-01 -1.01364279e+00 6.04041278e-01
4.82306629e-01 -6.21143758e-01 -1.51069388e-01 1.02564834e-01
3.91067982e-01 -1.16105437e+00 7.12517500e-01 -8.81309628e-01
6.97700381e-01 -3.65706861e-01 -2.02620924e-01 -1.17601728e+00
-4.29657027e-02 -5.26364803e-01 1.88534409e-01 1.24991989e+00
4.65184361e-01 -1.42439157e-01 8.67863238e-01 7.27447629e-01
4.30424996e-02 -4.59527761e-01 -9.99508739e-01 -9.68320847e-01
-1.13383094e-02 -3.69538784e-01 5.23910940e-01 8.36385548e-01
-2.55639374e-01 3.24965835e-01 -4.85057890e-01 -9.22621563e-02
7.13767111e-01 1.15894988e-01 8.82994831e-01 -9.81810451e-01
2.35798229e-02 -2.87036687e-01 -3.34615231e-01 -8.47433627e-01
1.62017941e-01 -7.99469709e-01 1.47911891e-01 -1.58680558e+00
5.13301969e-01 -5.59481010e-02 1.11448660e-01 5.30863404e-01
-2.98591852e-01 3.04545701e-01 1.17323466e-01 2.29618549e-01
-8.28121841e-01 -5.88626117e-02 1.24232924e+00 -2.80696929e-01
1.38404578e-01 -5.25851190e-01 -7.34700024e-01 6.85017765e-01
3.84502769e-01 -5.89301586e-01 -1.65399574e-02 -4.73554939e-01
5.76297820e-01 -2.81578451e-01 9.20972526e-01 -7.97737539e-01
1.14858292e-01 -3.63490611e-01 3.43911827e-01 -4.79190528e-01
3.16724814e-02 -7.90729463e-01 1.62187546e-01 3.46474737e-01
-5.30492365e-01 1.49337471e-01 -9.48039442e-02 3.00238580e-01
-4.50717881e-02 -2.13471010e-01 8.88054609e-01 -3.76385868e-01
-7.75696576e-01 -2.21840546e-01 6.02320954e-02 5.49724221e-01
9.60859418e-01 -2.08203480e-01 -7.70398319e-01 -3.30256283e-01
-7.03183770e-01 2.91118681e-01 9.40774322e-01 3.00473005e-01
2.49443397e-01 -1.30089128e+00 -7.22554266e-01 -1.19218625e-01
4.56395924e-01 -1.19784370e-01 -5.15619032e-02 8.48215163e-01
-6.68908656e-01 5.18235147e-01 -2.30870858e-01 -5.65270185e-01
-1.20090187e+00 8.62327456e-01 5.36674678e-01 -2.23971680e-01
-3.38067472e-01 7.71920860e-01 2.65213817e-01 -2.01144233e-01
2.14792132e-01 -2.58039117e-01 2.04406217e-01 3.17980349e-01
4.08270746e-01 4.16059315e-01 8.98582861e-03 -9.56382334e-01
-6.08006537e-01 3.94131362e-01 2.44030189e-02 -3.08488339e-01
1.09245932e+00 2.65348461e-02 -2.72897601e-01 1.65793955e-01
1.13499832e+00 9.88974944e-02 -1.34450161e+00 -1.34742921e-02
1.26414821e-01 -6.24979794e-01 -1.41203627e-01 -1.01933849e+00
-7.60825634e-01 5.43503821e-01 2.76535839e-01 1.97971508e-01
7.04012573e-01 4.78014559e-01 3.86036158e-01 3.58306050e-01
4.40531641e-01 -1.18457568e+00 2.60859858e-02 2.74564117e-01
1.28866434e+00 -1.30825889e+00 1.60778672e-01 -3.50420207e-01
-9.69290674e-01 7.57434785e-01 8.00489604e-01 -4.62039337e-02
-2.50173420e-01 -2.03777090e-01 2.08210215e-01 -3.06466997e-01
-6.87044859e-01 -2.65227646e-01 4.88569587e-01 6.31435573e-01
-4.03747931e-02 -2.00764239e-02 -3.44477475e-01 5.12868345e-01
-4.83278066e-01 -1.34520620e-01 5.76263130e-01 5.95321178e-01
-2.63061821e-01 -7.19781876e-01 -7.29535639e-01 4.45605546e-01
-2.27840170e-01 -2.25727275e-01 -8.42360556e-01 1.06192923e+00
4.09919232e-01 7.65757561e-01 1.51053339e-01 -1.37650847e-01
4.77033883e-01 3.11581045e-01 6.28061473e-01 -6.94243729e-01
-5.79000592e-01 -2.92435050e-01 3.87065738e-01 -6.17207229e-01
-2.80261397e-01 -7.77962267e-01 -8.30067098e-01 -1.68272123e-01
9.80835035e-03 1.27285898e-01 3.07793438e-01 8.92391443e-01
3.11830848e-01 -5.24989925e-02 1.28026679e-01 -7.04925716e-01
-6.00721061e-01 -9.01158392e-01 -4.37672019e-01 1.10047054e+00
4.76005346e-01 -6.57241702e-01 -7.73183346e-01 2.79493213e-01] | [10.809090614318848, 1.5545026063919067] |
32ed1531-5c82-4c8a-9947-a175c291b030 | semi-supervised-learning-for-few-shot-audio | 2102.08074 | null | https://arxiv.org/abs/2102.08074v1 | https://arxiv.org/pdf/2102.08074v1.pdf | Semi Supervised Learning For Few-shot Audio Classification By Episodic Triplet Mining | Few-shot learning aims to generalize unseen classes that appear during testing but are unavailable during training. Prototypical networks incorporate few-shot metric learning, by constructing a class prototype in the form of a mean vector of the embedded support points within a class. The performance of prototypical networks in extreme few-shot scenarios (like one-shot) degrades drastically, mainly due to the desuetude of variations within the clusters while constructing prototypes. In this paper, we propose to replace the typical prototypical loss function with an Episodic Triplet Mining (ETM) technique. The conventional triplet selection leads to overfitting, because of all possible combinations being used during training. We incorporate episodic training for mining the semi hard positive and the semi hard negative triplets to overcome the overfitting. We also propose an adaptation to make use of unlabeled training samples for better modeling. Experimenting on two different audio processing tasks, namely speaker recognition and audio event detection; show improved performances and hence the efficacy of ETM over the prototypical loss function and other meta-learning frameworks. Further, we show improved performances when unlabeled training samples are used. | ['Sunil Kumar Kopparapu', 'Rupayan Chakraborty', 'Swapnil Bhosale'] | 2021-02-16 | null | null | null | null | ['few-shot-audio-classification'] | ['audio'] | [ 2.49748409e-01 7.08429217e-02 -2.17240080e-02 -5.71583927e-01
-8.80833387e-01 7.87225924e-03 4.79167998e-01 1.11854345e-01
-4.81587648e-01 8.70864511e-01 -1.17365621e-01 1.75867021e-01
-4.37881589e-01 -6.82774723e-01 -6.20671630e-01 -8.07307899e-01
-2.00417787e-01 4.63816017e-01 2.70445943e-01 -1.15736574e-01
3.27824466e-02 2.31543794e-01 -2.31190825e+00 4.62358117e-01
8.62519085e-01 1.10772491e+00 5.77941984e-02 4.44172859e-01
-3.24169606e-01 5.23848236e-01 -8.23111415e-01 -1.69797614e-01
1.67452216e-01 -5.13216138e-01 -3.61654371e-01 3.89108032e-01
2.76181400e-01 2.25164071e-01 2.13106468e-01 9.35770094e-01
7.26293743e-01 6.53952479e-01 6.85579121e-01 -1.49984324e+00
-1.28743529e-01 6.56282187e-01 -5.71163058e-01 2.31534019e-01
1.59429207e-01 -9.55695584e-02 8.73854995e-01 -1.31115830e+00
4.67627019e-01 1.02856219e+00 8.12381625e-01 7.28070259e-01
-1.05762255e+00 -7.07424164e-01 1.39880523e-01 8.55393887e-01
-1.68038690e+00 -7.60302722e-01 8.90099525e-01 -8.95548239e-02
1.04781425e+00 3.98083061e-01 4.01474625e-01 1.14454925e+00
-1.23476259e-01 6.85811877e-01 7.84218907e-01 -7.03291535e-01
7.95739591e-01 4.94916022e-01 2.64562339e-01 3.51037562e-01
-1.44653982e-02 8.67931247e-02 -6.52188718e-01 -2.69660830e-01
-2.53390074e-02 1.96390629e-01 -1.96117282e-01 -4.68975633e-01
-6.27044320e-01 8.07228625e-01 1.28426654e-02 5.10885119e-01
-4.14650023e-01 -4.76248950e-01 5.14028251e-01 5.85797071e-01
5.15773237e-01 2.49759346e-01 -2.90347666e-01 -2.10848823e-01
-1.27932572e+00 1.31628793e-02 7.60636449e-01 1.00696373e+00
1.05457377e+00 3.01005840e-01 -2.31849968e-01 1.30283070e+00
3.40495817e-02 -8.64797831e-02 1.06225598e+00 -5.69213986e-01
3.02106827e-01 6.09467864e-01 -1.67701855e-01 -5.69866061e-01
-3.84422272e-01 -4.72830981e-01 -7.49653518e-01 1.50610924e-01
4.99410741e-03 -3.76094580e-01 -1.10647821e+00 1.68041885e+00
5.26127577e-01 6.08492255e-01 3.97493839e-02 6.18949652e-01
7.41863012e-01 6.63637698e-01 -1.08407721e-01 -6.77784026e-01
9.41982925e-01 -6.64367139e-01 -6.59997463e-01 -8.11058134e-02
7.79169738e-01 -4.19244081e-01 1.01170409e+00 5.47973573e-01
-8.54535580e-01 -5.67267597e-01 -1.26676667e+00 6.68541133e-01
-5.20399213e-01 -2.59966820e-01 2.82561302e-01 8.24794829e-01
-8.41930568e-01 9.12748516e-01 -6.49269819e-01 -4.65290487e-01
3.40414137e-01 3.87059927e-01 -2.18004555e-01 -1.46848753e-01
-1.16399300e+00 5.99827707e-01 6.53421104e-01 -1.24397740e-01
-7.07253754e-01 -6.63273156e-01 -8.61168385e-01 1.68528959e-01
5.55655062e-01 -2.94792414e-01 1.07741606e+00 -1.00539315e+00
-1.33943450e+00 3.68658870e-01 -1.56490058e-02 -6.92873180e-01
4.02660161e-01 2.93201983e-01 -8.58474493e-01 -4.43116501e-02
-1.60413980e-01 5.09669960e-01 1.04862761e+00 -8.91068220e-01
-6.10190034e-01 -3.51011455e-01 -3.84282440e-01 1.58207178e-01
-8.29449475e-01 -2.02577144e-01 -5.56836464e-02 -4.83149469e-01
-7.65997032e-03 -7.58517504e-01 -5.63789830e-02 -2.70841956e-01
-3.19966257e-01 -4.07406628e-01 1.10852420e+00 -5.53079583e-02
1.40255833e+00 -2.22690153e+00 -9.13162753e-02 2.81723827e-01
-9.38231200e-02 4.96951878e-01 -1.33667335e-01 3.91730428e-01
-3.07860136e-01 -3.03143799e-01 -3.78403276e-01 -4.06240165e-01
-5.20220771e-03 4.43597704e-01 -1.35545671e-01 3.12409252e-01
2.23851636e-01 3.12699407e-01 -6.73599422e-01 -6.54489696e-01
2.33601496e-01 3.55864376e-01 -2.64057815e-01 -4.51720692e-02
-2.62094319e-01 -1.00176439e-01 2.23659948e-02 6.71613276e-01
4.68501896e-01 4.03402932e-02 -1.70777142e-02 1.96095690e-01
-2.51541119e-02 -8.93281400e-02 -1.46406150e+00 1.63225746e+00
-5.99560559e-01 3.50749612e-01 -1.90563858e-01 -1.11663365e+00
1.10293937e+00 5.58955908e-01 4.25312251e-01 -5.21900415e-01
6.36306107e-02 2.43534088e-01 1.57590792e-01 -4.29280609e-01
2.75077403e-01 -3.99529248e-01 2.52568722e-01 4.37182546e-01
4.46401149e-01 3.15197051e-01 4.05957758e-01 -2.71058679e-02
9.99703825e-01 -1.86628714e-01 3.07620883e-01 1.77880749e-02
4.02433872e-01 -3.22780490e-01 8.68411362e-01 7.56607413e-01
-2.30486095e-01 6.80988014e-01 1.86398759e-01 -4.65937763e-01
-8.84131253e-01 -8.15943241e-01 -4.02598321e-01 1.25126982e+00
-2.92690516e-01 -4.25610662e-01 -6.18661702e-01 -6.06580079e-01
-9.52606052e-02 1.06484234e+00 -6.02746844e-01 -4.55100924e-01
-3.98062557e-01 -1.17197597e+00 3.03629667e-01 4.63401705e-01
7.09615052e-02 -1.15288067e+00 -7.78234363e-01 4.19544101e-01
8.05829465e-03 -6.28549695e-01 -1.19071089e-01 6.32518530e-01
-8.65353823e-01 -8.52549911e-01 -7.24416018e-01 -6.94857538e-01
2.44888008e-01 1.94988504e-01 8.25461030e-01 -2.15846539e-01
-6.06989026e-01 2.28941157e-01 -5.75980842e-01 -6.27805889e-01
-3.11039925e-01 -2.09357500e-01 4.52396870e-01 3.78114045e-01
6.66173577e-01 -8.97508562e-01 -2.68516928e-01 2.96164215e-01
-7.48266518e-01 -4.11595762e-01 3.38407040e-01 1.08666492e+00
6.78317964e-01 1.37764707e-01 9.86354351e-01 -8.28470886e-01
4.48477775e-01 -6.29857957e-01 -1.13763206e-01 4.16397691e-01
-7.56841600e-01 -1.06661201e-01 6.67496920e-01 -7.65714705e-01
-9.52676594e-01 -1.45761743e-01 2.95295753e-02 -9.27790284e-01
-1.75419480e-01 2.03806743e-01 -2.18599796e-01 3.97893786e-02
1.00451243e+00 1.30870640e-01 -3.46397944e-02 -5.76784909e-01
1.87714219e-01 8.41233015e-01 1.33443162e-01 -3.27816397e-01
3.49025518e-01 2.65210927e-01 -2.65590489e-01 -1.23660171e+00
-6.57492936e-01 -6.80776894e-01 -2.71496475e-01 -2.79431224e-01
3.22237164e-01 -6.01014376e-01 -2.31023580e-01 7.99405426e-02
-9.43273127e-01 1.13801315e-01 -8.77996385e-01 6.29637361e-01
-6.78740621e-01 3.42680156e-01 -3.12407970e-01 -1.15349829e+00
-3.49506557e-01 -7.87406802e-01 6.39095008e-01 2.02168241e-01
-1.92869887e-01 -6.82057142e-01 1.31774843e-01 -1.96872592e-01
2.47896299e-01 1.72091201e-01 7.88765490e-01 -1.18457186e+00
1.00046076e-01 -3.11545521e-01 2.68248707e-01 4.22311962e-01
8.44495669e-02 7.40384101e-04 -1.39175057e+00 -4.49288517e-01
3.72425437e-01 -4.22367632e-01 1.09919417e+00 2.50417560e-01
1.10259724e+00 -2.12218150e-01 -1.34716228e-01 4.12887305e-01
1.21044338e+00 5.15126288e-01 3.82657140e-01 1.59377322e-01
3.52389395e-01 8.05029929e-01 7.89834321e-01 8.29902887e-01
-1.90122709e-01 6.58077121e-01 2.88021415e-01 3.55560422e-01
1.77015478e-04 -1.59576442e-02 2.79060602e-01 9.70686138e-01
2.49531806e-01 -2.23298132e-01 -8.35611045e-01 6.00494325e-01
-1.93892801e+00 -1.23720193e+00 3.86151552e-01 2.42514992e+00
7.35778987e-01 2.90744722e-01 2.67981291e-01 6.59702241e-01
9.84237194e-01 -1.86438374e-02 -6.71431959e-01 -5.38163781e-01
-2.19674677e-01 2.67314434e-01 5.10403365e-02 7.24126995e-02
-1.00114667e+00 4.93241489e-01 5.31326342e+00 1.17998075e+00
-1.05987096e+00 2.80692399e-01 4.66059506e-01 -5.33863962e-01
-8.12762156e-02 -1.52462825e-01 -9.24815476e-01 4.28541332e-01
1.27451682e+00 -2.04136401e-01 1.19499028e-01 7.44929969e-01
3.86600718e-02 8.39501396e-02 -1.16338968e+00 1.20516717e+00
3.76436591e-01 -1.04637504e+00 -9.84346792e-02 -2.90615618e-01
6.78419888e-01 -5.19481227e-02 4.82201278e-02 6.64152861e-01
-1.53962210e-01 -5.70092320e-01 5.62286973e-01 4.76329893e-01
7.26206601e-01 -9.84277904e-01 5.52332520e-01 5.83881855e-01
-9.58821237e-01 -5.14953017e-01 -7.79233992e-01 7.68213905e-03
-7.65732601e-02 7.31146634e-01 -1.19257212e+00 4.34579760e-01
5.68495095e-01 5.90738177e-01 -5.42932212e-01 1.42571878e+00
2.11811513e-01 5.75509071e-01 -4.25969362e-01 -9.79437381e-02
2.47657150e-01 -7.31459782e-02 7.17316985e-01 1.05796885e+00
5.80614388e-01 -2.58453399e-01 1.05631463e-01 5.50221741e-01
1.77264407e-01 3.60683948e-01 -6.62315309e-01 2.04712972e-01
7.04661489e-01 1.12236488e+00 -6.03839159e-01 -4.93406922e-01
-4.03553814e-01 6.40017033e-01 2.17919484e-01 2.74500042e-01
-6.51475251e-01 -7.20725894e-01 3.98426473e-01 8.99888426e-02
6.22519076e-01 5.43466449e-01 -8.68289843e-02 -9.63279903e-01
1.16015829e-01 -6.42572284e-01 6.96979940e-01 -4.01851177e-01
-1.37266576e+00 7.29237497e-01 8.39528665e-02 -1.72003651e+00
-7.73811400e-01 -1.46532372e-01 -9.93286252e-01 4.84017104e-01
-1.13008893e+00 -6.52267039e-01 2.63881925e-02 6.75177515e-01
8.66691172e-01 -4.28661317e-01 9.31695163e-01 4.40491527e-01
-7.54358590e-01 8.82901609e-01 2.14658767e-01 -3.35000783e-01
7.90783525e-01 -1.04974604e+00 1.52963579e-01 6.46948874e-01
4.53368545e-01 3.70251954e-01 7.96826899e-01 -4.10053462e-01
-9.24860477e-01 -1.22760594e+00 9.15735722e-01 1.15669131e-01
4.81542438e-01 -3.36133808e-01 -1.13130987e+00 2.74179727e-01
-1.28798619e-01 9.85218212e-02 9.99716222e-01 3.29259396e-01
-4.55348343e-01 -3.77802998e-01 -1.27162254e+00 3.55522722e-01
7.74507046e-01 -4.00898248e-01 -6.94744647e-01 3.06911379e-01
6.62753940e-01 2.86042839e-01 -5.99521518e-01 4.72306162e-01
4.77770001e-01 -1.13134444e+00 6.40124023e-01 -5.97971678e-01
-1.41681165e-01 -1.21787362e-01 -2.39535272e-01 -1.34671378e+00
-3.71029265e-02 -5.16939461e-01 -4.36142206e-01 1.32205176e+00
4.60473865e-01 -3.75963271e-01 8.81483197e-01 3.90118271e-01
-3.31828713e-01 -8.66942585e-01 -1.52043784e+00 -1.15104151e+00
-2.82029331e-01 -5.48452795e-01 6.33939385e-01 9.98708487e-01
3.18917543e-01 3.81041765e-01 -4.78375047e-01 -2.47534513e-01
8.09679449e-01 8.54926854e-02 3.39423507e-01 -1.44566441e+00
-5.99946201e-01 -1.72965020e-01 -7.89809048e-01 -1.07704490e-01
-3.78756374e-02 -7.59316027e-01 1.86502218e-01 -8.44955027e-01
4.53151427e-02 -2.61121571e-01 -7.20581174e-01 5.38834572e-01
1.39113098e-01 2.79094487e-01 2.22445175e-01 5.73172532e-02
-8.70719194e-01 6.68890595e-01 6.36751533e-01 -1.08003154e-01
-6.09792948e-01 3.73179108e-01 -3.87388945e-01 7.01140642e-01
8.20172489e-01 -6.10890448e-01 -6.98186994e-01 5.65479174e-02
-1.71142712e-01 2.00496703e-01 1.42114952e-01 -1.43675447e+00
3.30098927e-01 1.57222107e-01 3.54921341e-01 -7.28389263e-01
6.27576292e-01 -7.23979533e-01 2.70631790e-01 1.90659687e-01
-2.75150329e-01 -1.93365499e-01 1.29136205e-01 8.18698525e-01
-3.07819933e-01 -5.30074656e-01 9.77164686e-01 -4.48111221e-02
-7.49565482e-01 2.64239430e-01 -8.20976868e-02 6.90158010e-02
1.20775008e+00 -7.83659101e-01 5.94292283e-02 -1.96693182e-01
-1.10455906e+00 1.17942862e-01 2.05070853e-01 4.85771477e-01
8.08233857e-01 -1.31978166e+00 -5.33079147e-01 4.16890651e-01
3.67157847e-01 -2.80826598e-01 5.57966888e-01 8.16222370e-01
2.17626333e-01 7.35406801e-02 -1.97087720e-01 -6.29371464e-01
-1.25926054e+00 6.97077453e-01 2.05525309e-01 1.40575871e-01
-6.37657106e-01 8.78075361e-01 1.31727941e-02 -1.72892481e-01
6.64924383e-01 -4.54762802e-02 -3.31565887e-01 5.05551934e-01
8.63827467e-01 7.31414795e-01 5.10012865e-01 -3.84231955e-01
-3.74657184e-01 1.90999612e-01 -3.39427263e-01 -1.23608097e-01
1.46816611e+00 -1.73495598e-02 3.10689747e-01 1.14213610e+00
1.29310954e+00 -6.56129956e-01 -1.13973296e+00 -4.57995653e-01
2.31898516e-01 -1.67580351e-01 -1.83498889e-01 -6.07636869e-01
-7.46549666e-01 1.04274988e+00 9.94411051e-01 1.13907941e-01
1.15183401e+00 -2.10293233e-01 6.62350714e-01 4.33738798e-01
4.88439709e-01 -1.44631708e+00 -1.95999473e-01 3.55438888e-01
4.47846323e-01 -1.15976679e+00 -2.11226627e-01 1.95616744e-02
-5.60184598e-01 1.10141385e+00 5.05793810e-01 9.06114876e-02
7.47825861e-01 7.90421143e-02 -1.26906633e-01 3.17939781e-02
-1.12542486e+00 -7.55270943e-02 2.40609631e-01 5.49826920e-01
1.61872149e-01 4.49315943e-02 -3.22364628e-01 6.57983243e-01
3.99559326e-02 -1.52073652e-01 3.79936308e-01 1.13280249e+00
-7.83439696e-01 -1.05347943e+00 -3.75369698e-01 8.03053021e-01
-1.18945181e-01 2.55741272e-02 -2.08896324e-01 4.69480246e-01
3.39169055e-01 1.07855070e+00 2.21223131e-01 -6.11573219e-01
4.40970272e-01 5.36377966e-01 2.99175501e-01 -9.36778963e-01
-5.81886351e-01 1.14153109e-01 -6.52784631e-02 -2.97911465e-01
-3.17136765e-01 -6.98087335e-01 -9.88870203e-01 3.20375003e-02
-5.95797956e-01 4.70766127e-01 5.62970996e-01 9.49177802e-01
2.57349551e-01 3.94938231e-01 9.17218089e-01 -7.73284674e-01
-1.06582022e+00 -1.15665793e+00 -9.71878111e-01 3.27056080e-01
2.96510428e-01 -8.41715336e-01 -5.67302346e-01 -2.60740668e-01] | [9.954097747802734, 3.199692964553833] |
84ddb4a0-7821-4216-b7f6-7cfeed58a09d | voicefilter-targeted-voice-separation-by | 1810.04826 | null | https://arxiv.org/abs/1810.04826v6 | https://arxiv.org/pdf/1810.04826v6.pdf | VoiceFilter: Targeted Voice Separation by Speaker-Conditioned Spectrogram Masking | In this paper, we present a novel system that separates the voice of a target speaker from multi-speaker signals, by making use of a reference signal from the target speaker. We achieve this by training two separate neural networks: (1) A speaker recognition network that produces speaker-discriminative embeddings; (2) A spectrogram masking network that takes both noisy spectrogram and speaker embedding as input, and produces a mask. Our system significantly reduces the speech recognition WER on multi-speaker signals, with minimal WER degradation on single-speaker signals. | ['Zelin Wu', 'Hannah Muckenhirn', 'Ye Jia', 'Ron J. Weiss', 'Rif A. Saurous', 'John Hershey', 'Prashant Sridhar', 'Kevin Wilson', 'Ignacio Lopez Moreno', 'Quan Wang'] | 2018-10-11 | null | null | null | null | ['speaker-separation'] | ['speech'] | [ 5.28933585e-01 2.28644073e-01 1.92843482e-01 -6.78439200e-01
-1.19338131e+00 -3.99032742e-01 3.73298019e-01 -3.44712824e-01
-3.93677980e-01 2.42907479e-01 3.65298450e-01 -4.98139739e-01
5.96165717e-01 -2.24444076e-01 -4.15910333e-01 -6.00390077e-01
7.51290545e-02 -8.04486200e-02 2.60095447e-01 -1.51680321e-01
-1.22452356e-01 3.99565458e-01 -1.63678837e+00 3.22085500e-01
5.36251962e-01 8.25232983e-01 3.27382594e-01 1.20153797e+00
-1.26694530e-01 5.02128541e-01 -1.18740344e+00 2.00929120e-01
5.88872470e-02 -9.95870411e-01 -6.73724353e-01 2.06932366e-01
4.46188807e-01 -1.29665196e-01 -2.63660163e-01 1.07653618e+00
6.63589597e-01 2.41952553e-01 4.34855431e-01 -8.86100888e-01
-5.85491776e-01 9.77311492e-01 -1.91261142e-01 6.62423551e-01
3.59931231e-01 -4.85259071e-02 8.97057533e-01 -1.01070833e+00
-3.32692266e-02 1.46968389e+00 4.18380141e-01 8.10545087e-01
-1.37204146e+00 -7.32158065e-01 3.10613923e-02 -1.91117883e-01
-1.66709101e+00 -1.30673218e+00 9.88891482e-01 -2.07426816e-01
1.26230037e+00 5.83176792e-01 7.75492936e-02 1.25687349e+00
1.95466131e-02 5.05430877e-01 6.65656626e-01 -7.73090839e-01
1.82378843e-01 4.78877246e-01 2.23999992e-01 2.55294651e-01
-4.70619977e-01 3.59488666e-01 -6.72271192e-01 -3.23202342e-01
4.24378633e-01 -5.46520591e-01 -5.44535637e-01 4.01219040e-01
-7.92351186e-01 7.97978759e-01 -1.09025232e-01 6.76194489e-01
-3.04730743e-01 2.09925041e-01 1.89041272e-01 6.23829365e-01
3.61030519e-01 2.91402470e-02 -6.90788478e-02 -6.41232505e-02
-1.27304935e+00 -4.02991354e-01 8.74759316e-01 5.64853966e-01
4.45054173e-01 8.16997349e-01 1.38723999e-01 1.08784425e+00
7.23812580e-01 8.23892832e-01 1.00710714e+00 -3.17369610e-01
3.56231719e-01 -2.31089398e-01 -7.29576796e-02 -4.78539586e-01
-4.82236035e-02 -1.04662821e-01 -3.39162439e-01 8.17801803e-02
8.50395709e-02 -2.39743620e-01 -1.03256834e+00 1.83182931e+00
2.50181794e-01 4.45347518e-01 4.44211870e-01 7.77385652e-01
9.87024784e-01 1.01092112e+00 -2.30295911e-01 -2.74653167e-01
1.09283960e+00 -1.05355597e+00 -1.04359627e+00 -5.63325047e-01
1.88488662e-02 -9.99095798e-01 1.12669742e+00 2.01505527e-01
-1.16237581e+00 -8.96164894e-01 -1.28921843e+00 6.72559664e-02
-3.17983598e-01 1.83435753e-01 -2.38204971e-01 1.32473469e+00
-1.44396329e+00 2.44967133e-01 -6.61443114e-01 -4.71094549e-02
-3.06388438e-01 5.42798221e-01 -1.11954652e-01 4.85639095e-01
-1.36834216e+00 9.53881025e-01 1.55725792e-01 -3.34950797e-02
-1.15144348e+00 -3.59013230e-01 -1.19999754e+00 3.07699800e-01
-1.74435630e-01 4.57009040e-02 1.52597892e+00 -1.33125615e+00
-2.22038889e+00 6.36189699e-01 -7.11409569e-01 -3.53000015e-01
1.90777779e-02 -8.93579572e-02 -1.32922697e+00 8.43470842e-02
-2.27521658e-01 3.95877570e-01 1.63788879e+00 -1.04622197e+00
-3.59800577e-01 -3.56880613e-02 -6.23912454e-01 8.32014345e-03
-3.22411358e-01 5.35479188e-01 -9.61012393e-02 -6.38013661e-01
2.96839923e-02 -4.82826710e-01 2.74570942e-01 -6.70685530e-01
-7.28486061e-01 -1.81421503e-01 1.19314718e+00 -8.40936005e-01
1.29148173e+00 -2.76066947e+00 1.49170635e-02 3.10482085e-01
-2.07367122e-01 3.45897406e-01 -6.18870199e-01 2.84863979e-01
-5.07688582e-01 -1.14066843e-02 -2.21982867e-01 -8.06087971e-01
-9.15207863e-02 9.49167684e-02 -5.80072820e-01 3.95915568e-01
4.82317269e-01 5.13844609e-01 -4.28232133e-01 -2.31650025e-01
1.99037209e-01 7.19493270e-01 -1.77544281e-01 3.65659535e-01
2.43199319e-01 7.60251135e-02 3.44181299e-01 3.66562963e-01
6.19865954e-01 2.87542731e-01 1.90804020e-01 1.93129450e-01
-1.94029421e-01 1.09162545e+00 -1.51390052e+00 1.34814012e+00
-4.54461247e-01 8.01867008e-01 7.51471758e-01 -6.04956031e-01
1.16503739e+00 7.68262565e-01 -1.16990872e-01 -2.04259902e-01
2.98113376e-01 2.76806116e-01 2.10625574e-01 -3.31455380e-01
4.86365378e-01 -4.91632253e-01 -2.56347917e-02 5.09315431e-01
3.67002487e-01 -2.46829972e-01 -1.80372104e-01 -2.27559656e-01
9.61928487e-01 -7.10912347e-01 1.32828623e-01 -2.60342985e-01
7.69051731e-01 -8.33245277e-01 3.76006395e-01 5.87486804e-01
-3.55466038e-01 6.68493092e-01 1.18027348e-02 1.88803017e-01
-6.01275563e-01 -1.38168335e+00 -4.63688597e-02 1.38641298e+00
-2.87950262e-02 -1.19831562e-01 -8.04714084e-01 -4.41492379e-01
1.95577070e-01 1.05892551e+00 -2.59616494e-01 -2.36555353e-01
-6.82725966e-01 -2.31576264e-01 1.13054168e+00 4.98912007e-01
-2.49384105e-01 -9.75461245e-01 -1.18199363e-01 2.12716401e-01
-1.29426539e-01 -7.65590072e-01 -1.34361625e+00 6.61281765e-01
-4.41513449e-01 -5.19849598e-01 -5.40066361e-01 -1.13725972e+00
3.72009695e-01 3.44485551e-01 5.96217155e-01 -2.40277246e-01
9.92242470e-02 2.37689376e-01 3.57799158e-02 -4.70169127e-01
-1.17130160e+00 -1.78680986e-01 5.27150810e-01 3.33871454e-01
6.02363408e-01 -5.50459683e-01 1.98169693e-01 5.24411380e-01
-8.07827175e-01 -4.90575612e-01 4.25636083e-01 6.10146761e-01
1.82475835e-01 8.03631693e-02 8.58641207e-01 -2.96906382e-01
7.83065200e-01 -3.23809147e-01 -4.87801164e-01 2.65535489e-02
-1.05608404e-01 -3.46567184e-02 7.34347880e-01 -8.19611073e-01
-9.59346831e-01 2.06181616e-01 -5.16109824e-01 -4.45705026e-01
-3.37897480e-01 2.08686113e-01 -4.60876614e-01 4.30097505e-02
9.21493053e-01 5.89724123e-01 2.58649915e-01 -7.51444757e-01
3.98322493e-01 1.60027647e+00 6.97271109e-01 -2.89715198e-03
8.20277274e-01 -6.90248683e-02 -9.92232442e-01 -1.58860171e+00
-2.14156255e-01 -7.96766222e-01 -4.51837569e-01 -6.70217425e-02
5.16062677e-01 -9.50064659e-01 -3.30689669e-01 4.51366633e-01
-1.44215333e+00 -5.47229350e-02 -3.82202566e-01 8.16131532e-01
-1.34979859e-01 3.77367198e-01 -6.61621392e-01 -1.14941394e+00
-3.02292913e-01 -1.17296803e+00 9.16873336e-01 2.05617979e-01
-5.20391226e-01 -7.54929125e-01 2.40557924e-01 7.43759125e-02
5.29941618e-01 -5.58086514e-01 4.21213150e-01 -1.11280155e+00
-8.98976717e-03 -1.31639570e-01 2.47881770e-01 1.15129507e+00
6.47478580e-01 5.65635301e-02 -1.72526491e+00 -3.66259903e-01
3.81050169e-01 -1.23140529e-01 8.11016083e-01 4.51517910e-01
6.78757131e-01 -2.32401744e-01 -9.86915380e-02 3.21682483e-01
8.72409046e-01 5.52418470e-01 3.74875993e-01 -4.85411495e-01
3.25298786e-01 4.10821527e-01 -3.50613564e-01 -4.18067500e-02
-9.34085995e-02 2.58629531e-01 -7.93567821e-02 -1.26301378e-01
-3.46598804e-01 -1.39136836e-01 1.01393163e+00 1.37681806e+00
4.92832392e-01 -4.12125111e-01 -6.92212820e-01 7.71743238e-01
-1.20810723e+00 -1.00480008e+00 7.78563768e-02 2.13805628e+00
9.60611939e-01 1.33025691e-01 2.51546502e-01 4.42363888e-01
1.13580203e+00 5.87966383e-01 -5.35239220e-01 -8.16545546e-01
-4.24255095e-02 4.66610014e-01 1.95997685e-01 9.16994870e-01
-1.13817775e+00 7.28159010e-01 8.33720112e+00 5.99756718e-01
-1.57480717e+00 2.34372020e-01 1.97540969e-02 -4.28185940e-01
-3.88482898e-01 -5.95972180e-01 -8.22158813e-01 4.71761465e-01
1.77832603e+00 -3.29248875e-01 6.07684791e-01 1.02522886e+00
3.44299376e-01 1.94802135e-01 -1.39112926e+00 9.55336690e-01
5.88155389e-01 -8.31588745e-01 -4.93986718e-02 -4.77998368e-02
1.37254626e-01 1.19186670e-01 2.41476670e-02 2.76583761e-01
2.24785000e-01 -1.13407123e+00 1.00529003e+00 2.56509334e-02
8.34816098e-01 -7.09429324e-01 4.99096602e-01 3.14087540e-01
-1.37913787e+00 1.16383985e-01 -1.23476304e-01 8.77194330e-02
2.23139435e-01 5.87154567e-01 -1.03615212e+00 2.35060185e-01
3.46218169e-01 6.42752722e-02 -4.49794680e-02 6.14130318e-01
-4.09993708e-01 1.10581946e+00 -4.52728838e-01 1.31903240e-03
-1.04528293e-02 2.82118261e-01 7.88584352e-01 1.61009336e+00
2.26270378e-01 -2.01896578e-01 1.92763343e-01 8.98258150e-01
-1.88397005e-01 4.69614379e-02 -4.99282777e-01 -3.72973084e-01
8.00766706e-01 9.48807180e-01 -2.67556310e-01 -3.82231146e-01
-3.99184704e-01 1.02983010e+00 2.37126779e-02 5.11748552e-01
-6.94690526e-01 -8.66346836e-01 9.45637763e-01 -2.17613608e-01
4.98081833e-01 -1.15015522e-01 -1.18034795e-01 -8.82119060e-01
5.59712164e-02 -8.15903425e-01 1.23305380e-01 -4.10624683e-01
-1.13204467e+00 9.35159981e-01 -5.11763155e-01 -8.87456536e-01
-5.80943108e-01 -3.16747487e-01 -9.20712054e-01 1.60109067e+00
-1.47461605e+00 -4.71044242e-01 3.08732718e-01 4.19225782e-01
6.55521810e-01 -2.99376637e-01 1.08765471e+00 3.41079772e-01
-7.39280164e-01 9.00517404e-01 1.32452130e-01 2.74328738e-01
6.75261617e-01 -1.16435468e+00 7.98652112e-01 9.60718453e-01
3.24001253e-01 7.98316956e-01 6.09228373e-01 -1.66942462e-01
-1.05815780e+00 -9.38035727e-01 1.18884087e+00 -2.83128470e-01
4.64096636e-01 -6.31781757e-01 -1.12864101e+00 7.96915531e-01
3.84813696e-01 -2.23177060e-01 1.25225914e+00 1.43762916e-01
-4.50657934e-01 -6.43144101e-02 -1.14476407e+00 3.74179929e-02
3.61456633e-01 -1.21768355e+00 -1.28085208e+00 -1.72032252e-01
9.98956144e-01 -2.75038511e-01 -3.93041015e-01 -2.75062770e-01
5.05551934e-01 -5.82212210e-01 9.51282442e-01 -2.77202100e-01
-7.72413239e-02 -4.54203993e-01 -3.96419466e-01 -1.64529347e+00
-1.99112579e-01 -7.76631713e-01 2.93774307e-02 1.24168921e+00
6.66830420e-01 -8.12084258e-01 2.44528025e-01 3.34227890e-01
-3.16328436e-01 -1.34753319e-03 -1.35037839e+00 -1.31340420e+00
-5.08759916e-02 -5.63385844e-01 6.12647414e-01 8.34077716e-01
1.40306950e-01 4.82917517e-01 -3.74085784e-01 6.18549287e-01
2.18991056e-01 -3.22952360e-01 4.74753261e-01 -8.89419734e-01
-3.65836829e-01 -3.94895852e-01 -1.98486432e-01 -1.29874134e+00
1.17078885e-01 -7.37812519e-01 7.40409732e-01 -8.68756533e-01
-4.36078399e-01 3.57174277e-01 -5.03688812e-01 3.73998791e-01
-1.03997491e-01 3.42231654e-02 -1.81051884e-02 -9.11635309e-02
-6.93986565e-02 6.21176541e-01 4.83937770e-01 -2.08311811e-01
-5.96106529e-01 6.33721128e-02 -5.80222905e-01 6.97995186e-01
6.51070774e-01 -6.34958327e-01 -3.26930642e-01 -2.64645040e-01
-8.28969300e-01 1.01025164e-01 6.68845400e-02 -1.00282562e+00
9.19507444e-02 2.39220019e-02 1.45013213e-01 -5.73870301e-01
5.62060833e-01 -4.98116732e-01 1.92835834e-02 4.14564580e-01
-5.08831620e-01 -3.74934882e-01 5.19156635e-01 4.30725574e-01
-4.75409269e-01 -4.57850575e-01 1.07496631e+00 2.78471828e-01
-2.49988332e-01 -4.45799381e-01 -8.53167593e-01 -2.00823694e-01
5.46200812e-01 -1.82193443e-01 -1.09514251e-01 -3.96850228e-01
-8.55048418e-01 -1.41102850e-01 1.55904088e-02 5.34601390e-01
6.48875713e-01 -1.33428347e+00 -6.90906227e-01 8.38866830e-01
-2.42079496e-01 -4.54956084e-01 -1.22022219e-02 4.84677494e-01
4.25888859e-02 4.75214213e-01 3.35959285e-01 -5.18709004e-01
-1.72139168e+00 2.69093901e-01 5.85571826e-01 4.16307628e-01
-2.91893303e-01 1.30309319e+00 7.07153752e-02 -5.80630302e-01
5.21051586e-01 -6.26850069e-01 1.07796155e-01 5.49765304e-03
1.15559208e+00 1.70036942e-01 1.01032279e-01 -9.30736065e-01
-7.03709960e-01 4.51260842e-02 -1.06311236e-02 -6.12745464e-01
9.95929182e-01 -1.09383866e-01 1.40422478e-01 1.00269771e+00
1.38929248e+00 5.27155936e-01 -7.70534158e-01 -3.94506872e-01
-4.42325883e-02 -2.96141118e-01 3.31859648e-01 -6.93171263e-01
-5.99727511e-01 7.34547257e-01 5.30185819e-01 8.56728375e-01
1.02441490e+00 6.85115205e-03 9.05754209e-01 1.88293487e-01
-9.94694829e-02 -1.23995125e+00 -2.21426375e-02 5.67995787e-01
9.65924323e-01 -1.05603588e+00 -6.88224792e-01 -4.34502929e-01
-3.55549484e-01 1.15439880e+00 2.12605596e-01 4.18429300e-02
8.41492951e-01 5.27179897e-01 5.67680061e-01 1.04519166e-01
-6.62942231e-01 -2.50290602e-01 4.56709415e-01 5.90517521e-01
4.05148029e-01 1.55391827e-01 2.67806768e-01 9.01517987e-01
-5.15426338e-01 -3.35924208e-01 4.67322052e-01 7.65307605e-01
-8.63018036e-01 -1.01130486e+00 -1.00422478e+00 1.01979934e-01
-3.01644206e-01 -2.32368082e-01 -7.09984541e-01 3.21539849e-01
-1.37915522e-01 1.43793201e+00 1.63423330e-01 -6.48485482e-01
5.24676740e-01 8.16227794e-01 -1.29093155e-01 -9.94225919e-01
-7.37849891e-01 4.82318163e-01 1.15874752e-01 -3.51772875e-01
-1.72292948e-01 -5.45806348e-01 -1.19743991e+00 -1.07534401e-01
-6.47791147e-01 3.78525972e-01 1.05020821e+00 9.25957501e-01
2.37853125e-01 7.96965837e-01 1.07229757e+00 -8.62595379e-01
-9.09210622e-01 -1.36581433e+00 -9.30071354e-01 -7.38969892e-02
9.70499575e-01 -9.85861495e-02 -1.05690432e+00 2.68701702e-01] | [14.568918228149414, 6.269887447357178] |
9dfe7dbf-f15c-42a5-8eba-4093fe867ed4 | deep-cross-modality-adaptation-via-semantics | 1807.01806 | null | http://arxiv.org/abs/1807.01806v1 | http://arxiv.org/pdf/1807.01806v1.pdf | Deep Cross-modality Adaptation via Semantics Preserving Adversarial Learning for Sketch-based 3D Shape Retrieval | Due to the large cross-modality discrepancy between 2D sketches and 3D
shapes, retrieving 3D shapes by sketches is a significantly challenging task.
To address this problem, we propose a novel framework to learn a discriminative
deep cross-modality adaptation model in this paper. Specifically, we first
separately adopt two metric networks, following two deep convolutional neural
networks (CNNs), to learn modality-specific discriminative features based on an
importance-aware metric learning method. Subsequently, we explicitly introduce
a cross-modality transformation network to compensate for the divergence
between two modalities, which can transfer features of 2D sketches to the
feature space of 3D shapes. We develop an adversarial learning based method to
train the transformation model, by simultaneously enhancing the holistic
correlations between data distributions of two modalities, and mitigating the
local semantic divergences through minimizing a cross-modality mean discrepancy
term. Experimental results on the SHREC 2013 and SHREC 2014 datasets clearly
show the superior retrieval performance of our proposed model, compared to the
state-of-the-art approaches. | ['Yi Fang', 'Jiaxin Chen'] | 2018-07-04 | deep-cross-modality-adaptation-via-semantics-1 | http://openaccess.thecvf.com/content_ECCV_2018/html/Jiaxin_Chen_Deep_Cross-modality_Adaptation_ECCV_2018_paper.html | http://openaccess.thecvf.com/content_ECCV_2018/papers/Jiaxin_Chen_Deep_Cross-modality_Adaptation_ECCV_2018_paper.pdf | eccv-2018-9 | ['3d-shape-retrieval'] | ['computer-vision'] | [ 1.73380390e-01 -4.18759584e-01 4.35933992e-02 -4.46962416e-01
-9.69931006e-01 -7.58117616e-01 7.62735486e-01 -2.55730093e-01
-1.37515947e-01 3.02580774e-01 2.56820738e-01 1.08587705e-01
-3.20943773e-01 -8.32912982e-01 -7.26072907e-01 -6.06185973e-01
3.56129557e-01 3.00198108e-01 -2.11209834e-01 -9.12555084e-02
3.21055949e-01 7.09549248e-01 -1.26537645e+00 1.07561760e-01
8.22452962e-01 1.22565210e+00 -1.23406023e-01 1.97279930e-01
-3.80162776e-01 1.89422891e-01 -3.12221795e-01 -5.98445773e-01
5.19217074e-01 -2.19126910e-01 -4.34535176e-01 1.08222179e-01
7.93297946e-01 -3.85982186e-01 -6.97523952e-01 1.04978538e+00
7.26256549e-01 1.52462527e-01 9.90467906e-01 -1.31325567e+00
-1.29134333e+00 -3.80984470e-02 -6.55851722e-01 -3.90560955e-01
3.08651477e-01 9.36176106e-02 1.05370271e+00 -1.27626801e+00
5.49153745e-01 1.39980030e+00 6.35788321e-01 6.69780195e-01
-1.31908607e+00 -8.12945724e-01 1.05115235e-01 -5.50076216e-02
-1.61652887e+00 -2.33495906e-01 1.39092958e+00 -4.38118577e-01
3.75094146e-01 4.36202018e-03 4.28159177e-01 1.25113261e+00
-2.73789108e-01 9.23315763e-01 9.39656675e-01 -2.13532120e-01
-5.35382293e-02 1.89257448e-03 -5.99161804e-01 6.59632981e-01
1.03767717e-03 6.90157115e-02 -5.06257415e-01 -2.60912657e-01
1.11993837e+00 4.97107565e-01 -1.64345324e-01 -8.44920397e-01
-1.17628598e+00 6.28864408e-01 5.00603974e-01 2.50917792e-01
-2.92292327e-01 8.61596391e-02 4.18015569e-01 3.64826769e-01
6.12794399e-01 1.87329993e-01 -4.28780109e-01 1.95358004e-02
-7.37976074e-01 3.21501821e-01 4.81886744e-01 1.14817381e+00
6.23926461e-01 -1.32394701e-01 -3.92998070e-01 1.29837799e+00
5.42557538e-01 7.57527947e-01 7.23334728e-03 -7.67069757e-01
6.77806318e-01 7.32849717e-01 3.44392322e-02 -1.14616525e+00
1.39155000e-01 -2.07865179e-01 -1.04231763e+00 1.27104387e-01
3.15854311e-01 2.82836914e-01 -7.01664627e-01 2.07469296e+00
2.97567427e-01 -3.30913663e-02 -7.43896738e-02 1.09348238e+00
7.72698939e-01 4.35824394e-01 1.67220026e-01 4.00155663e-01
1.11919665e+00 -7.82871425e-01 -4.68244702e-01 2.44606361e-01
3.34104151e-02 -9.97475147e-01 1.27750826e+00 -1.18085623e-01
-1.13458943e+00 -6.25091970e-01 -1.15024221e+00 -4.27500457e-01
-5.45171797e-01 3.30008924e-01 2.44918615e-01 3.71794373e-01
-5.35091639e-01 6.12437665e-01 -4.79778320e-01 -3.40977699e-01
7.73490787e-01 -2.70092748e-02 -4.44776386e-01 -3.80743682e-01
-1.15240133e+00 7.73676217e-01 9.25740153e-02 1.42755911e-01
-7.56756544e-01 -1.00147641e+00 -9.75474596e-01 1.06664956e-01
1.24389544e-01 -8.60658467e-01 6.75777435e-01 -7.37505138e-01
-1.53457201e+00 1.08230829e+00 1.72167897e-01 3.60669643e-01
6.33566916e-01 -1.33227170e-01 -3.39321911e-01 6.49560615e-02
-4.82579879e-02 6.49617970e-01 1.09313083e+00 -1.51244450e+00
-2.52475530e-01 -5.22898912e-01 2.02530146e-01 2.34347463e-01
-6.18057251e-01 -3.24858725e-01 -7.08864093e-01 -1.05166125e+00
1.59601465e-01 -8.10321212e-01 2.16293544e-01 7.57868171e-01
-2.51094162e-01 -3.02031428e-01 8.31113577e-01 -6.96530640e-01
8.79877925e-01 -2.26782227e+00 4.91167963e-01 3.08665037e-01
9.22290608e-02 1.82295546e-01 -6.90133691e-01 5.04946947e-01
1.43138424e-01 -5.31247072e-02 -5.68206489e-01 -5.85268557e-01
4.69290435e-01 2.81130373e-01 -4.77019757e-01 3.55494767e-01
6.98449194e-01 1.00296426e+00 -9.31270242e-01 -3.08750391e-01
2.24398792e-01 8.18569720e-01 -4.26908463e-01 5.62341690e-01
-6.98766112e-02 5.32358468e-01 -5.63328862e-01 9.97012556e-01
1.24290359e+00 -7.89754391e-02 -4.26582769e-02 -5.73503733e-01
2.58750349e-01 -4.43414901e-04 -8.65534365e-01 2.33177853e+00
-7.41693258e-01 2.31739566e-01 4.56527621e-02 -1.11451173e+00
1.22895253e+00 1.22728266e-01 5.83010197e-01 -8.24042261e-01
-7.49884024e-02 4.00083482e-01 -6.30695164e-01 -3.88609618e-01
2.84652680e-01 -3.45306873e-01 -1.40305519e-01 3.70868415e-01
2.82038182e-01 -3.72366548e-01 -3.21788222e-01 -3.85830924e-02
7.37619460e-01 4.12824571e-01 -1.85535491e-01 -1.47402376e-01
7.38707066e-01 -6.61415040e-01 3.33339661e-01 4.65862721e-01
-4.71936241e-02 9.98431444e-01 3.77856284e-01 -3.75748694e-01
-1.20352304e+00 -1.35051095e+00 -8.26787576e-02 7.02968240e-01
4.54710633e-01 -1.59982175e-01 -3.44102204e-01 -1.00903010e+00
5.30943274e-01 2.31905773e-01 -7.62630701e-01 -4.47763801e-01
-5.18219650e-01 -9.39376131e-02 6.05079114e-01 6.30311489e-01
5.59878826e-01 -8.23684931e-01 3.59250568e-02 -6.26769885e-02
-3.59315462e-02 -1.11673927e+00 -1.03741860e+00 -2.99426109e-01
-7.48536468e-01 -9.37584519e-01 -1.28604996e+00 -8.24976265e-01
7.68266439e-01 4.08519119e-01 1.03531289e+00 1.23969153e-01
-1.90955937e-01 8.20668876e-01 -2.48804599e-01 -1.96906328e-01
-5.56839630e-03 7.72389099e-02 -1.38097152e-01 2.44112760e-01
4.64457959e-01 -9.37935829e-01 -7.26640463e-01 1.87104851e-01
-1.22042429e+00 -3.17875482e-02 7.82879233e-01 1.08044577e+00
7.18293667e-01 -4.47947055e-01 6.16598368e-01 -5.11686027e-01
5.61305821e-01 -5.14921546e-01 -4.63744342e-01 5.46761811e-01
-4.65441704e-01 1.96661428e-01 6.84399366e-01 -5.04534483e-01
-1.03851366e+00 -1.97290368e-02 -4.04175557e-02 -9.96104062e-01
-1.09479673e-01 4.06443208e-01 -5.60517192e-01 -1.73214838e-01
1.35321826e-01 3.76159668e-01 1.04588427e-01 -7.28802204e-01
5.86310089e-01 5.16568780e-01 4.72114354e-01 -1.05732465e+00
1.23717058e+00 5.39299071e-01 1.64549828e-01 -4.10121858e-01
-8.23325157e-01 -2.04897657e-01 -6.21660173e-01 -2.01408099e-02
6.58372998e-01 -8.63774419e-01 -5.16813040e-01 5.67022681e-01
-1.29110336e+00 9.69879851e-02 -3.06992710e-01 1.87901691e-01
-5.88862598e-01 5.68201959e-01 -3.44169021e-01 -5.92564166e-01
-4.84061986e-01 -7.61315286e-01 1.54971290e+00 1.98167384e-01
3.11179072e-01 -1.06674254e+00 2.21852690e-01 2.30623826e-01
5.31365573e-01 3.43504488e-01 1.12385273e+00 -5.15931547e-01
-6.10171556e-01 -3.34862292e-01 -8.29973400e-01 5.47649920e-01
3.92941803e-01 -1.34178266e-01 -8.26722860e-01 -3.48367214e-01
-3.48558605e-01 -4.38544184e-01 7.69590020e-01 -1.19974323e-01
1.47483873e+00 -9.34709907e-02 -9.74058639e-03 7.19032168e-01
1.42724538e+00 -1.62776709e-01 5.65837026e-01 -9.12419856e-02
8.61882687e-01 5.81551492e-01 5.15873015e-01 5.33621073e-01
5.36507428e-01 7.24317908e-01 4.35888052e-01 4.63110721e-03
-2.39214510e-01 -7.55409181e-01 -8.87259096e-03 9.40304399e-01
-8.47091898e-03 5.98590672e-02 -4.68192726e-01 5.47001600e-01
-1.84668124e+00 -6.04129255e-01 4.97143179e-01 2.38325095e+00
8.73341620e-01 -2.80330628e-01 -1.42515823e-01 -2.93049008e-01
6.89797461e-01 2.73474604e-01 -6.31309986e-01 3.26440558e-02
-1.33858338e-01 2.48872116e-01 4.67050485e-02 1.04593053e-01
-1.18284512e+00 6.70571208e-01 5.36401844e+00 1.06198311e+00
-1.12593234e+00 -7.03863949e-02 1.38945267e-01 2.95832125e-03
-8.25849652e-01 -1.45829767e-01 -1.85400203e-01 5.40126145e-01
2.90493146e-02 -3.06996726e-03 6.82908416e-01 5.96222341e-01
-2.85568953e-01 6.36532784e-01 -1.22224367e+00 1.32909811e+00
2.77068794e-01 -1.07273567e+00 4.40823913e-01 8.52353126e-02
8.62520874e-01 -4.42875832e-01 2.82924443e-01 4.48152632e-01
-2.00679153e-01 -9.04969275e-01 6.73035502e-01 9.31721985e-01
1.04203629e+00 -7.03140736e-01 3.69112194e-01 -1.59601066e-02
-1.36733246e+00 2.24729747e-01 -4.90036398e-01 4.27074760e-01
-5.40694669e-02 4.60388660e-01 4.03250828e-02 8.41815948e-01
5.27795076e-01 1.11563730e+00 -4.15449679e-01 8.41565490e-01
-2.89937528e-03 -2.46650446e-02 -1.71268761e-01 2.39320278e-01
6.84308186e-02 -4.66009796e-01 6.87945306e-01 9.95292962e-01
5.20959675e-01 -4.04711179e-02 -2.61033084e-02 1.33789015e+00
-5.06743193e-01 6.05740026e-03 -8.23752701e-01 -1.94680914e-01
5.63989997e-01 1.33536434e+00 -3.68104763e-02 -1.82392135e-01
-6.10532880e-01 1.23371017e+00 3.81217778e-01 5.27380109e-01
-7.23160923e-01 -6.15941942e-01 8.26154947e-01 -3.08130831e-01
4.88185585e-01 -2.41389081e-01 -4.22945231e-01 -1.45984232e+00
5.09564817e-01 -6.96819007e-01 2.90048152e-01 -6.84285760e-01
-2.18185067e+00 2.53691554e-01 -1.76726833e-01 -1.65835309e+00
2.33299792e-01 -6.87080264e-01 -5.80759466e-01 1.17944777e+00
-1.88235235e+00 -1.69616783e+00 -3.67605060e-01 7.03427017e-01
2.24879742e-01 -2.75304049e-01 8.07686448e-01 7.16561973e-01
-2.04442948e-01 8.87413979e-01 1.73350692e-01 1.37841299e-01
1.02997994e+00 -1.10663033e+00 2.32789978e-01 3.05798769e-01
4.13231812e-02 7.55163789e-01 6.83085918e-02 -2.83406526e-01
-1.71768522e+00 -1.04853451e+00 6.89583421e-01 -3.32114309e-01
4.63257700e-01 -3.45690519e-01 -1.14915264e+00 2.78207064e-01
-5.65527286e-03 3.41717154e-01 7.52080917e-01 -5.30098341e-02
-1.02717555e+00 -2.51899272e-01 -1.28815913e+00 5.50654113e-01
1.40868318e+00 -1.11325526e+00 -5.47904551e-01 -2.40684468e-02
5.47776759e-01 -3.64926189e-01 -1.27739704e+00 7.03267932e-01
1.05901468e+00 -6.26344979e-01 1.30461204e+00 -7.65712261e-01
7.21052706e-01 -1.25465050e-01 -4.76472735e-01 -1.22675598e+00
-1.66436568e-01 -2.66196728e-01 -2.67180085e-01 1.48679233e+00
6.17538160e-03 -4.12964046e-01 5.21531105e-01 6.24399602e-01
1.40403256e-01 -8.00904691e-01 -1.01980364e+00 -7.63284147e-01
4.20552284e-01 -8.32023099e-02 9.62129235e-01 1.11162186e+00
-4.51306760e-01 1.42699227e-01 -5.10844052e-01 -3.41449417e-02
8.01028907e-01 5.24353683e-01 7.94176400e-01 -1.18081236e+00
-2.53790114e-02 -7.14622200e-01 -3.37637663e-01 -1.32581687e+00
3.81300747e-01 -9.63627756e-01 -7.71553144e-02 -1.25093758e+00
3.72018397e-01 -5.36768138e-01 -6.64825678e-01 3.76139015e-01
-2.17251018e-01 2.78237820e-01 3.49117428e-01 1.40610501e-01
-4.49500859e-01 1.32375836e+00 1.65101862e+00 -4.87512589e-01
1.39020771e-01 -1.41200274e-01 -6.56790733e-01 3.37622702e-01
3.97428781e-01 -3.01398188e-01 -3.42690468e-01 -7.03152537e-01
1.20093785e-01 -1.15918711e-01 6.57385051e-01 -5.65649211e-01
8.67588744e-02 -2.09616870e-01 4.71749634e-01 -5.97037315e-01
5.01818895e-01 -1.26046336e+00 -1.66473642e-01 -2.78339032e-02
-5.19265592e-01 -2.63256878e-01 2.40921229e-01 7.69162655e-01
-3.37724388e-01 -6.56220689e-02 7.17311382e-01 1.41645715e-01
-3.32148165e-01 7.69737005e-01 3.26788962e-01 1.62417740e-01
5.35410702e-01 3.48858684e-02 -1.11627534e-01 -2.26372853e-01
-4.40951258e-01 1.52954131e-01 5.36892653e-01 8.33554327e-01
8.25030267e-01 -2.29822564e+00 -6.26494288e-01 3.50199372e-01
5.43287814e-01 -1.03251465e-01 5.84489703e-01 6.08245850e-01
-1.26306549e-01 2.13661939e-01 -4.46307510e-01 -4.22698826e-01
-7.46380687e-01 5.47577679e-01 2.85778880e-01 -1.98636979e-01
-3.99711251e-01 6.19906545e-01 2.50650167e-01 -1.16007936e+00
2.72740334e-01 7.17434287e-02 1.55413106e-01 -1.12545043e-01
1.90547213e-01 1.98242366e-01 -1.53783634e-01 -4.76542085e-01
-4.32315737e-01 1.04649830e+00 1.35533437e-01 -3.77482213e-02
1.36347723e+00 -7.00375438e-02 -8.34639221e-02 1.95187643e-01
1.78781497e+00 -6.88139722e-03 -1.45325351e+00 -6.98366106e-01
-3.05539548e-01 -8.89935970e-01 -2.31960818e-01 -8.72681081e-01
-1.36632705e+00 1.11673975e+00 6.04335427e-01 -2.02258024e-02
1.23779237e+00 1.24426515e-04 1.09772599e+00 1.78267136e-01
9.72533226e-02 -1.00159633e+00 3.78665268e-01 4.26229656e-01
1.36920285e+00 -1.41513252e+00 -1.57797053e-01 -2.04821646e-01
-3.64040524e-01 1.24400866e+00 6.64957821e-01 -3.55801553e-01
7.82070398e-01 -3.66792053e-01 -9.94182378e-02 -1.70023277e-01
-3.47313851e-01 -1.20763956e-02 8.62957180e-01 5.79960048e-01
2.14205921e-01 -1.09905206e-01 -1.86107039e-01 7.13251531e-01
4.85433728e-01 -4.84416150e-02 -3.44425619e-01 8.29321206e-01
1.93611756e-01 -1.34547615e+00 -1.53955847e-01 1.32173702e-01
-2.52867322e-02 -3.41627523e-02 -5.82638323e-01 6.30699098e-01
3.76199896e-04 3.61044884e-01 -1.83494214e-03 -4.51877534e-01
6.93535328e-01 3.42852399e-02 8.10239255e-01 -1.58162385e-01
-1.67909250e-01 -4.53097373e-02 -4.68334287e-01 -3.88962477e-01
-5.97535968e-01 -4.84550655e-01 -7.13868737e-01 -2.05278382e-01
-1.09443106e-01 -3.51636171e-01 6.73669398e-01 7.81936705e-01
7.26981521e-01 2.52162725e-01 1.01732564e+00 -1.04821396e+00
-9.85934734e-01 -7.97939837e-01 -6.31286919e-01 9.35860217e-01
2.01017603e-01 -9.45432723e-01 -2.72502661e-01 -2.72369027e-01] | [11.613027572631836, 0.6806143522262573] |
dbbd90af-a179-4bdf-8b81-7ae0de896f41 | promptunet-toward-interactive-medical-image | 2305.103 | null | https://arxiv.org/abs/2305.10300v1 | https://arxiv.org/pdf/2305.10300v1.pdf | PromptUNet: Toward Interactive Medical Image Segmentation | Prompt-based segmentation, also known as interactive segmentation, has recently become a popular approach in image segmentation. A well-designed prompt-based model called Segment Anything Model (SAM) has demonstrated its ability to segment a wide range of natural images, which has sparked a lot of discussion in the community. However, recent studies have shown that SAM performs poorly on medical images. This has motivated us to design a new prompt-based segmentation model specifically for medical image segmentation. In this paper, we combine the prompted-based segmentation paradigm with UNet, which is a widly-recognized successful architecture for medical image segmentation. We have named the resulting model PromptUNet. In order to adapt the real-world clinical use, we expand the existing prompt types in SAM to include novel Supportive Prompts and En-face Prompts. We have evaluated the capabilities of PromptUNet on 19 medical image segmentation tasks using a variety of image modalities, including CT, MRI, ultrasound, fundus, and dermoscopic images. Our results show that PromptUNet outperforms a wide range of state-of-the-art (SOTA) medical image segmentation methods, including nnUNet, TransUNet, UNetr, MedSegDiff, and MSA. Code will be released at: https://github.com/WuJunde/PromptUNet. | ['Junde Wu'] | 2023-05-17 | null | null | null | null | ['interactive-segmentation'] | ['computer-vision'] | [ 5.03047705e-01 3.08353305e-01 -3.89386922e-01 -5.18489242e-01
-8.69202077e-01 -7.29880512e-01 2.65319854e-01 1.43520281e-01
-4.32924151e-01 4.99232739e-01 -4.85331044e-02 -6.20555758e-01
-1.05047479e-01 -3.42602581e-01 -3.14670682e-01 -5.47264159e-01
1.48560151e-01 6.93974853e-01 6.23655975e-01 2.42118128e-02
3.43797714e-01 2.93777138e-01 -9.96355534e-01 4.07667249e-01
1.49377549e+00 6.41839385e-01 2.31465280e-01 8.55964243e-01
-4.58774030e-01 4.80591148e-01 -4.42566603e-01 -4.30963516e-01
1.48961172e-01 -7.93720901e-01 -1.26078367e+00 1.22783855e-01
4.35773253e-01 -4.62514073e-01 1.71703100e-01 7.27249384e-01
7.00097680e-01 -7.39965439e-02 5.54845810e-01 -1.03276253e+00
-3.58762026e-01 6.05225384e-01 -7.77769983e-01 3.28425914e-01
5.44917762e-01 3.68520826e-01 3.43925059e-01 -2.90122479e-01
1.01745856e+00 9.82719302e-01 8.78598571e-01 9.69051838e-01
-9.45953250e-01 -4.55482334e-01 5.28656468e-02 8.19097087e-02
-9.57596123e-01 1.03921041e-01 3.02208483e-01 -4.07131612e-01
7.92646825e-01 7.93541372e-01 8.83601308e-01 7.41842330e-01
3.01429272e-01 1.23825169e+00 1.63448215e+00 -3.56977254e-01
2.68530399e-02 6.15790812e-03 3.64912122e-01 7.38659203e-01
-2.73529768e-01 -1.13332272e-01 -1.02902502e-01 -1.79015756e-01
7.93338776e-01 -1.93638712e-01 -3.34194392e-01 2.58027226e-01
-1.06579518e+00 7.01836109e-01 3.48235697e-01 4.10377353e-01
-3.82795542e-01 -2.03126848e-01 3.70089233e-01 -7.34587386e-02
5.71399808e-01 4.50123906e-01 -2.84717679e-01 -2.93873996e-01
-1.12078667e+00 1.91928536e-01 8.01385522e-01 6.33546710e-01
2.41315916e-01 -5.31042874e-01 -5.52861989e-01 8.14891040e-01
1.33364394e-01 1.93082005e-01 5.69417715e-01 -9.97183979e-01
-1.70403734e-01 7.15809286e-01 -1.47387505e-01 -6.15194857e-01
-7.13611126e-01 -1.17271230e-01 -6.17063880e-01 -7.82223642e-02
4.48630184e-01 -2.08328545e-01 -1.74967253e+00 1.22317648e+00
6.12955213e-01 3.31196904e-01 -3.62542063e-01 1.10951233e+00
1.36406958e+00 5.16565263e-01 4.99383718e-01 -2.76825696e-01
1.22531855e+00 -1.03705084e+00 -7.26713955e-01 -3.97821590e-02
6.01399004e-01 -1.00956297e+00 1.04190600e+00 6.63478315e-01
-1.09313595e+00 -2.17491955e-01 -4.80592638e-01 5.05324826e-02
-3.36429447e-01 -1.74884513e-01 8.34866166e-01 8.21674943e-01
-1.23973739e+00 3.08331907e-01 -1.07445085e+00 -8.87272060e-01
5.96569479e-01 4.83800590e-01 -8.83633941e-02 -4.22251113e-02
-8.52362752e-01 8.31494510e-01 3.35461855e-01 -1.74082071e-01
-4.55537051e-01 -8.01894724e-01 -4.69332933e-01 -5.99032342e-01
6.90087318e-01 -7.88335800e-01 1.70520604e+00 -7.62762964e-01
-1.31668949e+00 1.31680357e+00 -1.94912136e-01 -4.80871916e-01
5.71473718e-01 -1.29272878e-01 -3.21543396e-01 5.85967362e-01
1.93487436e-01 1.24264574e+00 4.99105901e-01 -1.20188475e+00
-6.52399480e-01 -1.25178367e-01 -1.01062387e-01 2.78968781e-01
1.69411510e-01 3.56299788e-01 -7.40822136e-01 -4.89298195e-01
-1.16704693e-02 -9.27119255e-01 -7.18266606e-01 2.00651959e-02
-8.50661874e-01 -3.36625963e-01 8.38270247e-01 -6.87820137e-01
1.38066518e+00 -1.96746981e+00 -2.71703571e-01 1.53403953e-01
4.82692033e-01 7.22752392e-01 -5.49492352e-02 2.32185751e-01
-1.31495818e-01 5.49229622e-01 -6.33821249e-01 -2.29369495e-02
-3.98315012e-01 4.18698549e-01 1.22711957e-01 1.38060078e-01
-1.03028506e-01 1.22898924e+00 -8.30021322e-01 -1.03945506e+00
4.45105225e-01 2.55842894e-01 -4.38349068e-01 2.52149105e-01
-4.41511393e-01 9.59490180e-01 -6.09282672e-01 8.36426795e-01
6.48604155e-01 -4.69945729e-01 -1.77374989e-01 1.54960811e-01
-2.58982778e-01 -1.44171238e-01 -7.58150220e-01 1.81654763e+00
2.09446654e-01 2.76201963e-01 -1.93220321e-02 -5.66335142e-01
3.54381710e-01 4.63884115e-01 8.37230563e-01 -7.20706046e-01
4.30049837e-01 3.66052628e-01 4.18055989e-02 -1.01273155e+00
4.32623684e-01 -4.02158499e-03 2.67722666e-01 3.86365175e-01
-1.06366314e-01 -4.00525123e-01 5.36867201e-01 4.75508243e-01
8.15952599e-01 1.80790126e-01 3.98918748e-01 -1.18905611e-01
2.78369784e-01 6.76499665e-01 4.00971800e-01 7.35910594e-01
-5.21470189e-01 9.30892527e-01 5.08745611e-01 -2.31229633e-01
-3.72228324e-01 -8.39631498e-01 -3.65714431e-01 7.89533138e-01
5.25131524e-01 -4.06865537e-01 -1.35718095e+00 -9.09467459e-01
-2.83939987e-01 5.09590983e-01 -7.70763159e-01 3.72235417e-01
-5.27592123e-01 -8.94783616e-01 5.05181491e-01 2.36316308e-01
6.38862252e-01 -1.29090619e+00 -9.51041400e-01 2.67488748e-01
-3.04816306e-01 -9.94199753e-01 -7.23735154e-01 -7.29826689e-02
-9.32662010e-01 -1.40105760e+00 -1.24822032e+00 -6.96990967e-01
7.38909423e-01 -1.62766986e-02 1.07211435e+00 1.66562468e-01
-7.63525844e-01 7.56846845e-01 -6.15731061e-01 -4.67322767e-01
-4.67577785e-01 2.43091241e-01 -5.91715336e-01 -1.29497603e-01
1.38890848e-01 -5.37598021e-02 -9.22686517e-01 3.58305335e-01
-1.33051932e+00 3.50817621e-01 5.92357278e-01 5.87458074e-01
9.89007771e-01 -5.14641881e-01 3.79602849e-01 -1.64190733e+00
9.15335715e-01 -3.73060912e-01 -1.68285042e-01 3.49644989e-01
-4.96229738e-01 -4.96598840e-01 1.48213366e-02 -5.27491450e-01
-1.13083732e+00 -1.50449157e-01 -7.36885369e-01 -1.49104029e-01
-7.25544214e-01 6.93057120e-01 5.77370048e-01 -2.68789798e-01
7.70810962e-01 5.91763593e-02 8.21056888e-02 -3.87605369e-01
4.66485053e-01 7.55258262e-01 6.84812784e-01 -4.02227551e-01
2.16650203e-01 3.57901424e-01 -2.85890996e-01 -6.73179805e-01
-6.82776928e-01 -7.61394918e-01 -3.74565363e-01 -4.30008769e-01
1.11524343e+00 -1.56836867e-01 -3.71151775e-01 8.24270666e-01
-1.09690690e+00 -7.15805471e-01 -3.65133822e-01 1.50596902e-01
-3.16790104e-01 4.87475187e-01 -8.63208115e-01 -6.19237781e-01
-6.86067224e-01 -1.49981070e+00 9.17647362e-01 9.38068867e-01
-6.40879512e-01 -1.19111741e+00 6.33261353e-02 4.06038195e-01
4.74080920e-01 7.53856301e-01 7.25955904e-01 -7.84774959e-01
-5.35707235e-01 8.79059508e-02 -3.05841893e-01 9.33104232e-02
1.04069099e-01 1.80085927e-01 -5.98269343e-01 3.21783982e-02
-1.29425436e-01 -1.93158850e-01 7.36735821e-01 9.53540921e-01
1.20906770e+00 1.10399865e-01 -6.21372819e-01 8.65775347e-01
1.15813613e+00 7.35953271e-01 6.78545117e-01 2.69265592e-01
5.63078284e-01 5.70210874e-01 9.69907224e-01 2.31480896e-02
4.67976004e-01 2.69696981e-01 3.60607803e-01 -7.30331600e-01
-2.33444110e-01 9.76240560e-02 -3.60109031e-01 5.43833673e-01
-1.43258408e-01 -3.27111095e-01 -1.22488248e+00 5.17517745e-01
-1.68776143e+00 -3.08230072e-01 -5.46250880e-01 1.51363635e+00
1.00326943e+00 -7.14972466e-02 3.38489503e-01 -2.96159118e-01
5.18379807e-01 -2.02126533e-01 -7.69775748e-01 -7.09852338e-01
1.82100281e-01 4.26461905e-01 3.55430663e-01 3.55572820e-01
-1.08581591e+00 1.14447343e+00 6.91248846e+00 1.15053272e+00
-1.50878990e+00 1.99675605e-01 1.07217550e+00 4.64716673e-01
-2.45047942e-01 -2.09684670e-01 -4.41630930e-01 4.26999629e-01
7.43030667e-01 -2.85462495e-02 -4.90095168e-02 6.08582377e-01
1.43072173e-01 -7.96961308e-01 -7.03104913e-01 7.97162116e-01
-1.20610937e-01 -1.31381285e+00 -1.43831968e-02 -7.58652464e-02
7.19690263e-01 -8.37023407e-02 2.35905319e-01 7.89803267e-02
1.20386437e-01 -1.10192919e+00 1.55106232e-01 3.24340165e-01
1.27007365e+00 -3.09851170e-01 5.88796496e-01 2.38803744e-01
-7.59998143e-01 3.91127735e-01 3.43832105e-01 3.69699031e-01
4.20470893e-01 4.49661076e-01 -1.18335032e+00 7.51527548e-01
6.45542741e-01 6.24107182e-01 -7.00449765e-01 1.73730648e+00
-1.39305711e-01 8.39731991e-01 -3.13480765e-01 2.46377707e-01
5.00776052e-01 -2.79325306e-01 5.93544900e-01 1.35585499e+00
-2.79428866e-02 6.40856981e-01 2.47060373e-01 6.22386038e-01
2.81765223e-01 4.06735569e-01 -1.64294019e-01 -5.19421399e-02
4.66575138e-02 1.36550903e+00 -1.48050797e+00 -4.45494324e-01
-1.56749904e-01 1.06219840e+00 -3.63692403e-01 4.05968279e-01
-9.77398694e-01 -1.63814455e-01 -5.01511879e-02 1.93559811e-01
-3.39012712e-01 2.78629035e-01 -5.37334204e-01 -6.22009516e-01
-4.40638959e-01 -1.04639387e+00 7.39141941e-01 -8.37975621e-01
-9.40713346e-01 8.86058033e-01 4.71575141e-01 -1.02779210e+00
-1.35680065e-01 -4.31413114e-01 -7.72734165e-01 8.03720593e-01
-1.39255226e+00 -1.11230469e+00 -4.02896732e-01 6.54601693e-01
6.66512430e-01 3.72316360e-01 6.24751329e-01 2.03309864e-01
-5.84988832e-01 4.77578789e-01 -4.16651040e-01 -1.61615200e-02
8.84644091e-01 -1.39995182e+00 4.10063088e-01 6.94600999e-01
-3.45416278e-01 6.36962891e-01 6.34874582e-01 -8.58295798e-01
-7.42796659e-01 -9.20926869e-01 4.00783807e-01 -3.15176338e-01
1.18916698e-01 3.41019839e-01 -8.89043450e-01 6.18632019e-01
6.72647476e-01 -1.60884857e-01 8.26498687e-01 -3.82334530e-01
2.09341124e-01 2.40349457e-01 -1.65386319e+00 6.85597897e-01
8.01406682e-01 1.48956388e-01 -3.52671772e-01 3.96525770e-01
7.65686035e-01 -1.23122025e+00 -8.76735389e-01 6.17418647e-01
3.91584367e-01 -1.11365795e+00 7.19443142e-01 -1.92491129e-01
3.43289107e-01 1.02853768e-01 5.91968775e-01 -1.15521574e+00
1.57947719e-01 -9.40773487e-01 1.45024359e-01 1.11018848e+00
3.52909267e-01 -1.03094590e+00 9.34456229e-01 9.11379278e-01
-4.29248154e-01 -1.41672719e+00 -7.29818940e-01 -2.77762681e-01
7.57605657e-02 -2.57707149e-01 3.51680130e-01 1.00988436e+00
-1.50616303e-01 -1.29557448e-02 1.17551655e-01 -3.09049129e-01
3.49881232e-01 1.62675187e-01 4.74469781e-01 -9.80227947e-01
-1.26998425e-01 -6.13281488e-01 1.17623873e-01 -1.20466876e+00
-5.16791523e-01 -8.26781809e-01 -1.23779885e-02 -2.04735231e+00
3.74756694e-01 -6.38260841e-01 9.23566297e-02 7.91540980e-01
-4.85643417e-01 5.16342580e-01 6.95610717e-02 1.15707286e-01
-6.26412332e-01 -1.42496020e-01 2.06514239e+00 1.49297908e-01
-4.32858348e-01 3.37724872e-02 -9.33287024e-01 7.11421371e-01
1.06900108e+00 -3.36834043e-01 -3.52158368e-01 -2.27220878e-01
-2.70422906e-01 2.81335503e-01 5.06637916e-02 -7.48162866e-01
2.99731553e-01 -2.59428144e-01 8.24047104e-02 -7.41827965e-01
-8.74580443e-03 -4.89965439e-01 9.16366279e-02 7.04162180e-01
-2.75027514e-01 -2.01846585e-01 3.50677997e-01 -7.09298905e-03
-2.08911315e-01 -1.54737025e-01 9.14171338e-01 -4.01924878e-01
-9.93433475e-01 5.69893360e-01 -3.59535307e-01 2.57041037e-01
1.28239143e+00 -7.11999953e-01 -4.16186452e-01 -9.45611745e-02
-9.96984661e-01 6.67904496e-01 3.22262675e-01 1.71956450e-01
7.11567879e-01 -5.77168941e-01 -6.87206328e-01 -1.36605762e-02
-1.05078340e-01 3.54765385e-01 6.11729383e-01 1.58374000e+00
-8.78305614e-01 4.22978848e-01 -1.73113719e-01 -9.86031592e-01
-1.55264401e+00 2.43493930e-01 4.54483598e-01 -4.33001339e-01
-7.35590339e-01 1.07070708e+00 2.13315234e-01 -5.52143335e-01
-2.52385531e-02 -5.94483852e-01 -1.82407349e-01 -8.08220059e-02
2.31084526e-01 2.82056838e-01 -4.99913804e-02 -4.83750671e-01
-3.28596473e-01 7.06150651e-01 -5.00013053e-01 1.47867687e-02
8.18598211e-01 -3.07047479e-02 -2.75055319e-01 4.68892865e-02
6.97663009e-01 -2.92728543e-01 -9.65103328e-01 8.18019807e-02
1.86043270e-02 -3.86566848e-01 -1.83875740e-01 -1.43619597e+00
-1.08429492e+00 5.77936292e-01 7.46765554e-01 4.30633634e-01
1.55512202e+00 6.66449293e-02 1.13355267e+00 -5.15698910e-01
4.39010382e-01 -7.23867178e-01 -1.35357052e-01 2.62076020e-01
6.10372305e-01 -1.23333538e+00 -2.17274532e-01 -1.03129399e+00
-8.80568385e-01 7.95065939e-01 7.34519660e-01 8.38442817e-02
4.31677848e-01 3.63790274e-01 6.76759303e-01 -3.28693241e-01
-3.44465554e-01 -4.00006562e-01 4.60114628e-01 7.19046295e-01
5.84854782e-01 1.11735255e-01 -8.45087290e-01 4.94573027e-01
1.87431946e-02 2.69609660e-01 4.25883353e-01 1.08010888e+00
-2.84235954e-01 -1.43224084e+00 -4.52966601e-01 7.22178638e-01
-8.80428135e-01 -8.06301460e-03 -6.31756663e-01 9.86128688e-01
3.14348310e-01 9.80370402e-01 -3.38707507e-01 -1.09048098e-01
2.65891433e-01 -1.88612610e-01 4.77866769e-01 -8.16277981e-01
-1.05158341e+00 3.29847634e-01 -1.61890928e-02 -7.13719130e-01
-6.14120305e-01 -5.15156925e-01 -1.51296198e+00 -1.03909083e-01
-2.77215131e-02 2.11593077e-01 4.60064501e-01 9.05951679e-01
1.33872375e-01 6.93566561e-01 3.28326263e-02 -6.44163251e-01
1.35907710e-01 -8.80626380e-01 -4.21576977e-01 3.38015169e-01
2.02712536e-01 -3.07738572e-01 8.26393813e-02 2.18226358e-01] | [14.682249069213867, -2.263587236404419] |
1b0a96ce-d11e-4d1f-8744-14d946868cbc | graph-augmentation-clustering-network | 2211.10627 | null | https://arxiv.org/abs/2211.10627v1 | https://arxiv.org/pdf/2211.10627v1.pdf | Graph Augmentation Clustering Network | Existing graph clustering networks heavily rely on a predefined graph and may fail if the initial graph is of low quality. To tackle this issue, we propose a novel graph augmentation clustering network capable of adaptively enhancing the initial graph to achieve better clustering performance. Specifically, we first integrate the node attribute and topology structure information to learn the latent feature representation. Then, we explore the local geometric structure information on the embedding space to construct an adjacency graph and subsequently develop an adaptive graph augmentation architecture to fuse that graph with the initial one dynamically. Finally, we minimize the Jeffreys divergence between multiple derived distributions to conduct network training in an unsupervised fashion. Extensive experiments on six commonly used benchmark datasets demonstrate that the proposed method consistently outperforms several state-of-the-art approaches. In particular, our method improves the ARI by more than 9.39\% over the best baseline on DBLP. The source codes and data have been submitted to the appendix. | ['Junhui Hou', 'Yuheng Jia', 'Hui Liu', 'Zhihao Peng'] | 2022-11-19 | null | null | null | null | ['graph-clustering'] | ['graphs'] | [ 3.18584777e-02 2.06015989e-01 -2.88834333e-01 -4.04686064e-01
-5.88082731e-01 -6.01581812e-01 4.37262893e-01 4.00990635e-01
-2.05307469e-01 4.54496622e-01 8.72731283e-02 -1.49125814e-01
-3.28681260e-01 -8.28782916e-01 -6.32853925e-01 -8.60765338e-01
-3.42050433e-01 5.56348741e-01 1.60083055e-01 6.50258735e-02
9.10670310e-02 4.68218654e-01 -1.09680665e+00 -2.77082086e-01
1.15330791e+00 7.31279910e-01 1.18403494e-01 2.42511079e-01
-1.26460925e-01 3.21109116e-01 -5.01725435e-01 -1.98558345e-01
3.25969279e-01 -1.81785792e-01 -5.39154768e-01 4.71441180e-01
2.29694650e-01 1.56927004e-01 -4.44772601e-01 1.30937994e+00
4.01658595e-01 3.16967547e-01 6.11182749e-01 -1.32842076e+00
-6.02477193e-01 7.87843406e-01 -8.37815046e-01 1.03120245e-01
6.76673651e-02 -5.89412414e-02 1.16441762e+00 -8.68136466e-01
4.53497350e-01 1.01920509e+00 4.90679204e-01 1.24071993e-01
-1.55035269e+00 -6.44164264e-01 3.20057899e-01 6.68246076e-02
-1.81770003e+00 -1.50660440e-01 1.32685661e+00 -1.64334446e-01
4.99648571e-01 -1.51114874e-02 4.59798843e-01 6.95232332e-01
-3.70777547e-01 3.83883536e-01 7.83084571e-01 -3.99854362e-01
1.95603326e-01 -7.13477880e-02 2.00236097e-01 9.74430501e-01
4.23849404e-01 -2.77185082e-01 -2.58061826e-01 -2.59764135e-01
6.43357038e-01 -1.31246120e-01 -2.20072240e-01 -8.21055412e-01
-1.01438141e+00 9.17840540e-01 7.69113600e-01 3.58083189e-01
-4.46757048e-01 1.30337536e-01 1.69011012e-01 5.16453646e-02
4.61104304e-01 3.72136593e-01 -1.21966779e-01 1.58233762e-01
-6.99299157e-01 -1.47430852e-01 7.55977213e-01 9.94990706e-01
1.06893396e+00 -9.02988389e-02 3.01230811e-02 9.68160093e-01
4.87583399e-01 1.97999150e-01 3.73621993e-02 -8.73761415e-01
6.17461026e-01 1.01101959e+00 -4.24496621e-01 -1.49444449e+00
-2.63709873e-01 -6.59264505e-01 -1.12760353e+00 -3.13925326e-01
2.28522807e-01 -9.10278410e-02 -9.64324892e-01 1.69716632e+00
4.98308182e-01 4.98389065e-01 -1.63355500e-01 6.59989297e-01
5.37406385e-01 6.01753473e-01 -7.55459741e-02 -1.58933461e-01
9.13980067e-01 -1.02415478e+00 -5.69207788e-01 -1.06226496e-01
5.75286806e-01 -5.77112913e-01 1.12337124e+00 2.04727948e-01
-7.67183363e-01 -4.51717943e-01 -1.12129188e+00 5.53879201e-01
-2.10361764e-01 1.92182839e-01 6.02455080e-01 6.49014473e-01
-1.22356784e+00 4.45402265e-01 -9.72366512e-01 -3.09881091e-01
2.86711097e-01 4.76459265e-01 -3.26485217e-01 -2.79838443e-01
-8.83465230e-01 3.26472335e-02 6.97925389e-01 -4.52941582e-02
-5.53742349e-01 -5.16218305e-01 -9.52052653e-01 1.66961119e-01
8.29164326e-01 -5.54456890e-01 4.37061965e-01 -4.29210424e-01
-1.39600050e+00 4.22778875e-01 9.92232114e-02 -3.21764976e-01
8.10531378e-02 1.08840548e-01 -4.07794505e-01 4.08296138e-01
3.41597535e-02 4.64232415e-01 7.69581139e-01 -1.48669469e+00
-1.87832877e-01 -2.84479916e-01 2.04320252e-02 2.27824152e-01
-8.90908599e-01 -4.73045826e-01 -1.07730424e+00 -8.78910542e-01
3.49071652e-01 -1.04379272e+00 -5.61774313e-01 -4.22045529e-01
-7.83178031e-01 -2.16910511e-01 8.65882397e-01 -2.88971990e-01
1.55184186e+00 -2.27698684e+00 2.50023484e-01 9.74725902e-01
5.70409298e-01 2.85944790e-02 -3.31058145e-01 4.24070150e-01
-1.40294626e-01 3.22003454e-01 -3.16415876e-01 -3.01300049e-01
4.87740571e-03 2.17788517e-01 1.40383795e-01 5.44929087e-01
-4.39734198e-02 6.97599351e-01 -7.93972611e-01 -5.53800285e-01
3.17087293e-01 4.84803617e-01 -6.89860880e-01 2.05714881e-01
-9.09138024e-02 4.24034208e-01 -5.16507387e-01 2.76172340e-01
7.61708021e-01 -7.15038598e-01 7.36303627e-01 -3.18166107e-01
2.93990046e-01 1.80052385e-01 -1.49477649e+00 1.89514470e+00
-2.35703848e-02 1.69957802e-01 1.02204628e-01 -1.33462894e+00
1.16611826e+00 -8.24484136e-03 7.38112330e-01 -9.96085629e-02
7.80815706e-02 -1.46600515e-01 1.56573504e-01 1.11753345e-01
2.02788457e-01 2.98394352e-01 -9.07904580e-02 4.43636477e-01
-2.01803986e-02 2.16191188e-01 3.90470624e-01 6.44617438e-01
1.31519735e+00 -4.18184072e-01 -4.63458337e-02 -3.70514482e-01
7.67048597e-01 -4.33442652e-01 5.82902968e-01 5.04071653e-01
6.51152506e-02 5.42304397e-01 6.18548632e-01 -8.43760520e-02
-8.30453098e-01 -1.28118992e+00 1.47046238e-01 7.19258726e-01
2.32667714e-01 -8.34461689e-01 -8.57005358e-01 -1.05866098e+00
-6.73141778e-02 5.15128136e-01 -5.75254381e-01 -2.90331215e-01
-4.78582501e-01 -8.33595276e-01 3.79008204e-01 5.28258860e-01
5.76429248e-01 -6.19288564e-01 3.59558851e-01 1.42708585e-01
-9.56963375e-02 -1.24913573e+00 -7.13925481e-01 -4.59825434e-02
-8.02148998e-01 -1.07506263e+00 -2.46216223e-01 -9.97211158e-01
1.07465124e+00 2.54631728e-01 8.78079534e-01 5.12147427e-01
-5.40455468e-02 3.90627503e-01 -4.83082235e-01 3.25138122e-01
-3.19394380e-01 5.65463364e-01 4.45934571e-02 2.15618938e-01
2.91386724e-01 -9.93314207e-01 -4.94316697e-01 2.51783222e-01
-8.90281022e-01 -1.49727613e-01 6.38208210e-01 7.33420670e-01
7.96373785e-01 6.34552479e-01 5.22975981e-01 -1.07822883e+00
7.59656847e-01 -4.77784336e-01 -6.33055329e-01 2.21609622e-01
-9.22267497e-01 2.65878499e-01 7.73969948e-01 -3.23911339e-01
-7.70378947e-01 2.72908807e-01 1.63468882e-01 -5.33402622e-01
-1.34372532e-01 7.56906092e-01 -4.51147735e-01 -7.69209638e-02
3.56002122e-01 5.69374524e-02 7.03349756e-03 -5.22820055e-01
6.52114391e-01 2.88386732e-01 6.05647147e-01 -6.86752558e-01
1.35495293e+00 4.01786327e-01 8.62478018e-02 -6.55893385e-01
-6.07550383e-01 -6.14465296e-01 -9.57961321e-01 -2.86877640e-02
6.37105346e-01 -7.65828729e-01 -4.71084028e-01 1.15025640e-01
-7.65130460e-01 -1.95204437e-01 -1.07293531e-01 4.82609719e-01
-2.49445856e-01 6.99579537e-01 -6.04587376e-01 -4.10531104e-01
-1.62414357e-01 -8.70703757e-01 7.47551620e-01 8.25462788e-02
1.28910363e-01 -1.26305950e+00 5.10054156e-02 2.14903653e-01
1.19813465e-01 4.49394703e-01 9.89052892e-01 -8.71995807e-01
-6.55532479e-01 -2.08001301e-01 -3.36369425e-01 2.55839586e-01
4.60044771e-01 7.06027001e-02 -4.19336110e-01 -4.82924938e-01
-3.82472754e-01 -2.63175759e-02 8.78500521e-01 2.78366417e-01
1.37053180e+00 -2.31409654e-01 -4.84910518e-01 7.01517642e-01
1.47228360e+00 -9.09178108e-02 4.31689620e-01 1.08263403e-01
1.07447743e+00 4.69260126e-01 4.45161819e-01 4.95834321e-01
4.75629508e-01 5.22648335e-01 3.85971487e-01 -1.92091167e-01
-6.81049898e-02 -4.52227116e-01 4.91927117e-02 1.31232750e+00
7.95769542e-02 -2.77765930e-01 -1.00737643e+00 5.10134757e-01
-1.87065697e+00 -6.20543480e-01 -1.21514373e-01 2.06991553e+00
6.94229305e-01 3.44736457e-01 2.33128890e-01 1.31569594e-01
1.01435351e+00 3.76579285e-01 -3.90030771e-01 1.83110863e-01
2.44299159e-03 9.98650640e-02 4.97414201e-01 5.28560817e-01
-1.13386428e+00 1.11305916e+00 5.80949354e+00 8.35462451e-01
-7.44284451e-01 -7.04217181e-02 5.64681709e-01 2.63191253e-01
-4.57583487e-01 1.66764840e-01 -4.39440638e-01 3.58923614e-01
8.39021087e-01 -3.32946897e-01 6.46849930e-01 7.37501979e-01
4.10601310e-02 3.31442297e-01 -7.93795824e-01 8.35743368e-01
9.58039984e-02 -1.20240545e+00 1.34036273e-01 4.78945464e-01
8.11827481e-01 -3.42030153e-02 1.14222854e-01 2.17747450e-01
5.76650560e-01 -8.98754835e-01 -4.28113826e-02 3.98510724e-01
5.97345173e-01 -1.11530030e+00 5.56464970e-01 2.45204300e-01
-1.62534249e+00 1.66453764e-01 -2.12561786e-01 2.65450835e-01
9.26615521e-02 8.00234199e-01 -9.07127380e-01 9.25553679e-01
5.52623689e-01 8.29838216e-01 -9.57184076e-01 1.05716300e+00
-4.28190529e-01 8.52769434e-01 -5.11303484e-01 1.66372985e-01
2.92157084e-01 -4.44805056e-01 6.49351299e-01 8.72178733e-01
1.24740243e-01 4.72872052e-03 6.71498716e-01 8.76911879e-01
-4.46840882e-01 3.30449462e-01 -5.91002822e-01 -2.91958690e-01
8.01927626e-01 1.50517666e+00 -1.07964551e+00 -3.20921868e-01
-3.74715686e-01 1.01333606e+00 7.28160918e-01 5.31612456e-01
-8.26134026e-01 -5.89463472e-01 3.35730195e-01 -3.15576196e-02
4.95328784e-01 -4.22105491e-01 -7.92306215e-02 -1.02470124e+00
1.10377066e-01 -7.13025689e-01 5.43021441e-01 -2.12679520e-01
-1.43389666e+00 6.73877001e-01 3.72955017e-02 -9.34274852e-01
-1.59352690e-01 -1.60066098e-01 -7.09242404e-01 4.84282792e-01
-1.15225649e+00 -9.11296189e-01 -4.65585589e-01 5.57352781e-01
6.51336908e-02 -2.44051501e-01 6.59485042e-01 4.72189397e-01
-7.82785296e-01 7.68427014e-01 1.66514963e-01 3.75738293e-01
6.23113930e-01 -1.43278956e+00 4.20996964e-01 1.03400815e+00
4.53068942e-01 7.45204985e-01 4.10054028e-01 -7.79050946e-01
-1.18443930e+00 -1.30071247e+00 2.74185687e-01 -1.42502829e-01
6.99393511e-01 -5.36907017e-01 -1.15096807e+00 6.11327648e-01
5.74436709e-02 1.96402118e-01 6.78757727e-01 1.94486007e-01
-5.54496706e-01 -1.95795342e-01 -1.01147974e+00 4.76070076e-01
1.09727418e+00 -2.79692829e-01 -1.94718659e-01 2.50983119e-01
9.99337137e-01 -5.61504364e-02 -1.21915841e+00 4.68619496e-01
1.06321387e-01 -6.87668800e-01 9.86078441e-01 -3.64060789e-01
-7.40053728e-02 -5.67101657e-01 -2.18220860e-01 -1.26233089e+00
-5.27688146e-01 -7.56569624e-01 -1.86815053e-01 1.53702235e+00
4.35963035e-01 -6.34620667e-01 1.15698767e+00 2.84818947e-01
-1.96980089e-02 -7.71773160e-01 -6.80064321e-01 -8.58536601e-01
-1.71916172e-01 -2.29197964e-01 6.78857982e-01 1.19449651e+00
-1.15182437e-01 6.34414494e-01 -1.35959849e-01 4.61922288e-01
1.03270555e+00 5.62624373e-02 9.83131886e-01 -1.41130292e+00
-1.95038453e-01 -4.18539643e-01 -4.75121915e-01 -1.08404899e+00
3.95976335e-01 -1.24548078e+00 -1.65897146e-01 -1.67547238e+00
2.60646284e-01 -6.47203803e-01 -5.30273855e-01 4.20792490e-01
-3.75237167e-01 1.90634221e-01 4.42378819e-02 7.10843280e-02
-8.78954470e-01 8.02366376e-01 9.50500011e-01 -9.96666551e-02
-4.85743582e-01 -1.41308993e-01 -8.54468465e-01 6.58133388e-01
9.40293074e-01 -5.54034114e-01 -6.24033272e-01 -1.44417152e-01
-1.23252302e-01 -2.58094043e-01 1.50765717e-01 -1.09604061e+00
3.44745487e-01 1.10873498e-01 1.19144499e-01 -6.48897350e-01
1.91836461e-01 -9.81146157e-01 3.95253599e-02 2.55953699e-01
-2.13150680e-01 9.69817564e-02 5.02138324e-02 1.10208011e+00
-1.41626537e-01 3.52352229e-03 6.94149613e-01 3.94299924e-01
-3.60904694e-01 6.97898626e-01 -1.11055477e-02 1.20643429e-01
1.03556478e+00 4.95042391e-02 -2.29798079e-01 -4.91518319e-01
-6.93374813e-01 4.83477175e-01 6.58725202e-01 2.36865208e-01
5.97354650e-01 -1.55442858e+00 -5.56724608e-01 2.54039288e-01
6.81130812e-02 3.80709469e-02 1.79916341e-02 8.70430052e-01
-3.27116847e-01 1.08326316e-01 2.13112652e-01 -5.96476316e-01
-1.22533643e+00 7.13211477e-01 -1.64918434e-02 -4.85935509e-01
-6.39753640e-01 6.26601875e-01 2.60207187e-02 -6.28124297e-01
3.73419970e-01 -9.39123854e-02 -1.42844707e-01 -2.81130582e-01
6.24930970e-02 3.46886277e-01 -1.76311493e-01 -7.37441421e-01
-4.97482002e-01 4.86929297e-01 -2.06825376e-01 6.56903954e-03
1.44886613e+00 -2.12966591e-01 -1.70528650e-01 1.59426019e-01
1.45235431e+00 3.04527789e-01 -1.04620135e+00 -5.25506556e-01
2.05416784e-01 -5.00236571e-01 -4.66276566e-03 -3.29934984e-01
-1.42137957e+00 5.31920671e-01 2.80809045e-01 3.87076288e-01
1.26524138e+00 2.06378415e-01 6.26000524e-01 3.19473743e-01
5.46892360e-02 -1.00220203e+00 3.54597896e-01 2.24945053e-01
5.01079082e-01 -1.04243910e+00 2.45628759e-01 -8.90044510e-01
-4.41521049e-01 9.28785443e-01 7.14067042e-01 -3.23371142e-01
9.81063187e-01 4.98156808e-02 -1.98288813e-01 -4.91271287e-01
-5.89176238e-01 -2.22898915e-01 5.87721944e-01 6.03057802e-01
2.43962392e-01 5.12979887e-02 -1.95394620e-01 4.47336107e-01
-1.63664833e-01 -6.12180889e-01 2.20648304e-01 5.26913404e-01
-2.86200553e-01 -1.45359659e+00 -8.07777569e-02 5.52437782e-01
-2.54911751e-01 -7.66464323e-02 -6.00492418e-01 8.21407318e-01
-2.50746876e-01 1.06796205e+00 5.26008978e-02 -6.96658015e-01
2.62179732e-01 -1.98015735e-01 2.42268771e-01 -8.26866567e-01
-2.34516591e-01 4.36174273e-01 8.39821179e-04 -4.70657706e-01
-4.27649885e-01 -5.50796390e-01 -1.38699567e+00 -3.13109756e-01
-5.80548048e-01 4.55559820e-01 4.45060819e-01 5.68077266e-01
5.96668661e-01 5.99051595e-01 7.88046479e-01 -6.03906572e-01
-3.16144824e-01 -8.57800126e-01 -6.43489480e-01 4.63261902e-01
-7.57167414e-02 -6.87636018e-01 -6.09951198e-01 -1.93675920e-01] | [7.253442764282227, 5.995439052581787] |
9d2d9b4c-7f74-43c2-95f8-65c4c8fb6bc8 | revisiting-unsupervised-meta-learning | 2011.14663 | null | https://arxiv.org/abs/2011.14663v3 | https://arxiv.org/pdf/2011.14663v3.pdf | Revisiting Unsupervised Meta-Learning via the Characteristics of Few-Shot Tasks | Meta-learning has become a practical approach towards few-shot image classification, where "a strategy to learn a classifier" is meta-learned on labeled base classes and can be applied to tasks with novel classes. We remove the requirement of base class labels and learn generalizable embeddings via Unsupervised Meta-Learning (UML). Specifically, episodes of tasks are constructed with data augmentations from unlabeled base classes during meta-training, and we apply embedding-based classifiers to novel tasks with labeled few-shot examples during meta-test. We observe two elements play important roles in UML, i.e., the way to sample tasks and measure similarities between instances. Thus we obtain a strong baseline with two simple modifications -- a sufficient sampling strategy constructing multiple tasks per episode efficiently together with a semi-normalized similarity. We then take advantage of the characteristics of tasks from two directions to get further improvements. First, synthesized confusing instances are incorporated to help extract more discriminative embeddings. Second, we utilize an additional task-specific embedding transformation as an auxiliary component during meta-training to promote the generalization ability of the pre-adapted embeddings. Experiments on few-shot learning benchmarks verify that our approaches outperform previous UML methods and achieve comparable or even better performance than its supervised variants. | ['De-Chuan Zhan', 'Lu Han', 'Han-Jia Ye'] | 2020-11-30 | null | null | null | null | ['unsupervised-few-shot-learning', 'unsupervised-few-shot-image-classification'] | ['computer-vision', 'computer-vision'] | [ 3.40567052e-01 -1.25721306e-01 -5.94976604e-01 -6.13284886e-01
-9.06583905e-01 -2.16964841e-01 8.14564645e-01 1.30973026e-01
-5.08452356e-01 5.56068242e-01 2.63561487e-01 2.02106044e-01
2.44046431e-02 -7.93283582e-01 -6.34011567e-01 -8.53770018e-01
2.26816103e-01 1.77739114e-01 4.07529563e-01 -1.79663017e-01
2.78176785e-01 -3.63037810e-02 -1.85617292e+00 5.69262028e-01
9.90400016e-01 8.97296727e-01 3.91579896e-01 2.92126060e-01
-3.68725210e-01 7.02260852e-01 -5.09884834e-01 -3.10045689e-01
1.88416228e-01 -6.27148032e-01 -7.55290866e-01 6.13361359e-01
1.34294122e-01 -2.86568999e-01 -4.32994366e-01 9.86946344e-01
5.26517749e-01 6.72415972e-01 8.65925670e-01 -1.31360304e+00
-8.84533405e-01 4.61335629e-01 -5.65741241e-01 2.52536029e-01
9.35949981e-02 4.19972092e-01 9.12680984e-01 -1.21076858e+00
6.18815541e-01 1.03825772e+00 5.85624874e-01 8.96822095e-01
-1.28569973e+00 -6.24194264e-01 2.17738375e-01 4.97685820e-01
-1.09353793e+00 -5.32710969e-01 9.15792584e-01 -3.53657335e-01
8.36052895e-01 -3.55452113e-02 3.88472974e-01 1.42014122e+00
-9.66123957e-03 8.82067978e-01 9.84932005e-01 -5.21366775e-01
5.18970847e-01 6.20439053e-01 4.27610576e-01 5.73499858e-01
1.41949475e-01 -2.29328960e-01 -3.47810298e-01 -1.32595465e-01
2.27340251e-01 7.18744218e-01 -2.66391009e-01 -6.58906341e-01
-1.25194991e+00 9.59484220e-01 3.19346696e-01 5.77487767e-01
-1.86404034e-01 -2.54953653e-02 8.54404509e-01 3.61243308e-01
8.31039488e-01 5.60889065e-01 -2.66398251e-01 -1.15388997e-01
-6.15188420e-01 2.40042340e-02 3.76431942e-01 1.24966311e+00
1.26701307e+00 3.44554000e-02 -4.49104637e-01 1.28372729e+00
-3.34007591e-01 1.20989054e-01 1.25014937e+00 -6.70312524e-01
5.55220604e-01 6.60167158e-01 -2.10392103e-01 -5.18932819e-01
2.67060623e-02 -5.75320899e-01 -6.60605133e-01 -1.07016116e-01
-7.90304840e-02 5.55931823e-04 -1.07975173e+00 1.75124633e+00
2.55869508e-01 5.54835021e-01 1.73945770e-01 4.00515676e-01
5.64571142e-01 6.90592587e-01 3.50578278e-02 -3.46358895e-01
1.29156208e+00 -1.31910408e+00 -6.34155869e-01 -3.36258590e-01
1.04044557e+00 -2.56510019e-01 1.46841359e+00 3.53352912e-03
-6.90459311e-01 -9.66508448e-01 -1.29841185e+00 1.45276442e-01
-7.38800049e-01 -5.56835555e-04 4.28040177e-01 5.52815974e-01
-3.41850936e-01 7.43224084e-01 -4.40473050e-01 -2.58955121e-01
5.65954030e-01 -1.04923896e-01 -3.57289016e-01 -4.22069401e-01
-9.43153501e-01 7.33569026e-01 7.69818425e-01 -4.55952913e-01
-1.18258464e+00 -7.99917638e-01 -1.20543039e+00 -2.40891650e-02
5.70498645e-01 -5.39433300e-01 1.21217358e+00 -9.82724130e-01
-1.22212958e+00 8.19473505e-01 -2.76907891e-01 -2.53556013e-01
2.66418457e-01 1.19595183e-02 -4.46694762e-01 1.53880194e-01
3.57345760e-01 5.39488316e-01 1.07234263e+00 -1.30974841e+00
-8.28310728e-01 -2.63120145e-01 1.62219867e-01 2.03261152e-01
-1.04637897e+00 -4.61997598e-01 -3.17556649e-01 -7.49016643e-01
-1.44131541e-01 -8.91738236e-01 -2.64373571e-01 -2.56063402e-01
-1.30281106e-01 -4.24033314e-01 8.44635248e-01 -1.72134697e-01
1.16207147e+00 -2.31528115e+00 1.75150484e-02 -2.80241668e-01
2.93993413e-01 3.83268625e-01 -4.86321121e-01 4.59959805e-01
-2.78003573e-01 -8.37435350e-02 -2.27660790e-01 -6.19189620e-01
-1.54291674e-01 2.86440462e-01 -3.35074514e-01 1.01518944e-01
3.45386684e-01 9.55081522e-01 -1.30403709e+00 -4.05530483e-01
2.27003396e-01 -2.02193752e-01 -3.28081638e-01 4.09348786e-01
-1.11362971e-01 1.00285754e-01 -4.13523078e-01 6.03906214e-01
4.46501225e-01 -2.81834364e-01 6.32907227e-02 -2.72654831e-01
1.72638640e-01 8.81140456e-02 -1.05709100e+00 2.01782966e+00
-9.25130606e-01 2.97851562e-01 -5.74890375e-01 -1.56628108e+00
8.93915355e-01 2.55800515e-01 3.27678382e-01 -4.56634581e-01
1.66092515e-01 1.06432743e-01 -1.70061924e-02 -7.92741001e-01
3.26872647e-01 -2.17629328e-01 -4.24328223e-02 6.60689116e-01
6.45836055e-01 6.42433390e-02 3.44139993e-01 1.05752692e-01
1.05747437e+00 -4.25475873e-02 4.88344878e-01 -1.19231276e-01
4.21186417e-01 7.39591271e-02 7.81863749e-01 7.56544948e-01
-3.34581286e-01 5.13571799e-01 2.13689372e-01 -5.53610742e-01
-1.06189048e+00 -9.22518492e-01 -9.38185956e-03 1.53010547e+00
1.51054770e-01 -6.49177253e-01 -5.48703134e-01 -1.28274858e+00
-1.88096426e-02 8.43916059e-01 -1.11183226e+00 -7.22915232e-01
-3.69724989e-01 -8.85903835e-01 6.80082012e-03 9.18314636e-01
4.72565949e-01 -1.10215616e+00 -4.75789696e-01 2.98460662e-01
7.96337649e-02 -1.01840854e+00 -4.47269917e-01 5.26852190e-01
-1.08910608e+00 -1.05440569e+00 -9.54659939e-01 -1.02479589e+00
8.33287537e-01 9.77297187e-01 7.89466441e-01 -1.93034604e-01
-4.06174630e-01 3.94404620e-01 -6.89323843e-01 -3.86526108e-01
-2.74407744e-01 8.33987817e-02 2.21939445e-01 2.33756661e-01
6.27641976e-01 -7.53107965e-01 -4.88110393e-01 2.77721465e-01
-9.82834220e-01 -2.41021765e-03 8.03590000e-01 1.34905434e+00
4.85070646e-01 -4.87801917e-02 9.43620741e-01 -1.31833065e+00
6.35805249e-01 -7.37283289e-01 1.11152887e-01 4.47267056e-01
-6.34885907e-01 1.42029762e-01 9.51065481e-01 -9.69120800e-01
-1.04593420e+00 -1.20652720e-01 2.91523933e-01 -8.15700412e-01
-2.20988303e-01 2.92617142e-01 -3.12796921e-01 2.24755183e-01
8.78486156e-01 6.09211206e-01 7.69488662e-02 -4.48081344e-01
6.30505979e-01 9.42132235e-01 2.17613310e-01 -6.51582599e-01
9.19660985e-01 6.01636827e-01 -4.55460787e-01 -8.63783896e-01
-1.12371695e+00 -8.04717124e-01 -6.17688417e-01 1.01049341e-01
5.81670463e-01 -7.90392518e-01 4.45941836e-02 1.81671888e-01
-8.61308098e-01 -2.69180298e-01 -7.87128270e-01 5.30790806e-01
-5.84355533e-01 2.84485728e-01 -4.19400811e-01 -5.83476007e-01
-9.28945094e-02 -1.19942069e+00 8.12573075e-01 2.35494018e-01
7.71837356e-03 -9.71549332e-01 3.31623137e-01 1.20481439e-01
1.68587610e-01 -1.38234973e-01 1.00149536e+00 -1.12654603e+00
-2.37837527e-02 -2.49912366e-01 -1.76066890e-01 7.45232642e-01
5.78213632e-01 -4.49431032e-01 -1.29481697e+00 -5.15322745e-01
1.78167924e-01 -7.48812556e-01 1.15615857e+00 -1.10514425e-01
1.47977328e+00 -8.55010599e-02 -5.01661181e-01 5.81597745e-01
1.35427642e+00 2.99459040e-01 4.04057562e-01 3.26789767e-01
5.53118050e-01 5.97025752e-01 7.70435393e-01 4.70750302e-01
9.70549956e-02 5.70854545e-01 1.19193364e-02 3.96246552e-01
-1.38793081e-01 -2.64471889e-01 2.81608015e-01 1.14123583e+00
4.82658483e-02 3.47035110e-01 -5.93958795e-01 7.31278419e-01
-1.95034683e+00 -1.04528379e+00 5.21375716e-01 2.26070929e+00
9.12598670e-01 2.73419172e-01 1.60707146e-01 1.86715603e-01
7.95575500e-01 3.40474993e-01 -6.60344422e-01 -3.25657502e-02
3.49159211e-01 3.48240018e-01 1.16257593e-02 -5.49651943e-02
-1.17826557e+00 8.85582983e-01 5.13016748e+00 1.19168842e+00
-8.22630525e-01 5.20919979e-01 4.10134763e-01 -1.14388704e-01
-2.60509580e-01 7.26287290e-02 -8.78496945e-01 6.41115665e-01
6.75843656e-01 -3.55526119e-01 2.27582604e-02 1.26722956e+00
-1.60811782e-01 2.82872945e-01 -1.34705293e+00 9.97930825e-01
3.99878889e-01 -1.38894439e+00 2.22448513e-01 -1.25954032e-01
1.03935897e+00 -2.20042840e-01 7.15420097e-02 1.05061877e+00
8.43379945e-02 -5.15035152e-01 2.55218357e-01 2.78448045e-01
8.32595944e-01 -7.04557836e-01 6.94172680e-01 5.78097284e-01
-1.27729034e+00 -3.96371484e-01 -1.06858194e+00 7.20004886e-02
-1.35437697e-01 3.62207055e-01 -7.05529451e-01 6.26439333e-01
4.48168993e-01 1.02871644e+00 -8.05097520e-01 1.04210353e+00
-1.19375497e-01 3.50471914e-01 4.02891636e-01 -1.65961653e-01
2.92437136e-01 -5.84822409e-02 3.65963042e-01 1.13337624e+00
1.40080750e-01 8.20132159e-03 4.42388564e-01 7.11584508e-01
-1.51659355e-01 1.16948396e-01 -9.84047174e-01 -1.50365604e-03
6.43583894e-01 1.35298991e+00 -4.77358222e-01 -7.97808588e-01
-7.15477288e-01 1.19223857e+00 4.55311716e-01 2.96068519e-01
-8.12092304e-01 -8.24854612e-01 5.79396248e-01 -4.83315960e-02
3.27971458e-01 3.55782993e-02 6.00401722e-02 -1.48487675e+00
6.22502789e-02 -8.41227949e-01 4.46213186e-01 -4.78254974e-01
-1.55119836e+00 5.00392199e-01 7.76333734e-02 -1.87948358e+00
-4.02356684e-01 -4.33019906e-01 -9.79916930e-01 5.60807407e-01
-1.49972546e+00 -1.24300075e+00 -5.71197033e-01 5.57267547e-01
1.27318537e+00 -4.94519472e-01 9.13377821e-01 1.78826258e-01
-7.50950515e-01 8.38560998e-01 2.39734784e-01 1.33129641e-01
8.80889237e-01 -1.18784726e+00 1.98313266e-01 7.25637257e-01
3.43314618e-01 7.48536646e-01 3.03134650e-01 -4.46671098e-01
-1.14572668e+00 -1.44124436e+00 4.55335945e-01 -4.39502627e-01
5.95892608e-01 -5.42392194e-01 -1.17333376e+00 7.74499834e-01
1.36875734e-01 2.16293842e-01 9.52026606e-01 1.98899195e-01
-6.20425403e-01 -4.29612428e-01 -8.28188539e-01 6.49457455e-01
1.18442988e+00 -7.57563651e-01 -1.19771087e+00 3.88739020e-01
9.70613241e-01 1.99739173e-01 -5.74668944e-01 3.32267314e-01
3.15595835e-01 -8.19303989e-01 8.01853359e-01 -1.02464604e+00
5.84903896e-01 -6.57525659e-02 -1.95514768e-01 -1.77993476e+00
-4.92185563e-01 -3.55817318e-01 -2.26742074e-01 1.34434152e+00
2.73295045e-01 -6.20056868e-01 7.81095147e-01 1.25076681e-01
-4.11650360e-01 -8.80643427e-01 -5.67685366e-01 -1.28949940e+00
4.02170559e-03 -4.45602775e-01 4.86383498e-01 1.29346812e+00
3.38329792e-01 4.54535931e-01 -3.20485651e-01 -2.33501747e-01
6.91810548e-01 1.95523277e-01 9.89020467e-01 -1.10029113e+00
-3.57404917e-01 -2.51997441e-01 -4.05119359e-01 -9.15215909e-01
3.69195461e-01 -9.84867454e-01 -7.97262229e-03 -1.09781194e+00
6.25146806e-01 -3.88230205e-01 -8.41183364e-01 4.32067126e-01
-4.73891973e-01 1.16366252e-01 8.59605987e-03 3.78395140e-01
-8.10917199e-01 8.74667227e-01 1.09262860e+00 -3.44069749e-01
-3.42334151e-01 4.91305068e-02 -6.60491586e-01 7.18869150e-01
7.19283760e-01 -6.08648360e-01 -8.41670632e-01 -2.57313788e-01
-3.27357292e-01 -2.90912509e-01 1.20869093e-01 -1.17111039e+00
1.25402838e-01 -2.18027726e-01 3.68528366e-01 -2.79283404e-01
3.32405210e-01 -6.47403598e-01 -4.00608361e-01 4.64247972e-01
-5.23028910e-01 -2.34162822e-01 -1.27805695e-01 8.18466485e-01
-2.30258286e-01 -8.17008317e-01 8.98846745e-01 -3.13531458e-01
-1.17056990e+00 4.55859393e-01 -6.41916320e-03 2.23410949e-01
1.39403951e+00 -4.20066386e-01 -3.39804053e-01 -1.27751930e-02
-7.95919359e-01 6.84099495e-02 4.95413512e-01 6.85770631e-01
8.24722350e-01 -1.66701436e+00 -3.86698753e-01 2.50998616e-01
1.01141095e+00 -1.75159261e-01 3.42764437e-01 7.63761640e-01
8.16676170e-02 7.69550279e-02 -3.16260874e-01 -5.03391981e-01
-8.31630945e-01 9.83440757e-01 -7.02632358e-03 -9.08775330e-02
-7.81354547e-01 6.68263912e-01 3.72766405e-01 -3.33235979e-01
2.70531118e-01 -1.89071834e-01 -1.95943922e-01 5.02041221e-01
9.36870873e-01 3.85781884e-01 -5.09647615e-02 -1.32184163e-01
-5.43246754e-02 4.06129271e-01 -5.31713545e-01 8.73373896e-02
1.43071973e+00 -7.81210959e-02 3.94267291e-01 1.10179877e+00
1.53183079e+00 -3.42609107e-01 -1.26655149e+00 -6.82042360e-01
1.31531432e-01 -5.57900667e-01 -2.96678692e-01 -2.64173597e-01
-7.95240104e-01 1.23819244e+00 6.16383731e-01 6.21242896e-02
9.10679877e-01 4.30951044e-02 8.20854723e-01 6.97715819e-01
3.54728252e-01 -1.35540950e+00 8.23670745e-01 3.55313659e-01
3.99411112e-01 -1.43599176e+00 -1.94840938e-01 -1.55631915e-01
-7.11084902e-01 1.15184999e+00 8.90061915e-01 -1.91083953e-01
5.24774969e-01 -1.73114851e-01 -2.70397395e-01 3.45628820e-02
-9.15943086e-01 -3.77015650e-01 2.55923271e-01 7.87122309e-01
2.37237215e-01 -1.75150037e-01 -1.25394732e-01 8.33327234e-01
5.01962781e-01 4.14033160e-02 4.32954669e-01 1.19476402e+00
-8.09136689e-01 -1.07178295e+00 2.32774451e-01 7.55993366e-01
7.85215572e-02 -8.63068774e-02 4.56646718e-02 7.69846559e-01
3.43121052e-01 6.06841028e-01 6.03921618e-03 -6.91681206e-01
4.87814635e-01 5.55882037e-01 3.53501171e-01 -1.44577372e+00
-3.21634620e-01 -3.15681428e-01 -1.52015433e-01 -4.61249173e-01
-2.53114164e-01 -3.22144210e-01 -7.01458812e-01 8.39294866e-02
-5.07862031e-01 2.57683486e-01 2.24130571e-01 1.07793260e+00
3.36890846e-01 7.00483620e-01 1.10403395e+00 -9.34784770e-01
-1.01663232e+00 -1.20641589e+00 -6.89541519e-01 7.55363166e-01
8.66160691e-02 -9.92525935e-01 -5.68965375e-01 6.28118142e-02] | [10.045866012573242, 3.0908405780792236] |
4ba91db2-e20d-457d-93ed-7aa8c413514c | reinforcement-federated-learning-method-based | 2306.12859 | null | https://arxiv.org/abs/2306.12859v2 | https://arxiv.org/pdf/2306.12859v2.pdf | Reinforcement Federated Learning Method Based on Adaptive OPTICS Clustering | Federated learning is a distributed machine learning technology, which realizes the balance between data privacy protection and data sharing computing. To protect data privacy, feder-ated learning learns shared models by locally executing distributed training on participating devices and aggregating local models into global models. There is a problem in federated learning, that is, the negative impact caused by the non-independent and identical distribu-tion of data across different user terminals. In order to alleviate this problem, this paper pro-poses a strengthened federation aggregation method based on adaptive OPTICS clustering. Specifically, this method perceives the clustering environment as a Markov decision process, and models the adjustment process of parameter search direction, so as to find the best clus-tering parameters to achieve the best federated aggregation method. The core contribution of this paper is to propose an adaptive OPTICS clustering algorithm for federated learning. The algorithm combines OPTICS clustering and adaptive learning technology, and can effective-ly deal with the problem of non-independent and identically distributed data across different user terminals. By perceiving the clustering environment as a Markov decision process, the goal is to find the best parameters of the OPTICS cluster without artificial assistance, so as to obtain the best federated aggregation method and achieve better performance. The reliability and practicability of this method have been verified on the experimental data, and its effec-tiveness and superiority have been proved. | ['Zeli Guan', 'Yingxia Shao', 'Junping Du', 'Tianyu Zhao'] | 2023-06-22 | null | null | null | null | ['clustering'] | ['methodology'] | [-0.61336094 -0.18388158 0.20785786 -0.5316895 -0.29938743 -0.61234534
-0.07541193 -0.3088176 -0.34080487 0.3630086 -0.16352154 -0.08554724
-0.36906573 -0.7382259 -0.50330067 -1.2635117 0.08180067 0.32204694
-0.13122715 0.37441903 0.01546424 0.5482175 -1.6572423 0.44010377
0.9552528 1.1417804 0.02203827 0.33160335 -0.35294497 0.85215735
-0.7307489 -0.37168744 0.5094229 -0.3580306 -0.55073804 0.0771999
0.03220905 -0.06100512 -0.06011646 1.4889455 0.51975757 0.04189107
0.4168077 -1.4949688 -0.62667525 0.5801364 -0.19154435 -0.31787622
-0.3516166 -0.06409325 0.6172924 -0.27616477 0.16077399 1.068343
0.51284015 0.73720044 -0.92560905 -1.1237391 0.2608236 0.35682493
-1.717519 -0.4013246 0.6432554 -0.09602766 0.12359794 0.61786777
0.4189437 0.34134477 0.52290434 0.6191783 1.0539839 -0.5140149
0.68718415 0.50285894 -0.06544492 0.83710295 0.41147208 -0.06877472
-0.52259535 -0.4962534 0.36141106 0.49082962 -0.29603985 -0.70038015
-0.6311004 0.3542285 0.37830403 0.3069821 -0.10902606 -0.3073308
0.08832122 0.5005492 0.18096034 0.07579645 -0.67999595 0.38131627
-0.4639988 -0.13700521 0.8156963 1.1097811 0.95283103 -0.27198246
0.06123259 0.21684851 0.7698457 0.600093 0.78808635 -1.0298557
0.1868406 0.74408835 0.26646295 -0.8621407 -0.1789522 -0.33408794
-0.8147668 0.49637476 0.3255943 -0.62845206 -0.27341166 1.5728179
0.81331825 0.2657944 0.21608724 0.95774126 0.30416062 0.5555434
-0.07217745 -0.5423608 1.1622871 -0.61800265 -0.9844977 0.74067897
0.763309 -0.5353784 0.6563783 0.6729801 -0.5804767 -0.29502583
-1.0049607 0.33885744 -0.37401164 0.06257503 0.6042294 0.9967703
-1.0176749 0.35997558 -0.6793516 -0.17579752 0.61489356 0.81184685
-0.03934174 0.11070721 -0.6975513 0.16785534 0.2787506 -0.09689532
-0.48844597 -0.5754452 -0.14936624 0.15205005 0.22633739 -0.7173425
1.2135909 -1.0297302 -1.6106352 0.4675247 0.01406359 -0.4237546
0.39745468 0.16468261 -1.0427684 -0.16483025 -0.3983853 -0.16201971
0.85684896 -1.2804736 -1.0223496 -1.0998026 -0.5323978 0.3023473
-1.0063117 -0.01893714 -0.26918876 -0.13163997 0.20439142 -0.8337274
-0.1912243 0.22301227 -0.08688077 -0.07880758 1.5821074 -0.13175401
1.0649194 -2.3708146 -0.34102628 0.46331766 0.37957767 0.34176168
0.25822693 0.05106559 0.3195925 -0.04186763 0.06162104 -0.40319774
-0.04830543 0.23899572 -0.24150884 0.6351356 -0.79453623 0.30993912
-0.6282202 -0.61654186 0.13957009 0.23202422 -0.3664003 0.45586154
-0.2241828 0.50373435 -0.85606974 0.48984292 1.0787767 -0.21613675
0.5070392 -0.3581757 -0.3158408 -0.36061564 -1.5846909 1.5258869
-0.23099338 -0.13416101 0.72844684 -0.59412664 1.1097986 0.3131364
0.91553175 -0.56487733 0.46082523 0.02201104 -0.38606504 -0.6261707
0.06257071 0.07884708 0.20708764 0.89947987 -0.213185 0.26827615
-0.9898628 0.0956213 0.87486184 -0.23656397 -0.17425984 -0.43096432
0.646138 -0.15546794 1.0094734 0.4858951 -0.289444 0.26644996
-0.27672404 -0.66542834 -0.4073358 -0.9613886 0.01544333 0.799183
0.78416246 -0.3775389 -0.9353368 -0.9832552 0.06001947 0.6486162
-0.27919856 -0.4006706 -0.02112162 -0.75249183 0.37485632 -0.16471541
0.8914523 -0.62777966 -0.57414055 -0.01874358 0.04007942 -0.36023825
-0.41438448 0.24421436 -0.8287072 -1.1860448 0.14383347 -0.690573
0.76208395 0.672181 0.3046492 0.16343792 -0.18369348 0.377698
-0.20881218 -0.7335665 -0.21539009 -0.2217096 0.46031496 0.8436203
0.6501436 -0.4786596 -0.61897683 0.61116695 -1.0008626 -0.41187507
0.39785358 0.4034655 0.658622 0.7433061 0.2855818 -1.080359
0.5325116 -0.35524017 -0.8343146 0.7196831 -1.0901161 0.0107632
1.1515579 -0.2730414 -1.3572544 0.22045957 0.5061447 -0.88044786
-0.28465196 -0.12604763 -0.9454818 -0.38835576 0.55482733 0.06958923
0.40690348 -0.64936304 0.39997557 1.1536686 0.3732763 -0.540458
0.7554225 0.91844195 -0.02587448 -0.33731112 -0.38307604 -0.50459635
-0.49449858 -0.29600424 0.86989003 -0.86432976 -1.3259307 0.67209023
-0.8816895 0.03923833 -0.25041404 0.64339286 -0.24052235 0.3613624
-0.35085937 -1.0516691 -0.52248394 -0.76658773 0.358979 0.48421323
0.40106103 -0.8690267 -0.14510526 0.47530454 0.45502648 -0.17668214
0.90094584 -0.692365 -0.844982 -0.02275333 0.20408994 0.11108324
0.44346464 0.01819358 -1.234242 -0.57991433 0.71664757 0.12465746
0.07776511 -0.05719268 1.5486795 -0.7767687 -0.2954162 0.905702
1.4342241 0.45061183 0.4825957 0.03906916 0.5537495 0.53785944
0.6449105 0.70554805 0.39864555 0.38481373 0.793469 0.17947923
0.36164817 -0.268487 0.08409131 0.9203875 0.39035103 -0.09173497
-0.33148727 0.09004612 -2.1669571 -0.9782322 -0.14171147 2.4837592
0.35945988 -0.5571601 -0.03225829 -0.25692162 0.906103 -0.24743809
-0.9322417 -0.24941456 0.05965472 -0.16636091 0.74415433 -0.0961496
-0.86800754 0.5723837 5.290297 0.7936824 -1.3847963 0.28777128
0.509809 -0.21839911 -0.26703236 0.02978795 -0.57369673 0.65471053
0.67174643 -0.23935 0.75744146 0.8286096 0.15235485 0.34937483
-0.70258236 1.3046131 -0.13540109 -1.2625648 -0.09757016 0.20408647
0.751542 0.08718812 0.20017558 -0.01700453 0.7500288 -0.6137038
0.5307152 0.86433107 0.48548356 -0.9264314 0.52132696 0.8003432
-0.98128444 -0.7089501 -0.5719087 0.11301756 -0.5374202 0.51085716
-0.5133099 0.8706553 1.1718596 0.24631783 -0.3584257 1.2510848
0.26563817 0.45679232 -0.24797684 -0.10201479 -0.36024076 -0.7348526
0.30506182 0.5131424 0.37814063 0.42852503 0.08344588 0.7473965
-0.2860441 0.43302915 -0.42398933 0.40935433 0.94609356 1.3790085
-0.277976 -0.02359938 -0.25794244 0.8086317 0.38676742 0.2718725
-0.57857907 -0.25599355 0.81244135 -0.01868894 0.31556842 -0.03235065
-0.5411077 -1.1476995 -0.12341585 -0.8147424 0.9045946 -0.47828463
-1.3927948 0.30598465 -0.5482989 -1.4423456 0.2890137 -0.15314274
-0.8205375 0.71996546 -0.9796533 -0.97663736 -0.40844625 1.2675408
-0.19361538 -0.51050746 1.0883185 0.14502649 -0.6432755 0.95032513
0.86069477 -0.24162368 0.882034 -0.8193623 -0.48534748 0.8030553
0.17975362 0.83922154 0.3496957 -0.44292244 -1.8314553 -1.6597916
0.514121 -0.24023464 0.27136132 -0.3527381 -0.9035228 0.45860362
-0.13452558 0.14103866 1.0766943 0.07000764 -0.3126768 -0.8718159
-1.9361855 0.50674546 0.7383558 -0.4414462 -0.04466013 0.47775248
0.81652564 -0.05734158 -0.8041719 0.05451752 0.28499871 -1.0971822
0.4019675 -0.51272357 -0.7184932 -0.80567497 -0.22117248 -0.9778229
-0.3581798 -0.9811247 -0.154382 1.4091411 0.05872377 -1.1346697
1.2502545 1.1836302 -0.04226198 -0.4616694 -1.0366278 -0.67463785
-0.23634952 -0.08285111 1.3284475 1.3167 -0.1468669 -0.18868056
-0.20667076 0.7864445 0.9709398 0.34603488 0.96443766 -1.3791347
-0.2752347 0.10687117 -0.21716636 -0.78100896 0.2104762 -0.7782515
-0.11155958 -0.9166797 -0.13085009 -1.0424316 -0.7039443 0.51465243
0.2565511 -0.32995158 0.12686409 0.7013983 -1.0418885 0.53637415
1.0061384 -0.13380608 -0.4717336 0.5304286 -0.83832663 0.43983573
0.90502954 -0.49004295 -0.6324079 -0.65948355 -0.35716283 -0.11526481
0.1477324 -1.1814964 0.99286646 -0.30671772 0.36114082 -0.37021342
0.09412608 -1.7033229 0.5880116 0.4592589 -0.10123823 -0.13359982
-0.34172833 0.75271213 0.05337795 -0.04846839 0.62600225 -0.0654524
-0.4642324 0.6556832 -0.18986697 -0.44018117 1.4140946 -0.10609029
-0.33833346 -0.2711567 -0.39961386 0.52909994 0.8346853 0.26554433
0.3000532 -1.1741792 -0.13348024 0.6011776 -0.07461583 0.20654804
0.43741792 0.45053667 -0.26556426 0.14504956 -0.01071339 -0.35080373
-1.6225383 0.7633009 0.53800285 0.34923425 -0.3390572 0.57135475
-0.06859318 -0.7467582 0.5525073 0.03809496 0.05865408 -0.40366742
0.6853539 0.4590606 0.35983425 -0.3465996 -0.12849744 0.20601495
-0.05834521 0.23250774 1.0288826 -0.46571755 -0.4669066 0.17309467
1.242565 0.16784276 -1.1594138 -0.4261495 -0.3254728 -0.64685804
0.04071651 -0.83204794 -1.2794445 0.43199137 1.2185887 0.23314944
1.237634 -0.31691283 0.79559433 0.38581294 0.96062005 -1.2770071
-0.3677806 0.09002664 -0.09171277 -0.86498415 -0.12613767 -0.2815327
-0.5207052 1.0403711 0.77106446 0.3207 1.029018 0.2796991
0.5558782 -0.34585387 -0.5962688 0.3950601 -0.1957334 0.77093065
-0.37194765 0.33715147 -0.03692782 0.8890413 -0.06758526 0.01149755
0.1073677 0.8785218 -0.5543339 -1.1705002 -0.8113001 0.35507828
-0.3623903 0.6395088 -0.40414014 0.1319162 0.57905716 1.3426049
0.18714765 -0.8419184 -0.00724347 0.04721287 -0.0633591 -0.3329328
-0.7374905 -0.10693187 -0.56518835 -0.62598896 -0.17107993 -0.62007535
-1.6901739 -0.3551139 -0.45040384 0.68955547 1.0262818 0.89693254
0.8558909 0.14805342 1.3274559 -0.07542834 -0.94921076 -0.20428878
-1.0120859 0.48100662 0.06754356 -0.10651747 -0.49109522 -0.17667155] | [5.839359283447266, 6.35646915435791] |
161debf9-195c-482e-b804-ce57f5b29a27 | residual-gated-graph-convnets | 1711.07553 | null | http://arxiv.org/abs/1711.07553v2 | http://arxiv.org/pdf/1711.07553v2.pdf | Residual Gated Graph ConvNets | Graph-structured data such as social networks, functional brain networks,
gene regulatory networks, communications networks have brought the interest in
generalizing deep learning techniques to graph domains. In this paper, we are
interested to design neural networks for graphs with variable length in order
to solve learning problems such as vertex classification, graph classification,
graph regression, and graph generative tasks. Most existing works have focused
on recurrent neural networks (RNNs) to learn meaningful representations of
graphs, and more recently new convolutional neural networks (ConvNets) have
been introduced. In this work, we want to compare rigorously these two
fundamental families of architectures to solve graph learning tasks. We review
existing graph RNN and ConvNet architectures, and propose natural extension of
LSTM and ConvNet to graphs with arbitrary size. Then, we design a set of
analytically controlled experiments on two basic graph problems, i.e. subgraph
matching and graph clustering, to test the different architectures. Numerical
results show that the proposed graph ConvNets are 3-17% more accurate and
1.5-4x faster than graph RNNs. Graph ConvNets are also 36% more accurate than
variational (non-learning) techniques. Finally, the most effective graph
ConvNet architecture uses gated edges and residuality. Residuality plays an
essential role to learn multi-layer architectures as they provide a 10% gain of
performance. | ['Thomas Laurent', 'Xavier Bresson'] | 2017-11-20 | residual-gated-graph-convnets-1 | https://openreview.net/forum?id=HyXBcYg0b | https://openreview.net/pdf?id=HyXBcYg0b | iclr-2018-1 | ['graph-regression'] | ['graphs'] | [-1.00619551e-02 5.08450508e-01 -4.56452221e-02 -2.52493083e-01
9.53359604e-02 -2.28303716e-01 3.47443044e-01 1.03089556e-01
-1.95072100e-01 7.66234577e-01 -1.54600456e-01 -5.64322531e-01
-2.14341730e-01 -1.22279620e+00 -7.85670340e-01 -6.14153504e-01
-6.18453503e-01 4.92037266e-01 -2.27650888e-02 -3.85807663e-01
-2.53255907e-02 6.11096561e-01 -1.08913136e+00 -1.67347327e-01
6.64435446e-01 6.55736506e-01 1.19116537e-01 8.71572077e-01
-2.24344924e-01 9.44067001e-01 -4.94888037e-01 -3.23187590e-01
5.15178181e-02 -4.29702878e-01 -9.70015764e-01 -6.00552335e-02
1.62042826e-01 8.99472013e-02 -7.64647007e-01 1.27010727e+00
4.35544819e-01 4.40782338e-01 5.94243228e-01 -1.31202567e+00
-1.14887130e+00 1.07911325e+00 -3.40102971e-01 3.19559455e-01
7.31381178e-02 -3.15638110e-02 1.14475119e+00 -3.61466765e-01
6.16994560e-01 1.38463759e+00 6.80360258e-01 6.70202851e-01
-9.81482863e-01 -6.36338234e-01 2.91455895e-01 1.24229491e-01
-1.35745180e+00 9.28530768e-02 9.19948995e-01 -2.04693764e-01
1.26639962e+00 6.87666386e-02 8.84481549e-01 1.27214003e+00
4.72505450e-01 4.00692552e-01 5.77553689e-01 -3.28117728e-01
-9.83939841e-02 -2.41463348e-01 4.78420496e-01 1.12016392e+00
4.76935744e-01 2.56664585e-02 1.45478830e-01 5.22474274e-02
1.04382169e+00 1.48121223e-01 -2.89339274e-01 -1.64887398e-01
-7.82531559e-01 1.24849844e+00 1.21079791e+00 6.45183742e-01
-3.01362991e-01 7.85809100e-01 4.32556480e-01 6.28452957e-01
5.53244472e-01 4.91029859e-01 -4.96857278e-02 4.12821978e-01
-4.51565206e-01 3.22277769e-02 8.95748615e-01 1.05483925e+00
8.57562542e-01 7.20594585e-01 3.07976995e-02 7.87932456e-01
4.49106961e-01 4.08725768e-01 4.37822461e-01 -3.81123722e-01
2.81340271e-01 8.72966945e-01 -8.20902646e-01 -1.40650630e+00
-8.37925613e-01 -5.93362093e-01 -1.63130760e+00 -2.46405020e-01
-1.22982105e-02 -2.28696957e-01 -1.18868446e+00 1.59014237e+00
-1.41625822e-01 2.38379568e-01 5.29411733e-02 6.71688318e-01
1.34916294e+00 7.07992256e-01 -7.04214722e-02 -5.92950955e-02
8.66252959e-01 -8.62858355e-01 -5.85639954e-01 -1.07926548e-01
7.10624695e-01 -1.15334757e-01 7.13951886e-01 6.00752793e-02
-9.41754818e-01 -5.47404289e-01 -9.56960142e-01 -9.25548375e-02
-6.94866717e-01 -2.47701257e-01 1.07663226e+00 4.07327503e-01
-1.67292380e+00 9.74243164e-01 -8.41227710e-01 -6.43122613e-01
4.24277097e-01 7.98712969e-01 -3.55815351e-01 1.25321671e-01
-1.36862898e+00 5.54651260e-01 6.12170756e-01 5.27705371e-01
-9.09930587e-01 -2.74853230e-01 -1.12147605e+00 4.02482927e-01
2.29145899e-01 -7.76516497e-01 7.15104878e-01 -1.08807802e+00
-1.29310846e+00 8.71581495e-01 2.45571882e-01 -8.57128561e-01
5.95330312e-05 3.37011218e-01 -4.02246654e-01 -2.45404188e-02
-3.04449469e-01 6.42679155e-01 5.88409781e-01 -8.21449876e-01
9.14387405e-02 -3.18649918e-01 1.50176555e-01 -2.04570815e-01
-3.23980987e-01 -2.60970473e-01 -2.98229903e-01 -5.10648727e-01
5.24136275e-02 -1.05174017e+00 -5.71888804e-01 -5.95254779e-01
-6.55111551e-01 -4.38057154e-01 7.59335518e-01 -4.28090543e-01
1.12318349e+00 -1.69293153e+00 4.87837791e-01 3.72402638e-01
9.15997028e-01 3.63980681e-01 -3.57425719e-01 5.45906126e-01
-3.38343740e-01 3.56824756e-01 -1.41708776e-01 3.95518281e-02
-1.86201483e-01 5.01458466e-01 -1.41244218e-01 4.94311839e-01
2.80476958e-01 1.47637451e+00 -6.63429201e-01 -3.04712713e-01
2.98621088e-01 6.78493738e-01 -6.34550691e-01 9.28283706e-02
-3.30900699e-01 1.89495206e-01 -5.42941153e-01 3.74637246e-01
4.03629005e-01 -7.85866439e-01 5.56608617e-01 -3.41031775e-02
3.91150951e-01 -9.15346518e-02 -7.47424066e-01 1.45857954e+00
-3.43987435e-01 9.62647617e-01 -1.16902083e-01 -1.57910848e+00
1.21750176e+00 1.20690383e-01 3.85441333e-01 -7.76823282e-01
5.39406717e-01 -1.50303319e-01 3.16139758e-01 -2.56041884e-01
2.51088172e-01 8.99909958e-02 9.71254483e-02 2.00834200e-01
3.96553189e-01 1.89000860e-01 2.92566031e-01 3.63267362e-01
1.29775858e+00 -4.91475374e-01 1.76101908e-01 -4.74117458e-01
5.75118124e-01 -3.92846346e-01 1.06533408e-01 6.27757549e-01
1.11398809e-01 3.39826852e-01 9.12940443e-01 -8.35763454e-01
-8.58720481e-01 -7.40575314e-01 3.05253863e-01 8.89093399e-01
4.64860536e-03 -4.32313919e-01 -7.06788838e-01 -3.41241270e-01
-1.51647732e-01 2.94821650e-01 -7.29658723e-01 -4.06734526e-01
-8.25315356e-01 -8.41531277e-01 6.54112220e-01 6.63741112e-01
5.44511259e-01 -1.41177118e+00 -4.53423932e-02 3.09136748e-01
3.79905313e-01 -1.12870121e+00 -1.45742476e-01 2.41070032e-01
-1.07522464e+00 -1.33654678e+00 -6.12273455e-01 -1.26495051e+00
7.63258696e-01 -6.01650141e-02 1.39075685e+00 5.84421575e-01
-3.02880913e-01 2.86928177e-01 -3.14444661e-01 -7.21265078e-02
-4.69796330e-01 6.30133688e-01 -1.90556958e-01 -1.14557020e-01
9.55683663e-02 -9.83267844e-01 -1.55902788e-01 -1.09708086e-01
-8.91076386e-01 -4.79273312e-02 5.10325074e-01 9.22812939e-01
4.75980639e-01 6.92179278e-02 4.72429156e-01 -1.38272107e+00
1.13855386e+00 -4.72309142e-01 -9.79882538e-01 2.46826842e-01
-6.96126580e-01 4.85423505e-01 9.91447926e-01 -2.70604461e-01
-3.60826433e-01 -2.06764400e-01 -3.69209617e-01 -6.16620183e-01
2.22318947e-01 8.81029189e-01 9.37912315e-02 -3.70240182e-01
5.92768133e-01 6.31686375e-02 -2.00158525e-02 -1.60870329e-01
4.21798259e-01 1.24325626e-01 1.59213558e-01 -1.78741693e-01
5.46446383e-01 1.13045938e-01 4.37556624e-01 -9.89671767e-01
-3.82006288e-01 -8.72913003e-02 -4.63795364e-01 -2.21501350e-01
9.24596310e-01 -5.71199119e-01 -1.12308192e+00 3.63709182e-01
-1.14928329e+00 -6.89460397e-01 6.39249533e-02 4.02831674e-01
-3.40049952e-01 3.07137012e-01 -1.06105411e+00 -5.05027235e-01
-7.68827081e-01 -1.11137915e+00 8.41671586e-01 3.40066135e-01
2.76926398e-01 -1.68437850e+00 1.08272187e-01 -2.97170967e-01
5.53113222e-01 6.57145500e-01 1.16600001e+00 -8.34995329e-01
-7.15640187e-01 -8.17034692e-02 -3.88297081e-01 1.86502784e-01
-5.29504009e-02 8.91114250e-02 -7.04909444e-01 -5.25729060e-01
-4.13699508e-01 -2.13302374e-01 1.21077716e+00 7.36793339e-01
1.24918067e+00 -2.45767057e-01 -5.44674754e-01 9.98125553e-01
1.47506368e+00 1.86983779e-01 6.99934185e-01 -3.46401840e-01
1.21295989e+00 3.06461066e-01 -3.44726086e-01 -1.44622460e-01
1.51840597e-01 1.87928051e-01 6.95246994e-01 -3.72577339e-01
-1.35304406e-01 -1.29043236e-01 7.84437135e-02 1.33131146e+00
-4.32122976e-01 -7.97063410e-01 -9.01055098e-01 2.30011120e-01
-1.94437397e+00 -8.87483478e-01 -3.91691923e-01 1.67636120e+00
2.37099100e-02 1.67930886e-01 7.74738640e-02 -1.13337271e-01
9.91636276e-01 4.00449336e-01 -5.13840675e-01 -5.82809925e-01
-1.21051900e-01 6.09378934e-01 6.61719441e-01 6.53548717e-01
-9.74070370e-01 1.28894472e+00 6.29354239e+00 4.53925043e-01
-1.29080868e+00 -6.81847893e-03 8.12823832e-01 3.28475803e-01
-4.49931473e-01 -1.36866599e-01 -3.54327172e-01 2.77977977e-02
1.22501731e+00 -1.25615075e-01 7.70509422e-01 8.63942564e-01
-2.22840175e-01 5.49480736e-01 -1.06463289e+00 1.20007026e+00
4.15077955e-02 -1.56483805e+00 2.61677116e-01 2.44658336e-01
6.56340003e-01 3.90804142e-01 -5.77750802e-02 6.80835009e-01
6.64869070e-01 -1.70982087e+00 -1.29963383e-01 4.90844220e-01
6.70898199e-01 -8.62238407e-01 8.25337648e-01 2.48766132e-03
-1.50908637e+00 7.00133741e-02 -8.93218994e-01 -2.05036238e-01
-7.05417395e-02 6.26645148e-01 -8.26215327e-01 6.75700009e-01
4.19292539e-01 1.06575859e+00 -5.91916084e-01 6.75787807e-01
-1.44505039e-01 5.74453294e-01 -2.91512744e-03 -6.15529180e-01
6.42645299e-01 -4.40254658e-01 3.07876587e-01 1.01441312e+00
5.15855141e-02 8.70064087e-03 1.72960222e-01 1.32593977e+00
-6.66237772e-01 3.20327133e-02 -1.10886371e+00 -5.24947822e-01
-1.95535198e-02 1.28031540e+00 -1.11904538e+00 -1.63203791e-01
-2.28502631e-01 8.84040713e-01 8.83293986e-01 6.10366583e-01
-9.38092470e-01 -6.15670800e-01 5.00533760e-01 -1.00874454e-01
1.60001978e-01 -4.36517358e-01 3.96988064e-01 -1.05601990e+00
-3.42398316e-01 -5.88545620e-01 4.39713150e-01 -6.31910861e-01
-1.17904174e+00 1.08490205e+00 -1.81776330e-01 -3.38725358e-01
-4.50027704e-01 -9.44679558e-01 -7.75275230e-01 7.13705778e-01
-1.31694686e+00 -1.01831305e+00 -5.43265224e-01 8.08106363e-01
9.66542810e-02 -2.86386967e-01 7.17921734e-01 4.17232871e-01
-6.16368890e-01 4.99366522e-01 -1.22402258e-01 7.08121479e-01
-1.81044579e-01 -1.25887954e+00 9.36050475e-01 6.95682585e-01
5.31856656e-01 6.10571921e-01 3.39469314e-01 -6.56488299e-01
-1.76700735e+00 -1.44419694e+00 5.32970309e-01 -7.27208555e-02
5.83947182e-01 -7.10754871e-01 -9.94068623e-01 1.04414141e+00
2.42525205e-01 4.04686481e-01 6.84205815e-02 3.39820772e-01
-1.38183475e-01 -1.21685490e-01 -8.86828184e-01 6.23616695e-01
1.37805271e+00 -5.43731332e-01 7.47616822e-03 6.27746761e-01
1.14822567e+00 -4.10906732e-01 -8.23797226e-01 3.66679221e-01
2.28828743e-01 -8.04536164e-01 8.07510436e-01 -1.01589954e+00
4.07508165e-02 1.98305771e-01 1.01820081e-01 -1.44718635e+00
-5.49999893e-01 -7.57940114e-01 8.64331275e-02 7.80075908e-01
4.94243026e-01 -9.69952285e-01 1.01038778e+00 3.18084806e-02
-2.06543505e-01 -7.85937190e-01 -6.72348440e-01 -6.37465656e-01
1.63692325e-01 -2.12407649e-01 5.00635386e-01 9.90604043e-01
-2.35445693e-01 8.70539546e-01 -2.84295708e-01 9.80955437e-02
3.57416242e-01 8.71252418e-02 5.94077885e-01 -1.40302753e+00
-1.89427018e-01 -7.91212499e-01 -9.23437178e-01 -9.03152883e-01
6.33196294e-01 -1.39460528e+00 -4.73243237e-01 -1.82839870e+00
-1.92453042e-02 -1.47694930e-01 -2.00814933e-01 4.64832038e-01
1.49536699e-01 3.55474241e-02 -1.32443145e-01 -4.56027091e-01
-5.85150659e-01 5.66265047e-01 1.22552812e+00 -5.37289262e-01
-3.28119844e-01 4.00234759e-02 -4.88597035e-01 4.05778110e-01
9.37339723e-01 -3.18516165e-01 -7.24592984e-01 -4.93366122e-01
4.50622857e-01 1.62058339e-01 4.63041544e-01 -9.38370943e-01
3.21347922e-01 2.09440351e-01 1.49803668e-01 -1.77838281e-01
9.88804828e-03 -5.26406884e-01 2.73524582e-01 8.11183810e-01
-3.67461413e-01 4.47914869e-01 9.88691822e-02 6.18749857e-01
-2.48679802e-01 -8.60745236e-02 6.68573797e-01 -4.84742820e-01
-5.30884027e-01 8.42209280e-01 -2.68640757e-01 2.86136001e-01
8.40972841e-01 -6.29261732e-02 -1.79934546e-01 -6.11485183e-01
-9.91779029e-01 2.34241560e-01 -1.21955007e-01 4.17920649e-01
8.38982701e-01 -1.20766616e+00 -6.64632499e-01 2.45329469e-01
-2.09322110e-01 9.05906502e-03 8.51746276e-02 5.99580109e-01
-9.51403916e-01 7.47972071e-01 -2.01060250e-01 -6.06297731e-01
-1.06818140e+00 7.95548320e-01 6.53198123e-01 -4.07406181e-01
-7.73370326e-01 1.03791642e+00 2.47972399e-01 -5.97756863e-01
2.66067445e-01 -9.01167750e-01 -2.51886040e-01 -3.40520799e-01
-7.68119618e-02 2.65044928e-01 1.47322908e-01 -3.15203756e-01
-2.32717440e-01 4.71773654e-01 -4.39810194e-02 6.99552655e-01
1.48875380e+00 4.29562300e-01 -3.01631153e-01 1.84361055e-01
1.49771416e+00 -5.50508857e-01 -5.45225084e-01 -2.76928544e-02
1.71693917e-02 3.54264319e-01 6.79854751e-02 -1.38879403e-01
-1.75516057e+00 1.04501760e+00 2.81569391e-01 7.25665212e-01
9.59496915e-01 1.48001790e-01 7.73203254e-01 6.92393661e-01
3.42660993e-01 -5.96348822e-01 4.98149507e-02 6.21591628e-01
8.49461019e-01 -1.12083912e+00 -1.68156698e-01 -2.70422339e-01
-2.05300108e-01 1.31602967e+00 6.58304393e-01 -6.60519421e-01
9.01883483e-01 4.26590592e-02 -5.18663466e-01 -8.45435619e-01
-7.72328794e-01 -3.79639506e-01 4.28028435e-01 5.88579118e-01
5.99285305e-01 2.26128116e-01 -5.34699000e-02 3.54154319e-01
-2.31503993e-01 -4.17270243e-01 5.36449969e-01 3.00783277e-01
-2.92235017e-01 -8.92780542e-01 3.26254636e-01 7.73834348e-01
-2.80931324e-01 -2.58880496e-01 -7.94519484e-01 1.14728630e+00
-3.34836781e-01 6.97669029e-01 1.66373894e-01 -5.49933672e-01
1.01309702e-01 -3.19143176e-01 5.48187613e-01 -6.15663171e-01
-6.63419306e-01 -2.39159942e-01 2.72350870e-02 -5.94464958e-01
-3.65769237e-01 1.56777292e-01 -1.40974247e+00 -6.34734690e-01
-5.66930413e-01 2.63496637e-01 2.57772774e-01 6.81475043e-01
2.83526719e-01 1.06548870e+00 3.28565687e-01 -6.15785718e-01
-1.16553217e-01 -1.03168464e+00 -8.67467403e-01 2.01730832e-01
1.85308993e-01 -4.27347571e-01 -2.25152567e-01 -4.06586468e-01] | [6.9434614181518555, 6.201667785644531] |
8b52265a-2bb4-4504-ad49-12606833d163 | codet-a-benchmark-for-contrastive-dialectal | 2305.17267 | null | https://arxiv.org/abs/2305.17267v1 | https://arxiv.org/pdf/2305.17267v1.pdf | CODET: A Benchmark for Contrastive Dialectal Evaluation of Machine Translation | Neural machine translation (NMT) systems exhibit limited robustness in handling source-side linguistic variations. Their performance tends to degrade when faced with even slight deviations in language usage, such as different domains or variations introduced by second-language speakers. It is intuitive to extend this observation to encompass dialectal variations as well, but the work allowing the community to evaluate MT systems on this dimension is limited. To alleviate this issue, we compile and release \dataset, a contrastive dialectal benchmark encompassing 882 different variations from nine different languages. We also quantitatively demonstrate the challenges large MT models face in effectively translating dialectal variants. We are releasing all code and data. | ['Antonios Anastasopoulos', 'Sina Ahmadi', 'Md Mahfuz ibn Alam'] | 2023-05-26 | null | null | null | null | ['nmt'] | ['computer-code'] | [ 1.13220707e-01 -2.94147432e-01 -4.91400450e-01 -4.17186350e-01
-1.15176034e+00 -1.05633628e+00 8.67142737e-01 -4.23271537e-01
-4.61631924e-01 9.51088190e-01 2.83207625e-01 -7.41050124e-01
3.92517954e-01 -3.19807500e-01 -7.76033580e-01 -2.54054189e-01
2.23385558e-01 7.40075409e-01 -7.83123374e-02 -6.62395000e-01
1.62857816e-01 1.21958941e-01 -9.31880832e-01 3.91218871e-01
1.22353256e+00 9.26379785e-02 8.70789662e-02 3.60614151e-01
-3.01343352e-01 3.60429704e-01 -7.29828417e-01 -9.26221490e-01
5.17874599e-01 -4.25494105e-01 -8.46096992e-01 -9.24232528e-02
7.69490123e-01 -1.78573020e-02 -7.65685961e-02 1.06277359e+00
6.88528955e-01 -2.84061670e-01 7.24053800e-01 -9.12376046e-01
-1.22069216e+00 1.06038046e+00 -5.21150470e-01 4.55049843e-01
5.26609719e-01 4.00582969e-01 9.02191579e-01 -1.13061178e+00
8.67146790e-01 1.42766392e+00 8.37476075e-01 5.95912814e-01
-1.39231539e+00 -5.68102598e-01 1.05782032e-01 -1.17842043e-02
-1.43872941e+00 -9.13406551e-01 5.61743557e-01 -4.19790775e-01
1.29277873e+00 2.16472402e-01 3.08260210e-02 1.63138676e+00
3.80257338e-01 6.20434940e-01 1.37098610e+00 -6.60720706e-01
-2.02615768e-01 2.89594501e-01 -1.04753494e-01 4.21284467e-01
1.54755965e-01 8.24363530e-03 -5.87882817e-01 -2.85457879e-01
2.30313420e-01 -5.91293216e-01 -2.77244002e-01 -1.27372965e-01
-1.64276791e+00 6.89793408e-01 2.79708710e-02 4.94160712e-01
-1.06311157e-01 -1.53368711e-01 6.09679163e-01 1.13252866e+00
4.77038056e-01 6.85681701e-01 -7.76738226e-01 -5.29474616e-01
-8.33880603e-01 1.36324182e-01 9.52603638e-01 1.37266099e+00
6.74141288e-01 2.47658283e-01 1.90076083e-02 1.30493534e+00
-1.96849033e-01 7.26891696e-01 1.04434681e+00 -8.68480921e-01
9.39483523e-01 1.84273303e-01 -7.75633454e-02 -6.08439505e-01
-1.35113910e-01 -4.11127210e-01 -5.27083993e-01 -2.95460701e-01
5.39266706e-01 -3.03737640e-01 -6.54816329e-01 2.08189917e+00
-1.65758193e-01 -7.36525118e-01 9.62364003e-02 5.74875891e-01
5.61709225e-01 3.40295613e-01 -2.37523466e-01 -1.74608588e-01
1.18577325e+00 -1.06556416e+00 -5.84022760e-01 -5.62789440e-01
7.81075358e-01 -1.33414829e+00 1.50809300e+00 -3.79780191e-03
-1.30975902e+00 -3.65139663e-01 -8.49135995e-01 -4.52145636e-02
-4.98494089e-01 -6.46814704e-02 4.12051678e-01 8.29980791e-01
-1.29242051e+00 2.59445876e-01 -6.29910767e-01 -7.62590289e-01
1.94959436e-02 3.11681479e-01 -3.43689442e-01 2.78662536e-02
-1.36349559e+00 1.39581239e+00 1.41523227e-01 -3.61809462e-01
-4.77404714e-01 -6.86997414e-01 -7.28085756e-01 -4.58320290e-01
3.37504633e-02 -6.69006884e-01 1.62843299e+00 -1.22466350e+00
-1.55332375e+00 1.15094936e+00 -4.53850657e-01 -2.01749444e-01
9.39634204e-01 5.72648793e-02 -7.98278391e-01 -4.98723984e-01
3.78976405e-01 4.99726236e-01 5.74209690e-01 -7.75015652e-01
-2.93649912e-01 -1.94709584e-01 -5.53925894e-02 2.31329784e-01
-4.07649279e-01 4.58418727e-01 -2.74577826e-01 -9.72258627e-01
-2.06262186e-01 -1.23857605e+00 1.33586104e-03 -4.99890894e-01
-4.04096603e-01 3.97678465e-02 3.93258512e-01 -7.95133650e-01
1.11977339e+00 -1.80641377e+00 3.16985816e-01 -1.90930471e-01
-1.44630075e-01 1.11256056e-01 -4.98574197e-01 7.69175172e-01
-4.66785440e-03 3.40984792e-01 -4.19374377e-01 -3.60249400e-01
1.68733627e-01 2.71484971e-01 -3.33732337e-01 2.28577226e-01
2.76377410e-01 1.18330753e+00 -7.41971850e-01 -3.64431649e-01
-3.23004097e-01 3.05778030e-02 -3.97005230e-01 -2.97000378e-01
-2.59758681e-01 4.98831928e-01 -9.86516327e-02 8.59658301e-01
4.85613316e-01 4.42630351e-02 1.72572583e-01 4.02260214e-01
-2.46248081e-01 8.92440796e-01 -5.04634857e-01 1.93431854e+00
-7.41979837e-01 9.06769395e-01 -2.01979559e-02 -7.13329792e-01
6.28092110e-01 3.13876927e-01 -3.26785743e-02 -7.83932388e-01
-8.96476060e-02 7.82319069e-01 4.57131952e-01 -3.66082489e-01
6.53609753e-01 -1.85640484e-01 -3.52765203e-01 6.54748917e-01
-9.80789214e-02 -2.27704450e-01 2.55299121e-01 -9.91504565e-02
9.96239066e-01 -1.09209614e-02 3.03163141e-01 -6.61513627e-01
3.39591831e-01 3.55375677e-01 4.78641450e-01 7.61673927e-01
-2.97084183e-01 5.89805245e-01 2.73351550e-01 -3.93089682e-01
-1.11890435e+00 -1.19730473e+00 -3.75901937e-01 1.31521428e+00
-2.69324869e-01 -3.44583333e-01 -7.78023899e-01 -9.36553538e-01
-8.40683132e-02 8.28607559e-01 -4.67917174e-01 -1.40581563e-01
-1.06029236e+00 -9.34659183e-01 1.02218390e+00 2.31863007e-01
4.18487132e-01 -8.44525397e-01 6.61001652e-02 1.98789731e-01
-5.87769270e-01 -1.14612150e+00 -8.75612915e-01 2.12942109e-01
-6.94283664e-01 -5.14758289e-01 -7.42777526e-01 -1.02130783e+00
2.62779236e-01 1.46171540e-01 1.76428878e+00 -1.72691599e-01
2.07004413e-01 1.30614683e-01 -8.66425559e-02 -3.49439830e-01
-1.25379312e+00 7.26469517e-01 3.54248226e-01 -4.83279616e-01
6.50606930e-01 -6.48871720e-01 -1.16543211e-01 5.90144753e-01
-5.69813490e-01 -7.31643513e-02 5.95263422e-01 7.62137532e-01
1.62868559e-01 -5.57831049e-01 6.63279057e-01 -9.35792685e-01
8.87199044e-01 -6.39717102e-01 -3.57619762e-01 4.02955145e-01
-5.54671466e-01 1.50507361e-01 9.70398724e-01 -6.70904636e-01
-8.73565912e-01 -3.53755981e-01 -8.01586658e-02 1.42793640e-01
-4.63719144e-02 4.76905704e-01 -1.05217442e-01 -4.93074842e-02
1.00618231e+00 4.48693782e-01 -1.25158429e-01 -5.46549976e-01
4.68625069e-01 8.86393964e-01 5.29578269e-01 -9.32903409e-01
1.06748509e+00 -1.30839065e-01 -6.10154331e-01 -7.93694317e-01
-2.78992146e-01 1.40226427e-02 -6.63809359e-01 2.56693482e-01
4.61305946e-01 -1.03710759e+00 1.89514801e-01 5.40634513e-01
-1.29920554e+00 -5.42061985e-01 1.23015434e-01 3.37372810e-01
-5.62682331e-01 2.92094558e-01 -8.57755184e-01 -3.06909741e-03
-2.46556476e-01 -1.48430741e+00 8.89743149e-01 -3.81099761e-01
-6.64080322e-01 -1.22113955e+00 2.75345236e-01 2.43286297e-01
7.69254446e-01 -7.53210559e-02 1.20027053e+00 -7.35136926e-01
-2.34169319e-01 2.13437185e-01 1.58034205e-01 2.55638450e-01
5.52996933e-01 3.68113816e-02 -6.64220273e-01 -4.56565976e-01
-5.88789545e-02 -4.01967883e-01 5.97440481e-01 -1.91550218e-02
3.95542473e-01 -3.84916663e-01 -1.53257325e-01 6.32337093e-01
1.06413603e+00 -1.43725097e-01 2.33544096e-01 5.66305101e-01
5.52343845e-01 5.97556055e-01 1.88611075e-01 -1.53133899e-01
5.44760227e-01 1.00669193e+00 -1.90647155e-01 -1.18461467e-01
-3.23614746e-01 -1.68539017e-01 7.87476599e-01 1.48402274e+00
5.52178472e-02 -1.61530480e-01 -1.24883354e+00 6.10852420e-01
-1.37753749e+00 -7.89750814e-01 -1.42289758e-01 2.11740756e+00
1.36585569e+00 1.90399960e-01 3.47601563e-01 -4.11881775e-01
7.78863430e-01 8.86444151e-02 -5.72018623e-01 -8.74068081e-01
-5.12092710e-01 4.78078909e-02 5.27247250e-01 6.08375311e-01
-6.61846697e-01 1.42622960e+00 7.58099270e+00 8.43690753e-01
-1.34673238e+00 2.82889515e-01 5.01257837e-01 -1.77936494e-01
-5.31382799e-01 -8.97044539e-02 -5.43809831e-01 5.65821648e-01
1.15470707e+00 -4.91771817e-01 7.93875337e-01 5.01384199e-01
6.99762255e-02 4.09917533e-01 -1.36705196e+00 7.29276180e-01
6.17684200e-02 -8.82891595e-01 1.28225774e-01 7.89088160e-02
1.05378461e+00 8.43240142e-01 3.36300671e-01 6.07833505e-01
6.61741257e-01 -1.03222644e+00 9.04107571e-01 -2.03946814e-01
1.09316587e+00 -5.06127656e-01 2.54792094e-01 4.56161618e-01
-7.91008532e-01 2.63682634e-01 -4.38443959e-01 -3.20347786e-01
-2.71476060e-02 3.09404254e-01 -9.26536679e-01 4.65581775e-01
4.09866005e-01 5.07648349e-01 -8.71267676e-01 4.14355397e-01
-9.64280963e-02 7.62656868e-01 -2.26481855e-01 -3.38260736e-03
2.59235144e-01 -2.60546565e-01 7.01685488e-01 1.54967403e+00
4.87510681e-01 -6.59565568e-01 -3.89043950e-02 8.39410603e-01
-3.72247458e-01 3.15582514e-01 -1.04296446e+00 -5.93548678e-02
5.62651157e-01 8.74605954e-01 -2.99447954e-01 -3.81848574e-01
-7.64410377e-01 1.47398376e+00 6.67699158e-01 6.13781095e-01
-8.64358246e-01 -1.68163463e-01 1.12031186e+00 1.04485629e-02
2.26013027e-02 -5.41444540e-01 -4.37999815e-01 -1.56051004e+00
4.85067248e-01 -1.50466025e+00 2.19572634e-01 -4.18111682e-01
-1.38749766e+00 8.94159079e-01 -1.79855660e-01 -1.17633355e+00
-6.03036404e-01 -4.70008731e-01 -4.27145779e-01 1.19099140e+00
-1.33991694e+00 -1.11313045e+00 3.38517636e-01 4.60485399e-01
8.26552570e-01 -5.55957377e-01 8.24774504e-01 5.24020672e-01
-5.44567585e-01 1.18780148e+00 4.16399330e-01 9.38976407e-02
1.31711423e+00 -1.27487576e+00 1.16035688e+00 8.65273774e-01
3.75405252e-01 1.08624792e+00 7.59263515e-01 -3.88220340e-01
-1.38328969e+00 -1.16546345e+00 1.52023733e+00 -1.15441620e+00
8.33666384e-01 -7.63323605e-01 -7.61865020e-01 9.89944458e-01
5.90532660e-01 -3.85852516e-01 5.63948572e-01 2.04937071e-01
-7.12529182e-01 2.69312114e-01 -9.10156012e-01 1.16547549e+00
1.45469010e+00 -8.08966577e-01 -7.47496367e-01 3.09659511e-01
9.77351367e-01 -4.06407803e-01 -9.53974545e-01 3.00486654e-01
5.38217843e-01 -8.42961371e-01 7.59436011e-01 -7.14025497e-01
5.62068522e-01 -9.13228467e-02 -3.49436045e-01 -1.81184125e+00
-2.93526411e-01 -1.08476102e+00 3.42253000e-01 1.47767496e+00
9.89021540e-01 -9.33063149e-01 2.46253684e-01 3.68727356e-01
-2.57837832e-01 -4.56267864e-01 -9.51084137e-01 -1.27488756e+00
1.07972693e+00 -3.76006663e-01 8.54754567e-01 1.50998855e+00
1.71500146e-01 5.03232718e-01 -2.53062755e-01 -1.70957148e-01
1.57446891e-01 9.80877206e-02 8.61387193e-01 -6.39547408e-01
-4.87716675e-01 -8.41914773e-01 1.28534539e-02 -1.06121314e+00
3.70930821e-01 -1.36860776e+00 -1.53814226e-01 -9.88606155e-01
1.52004704e-01 -3.58072400e-01 -1.35728642e-01 2.98978418e-01
-2.19762802e-01 5.11284769e-01 3.16229016e-02 4.91037935e-01
-2.87993699e-01 4.53000426e-01 1.14013803e+00 -2.00591922e-01
-9.25070196e-02 -9.64614078e-02 -7.49333620e-01 4.97085392e-01
9.86837924e-01 -4.82821405e-01 -2.09157661e-01 -1.18847764e+00
1.95457891e-01 -8.29960853e-02 -1.96933374e-01 -7.66218126e-01
-1.44174516e-01 -2.08732888e-01 7.37045929e-02 -3.49330567e-02
-1.96910992e-01 -4.61439639e-01 8.67797509e-02 4.57829922e-01
-4.96249259e-01 8.89807999e-01 2.93839067e-01 -8.60437751e-02
-1.40053391e-01 5.52893244e-02 6.61939144e-01 -2.14550331e-01
-3.57968301e-01 1.20992869e-01 -7.46356010e-01 5.81524670e-01
4.06931907e-01 -1.76937833e-01 -5.17818272e-01 -3.51524353e-01
-3.94959375e-02 2.00908841e-03 1.05278981e+00 9.53430831e-01
-1.94212571e-01 -1.47835195e+00 -1.20802343e+00 2.95753032e-01
4.56634015e-01 -6.98667526e-01 -3.55505466e-01 9.27774251e-01
-4.32397902e-01 4.26225483e-01 -1.88951105e-01 -4.43690866e-01
-8.66553247e-01 5.30933917e-01 4.38998491e-01 -4.89975996e-02
-1.97065830e-01 5.18985510e-01 -6.36789948e-02 -1.15042102e+00
-2.31798291e-01 -3.29957545e-01 3.83981913e-01 -2.23061904e-01
2.31681705e-01 3.14408779e-01 3.87907624e-01 -8.84431124e-01
-4.56029385e-01 5.59053183e-01 -2.73166120e-01 -4.69015390e-01
7.20021009e-01 -3.53070021e-01 -2.16801047e-01 6.40393317e-01
1.15449429e+00 5.77287734e-01 -5.67401588e-01 -6.14455819e-01
2.44775712e-01 -1.84775218e-01 -6.59106433e-01 -1.13048244e+00
-6.63999200e-01 6.99369907e-01 1.79660439e-01 -2.99560316e-02
8.28308463e-01 -1.35446802e-01 9.82825577e-01 6.12035692e-01
6.45921588e-01 -1.05380344e+00 -4.19587255e-01 1.02759945e+00
8.34613800e-01 -1.36686730e+00 -4.38368231e-01 -1.18409790e-01
-5.20120025e-01 8.77946138e-01 5.32432079e-01 3.19100171e-01
2.65721947e-01 2.79299021e-01 7.23275602e-01 2.80317754e-01
-9.23103988e-01 1.41907185e-01 2.98014641e-01 7.19736755e-01
1.08735693e+00 2.38617644e-01 -6.03618443e-01 1.73170984e-01
-8.95566523e-01 -4.35182512e-01 5.04489601e-01 7.83271551e-01
8.26109052e-02 -1.59507728e+00 -3.50187868e-01 1.90745860e-01
-7.30193317e-01 -5.62406182e-01 -9.14448023e-01 9.49663281e-01
-1.30708411e-01 1.07556224e+00 -2.33596683e-01 -4.35041159e-01
2.43834078e-01 3.76647890e-01 5.33628345e-01 -6.00710809e-01
-7.69393265e-01 -2.66615778e-01 4.02293563e-01 -3.96831721e-01
3.51499617e-02 -8.63171637e-01 -7.71008372e-01 -6.41463459e-01
8.57072473e-02 -1.68950558e-02 5.91668606e-01 8.06536973e-01
3.11086982e-01 1.18573301e-01 5.43368816e-01 -4.65951145e-01
-8.64164591e-01 -1.15705037e+00 -4.20492217e-02 4.85596210e-01
3.20320815e-01 -2.98577130e-01 -4.08631206e-01 2.68883742e-02] | [11.47451400756836, 10.248960494995117] |
f6cc8dcf-16ee-42db-b38a-64310cb39c8d | ai-generated-characters-for-supporting | null | null | https://www.nature.com/articles/s42256-021-00417-9 | https://www.nature.com/articles/s42256-021-00417-9.pdf | AI-generated characters for supporting personalized learning and well-being | Advancements in machine learning have recently enabled the hyper-realistic synthesis of prose, images, audio and video data, in what is referred to as artificial intelligence (AI)-generated media. These techniques offer novel opportunities for creating interactions with digital portrayals of individuals that can inspire and intrigue us. AI-generated portrayals of characters can feature synthesized faces, bodies and voices of anyone, from a fictional character to a historical figure, or even a deceased family member. Although negative use cases of this technology have dominated the conversation so far, in this Perspective we highlight emerging positive use cases of AI-generated characters, specifically in supporting learning and well-being. We demonstrate an easy-to-use AI character generation pipeline to enable such outcomes and discuss ethical implications as well as the need for including traceability to help maintain trust in the generated media. As we look towards the future, we foresee generative media as a crucial part of the ever growing landscape of human–AI interaction. | ['Pattie Maes & Misha Sra', 'Dan Novy', 'Parinya Punpongsanon', 'Joanne Leong', 'Valdemar Danry', 'Pat Pataranutaporn'] | 2021-12-15 | null | null | null | nature-machine-intelligence-2021-12 | ['talking-head-generation', 'text-to-face-generation', 'face-reenactment'] | ['computer-vision', 'computer-vision', 'computer-vision'] | [ 6.51493490e-01 9.30597007e-01 3.73913169e-01 -2.25127250e-01
-5.07049382e-01 -5.25811493e-01 1.08526671e+00 1.96011752e-01
-5.83494529e-02 7.73364127e-01 7.93789268e-01 1.05681727e-02
4.48834360e-01 -7.71097183e-01 -5.89184642e-01 -2.78828919e-01
4.12276052e-02 2.56997764e-01 -4.00854409e-01 -3.91744047e-01
8.99374858e-02 4.00602341e-01 -1.76405251e+00 5.64948559e-01
6.91616237e-01 4.72035676e-01 -4.05473769e-01 8.59132409e-01
-4.67251837e-02 9.71035659e-01 -1.10959554e+00 -9.97854769e-01
-1.62863612e-01 -6.72753870e-01 -5.65573573e-01 -4.37928438e-02
4.96693194e-01 -5.92968047e-01 8.94675776e-02 5.89355171e-01
7.32572913e-01 -1.74717754e-01 3.65130335e-01 -1.21391952e+00
-7.81669974e-01 6.79037690e-01 -2.95130193e-01 -3.55901361e-01
1.05198002e+00 5.40519357e-01 5.02542794e-01 -2.26828396e-01
1.13669705e+00 1.37950575e+00 5.48950553e-01 1.00925136e+00
-1.09308338e+00 -1.03497958e+00 -2.84176469e-01 -2.32203662e-01
-9.26184118e-01 -7.07962990e-01 9.40530181e-01 -6.12372041e-01
3.60999316e-01 5.90273619e-01 1.67096603e+00 1.86522758e+00
5.15285842e-02 9.41457212e-01 9.32849348e-01 -5.04675210e-01
1.22836553e-01 4.79964167e-01 -5.53591192e-01 6.09589159e-01
2.51029208e-02 -1.36393562e-01 -8.71376216e-01 -3.54095548e-01
5.78796566e-01 -4.21860576e-01 -7.67706856e-02 3.84152919e-01
-1.57215166e+00 7.64311373e-01 8.56068879e-02 2.97545373e-01
-5.34167290e-01 5.20964324e-01 4.32235420e-01 -1.42112061e-01
5.95816016e-01 8.90732467e-01 4.61379975e-01 -8.72062504e-01
-6.18059278e-01 5.99795461e-01 7.41160035e-01 5.90296328e-01
9.21936408e-02 2.58730888e-01 -4.98801656e-02 7.01663852e-01
2.71753818e-02 3.67764652e-01 1.53809413e-01 -1.16912198e+00
-1.24419376e-01 6.14398658e-01 1.00210972e-01 -1.30254495e+00
-2.41725042e-01 -6.75557777e-02 -3.72383088e-01 3.46745908e-01
2.93957233e-01 -5.39238393e-01 -3.02761853e-01 1.53100860e+00
7.08636522e-01 2.46786296e-01 -1.10744178e-01 7.84215868e-01
1.26070368e+00 6.70213223e-01 2.88577944e-01 -1.35127897e-03
1.42358327e+00 -1.47426277e-01 -8.99088740e-01 -1.24772191e-01
4.85322624e-01 -8.06190312e-01 1.00478721e+00 6.58930898e-01
-1.53447545e+00 -1.65078983e-01 -1.09669137e+00 6.75949678e-02
-2.32142657e-01 -3.21222365e-01 7.24886715e-01 1.06510437e+00
-9.46429610e-01 6.33439898e-01 -4.53349173e-01 -6.11069620e-01
8.14213336e-01 -1.42482165e-02 -4.91514772e-01 3.01893502e-01
-1.03139269e+00 6.25320196e-01 -1.44397346e-02 -6.79662377e-02
-5.05104482e-01 -1.00604427e+00 -7.94845104e-01 -6.95886374e-01
-9.69003588e-02 -6.98571265e-01 1.26579070e+00 -1.53875291e+00
-1.62513375e+00 1.39092517e+00 2.52993166e-01 -1.89346507e-01
9.84441519e-01 -4.07060355e-01 -5.16501427e-01 2.92713284e-01
-1.77748546e-01 1.16135216e+00 6.50433719e-01 -1.37725770e+00
-3.38515192e-01 -3.68316434e-02 1.33960202e-01 8.57456550e-02
-5.24777353e-01 4.71201032e-01 3.70288491e-01 -6.11497998e-01
-5.16770780e-01 -7.46795833e-01 7.25915432e-02 3.89649600e-01
-5.72062612e-01 1.15984470e-01 9.55221117e-01 -6.95776403e-01
9.61560309e-01 -2.11835980e+00 -1.81777224e-01 3.67205217e-02
3.88276577e-01 3.01484704e-01 1.44042835e-01 8.29719901e-01
1.17832541e-01 4.93183762e-01 2.81598479e-01 -2.18260214e-01
3.58002298e-02 -3.19654495e-01 -8.61766338e-02 3.64218563e-01
3.37181717e-01 8.27771723e-01 -1.15318227e+00 -5.24852335e-01
1.35062607e-02 1.04159594e+00 -4.67511207e-01 1.11333258e-01
-1.93784103e-01 8.25105727e-01 -4.84131634e-01 4.70943958e-01
3.22691053e-01 1.34620309e-01 2.96310093e-02 1.69387862e-01
-2.36743718e-01 -4.48556803e-02 -7.15646088e-01 1.29524755e+00
-3.76414567e-01 1.01859605e+00 3.20751101e-01 -1.91577524e-01
1.08593524e+00 5.10324061e-01 3.54275495e-01 -5.30020893e-01
2.52321243e-01 1.32523617e-03 -2.28629205e-02 -7.87064135e-01
4.86969233e-01 -4.26030576e-01 -8.48635584e-02 8.44223857e-01
-5.33129811e-01 -6.95853114e-01 -3.58138889e-01 1.78971201e-01
9.40196812e-01 5.08772910e-01 1.38483584e-01 2.21268654e-01
-1.10127188e-01 6.78235069e-02 -8.44610035e-02 3.52835298e-01
-1.76229358e-01 6.79052472e-01 4.24602032e-01 -6.02012992e-01
-1.09352648e+00 -7.10375726e-01 3.61968973e-03 1.05755401e+00
-3.23400706e-01 -3.83439004e-01 -9.29370761e-01 -8.34542513e-02
-3.50406282e-02 1.06525064e+00 -5.88379204e-01 -2.83655196e-01
-4.85211760e-01 -2.12098673e-01 8.52736592e-01 -8.68630260e-02
2.40659624e-01 -1.44619584e+00 -1.19801807e+00 2.78663665e-01
-1.36515543e-01 -9.91053700e-01 1.50792636e-02 -7.15166748e-01
-2.98213899e-01 -4.86691266e-01 -9.36825097e-01 -5.65842032e-01
4.57923621e-01 -4.11559612e-01 9.02446449e-01 1.71769485e-01
-6.31977797e-01 7.02920854e-01 -4.91104722e-01 -9.19541776e-01
-1.09871817e+00 -4.22246993e-01 -1.28785864e-01 1.73642501e-01
-1.51201382e-01 -9.48845625e-01 -5.88157296e-01 -8.59880224e-02
-8.58561695e-01 9.09564972e-01 -7.43379146e-02 2.66740382e-01
-8.30073804e-02 -6.44842148e-01 9.10884857e-01 -1.12360418e+00
8.58016074e-01 -5.70151031e-01 2.44193882e-01 -1.30479053e-01
-9.68056843e-02 -5.72228134e-01 4.99872744e-01 -8.46486747e-01
-1.05537593e+00 -2.01486707e-01 -9.93903875e-02 -2.65969690e-02
-3.93561304e-01 2.86122859e-01 7.63957128e-02 1.26308754e-01
8.79093111e-01 -2.14818120e-01 2.43942901e-01 2.91039329e-02
5.10327816e-01 8.35543692e-01 6.85134649e-01 -5.61612427e-01
7.64757335e-01 6.38921142e-01 -7.09860921e-02 -1.04859161e+00
-2.03223526e-01 4.58364964e-01 -1.26274809e-01 -1.15334892e+00
8.17196906e-01 -7.59974420e-01 -1.10832345e+00 4.30419624e-01
-1.12411726e+00 -4.19592083e-01 -4.43690062e-01 1.63777381e-01
-3.99452984e-01 -1.08549595e-01 -4.42055941e-01 -1.11074543e+00
-4.50783551e-01 -6.91446543e-01 9.96388078e-01 5.76918423e-01
-1.01562738e+00 -8.10698986e-01 -1.37429750e-02 9.28620279e-01
4.47227299e-01 1.31808758e+00 6.22815907e-01 -6.46641791e-01
-1.95495889e-01 -6.64302349e-01 9.41720977e-02 -1.20321788e-01
3.71753834e-02 5.89139521e-01 -1.14943171e+00 2.88396150e-01
-4.79721695e-01 -8.81473482e-01 -4.77643162e-02 -1.60567865e-01
5.88704526e-01 -8.71074080e-01 -2.59135216e-01 1.57877728e-01
6.37821674e-01 4.48321700e-01 7.44594038e-01 1.85948566e-01
7.28751600e-01 1.05052686e+00 4.29274231e-01 9.17373300e-01
4.60275590e-01 2.17258438e-01 1.65516555e-01 -1.77024454e-01
-1.90887183e-01 -6.41740918e-01 3.48388135e-01 4.79084104e-01
-1.41674772e-01 -2.33122408e-01 -1.07135367e+00 3.91046643e-01
-1.36900532e+00 -1.31037652e+00 -2.70800382e-01 1.89168060e+00
9.35195565e-01 -4.95542437e-02 3.37438494e-01 6.05613738e-02
6.20768964e-01 1.65630177e-01 -4.55663592e-01 -1.07858610e+00
2.69323797e-03 1.68867514e-01 -4.27254587e-01 1.50374696e-01
-6.75397873e-01 5.89943945e-01 6.36454868e+00 5.67077577e-01
-1.29109204e+00 -1.55086786e-01 1.01801968e+00 -4.37819541e-01
-9.06233609e-01 -3.14790457e-01 -1.91469729e-01 2.73926377e-01
8.80389750e-01 -4.12611574e-01 4.61073101e-01 5.02009153e-01
4.42951441e-01 -1.76717296e-01 -1.12027287e+00 8.30586016e-01
3.32868010e-01 -1.52234674e+00 -2.12068930e-01 -2.21010335e-02
6.26468778e-01 -6.97762072e-01 3.09063584e-01 -1.67772532e-01
2.51938343e-01 -1.31124938e+00 1.01673818e+00 5.99944174e-01
1.07588112e+00 -9.15936351e-01 1.10524662e-01 8.54283199e-02
-4.54713196e-01 1.80734247e-01 4.31756884e-01 -2.87704945e-01
4.21013445e-01 3.49755824e-01 -1.16082311e+00 -1.26347482e-01
2.96972752e-01 4.66250181e-01 -2.69003868e-01 8.06612611e-01
-4.13108356e-02 5.64001322e-01 -2.89540261e-01 -4.23313767e-01
7.38754636e-04 -3.21752131e-02 7.81542599e-01 1.31171978e+00
3.43110412e-01 2.63365507e-01 -5.01645744e-01 8.98507535e-01
-2.29766332e-02 1.99655354e-01 -9.18243587e-01 -9.00817275e-01
3.31986189e-01 1.40478909e+00 -6.94949567e-01 1.68558918e-02
-2.95980908e-02 9.84548211e-01 -1.42189682e-01 4.67203036e-02
-7.03175068e-01 -2.57213503e-01 4.92391467e-01 5.69583714e-01
-5.81287503e-01 2.40660563e-01 -2.30936170e-01 -5.99358380e-01
-3.48105907e-01 -1.34265935e+00 -1.15992613e-01 -1.25063646e+00
-9.75194454e-01 3.80063146e-01 -3.33200805e-02 -9.71014082e-01
-3.89288247e-01 2.18130834e-02 -9.74267542e-01 2.96730727e-01
-4.59205449e-01 -1.70541573e+00 -3.80248070e-01 -1.04869775e-01
2.38463536e-01 5.70853390e-02 9.04822528e-01 3.23618203e-02
-3.88008833e-01 6.28703296e-01 -2.49687478e-01 -8.91988128e-02
6.70102119e-01 -5.04721105e-01 4.97173667e-01 2.31452003e-01
-2.08209176e-02 2.52934158e-01 9.72717464e-01 -7.06332803e-01
-1.51563311e+00 -4.80253577e-01 7.15328097e-01 -2.85259932e-01
4.64911461e-01 -4.89501536e-01 -3.40415180e-01 5.49626291e-01
4.30833638e-01 -4.17115360e-01 1.10129428e+00 -7.38876164e-02
-1.20848350e-01 2.24773258e-01 -1.63203871e+00 1.16232371e+00
1.09772396e+00 -3.81902605e-01 -1.51482195e-01 2.80623555e-01
7.36503065e-01 -3.36406022e-01 -8.18282247e-01 -3.39815021e-02
1.18184638e+00 -1.20023727e+00 8.15888643e-01 -4.52012867e-01
1.02066946e+00 1.62134483e-01 3.96257609e-01 -1.01618075e+00
2.66238928e-01 -1.44261539e+00 2.63031244e-01 1.82983303e+00
3.50922465e-01 -5.44012189e-01 7.65585244e-01 1.32098567e+00
-1.43468827e-01 -6.04374766e-01 -6.90310895e-01 -1.38294604e-02
-3.80955776e-03 -5.45455992e-01 7.31998622e-01 1.21031487e+00
5.60812056e-01 -1.86696015e-02 -5.77267408e-01 -4.83288050e-01
2.71972179e-01 -3.52291286e-01 1.07534289e+00 -1.16651475e+00
-1.71663404e-01 -6.40558124e-01 -6.21348619e-01 8.43354836e-02
-5.67625389e-02 -7.22575068e-01 -2.58027971e-01 -1.58984017e+00
3.22156787e-01 -2.01881424e-01 6.77166283e-01 2.88350016e-01
9.89283174e-02 5.51115692e-01 5.63012421e-01 -2.14487672e-01
-1.71674192e-01 1.96558610e-01 1.80391467e+00 9.85053852e-02
-3.78361076e-01 -3.08696657e-01 -1.10276902e+00 8.17525625e-01
6.12805486e-01 -1.50981635e-01 -3.50742549e-01 6.15658378e-03
6.96366787e-01 2.39982791e-02 5.27332127e-01 -1.14605474e+00
-1.17274746e-01 -2.96536803e-01 6.20212555e-01 -5.69148548e-02
7.63848245e-01 -4.43790704e-01 9.59101856e-01 4.75057870e-01
-6.54436469e-01 -4.36788499e-01 3.74619961e-01 -3.15584987e-02
3.03603888e-01 -1.46537190e-02 5.69069564e-01 -1.19524933e-01
1.19175196e-01 -2.88283587e-01 -7.50399888e-01 1.26806572e-01
1.34122264e+00 -6.35831833e-01 -6.29260182e-01 -1.26136875e+00
-5.24822772e-01 -1.03165783e-01 6.71730280e-01 3.94273430e-01
6.87888741e-01 -1.24678683e+00 -9.89552379e-01 5.59520200e-02
2.13994794e-02 -6.52500018e-02 2.16306239e-01 3.34062725e-01
-7.75523961e-01 -2.55883604e-01 -4.35871571e-01 -5.79224303e-02
-1.45327771e+00 1.03468344e-01 -6.13183267e-02 4.32666570e-01
-7.97305405e-01 1.18081844e+00 1.47740513e-01 3.18868980e-02
4.64196764e-02 2.80015230e-01 -2.55043745e-01 4.74949688e-01
8.24453592e-01 5.31072080e-01 -6.95400000e-01 -8.39514196e-01
-1.39221177e-01 1.21608414e-01 3.08662862e-01 -5.57512403e-01
1.47739959e+00 1.30851492e-01 3.67761254e-02 7.62539506e-01
9.68198001e-01 3.16117793e-01 -1.21246266e+00 4.07350898e-01
-4.19755310e-01 -5.65379083e-01 -3.35062027e-01 -1.06271315e+00
-7.19935834e-01 7.55279005e-01 2.94774473e-01 2.68641979e-01
8.65337253e-01 1.41985968e-01 1.11047101e+00 -1.84070542e-01
2.73902386e-01 -9.58248019e-01 4.46702242e-01 -2.50859290e-01
1.35220492e+00 -7.47836709e-01 2.18825385e-01 -1.72370404e-01
-1.08061850e+00 1.11504483e+00 4.71912026e-01 3.11411530e-01
2.21085683e-01 3.13930184e-01 2.59446561e-01 -9.81523693e-02
-8.11327457e-01 2.81547725e-01 1.02463536e-01 1.12204659e+00
8.10735464e-01 2.63292760e-01 -3.39483142e-01 5.28668463e-01
-8.17637801e-01 2.92399615e-01 7.67170191e-01 9.26278234e-01
-1.54682726e-01 -9.60198641e-01 -6.30448222e-01 2.22505122e-01
-7.32863843e-01 3.09431732e-01 -1.03236711e+00 5.44054151e-01
2.77204543e-01 1.03091872e+00 1.00870624e-01 -4.60141003e-01
2.17303522e-02 1.57902867e-01 5.13752282e-01 -3.58205646e-01
-1.23266530e+00 -1.47660032e-01 8.29010308e-01 -3.51114571e-01
-1.93253875e-01 -8.91885698e-01 -1.18109906e+00 -7.27854013e-01
1.32505447e-01 -3.96549433e-01 9.17269826e-01 5.44364870e-01
5.90432763e-01 1.77855089e-01 3.57931495e-01 -1.18629265e+00
5.31817675e-01 -6.19761646e-01 -1.94934726e-01 4.05322254e-01
1.71082497e-01 -9.98351350e-03 -8.48928764e-02 1.46730900e-01] | [9.36655330657959, 6.33167839050293] |
000fb91a-5c4a-46d5-9b94-69335dc706c2 | eaml-ensemble-self-attention-based-mutual | 2305.06923 | null | https://arxiv.org/abs/2305.06923v1 | https://arxiv.org/pdf/2305.06923v1.pdf | EAML: Ensemble Self-Attention-based Mutual Learning Network for Document Image Classification | In the recent past, complex deep neural networks have received huge interest in various document understanding tasks such as document image classification and document retrieval. As many document types have a distinct visual style, learning only visual features with deep CNNs to classify document images have encountered the problem of low inter-class discrimination, and high intra-class structural variations between its categories. In parallel, text-level understanding jointly learned with the corresponding visual properties within a given document image has considerably improved the classification performance in terms of accuracy. In this paper, we design a self-attention-based fusion module that serves as a block in our ensemble trainable network. It allows to simultaneously learn the discriminant features of image and text modalities throughout the training stage. Besides, we encourage mutual learning by transferring the positive knowledge between image and text modalities during the training stage. This constraint is realized by adding a truncated-Kullback-Leibler divergence loss Tr-KLD-Reg as a new regularization term, to the conventional supervised setting. To the best of our knowledge, this is the first time to leverage a mutual learning approach along with a self-attention-based fusion module to perform document image classification. The experimental results illustrate the effectiveness of our approach in terms of accuracy for the single-modal and multi-modal modalities. Thus, the proposed ensemble self-attention-based mutual learning model outperforms the state-of-the-art classification results based on the benchmark RVL-CDIP and Tobacco-3482 datasets. | ['Marçal Rusiñol', 'Mickael Coustaty', 'Ziheng Ming', 'Souhail Bakkali'] | 2023-05-11 | null | null | null | null | ['document-image-classification'] | ['computer-vision'] | [ 2.59136558e-01 -3.40106398e-01 -3.67035508e-01 -4.57413226e-01
-7.25901008e-01 -4.57330972e-01 1.01071084e+00 2.20359832e-01
-4.24814582e-01 4.73311573e-01 -7.19294995e-02 -1.35838062e-01
-2.56161660e-01 -5.91663301e-01 -5.48310280e-01 -9.75953162e-01
5.25377929e-01 1.92523196e-01 -1.56953067e-01 1.61424994e-01
3.56312156e-01 3.32036316e-01 -1.68655741e+00 5.98075211e-01
1.11677885e+00 1.44524539e+00 1.98698953e-01 5.79719722e-01
-4.26629156e-01 1.09122801e+00 -3.61408949e-01 -5.17348230e-01
-1.99772641e-01 -4.17589217e-01 -7.30983198e-01 3.71305585e-01
4.98889416e-01 -3.59056771e-01 -3.79618376e-01 9.53626633e-01
4.84212965e-01 2.03328893e-01 1.07819688e+00 -1.24379003e+00
-1.31579947e+00 3.50707978e-01 -9.10694778e-01 -5.52947558e-02
1.23830542e-01 -5.31018339e-02 1.20028138e+00 -1.04062617e+00
3.12749773e-01 8.76486182e-01 4.51420099e-01 3.55106801e-01
-1.07922339e+00 -5.36829829e-01 2.78768986e-01 5.02000332e-01
-1.34959042e+00 -2.47564286e-01 1.14406514e+00 -4.34852153e-01
7.76312351e-01 2.22489834e-01 2.29897112e-01 1.13545859e+00
1.74260616e-01 1.33973062e+00 1.02795422e+00 -6.95795953e-01
-6.74620941e-02 3.56581718e-01 2.93027103e-01 7.83496797e-01
-8.22233483e-02 -2.63946772e-01 -4.22577679e-01 2.44691208e-01
4.71764266e-01 4.17467058e-01 -3.71055692e-01 -4.28836882e-01
-9.24219251e-01 7.41106451e-01 6.85797036e-01 8.42975914e-01
-6.05346411e-02 -1.22286096e-01 3.51463407e-01 1.06150210e-01
6.32227302e-01 -2.61710901e-02 -2.08300203e-01 2.84293264e-01
-9.37954187e-01 -2.66118258e-01 6.12760603e-01 6.55307412e-01
6.82599366e-01 8.57980698e-02 -3.49831432e-01 1.06877148e+00
4.57985133e-01 5.81800342e-01 7.22811759e-01 -3.82890880e-01
5.31288326e-01 9.32138860e-01 -3.47430766e-01 -1.30118895e+00
-2.84259528e-01 -5.97010374e-01 -1.44790411e+00 1.67445660e-01
3.12457263e-01 1.80663273e-01 -1.16041303e+00 1.57077265e+00
2.11225227e-02 -1.97962895e-01 1.91601455e-01 8.48209083e-01
9.03097332e-01 7.01682627e-01 1.23120137e-02 -9.53424051e-02
1.26314819e+00 -1.13592565e+00 -8.63699734e-01 -5.58922067e-02
5.57090580e-01 -8.07420015e-01 8.90977681e-01 2.08995163e-01
-7.69038200e-01 -7.24064589e-01 -1.05804980e+00 -1.27912492e-01
-6.43529534e-01 4.87191528e-01 4.51864719e-01 5.86029172e-01
-6.57886028e-01 2.26328328e-01 -5.14727652e-01 -3.16665888e-01
6.77965343e-01 1.91409782e-01 -6.71221733e-01 -2.46078774e-01
-9.23759341e-01 6.64296210e-01 5.95383465e-01 1.44267902e-01
-4.58020031e-01 -4.00564849e-01 -7.51616061e-01 3.16585004e-01
2.88765788e-01 -5.83160102e-01 7.71660030e-01 -1.50873876e+00
-1.41657495e+00 9.89391267e-01 -9.39919800e-02 -1.36470348e-01
3.95914972e-01 -1.10394545e-01 -4.77858901e-01 8.68672729e-02
-9.36518516e-03 4.71305043e-01 9.57088411e-01 -1.59483135e+00
-4.43728805e-01 -7.01813042e-01 -1.16797142e-01 3.59544754e-01
-7.85760522e-01 -3.23929846e-01 -6.88517272e-01 -7.85413861e-01
4.52802777e-02 -7.47225940e-01 3.40414554e-01 2.10608505e-02
-4.87747908e-01 -2.07098871e-01 1.17083704e+00 -5.46964288e-01
9.05357063e-01 -2.08251381e+00 3.36451173e-01 1.26048833e-01
4.56146896e-02 3.88722837e-01 -2.04497352e-01 2.82572985e-01
4.32755938e-03 1.56548973e-02 -2.73108363e-01 -7.05632806e-01
-1.64477691e-01 8.49765912e-02 -1.81494936e-01 3.63524020e-01
1.73640266e-01 9.70785856e-01 -5.69558084e-01 -6.76629305e-01
3.25071901e-01 8.11819613e-01 -2.46259481e-01 2.32505694e-01
-8.93441364e-02 3.70701492e-01 -3.28678936e-01 8.32068801e-01
7.17314959e-01 -7.07966328e-01 1.14298314e-01 -5.35333991e-01
1.08995758e-01 -3.97228897e-01 -8.08798194e-01 1.87420917e+00
-5.07373631e-01 6.87080562e-01 3.19398730e-03 -1.36667407e+00
8.60557020e-01 2.69150227e-01 3.41045231e-01 -8.50922883e-01
4.31365371e-01 1.08407438e-01 -1.15844294e-01 -3.47570121e-01
4.31376189e-01 4.60543483e-03 2.54167885e-01 3.91828567e-01
3.45396996e-01 2.09814355e-01 9.73234624e-02 2.21648306e-01
4.87115681e-01 -9.55271050e-02 1.54166937e-01 -6.29054531e-02
9.14452732e-01 -2.81350821e-01 7.74755478e-02 7.43201077e-01
4.76330370e-02 6.37985528e-01 1.06880784e-01 -9.72205251e-02
-8.63021433e-01 -6.24333739e-01 -2.07888946e-01 1.12883103e+00
1.29758805e-01 -5.14880866e-02 -4.69496548e-01 -9.27296877e-01
1.14729486e-01 5.13780951e-01 -9.06563520e-01 -2.19157264e-01
-1.42499190e-02 -6.48643672e-01 4.76595879e-01 7.95239449e-01
8.39608550e-01 -9.65102553e-01 8.69266093e-02 -1.60993055e-01
-9.83848572e-02 -1.01980543e+00 -4.23238009e-01 3.50730836e-01
-5.29585719e-01 -9.31136489e-01 -1.06776750e+00 -9.37041640e-01
6.78631127e-01 3.77326548e-01 6.44772291e-01 9.22175571e-02
-3.04901630e-01 6.59321785e-01 -4.14243370e-01 -2.60854691e-01
-1.32452309e-01 1.37333974e-01 -3.69090080e-01 6.38198674e-01
3.29387873e-01 -1.68480828e-01 -5.93918145e-01 1.50781780e-01
-1.04547501e+00 9.68697369e-02 7.77367711e-01 1.28444457e+00
4.89569902e-01 2.51811117e-01 3.80088001e-01 -5.73477864e-01
5.39011359e-01 -4.37111199e-01 -3.53017509e-01 6.58321083e-01
-6.89308345e-01 9.88525152e-02 6.10993743e-01 -3.12952787e-01
-1.38659823e+00 -1.89765617e-01 2.07312450e-01 -4.91744280e-01
-2.80774146e-01 6.77417159e-01 -2.56347924e-01 -8.14746693e-02
2.79192895e-01 6.01382852e-01 1.70500383e-01 -4.77484018e-01
4.15344030e-01 1.01362634e+00 5.43783963e-01 -4.14906681e-01
5.28682053e-01 5.65138936e-01 -7.70147098e-03 -6.77733064e-01
-1.12372553e+00 -6.13075495e-01 -5.76024234e-01 -1.64549917e-01
1.15155411e+00 -8.86623919e-01 -7.82333493e-01 9.26126719e-01
-1.15883744e+00 5.04297726e-02 7.11665004e-02 3.42393428e-01
-2.78046280e-01 6.35324299e-01 -5.00804484e-01 -9.06255066e-01
-4.92642909e-01 -1.14753580e+00 1.15391827e+00 2.82776833e-01
3.32445771e-01 -1.22497177e+00 -1.00435920e-01 6.59267247e-01
4.24030274e-01 -6.14679419e-02 9.33604538e-01 -7.62727022e-01
-3.28070968e-01 -2.60746539e-01 -8.21135938e-01 6.89699709e-01
4.83980626e-01 -1.26318578e-02 -1.14128494e+00 -3.29557955e-01
-1.94209710e-01 -5.15988052e-01 1.41866350e+00 3.54953110e-01
1.42366552e+00 -1.83408499e-01 -2.88550556e-01 4.71587002e-01
1.48313236e+00 2.45611906e-01 4.52918500e-01 3.66040468e-01
1.15523076e+00 5.01870990e-01 2.49630585e-01 4.36901957e-01
2.67214507e-01 5.21310806e-01 4.44146872e-01 -2.57740170e-01
-8.88922885e-02 2.96624433e-02 8.87921751e-02 8.02682698e-01
-1.43014908e-01 -8.07648599e-01 -1.02916765e+00 3.06376189e-01
-2.05028963e+00 -1.02710617e+00 1.53000161e-01 1.98071003e+00
6.67100430e-01 -1.59531981e-01 -3.23055506e-01 3.53075385e-01
7.36321211e-01 2.86471218e-01 -4.69359636e-01 -4.48934473e-02
-3.84934545e-01 -2.38428295e-01 2.25118056e-01 3.51065725e-01
-1.47069907e+00 5.62711060e-01 4.93572950e+00 1.16411602e+00
-1.21039855e+00 -1.24750569e-01 8.15281391e-01 2.21915290e-01
-7.35657737e-02 -3.04102033e-01 -6.67247713e-01 5.63807607e-01
4.68908399e-01 2.61558354e-01 1.89018354e-01 6.96018696e-01
-3.79770756e-01 7.78425783e-02 -1.01347041e+00 1.07356441e+00
6.48469210e-01 -1.37502158e+00 3.60258013e-01 5.65474443e-02
8.11184585e-01 -2.03380942e-01 4.51789141e-01 1.96542889e-01
-8.47017244e-02 -1.04840755e+00 4.07419115e-01 6.93766832e-01
6.89458251e-01 -9.90491331e-01 9.01409388e-01 3.19222301e-01
-1.02035177e+00 -2.50768602e-01 -9.09124762e-02 3.77854824e-01
-1.56803966e-01 6.62593901e-01 -4.33328152e-01 9.16734636e-01
6.51407838e-01 1.06375062e+00 -6.11711204e-01 7.40288019e-01
1.76617116e-01 3.17397863e-01 7.49985129e-03 2.09923182e-02
3.71477306e-01 -2.34686986e-01 3.65869701e-01 1.18993032e+00
2.88281053e-01 -2.50873923e-01 1.94207415e-01 7.12536216e-01
-3.37672114e-01 3.05024654e-01 -4.96711016e-01 -2.84206986e-01
6.89910073e-03 1.26980948e+00 -5.11738002e-01 -4.59832966e-01
-6.73877656e-01 1.17651069e+00 2.84147292e-01 3.67333770e-01
-6.62124574e-01 -4.35078233e-01 9.15133581e-02 -3.23374599e-01
4.79410291e-01 4.74000983e-02 -3.16151321e-01 -1.37031543e+00
1.45066649e-01 -8.10996115e-01 4.40315753e-01 -7.57591665e-01
-1.62108541e+00 6.41484499e-01 -3.82668763e-01 -1.30477989e+00
-1.18799947e-01 -8.65078151e-01 -3.87931049e-01 8.19590628e-01
-1.63935995e+00 -1.68721378e+00 -4.65627640e-01 8.14010322e-01
4.65949088e-01 -5.97102046e-01 8.46457720e-01 2.61307597e-01
-6.93174720e-01 7.62163401e-01 7.84115613e-01 3.66797805e-01
8.63042414e-01 -1.25213659e+00 -5.53174555e-01 4.71477658e-01
2.14323908e-01 4.48073268e-01 1.14587352e-01 -2.90987968e-01
-1.28817713e+00 -9.38176274e-01 4.06545311e-01 -1.80775791e-01
5.64165890e-01 -1.05385341e-01 -1.10732663e+00 4.47832555e-01
6.32034779e-01 1.14294231e-01 8.95916224e-01 1.47548452e-01
-7.18216598e-01 -2.27906600e-01 -8.77315462e-01 3.49661559e-01
5.06499827e-01 -8.04378152e-01 -3.12813401e-01 3.32449913e-01
3.12336743e-01 -5.43523300e-03 -8.34271252e-01 5.01852632e-01
7.39080429e-01 -9.60308850e-01 8.23705137e-01 -4.05595034e-01
6.57102227e-01 -2.03057781e-01 -3.16001087e-01 -1.10943580e+00
-3.02141339e-01 1.84398353e-01 -2.20579937e-01 1.69096661e+00
1.95854604e-01 -3.88814211e-01 6.66596293e-01 4.22433794e-01
7.26112723e-02 -7.70109832e-01 -8.15348804e-01 -6.24882460e-01
1.51007384e-01 -2.09612548e-01 1.96121976e-01 1.20088053e+00
-1.41132578e-01 4.68842149e-01 -6.10854685e-01 -8.70926678e-02
7.43445873e-01 4.21174675e-01 5.32607377e-01 -1.26488364e+00
-4.28988636e-01 -7.42588997e-01 -4.90485996e-01 -9.43372786e-01
4.82643545e-01 -1.15497518e+00 -2.46558607e-01 -1.43270445e+00
8.12029898e-01 -1.80011898e-01 -7.04037666e-01 4.99694467e-01
-2.67845243e-01 2.74280965e-01 3.41013402e-01 4.41525787e-01
-7.80170441e-01 9.04950380e-01 1.28783178e+00 -7.62076855e-01
-2.46458240e-02 -3.14766556e-01 -6.51765943e-01 6.19868815e-01
6.31633699e-01 -9.02176276e-02 -3.40372115e-01 -6.46901608e-01
-4.36720029e-02 -1.59818292e-01 4.46990877e-01 -8.53154361e-01
3.84869397e-01 8.62329975e-02 8.30212891e-01 -8.78055036e-01
3.72204274e-01 -1.11973596e+00 -3.44385177e-01 1.68760866e-01
-5.02421796e-01 -4.55771536e-01 1.79389387e-01 8.66461575e-01
-5.65137208e-01 -1.77082524e-01 6.80326462e-01 8.03362876e-02
-6.19190991e-01 1.49408743e-01 -2.21999034e-01 -3.82474810e-01
9.47308540e-01 -2.73000985e-01 -5.26991785e-01 -2.69685984e-01
-5.00862598e-01 1.16872557e-01 3.14797103e-01 5.70436835e-01
5.89888871e-01 -1.43232000e+00 -6.64722562e-01 2.29982406e-01
4.59220976e-01 -2.14895681e-01 6.68916583e-01 9.76093531e-01
1.14731565e-02 6.98535383e-01 -2.22984016e-01 -9.04006958e-01
-1.46717167e+00 5.30172527e-01 2.12310657e-01 -5.59630811e-01
-1.42692670e-01 6.47976458e-01 4.87225085e-01 -4.43026483e-01
2.18411282e-01 1.20470889e-01 -3.79576713e-01 2.75895327e-01
5.66209197e-01 1.08098246e-01 1.80332780e-01 -9.52634871e-01
-4.18848425e-01 7.65606165e-01 -5.79684019e-01 8.07555616e-02
1.06972015e+00 -1.81356028e-01 -1.64762378e-01 4.32646751e-01
1.69740677e+00 -2.59515315e-01 -1.02035248e+00 -5.26179135e-01
-3.74088377e-01 -3.89783829e-01 5.03763139e-01 -9.80827749e-01
-1.30654526e+00 9.69819725e-01 8.19992602e-01 1.92242756e-01
1.26161575e+00 -1.34017661e-01 3.58688533e-01 4.66395974e-01
-1.62811488e-01 -1.09286165e+00 4.10550028e-01 4.39750224e-01
8.96571219e-01 -1.75395286e+00 -3.13000679e-02 -2.85345148e-02
-8.07082295e-01 1.07833302e+00 6.69018030e-01 1.78522944e-01
6.85191810e-01 -7.67862946e-02 -8.05772021e-02 2.88204439e-02
-5.47210276e-01 -2.02009410e-01 8.74256074e-01 4.07553107e-01
7.09004581e-01 -1.51565954e-01 -9.55287665e-02 4.93795127e-01
5.20189524e-01 -5.18388040e-02 -1.73659518e-01 1.08023822e+00
-2.62120247e-01 -1.05148900e+00 -3.42679799e-01 5.25880635e-01
-4.63286221e-01 -1.23314083e-01 -4.27344143e-01 6.65674746e-01
1.28716149e-03 9.44721699e-01 2.38582581e-01 -2.73248285e-01
-9.21866894e-02 2.49468893e-01 5.57112515e-01 -1.69481322e-01
-3.30916286e-01 2.92347018e-02 -3.76920611e-01 -1.21047184e-01
-7.91941941e-01 -3.88161868e-01 -9.45273042e-01 -7.08643869e-02
-7.77288318e-01 -5.48420027e-02 6.99147940e-01 1.06262577e+00
5.18672049e-01 6.08213186e-01 6.91625595e-01 -9.26092148e-01
-3.55334669e-01 -1.02665305e+00 -6.97277486e-01 5.86180806e-01
5.07321656e-01 -7.11763620e-01 -3.86779100e-01 1.80971712e-01] | [11.228654861450195, 2.176584005355835] |
d2886cc5-9535-46d0-a952-441db0058480 | satimnet-structured-and-harmonised-training | 2006.10623 | null | https://arxiv.org/abs/2006.10623v2 | https://arxiv.org/pdf/2006.10623v2.pdf | SatImNet: Structured and Harmonised Training Data for Enhanced Satellite Imagery Classification | Automatic supervised classification with complex modelling such as deep neural networks requires the availability of representative training data sets. While there exists a plethora of data sets that can be used for this purpose, they are usually very heterogeneous and not interoperable. In this context, the present work has a twofold objective: i) to describe procedures of open-source training data management, integration, and data retrieval, and ii) to demonstrate the practical use of varying source training data for remote sensing image classification. For the former, we propose SatImNet, a collection of open training data, structured and harmonized according to specific rules. For the latter, two modelling approaches based on convolutional neural networks have been designed and configured to deal with satellite image classification and segmentation. | ['Vasileios Syrris', 'Pierre Soille', 'Ondrej Pesek'] | 2020-06-18 | null | null | null | null | ['satellite-image-classification', 'remote-sensing-image-classification'] | ['computer-vision', 'miscellaneous'] | [ 6.12004064e-02 -1.71666831e-01 1.79888114e-01 -5.94987392e-01
-3.40095431e-01 -3.94616872e-01 5.74781597e-01 2.66634285e-01
-5.96280158e-01 7.19147384e-01 -3.42113316e-01 -4.61878031e-01
-6.48986399e-01 -1.24412262e+00 -2.92446017e-01 -7.73156762e-01
-1.76978454e-01 7.74317384e-01 8.31093732e-03 -4.06387448e-01
-2.31285654e-02 9.90364611e-01 -2.12410235e+00 1.51843950e-01
1.09841812e+00 1.25436902e+00 4.77191240e-01 4.48381633e-01
-4.22246933e-01 6.73425734e-01 -4.65815961e-01 1.60659507e-01
2.82167703e-01 1.18443519e-01 -1.04640436e+00 1.19587176e-01
3.89260352e-01 -1.86899424e-01 1.62945256e-01 8.14776957e-01
7.49839962e-01 1.06204458e-01 5.72263122e-01 -9.21627045e-01
-3.30669671e-01 6.56048059e-01 2.53988057e-01 -1.16786100e-02
-4.45719391e-01 -2.35776212e-02 6.85313523e-01 -2.88112521e-01
5.94514787e-01 6.76900804e-01 7.04857826e-01 3.90543699e-01
-1.00738299e+00 -4.22754884e-01 -2.54022956e-01 8.54276344e-02
-1.44950187e+00 -2.52621233e-01 3.80479306e-01 -7.55747736e-01
8.87605786e-01 4.55723137e-01 8.13217282e-01 4.00722921e-01
-2.03028142e-01 1.80502176e-01 1.12825799e+00 -4.65291500e-01
2.87533790e-01 4.99183089e-01 5.53963780e-01 2.31126472e-01
1.15300953e-01 7.51000717e-02 1.44075796e-01 5.27373105e-02
5.29864907e-01 -8.51326361e-02 -3.17588240e-01 -1.82172790e-01
-7.20120788e-01 8.46751511e-01 5.86427629e-01 9.27393913e-01
-3.87833446e-01 -3.54461908e-01 5.73869288e-01 4.79772389e-01
7.43871510e-01 2.52594918e-01 -8.11266899e-01 3.27463478e-01
-1.05168569e+00 2.62993783e-01 9.54254031e-01 6.08473241e-01
1.09646833e+00 1.15479045e-01 4.12233114e-01 9.35280681e-01
4.47754055e-01 4.86610651e-01 6.21350408e-01 -4.73080516e-01
2.43552983e-01 8.97086859e-01 -1.13540344e-01 -9.56919670e-01
-7.00358033e-01 -4.55856621e-01 -1.00974143e+00 3.73071700e-01
1.86430693e-01 -2.33434767e-01 -7.72855699e-01 1.17038167e+00
2.41285115e-01 -2.05206916e-01 5.66757679e-01 7.06536114e-01
1.44230378e+00 7.07644999e-01 2.32521415e-01 2.19615176e-01
9.71057236e-01 -5.26685476e-01 -5.33167660e-01 -6.97163120e-02
6.45024776e-01 -4.63686615e-01 7.43875623e-01 2.15507716e-01
-5.85117340e-01 -6.85339630e-01 -8.62333357e-01 1.57901868e-01
-1.18308139e+00 2.78014809e-01 7.20550835e-01 6.57638073e-01
-1.17744493e+00 5.71715713e-01 -4.75021511e-01 -6.49145186e-01
3.65522891e-01 2.48537123e-01 -5.14892519e-01 2.87012100e-01
-1.23496580e+00 1.02298141e+00 1.09224796e+00 5.59591413e-01
-6.30542397e-01 -5.53846717e-01 -6.91419661e-01 2.43954435e-01
-7.17786327e-02 -3.29538971e-01 9.40701902e-01 -1.32546854e+00
-1.23575521e+00 1.16087306e+00 6.24042869e-01 -5.71278632e-01
4.04690444e-01 4.27611880e-02 -6.55176103e-01 -1.08772427e-01
-7.59980381e-02 4.71055180e-01 3.68542522e-01 -1.35654414e+00
-6.69593871e-01 -5.06741047e-01 3.56423743e-02 5.49705587e-02
-5.83574533e-01 1.72932714e-01 -1.02128893e-01 -3.84087056e-01
3.54960375e-02 -4.51231837e-01 -3.47122699e-01 -2.11509585e-01
-7.53035992e-02 3.50329354e-02 8.97107065e-01 -6.20989561e-01
1.11168802e+00 -2.12623739e+00 -4.06385772e-02 5.48572004e-01
2.41294149e-02 8.62696171e-01 -1.24396428e-01 4.71380472e-01
-1.44646198e-01 3.66517931e-01 -5.58111250e-01 1.08854480e-01
-8.41589421e-02 6.75200760e-01 -2.32565314e-01 2.14584246e-01
-1.74405072e-02 5.00294268e-01 -3.39474589e-01 -6.06117189e-01
5.71897268e-01 5.21975160e-01 -8.87202322e-02 2.05573753e-01
-4.01156336e-01 4.88059044e-01 -5.49456477e-01 6.08405590e-01
7.41570830e-01 -2.07998995e-02 3.42459232e-01 -1.60504878e-01
-5.72218001e-01 -1.84923261e-01 -1.33674169e+00 1.12607026e+00
-5.49748898e-01 4.94953573e-01 3.84757042e-01 -1.24562299e+00
1.12378442e+00 4.66324091e-01 6.98771119e-01 -4.90960836e-01
3.90160114e-01 5.94447851e-01 -2.58400470e-01 -7.24246204e-01
5.85331380e-01 8.09014142e-02 1.57474056e-01 3.33321840e-01
3.46053571e-01 -1.40245244e-01 4.29761231e-01 -4.52673465e-01
2.60061443e-01 2.68696040e-01 2.36501738e-01 -3.51568878e-01
7.31399655e-01 3.97181541e-01 3.06128353e-01 6.10456645e-01
-9.46574472e-03 3.55622590e-01 -6.21675774e-02 -1.13942850e+00
-1.06522882e+00 -2.75849044e-01 -8.17585289e-01 1.00622559e+00
-2.86333084e-01 6.73302263e-02 -9.39432383e-01 -1.71540171e-01
-1.03584137e-02 7.66767785e-02 -4.04400259e-01 6.27306104e-01
-2.20787838e-01 -1.05870211e+00 7.24083424e-01 7.95250461e-02
9.54242110e-01 -1.37950194e+00 -9.40054357e-01 4.66294646e-01
-5.23796380e-02 -7.83279896e-01 6.34607255e-01 5.20140171e-01
-1.00378501e+00 -1.31371284e+00 -3.77412677e-01 -7.40438342e-01
3.35842907e-01 1.18386529e-01 1.35524988e+00 3.87542635e-01
-2.93887913e-01 7.06552118e-02 -5.69042027e-01 -5.72021604e-01
-5.30192614e-01 6.03660643e-01 -5.01951396e-01 -1.01609595e-01
3.44117820e-01 -6.13031983e-01 -1.10983454e-01 3.37221682e-01
-1.69385314e+00 -2.06801459e-01 5.34626663e-01 5.33764005e-01
5.13835669e-01 2.52140820e-01 4.04218525e-01 -8.55314732e-01
2.59132445e-01 -4.98727471e-01 -9.56842005e-01 4.29996610e-01
-5.52239835e-01 -1.93169460e-01 4.39557016e-01 1.40405521e-01
-9.63166296e-01 2.75777429e-01 -5.92387497e-01 7.50292242e-02
-1.06719244e+00 1.14127243e+00 -3.54535937e-01 -4.09475833e-01
9.40785587e-01 1.26734987e-01 4.80766930e-02 -9.29221272e-01
1.86687872e-01 1.34710133e+00 2.48361096e-01 -3.14200789e-01
4.74242359e-01 3.20646733e-01 -2.79353976e-01 -1.13161159e+00
-6.80652618e-01 -5.22926509e-01 -9.30596769e-01 -3.13783199e-01
9.60222483e-01 -9.20472026e-01 -2.01195046e-01 9.22903717e-01
-8.14001620e-01 -6.37626708e-01 -3.13571036e-01 2.29873359e-01
-2.65166998e-01 1.90663636e-01 -1.47940382e-01 -6.36634171e-01
-8.69745016e-01 -8.54767859e-01 7.14485705e-01 9.08798575e-02
3.29081208e-01 -1.05926216e+00 1.80710241e-01 2.29460150e-01
8.43900442e-01 4.89091873e-01 7.05926776e-01 -9.25618172e-01
-3.06543559e-01 -2.55696267e-01 -1.54837057e-01 7.56689072e-01
1.07917182e-01 4.06364888e-01 -1.13554990e+00 3.07958387e-02
-6.16552606e-02 -4.59028333e-01 7.04420805e-01 2.66483575e-01
1.15205967e+00 -1.26050577e-01 -1.72115102e-01 6.72063231e-01
1.73400390e+00 1.50543272e-01 8.69089305e-01 8.55726421e-01
4.01185662e-01 8.71748388e-01 3.42072964e-01 3.47176254e-01
2.06164911e-01 5.08793473e-01 6.61827743e-01 -3.92181844e-01
4.77248132e-01 5.05111694e-01 -3.12102258e-01 5.48034787e-01
-3.32493573e-01 -3.37922424e-02 -1.28360617e+00 3.66528243e-01
-1.80561757e+00 -9.56621766e-01 -3.96201849e-01 1.87762415e+00
5.98103821e-01 -3.02795261e-01 -1.49078488e-01 3.74516219e-01
5.64551890e-01 1.55432701e-01 -1.22876354e-01 -1.90812033e-02
-4.70165014e-01 3.45845342e-01 4.73875940e-01 2.13612407e-01
-1.48855138e+00 7.84785986e-01 6.38275290e+00 6.91582680e-01
-1.56682038e+00 2.05007523e-01 3.78693670e-01 4.20626193e-01
6.84109628e-02 -1.83948770e-01 -7.36161947e-01 2.20901787e-01
1.15592992e+00 3.09772730e-01 9.99672525e-03 9.46386278e-01
2.78331876e-01 -1.13086298e-01 -3.72854173e-01 6.53219223e-01
-2.41340175e-01 -1.50266552e+00 5.85983470e-02 4.06795777e-02
6.51881516e-01 7.51549244e-01 -4.05439883e-01 1.41586199e-01
1.41854778e-01 -8.84952962e-01 7.09794223e-01 6.51779592e-01
4.60283250e-01 -5.33014715e-01 1.10426164e+00 5.00073493e-01
-1.11350596e+00 -1.32242739e-01 -4.04091597e-01 1.09257326e-01
-2.51997739e-01 5.02949953e-01 -9.12858173e-02 1.06243002e+00
9.76479352e-01 7.14012504e-01 -5.65843642e-01 1.36775708e+00
8.72113705e-02 4.15254951e-01 -4.55003232e-01 2.33336702e-01
5.44185340e-01 -5.20827055e-01 1.62614793e-01 1.05666614e+00
2.78339833e-01 -2.02215865e-01 2.30291247e-01 6.42816424e-01
4.87369925e-01 6.23921216e-01 -6.43221498e-01 -7.16935694e-02
1.18953615e-01 1.56543541e+00 -5.62742114e-01 -3.25427473e-01
-2.65117139e-01 2.98907101e-01 5.75163774e-02 1.77159682e-01
-5.04064322e-01 -3.79271448e-01 5.36817610e-01 1.98295359e-02
1.64800406e-01 -1.46842152e-01 -1.39816567e-01 -1.18633914e+00
-1.93362311e-01 -8.49367082e-01 5.62001884e-01 -8.12142253e-01
-1.21924770e+00 1.12064695e+00 1.32267416e-01 -1.25090456e+00
-2.17952698e-01 -9.37588632e-01 -4.56361324e-01 1.02044582e+00
-1.94509709e+00 -1.46789050e+00 -8.23649943e-01 5.26133597e-01
7.98304006e-02 -3.39831054e-01 1.27647042e+00 6.40229225e-01
-5.14606118e-01 -2.40893662e-01 7.34953105e-01 2.80253798e-01
2.02147976e-01 -1.00667834e+00 -5.29129095e-02 6.13729894e-01
-1.16716437e-01 7.99209625e-02 3.47090930e-01 -2.50026792e-01
-8.39189768e-01 -1.42028511e+00 8.40969861e-01 1.15914412e-01
5.85607290e-01 1.25727355e-01 -1.13001573e+00 5.68975031e-01
8.95655528e-03 4.58234735e-02 9.23976958e-01 -1.72373950e-01
-1.75574452e-01 -4.59232658e-01 -1.26465142e+00 -3.67893721e-03
3.07591408e-01 -2.76663423e-01 -4.16134715e-01 4.44037676e-01
7.68330470e-02 -1.74350336e-01 -1.36836886e+00 4.10016090e-01
4.26343858e-01 -1.21747720e+00 6.71486616e-01 -5.61035991e-01
3.11714083e-01 -3.86644214e-01 -3.48221958e-01 -1.13776445e+00
1.44317038e-02 8.68710950e-02 5.62507153e-01 1.21215641e+00
4.50073749e-01 -8.33030164e-01 3.80094558e-01 4.78771687e-01
-3.13406229e-01 -3.22332174e-01 -9.11357224e-01 -5.84310055e-01
3.17576349e-01 -3.95260751e-01 1.04729962e+00 1.05688381e+00
-5.52316427e-01 8.36264417e-02 -1.66847333e-01 3.20089370e-01
1.80146977e-01 3.18885356e-01 7.70303130e-01 -1.89230323e+00
-5.29506207e-02 -5.90417504e-01 -4.71241534e-01 -3.41249228e-01
1.20071702e-01 -7.55976677e-01 -1.11098625e-01 -1.82256758e+00
-1.36718422e-01 -9.81538296e-01 -1.49601087e-01 8.74868751e-01
4.80719805e-01 3.45809996e-01 -4.63240258e-02 5.83121181e-01
-1.43262461e-01 3.04231316e-01 6.76014960e-01 -1.67794108e-01
-2.31138244e-01 -3.06174923e-02 -3.81980300e-01 6.43160522e-01
1.10846972e+00 -1.79293245e-01 8.34457800e-02 -6.66230261e-01
2.74402142e-01 -3.39605063e-01 5.08637965e-01 -1.35225785e+00
-1.19723961e-01 -5.51964343e-02 3.08707729e-02 -7.59742975e-01
-2.59481251e-01 -1.30679870e+00 8.86165679e-01 3.42505902e-01
-9.82643068e-02 -3.90919387e-01 3.72802794e-01 -4.24239263e-02
-6.22983038e-01 -6.78837836e-01 8.67026031e-01 -3.42199832e-01
-1.06321049e+00 3.62669766e-01 -5.62858224e-01 -4.29133296e-01
9.83951390e-01 -1.39298871e-01 -2.59622753e-01 1.77323163e-01
-1.04138064e+00 9.34300870e-02 2.79768497e-01 2.13094369e-01
8.76081884e-02 -8.92051220e-01 -7.66343892e-01 3.40937614e-01
3.36955756e-01 2.40956634e-01 4.24304932e-01 3.27109993e-01
-9.71740127e-01 3.97518039e-01 -6.21931374e-01 -4.90328670e-01
-1.23332906e+00 5.86334206e-02 9.98039782e-01 -3.50024700e-01
-3.76799017e-01 1.29178300e-01 -6.22601449e-01 -1.09716427e+00
1.51435956e-01 -1.22242481e-01 -8.16635311e-01 4.86853540e-01
5.59135258e-01 2.31182016e-02 6.65489256e-01 -1.02511227e+00
3.07957605e-02 4.23943967e-01 5.79882205e-01 2.86999375e-01
1.90539348e+00 -4.66593951e-02 -6.58609033e-01 3.40332687e-01
8.87864888e-01 -7.21013308e-01 -7.80504644e-01 -2.88146287e-01
7.79785663e-02 -3.08880270e-01 4.30417091e-01 -8.84949923e-01
-1.41474783e+00 9.25190508e-01 1.18485141e+00 8.24844062e-01
1.26749182e+00 -2.24526569e-01 1.72354609e-01 7.28659451e-01
2.91875750e-01 -1.10657895e+00 -8.40833843e-01 8.14224362e-01
8.30814004e-01 -1.39222491e+00 -1.77795038e-01 -1.91215113e-01
-2.13728294e-01 1.44136143e+00 3.73681009e-01 2.93600529e-01
1.03055120e+00 1.32479161e-01 5.30195117e-01 -4.75040168e-01
-1.94896817e-01 -6.89646840e-01 1.97234064e-01 7.57050574e-01
5.05865872e-01 -2.95935868e-04 -4.05455887e-01 2.92704076e-01
5.54962456e-02 3.99712533e-01 2.02165440e-01 1.10243285e+00
-7.58089960e-01 -1.17271113e+00 -5.87867379e-01 5.08131981e-01
-3.95865291e-01 -2.24271178e-01 -2.90711194e-01 8.33249331e-01
5.41235924e-01 8.28029573e-01 1.18626334e-01 -4.49934453e-02
2.87721127e-01 1.11304350e-01 -7.63308704e-02 -5.48240006e-01
-1.10236907e+00 -1.54596865e-01 2.61070698e-01 -3.76050696e-02
-1.10618997e+00 -3.32214057e-01 -6.72930598e-01 -2.50443578e-01
-3.14058810e-01 3.37237328e-01 1.05703282e+00 9.62958336e-01
2.82791615e-01 3.47969949e-01 3.87178808e-01 -1.11526632e+00
-4.37445283e-01 -1.18065917e+00 -1.01666760e+00 2.79556841e-01
-8.26007128e-02 -4.53589022e-01 -2.76824802e-01 1.37587816e-01] | [9.670825958251953, -1.5302832126617432] |
cf94574a-3130-4841-afa4-5fde28738470 | a-multiresolution-3d-morphable-face-model-and | null | null | https://www.scitepress.org/Link.aspx?doi=10.5220%2f0005669500790086 | https://www.scitepress.org/Link.aspx?doi=10.5220%2f0005669500790086 | A Multiresolution 3D Morphable Face Model and Fitting Framework | 3D Morphable Face Models are a powerful tool in computer vision. They consists of a PCA model of face shape and colour information and allow to reconstruct a 3D face from a single 2D image. 3D Morphable Face Models are used for 3D head pose estimation, face analysis, face recognition, and, more recently, facial landmark detection and tracking. However, they are not as widely used as 2D methods - the process of building and using a 3D model is much more involved.
In this paper, we present the Surrey Face Model, a multi-resolution 3D Morphable Model that we make available to the public for non-commercial purposes. The model contains different mesh resolution levels and landmark point annotations as well as metadata for texture remapping. Accompanying the model is a lightweight open-source C++ library designed with simplicity and ease of integration as its foremost goals. In addition to basic functionality, it contains pose estimation and face frontalisation algorithms. With the tools presented in this paper, we aim to close two gaps. First, by offering different model resolution levels and fast fitting functionality, we enable the use of a 3D Morphable Model in time-critical applications like tracking. Second, the software library makes it easy for the community to adopt the 3D Morphable Face Model in their research, and it offers a public place for collaboration. | ['Josef Kittler', 'Matthias Rätsch', 'William Christmas', 'Willem P. Koppen', 'Pouria Mortazavian', 'Rafael Tena', 'Guosheng Hu', 'Patrik Huber'] | 2016-02-01 | null | null | null | null | ['head-pose-estimation', 'face-model'] | ['computer-vision', 'computer-vision'] | [-1.35111421e-01 2.27249116e-01 9.01286379e-02 -3.35419148e-01
-6.43766046e-01 -3.34366560e-01 3.10366601e-01 -2.41231933e-01
-2.08179131e-01 2.22054645e-01 -1.57740023e-02 -7.82331731e-03
8.66640806e-02 -5.89179993e-01 -3.81855637e-01 -5.83347142e-01
-1.25372306e-01 8.85917306e-01 2.54062235e-01 -8.25392306e-02
1.37357898e-02 1.20323515e+00 -2.11341596e+00 2.21997872e-02
2.34788224e-01 9.52980399e-01 7.24813640e-02 4.44791883e-01
-7.21464381e-02 -1.25355184e-01 1.96888074e-02 -5.48279881e-01
3.02032918e-01 -2.30049878e-01 -6.29721224e-01 2.03666627e-01
8.46785963e-01 -3.51657361e-01 2.14739248e-01 5.73017716e-01
8.19505155e-01 -2.26591110e-01 5.08633077e-01 -1.00801837e+00
1.52341733e-02 -2.77451217e-01 -4.92172062e-01 -3.28245729e-01
6.27210498e-01 -1.92341134e-01 2.11800247e-01 -1.06304085e+00
8.64442766e-01 1.41646588e+00 8.73849690e-01 9.67466712e-01
-1.18454266e+00 -6.19986534e-01 -1.92272067e-01 -1.54600844e-01
-1.55796194e+00 -1.03298175e+00 6.59122944e-01 -5.83483160e-01
8.44667196e-01 6.66444063e-01 9.08105254e-01 6.75668836e-01
9.31633413e-02 1.70990705e-01 1.30630028e+00 -5.46869338e-01
1.50882259e-01 8.47992003e-02 -2.79702991e-01 1.13498974e+00
-9.45802871e-03 2.13477407e-02 -6.26444817e-01 -4.29373860e-01
1.04600430e+00 -1.70824379e-01 -5.05082309e-02 -6.65531576e-01
-5.59655845e-01 4.81684804e-01 2.75121373e-03 1.70067593e-01
-3.03966522e-01 -4.80579818e-03 -6.63380623e-02 8.35173130e-02
8.91924918e-01 -3.65104079e-01 -3.49577010e-01 -2.89517254e-01
-1.00323904e+00 4.02866274e-01 7.17318654e-01 7.78175414e-01
9.22767758e-01 -8.96188954e-04 4.51084912e-01 9.18477833e-01
8.29038441e-01 6.00221276e-01 2.47380197e-01 -1.19718945e+00
-2.18745232e-01 6.30405307e-01 -2.22924858e-01 -9.99832630e-01
-5.52447140e-01 3.20241660e-01 -4.12545979e-01 6.80125475e-01
3.47950280e-01 3.16965163e-01 -9.67844069e-01 1.30101538e+00
9.27449346e-01 4.87425141e-02 -6.35533154e-01 6.55818284e-01
1.04391778e+00 -1.29971147e-01 -1.80641592e-01 -1.69379011e-01
1.53418565e+00 -2.35880315e-01 -5.63946486e-01 -9.87662300e-02
2.98042536e-01 -1.02803981e+00 5.61963499e-01 1.99867532e-01
-1.40314901e+00 -1.84796810e-01 -6.48229837e-01 -1.95842966e-01
-4.82349455e-01 -2.92301506e-01 5.52869737e-01 1.14566386e+00
-1.45566082e+00 5.48642278e-01 -1.06668794e+00 -6.99865758e-01
4.97099519e-01 7.72432148e-01 -1.10862470e+00 3.93503457e-02
-4.54552531e-01 1.23797572e+00 -1.95019573e-01 8.95594507e-02
-3.64189565e-01 -5.31174064e-01 -1.18865550e+00 -5.14184237e-01
-8.62600431e-02 -6.29870892e-01 9.89527762e-01 -6.51715159e-01
-1.71561003e+00 1.84456670e+00 -3.89183044e-01 1.80669591e-01
5.33342779e-01 1.82450786e-01 -1.31834462e-01 2.11928576e-01
-7.32260048e-02 7.15275168e-01 1.05434728e+00 -1.11351311e+00
-2.55680401e-02 -1.02715194e+00 -2.26789922e-01 1.50444791e-01
4.06811945e-02 5.54630756e-01 -9.20836985e-01 -4.01779294e-01
3.33582878e-01 -8.68011355e-01 1.71030387e-01 6.12926900e-01
1.46786451e-01 1.47432148e-01 8.67652476e-01 -1.17890716e+00
7.26360857e-01 -2.08039188e+00 1.96972936e-01 2.59004146e-01
1.72685608e-01 1.84014603e-01 6.78033307e-02 7.49673843e-02
-5.27017303e-02 1.72615141e-01 -4.09428805e-01 -8.65056455e-01
9.58128422e-02 7.26143643e-02 5.50602794e-01 8.51206005e-01
-2.31491681e-02 6.05173528e-01 -2.89139956e-01 -6.75195396e-01
5.87576509e-01 1.14532840e+00 -3.89860809e-01 -1.56363711e-01
1.38297141e-01 5.69165766e-01 -1.64657265e-01 1.03127110e+00
1.12654638e+00 4.60555315e-01 2.01355070e-01 2.07683928e-02
-2.72236317e-01 -1.29856244e-02 -1.49802768e+00 1.83061647e+00
-4.45790023e-01 2.10922137e-01 9.58393157e-01 -3.01800638e-01
9.52080071e-01 4.90131944e-01 6.17811501e-01 -4.51571018e-01
2.89351046e-01 3.48828346e-01 -5.29509723e-01 -3.07131201e-01
1.29397735e-01 -4.18754190e-01 4.81190383e-01 4.59435731e-01
1.15772575e-01 -5.23701191e-01 -2.92896539e-01 -3.27610850e-01
4.82263058e-01 6.20251596e-01 2.85429984e-01 -3.02971840e-01
4.93558973e-01 -4.34400707e-01 2.88247257e-01 -2.77762353e-01
3.33714411e-02 8.84781897e-01 1.85805619e-01 -4.18926150e-01
-7.80833602e-01 -8.05150628e-01 -7.80049920e-01 6.15191519e-01
-4.83897120e-01 -4.03576642e-01 -1.06159973e+00 -4.17873532e-01
1.74846396e-01 -4.49710302e-02 -8.21660757e-01 3.48581374e-01
-5.50422490e-01 -6.18617952e-01 2.41070464e-01 8.40534940e-02
1.76998839e-01 -8.84497166e-01 -5.71229756e-01 -2.47186065e-01
1.70565993e-01 -7.62924850e-01 -3.70821238e-01 -2.39599630e-01
-1.03496408e+00 -1.23456013e+00 -8.75634789e-01 -8.07560325e-01
9.41680133e-01 -3.15425918e-02 9.41219330e-01 4.84966040e-01
-6.57789767e-01 9.95619595e-01 -1.05932467e-01 -4.72361624e-01
-3.77595991e-01 -1.87729180e-01 3.09387416e-01 7.43770450e-02
1.65614158e-01 -6.31656528e-01 -3.47750664e-01 4.04119581e-01
-8.21118116e-01 -1.33110717e-01 -1.18890712e-02 1.50462016e-01
8.84274304e-01 -3.59334260e-01 7.92597160e-02 -5.65706491e-01
2.54227519e-01 -4.24135588e-02 -6.88738644e-01 -9.03582491e-04
-3.70471150e-01 -2.98872590e-01 -1.89880311e-01 6.90048486e-02
-8.21191311e-01 4.49004412e-01 -5.67282379e-01 -4.00104761e-01
-4.53053862e-01 1.07096136e-01 -5.86068451e-01 -6.86488032e-01
3.98042470e-01 -1.42337725e-01 7.93505907e-01 -1.05906260e+00
1.85944542e-01 7.75198102e-01 1.83839485e-01 -3.25481564e-01
8.02652657e-01 7.76920497e-01 2.66076446e-01 -1.09943640e+00
-4.70996723e-02 -2.38483056e-01 -1.23477113e+00 -4.47974414e-01
8.26712549e-01 -6.06840074e-01 -7.14763343e-01 6.99110985e-01
-9.67045188e-01 -2.71736890e-01 -6.87690005e-02 2.52896398e-01
-6.52514696e-01 2.65033394e-01 -1.70686275e-01 -8.72788966e-01
-2.50579715e-01 -1.16940272e+00 1.38565123e+00 1.83287099e-01
-2.62891173e-01 -1.17947316e+00 2.05744371e-01 4.15674537e-01
2.81340688e-01 6.37121320e-01 6.28567219e-01 6.81270957e-02
-2.49860510e-01 -5.64384162e-01 2.80592620e-01 5.64172342e-02
2.10183695e-01 3.06505442e-01 -1.44646668e+00 -3.33725661e-01
-8.16300139e-03 4.61005904e-02 3.28477055e-01 5.33297241e-01
8.70652735e-01 -8.70419815e-02 -4.30804223e-01 8.42467308e-01
1.08861494e+00 2.69489177e-02 7.42015183e-01 2.14278132e-01
5.76963365e-01 1.09165359e+00 2.75119036e-01 1.74046859e-01
5.10439336e-01 1.21758616e+00 5.98267794e-01 -7.62915388e-02
-3.74323010e-01 7.38266036e-02 2.72187859e-01 6.13159835e-01
-6.97779179e-01 7.22587466e-01 -9.42399204e-01 1.86304785e-02
-1.38148308e+00 -7.35785067e-01 -2.50790447e-01 2.80852032e+00
6.49080098e-01 -4.05099511e-01 4.62223053e-01 1.21942230e-01
5.57825029e-01 -3.04969102e-01 -1.03268839e-01 -5.16882539e-01
6.67680427e-02 6.48213863e-01 1.88437045e-01 9.00673866e-01
-9.56234276e-01 7.26101220e-01 6.39484692e+00 5.93743086e-01
-1.13591385e+00 3.82813245e-01 3.05954516e-01 -1.65435240e-01
-1.99475914e-01 -1.67367458e-01 -9.21853364e-01 2.33914122e-01
8.21223915e-01 1.31477535e-01 4.83003467e-01 6.70497119e-01
2.82919765e-01 -2.28623316e-01 -7.94542313e-01 1.15710270e+00
3.52292091e-01 -1.15876245e+00 -2.46274143e-01 5.31181037e-01
5.07285185e-02 -2.01655746e-01 -1.11474399e-03 -1.86761737e-01
-3.40674669e-01 -1.30298185e+00 7.92797804e-01 6.60449624e-01
1.25176668e+00 -7.60071516e-01 3.66533130e-01 1.89810947e-01
-1.23748374e+00 5.80146909e-01 -2.62239069e-01 8.31545666e-02
2.05267772e-01 2.81827599e-01 -5.23561835e-01 5.06392062e-01
8.17101479e-01 3.50039750e-01 -6.93610251e-01 1.19404507e+00
2.16482341e-01 3.23048886e-03 -4.11642045e-01 5.04253805e-01
-5.63215792e-01 -3.23497802e-01 3.71847242e-01 9.12754595e-01
2.95467317e-01 -6.15935773e-02 -2.25197300e-01 6.10354245e-01
1.31531477e-01 3.37709159e-01 -6.85897529e-01 3.26797754e-01
1.53497636e-01 1.56365359e+00 -9.62254345e-01 3.87051821e-01
-4.00134653e-01 9.27227259e-01 2.24348247e-01 -2.36829475e-01
-4.76417124e-01 -8.07359517e-02 8.47200036e-01 7.29804158e-01
9.13663805e-02 -2.63669640e-01 -5.78660741e-02 -8.38381112e-01
6.17352501e-03 -8.15022588e-01 1.44485876e-01 -7.54901946e-01
-7.90349603e-01 6.69323146e-01 2.64571577e-01 -8.49388361e-01
-2.75770396e-01 -8.89795125e-01 -2.16169238e-01 1.03368926e+00
-1.27527690e+00 -1.59258211e+00 -1.74527124e-01 5.41449308e-01
1.52281627e-01 1.57702401e-01 1.43967974e+00 3.69753391e-01
-5.66763282e-01 4.88417655e-01 -2.63338387e-01 -5.54225482e-02
5.68072140e-01 -9.10017073e-01 4.46797401e-01 3.32988411e-01
1.24898724e-01 7.71670341e-01 4.12494004e-01 -7.44350016e-01
-1.63155377e+00 -6.19623244e-01 8.99441361e-01 -8.70126903e-01
7.05115199e-02 -5.67605197e-01 -7.01659322e-01 7.99701333e-01
-1.58933982e-01 1.38845235e-01 8.51420462e-01 -7.29804114e-02
-1.65119991e-01 -2.18317583e-02 -1.80944383e+00 2.81456947e-01
9.79039133e-01 -4.93252784e-01 -2.96843022e-01 2.65444487e-01
-1.02793761e-01 -8.07732224e-01 -1.11108518e+00 2.46761575e-01
9.41088736e-01 -1.13583434e+00 1.01248109e+00 -5.63465990e-02
-4.73937541e-01 -1.72223985e-01 3.68197970e-02 -8.24919999e-01
-1.93259001e-01 -7.51696050e-01 -1.09012313e-01 1.30794954e+00
9.01020840e-02 -7.87055016e-01 8.35598528e-01 1.03224468e+00
-1.22139104e-01 -6.04107618e-01 -1.52269781e+00 -5.13632834e-01
-6.22867197e-02 -5.67117989e-01 7.38394797e-01 7.13472843e-01
-2.17686325e-01 -2.67406940e-01 -3.08820829e-02 1.54324219e-01
7.34926045e-01 -1.34533465e-01 7.83396840e-01 -1.70599997e+00
1.23522878e-01 -4.72120941e-01 -7.15159297e-01 -3.40147078e-01
2.62366056e-01 -1.02183175e+00 -3.91401708e-01 -1.41100109e+00
2.43281871e-02 -5.49833894e-01 4.44670439e-01 6.60995603e-01
4.25693303e-01 8.20850313e-01 2.92875897e-03 8.19936767e-02
1.59489453e-01 7.75607824e-02 1.02824938e+00 3.03649396e-01
-1.27862096e-01 9.47674736e-02 -4.03801471e-01 9.99774337e-01
6.44925773e-01 -4.30287510e-01 4.70775366e-02 -3.45132321e-01
-7.37290978e-02 -1.59390628e-01 5.38439870e-01 -7.61311471e-01
-2.67976940e-01 9.13929343e-02 5.29673576e-01 -4.40620154e-01
9.40671623e-01 -1.00829256e+00 6.78463042e-01 3.77215087e-01
6.05767012e-01 9.00545046e-02 5.67273915e-01 -2.68075895e-02
2.89525688e-01 -4.62299317e-01 1.00841594e+00 -4.96004164e-01
-3.80637378e-01 6.58533156e-01 -2.42817000e-01 -3.63810092e-01
1.17104244e+00 -6.78948700e-01 2.05477431e-01 -2.49947995e-01
-1.05424809e+00 -3.74704391e-01 1.29448140e+00 3.29862356e-01
6.81111395e-01 -1.24146056e+00 -6.96260095e-01 8.42094421e-01
-1.29528284e-01 2.23655812e-02 3.09394479e-01 9.65780199e-01
-8.89581800e-01 2.92587042e-01 -3.98209542e-01 -5.30454159e-01
-1.88804924e+00 2.18109250e-01 6.40408635e-01 5.15957713e-01
-5.88969231e-01 7.87863970e-01 -2.60603040e-01 -8.39882493e-01
1.83955535e-01 8.40013847e-02 -1.81398168e-01 3.18452120e-01
7.64188349e-01 4.98878330e-01 5.36118984e-01 -1.42202175e+00
-7.07861066e-01 1.27067149e+00 3.67136687e-01 -2.32966274e-01
1.46720433e+00 -1.27727866e-01 -6.52147293e-01 2.86392123e-01
9.68266070e-01 4.21870291e-01 -9.74099219e-01 3.60133022e-01
-2.83591390e-01 -7.00276256e-01 1.54333457e-01 -4.88122433e-01
-1.17385161e+00 8.36235762e-01 8.56725872e-01 9.07476023e-02
1.01263154e+00 1.39700428e-01 2.52773792e-01 -4.94688958e-01
6.42293632e-01 -6.85610235e-01 -6.60020471e-01 1.81524694e-01
1.02837348e+00 -7.71098614e-01 2.02724472e-01 -6.51480675e-01
-1.33031979e-01 1.14869261e+00 2.49654979e-01 4.14040565e-01
9.19113517e-01 5.80521643e-01 2.94942290e-01 -3.77423853e-01
-1.16718754e-01 -2.87883461e-01 4.89787668e-01 1.19619370e+00
5.98871171e-01 -1.51620343e-01 -9.81354415e-02 2.45484605e-01
-2.90522039e-01 3.40196118e-02 9.17705968e-02 9.56467628e-01
-2.73178041e-01 -1.58137643e+00 -8.66572499e-01 2.13894367e-01
-4.26736087e-01 1.93436697e-01 -5.22906482e-01 7.83690691e-01
1.91437185e-01 5.93031704e-01 1.07498772e-01 -9.83329862e-02
3.70010167e-01 4.58785415e-01 1.06120050e+00 -7.38676786e-01
-5.02136290e-01 1.36987656e-01 -3.03668734e-02 -6.68307424e-01
-5.13661563e-01 -9.49888468e-01 -1.02887666e+00 -5.33292592e-01
-2.61772811e-01 -2.22067550e-01 1.25243080e+00 5.31751633e-01
5.75071931e-01 -1.77905202e-01 3.51231456e-01 -1.60789955e+00
1.31009057e-01 -7.18540430e-01 -9.66878891e-01 2.92587169e-02
9.65813324e-02 -1.00528276e+00 -3.16566914e-01 8.70766863e-02] | [13.36933708190918, 0.08758172392845154] |
abebccb5-54d0-4966-b145-908c7876bdb7 | cross-modal-local-shortest-path-and-global | 2206.04401 | null | https://arxiv.org/abs/2206.04401v1 | https://arxiv.org/pdf/2206.04401v1.pdf | Cross-modal Local Shortest Path and Global Enhancement for Visible-Thermal Person Re-Identification | In addition to considering the recognition difficulty caused by human posture and occlusion, it is also necessary to solve the modal differences caused by different imaging systems in the Visible-Thermal cross-modal person re-identification (VT-ReID) task. In this paper,we propose the Cross-modal Local Shortest Path and Global Enhancement (CM-LSP-GE) modules,a two-stream network based on joint learning of local and global features. The core idea of our paper is to use local feature alignment to solve occlusion problem, and to solve modal difference by strengthening global feature. Firstly, Attention-based two-stream ResNet network is designed to extract dual-modality features and map to a unified feature space. Then, to solve the cross-modal person pose and occlusion problems, the image are cut horizontally into several equal parts to obtain local features and the shortest path in local features between two graphs is used to achieve the fine-grained local feature alignment. Thirdly, a batch normalization enhancement module applies global features to enhance strategy, resulting in difference enhancement between different classes. The multi granularity loss fusion strategy further improves the performance of the algorithm. Finally, joint learning mechanism of local and global features is used to improve cross-modal person re-identification accuracy. The experimental results on two typical datasets show that our model is obviously superior to the most state-of-the-art methods. Especially, on SYSU-MM01 datasets, our model can achieve a gain of 2.89%and 7.96% in all search term of Rank-1 and mAP. The source code will be released soon. | ['Xiangcai Ma', 'Chaoqi Li', 'XiaoHong Wang'] | 2022-06-09 | null | null | null | null | ['cross-view-person-re-identification'] | ['computer-vision'] | [-1.37281641e-01 -5.84916353e-01 1.35448322e-01 -4.13014919e-01
-7.32403994e-01 -2.91735865e-02 3.68157893e-01 -2.74719298e-01
-6.49210453e-01 4.33712810e-01 4.38696682e-01 4.88084853e-01
-3.21250021e-01 -6.62890315e-01 -3.08800071e-01 -8.09797049e-01
1.78452522e-01 2.20546961e-01 1.30757149e-02 -3.94942909e-01
-8.33739489e-02 3.93909067e-01 -1.66922247e+00 6.53823167e-02
8.90972376e-01 9.43460345e-01 -1.37368636e-02 2.07953513e-01
-2.04595383e-02 2.10156217e-01 -6.33922696e-01 -5.87769389e-01
4.05253559e-01 -1.94067329e-01 -6.39153004e-01 1.11133315e-01
6.37903631e-01 -3.97208422e-01 -6.05692685e-01 1.21170831e+00
1.13988078e+00 4.11675453e-01 3.87337685e-01 -1.30556893e+00
-6.71866000e-01 2.01263830e-01 -9.55715716e-01 3.11620563e-01
5.20166814e-01 2.14091778e-01 4.22697753e-01 -7.93245852e-01
2.96460658e-01 1.59587944e+00 1.01571047e+00 5.24359643e-01
-9.60206568e-01 -8.62685025e-01 2.81737775e-01 7.67690897e-01
-1.65212095e+00 -2.93076634e-01 8.58012080e-01 -1.33773744e-01
6.53332770e-01 3.91067326e-01 6.35235667e-01 1.00086164e+00
-8.23535472e-02 6.69140041e-01 9.86439466e-01 -2.16600180e-01
-5.70807874e-01 -1.21584823e-02 3.27070117e-01 6.40394092e-01
2.04941943e-01 1.89384341e-01 -3.92811447e-01 1.27387717e-01
5.91445267e-01 1.99454173e-01 -4.68250602e-01 2.43496522e-03
-1.08784950e+00 4.33522880e-01 7.94222057e-01 3.65013748e-01
-2.27077350e-01 -2.06812069e-01 5.89406788e-01 1.09466225e-01
1.57396913e-01 -1.26914442e-01 -2.72597313e-01 1.41580835e-01
-6.90597057e-01 3.48655999e-01 1.92933992e-01 6.87961578e-01
6.37664020e-01 -1.54061586e-01 -4.40277487e-01 1.23480487e+00
4.19126540e-01 7.28095472e-01 7.41153419e-01 -5.03372848e-01
7.45546103e-01 6.63079858e-01 -8.42785761e-02 -1.37271416e+00
-7.93691099e-01 -7.08918333e-01 -1.23871326e+00 -1.62913725e-01
3.82528126e-01 -1.84175652e-02 -9.03483450e-01 1.90697432e+00
4.66874063e-01 1.89387009e-01 -1.88584596e-01 1.29354334e+00
1.24016547e+00 5.39727509e-01 2.68987298e-01 -1.88921094e-01
1.65947843e+00 -9.99397278e-01 -7.33362675e-01 -1.52025312e-01
2.58373529e-01 -7.01813698e-01 7.35588551e-01 2.15322524e-02
-8.44951868e-01 -1.20461202e+00 -1.03093445e+00 -1.85085505e-01
-4.87376839e-01 3.26862842e-01 2.89259672e-01 6.23330593e-01
-8.29029441e-01 2.48449743e-01 -3.14806223e-01 -4.56626058e-01
1.42266482e-01 5.33517838e-01 -5.62582493e-01 -2.81341374e-01
-1.50062132e+00 8.11595798e-01 4.81969386e-01 6.14003003e-01
-1.71008363e-01 -5.24974287e-01 -9.45008993e-01 -1.01361215e-01
1.72030002e-01 -8.15192163e-01 5.98822713e-01 -6.52355850e-01
-1.20678842e+00 7.11944044e-01 -2.08351463e-01 8.16048384e-02
5.12464523e-01 -1.08615026e-01 -9.21626806e-01 -6.73506483e-02
3.15627426e-01 5.08204997e-01 6.05419695e-01 -1.12257516e+00
-7.49749959e-01 -7.43672907e-01 -1.77263573e-01 7.12711215e-01
-5.09932518e-01 2.31206194e-01 -9.08298850e-01 -6.42740250e-01
1.52420297e-01 -7.30293810e-01 3.50594707e-02 -4.19262737e-01
-4.66386110e-01 -3.86057287e-01 7.01526523e-01 -1.23569024e+00
1.19453180e+00 -2.01355648e+00 3.59879613e-01 4.58374023e-01
1.34164006e-01 1.88934460e-01 -3.26142728e-01 -8.25602189e-02
-3.38468283e-01 -1.63195953e-01 1.99128278e-02 -5.39766967e-01
-2.79981848e-02 -1.97130039e-01 2.47643456e-01 7.00748980e-01
-2.94724435e-01 9.80616450e-01 -4.11827654e-01 -6.35814011e-01
4.49530512e-01 6.89281583e-01 1.51861655e-02 6.36240421e-03
8.69716883e-01 5.11653543e-01 -2.85801977e-01 6.99951828e-01
1.27336192e+00 3.06273382e-02 -1.87683269e-01 -8.06626499e-01
-4.60870825e-02 -2.52839893e-01 -1.57919800e+00 1.71735370e+00
-1.43352717e-01 1.41438425e-01 9.27884039e-03 -9.84274685e-01
8.58285785e-01 -6.20178832e-03 6.67286456e-01 -1.15982544e+00
3.67746800e-01 -3.77809741e-02 -3.29069406e-01 -5.89740396e-01
5.55428982e-01 9.46801305e-02 -1.89102083e-01 2.87506264e-02
1.28780575e-02 8.56995583e-01 7.90343583e-02 -8.31931084e-02
3.69723469e-01 7.18118250e-02 -1.70011565e-01 -5.75079843e-02
1.19373417e+00 -5.50073624e-01 9.04616058e-01 5.33467948e-01
-5.29395223e-01 6.63417697e-01 -2.20782548e-01 -5.35291255e-01
-8.42744410e-01 -8.51870418e-01 -1.34608760e-01 9.93525207e-01
9.35131848e-01 -4.65456188e-01 -7.34253287e-01 -5.54131031e-01
-2.20142715e-02 7.54090548e-02 -5.38444519e-01 -3.21247011e-01
-7.26103067e-01 -1.24784958e+00 4.90931392e-01 6.97149754e-01
1.37197268e+00 -8.00179958e-01 1.00866139e-01 3.29824537e-02
-7.06061363e-01 -9.21461105e-01 -8.92621338e-01 -6.81483150e-01
-4.04105902e-01 -1.00823367e+00 -1.17078722e+00 -9.94464159e-01
5.78534186e-01 5.86079836e-01 5.25171638e-01 1.56340301e-01
-4.64530289e-01 4.85797405e-01 -1.53768241e-01 1.50846988e-01
4.33602422e-01 1.12761199e-01 3.12755346e-01 4.03294355e-01
5.17845809e-01 -3.42291504e-01 -8.19491923e-01 5.89607179e-01
-5.26996493e-01 -6.43374920e-02 4.47840750e-01 1.00479484e+00
5.98008037e-01 2.75966525e-01 3.74424517e-01 -4.67056669e-02
5.91890514e-01 -1.34839028e-01 -1.80513307e-01 5.05162656e-01
-5.04315197e-01 -3.19337338e-01 4.25408542e-01 -4.54376876e-01
-1.41528738e+00 -1.36246979e-01 -1.53295204e-01 -1.67444155e-01
-2.17985645e-01 3.55761528e-01 -6.66586578e-01 -2.64945835e-01
3.30777019e-01 5.07763863e-01 -9.27554667e-02 -4.84072179e-01
2.00137928e-01 6.55039191e-01 8.70051622e-01 -4.68885720e-01
1.03673375e+00 3.20863038e-01 -3.51901762e-02 -5.45153022e-01
-4.87768561e-01 -5.45063615e-01 -4.35319781e-01 -4.60227221e-01
1.07473588e+00 -1.17527735e+00 -1.15599251e+00 1.12161386e+00
-9.71569479e-01 3.26853633e-01 -3.13914903e-02 5.64858735e-01
-5.18181100e-02 7.26564169e-01 -6.86407208e-01 -6.17569506e-01
-5.61809719e-01 -1.13150430e+00 9.71789420e-01 1.05126512e+00
4.45370615e-01 -6.43270254e-01 -1.30051151e-01 7.06520319e-01
4.06097919e-01 -2.96264756e-02 1.80514082e-01 -3.29314351e-01
-3.15138638e-01 -2.69005805e-01 -5.90017200e-01 7.42322430e-02
1.05259098e-01 -6.26253545e-01 -9.08490598e-01 -6.50706828e-01
-2.50692010e-01 -3.70901525e-02 8.86333346e-01 4.10075992e-01
1.20870543e+00 3.92123219e-03 -4.85552192e-01 1.05356705e+00
1.21680295e+00 5.22624562e-03 7.84300506e-01 7.24202156e-01
1.15859354e+00 7.29271650e-01 5.59604526e-01 1.93169862e-01
9.00030434e-01 1.00556266e+00 -1.39225898e-02 -2.92962760e-01
-3.07023555e-01 -1.78620160e-01 2.08769336e-01 7.56701052e-01
-4.80720907e-01 5.15128598e-02 -4.90009815e-01 3.64811331e-01
-1.99336827e+00 -1.33868790e+00 -2.14741394e-01 2.25729275e+00
3.35123658e-01 -2.93718517e-01 3.49858701e-01 1.04716852e-01
1.32027006e+00 1.48407564e-01 -4.70792413e-01 2.40608305e-01
-5.62860072e-01 -3.31225157e-01 5.61540842e-01 4.08379346e-01
-1.43079662e+00 5.32839537e-01 4.87485981e+00 1.27234447e+00
-9.00712013e-01 2.65566885e-01 6.50421798e-01 2.79854257e-02
1.08262047e-01 -4.61791813e-01 -1.05342841e+00 7.52737463e-01
3.70643437e-01 7.43557652e-03 5.26090264e-01 4.15574253e-01
-3.49586643e-02 1.80761933e-01 -4.91690040e-01 1.74332213e+00
5.37654281e-01 -7.34979630e-01 -1.01308584e-01 5.41374423e-02
4.45077509e-01 -3.26445490e-01 1.07604630e-01 3.78790289e-01
-2.45988399e-01 -9.33348835e-01 4.22039270e-01 8.51829886e-01
8.53857696e-01 -1.13821125e+00 1.06577098e+00 1.75414179e-02
-1.95785558e+00 -2.66889066e-01 -4.14649874e-01 3.81408960e-01
3.43855470e-01 3.78417999e-01 1.00227825e-01 1.21091378e+00
1.14394617e+00 7.12462842e-01 -7.67621577e-01 1.18396151e+00
1.16353892e-01 -1.33519962e-01 -5.02711654e-01 3.69919151e-01
-3.33580643e-01 -1.23724252e-01 5.61091840e-01 1.17908788e+00
2.24184155e-01 8.78161341e-02 4.00076777e-01 5.91416299e-01
8.29968303e-02 2.31636375e-01 -2.24681348e-02 7.45829046e-01
3.23453218e-01 1.48051250e+00 -2.21389577e-01 -2.60694265e-01
-4.16318506e-01 1.25665212e+00 2.10147545e-01 4.97267216e-01
-1.09025133e+00 -7.56664515e-01 4.33439970e-01 -2.57187963e-01
7.00737834e-02 1.06345922e-01 -6.36045560e-02 -1.50282538e+00
3.17505807e-01 -7.40798175e-01 7.12347507e-01 -6.85341537e-01
-1.70258665e+00 6.46800935e-01 -3.51295657e-02 -1.29038119e+00
1.57242715e-01 -4.41626787e-01 -5.42163312e-01 1.33243728e+00
-1.49462867e+00 -1.72393966e+00 -8.46491337e-01 1.09058511e+00
2.41935283e-01 -4.11459088e-01 4.91037428e-01 8.80246401e-01
-9.65851963e-01 1.33482516e+00 -4.79195863e-02 3.14245939e-01
9.70180154e-01 -8.28484058e-01 7.94803500e-02 1.03172874e+00
-5.41980863e-01 6.73402905e-01 2.46294618e-01 -7.78201699e-01
-1.15080714e+00 -1.05374920e+00 7.86170483e-01 -7.00014830e-02
2.57945713e-02 -7.34700710e-02 -8.15971255e-01 3.98100495e-01
-8.95641446e-02 3.75818312e-02 5.43884635e-01 2.03121439e-01
-3.59142601e-01 -6.49516046e-01 -1.29411507e+00 4.03148502e-01
1.30746615e+00 -4.88674968e-01 -4.98049408e-01 1.51894525e-01
4.47999001e-01 -5.58698535e-01 -1.06470108e+00 5.34412801e-01
7.25526214e-01 -7.73992002e-01 1.46017694e+00 -3.16105962e-01
-1.76921144e-01 -6.92794025e-01 -7.42945150e-02 -1.12533653e+00
-8.63288403e-01 -2.61012524e-01 1.31120041e-01 1.72032428e+00
-1.29630387e-01 -9.07306612e-01 5.21095455e-01 7.72556424e-01
-4.71732067e-03 -3.14585984e-01 -1.05140364e+00 -6.40747070e-01
-3.57874930e-01 -1.15150072e-01 9.30441976e-01 8.95922065e-01
-2.11799666e-01 2.02595890e-01 -6.99159861e-01 2.83002406e-01
1.02029955e+00 5.93830086e-02 7.55790532e-01 -1.15211177e+00
-1.25184029e-01 -4.50788617e-01 -5.69099784e-01 -1.08982766e+00
6.54345080e-02 -9.18068707e-01 -2.44835511e-01 -1.44169509e+00
7.18163311e-01 -3.40381294e-01 -6.10935330e-01 3.75452787e-01
-4.97967958e-01 5.25129318e-01 4.00150150e-01 2.72933453e-01
-6.95798993e-01 8.69445801e-01 1.21177518e+00 -4.55003113e-01
-2.09589854e-01 -2.17496067e-01 -7.89088666e-01 4.29355770e-01
6.17227554e-01 4.09166589e-02 -1.21080860e-01 -4.33084279e-01
-2.71418244e-01 -2.93718249e-01 7.15404570e-01 -1.23366046e+00
5.83570957e-01 6.56464919e-02 1.17577052e+00 -7.85838127e-01
5.56763232e-01 -7.42290556e-01 2.09039941e-01 3.43939453e-01
-7.34391138e-02 1.59383461e-01 1.95991993e-01 4.79692727e-01
-2.04457864e-01 1.65372759e-01 6.99019313e-01 9.73542631e-02
-9.27039325e-01 7.39554524e-01 2.11015701e-01 -2.55288452e-01
8.69415820e-01 -4.05573159e-01 -5.66850424e-01 -2.79484183e-01
-7.41208553e-01 5.97808063e-01 2.43044496e-01 6.06412888e-01
6.93173826e-01 -1.95230627e+00 -8.32072675e-01 2.86269426e-01
1.62564382e-01 -3.01479191e-01 1.14783442e+00 9.23501074e-01
-1.47088557e-01 2.03380674e-01 -4.26418811e-01 -5.62247574e-01
-1.46745455e+00 4.65611309e-01 7.17570126e-01 -3.20685267e-01
-5.09200156e-01 9.32880759e-01 2.13253155e-01 -5.85856199e-01
1.63453296e-01 4.94170398e-01 -5.30825198e-01 4.49906997e-02
9.29702580e-01 7.09099591e-01 -1.27258658e-01 -1.34212363e+00
-6.69246256e-01 1.23188221e+00 -2.01265380e-01 2.57750675e-02
1.07590222e+00 -5.58807909e-01 -2.76114762e-01 -1.85255304e-01
1.34893239e+00 -8.93523395e-02 -9.13800359e-01 -4.09941494e-01
-6.87407613e-01 -5.92798710e-01 -1.09964572e-01 -7.97068298e-01
-1.44878304e+00 6.22797072e-01 1.39979875e+00 -1.14126220e-01
1.44835818e+00 -2.70989507e-01 1.08789170e+00 -6.48550019e-02
3.03979337e-01 -1.27512562e+00 -2.17378259e-01 2.55081803e-01
7.89721668e-01 -1.25579929e+00 1.09910473e-01 -3.79302591e-01
-4.25078869e-01 9.20030653e-01 1.01678276e+00 7.71936178e-02
3.22007269e-01 -2.88941264e-01 -3.69260572e-02 -1.09958630e-02
2.54745096e-01 -2.61246562e-01 6.89726651e-01 8.22580218e-01
6.72286600e-02 5.79824373e-02 -4.45803523e-01 9.47369695e-01
-1.62798464e-01 -2.10307255e-01 -1.78290024e-01 4.30101037e-01
-1.86335877e-01 -1.02542043e+00 -8.23055506e-01 3.04500014e-01
-2.43145645e-01 1.48083553e-01 2.83425231e-03 6.64400280e-01
7.49897778e-01 1.09328890e+00 -3.28652635e-02 -9.18727934e-01
4.76856053e-01 -2.38544792e-01 5.26424229e-01 2.42394835e-01
-5.81571162e-01 8.23093057e-02 -3.60151823e-03 -6.51112318e-01
-5.95077813e-01 -7.19434500e-01 -1.06887388e+00 -6.42432392e-01
-3.75236213e-01 -1.30304754e-01 4.23672616e-01 8.80120337e-01
3.94836009e-01 6.97080374e-01 5.91521919e-01 -1.01141787e+00
-2.35752299e-01 -9.93755579e-01 -5.19559622e-01 8.90713334e-01
1.35746390e-01 -8.66882205e-01 -1.36248678e-01 -1.48215860e-01] | [14.722939491271973, 0.9174274802207947] |
af04e08f-6d29-4fa6-88b7-d3e4717f68ed | meta-learning-triplet-network-with-adaptive | 2302.07739 | null | https://arxiv.org/abs/2302.07739v1 | https://arxiv.org/pdf/2302.07739v1.pdf | Meta-Learning Triplet Network with Adaptive Margins for Few-Shot Named Entity Recognition | Meta-learning methods have been widely used in few-shot named entity recognition (NER), especially prototype-based methods. However, the Other(O) class is difficult to be represented by a prototype vector because there are generally a large number of samples in the class that have miscellaneous semantics. To solve the problem, we propose MeTNet, which generates prototype vectors for entity types only but not O-class. We design an improved triplet network to map samples and prototype vectors into a low-dimensional space that is easier to be classified and propose an adaptive margin for each entity type. The margin plays as a radius and controls a region with adaptive size in the low-dimensional space. Based on the regions, we propose a new inference procedure to predict the label of a query instance. We conduct extensive experiments in both in-domain and cross-domain settings to show the superiority of MeTNet over other state-of-the-art methods. In particular, we release a Chinese few-shot NER dataset FEW-COMM extracted from a well-known e-commerce platform. To the best of our knowledge, this is the first Chinese few-shot NER dataset. All the datasets and codes are provided at https://github.com/hccngu/MeTNet. | ['Wei Wu', 'Xuezhi Cao', 'Ming Gao', 'Xiang Li', 'FengJiao Chen', 'Jun Kuang', 'Renyu Zhu', 'Chengcheng Han'] | 2023-02-14 | null | null | null | null | ['miscellaneous', 'few-shot-ner'] | ['miscellaneous', 'natural-language-processing'] | [-3.26855779e-01 -1.88335672e-01 -5.26128471e-01 -4.77559894e-01
-6.82177424e-01 -3.06705654e-01 3.23622674e-01 1.90960929e-01
-6.57568038e-01 6.08558118e-01 9.95044857e-02 1.97562039e-01
-7.96720386e-02 -1.01961219e+00 -4.90028918e-01 -5.20912290e-01
2.29888827e-01 5.53675890e-01 3.32156032e-01 -2.16889128e-01
7.84049258e-02 1.05054505e-01 -1.37479758e+00 1.36665076e-01
9.63918865e-01 8.79320145e-01 2.04235345e-01 1.08319081e-01
-5.31888425e-01 4.35975641e-01 -5.40816844e-01 -5.92829049e-01
1.38899267e-01 -3.02745968e-01 -7.23459482e-01 -1.71266824e-01
6.69619814e-02 5.97600751e-02 -3.54643553e-01 1.20355248e+00
6.58616424e-01 6.28241956e-01 6.78700149e-01 -1.31167531e+00
-1.00376976e+00 8.86264801e-01 -3.67617279e-01 2.05177128e-01
7.70019516e-02 -1.92540511e-01 1.08558750e+00 -1.01200116e+00
9.06479001e-01 9.53103185e-01 6.26052439e-01 8.35886896e-01
-8.99475932e-01 -8.01096201e-01 -1.97245069e-02 3.79093230e-01
-1.52087450e+00 -2.54196912e-01 7.12725103e-01 -1.51984900e-01
6.75856352e-01 -3.63611989e-03 3.51227492e-01 1.06479096e+00
-2.59753495e-01 8.27890694e-01 6.96078360e-01 -4.50371712e-01
5.94886124e-01 3.08000326e-01 5.71256280e-01 5.01179755e-01
2.16223389e-01 -1.79909647e-01 -9.02998596e-02 -2.00795338e-01
5.61429322e-01 3.77149820e-01 -2.06033856e-01 -4.69675213e-01
-1.05462229e+00 1.00574911e+00 5.92766047e-01 6.51115179e-01
-4.06482428e-01 -1.85099617e-01 4.02362317e-01 9.71196070e-02
4.30393308e-01 3.92153591e-01 -6.64573073e-01 -2.44245343e-02
-6.64558589e-01 -7.10008666e-02 1.01565504e+00 1.20128739e+00
8.70327175e-01 -2.65550733e-01 -3.14228714e-01 1.28978348e+00
6.62603676e-02 6.93417415e-02 8.24749708e-01 -5.25963604e-01
6.18370295e-01 7.51180291e-01 1.81189731e-01 -7.60710955e-01
-3.57389331e-01 -2.43975103e-01 -8.75551522e-01 -5.53199708e-01
1.72545835e-01 -4.24239367e-01 -9.58435774e-01 1.63456941e+00
6.73860252e-01 6.83298290e-01 1.61914825e-01 9.65593040e-01
1.03787410e+00 9.50299025e-01 2.19035476e-01 -1.84806094e-01
1.50381458e+00 -1.05464458e+00 -6.15514100e-01 -3.78884114e-02
8.58804822e-01 -3.69433641e-01 1.05361903e+00 -1.50490448e-01
-3.63455534e-01 -4.13022876e-01 -9.45823789e-01 -9.08293501e-02
-7.30027914e-01 2.34812170e-01 5.29176831e-01 6.54865324e-01
-3.12930465e-01 6.05163097e-01 -5.73899388e-01 -5.14194489e-01
3.03548306e-01 1.27731580e-02 -2.66861945e-01 -2.16833085e-01
-1.66800475e+00 6.89501166e-01 7.30548799e-01 -3.93560939e-02
-4.08746362e-01 -7.64462113e-01 -1.03712463e+00 2.87885368e-01
6.19304478e-01 -4.06035274e-01 1.25225914e+00 -4.99313176e-01
-1.13383877e+00 5.48757017e-01 -1.11918665e-01 -2.75034040e-01
1.30236804e-01 6.84758425e-02 -9.76776123e-01 -9.45432559e-02
3.07579994e-01 4.98160303e-01 3.71606618e-01 -1.01324725e+00
-6.66083932e-01 -2.22160399e-01 4.32979688e-02 9.13209841e-02
-6.38839841e-01 -3.26816998e-02 -5.41168809e-01 -5.82339406e-01
-2.21447535e-02 -7.15798795e-01 -3.29457492e-01 -2.85692215e-01
-3.63488615e-01 -6.60266459e-01 5.26796401e-01 -2.11212978e-01
1.51140010e+00 -2.15725589e+00 -2.96733677e-01 -2.90298928e-02
1.74840782e-02 5.32342136e-01 -2.07210943e-01 4.55722988e-01
6.13456778e-02 3.22793961e-01 -1.11584172e-01 -5.12399338e-02
1.79058790e-01 1.56793982e-01 -1.66031450e-01 2.44578898e-01
-2.83596665e-02 7.83365786e-01 -1.10767186e+00 -5.05652487e-01
3.33471969e-02 3.44224095e-01 -2.29224801e-01 1.48359135e-01
-1.43942371e-01 -6.59439340e-02 -6.33402586e-01 6.24363661e-01
6.87767327e-01 -2.85535872e-01 1.33370653e-01 -2.79512048e-01
-1.47714391e-01 7.37135261e-02 -1.30803692e+00 1.63272238e+00
-3.75285655e-01 1.08017474e-01 -4.51946855e-01 -9.89739239e-01
1.12975621e+00 3.72201473e-01 2.73742497e-01 -5.94734907e-01
3.05799425e-01 2.61627227e-01 -2.22466648e-01 -5.16982496e-01
7.06163883e-01 -4.28894669e-01 -3.38770539e-01 2.05230713e-01
3.60910475e-01 4.51870352e-01 5.65822482e-01 6.57846555e-02
7.90025055e-01 -2.13635787e-01 5.69204271e-01 3.70115638e-02
3.28515470e-01 1.67812914e-01 1.26693785e+00 8.83566976e-01
-4.53230262e-01 5.88759005e-01 3.85039061e-01 -3.46630603e-01
-1.05808353e+00 -7.82202601e-01 -2.71527022e-01 1.15642655e+00
3.62361372e-01 -5.05201340e-01 -6.58529043e-01 -8.66613209e-01
-1.88449323e-01 1.02884388e+00 -6.66465342e-01 -1.10889494e-01
-3.98634642e-01 -6.80412412e-01 6.08772218e-01 5.24218738e-01
5.27652264e-01 -1.14566028e+00 -1.74361974e-01 3.75915140e-01
-2.35549197e-01 -9.89555359e-01 -8.99700463e-01 1.19527720e-01
-7.49434829e-01 -1.11363173e+00 -9.31533813e-01 -1.17032409e+00
5.88833272e-01 2.83422917e-01 7.99833775e-01 -1.68789849e-01
-2.15676382e-01 6.77867755e-02 -7.67181516e-01 -2.96118855e-01
-1.08353190e-01 2.99329609e-01 6.16962239e-02 -1.55242765e-02
9.28775907e-01 -1.80894479e-01 -4.49023515e-01 4.55919862e-01
-8.82400334e-01 -2.08605021e-01 4.02597398e-01 1.13849759e+00
6.81481421e-01 2.38888860e-01 6.33877158e-01 -1.13601303e+00
5.38421154e-01 -1.10463881e+00 -4.62416023e-01 6.20130301e-01
-5.09048879e-01 -1.16972905e-02 8.41609836e-01 -7.62431324e-01
-1.10924315e+00 -8.78946390e-03 7.10372254e-02 -5.83994508e-01
-3.37292254e-01 7.56906331e-01 -3.20567429e-01 4.96219248e-01
6.50393307e-01 6.10074028e-02 -5.10847747e-01 -6.89370275e-01
5.62044680e-01 1.03913212e+00 3.19295317e-01 -4.15789992e-01
5.41111231e-01 1.51073456e-01 -4.48251933e-01 -9.25826907e-01
-1.09894800e+00 -9.73362029e-01 -6.69819176e-01 1.63433969e-01
7.39512980e-01 -8.43018532e-01 -2.35068455e-01 2.32333601e-01
-9.88797247e-01 -6.06623441e-02 -2.76639700e-01 6.16568923e-01
-1.37090027e-01 2.33857915e-01 -7.35627651e-01 -7.18025088e-01
-5.12695730e-01 -6.85971677e-01 6.41101897e-01 6.29508793e-01
1.38251334e-01 -8.88932288e-01 3.59532565e-01 7.45119303e-02
1.12670168e-01 -1.56688437e-01 6.99149847e-01 -1.23312163e+00
-3.83265652e-02 -3.14058423e-01 -1.32929400e-01 4.33123857e-02
4.57067452e-02 -2.62233466e-01 -6.89733565e-01 -1.60043746e-01
-1.02976128e-01 -2.99639136e-01 8.45173299e-01 2.01951966e-01
8.97228122e-01 -2.57533401e-01 -4.83242780e-01 4.89621192e-01
1.51693380e+00 3.28093201e-01 5.39227605e-01 4.19643670e-01
6.26245975e-01 3.75206321e-01 1.06439531e+00 5.37622631e-01
4.42201853e-01 6.51001334e-01 -1.40267491e-01 1.82249948e-01
1.85595527e-01 -4.41119343e-01 2.27414705e-02 9.78426158e-01
2.30045497e-01 -2.86599457e-01 -9.64288175e-01 6.41007960e-01
-1.96920204e+00 -1.15956414e+00 1.37871057e-01 2.03507376e+00
9.00540054e-01 -7.90285766e-02 7.18789026e-02 -3.04554105e-01
1.37207663e+00 2.69498359e-02 -6.64206028e-01 -5.32769486e-02
6.84509054e-02 6.20803609e-02 3.22440147e-01 -4.79428805e-02
-1.41541409e+00 1.00591898e+00 5.09791565e+00 1.13472915e+00
-9.32652235e-01 3.39401215e-01 4.64731455e-01 1.20404899e-01
-1.36860847e-01 1.44308433e-01 -1.12846184e+00 6.21081531e-01
9.45115387e-01 -5.03481567e-01 1.72504723e-01 1.21064949e+00
-1.46496758e-01 2.94320494e-01 -8.26912761e-01 9.83158588e-01
1.47255823e-01 -1.29485798e+00 -9.53782052e-02 -2.08967090e-01
8.11561584e-01 2.64340907e-01 -4.42436188e-01 9.19756353e-01
1.82600975e-01 -5.33335626e-01 4.06741530e-01 4.46435302e-01
8.14842224e-01 -8.92636120e-01 8.25863302e-01 5.93873978e-01
-1.46476281e+00 -2.04439610e-01 -1.01181996e+00 3.38133931e-01
2.82625049e-01 5.83012700e-01 -6.28385663e-01 5.72779536e-01
6.25209630e-01 6.84270382e-01 -2.87703425e-01 1.40649152e+00
-2.02222422e-01 5.13962984e-01 -8.97222906e-02 -3.66538048e-01
2.75719970e-01 -2.63130099e-01 3.74816418e-01 1.25290370e+00
5.71143150e-01 5.22634268e-01 2.28575304e-01 8.55804205e-01
-5.04451990e-01 4.47273850e-01 -4.98686075e-01 -1.86699674e-01
1.05972648e+00 1.50784874e+00 -6.95054173e-01 -5.50417662e-01
-5.57144642e-01 9.56680119e-01 5.89353263e-01 1.94511637e-01
-9.11060512e-01 -1.05861545e+00 4.45436299e-01 -3.69260967e-01
6.60655677e-01 1.71433434e-01 1.07400320e-01 -1.66074431e+00
-1.00625984e-01 -3.76063377e-01 8.40462983e-01 -5.70144117e-01
-1.79866540e+00 6.04837358e-01 -1.55666336e-01 -1.48676813e+00
-3.19479890e-02 -3.94516230e-01 -7.51468539e-01 4.78713483e-01
-1.26314592e+00 -8.55397105e-01 -2.82029986e-01 4.44276124e-01
5.00291824e-01 -2.04403698e-01 9.11745369e-01 3.91928941e-01
-9.32167172e-01 7.46599495e-01 4.76160407e-01 6.05760813e-01
7.45919645e-01 -1.15512252e+00 3.25950116e-01 6.55841768e-01
2.16639966e-01 8.70981574e-01 3.93968076e-01 -7.71874666e-01
-1.14628959e+00 -1.30338764e+00 9.90245283e-01 -1.81601450e-01
7.24317014e-01 -3.24773520e-01 -9.72683668e-01 6.65590942e-01
-1.62243769e-01 2.41696566e-01 9.32984471e-01 1.75327435e-01
-4.80641007e-01 -7.13747889e-02 -1.30837750e+00 5.45567214e-01
8.34630907e-01 -3.20953548e-01 -9.14159536e-01 2.13189289e-01
9.08262491e-01 -1.96629688e-01 -1.07170212e+00 2.40477592e-01
3.49303067e-01 -5.07795274e-01 7.16184914e-01 -7.01139748e-01
1.74594730e-01 -3.51849049e-01 -1.99071050e-01 -1.54443288e+00
-4.78230000e-01 -1.75352663e-01 -3.22065562e-01 1.64631557e+00
4.68627840e-01 -5.15218556e-01 7.10928321e-01 6.48745954e-01
-9.75066703e-03 -7.12788403e-01 -8.08814943e-01 -1.11341369e+00
6.91054836e-02 -2.95857638e-01 8.10409009e-01 1.30743062e+00
3.29110295e-01 6.25475347e-01 -4.37514573e-01 -8.05275142e-03
6.31501138e-01 2.41974309e-01 4.32559013e-01 -1.30965924e+00
-6.35628626e-02 -1.25455678e-01 -4.03601050e-01 -8.78198266e-01
1.73363134e-01 -1.01292598e+00 9.70075428e-02 -1.46689296e+00
5.16658068e-01 -7.47519612e-01 -6.23791873e-01 6.51677370e-01
-2.02763245e-01 -5.17169088e-02 2.16534629e-01 3.46590132e-01
-9.05535579e-01 6.66382909e-01 8.74389648e-01 -5.47796115e-02
-3.75685364e-01 -1.48689970e-01 -7.11390734e-01 3.77021790e-01
1.03308547e+00 -6.97416782e-01 -1.92327112e-01 -1.98487490e-01
-7.46825188e-02 -8.88114423e-03 -1.17935620e-01 -7.17022061e-01
5.27735293e-01 -2.94902444e-01 3.27907950e-01 -5.80376923e-01
1.51442409e-01 -5.91397107e-01 6.82856664e-02 2.52802849e-01
-3.88140917e-01 -3.13844681e-01 -2.44456246e-01 6.73837066e-01
-2.02618495e-01 -6.42353535e-01 8.02368283e-01 -1.47517473e-01
-1.25781572e+00 7.46696889e-01 6.02400564e-02 4.31417704e-01
1.07388973e+00 -1.91270951e-02 -5.31056225e-01 -6.20088018e-02
-5.49557805e-01 3.82165432e-01 3.32812399e-01 6.32682264e-01
5.22234619e-01 -1.58702397e+00 -5.26776791e-01 -8.25468674e-02
5.37583292e-01 -2.34874800e-01 5.35920560e-01 7.30183780e-01
-1.33181989e-01 3.05004179e-01 -4.73617129e-02 -1.59339666e-01
-8.98348451e-01 8.28155637e-01 1.85989067e-01 -1.20759428e-01
-6.92210674e-01 5.02681494e-01 -7.38029256e-02 -9.13795829e-01
1.54706791e-01 6.97913468e-02 -5.86775541e-01 3.08900535e-01
7.88909078e-01 5.58160245e-01 -2.44714767e-01 -7.31129706e-01
-2.78123409e-01 2.60274440e-01 -2.13057160e-01 1.13930166e-01
1.48035347e+00 -1.01089485e-01 -2.24143751e-02 6.91036105e-01
1.36408639e+00 -2.85370022e-01 -8.38961065e-01 -4.77935612e-01
2.41141349e-01 -3.62710655e-01 -8.12375247e-02 -5.61905444e-01
-1.02147853e+00 5.84318399e-01 5.26417077e-01 1.71481848e-01
7.50000954e-01 8.93561617e-02 1.07538474e+00 6.21336520e-01
4.89074022e-01 -1.48481023e+00 -2.10066646e-01 7.07989812e-01
2.94487298e-01 -1.15512240e+00 -3.91359746e-01 -3.05037290e-01
-8.48287463e-01 1.05555665e+00 7.97089517e-01 -5.11552617e-02
8.05785060e-01 -1.46542028e-01 1.05890237e-01 -1.12115540e-01
-6.83650732e-01 -3.49440664e-01 2.18963593e-01 4.12071854e-01
3.70873392e-01 2.52496511e-01 -6.15985692e-01 1.18325591e+00
1.03390224e-01 1.84340909e-01 5.11115491e-01 9.95061934e-01
-6.05414331e-01 -1.01158178e+00 -1.17853552e-01 6.10713959e-01
-2.97977179e-01 -1.87182724e-01 1.47134289e-02 7.02337503e-01
1.95516467e-01 1.04006124e+00 -7.37598818e-03 -4.29134578e-01
4.91086602e-01 2.40200058e-01 -9.52519570e-03 -8.25983644e-01
-3.40084106e-01 -1.93744153e-01 4.95038852e-02 -2.56738991e-01
-2.05548182e-01 -4.00899500e-01 -1.45533586e+00 -1.27748847e-01
-7.33120799e-01 6.21551394e-01 5.24821877e-01 8.16029668e-01
4.73751813e-01 1.33575410e-01 7.72123337e-01 -5.19062221e-01
-6.96919262e-01 -1.08669817e+00 -1.03737581e+00 5.56824684e-01
-2.67054439e-01 -8.24438751e-01 -4.06424910e-01 -3.95283341e-01] | [9.628957748413086, 9.34502124786377] |
84031d2f-c664-4eb8-b3b3-560a6c4044f0 | perceiving-and-modeling-density-is-all-you | 2111.09733 | null | https://arxiv.org/abs/2111.09733v1 | https://arxiv.org/pdf/2111.09733v1.pdf | Perceiving and Modeling Density is All You Need for Image Dehazing | In the real world, the degradation of images taken under haze can be quite complex, where the spatial distribution of haze is varied from image to image. Recent methods adopt deep neural networks to recover clean scenes from hazy images directly. However, due to the paradox caused by the variation of real captured haze and the fixed degradation parameters of the current networks, the generalization ability of recent dehazing methods on real-world hazy images is not ideal.To address the problem of modeling real-world haze degradation, we propose to solve this problem by perceiving and modeling density for uneven haze distribution. We propose a novel Separable Hybrid Attention (SHA) module to encode haze density by capturing features in the orthogonal directions to achieve this goal. Moreover, a density map is proposed to model the uneven distribution of the haze explicitly. The density map generates positional encoding in a semi-supervised way. Such a haze density perceiving and modeling capture the unevenly distributed degeneration at the feature level effectively. Through a suitable combination of SHA and density map, we design a novel dehazing network architecture, which achieves a good complexity-performance trade-off. The extensive experiments on two large-scale datasets demonstrate that our method surpasses all state-of-the-art approaches by a large margin both quantitatively and qualitatively, boosting the best published PSNR metric from 28.53 dB to 33.49 dB on the Haze4k test dataset and from 37.17 dB to 38.41 dB on the SOTS indoor test dataset. | ['Zhiyong Lu', 'Pen Chen', 'ErKang Chen', 'Liang Chen', 'Yunchen Zhang', 'Mingchao Jiang', 'Tian Ye'] | 2021-11-18 | null | null | null | null | ['image-dehazing'] | ['computer-vision'] | [ 3.79176177e-02 -5.80192924e-01 4.53958213e-01 -3.45939487e-01
-4.42704797e-01 -1.16360977e-01 2.44853824e-01 -4.55595940e-01
-1.42573193e-01 6.95465386e-01 2.99292743e-01 -3.21121030e-02
-2.84698635e-01 -9.16852057e-01 -7.73408234e-01 -1.44072449e+00
-3.09422221e-02 2.84625590e-02 3.29044253e-01 -4.99945045e-01
-9.22921347e-04 3.37046325e-01 -1.67455840e+00 2.04235733e-01
1.39892292e+00 1.11884725e+00 5.88932037e-01 5.40811956e-01
1.95287451e-01 8.51315737e-01 -9.53037918e-01 -1.05484910e-01
4.63649392e-01 -4.32174057e-01 5.12470566e-02 2.82495439e-01
6.82395399e-01 -6.91817164e-01 -8.29247415e-01 1.40958416e+00
6.25064254e-01 1.17884897e-01 5.99062502e-01 -9.63367164e-01
-1.22168744e+00 1.19267017e-01 -6.29974961e-01 5.72666585e-01
-3.24877590e-01 3.03581834e-01 4.46858197e-01 -8.03263962e-01
-7.36152753e-02 1.15507889e+00 3.07463586e-01 3.16704661e-01
-7.08331883e-01 -8.19835663e-01 2.79254727e-02 6.10911667e-01
-1.64983892e+00 -3.47255111e-01 7.06315815e-01 -1.97105005e-01
4.82111007e-01 1.96170226e-01 5.34627318e-01 6.87652886e-01
4.05915380e-01 6.03243232e-01 1.31878972e+00 -9.39780772e-02
2.09748775e-01 -8.64944980e-03 -1.39302105e-01 4.05108839e-01
5.32527506e-01 9.08114687e-02 -3.58110279e-01 3.84106308e-01
7.19868958e-01 2.74157345e-01 -8.14737678e-01 -1.78530335e-01
-8.02359998e-01 4.94186014e-01 8.42935264e-01 1.18524373e-01
-3.68080735e-01 2.27884009e-01 -3.44115347e-01 3.57279837e-01
5.36951542e-01 3.58845979e-01 -7.72987232e-02 2.27180988e-01
-9.84212279e-01 2.12913707e-01 3.82032990e-01 1.03194165e+00
9.19320881e-01 4.91100341e-01 -1.85147211e-01 8.85925114e-01
3.56476754e-01 1.03057313e+00 2.50812888e-01 -1.00389123e+00
4.20499414e-01 9.54846889e-02 3.62105161e-01 -1.10123289e+00
-1.31493090e-02 -7.01989532e-01 -1.42446399e+00 4.70549852e-01
2.53343999e-01 1.49136394e-01 -1.37539089e+00 1.53076637e+00
7.79857486e-02 1.94097862e-01 2.99935676e-02 1.39262116e+00
6.61536038e-01 1.22296417e+00 -4.32423770e-01 -2.86841512e-01
1.08251226e+00 -9.81724322e-01 -1.21460629e+00 -2.61264652e-01
-8.21181685e-02 -5.32579482e-01 1.03934324e+00 6.27117932e-01
-1.09895897e+00 -4.66872305e-01 -1.33315492e+00 -1.09407550e-03
-3.50350112e-01 -1.42781109e-01 6.91416934e-02 5.90451360e-01
-1.34236586e+00 2.53493011e-01 -6.16918325e-01 5.80990836e-02
4.72770363e-01 1.23001561e-01 -1.11079924e-01 -9.21419859e-01
-1.43028545e+00 8.07707489e-01 2.02388585e-01 5.23973584e-01
-1.20788121e+00 -6.96776450e-01 -7.67371774e-01 3.77190173e-01
2.68906534e-01 -7.99514592e-01 6.38290405e-01 -8.97509515e-01
-1.28696823e+00 1.94187656e-01 -2.62191370e-02 -2.59045869e-01
2.48066306e-01 -3.75593692e-01 -6.24573648e-01 3.96584421e-01
-1.21882811e-01 4.40235317e-01 1.19584429e+00 -1.62658691e+00
-4.54666734e-01 -3.92232895e-01 1.38273343e-01 3.73918802e-01
-5.54838061e-01 -2.93622702e-01 -4.74121004e-01 -7.72522390e-01
-6.05283715e-02 -5.26817739e-01 -8.10519680e-02 2.42665485e-01
-7.29077905e-02 3.14559102e-01 9.54308748e-01 -8.44085872e-01
1.28853250e+00 -2.39327979e+00 2.07164198e-01 -2.38775164e-01
5.83893716e-01 5.20740509e-01 -1.14379637e-01 1.55759826e-01
2.40675032e-01 -1.13130093e-01 -5.17757535e-01 -3.96520287e-01
-1.58508375e-01 3.06260139e-01 -2.69774675e-01 7.38942266e-01
1.46665975e-01 6.97980940e-01 -9.22429204e-01 -2.83902615e-01
3.62964839e-01 8.04466128e-01 -3.87380958e-01 6.31853402e-01
7.97822028e-02 2.42681712e-01 -1.14309639e-01 7.96249807e-01
1.31155026e+00 -1.26348674e-01 -3.81484002e-01 -5.99297248e-02
-8.41054246e-02 -9.04091969e-02 -9.04737532e-01 1.38764381e+00
-5.54548919e-01 8.09332192e-01 3.66648942e-01 -8.45113277e-01
8.82073879e-01 1.89897045e-01 -1.32845357e-01 -9.33370590e-01
1.71522014e-02 2.47857153e-01 -8.36616755e-03 -6.52623832e-01
5.51433027e-01 -4.86630589e-01 2.47357309e-01 -4.12586480e-02
-7.17465132e-02 -2.91819811e-01 -2.85265744e-01 2.34218705e-02
9.33176219e-01 -4.64413434e-01 -4.58758175e-02 -4.86651391e-01
3.30188096e-01 -4.52118397e-01 5.01839697e-01 8.18022490e-01
-4.11718965e-01 1.14663565e+00 1.33863194e-02 -5.08239806e-01
-1.04736567e+00 -1.26027119e+00 -1.63971439e-01 6.02924347e-01
7.22076774e-01 7.93186575e-02 -7.08870351e-01 -8.36561844e-02
-2.76026964e-01 7.11684704e-01 -6.25556707e-01 -6.34564817e-01
-4.82780129e-01 -1.03704715e+00 2.19542235e-01 7.87429586e-02
1.18131948e+00 -6.50348067e-01 -2.71578103e-01 -1.05696935e-02
-3.57915342e-01 -1.22516108e+00 -4.04264063e-01 -6.84914067e-02
-5.17315209e-01 -5.84773958e-01 -9.98319209e-01 -6.87609434e-01
4.18501258e-01 1.03106129e+00 1.01406205e+00 2.13492960e-01
-4.35337275e-02 -6.01022691e-02 -4.43239987e-01 -5.35746992e-01
-1.47658229e-01 -2.43153855e-01 1.59953665e-02 4.10996646e-01
5.98143972e-02 -1.01365542e+00 -1.05682635e+00 3.33507001e-01
-1.43747878e+00 7.80940354e-02 7.97823787e-01 8.80831957e-01
2.00125709e-01 8.46047103e-01 3.76908153e-01 -1.38603017e-01
2.51966953e-01 -9.20060098e-01 -6.22729719e-01 -4.50878143e-02
-5.85811257e-01 -1.97758332e-01 6.47439718e-01 -3.14595759e-01
-1.16830170e+00 -4.79968905e-01 7.15019479e-02 -8.58249903e-01
-2.00958207e-01 3.44336361e-01 -6.68128490e-01 -5.70532940e-02
3.41174811e-01 6.89106226e-01 2.57706828e-02 -4.50156391e-01
1.30262673e-01 8.06208014e-01 7.60616720e-01 -2.24079102e-01
1.32166207e+00 6.96925938e-01 -1.08310290e-01 -9.27441061e-01
-7.70846963e-01 -2.85362571e-01 -1.96189389e-01 -2.19577253e-01
9.18281496e-01 -1.38395333e+00 -3.04957330e-01 1.04172826e+00
-1.03196704e+00 -5.22669196e-01 1.00390092e-01 3.55275899e-01
-1.39111981e-01 4.18953538e-01 -6.17393553e-01 -8.85888934e-01
-2.49383032e-01 -1.15319681e+00 1.09485197e+00 2.47864395e-01
8.91710997e-01 -7.97306597e-01 -3.53379667e-01 3.67872596e-01
8.97530913e-01 9.99821946e-02 8.03394139e-01 2.86970288e-01
-1.25455451e+00 1.00139111e-01 -6.08020544e-01 7.00382471e-01
3.66320729e-01 -3.52560103e-01 -9.83706534e-01 -4.06710207e-01
3.90206367e-01 4.22428548e-02 1.08127332e+00 5.14221966e-01
1.25262737e+00 -3.02064210e-01 2.00747252e-01 1.09694910e+00
1.62492514e+00 1.63952455e-01 1.20433533e+00 4.35162961e-01
9.33316767e-01 5.21929622e-01 4.96219188e-01 2.88547933e-01
3.64727229e-01 7.54646182e-01 9.93049979e-01 -2.44314253e-01
-5.24953961e-01 8.55964273e-02 2.89554119e-01 7.71388531e-01
-4.65010740e-02 -8.15085173e-01 -7.11992264e-01 8.24535012e-01
-1.49271977e+00 -7.97255516e-01 8.68769288e-02 2.04068804e+00
6.77111924e-01 -8.37340653e-02 -3.92417699e-01 9.68471915e-02
6.10735774e-01 4.83363360e-01 -2.64818609e-01 8.65446553e-02
-5.31915367e-01 -1.10128224e-01 5.49516201e-01 6.18190587e-01
-9.38099146e-01 7.42000341e-01 5.65557957e+00 1.08082378e+00
-1.12313867e+00 1.48373276e-01 5.88901401e-01 -2.74413258e-01
-4.08110023e-01 -4.85742360e-01 -4.70707119e-01 1.02610564e+00
9.27884459e-01 -4.20537889e-02 8.30457091e-01 2.65727103e-01
3.07198763e-01 -1.65278763e-02 -4.50413197e-01 1.21889246e+00
2.81957030e-01 -1.15459752e+00 2.25534186e-01 2.55185038e-01
9.24223900e-01 4.68849353e-02 4.57278997e-01 1.41979575e-01
1.50159970e-01 -1.24125659e+00 9.04068410e-01 6.26778185e-01
9.54478741e-01 -6.37368560e-01 9.91723418e-01 4.91238445e-01
-9.08872783e-01 -2.79810637e-01 -6.98443115e-01 -2.68304467e-01
2.20091164e-01 1.05482244e+00 -3.05128187e-01 6.79805756e-01
1.15619659e+00 7.33276248e-01 -5.00718534e-01 1.18542755e+00
-3.24464858e-01 7.19535053e-01 -1.30602762e-01 3.83804291e-01
3.70001733e-01 -2.59281963e-01 5.90486944e-01 1.11601698e+00
7.02331543e-01 3.26156527e-01 -3.04707289e-01 8.87382150e-01
2.87069175e-02 -6.03357136e-01 -5.56952059e-01 3.92212123e-01
4.27215487e-01 8.66508067e-01 -1.90540880e-01 -3.21388453e-01
-2.53444463e-01 1.04676056e+00 4.01676744e-02 7.47133076e-01
-9.53967810e-01 -4.50607002e-01 1.03829598e+00 1.74160525e-01
6.19380653e-01 -3.80732119e-01 -1.70000896e-01 -1.17609954e+00
2.38984227e-01 -8.71450841e-01 -1.86875537e-01 -1.13478625e+00
-1.38437343e+00 7.39689827e-01 1.57817572e-01 -1.24330103e+00
4.34930652e-01 -5.76161861e-01 -5.63100517e-01 9.94113147e-01
-2.07188177e+00 -9.08661485e-01 -1.02677381e+00 5.61434090e-01
5.75649559e-01 2.63519995e-02 2.27327093e-01 7.28273869e-01
-6.06027484e-01 5.26315689e-01 5.16025901e-01 -2.12282404e-01
6.73116207e-01 -1.23835504e+00 2.19125345e-01 1.18309963e+00
-3.16149920e-01 3.69952887e-01 9.39568102e-01 -2.11153254e-01
-1.37326717e+00 -1.38788235e+00 3.12927961e-01 -3.89106780e-01
3.98067415e-01 -5.15655994e-01 -1.38383746e+00 2.29259536e-01
3.69120687e-01 4.04193521e-01 1.85435012e-01 -6.39642715e-01
-5.45992851e-01 -4.87552375e-01 -1.10810792e+00 4.27716732e-01
9.76438701e-01 -4.10963893e-01 -4.57561672e-01 1.27238467e-01
1.17130041e+00 -4.59447473e-01 -5.98021388e-01 4.81940299e-01
2.60119915e-01 -1.29604363e+00 1.04045248e+00 1.27980471e-01
6.49815977e-01 -7.66853213e-01 -6.17581010e-01 -1.67826426e+00
-6.36833310e-01 -5.12383163e-01 -3.67425889e-01 9.84872997e-01
-6.81307465e-02 -7.61963665e-01 3.99044096e-01 9.08542722e-02
-6.28820419e-01 -7.91566908e-01 -8.89829397e-01 -8.26173246e-01
1.90315709e-01 9.99723449e-02 9.94134426e-01 7.88929760e-01
-7.60762870e-01 3.05335540e-02 -7.93057680e-01 8.65089297e-01
9.10408735e-01 -5.55119067e-02 5.02291322e-01 -7.50687301e-01
-2.46594697e-01 -2.32957751e-01 -5.61062396e-01 -1.40156698e+00
-8.47035944e-02 -2.55190104e-01 3.88013393e-01 -1.63283098e+00
2.83819735e-01 -3.44681233e-01 -5.29489875e-01 1.03508560e-02
-6.40409410e-01 4.83239055e-01 1.86696678e-01 4.33629811e-01
-5.01713037e-01 1.10849857e+00 1.53745317e+00 -5.00248849e-01
1.85552105e-01 -2.71613985e-01 -8.18778634e-01 3.30729008e-01
7.11862266e-01 -4.13963467e-01 -7.06532180e-01 -1.07982612e+00
-3.87364514e-02 -8.84381011e-02 4.39199060e-01 -1.32217836e+00
1.98855579e-01 -2.79154897e-01 4.33017403e-01 -4.10366237e-01
6.17673457e-01 -8.50640357e-01 6.51041120e-02 5.35594448e-02
1.91480830e-01 -1.98404595e-01 7.71657750e-02 8.52365375e-01
-6.15939915e-01 3.00161332e-01 1.01039708e+00 4.46481165e-03
-7.87161589e-01 6.03453338e-01 -3.39843810e-01 -7.21305907e-02
6.26566589e-01 -2.48532295e-01 -7.64173269e-01 -8.64203393e-01
-6.22175299e-02 1.99829310e-01 6.94504797e-01 3.00711036e-01
8.89877617e-01 -1.23580086e+00 -8.29570711e-01 3.35228324e-01
1.26308024e-01 3.35402608e-01 5.87090135e-01 7.08138704e-01
-6.88436151e-01 4.19732742e-02 -1.45325288e-01 -4.92635995e-01
-8.53172541e-01 6.64744794e-01 6.31223440e-01 9.03818086e-02
-6.43485606e-01 7.62523651e-01 8.62041712e-01 5.27599491e-02
6.68414608e-02 -1.71225637e-01 1.49777206e-02 -5.23710668e-01
9.44648683e-01 3.07445467e-01 7.57348016e-02 -5.51217616e-01
2.31348183e-02 4.63837266e-01 2.42729157e-01 2.13471606e-01
1.34853411e+00 -5.92565119e-01 -3.02985013e-01 2.31230795e-01
1.23027492e+00 -9.76732820e-02 -1.62542963e+00 -3.72294039e-01
-7.44470716e-01 -1.10494339e+00 4.03002977e-01 -8.25678945e-01
-1.42379379e+00 1.15381730e+00 8.21991920e-01 2.56318569e-01
1.68540192e+00 -1.49376810e-01 9.27139401e-01 2.05092505e-01
4.46305484e-01 -4.56941485e-01 2.67423689e-01 4.36769038e-01
9.16652620e-01 -1.19068170e+00 -9.11252107e-03 -2.82596260e-01
-3.35652679e-01 6.80236638e-01 7.48174489e-01 -9.79515985e-02
6.75104201e-01 7.23775998e-02 2.55327851e-01 -2.76418418e-01
-5.64217746e-01 4.53975685e-02 2.22610742e-01 7.10405409e-01
-1.58940971e-01 6.54607564e-02 2.48070911e-01 4.00845557e-01
-4.75189686e-02 -2.60453492e-01 8.03366125e-01 5.85352063e-01
-8.30435395e-01 -3.95971209e-01 -7.21651912e-01 1.58566877e-01
-3.11204791e-01 -3.62208217e-01 1.83807462e-01 5.80763042e-01
3.45622897e-01 1.22422957e+00 1.15078956e-01 -4.35174882e-01
1.49924397e-01 -6.18753135e-01 3.13135624e-01 -3.35204542e-01
1.29457697e-01 8.79057720e-02 -3.56415123e-01 -3.97143334e-01
-3.94015223e-01 -1.03466012e-01 -7.70562112e-01 -4.40374374e-01
-2.07690433e-01 9.70053226e-02 3.59169841e-01 7.71325171e-01
4.34666783e-01 7.21647203e-01 9.04064476e-01 -1.03955972e+00
-4.10032779e-01 -1.10127389e+00 -1.19996965e+00 3.23875695e-01
1.08444417e+00 -8.33118796e-01 -8.93152237e-01 -7.60481432e-02] | [10.947150230407715, -3.1516191959381104] |
8f6b1473-ed3b-48bb-baad-96904a577470 | global-and-local-interpretation-of-black-box | 2109.05087 | null | https://arxiv.org/abs/2109.05087v1 | https://arxiv.org/pdf/2109.05087v1.pdf | Global and Local Interpretation of black-box Machine Learning models to determine prognostic factors from early COVID-19 data | The COVID-19 corona virus has claimed 4.1 million lives, as of July 24, 2021. A variety of machine learning models have been applied to related data to predict important factors such as the severity of the disease, infection rate and discover important prognostic factors. Often the usefulness of the findings from the use of these techniques is reduced due to lack of method interpretability. Some recent progress made on the interpretability of machine learning models has the potential to unravel more insights while using conventional machine learning models. In this work, we analyze COVID-19 blood work data with some of the popular machine learning models; then we employ state-of-the-art post-hoc local interpretability techniques(e.g.- SHAP, LIME), and global interpretability techniques(e.g. - symbolic metamodeling) to the trained black-box models to draw interpretable conclusions. In the gamut of machine learning algorithms, regressions remain one of the simplest and most explainable models with clear mathematical formulation. We explore one of the most recent techniques called symbolic metamodeling to find the mathematical expression of the machine learning models for COVID-19. We identify Acute Kidney Injury (AKI), initial Albumin level (ALBI), Aspartate aminotransferase (ASTI), Total Bilirubin initial(TBILI) and D-Dimer initial (DIMER) as major prognostic factors of the disease severity. Our contributions are- (i) uncover the underlying mathematical expression for the black-box models on COVID-19 severity prediction task (ii) we are the first to apply symbolic metamodeling to this task, and (iii) discover important features and feature interactions. | ['Dimitris Metaxas', 'Vinod Rustgi', 'Carlos D. Minacapelli', 'Ananya Jana'] | 2021-09-10 | null | null | null | null | ['explainable-models', 'severity-prediction'] | ['computer-vision', 'computer-vision'] | [ 1.66682169e-01 1.57326102e-01 -9.27771404e-02 -5.21549881e-01
5.13687283e-02 -3.54372859e-01 3.10086995e-01 5.28659165e-01
1.93166956e-01 8.88565004e-01 5.90749260e-04 -8.45309973e-01
-7.70604849e-01 -5.35321116e-01 -5.21701574e-01 -3.78909260e-01
-5.63230693e-01 9.50437129e-01 -4.22680259e-01 -2.58929193e-01
9.71408412e-02 7.31318891e-01 -1.19235766e+00 5.24273694e-01
1.10168850e+00 7.58636296e-01 -4.32777524e-01 8.91187370e-01
4.71996814e-02 1.23992300e+00 -3.33972007e-01 -2.89534688e-01
-1.69736370e-02 -5.72317481e-01 -7.29824126e-01 -4.79602933e-01
-1.19909965e-01 -1.59916893e-01 1.25392899e-01 4.72344071e-01
-6.72878996e-02 -4.20568377e-01 1.12579489e+00 -1.73796225e+00
-3.32824826e-01 3.62566948e-01 -2.39176109e-01 1.17781825e-01
1.46542698e-01 6.75099194e-02 7.03231633e-01 -6.32631481e-01
4.37452763e-01 1.36293936e+00 9.71405745e-01 3.81556392e-01
-1.33603644e+00 -2.89876133e-01 -2.16407955e-01 2.01609239e-01
-1.27044034e+00 2.21644863e-01 4.44462657e-01 -9.66284215e-01
1.16552186e+00 7.46284068e-01 6.52868211e-01 6.65289402e-01
7.61173069e-01 1.93908751e-01 1.33768749e+00 -5.35625219e-01
-6.25345781e-02 3.08124870e-01 7.42748380e-01 1.18272209e+00
6.45635962e-01 2.31705338e-01 -2.16933981e-01 -7.72837281e-01
6.84432387e-01 5.49700677e-01 3.60452831e-02 -1.39788389e-01
-1.04980314e+00 9.41422403e-01 -6.34239987e-02 1.19392648e-01
-3.39813024e-01 2.80144811e-01 3.59493226e-01 4.18406963e-01
4.31805372e-01 7.18112886e-01 -1.19653857e+00 7.31611699e-02
-5.34605622e-01 4.44339126e-01 1.04281175e+00 5.38015783e-01
8.51595879e-01 -2.55553395e-01 -7.11210966e-02 3.62712413e-01
6.53183520e-01 5.26374459e-01 6.76230341e-03 -6.84302509e-01
1.28104016e-01 1.13651299e+00 1.96764544e-01 -9.05309260e-01
-8.43519151e-01 -2.03108564e-01 -8.98586810e-01 1.68740287e-01
4.31601673e-01 -2.49488518e-01 -8.58775496e-01 1.37582421e+00
-1.35715634e-01 2.31477514e-01 -1.12962037e-01 5.87977946e-01
4.53474879e-01 3.26852739e-01 3.74397367e-01 -3.57442141e-01
1.51480401e+00 -6.20223343e-01 -5.11110544e-01 2.72200793e-01
1.05145204e+00 -4.92532700e-01 5.52377582e-01 4.06805962e-01
-7.09374130e-01 -2.82925338e-01 -9.10975635e-01 2.04347745e-01
-7.20211625e-01 -1.17133737e-01 9.60595608e-01 6.53362632e-01
-6.82358742e-01 7.12760687e-01 -1.01346445e+00 -3.71812791e-01
7.04373196e-02 6.24601185e-01 -6.07807599e-02 1.36671975e-01
-1.26483572e+00 1.41317880e+00 -3.29575241e-02 5.70251886e-03
-7.02930510e-01 -1.20005155e+00 -5.70287108e-01 -1.71308026e-01
-4.06314321e-02 -1.28208148e+00 6.02593601e-01 -8.23230684e-01
-8.70387793e-01 7.81715572e-01 -4.18106198e-01 -4.85885084e-01
3.37406456e-01 -1.42746553e-01 -5.15721321e-01 -4.63546887e-02
-2.81549573e-01 6.18497841e-02 4.16296571e-01 -1.02134371e+00
-1.58026516e-01 -4.76968110e-01 -2.22301856e-01 -5.33952296e-01
2.87775248e-01 3.88834208e-01 5.15650809e-01 -5.59983432e-01
-1.85563341e-01 -9.92830515e-01 -3.96083385e-01 -1.96664304e-01
-3.09008330e-01 -2.50584602e-01 6.89502537e-01 -7.02328563e-01
1.34448707e+00 -1.45010483e+00 1.29373401e-01 5.91889560e-01
6.65829301e-01 2.92728812e-01 3.24585080e-01 5.65712750e-01
-5.14117837e-01 5.98702967e-01 -3.05808753e-01 7.39645213e-02
-5.83652779e-02 4.65858370e-01 -4.14423734e-01 4.76996750e-01
6.00708783e-01 1.26507890e+00 -6.95539355e-01 -3.82779598e-01
3.38975549e-01 4.92140025e-01 -4.63083237e-01 3.28713924e-01
-3.61379594e-01 5.06378889e-01 -6.29205287e-01 4.71125305e-01
5.09789050e-01 -4.44762558e-01 2.99707115e-01 -1.30431980e-01
4.51332368e-02 -1.37592658e-01 -6.99548662e-01 8.13643873e-01
-1.38351982e-02 3.96573365e-01 -4.56940055e-01 -1.10671496e+00
9.65429604e-01 3.44770819e-01 7.07994163e-01 -2.14323625e-01
1.56641856e-01 1.38528332e-01 1.41182005e-01 -9.53256667e-01
-3.11620891e-01 -4.89465415e-01 1.69465318e-01 4.78676558e-01
-5.11824965e-01 2.60697067e-01 -1.42215371e-01 -7.78026134e-02
1.09712899e+00 3.76236811e-02 8.11253905e-01 -5.98199010e-01
6.84118032e-01 2.63793677e-01 3.71693105e-01 6.83098972e-01
1.04355188e-02 3.60909730e-01 9.39215899e-01 -1.03025830e+00
-1.16256166e+00 -9.05463994e-01 -4.75475043e-01 7.28343368e-01
-2.38846794e-01 -4.18176949e-01 -7.31492400e-01 -3.83913755e-01
4.71282065e-01 6.67482615e-01 -9.72783267e-01 -9.21202749e-02
-7.18366265e-01 -1.14134824e+00 1.00199962e+00 6.21383727e-01
-1.66970193e-01 -6.15851581e-01 -6.73942089e-01 1.51656553e-01
3.98265310e-02 -6.08328104e-01 3.33721459e-01 1.28897607e-01
-1.30960047e+00 -1.43363428e+00 -1.37506500e-01 -2.43662640e-01
7.61101902e-01 -3.04173768e-01 1.19569027e+00 8.81881952e-01
-6.23038113e-01 2.38901094e-01 -1.08160742e-01 -9.06584978e-01
-6.02488518e-01 -3.47906321e-01 2.94413179e-01 -9.14241746e-02
6.85099065e-01 -2.48429194e-01 -5.01015425e-01 4.54941452e-01
-7.74836540e-01 3.08293134e-01 4.36487585e-01 8.20124447e-01
2.81154722e-01 -4.15266395e-01 6.04733229e-01 -1.13939452e+00
6.25134408e-01 -8.28932464e-01 -3.24070483e-01 5.99385262e-01
-1.37071776e+00 3.08647543e-01 6.58583343e-01 -1.72551513e-01
-7.01895177e-01 -4.28912312e-01 3.54397207e-01 -2.64862627e-01
-1.59485802e-01 8.31989288e-01 1.79352224e-01 2.08217084e-01
7.56430328e-01 -2.66372293e-01 2.49611437e-01 -6.60690486e-01
7.76375756e-02 6.33238971e-01 9.75428075e-02 -8.58211696e-01
5.93670607e-01 4.36864465e-01 6.74081862e-01 -6.56783104e-01
-5.19052625e-01 -2.94168353e-01 -7.77705371e-01 -3.08012404e-02
8.71347666e-01 -6.22190177e-01 -1.03431010e+00 3.17555159e-01
-1.26900554e+00 -1.54051065e-01 1.02913469e-01 4.77420837e-01
-5.16767919e-01 2.77375877e-01 -4.93323267e-01 -9.45949614e-01
-4.02301311e-01 -1.02647150e+00 7.47761726e-01 -7.41951913e-02
-8.61952960e-01 -1.46650147e+00 2.67071873e-01 4.69839364e-01
4.18587625e-01 9.01324868e-01 1.76287162e+00 -9.61338937e-01
-4.21060264e-01 -1.59664318e-01 -3.49770963e-01 1.59607276e-01
-6.87006786e-02 1.59427539e-01 -6.80480301e-01 -4.70749512e-02
-1.15359006e-02 1.64849818e-01 2.74865180e-01 4.64702696e-01
9.64561999e-01 -4.65329826e-01 -5.91941655e-01 6.69499815e-01
1.30456042e+00 3.04819971e-01 5.63163996e-01 2.37254694e-01
5.58242381e-01 7.36532986e-01 4.94981289e-01 4.32743609e-01
3.42049897e-01 6.64185345e-01 2.16649517e-01 -3.36770356e-01
2.02479050e-01 -8.07716697e-02 8.52329060e-02 5.56380093e-01
-7.37309873e-01 1.26451612e-01 -1.33647025e+00 1.35415629e-01
-2.11598420e+00 -7.46682644e-01 -8.73756826e-01 1.90033185e+00
6.09720886e-01 -1.41052470e-01 2.57063042e-02 -1.90671340e-01
3.46655339e-01 -6.36448085e-01 -4.26965743e-01 -9.65863407e-01
-5.23802312e-03 3.11453134e-01 2.46111736e-01 5.80272436e-01
-6.08290553e-01 3.21286142e-01 6.98933029e+00 7.08768517e-03
-8.67121756e-01 2.85270214e-02 8.68857622e-01 1.74140602e-01
-3.21047843e-01 3.54359061e-01 -4.58678365e-01 3.68542373e-01
1.24714112e+00 -1.52970195e-01 5.66167831e-01 7.15443313e-01
6.55896902e-01 1.95639297e-01 -1.55384183e+00 7.20631063e-01
1.24626547e-01 -1.36643875e+00 2.90298238e-02 2.82648820e-02
6.19603932e-01 -6.99209720e-02 -3.86078149e-01 1.83711126e-01
-7.32880905e-02 -1.59550476e+00 3.36951911e-01 1.21810961e+00
8.65991831e-01 -4.82968628e-01 1.03514719e+00 1.83149487e-01
-8.34679902e-01 -1.01127692e-01 -2.26181298e-01 -4.88256633e-01
-8.42391551e-02 5.97669959e-01 -1.23749352e+00 4.93927121e-01
3.74059021e-01 5.03519177e-01 -5.22648811e-01 6.84779406e-01
-7.52433389e-02 7.07018077e-01 -1.85607955e-01 -1.14591621e-01
-1.64182335e-01 -2.26592109e-01 5.04810512e-01 1.42158163e+00
-1.28680363e-01 3.85766774e-01 -2.41685063e-01 1.14597511e+00
5.57075500e-01 4.27917652e-02 -6.14616454e-01 -2.91066281e-02
-1.64301291e-01 8.49340141e-01 -3.64397496e-01 -4.37463641e-01
-3.20206344e-01 3.63988042e-01 -1.80699490e-02 4.34104830e-01
-9.10303771e-01 -1.54726282e-01 1.01433802e+00 4.34870780e-01
-2.90088743e-01 -3.20626162e-02 -8.68422747e-01 -1.11052775e+00
-2.89787978e-01 -1.06599534e+00 6.16162300e-01 -9.84545052e-01
-1.40858018e+00 2.59885818e-01 3.84684682e-01 -8.49146187e-01
-5.61643004e-01 -1.04874742e+00 -6.44564152e-01 1.21221995e+00
-1.35828829e+00 -1.28745115e+00 -1.81483984e-01 3.94584566e-01
8.74082446e-02 -3.02899122e-01 1.17330921e+00 -7.42268041e-02
-3.48596454e-01 2.73337036e-01 1.78562269e-01 1.52516477e-02
3.66626859e-01 -1.06435466e+00 -2.56879721e-02 4.22285557e-01
-4.96698648e-01 1.22643530e+00 9.18719828e-01 -8.85600328e-01
-1.43334019e+00 -9.37505305e-01 1.30066729e+00 -1.17839026e+00
7.34620452e-01 -1.61044657e-01 -8.21193159e-01 8.39200854e-01
-2.00157076e-01 -2.93535918e-01 9.71206307e-01 1.90993130e-01
-3.29159617e-01 -1.18161224e-01 -1.17675388e+00 4.62787360e-01
6.54775560e-01 -2.72867501e-01 -8.97084057e-01 3.23191494e-01
5.87450922e-01 -1.16381444e-01 -1.26128924e+00 5.84042311e-01
8.60647619e-01 -8.42857718e-01 1.10690320e+00 -1.69650090e+00
4.47390944e-01 -4.18470860e-01 8.22726935e-02 -7.76273310e-01
-2.40275323e-01 -7.64625311e-01 -3.19581360e-01 7.50449955e-01
6.14938319e-01 -9.31338310e-01 4.28300291e-01 1.30651927e+00
1.74937844e-01 -1.26793098e+00 -5.80376089e-01 -4.80348289e-01
8.32948908e-02 -4.12576884e-01 8.54357064e-01 1.02603459e+00
2.95922846e-01 1.92059577e-01 -5.27694345e-01 1.34599447e-01
5.20851672e-01 2.55920231e-01 7.72921205e-01 -1.68651354e+00
-4.21513766e-01 -2.09135637e-01 -6.59858823e-01 -2.45168775e-01
-1.56063035e-01 -9.48097408e-01 -7.90503025e-01 -1.33587825e+00
5.38265586e-01 -5.62241316e-01 -4.92546111e-01 6.54429615e-01
-5.07431366e-02 -3.07103544e-01 1.29836529e-01 3.04191977e-01
-2.07773689e-02 -2.31016845e-01 8.82492781e-01 2.95777395e-02
-1.46542236e-01 2.02235579e-03 -7.32068121e-01 8.12544823e-01
7.98813403e-01 -7.84863293e-01 -4.12826151e-01 -8.55861008e-02
6.97313607e-01 3.15290481e-01 8.10097337e-01 -2.88584411e-01
-1.59524113e-01 -5.77305019e-01 5.92364728e-01 -3.36508095e-01
-7.38649070e-02 -8.80936027e-01 6.36975646e-01 9.65735435e-01
-1.97572842e-01 3.37959319e-01 1.82276830e-01 3.99259567e-01
2.55615979e-01 -2.28869155e-01 4.56735909e-01 6.11815043e-03
-6.43572062e-02 2.77853310e-02 -3.99719149e-01 1.20837413e-01
9.52485740e-01 -9.57266763e-02 -6.10530674e-01 -2.94992737e-02
-6.30670726e-01 9.90104377e-02 3.68948936e-01 4.64409441e-01
4.41091716e-01 -7.37051487e-01 -8.91416430e-01 3.08993310e-01
1.51741043e-01 -4.61246043e-01 -8.39984268e-02 1.33399045e+00
-9.57901716e-01 9.02398765e-01 -1.12271674e-01 -5.64204037e-01
-1.30479133e+00 7.20201671e-01 6.01682186e-01 -4.77973938e-01
-3.94611806e-01 2.02211246e-01 1.72972575e-01 -2.14114338e-01
-2.80544162e-01 -5.64419568e-01 -4.63071875e-02 -3.19335103e-01
4.59890753e-01 7.87214398e-01 -6.24081977e-02 -4.03787643e-01
-6.50216639e-01 6.97551906e-01 1.59510806e-01 5.42234838e-01
1.52868152e+00 1.96943790e-01 -8.11989605e-01 3.61799240e-01
1.09587753e+00 -3.49367917e-01 -4.65328842e-01 2.98110694e-01
1.67292327e-01 -1.29955038e-01 -5.10540783e-01 -1.29442739e+00
-3.67609978e-01 7.92581499e-01 7.02831507e-01 2.78871238e-01
8.92008960e-01 -1.61985599e-03 3.30664843e-01 4.04414922e-01
1.02733478e-01 -5.50447881e-01 -4.91973162e-01 2.85890788e-01
7.55529881e-01 -1.02073050e+00 3.21716338e-01 -3.51488203e-01
-4.99773592e-01 1.41777360e+00 2.00184926e-01 6.85491785e-02
8.62459779e-01 3.69397819e-01 1.87915623e-01 -5.80345511e-01
-8.74523163e-01 3.81210417e-01 4.84507889e-01 4.62528110e-01
5.23889780e-01 4.43011880e-01 -5.43860972e-01 1.05335450e+00
3.22794504e-02 3.03014636e-01 3.06472600e-01 4.94671047e-01
-2.26769552e-01 -1.19733310e+00 -5.85896671e-01 7.68815577e-01
-4.58950222e-01 -1.51786029e-01 -4.65808064e-01 8.84436488e-01
3.46793652e-01 1.02074897e+00 -1.88069239e-01 -2.26417810e-01
3.37113798e-01 5.59202731e-01 2.63638675e-01 -2.98651993e-01
-6.95917726e-01 -3.89954269e-01 7.85942078e-02 -3.28422517e-01
-4.75433171e-01 -5.63612044e-01 -1.52304506e+00 -5.34825683e-01
-1.00403897e-01 1.06167048e-01 6.63166821e-01 1.29135740e+00
5.05880415e-01 3.35334361e-01 3.53461504e-01 -2.50602275e-01
-5.07566690e-01 -7.32115209e-01 -4.04227197e-01 5.81067979e-01
4.68797565e-01 -6.66938245e-01 -4.26881492e-01 3.92153352e-01] | [8.26749038696289, 5.846005916595459] |
9c20e4c9-34d0-4673-8463-facdfd0845a9 | playgol-learning-programs-through-play | 1904.08993 | null | https://arxiv.org/abs/1904.08993v2 | https://arxiv.org/pdf/1904.08993v2.pdf | Playgol: learning programs through play | Children learn though play. We introduce the analogous idea of learning programs through play. In this approach, a program induction system (the learner) is given a set of tasks and initial background knowledge. Before solving the tasks, the learner enters an unsupervised playing stage where it creates its own tasks to solve, tries to solve them, and saves any solutions (programs) to the background knowledge. After the playing stage is finished, the learner enters the supervised building stage where it tries to solve the user-supplied tasks and can reuse solutions learnt whilst playing. The idea is that playing allows the learner to discover reusable general programs on its own which can then help solve the user-supplied tasks. We claim that playing can improve learning performance. We show that playing can reduce the textual complexity of target concepts which in turn reduces the sample complexity of a learner. We implement our idea in Playgol, a new inductive logic programming system. We experimentally test our claim on two domains: robot planning and real-world string transformations. Our experimental results suggest that playing can substantially improve learning performance. We think that the idea of playing (or, more verbosely, unsupervised bootstrapping for supervised program induction) is an important contribution to the problem of developing program induction approaches that self-discover BK. | ['Andrew Cropper'] | 2019-04-18 | null | null | null | null | ['program-induction'] | ['computer-code'] | [ 4.75652158e-01 7.35696852e-01 -2.62866437e-01 -2.71517336e-01
-5.62726378e-01 -8.25726986e-01 3.04140449e-01 2.70025045e-01
-2.08239064e-01 7.20401406e-01 -1.79766312e-01 -6.11162424e-01
-1.60642549e-01 -1.44997597e+00 -1.07824469e+00 -5.03883898e-01
-3.94661307e-01 8.80118430e-01 7.69870937e-01 -3.00037593e-01
2.65881926e-01 1.22170404e-01 -2.08203912e+00 4.73340988e-01
1.05056572e+00 2.77030706e-01 4.62495387e-01 8.74059379e-01
-5.84471226e-01 1.49464238e+00 -1.13150202e-01 -3.34609568e-01
4.13152482e-03 -4.03605402e-01 -1.54603326e+00 -1.97388127e-01
-5.16591221e-03 -1.16035178e-01 1.06519088e-01 1.12734270e+00
-1.59074530e-01 1.48119703e-01 4.16772723e-01 -1.51939213e+00
-1.54216498e-01 1.25934744e+00 1.93309113e-02 -2.09213391e-01
7.37593651e-01 -4.72107669e-03 1.04155719e+00 -4.48682517e-01
6.53771639e-01 1.16221404e+00 7.01876998e-01 8.25737059e-01
-1.43395174e+00 -4.63342488e-01 -5.80453351e-02 1.03442118e-01
-1.02214670e+00 -1.62629500e-01 5.00336945e-01 -4.42453921e-01
9.37815011e-01 2.53107220e-01 6.96489334e-01 9.56714526e-02
-1.52243510e-01 1.11310482e+00 8.09993863e-01 -9.69791651e-01
3.73641908e-01 3.65015417e-01 4.54778582e-01 1.24816895e+00
-3.92668284e-02 2.05110312e-01 -4.76052523e-01 -1.29539803e-01
5.47773838e-01 -3.53044450e-01 8.64152685e-02 -7.25644588e-01
-8.31507742e-01 9.23849642e-01 7.04809651e-02 4.61704463e-01
8.72887000e-02 3.83611917e-01 5.63578546e-01 8.20484936e-01
-1.16248792e-02 6.71732605e-01 -6.08115911e-01 -2.93215185e-01
-5.81610501e-01 5.51949859e-01 1.39256418e+00 1.29447949e+00
9.70185161e-01 -3.37549239e-01 3.30805570e-01 5.63769102e-01
1.13137014e-01 2.60660112e-01 3.09498072e-01 -1.19241071e+00
2.64332145e-01 8.86866629e-01 -2.62112711e-02 -5.20074308e-01
-3.35725427e-01 2.42613018e-01 1.23058133e-01 3.71558070e-01
5.70537925e-01 -1.83556199e-01 -5.44702351e-01 1.84232533e+00
3.13478976e-01 1.67184010e-01 3.54798406e-01 2.00374886e-01
9.23173845e-01 7.07243681e-01 7.72219971e-02 -3.68299544e-01
1.19365847e+00 -1.02985823e+00 -2.00563535e-01 -1.09296739e-01
1.43812609e+00 -2.77149379e-01 1.03257573e+00 7.40585923e-01
-1.43574429e+00 -4.62493300e-01 -8.15433502e-01 3.11211068e-02
-3.12566727e-01 -3.00627768e-01 1.34927773e+00 6.56590044e-01
-1.10537386e+00 6.01790190e-01 -7.14318693e-01 -4.81448889e-01
1.11418389e-01 8.08764338e-01 -2.37933815e-01 -3.45644087e-01
-8.74978840e-01 7.00314760e-01 9.95998979e-01 -5.69200039e-01
-1.00832534e+00 -6.05920255e-01 -9.78437006e-01 1.45620987e-01
7.89789021e-01 -4.76032406e-01 1.82810390e+00 -1.24342668e+00
-1.55874205e+00 9.64502096e-01 -1.70132250e-01 -2.39732489e-01
-6.37381300e-02 7.25776628e-02 3.35442752e-01 -3.91018130e-02
2.66871482e-01 6.33573830e-01 2.95018375e-01 -1.22615981e+00
-9.95564640e-01 -2.80478030e-01 1.00851977e+00 -1.63218472e-02
1.55188814e-02 2.20453486e-01 -4.62957889e-01 -1.40810117e-01
4.88886029e-01 -1.18295622e+00 -1.08502492e-01 -4.79118466e-01
1.63951471e-01 -7.56925821e-01 2.93162823e-01 -1.58921003e-01
9.81890798e-01 -2.16236758e+00 5.32825172e-01 4.80744272e-01
3.10569286e-01 2.99118329e-02 -4.72993925e-02 4.63223547e-01
-3.05786490e-01 -1.25152856e-01 -2.98822284e-01 2.88440049e-01
6.97727799e-02 6.89124405e-01 -1.79012269e-01 -1.42012969e-01
8.14575888e-03 8.64577055e-01 -1.25804973e+00 -6.63687944e-01
-9.44771431e-03 -3.77513498e-01 -1.24487555e+00 3.40133309e-01
-1.00639594e+00 1.23396657e-01 -6.46717191e-01 3.96495789e-01
3.89689684e-01 1.30425036e-01 4.98093009e-01 6.87769473e-01
-1.34609431e-01 6.53521061e-01 -1.43467391e+00 1.68716741e+00
-6.95473731e-01 5.81594110e-01 -1.20566212e-01 -1.46002507e+00
6.22649789e-01 2.92033106e-01 2.45398074e-01 -1.87332153e-01
-1.04135305e-01 2.35940561e-01 1.60725027e-01 -8.75411034e-01
7.91328475e-02 -3.25431049e-01 -2.16110617e-01 8.06921542e-01
3.40255320e-01 -5.51889896e-01 4.81856763e-01 4.62233365e-01
1.33252823e+00 6.46746397e-01 1.97995156e-01 -3.37808818e-01
6.80285513e-01 5.91992676e-01 4.18478698e-01 8.73643696e-01
5.17191470e-01 -2.90700912e-01 9.62160647e-01 -6.72665119e-01
-6.78722203e-01 -9.50526655e-01 3.51711482e-01 1.91747880e+00
-2.30482966e-01 -7.43290186e-01 -8.37242901e-01 -7.95132518e-01
-2.31095716e-01 7.50729382e-01 -4.55561906e-01 5.24123386e-02
-9.18184102e-01 -1.33844331e-01 7.97366023e-01 5.35765171e-01
3.99477988e-01 -1.45330679e+00 -9.61449027e-01 4.59891617e-01
-1.12076767e-01 -4.72282350e-01 3.04642022e-01 7.97293782e-01
-1.16523635e+00 -1.31026185e+00 1.84477363e-02 -1.48218369e+00
9.60479975e-01 -5.12755625e-02 1.17623901e+00 6.24170959e-01
8.34757760e-02 5.97721219e-01 -5.62160134e-01 -5.89366198e-01
-7.67408609e-01 9.62453634e-02 -2.42733881e-01 -9.19829786e-01
5.87541819e-01 -8.91452909e-01 4.87130076e-01 -2.44809180e-01
-8.85166168e-01 3.12921464e-01 1.48378447e-01 8.22572112e-01
1.60367534e-01 6.78522229e-01 1.59280360e-01 -1.47047114e+00
4.21389639e-01 -3.51918638e-01 -9.43458676e-01 4.96049911e-01
-2.68481702e-01 7.37824082e-01 6.09019578e-01 -4.02213693e-01
-1.02832317e+00 5.07512867e-01 9.71108824e-02 2.07205489e-01
-2.37836078e-01 7.89113164e-01 -2.40774021e-01 -7.56810755e-02
9.79802966e-01 4.01441693e-01 -1.45128593e-01 -1.92958832e-01
4.32956398e-01 2.94526875e-01 6.80393338e-01 -1.65716875e+00
8.77296388e-01 -1.39265105e-01 4.98198643e-02 -5.57422817e-01
-6.00048065e-01 -3.34230423e-01 -6.57941818e-01 7.62478029e-03
4.53615040e-01 -5.97956896e-01 -1.09284127e+00 2.13726252e-01
-1.17291498e+00 -1.02198017e+00 -4.21188831e-01 4.55474518e-02
-1.06792271e+00 1.69027403e-01 -4.75098133e-01 -8.92637849e-01
1.58262238e-01 -1.21317971e+00 4.73301202e-01 8.58053342e-02
-4.77738112e-01 -9.75271523e-01 2.78305829e-01 9.75488201e-02
-1.08088158e-01 4.53701802e-02 1.57558286e+00 -7.97142506e-01
-5.97131431e-01 2.16519594e-01 8.38798657e-02 1.50800958e-01
-2.58480340e-01 -1.95120230e-01 -8.10997546e-01 1.74903139e-01
7.53779188e-02 -6.36107922e-01 4.11786765e-01 1.73889641e-02
1.16226387e+00 -2.97472686e-01 -5.16887009e-01 3.77615809e-01
1.28860855e+00 4.75043416e-01 6.50204003e-01 5.39397597e-01
4.32301998e-01 9.09811795e-01 6.11883402e-01 -7.43212402e-02
5.00047028e-01 4.83274966e-01 -1.70311660e-01 4.80984181e-01
3.22076797e-01 -4.00464267e-01 3.49749714e-01 3.92493397e-01
-3.33885252e-01 4.60862041e-01 -1.29265404e+00 6.23017609e-01
-1.99718297e+00 -1.04834354e+00 -5.14474027e-02 1.82250547e+00
1.42528963e+00 2.49198973e-01 4.13102597e-01 5.14826715e-01
2.92194277e-01 -6.10120595e-01 -1.83093071e-01 -8.47887516e-01
6.43777549e-01 9.67070103e-01 2.70835370e-01 8.73420119e-01
-8.53156865e-01 1.39790976e+00 5.66196442e+00 4.93970066e-01
-7.26322830e-01 3.13477814e-02 -1.92763645e-03 3.41558993e-01
-4.56048161e-01 4.37211156e-01 -5.52592218e-01 -3.95481698e-02
8.77750397e-01 -2.24279284e-01 8.41165066e-01 1.42370033e+00
-4.70756829e-01 -5.63080430e-01 -1.94473243e+00 3.95454705e-01
-1.53989881e-01 -1.24589944e+00 -3.07896167e-01 -2.51289696e-01
5.84037960e-01 -3.41581702e-01 -4.07901198e-01 9.45644677e-01
9.18690443e-01 -9.31092262e-01 6.99395120e-01 1.99264526e-01
5.85827947e-01 -1.10238302e+00 4.71614152e-01 8.52012753e-01
-1.08994544e+00 -3.40542436e-01 -1.63998261e-01 -6.99069917e-01
-5.55130839e-01 7.26367608e-02 -1.03082025e+00 1.56788141e-01
4.01394010e-01 2.98236042e-01 -3.20414752e-01 9.08830166e-01
-7.89440632e-01 5.82897007e-01 -3.95413727e-01 -3.21717024e-01
1.34190753e-01 -9.67806876e-02 2.70034939e-01 1.14666569e+00
-1.06291644e-01 7.98851013e-01 4.34398592e-01 8.84414792e-01
3.04237545e-01 -1.23439379e-01 -9.20975924e-01 6.90226704e-02
3.24092925e-01 7.15668023e-01 -9.56889927e-01 -6.63057268e-01
-4.82431471e-01 5.92903316e-01 4.15396810e-01 1.45008981e-01
-4.91394162e-01 -6.44050002e-01 1.31064951e-01 6.98404461e-02
2.93268919e-01 -7.29174688e-02 -3.28306764e-01 -9.76594150e-01
-9.51229781e-02 -1.17321992e+00 3.88955712e-01 -7.55369127e-01
-3.86874944e-01 3.53516154e-02 5.49534261e-01 -5.18115878e-01
-6.53148353e-01 -6.64097607e-01 -7.80702472e-01 6.09893560e-01
-1.03714323e+00 -8.56319249e-01 -1.00149438e-01 6.58009708e-01
6.74877048e-01 -1.63562596e-01 1.04914200e+00 -2.57577151e-01
3.91866714e-02 4.63914871e-01 -4.61547315e-01 1.72477797e-01
-4.56850976e-02 -1.42279601e+00 1.12411022e-01 7.31544137e-01
1.93102881e-01 9.65699613e-01 7.71326840e-01 -4.96649206e-01
-1.67129278e+00 -6.58992290e-01 1.06792855e+00 -5.37387729e-01
7.16211140e-01 -2.34242767e-01 -7.17798293e-01 9.93076980e-01
-2.51251191e-01 -4.29049999e-01 6.29274487e-01 4.75599080e-01
-3.72390121e-01 6.95213256e-03 -1.02545190e+00 4.54712927e-01
1.07967710e+00 -6.17166281e-01 -1.36217320e+00 4.41539109e-01
7.36957550e-01 -5.98160803e-01 -6.58012092e-01 1.67474896e-02
5.70670485e-01 -8.98599505e-01 6.66987240e-01 -7.75089562e-01
7.46534586e-01 -3.53165686e-01 -9.29116644e-03 -1.11644375e+00
-1.22828692e-01 -5.14929712e-01 -1.45147566e-03 1.21209574e+00
4.34388548e-01 -6.10122621e-01 9.96439636e-01 9.04217541e-01
-1.10724203e-01 -6.11284137e-01 -3.40815514e-01 -6.33719385e-01
3.42441380e-01 -9.20920908e-01 6.52767479e-01 8.56039941e-01
9.00176466e-01 3.64923745e-01 3.59545827e-01 1.07439749e-01
4.81706589e-01 3.39250296e-01 1.04333711e+00 -1.49770153e+00
-7.67252147e-01 -1.25835806e-01 -8.93517286e-02 -9.36378360e-01
5.25216341e-01 -1.28654218e+00 3.77311826e-01 -1.24010122e+00
1.78590134e-01 -9.90103245e-01 8.86813477e-02 9.98329818e-01
1.76172271e-01 -4.40032423e-01 1.92985207e-01 9.41572990e-03
-7.16786683e-01 -3.96994233e-01 8.12920988e-01 -4.86276932e-02
-4.79622483e-01 2.33162627e-01 -7.27791965e-01 1.21160698e+00
7.52655983e-01 -8.16945136e-01 -6.76863968e-01 -2.90401846e-01
7.34032214e-01 2.90695131e-01 2.44512364e-01 -1.09850276e+00
5.25251269e-01 -4.40251678e-01 -1.43459603e-01 -1.35418415e-01
-4.17848349e-01 -7.68645585e-01 1.16642974e-01 8.79277587e-01
-5.50206900e-01 -1.71710402e-01 3.77258867e-01 -9.55622494e-02
-7.83364754e-03 -1.07130015e+00 4.72486824e-01 -6.50205433e-01
-9.27710831e-01 -3.13213378e-01 -6.53677762e-01 1.94699839e-01
1.01453114e+00 -2.88100094e-01 2.28498966e-01 -1.56218797e-01
-9.20840979e-01 4.57988888e-01 4.60640907e-01 -1.50180817e-01
3.31094146e-01 -8.04128349e-01 -2.33107865e-01 3.28696787e-01
1.66989326e-01 4.98436034e-01 -6.03356838e-01 5.45844734e-01
-7.84268558e-01 3.84208977e-01 -8.75406638e-02 -5.03408730e-01
-1.46596634e+00 7.89216399e-01 6.61398098e-02 -3.07541043e-01
-4.71257716e-01 1.19218409e+00 1.94581419e-01 -8.28845143e-01
4.90747839e-01 -7.58177519e-01 -2.13783860e-01 -1.20468244e-01
6.39232337e-01 2.46557295e-01 -1.76692382e-01 1.10034570e-01
-1.79075703e-01 4.18974876e-01 5.64768575e-02 -1.62205637e-01
1.73911166e+00 4.97766197e-01 -7.18958437e-01 2.64548391e-01
6.74296975e-01 4.45543155e-02 -6.83775902e-01 -3.53672862e-01
4.99765903e-01 -9.02706981e-02 -3.96924764e-01 -5.92915773e-01
-5.95342457e-01 4.91523385e-01 -5.14015835e-03 3.73468399e-01
1.25516403e+00 4.46537137e-01 2.99026787e-01 1.25669670e+00
9.84350741e-01 -9.40748036e-01 2.98346914e-02 9.30202484e-01
4.07511681e-01 -8.18560660e-01 3.08269747e-02 -7.38050818e-01
-3.04412782e-01 1.32525826e+00 5.48312426e-01 -2.29462445e-01
1.27822608e-01 7.65768945e-01 -4.29952472e-01 -2.98768580e-01
-8.84634554e-01 -2.91244864e-01 -2.58747041e-01 9.32935774e-01
4.29315090e-01 -7.51800416e-03 -2.64168799e-01 7.43652225e-01
-6.23388469e-01 5.29805779e-01 4.49295282e-01 1.35935712e+00
-9.13092673e-01 -1.66019034e+00 -5.05459368e-01 1.80785805e-01
-1.90486327e-01 -1.52581662e-01 -3.00398052e-01 9.71492767e-01
8.02383363e-01 6.79783881e-01 -2.27221772e-01 -3.56033504e-01
2.36925080e-01 5.72198570e-01 1.01164877e+00 -1.28690124e+00
-5.75133681e-01 -4.84547913e-01 3.71299118e-01 -5.54285765e-01
-5.46421945e-01 -6.18337810e-01 -1.76101995e+00 -2.99951822e-01
-1.64406940e-01 6.31322205e-01 2.90197164e-01 1.04471529e+00
-5.23858964e-01 2.14964077e-01 3.76280487e-01 -4.67631400e-01
-2.54984230e-01 -4.59081590e-01 -1.46247253e-01 -1.03847578e-01
3.64186913e-02 -5.54737806e-01 -1.87084705e-01 5.91488719e-01] | [8.75359058380127, 7.138139247894287] |
1695bff1-0bff-4c78-925a-2dd44fa475b2 | cost-splitting-for-multi-objective-conflict | 2211.12885 | null | https://arxiv.org/abs/2211.12885v1 | https://arxiv.org/pdf/2211.12885v1.pdf | Cost Splitting for Multi-Objective Conflict-Based Search | The Multi-Objective Multi-Agent Path Finding (MO-MAPF) problem is the problem of finding the Pareto-optimal frontier of collision-free paths for a team of agents while minimizing multiple cost metrics. Examples of such cost metrics include arrival times, travel distances, and energy consumption.In this paper, we focus on the Multi-Objective Conflict-Based Search (MO-CBS) algorithm, a state-of-the-art MO-MAPF algorithm. We show that the standard splitting strategy used by MO-CBS can lead to duplicate search nodes and hence can duplicate the search effort that MO-CBS needs to make. To address this issue, we propose two new splitting strategies for MO-CBS, namely cost splitting and disjoint cost splitting. Our theoretical results show that, when combined with either of these two new splitting strategies, MO-CBS maintains its completeness and optimality guarantees. Our experimental results show that disjoint cost splitting, our best splitting strategy, speeds up MO-CBS by up to two orders of magnitude and substantially improves its success rates in various settings. | ['Sven Koenig', 'Jiaoyang Li', 'Han Zhang', 'Cheng Ge'] | 2022-11-23 | null | null | null | null | ['multi-agent-path-finding'] | ['playing-games'] | [-1.31436259e-01 -1.05320282e-01 -3.85056674e-01 2.65403628e-01
-6.37950122e-01 -7.93381631e-01 4.33676168e-02 4.55531806e-01
-4.13879812e-01 1.03706491e+00 -3.87525350e-01 -3.68631124e-01
-8.45092475e-01 -8.62906992e-01 -3.13622802e-01 -6.37552619e-01
-7.06997335e-01 8.80289614e-01 8.24800432e-01 -3.91065031e-01
5.70206881e-01 5.37690282e-01 -1.03611863e+00 -2.58389264e-01
8.01319659e-01 6.50790691e-01 2.73805767e-01 7.47751713e-01
-5.87473363e-02 4.17079508e-01 -6.72361314e-01 -1.21211939e-01
4.98687744e-01 -3.39000911e-01 -1.31017232e+00 -1.54481769e-01
-5.39911747e-01 -2.56456524e-01 -2.00050607e-01 7.88581192e-01
1.48573026e-01 4.00296986e-01 3.50737512e-01 -2.35144639e+00
-1.12255812e-02 6.31056070e-01 -7.77069211e-01 3.73050064e-01
4.13203627e-01 -1.39440551e-01 8.80327463e-01 -2.39528373e-01
8.41556311e-01 1.25463784e+00 4.34881657e-01 4.56033885e-01
-1.10197687e+00 -2.69332141e-01 2.50960797e-01 4.83179808e-01
-1.40432763e+00 -2.08714008e-01 3.66865367e-01 7.84798265e-02
1.30701399e+00 5.80751359e-01 4.34139997e-01 2.00409383e-01
4.66549426e-01 4.58344698e-01 9.01465714e-01 -4.94503438e-01
5.13620377e-01 -2.54005641e-01 -1.85819432e-01 7.10115314e-01
5.68247080e-01 1.79942667e-01 -3.57383937e-01 -5.56671321e-01
5.13623714e-01 -9.74472985e-02 -2.22351149e-01 -3.64416391e-01
-1.43522537e+00 8.00512552e-01 1.84702277e-01 2.73773789e-01
-3.12433600e-01 6.26172185e-01 1.11393452e-01 3.36842775e-01
3.30417347e-03 4.97753322e-01 -3.54097426e-01 -1.40373543e-01
-5.94582319e-01 4.04799461e-01 9.60265636e-01 1.15036416e+00
7.46024430e-01 -4.37440276e-01 5.37062325e-02 4.20850903e-01
2.56056279e-01 4.64646161e-01 -3.67571950e-01 -1.46876359e+00
5.00510871e-01 4.57237452e-01 4.63156581e-01 -1.09109902e+00
-8.34217787e-01 -1.73180968e-01 -2.47296497e-01 4.95355576e-01
2.70114958e-01 -2.68386722e-01 -4.27781790e-01 1.74316406e+00
6.36800647e-01 -3.17348875e-02 1.17570065e-01 9.51562345e-01
-3.58351469e-02 9.00963187e-01 -4.80881929e-01 -7.28025794e-01
9.88822460e-01 -1.55972588e+00 -4.80312675e-01 -9.14037675e-02
8.27150464e-01 -6.86711609e-01 2.46311501e-01 1.63716823e-01
-1.39054108e+00 4.69077498e-01 -1.08209562e+00 6.54641747e-01
-1.67051032e-01 -7.82306433e-01 4.64231133e-01 5.30986130e-01
-1.11535358e+00 4.09054309e-01 -9.39549625e-01 -4.36159849e-01
-5.03284186e-02 4.43986952e-01 -1.42403826e-01 -3.76646250e-01
-5.64784706e-01 9.59699512e-01 1.62787974e-01 -4.40490782e-01
-9.67075229e-01 -4.97718245e-01 -4.56563383e-01 1.68801308e-01
1.30735862e+00 -6.62418485e-01 1.37370586e+00 -2.71347195e-01
-1.27638471e+00 8.15481097e-02 -3.78650099e-01 -1.00021154e-01
2.84762532e-01 5.24027526e-01 -3.48806798e-01 3.01711410e-01
5.80217063e-01 3.04767549e-01 1.28514003e-02 -1.50200355e+00
-1.16793966e+00 -1.47801831e-01 3.84503186e-01 2.20696107e-01
-5.16884476e-02 2.17017099e-01 -4.29331392e-01 -2.01769367e-01
9.57280621e-02 -1.10800922e+00 -9.74496782e-01 -2.02062353e-01
-4.22026187e-01 -4.25113261e-01 3.02313060e-01 5.71785495e-02
1.37131786e+00 -1.64206326e+00 3.55257452e-01 6.00144565e-01
2.17759341e-01 -4.24067318e-01 -5.18858254e-01 1.11282039e+00
6.68613434e-01 2.37044528e-01 -1.51054695e-01 -2.27975920e-01
1.55441344e-01 4.17906493e-01 4.20801610e-01 5.94319642e-01
-2.81747460e-01 4.76246446e-01 -1.20104575e+00 -5.05664349e-01
-1.05312668e-01 -2.43544295e-01 -5.33146679e-01 -2.92845488e-01
-2.94875175e-01 -1.00084543e-01 -4.68494743e-01 7.92078078e-01
7.59281695e-01 -2.07635105e-01 4.84557748e-01 4.64710385e-01
-5.87901235e-01 6.38539344e-02 -1.44805479e+00 1.56632257e+00
-2.38431111e-01 3.87197912e-01 4.56344396e-01 -7.61904955e-01
4.17719901e-01 7.50868767e-02 9.84562576e-01 -8.81056905e-01
5.39993085e-02 5.73195875e-01 5.05639054e-03 -1.31251976e-01
6.26699209e-01 1.30993417e-02 -2.53146410e-01 9.18503225e-01
-6.15182519e-01 4.40710992e-01 7.65131891e-01 2.43521407e-01
1.51863754e+00 -5.24046540e-01 2.36354068e-01 -4.47060347e-01
4.59130049e-01 5.96041620e-01 9.59045529e-01 7.52926290e-01
-4.49666858e-01 -1.93691894e-01 3.63052040e-01 -2.01239660e-01
-6.77603424e-01 -8.62813950e-01 5.32685339e-01 1.02211678e+00
9.21462357e-01 -6.30406201e-01 -4.48561251e-01 -5.56331813e-01
3.85507531e-02 5.71358263e-01 -1.93820700e-01 2.03581139e-01
-7.32049465e-01 -5.21314502e-01 4.61748689e-02 1.40353516e-01
8.41361582e-02 -4.17393744e-01 -1.20950997e+00 7.88781643e-01
-3.34289014e-01 -9.90266323e-01 -8.45318675e-01 -4.42482270e-02
-5.04787683e-01 -1.48944521e+00 -4.73778486e-01 -8.03093612e-01
7.71395743e-01 1.09642518e+00 7.26740301e-01 4.79267061e-01
-2.06524879e-01 3.91979635e-01 -5.45246363e-01 -8.93789008e-02
-2.91831136e-01 7.84882978e-02 1.80999730e-02 -3.90557736e-01
-1.58119693e-01 -4.71448332e-01 -6.18239164e-01 7.61333823e-01
-6.40320063e-01 -1.61883920e-01 3.58327299e-01 3.30631644e-01
7.12312162e-01 7.93246150e-01 6.54366970e-01 -1.88458696e-01
8.60183597e-01 -5.74826539e-01 -9.16436434e-01 6.06125534e-01
-8.90925229e-01 1.30600401e-05 5.55816770e-01 -1.06669530e-01
-4.50361758e-01 -2.47988150e-01 4.87561345e-01 -1.56700984e-01
2.71403253e-01 6.15883291e-01 2.05131441e-01 -6.21481359e-01
5.66421188e-02 -7.34747127e-02 -7.32760876e-02 -2.98278183e-01
8.77779350e-02 2.50314325e-01 3.95526171e-01 -4.90103841e-01
5.59187651e-01 5.84212959e-01 7.29181945e-01 -2.35910907e-01
-6.03887066e-02 -5.81069708e-01 5.35988994e-02 -4.19253170e-01
3.21187258e-01 -2.03569442e-01 -1.30953467e+00 2.85693686e-02
-1.20406497e+00 -3.99024576e-01 2.25723341e-01 3.13007742e-01
-6.28810644e-01 4.34094399e-01 -3.18495423e-01 -1.19848800e+00
-2.95743607e-02 -1.17909908e+00 4.16993529e-01 1.87815636e-01
7.41477907e-02 -8.54767323e-01 4.29163754e-01 5.43133952e-02
4.68963027e-01 6.00778818e-01 9.24196482e-01 -3.97106737e-01
-9.07293379e-01 2.02489927e-01 -5.28706331e-03 -7.94825971e-01
1.03865713e-01 -1.48309797e-01 3.49810213e-01 -6.82935774e-01
-4.96383876e-01 2.28653610e-01 3.00397515e-01 3.62302154e-01
5.58498144e-01 -6.04859829e-01 -1.03179538e+00 1.62405372e-01
1.96130276e+00 8.61388445e-01 1.18580692e-01 9.77270484e-01
2.31769085e-02 6.41209483e-01 9.70770657e-01 6.45456970e-01
1.00109279e+00 1.07412302e+00 8.27932417e-01 2.52850562e-01
2.93587148e-01 3.03504974e-01 3.06421131e-01 5.20340264e-01
-1.47742495e-01 -8.39877546e-01 -9.83617008e-01 9.18853223e-01
-2.31655931e+00 -8.59550834e-01 -2.35318154e-01 2.25303864e+00
3.05341214e-01 8.22386667e-02 5.88708580e-01 3.29959840e-01
8.12350035e-01 -2.44950131e-01 -5.19268930e-01 -8.69142890e-01
1.74104705e-01 -2.27154344e-01 9.36968982e-01 8.05663824e-01
-5.84624469e-01 5.26114523e-01 6.72401714e+00 5.99734843e-01
-5.07835865e-01 4.01507378e-01 -1.21317334e-01 -5.40286958e-01
-3.40231866e-01 8.08031857e-02 -2.94479638e-01 4.44475889e-01
9.15279925e-01 -8.07241499e-01 1.03434396e+00 6.01847351e-01
2.99774021e-01 -3.91795695e-01 -9.58492696e-01 6.27734423e-01
-1.78024665e-01 -1.47760022e+00 -3.71828973e-01 4.64679003e-01
8.47199738e-01 -2.04595312e-01 -4.64625031e-01 -2.08696976e-01
5.25245607e-01 -8.08369339e-01 8.73889089e-01 -1.71015948e-01
3.14556718e-01 -1.35394490e+00 5.73392510e-01 3.66094798e-01
-1.59117270e+00 -3.76626581e-01 -6.23531416e-02 -7.38575831e-02
9.77177382e-01 3.40989858e-01 -5.39751947e-01 1.09517109e+00
6.70849085e-01 -5.44556305e-02 3.39042723e-01 1.65439630e+00
1.78209484e-01 -1.75438672e-01 -6.63912714e-01 -2.62465864e-01
6.51914537e-01 -9.32610407e-02 1.12209880e+00 8.86554837e-01
4.12529945e-01 2.83563584e-01 6.34639740e-01 6.04418039e-01
2.59580284e-01 -1.47618800e-01 -1.47094116e-01 7.47371987e-02
1.04926729e+00 1.01522315e+00 -1.17680609e+00 5.81408702e-02
-2.10834041e-01 7.39997327e-01 1.28501564e-01 2.02502191e-01
-1.02008617e+00 -7.22865224e-01 9.81903195e-01 -2.71067202e-01
2.42267713e-01 -5.81871092e-01 -2.53304243e-01 -3.66271466e-01
5.18377163e-02 -4.47584420e-01 6.10552728e-01 -3.27894151e-01
-8.18651140e-01 5.21023214e-01 2.35845953e-01 -1.00254011e+00
-1.15229219e-01 -1.53624669e-01 -7.44706035e-01 3.68784159e-01
-1.82643294e+00 -5.35428166e-01 -2.14184105e-01 6.02825284e-01
5.88728845e-01 1.17571972e-01 5.45587063e-01 3.82177085e-01
-6.09259367e-01 3.77484918e-01 2.41120070e-01 -6.52261972e-01
1.53473571e-01 -9.24990416e-01 5.01052178e-02 1.06663764e+00
-4.26789969e-01 1.56629920e-01 7.38183498e-01 -5.00236154e-01
-1.87402511e+00 -6.20374441e-01 9.15912390e-01 1.89402968e-01
4.82025206e-01 2.75080830e-01 -1.11194611e-01 5.15740871e-01
2.60396153e-01 -4.55377996e-01 6.40708208e-01 -2.71718442e-01
2.09594905e-01 -8.61975327e-02 -1.32652080e+00 7.41879761e-01
1.22142720e+00 4.48177457e-01 -6.36631474e-02 3.97462815e-01
8.34469378e-01 -1.59633741e-01 -5.81318915e-01 2.92478681e-01
2.98062682e-01 -8.64383280e-01 8.77976477e-01 -5.17071605e-01
-8.08366463e-02 -6.78632498e-01 -2.54583150e-01 -1.57618606e+00
-6.61024749e-01 -1.05228138e+00 2.27312967e-02 8.40613902e-01
5.25909722e-01 -9.13118243e-01 6.43029392e-01 4.01925892e-01
-3.44061404e-01 -9.75769460e-01 -1.48716176e+00 -1.50537729e+00
-1.33601785e-01 -2.41532728e-01 9.73904431e-01 7.37780690e-01
4.52854842e-01 -2.64409501e-02 -1.46730065e-01 5.24964869e-01
9.86961901e-01 4.58919466e-01 5.83936036e-01 -1.03155613e+00
-1.81378931e-01 -7.81516612e-01 1.69711024e-01 -8.40854764e-01
-1.45919204e-01 -7.17074096e-01 1.42556891e-01 -2.19813442e+00
4.48738560e-02 -9.22791779e-01 -2.47363225e-01 5.75161695e-01
3.48878086e-01 -2.15650454e-01 5.38596392e-01 3.13388973e-01
-1.03489256e+00 3.10090810e-01 1.28323829e+00 -3.90832759e-02
-5.37488997e-01 -1.44281328e-01 -5.70813060e-01 2.86273330e-01
9.71851468e-01 -9.49081659e-01 -4.08632696e-01 -5.33034801e-01
2.33987942e-01 6.36569321e-01 -1.95558388e-02 -7.08359480e-01
7.61919081e-01 -1.23164546e+00 -6.79665685e-01 -6.82103872e-01
3.37208688e-01 -1.03579342e+00 5.96190870e-01 1.06845164e+00
4.83071469e-02 5.12240171e-01 1.24032892e-01 6.67720258e-01
1.50569931e-01 -3.80149990e-01 3.87954146e-01 -7.67875239e-02
-6.80625200e-01 1.49201363e-01 -8.92542899e-01 -2.27505326e-01
1.74735653e+00 -3.81888717e-01 -8.44053805e-01 -1.59400776e-01
-2.88636386e-01 1.15061402e+00 4.67716753e-01 2.20592439e-01
6.40232205e-01 -1.31382775e+00 -5.82033098e-01 -5.09261608e-01
-4.07358892e-02 -1.94834992e-01 1.01979360e-01 1.26565921e+00
-6.41673326e-01 7.82502353e-01 -3.10695231e-01 -7.65353590e-02
-1.40724277e+00 8.50596130e-01 2.50344992e-01 -5.40175676e-01
-3.79416585e-01 5.88068426e-01 -3.82133305e-01 5.83075732e-02
2.04756722e-01 -7.55143072e-03 3.38214040e-01 -3.59663427e-01
5.00350595e-01 1.37204194e+00 -2.22299650e-01 -2.67816931e-01
-1.11101305e+00 5.83850563e-01 2.69123971e-01 -5.47708929e-01
1.32325029e+00 -4.91312653e-01 -4.17190820e-01 -3.29587758e-01
6.68168128e-01 4.17169146e-02 -6.33261621e-01 4.75271903e-02
1.41882762e-01 -7.74690151e-01 9.47991833e-02 -9.48111773e-01
-1.14467549e+00 8.69751535e-03 -5.32640256e-02 6.60989642e-01
1.20255220e+00 -6.03571022e-03 1.02787411e+00 3.66178364e-01
1.25306451e+00 -1.16454327e+00 1.32528851e-02 3.15947562e-01
5.56406856e-01 -5.70606470e-01 -1.23233847e-01 -9.61188853e-01
-2.37221181e-01 1.11230218e+00 6.85701013e-01 1.60748661e-01
2.57767320e-01 2.71613926e-01 -4.17300105e-01 -2.20030010e-01
-9.69050467e-01 -4.48187262e-01 -4.97986019e-01 5.82135260e-01
-6.33809984e-01 2.44724631e-01 -8.83571863e-01 4.28161412e-01
1.08895823e-01 -1.36483297e-01 9.91117239e-01 1.56518221e+00
-8.20145786e-01 -1.38483226e+00 -6.94510281e-01 -1.96722373e-02
4.62436229e-02 4.21037644e-01 -3.82533103e-01 6.88255370e-01
-6.69436827e-02 1.79039705e+00 -4.15332839e-02 -3.89090776e-01
2.98988402e-01 -5.35715938e-01 6.78172350e-01 -2.01555505e-01
-4.35029060e-01 -4.99686487e-02 5.96165478e-01 -8.26704264e-01
-5.92748582e-01 -4.76979852e-01 -1.71070206e+00 -9.83850241e-01
-3.85635197e-01 3.94682705e-01 6.83598101e-01 8.77858460e-01
5.14237642e-01 5.19745648e-01 1.00847173e+00 -5.80241621e-01
-3.20397049e-01 -2.52222985e-01 -3.41342121e-01 -4.20371771e-01
3.24070692e-01 -9.91816640e-01 -2.93514580e-01 -7.48099148e-01] | [4.980977535247803, 1.8696259260177612] |
f4cc5d0e-5388-4160-961a-e94574acbe53 | deep-boosting-for-image-denoising | null | null | http://openaccess.thecvf.com/content_ECCV_2018/html/Chang_Chen_Deep_Boosting_for_ECCV_2018_paper.html | http://openaccess.thecvf.com/content_ECCV_2018/papers/Chang_Chen_Deep_Boosting_for_ECCV_2018_paper.pdf | Deep Boosting for Image Denoising | Boosting is a classic algorithm which has been successfully applied to diverse computer vision tasks. In the scenario of image denoising, however, the existing boosting algorithms are surpassed by the emerging learning-based models. In this paper, we propose a novel deep boosting framework (DBF) for denoising, which integrates several convolutional networks in a feed-forward fashion. Along with the integrated networks, however, the depth of the boosting framework is substantially increased, which brings difficulty to training. To solve this problem, we introduce the concept of dense connection that overcomes the vanishing of gradients during training. Furthermore, we propose a path-widening fusion scheme cooperated with the dilated convolution to derive a lightweight yet efficient convolutional network as the boosting unit, named Dilated Dense Fusion Network (DDFN). Comprehensive experiments demonstrate that our DBF outperforms existing methods on widely used benchmarks, in terms of different denoising tasks. | ['Chang Chen', 'Xinmei Tian', 'Feng Wu', 'Zhiwei Xiong'] | 2018-09-01 | null | null | null | eccv-2018-9 | ['salt-and-pepper-noise-removal'] | ['computer-vision'] | [-6.65538991e-03 -5.22789657e-01 2.54960507e-01 -5.93805790e-01
-3.89021397e-01 3.20176631e-02 6.74385548e-01 -1.68473888e-02
-5.17270863e-01 5.97217858e-01 2.24730462e-01 -2.71247387e-01
9.99496654e-02 -8.91713500e-01 -7.42863715e-01 -1.03076255e+00
3.24828506e-01 -5.10278583e-01 1.39143080e-01 -6.58561230e-01
7.57315755e-02 2.93551654e-01 -1.28807247e+00 2.15998828e-01
1.15622389e+00 1.21577430e+00 1.35803223e-01 1.77497044e-01
-2.04211220e-01 8.87394249e-01 -4.02392805e-01 -7.19257951e-01
2.54616916e-01 -2.39617407e-01 -3.26673508e-01 -1.07364193e-01
2.16811314e-01 -6.08783185e-01 -3.21560681e-01 1.08119965e+00
6.14406168e-01 5.85215725e-02 1.92356676e-01 -1.05674422e+00
-4.38802004e-01 3.75474036e-01 -8.67241979e-01 2.39449516e-01
-1.41377926e-01 2.25821193e-02 6.03062749e-01 -1.01382244e+00
1.92509100e-01 1.28414106e+00 1.05672479e+00 4.84234333e-01
-9.11090255e-01 -6.57003224e-01 6.48287535e-01 3.11473310e-01
-9.06310201e-01 -2.37601981e-01 9.87253070e-01 -1.22036316e-01
4.41756368e-01 -5.96475080e-02 6.00244403e-01 1.15205657e+00
1.58850759e-01 6.92369819e-01 1.34129381e+00 -1.46300167e-01
7.92701021e-02 -3.93541247e-01 2.84113854e-01 4.71462995e-01
2.51922071e-01 1.60805121e-01 -4.68112320e-01 1.83388159e-01
6.04619384e-01 2.69277245e-01 -3.14722598e-01 -1.75714701e-01
-7.35845566e-01 8.46319377e-01 1.09389997e+00 2.91917354e-01
-5.39159834e-01 2.56194532e-01 7.82967746e-01 2.55171031e-01
8.41617286e-01 -2.42154837e-01 -3.87482911e-01 2.83973902e-01
-7.43869662e-01 2.65535861e-01 4.71188366e-01 4.27270472e-01
9.19009447e-01 1.22930683e-01 -2.97868282e-01 9.06777382e-01
4.31037486e-01 5.00424616e-02 2.89543629e-01 -6.30110681e-01
3.81209314e-01 6.60599589e-01 -9.26230550e-02 -1.01998401e+00
-4.07499611e-01 -1.00130105e+00 -1.57017744e+00 4.61713761e-01
1.72376469e-01 -1.48412108e-01 -9.37983394e-01 1.74789023e+00
6.72222972e-01 4.96537864e-01 -6.65191561e-02 1.13598311e+00
7.83835590e-01 5.33376276e-01 2.80251324e-01 -7.34857768e-02
1.12453055e+00 -1.44116139e+00 -7.28946567e-01 -2.44215429e-01
3.87630522e-01 -7.57859707e-01 7.38010645e-01 6.89299524e-01
-9.03289735e-01 -9.29904640e-01 -1.15600634e+00 -2.65532911e-01
-2.20693037e-01 -1.58114046e-01 8.00429881e-01 6.14447773e-01
-1.10148716e+00 6.72752976e-01 -7.23398983e-01 -4.38036434e-02
7.18712807e-01 2.19727233e-01 -3.34488213e-01 -4.40963984e-01
-1.10133231e+00 9.51160550e-01 8.82535502e-02 8.45183849e-01
-1.09413242e+00 -5.90605676e-01 -7.29129016e-01 3.16020623e-02
1.91588074e-01 -9.23788011e-01 1.14328885e+00 -1.12276316e+00
-1.37705076e+00 4.01841819e-01 3.39999087e-02 -5.93634903e-01
8.01027060e-01 -6.07715368e-01 -2.61661768e-01 -1.86034024e-01
-7.04393685e-02 5.24076521e-01 1.17681313e+00 -1.31688488e+00
-7.06287682e-01 -4.84227061e-01 2.71176845e-01 1.72979787e-01
-6.39715075e-01 -1.92716181e-01 -2.66035050e-01 -9.17657495e-01
6.94974214e-02 -2.48675197e-01 -6.55079901e-01 -2.40180138e-02
-4.55031954e-02 -1.90207735e-01 9.12900209e-01 -8.99501562e-01
1.19657457e+00 -2.30349708e+00 2.01760188e-01 1.01363857e-03
3.91589373e-01 4.95375991e-01 -1.52508333e-01 3.39884579e-01
-5.11075631e-02 -1.88854486e-01 -3.71796340e-01 -6.15907788e-01
-1.53699532e-01 3.67838234e-01 -2.68035620e-01 4.18529630e-01
3.03597212e-01 7.25953341e-01 -8.63792360e-01 -2.64572233e-01
3.20353597e-01 8.89496028e-01 -5.48517704e-01 3.31891805e-01
5.60749024e-02 7.50958681e-01 -3.50040048e-01 4.83999103e-01
1.37203372e+00 2.02026859e-01 -1.55233324e-01 -3.90897393e-01
-2.63039023e-01 3.87520492e-02 -1.01836598e+00 2.10394835e+00
-6.33987784e-01 4.05503735e-02 6.79778099e-01 -1.46945524e+00
1.20800424e+00 1.03511028e-01 2.41227821e-01 -7.88051605e-01
2.89044052e-01 3.31341714e-01 -1.97194517e-01 -2.90818155e-01
8.81791711e-02 -1.95235029e-01 3.81681323e-01 -1.32826656e-01
1.17116034e-01 1.40724286e-01 1.42713919e-01 1.00687757e-01
1.20787680e+00 3.33576947e-01 -2.41561998e-02 -2.71562457e-01
1.02684546e+00 -3.26938450e-01 8.08559716e-01 6.40405118e-01
-1.90374970e-01 4.40771103e-01 2.56088078e-01 -8.48479748e-01
-7.39672422e-01 -7.63213634e-01 -1.09024301e-01 1.02217889e+00
3.97702962e-01 -3.74680549e-01 -9.63447213e-01 -7.91979909e-01
-4.96033095e-02 3.03018559e-02 -5.95785081e-01 -1.60685197e-01
-6.90463603e-01 -9.84936178e-01 2.49632433e-01 5.19799948e-01
1.10674024e+00 -9.64900553e-01 -1.74444273e-01 5.05235016e-01
-8.45777318e-02 -8.79056871e-01 -2.92106956e-01 4.01972771e-01
-1.12885284e+00 -7.81753600e-01 -7.99174130e-01 -8.88645828e-01
4.65144783e-01 5.83810568e-01 1.18931198e+00 4.24786240e-01
-4.24338169e-02 -1.05607830e-01 -5.13820052e-01 -3.19223106e-01
-1.41496897e-01 8.36797580e-02 -4.42531943e-01 1.94646567e-01
2.61471242e-01 -8.54276180e-01 -1.14956236e+00 1.43828318e-01
-1.04765999e+00 2.00907424e-01 7.80778170e-01 1.17514253e+00
2.88703412e-01 3.90171409e-02 8.83272648e-01 -6.49780512e-01
6.43230081e-01 -4.82665390e-01 -5.76453626e-01 -2.82971431e-02
-5.80514669e-01 -1.24230012e-01 7.18716979e-01 -8.23699385e-02
-1.44257116e+00 -9.53119695e-02 -7.92747557e-01 -3.37013900e-02
-1.41727507e-01 5.40126503e-01 -1.72905132e-01 -3.20553660e-01
3.73404026e-01 5.88228889e-02 -3.96457985e-02 -9.27050829e-01
4.22004074e-01 5.55837572e-01 7.29341626e-01 -4.70132560e-01
7.54941583e-01 6.23047650e-01 -1.34006077e-02 -2.41013452e-01
-1.04880786e+00 -3.20407629e-01 -3.60215157e-01 -2.56661713e-01
7.29757905e-01 -1.30697191e+00 -6.52905583e-01 9.29034650e-01
-1.39740896e+00 -4.41077128e-02 1.41673665e-02 2.36166850e-01
-1.14031404e-01 3.84147137e-01 -8.57572615e-01 -6.17201090e-01
-6.01393044e-01 -1.10207450e+00 9.06753540e-01 2.92001992e-01
4.39168125e-01 -8.13897431e-01 4.43425141e-02 4.08288866e-01
6.72166586e-01 3.19401026e-01 6.89553440e-01 -1.58425689e-01
-3.77556145e-01 -3.35987732e-02 -5.33491671e-01 1.12993646e+00
-1.05623277e-02 -4.08012599e-01 -1.09099865e+00 -4.38009620e-01
4.32410598e-01 -2.71020830e-01 1.40127933e+00 4.41668272e-01
1.39330852e+00 6.02415614e-02 3.70214717e-03 9.66366410e-01
1.60379303e+00 -4.78471927e-02 7.14499652e-01 5.66204250e-01
6.60957575e-01 4.59258437e-01 3.51251930e-01 3.67937028e-01
3.55074584e-01 3.02173048e-01 8.48163426e-01 -6.42509520e-01
-2.04995573e-01 1.04148616e-03 1.54739156e-01 1.10140491e+00
-2.55602628e-01 1.60173565e-01 -5.79249859e-01 3.52702439e-01
-2.03120661e+00 -5.51127493e-01 -2.79582590e-01 1.80395830e+00
7.12646544e-01 2.85385936e-01 -1.05656914e-01 3.18580925e-01
7.73478448e-01 2.19770238e-01 -4.45991993e-01 -5.43701231e-01
-8.10621083e-02 5.55421293e-01 1.59093425e-01 2.66116738e-01
-1.32292926e+00 5.49191833e-01 5.62485695e+00 9.63047922e-01
-1.13930809e+00 4.90220159e-01 8.38276505e-01 3.92532527e-01
-1.28893018e-01 -1.58865660e-01 -5.81201971e-01 5.06599724e-01
4.12270486e-01 2.83738017e-01 3.29844058e-01 9.11982358e-01
2.64938742e-01 1.17909893e-01 -5.83503783e-01 8.99065733e-01
-1.64366111e-01 -1.14091420e+00 -6.40362874e-02 -2.59722739e-01
8.00531805e-01 3.98796424e-02 -1.75244138e-02 4.96692389e-01
1.82905838e-01 -8.75262678e-01 4.87968266e-01 2.47971147e-01
1.98618889e-01 -8.99057984e-01 1.13961029e+00 3.96628201e-01
-1.04883778e+00 -3.08505684e-01 -3.99315923e-01 -4.64427561e-01
5.12444153e-02 1.18728876e+00 -4.21629250e-02 1.03216398e+00
1.10927749e+00 9.95807290e-01 -5.22438943e-01 1.10391569e+00
-4.64929193e-01 5.84550500e-01 7.71423429e-02 3.39643121e-01
5.43999135e-01 -4.51206267e-01 1.24214955e-01 1.20387864e+00
3.24027687e-01 -2.29642421e-01 6.29542992e-02 4.63218302e-01
-3.34203422e-01 7.08522350e-02 -2.62867302e-01 6.13744438e-01
-3.35269049e-02 1.76616454e+00 -5.34780622e-01 -3.08419675e-01
-8.29748929e-01 8.80793869e-01 4.43179637e-01 2.78024852e-01
-8.71999860e-01 -3.63967896e-01 5.39684355e-01 -2.14521840e-01
4.23902571e-01 -6.39602393e-02 -4.24692810e-01 -1.23094618e+00
1.94313094e-01 -1.04123485e+00 1.41220063e-01 -5.20025432e-01
-1.58763385e+00 6.92101181e-01 -4.75600004e-01 -9.77047265e-01
3.82890552e-01 -5.86890697e-01 -7.05928028e-01 9.82646942e-01
-2.14557266e+00 -1.34796429e+00 -9.55785573e-01 7.93033898e-01
4.86260176e-01 1.46559000e-01 5.31193614e-01 8.71504724e-01
-7.40275681e-01 2.09640458e-01 1.59133494e-01 3.28680128e-02
9.23694909e-01 -1.11750722e+00 4.18929338e-01 9.82765317e-01
-2.52403051e-01 4.99534994e-01 4.33589071e-01 -3.13883513e-01
-1.16141844e+00 -1.21948171e+00 3.91912222e-01 3.92703861e-01
5.18571615e-01 -3.80049914e-01 -1.18253756e+00 2.30743200e-01
4.69497144e-01 2.96793222e-01 1.98043376e-01 2.43677273e-01
-5.53624809e-01 -8.42754662e-01 -1.10884678e+00 3.79070818e-01
1.07691932e+00 -4.99459989e-02 -3.84064943e-01 9.28300470e-02
6.23200357e-01 -2.70217925e-01 -7.01546490e-01 7.48430192e-01
4.57316816e-01 -1.36752605e+00 1.08472490e+00 -2.90057778e-01
7.01175690e-01 -4.06116664e-01 6.90783467e-03 -1.41497362e+00
-4.35040265e-01 -4.15531307e-01 -1.35912165e-01 1.38615751e+00
-3.22615027e-01 -6.36418998e-01 6.45965278e-01 -1.15376890e-01
-5.44895589e-01 -9.72761095e-01 -1.08465755e+00 -5.31028032e-01
2.68569499e-01 -2.86489427e-01 7.28363812e-01 6.40527964e-01
-6.30414009e-01 3.99970025e-01 -5.16569793e-01 -3.71242152e-03
7.89868772e-01 -1.39336482e-01 6.35349989e-01 -1.17944169e+00
-1.25936449e-01 -3.89728278e-01 -3.61707658e-01 -1.24621713e+00
-8.25319588e-02 -6.19151711e-01 2.02537417e-01 -1.53890228e+00
1.65574580e-01 -4.96731669e-01 -8.12987447e-01 3.07815313e-01
-5.30888140e-01 4.21677142e-01 8.21657404e-02 -9.37212631e-02
-3.92360866e-01 7.38064408e-01 1.30761516e+00 -2.24868566e-01
2.31466606e-01 -1.03963882e-01 -8.34488571e-01 8.47570002e-01
7.50461042e-01 -3.09035391e-01 -1.96420699e-01 -8.86898160e-01
1.68392122e-01 -2.49694362e-01 6.55673563e-01 -1.13171053e+00
2.47160345e-01 4.19102281e-01 6.01751864e-01 -6.24595165e-01
1.04341842e-01 -9.51955616e-01 -7.61855990e-02 6.89456820e-01
4.99487929e-02 -3.87923163e-03 4.22908133e-03 6.02887809e-01
-6.62829399e-01 -6.26323894e-02 9.65634346e-01 4.74608727e-02
-7.71885335e-01 3.40582311e-01 -5.87354787e-02 -2.99212515e-01
7.32206881e-01 1.23181969e-01 -3.03408295e-01 -1.04932740e-01
-3.77457857e-01 2.74148196e-01 9.14122462e-02 2.41066232e-01
5.03275156e-01 -1.42095125e+00 -8.01603436e-01 1.77800462e-01
-2.55205512e-01 2.62371838e-01 5.98603904e-01 1.02473986e+00
-4.79064435e-01 -1.18054710e-01 -2.95225739e-01 -5.55695057e-01
-9.25009608e-01 6.15309358e-01 2.16213748e-01 -5.28688490e-01
-6.61992192e-01 9.36304867e-01 3.17106754e-01 -4.31812525e-01
3.08676243e-01 -2.43519530e-01 -1.32149950e-01 -1.37105240e-02
5.47555804e-01 3.84617835e-01 5.12341261e-01 -3.07143122e-01
-2.51812339e-01 4.07716244e-01 -1.68870911e-01 3.06021929e-01
1.69638360e+00 -1.13012977e-01 -4.76276785e-01 -9.85124037e-02
1.12481844e+00 -3.34803969e-01 -1.47033274e+00 -2.10414082e-01
-1.04598925e-01 -3.89666557e-01 3.40974301e-01 -7.46052444e-01
-1.37309873e+00 1.07398736e+00 7.72734404e-01 1.79361716e-01
1.68282104e+00 -6.25621140e-01 1.03009081e+00 1.35157526e-01
1.85816616e-01 -8.76987875e-01 8.74887109e-02 3.84511948e-01
8.87660086e-01 -1.57222450e+00 -7.18137026e-02 -5.06439030e-01
-1.42202064e-01 1.14688647e+00 8.29592109e-01 -4.24332589e-01
7.76016295e-01 3.30012649e-01 2.12029383e-01 1.19686760e-01
-4.71229136e-01 -1.03446558e-01 -9.10140201e-02 4.89266485e-01
4.96779561e-01 -3.43803048e-01 -8.27013612e-01 8.06994200e-01
2.53721535e-01 3.48956287e-01 2.86291763e-02 9.50331688e-01
-3.58747274e-01 -1.34066081e+00 -4.55568641e-01 2.75092691e-01
-5.72071791e-01 -1.49517417e-01 1.76224962e-01 5.38527668e-01
7.19414651e-01 1.02837718e+00 -1.75121143e-01 -3.64024132e-01
2.92016327e-01 -2.91178823e-01 2.45295092e-01 -2.11396977e-01
-1.02419817e+00 2.31056616e-01 -1.96808070e-01 -4.49819744e-01
-8.19434881e-01 -1.88092485e-01 -6.45553231e-01 -3.52562249e-01
-3.87218595e-01 1.51707500e-01 7.65343428e-01 8.84384394e-01
1.01610564e-01 8.62435281e-01 7.60998607e-01 -1.04282880e+00
-6.84387565e-01 -1.08979404e+00 -4.28113014e-01 4.88479912e-01
5.49055457e-01 -6.50284469e-01 -3.45102668e-01 -1.03721574e-01] | [11.389479637145996, -2.3851065635681152] |
852ebe96-ccb0-4f27-878f-049d8c8450b8 | protnn-fast-and-accurate-nearest-neighbor | 1511.00736 | null | http://arxiv.org/abs/1511.00736v2 | http://arxiv.org/pdf/1511.00736v2.pdf | ProtNN: Fast and Accurate Nearest Neighbor Protein Function Prediction based on Graph Embedding in Structural and Topological Space | Studying the function of proteins is important for understanding the
molecular mechanisms of life. The number of publicly available protein
structures has increasingly become extremely large. Still, the determination of
the function of a protein structure remains a difficult, costly, and time
consuming task. The difficulties are often due to the essential role of spatial
and topological structures in the determination of protein functions in living
cells. In this paper, we propose ProtNN, a novel approach for protein function
prediction. Given an unannotated protein structure and a set of annotated
proteins, ProtNN finds the nearest neighbor annotated structures based on
protein-graph pairwise similarities. Given a query protein, ProtNN finds the
nearest neighbor reference proteins based on a graph representation model and a
pairwise similarity between vector embedding of both query and reference
protein-graphs in structural and topological spaces. ProtNN assigns to the
query protein the function with the highest number of votes across the set of k
nearest neighbor reference proteins, where k is a user-defined parameter.
Experimental evaluation demonstrates that ProtNN is able to accurately classify
several datasets in an extremely fast runtime compared to state-of-the-art
approaches. We further show that ProtNN is able to scale up to a whole PDB
dataset in a single-process mode with no parallelization, with a gain of
thousands order of magnitude of runtime compared to state-of-the-art
approaches. | ['Abdoulaye Baniré Diallo', 'Wajdi Dhifli'] | 2015-11-02 | null | null | null | null | ['protein-function-prediction'] | ['medical'] | [ 1.77068591e-01 -1.88789606e-01 -3.28672044e-02 -3.07590783e-01
-4.81416285e-01 -7.26057589e-01 1.34193778e-01 7.79004276e-01
-3.51910412e-01 8.36501896e-01 -1.13813832e-01 -3.16641837e-01
-3.23721170e-01 -6.73501670e-01 -7.39105284e-01 -8.73676896e-01
-1.26597166e-01 9.39458549e-01 5.97259879e-01 -4.97500338e-02
3.71299446e-01 7.90974975e-01 -1.22558057e+00 2.64146835e-01
5.71980953e-01 7.09395826e-01 4.83373910e-01 5.61312616e-01
-1.08300008e-01 3.95111442e-01 -3.51377785e-01 -2.17894018e-01
8.89213830e-02 -5.49772859e-01 -1.03244019e+00 -1.50837123e-01
1.54647768e-01 4.65240330e-01 -1.81424171e-01 8.99930060e-01
5.23081899e-01 6.97722584e-02 5.42987645e-01 -8.48713577e-01
-5.33483207e-01 -1.20549507e-01 -2.48365089e-01 4.71872017e-02
4.55436587e-01 4.67721298e-02 1.25270975e+00 -9.33931768e-01
1.16613209e+00 1.07052171e+00 5.13734996e-01 1.85797513e-01
-1.96374333e+00 -1.44993931e-01 -1.73273891e-01 4.41907853e-01
-1.34559393e+00 -1.85758192e-02 3.62969577e-01 -5.59567451e-01
1.33261168e+00 1.90083459e-01 6.86669230e-01 3.19891065e-01
5.23191512e-01 -1.29462525e-01 7.66609192e-01 -2.32070148e-01
4.66945648e-01 -5.59870481e-01 2.92148501e-01 7.32845664e-01
1.08312801e-01 -3.73440117e-01 -5.10212183e-01 -8.51866305e-01
2.46400535e-01 2.11593956e-01 -5.14406979e-01 -1.10066676e+00
-1.44431865e+00 7.64676094e-01 4.89978701e-01 3.25380683e-01
-4.54753369e-01 -4.19650488e-02 3.58838111e-01 2.00717136e-01
1.62441432e-01 5.94989240e-01 -7.07748413e-01 -1.80542693e-01
-4.30207491e-01 2.75800169e-01 9.22014177e-01 3.03706735e-01
9.50480938e-01 -8.07275832e-01 4.48549420e-01 7.53098607e-01
7.77262524e-02 2.12149099e-01 3.31226528e-01 -7.07166851e-01
-6.32244125e-02 9.97030377e-01 1.35728881e-01 -1.11283243e+00
-4.70759273e-01 6.31724596e-02 -6.53099000e-01 2.17429817e-01
7.68038630e-01 6.16817713e-01 -4.55556095e-01 1.55969322e+00
7.08503723e-01 -1.48949623e-01 1.87109843e-01 8.04512501e-01
4.20804858e-01 7.22567558e-01 -7.73189738e-02 -4.48353350e-01
1.40604627e+00 -6.10238910e-01 -2.12510139e-01 2.51575947e-01
7.75026143e-01 -8.27038884e-01 8.81250024e-01 3.13129097e-01
-6.13184929e-01 -2.78441876e-01 -9.09081280e-01 -2.42811829e-01
-3.60938489e-01 1.57553591e-02 4.29900736e-01 6.99106008e-02
-8.11694741e-01 1.00378990e+00 -9.64370906e-01 -6.85741067e-01
5.00945821e-02 7.12485433e-01 -1.02199435e+00 -1.11833625e-01
-6.77776158e-01 9.67479885e-01 5.29246390e-01 -2.89874703e-01
-2.20131621e-01 -5.65972984e-01 -5.37437320e-01 8.30558464e-02
2.74556607e-01 -4.51457530e-01 6.89252615e-01 -4.07345742e-01
-1.06311762e+00 8.02923620e-01 -6.07801497e-01 -4.27407861e-01
6.53316751e-02 1.35581091e-01 -5.78795671e-02 3.08179379e-01
7.87023753e-02 2.80198425e-01 -7.95164611e-03 -8.50534916e-01
-2.01411664e-01 -6.86449945e-01 -1.64689988e-01 1.47728264e-01
1.24387138e-01 2.20323391e-02 -2.85740882e-01 -1.73278257e-01
5.77478588e-01 -1.06758046e+00 -3.63935262e-01 3.55367362e-01
-1.94841251e-01 -3.96898985e-01 7.96895504e-01 -4.73642588e-01
8.31174850e-01 -2.07704639e+00 6.26071990e-01 3.33088875e-01
5.49299240e-01 2.00912580e-01 -4.04853411e-02 8.81290078e-01
-3.22005004e-01 -3.19672555e-01 -3.00050586e-01 3.75526339e-01
-3.07932734e-01 1.99546531e-01 6.73125461e-02 8.78928721e-01
-3.16951990e-01 7.47316301e-01 -9.03722167e-01 -2.97669351e-01
2.75178432e-01 6.14758134e-01 -2.16121495e-01 2.64870495e-01
-3.36101472e-01 3.65566909e-01 -4.65863049e-01 3.08543593e-01
5.13929248e-01 -7.87330210e-01 8.98398161e-01 -5.69769323e-01
-4.56451774e-02 3.10066372e-01 -8.74107003e-01 1.35681236e+00
2.45127454e-01 2.17989311e-01 -1.77581325e-01 -1.04341197e+00
1.06089830e+00 2.38019913e-01 7.36105740e-01 -1.22327603e-01
-1.68825462e-01 4.04269516e-01 3.02139342e-01 -1.30670890e-01
6.59878999e-02 1.22520782e-01 2.20220834e-01 4.23224390e-01
-3.45924012e-02 3.91827106e-01 3.15746307e-01 1.91102579e-01
1.47647774e+00 1.43982217e-01 7.19942033e-01 -5.12132108e-01
7.16460824e-01 2.60900587e-01 5.91063380e-01 7.34118149e-02
-7.18463436e-02 3.88813198e-01 8.21192086e-01 -9.73889828e-01
-1.26282048e+00 -9.65617478e-01 -2.86599584e-02 1.10837400e+00
2.66789109e-01 -6.77503049e-01 -8.62848997e-01 -6.37258828e-01
2.10354730e-01 -1.47128885e-03 -4.90982324e-01 -1.03737295e-01
-6.07452691e-01 -7.54515886e-01 1.66080058e-01 6.37309104e-02
-7.85417557e-02 -9.77553487e-01 -6.13975823e-01 4.58991706e-01
-8.77687111e-02 -8.19036961e-01 -5.45866370e-01 4.14571285e-01
-7.92551637e-01 -1.62413013e+00 -5.15706360e-01 -9.76924300e-01
8.96714330e-01 3.86600077e-01 8.51642430e-01 1.33541718e-01
-5.14881849e-01 -3.21813524e-01 -8.34212601e-02 3.65088284e-01
-4.27422583e-01 -8.31200331e-02 1.68373853e-01 -3.26558687e-02
5.74930966e-01 -6.47094667e-01 -7.22745538e-01 6.84340537e-01
-7.04791188e-01 5.64419329e-02 2.36608058e-01 1.03178287e+00
1.18157697e+00 -7.56547600e-02 1.89207435e-01 -8.69112134e-01
4.11163300e-01 -2.43765980e-01 -7.98374772e-01 5.71940720e-01
-5.99861622e-01 4.85955358e-01 8.42500985e-01 -3.44909102e-01
-2.93297440e-01 7.33597338e-01 3.36101726e-02 -8.61655641e-03
-8.13963190e-02 4.92536724e-01 -2.95629352e-01 -3.51779521e-01
6.24245465e-01 4.81814623e-01 3.52400839e-01 -5.51289380e-01
1.85469106e-01 3.58314991e-01 4.38751489e-01 -6.05444670e-01
3.12857658e-01 3.69325012e-01 4.12890583e-01 -8.24262381e-01
-3.75169456e-01 -7.79336512e-01 -9.73073184e-01 1.07151479e-01
8.33292067e-01 -4.07523930e-01 -1.23119044e+00 1.84269428e-01
-1.15180302e+00 -9.41106603e-02 3.53141166e-02 3.46008509e-01
-7.16492534e-01 8.63989711e-01 -4.57545549e-01 -2.21409887e-01
-2.11884081e-01 -1.45610785e+00 9.76023853e-01 -2.34108582e-01
-4.14654046e-01 -7.04985678e-01 4.09890622e-01 3.26234847e-01
9.15326178e-02 4.64284122e-01 1.39670861e+00 -9.42515731e-01
-6.54365003e-01 -8.13501924e-02 -1.74214706e-01 -2.86684364e-01
3.52859497e-01 -8.14477503e-02 -3.11648101e-01 -4.16922480e-01
-2.49480098e-01 -2.22997338e-01 5.51085651e-01 1.11748837e-01
8.14750195e-01 -2.27290377e-01 -6.93045199e-01 4.25790638e-01
1.46784759e+00 2.86963791e-01 5.07343531e-01 2.97491878e-01
6.10146344e-01 7.14638531e-01 6.58587396e-01 4.64758947e-02
7.20181018e-02 1.08399653e+00 4.36961323e-01 1.47980340e-02
2.77364820e-01 -1.46504760e-01 -4.92506213e-02 5.22977412e-01
-6.75679967e-02 -2.99024791e-01 -9.77049470e-01 3.72629285e-01
-2.16013336e+00 -9.19193864e-01 -3.41942996e-01 2.42178512e+00
8.31720531e-01 -7.51994625e-02 9.36313197e-02 7.96648115e-02
8.11015189e-01 -1.25720665e-01 -8.96701813e-01 -2.00121820e-01
-1.07208773e-01 1.19246297e-01 4.56501335e-01 4.10963237e-01
-8.46839190e-01 7.01821506e-01 5.95882607e+00 6.63399458e-01
-1.02783585e+00 -1.80248171e-01 4.69176233e-01 2.62759298e-01
1.45078897e-01 2.32321590e-01 -5.67939222e-01 4.96815860e-01
1.06268871e+00 -2.65083045e-01 4.61362004e-01 7.91332960e-01
1.57546893e-01 -8.23481232e-02 -1.08093846e+00 8.27646136e-01
-2.08163679e-01 -1.59681964e+00 -2.02888891e-01 5.56046367e-01
2.82049119e-01 2.66322702e-01 -6.18872821e-01 -5.28018475e-01
1.88353062e-01 -9.83512759e-01 1.82858199e-01 5.14143765e-01
6.35956705e-01 -8.89210105e-01 7.58123696e-01 4.01670486e-01
-1.34210825e+00 3.04165661e-01 -6.96988404e-01 1.08409718e-01
1.08373389e-01 6.57640278e-01 -9.09394503e-01 3.20562005e-01
5.81973016e-01 6.04357243e-01 -3.15429896e-01 9.00769830e-01
9.97285470e-02 2.35629886e-01 -3.28502864e-01 -2.60025740e-01
-8.47406685e-02 -5.30371666e-01 2.63051093e-01 8.63294125e-01
6.97062239e-02 3.85130823e-01 5.11966646e-01 6.11568987e-01
-3.41649540e-02 5.18270314e-01 -5.62208772e-01 -1.48665577e-01
3.42502922e-01 1.23892891e+00 -1.01643360e+00 -1.70775518e-01
-1.73026487e-01 1.16436887e+00 7.95776963e-01 9.67226736e-03
-4.45366323e-01 -4.47193056e-01 9.76767004e-01 3.26673746e-01
4.37768877e-01 -3.78468871e-01 4.44702744e-01 -7.73512304e-01
1.10633276e-01 -8.05918932e-01 2.73692071e-01 -7.05001056e-01
-1.25469971e+00 5.98552823e-01 -4.21621531e-01 -8.83215070e-01
4.89292666e-03 -9.22742248e-01 -5.98937422e-02 8.51212621e-01
-8.75707686e-01 -7.68371224e-01 -4.89358511e-03 1.62491292e-01
1.20760329e-01 -3.44685726e-02 1.33369768e+00 -1.29407898e-01
-1.81589350e-01 6.54451773e-02 7.63325274e-01 -2.39752248e-01
6.49278045e-01 -1.31540203e+00 6.52574420e-01 2.36019701e-01
9.63500813e-02 9.30553019e-01 9.06094193e-01 -6.68739021e-01
-1.60357618e+00 -9.54076469e-01 1.28753257e+00 -3.83632183e-01
6.70924604e-01 -4.97535944e-01 -1.25957298e+00 2.82731831e-01
-1.92983150e-01 4.24078435e-01 9.54884052e-01 -1.22971833e-01
-4.04905140e-01 6.35268465e-02 -1.26294506e+00 2.84018278e-01
1.00887728e+00 -4.72456396e-01 -3.60202014e-01 6.93327069e-01
6.88846111e-01 -2.77741700e-01 -1.28448641e+00 2.64218181e-01
6.66429341e-01 -1.10451508e+00 1.00996304e+00 -6.32149220e-01
-1.07334703e-01 -9.21841681e-01 -2.37662628e-01 -9.19995189e-01
-5.85546374e-01 -3.87963027e-01 1.08532913e-01 6.63198888e-01
4.36840206e-01 -7.99040794e-01 9.09702241e-01 2.74669439e-01
2.54083574e-01 -1.16296709e+00 -1.07186854e+00 -6.23339534e-01
-2.68172860e-01 2.46203467e-01 5.14665723e-01 7.75728345e-01
2.33125672e-01 6.83624387e-01 -8.73865336e-02 8.56769551e-03
4.84803081e-01 5.30094743e-01 7.90938199e-01 -1.56207895e+00
-3.76705378e-01 2.94936821e-02 -1.01364648e+00 -9.18742716e-01
1.41145304e-01 -9.18177724e-01 -1.54007852e-01 -1.55423892e+00
4.39612478e-01 -1.94342136e-02 -2.78787285e-01 5.48382580e-01
1.23601019e-01 2.51419842e-01 -1.83812648e-01 5.27741373e-01
-7.83748567e-01 2.52453506e-01 7.72458375e-01 6.55407533e-02
6.10427037e-02 -2.10533053e-01 -3.14523816e-01 4.61111069e-01
7.29019284e-01 -5.17518699e-01 -2.32286602e-01 2.10848823e-01
9.56353620e-02 3.18664834e-02 1.59894347e-01 -8.29718113e-01
1.68723553e-01 -2.47863442e-01 2.70284027e-01 -6.14466727e-01
4.40952152e-01 -9.29621398e-01 7.29029119e-01 8.06112885e-01
-2.05015734e-01 4.06118482e-01 -1.65773928e-01 8.32180619e-01
-5.29484451e-02 -1.39807127e-02 9.36010182e-01 -5.15113994e-02
-2.30073214e-01 1.23112351e-01 -2.09582493e-01 -3.89901072e-01
1.12920690e+00 -2.45854795e-01 -2.39608571e-01 1.51899830e-01
-8.12649727e-01 -1.07592084e-01 1.17889810e+00 7.57199228e-02
5.53369462e-01 -9.87408578e-01 -2.51848519e-01 1.45888209e-01
3.97684604e-01 -4.07102615e-01 -6.24962561e-02 6.59394801e-01
-9.73754883e-01 7.04861879e-01 -9.90446061e-02 -8.38346601e-01
-1.89646840e+00 7.37611175e-01 3.30692917e-01 -4.64598954e-01
-5.87487757e-01 4.17429268e-01 3.98748785e-01 -6.61176205e-01
-2.27987528e-01 -6.66507930e-02 1.99159514e-02 -4.31730062e-01
4.39194769e-01 2.74655461e-01 3.36902112e-01 -1.06655645e+00
-5.01625836e-01 8.46584797e-01 -1.82252720e-01 4.37436879e-01
1.42795050e+00 2.34760359e-01 -7.41295159e-01 2.34946623e-01
1.24599266e+00 -1.39926091e-01 -9.71032023e-01 -1.67752713e-01
2.69670993e-01 -4.18167263e-01 -5.85341215e-01 -7.60528028e-01
-6.15027368e-01 5.33272326e-01 6.39163733e-01 -6.68767467e-02
7.74482131e-01 3.31679285e-01 6.50672376e-01 7.55560935e-01
8.02611172e-01 -5.78583539e-01 -2.69543111e-01 4.50955480e-01
5.33568203e-01 -9.52258289e-01 1.62242040e-01 -6.52119160e-01
-2.40771815e-01 1.14354062e+00 3.21467966e-01 -8.47329199e-03
4.58579630e-01 -9.65975691e-03 -1.46162897e-01 -5.24786949e-01
-9.28731441e-01 1.88287809e-01 2.08655700e-01 4.51091200e-01
7.82972276e-01 2.80250981e-02 -7.53587127e-01 2.30546724e-02
-4.70733978e-02 -2.55530000e-01 7.89400935e-02 9.58522737e-01
-7.69410968e-01 -1.67316473e+00 -2.80025691e-01 3.43181223e-01
-4.33519661e-01 2.68117078e-02 -7.23511934e-01 4.20129895e-01
-3.77428234e-02 6.93819940e-01 -2.64413953e-01 -1.50940493e-01
3.54413837e-01 2.50528842e-01 3.96301776e-01 -4.73439395e-01
-3.73052537e-01 -7.53176957e-02 -1.82536125e-01 -6.42907023e-01
-2.74427623e-01 -5.65662205e-01 -1.76399779e+00 -2.54924417e-01
-4.38726097e-01 6.84296906e-01 5.74384093e-01 7.42195904e-01
9.17353749e-01 -5.59667125e-02 3.63783121e-01 -6.27426207e-01
-4.38661784e-01 -6.55442774e-01 -5.10772943e-01 5.87730825e-01
-3.62533927e-02 -6.34365857e-01 -6.97299838e-02 1.84872493e-01] | [4.793422698974609, 5.4698262214660645] |
e293f01f-5e7c-46ef-b89c-dfa837715b20 | causal-aware-safe-policy-improvement-for-task | 2103.0637 | null | https://arxiv.org/abs/2103.06370v1 | https://arxiv.org/pdf/2103.06370v1.pdf | Causal-aware Safe Policy Improvement for Task-oriented dialogue | The recent success of reinforcement learning's (RL) in solving complex tasks is most often attributed to its capacity to explore and exploit an environment where it has been trained. Sample efficiency is usually not an issue since cheap simulators are available to sample data on-policy. On the other hand, task oriented dialogues are usually learnt from offline data collected using human demonstrations. Collecting diverse demonstrations and annotating them is expensive. Unfortunately, use of RL methods trained on off-policy data are prone to issues of bias and generalization, which are further exacerbated by stochasticity in human response and non-markovian belief state of a dialogue management system. To this end, we propose a batch RL framework for task oriented dialogue policy learning: causal aware safe policy improvement (CASPI). This method gives guarantees on dialogue policy's performance and also learns to shape rewards according to intentions behind human responses, rather than just mimicking demonstration data; this couple with batch-RL helps overall with sample efficiency of the framework. We demonstrate the effectiveness of this framework on a dialogue-context-to-text Generation and end-to-end dialogue task of the Multiwoz2.0 dataset. The proposed method outperforms the current state of the art on these metrics, in both case. In the end-to-end case, our method trained only on 10\% of the data was able to out perform current state in three out of four evaluation metrics. | ['Caiming Xiong', 'Kazuma Hashimoto', 'Govardana Sachithanandam Ramachandran'] | 2021-03-10 | null | null | null | null | ['dialogue-management'] | ['natural-language-processing'] | [ 8.36096630e-02 5.91338813e-01 -1.81732357e-01 -3.52868378e-01
-9.03366506e-01 -5.91220081e-01 1.00867248e+00 -6.30722344e-02
-6.93507612e-01 1.33390808e+00 2.96313494e-01 -2.46578142e-01
3.51727419e-02 -3.57876569e-01 -5.69721878e-01 -4.50760424e-01
-1.53238848e-01 1.01701188e+00 9.69798341e-02 -6.31519198e-01
2.84671992e-01 1.61397994e-01 -1.27454472e+00 2.54970104e-01
9.76072311e-01 6.54747546e-01 5.24562120e-01 1.17021704e+00
-8.81247073e-02 1.14891803e+00 -8.62862468e-01 -1.02801703e-01
1.35074884e-01 -5.94959080e-01 -1.09051406e+00 2.53870152e-02
1.42329605e-02 -7.03829944e-01 -2.22727269e-01 6.74498022e-01
6.76530957e-01 4.45672870e-01 5.24795711e-01 -1.11366904e+00
6.72211871e-02 7.59758651e-01 -8.28047246e-02 -6.49306029e-02
6.04052424e-01 8.89951110e-01 9.57193553e-01 -5.02793431e-01
8.05229068e-01 1.68738651e+00 1.93594262e-01 1.07434011e+00
-1.38911724e+00 -3.18365186e-01 1.00278430e-01 -1.43150091e-01
-4.21091259e-01 -6.47183120e-01 5.92385411e-01 -2.93802887e-01
1.15521681e+00 2.65168026e-02 4.92460281e-01 1.56228662e+00
2.28087232e-02 1.34983611e+00 1.62265348e+00 -3.66059273e-01
3.36181492e-01 4.51340973e-01 -3.14673692e-01 6.36922240e-01
-6.00038290e-01 4.88141060e-01 -6.87756658e-01 -1.59900919e-01
4.21650261e-01 -4.38523918e-01 -1.77515790e-01 -3.72314572e-01
-1.22182512e+00 9.90092874e-01 1.20357059e-01 6.52163327e-02
-5.72556317e-01 2.51735628e-01 7.15361416e-01 7.31520474e-01
3.93908739e-01 8.23336065e-01 -7.19222605e-01 -9.12743151e-01
-5.68132043e-01 7.71526456e-01 1.20924675e+00 7.99056470e-01
4.09688026e-01 1.14809245e-01 -4.88186002e-01 9.13352549e-01
1.92038372e-01 4.58977908e-01 6.67516708e-01 -1.21503305e+00
7.62558103e-01 3.05847108e-01 3.95037919e-01 -2.00709298e-01
-4.70874786e-01 -2.42451858e-03 -4.60639119e-01 4.78922337e-01
7.84526229e-01 -5.61177671e-01 -3.96896631e-01 1.86942077e+00
4.66592550e-01 -2.76287556e-01 5.31603694e-01 7.35428751e-01
3.65520447e-01 7.31910825e-01 1.28901228e-01 -3.80176097e-01
9.96091843e-01 -1.02327943e+00 -8.27909112e-01 -2.18472630e-01
7.76338279e-01 -4.46624398e-01 1.39822793e+00 6.17920995e-01
-1.08174109e+00 -5.23587346e-01 -6.02849901e-01 2.91222721e-01
-3.23347859e-02 -4.57617864e-02 4.79386538e-01 3.31735075e-01
-1.00935066e+00 9.21083212e-01 -6.23263538e-01 -2.97201604e-01
1.72995761e-01 4.17690545e-01 -1.55619264e-01 2.63325602e-01
-1.29050231e+00 1.22686768e+00 5.20526350e-01 -1.97946385e-01
-1.37044775e+00 -4.87606823e-01 -5.63449621e-01 -1.87156335e-01
8.27150762e-01 -3.92137855e-01 2.01061559e+00 -8.66679549e-01
-2.52879572e+00 3.81480277e-01 1.42300457e-01 -8.41245532e-01
1.03628075e+00 -5.97923398e-01 1.77059844e-01 9.43423659e-02
-1.40404642e-01 9.21620727e-01 7.91006148e-01 -1.17355728e+00
-8.10560703e-01 -4.57466729e-02 4.09008920e-01 5.33198714e-01
-4.86045796e-03 -2.06664339e-01 2.33203575e-01 -7.33874217e-02
-7.16684282e-01 -1.12175488e+00 -3.57592791e-01 -3.74736995e-01
-2.92016357e-01 -8.04959118e-01 8.68982375e-01 -6.36320114e-01
7.46869504e-01 -1.73486280e+00 3.45231980e-01 -2.49086589e-01
-1.07076079e-01 3.77009541e-01 -1.60893187e-01 8.18337619e-01
2.40088299e-01 -1.27519578e-01 5.29182190e-03 -4.43625778e-01
2.32126176e-01 3.57046813e-01 -3.86707395e-01 2.54246950e-01
3.07545632e-01 8.30176890e-01 -1.35038042e+00 -4.66922611e-01
4.13771689e-01 -1.12713471e-01 -7.18153238e-01 8.89610171e-01
-8.86183143e-01 1.05568898e+00 -4.86201614e-01 1.01645522e-01
-1.52937114e-01 1.28396258e-01 3.13152432e-01 3.74467164e-01
-1.25038221e-01 5.98499477e-01 -8.22604895e-01 2.07285619e+00
-8.75671506e-01 4.37455863e-01 6.85154349e-02 -9.77239132e-01
7.96014428e-01 6.77416861e-01 1.96822912e-01 -7.15714753e-01
-3.21277007e-02 1.89344004e-01 3.79863858e-01 -7.59009600e-01
5.31159282e-01 -1.25472456e-01 -9.12494510e-02 6.21820748e-01
3.15963060e-01 -5.07801831e-01 1.49180606e-01 2.50675321e-01
9.79982555e-01 6.74070716e-01 3.72180670e-01 -1.91364571e-01
4.68333095e-01 1.65872499e-01 3.08350176e-01 9.65395451e-01
-3.36341023e-01 -1.27969638e-01 8.02261353e-01 -3.01938146e-01
-1.00389504e+00 -5.23324966e-01 3.73225033e-01 1.33647692e+00
-3.56159538e-01 -6.01066314e-02 -8.13877463e-01 -1.11906278e+00
-1.89236477e-01 1.20261586e+00 -4.85730410e-01 -2.11595632e-02
-6.99767470e-01 -2.85434127e-01 5.71345627e-01 2.05023903e-02
4.68493432e-01 -1.59375858e+00 -1.08082569e+00 5.33282638e-01
-2.03666627e-01 -1.03667581e+00 -2.70783663e-01 2.41612032e-01
-8.62654388e-01 -9.96922970e-01 -6.07478201e-01 -1.03365660e-01
1.79683954e-01 -2.12742165e-01 1.10510242e+00 -2.21212253e-01
-3.72998565e-02 6.61192715e-01 -4.57474172e-01 -4.57031667e-01
-1.16135955e+00 2.44140312e-01 2.23571226e-01 -3.44522357e-01
-1.26421347e-01 -4.17655945e-01 -5.33762217e-01 1.18784972e-01
-5.85694134e-01 1.24581583e-01 6.72560513e-01 1.31558371e+00
-1.72404647e-01 -3.15151870e-01 9.00937140e-01 -1.03319204e+00
1.28201735e+00 -2.88703173e-01 -6.16133213e-01 9.74743888e-02
-7.83260047e-01 6.67469382e-01 8.01367700e-01 -6.48693144e-01
-1.30318582e+00 -2.69555785e-02 -4.99557219e-02 -2.13030502e-01
-3.61543983e-01 2.07302824e-01 1.22368418e-01 3.84831250e-01
7.81416297e-01 2.15214327e-01 4.91067231e-01 -3.14192683e-01
5.83466887e-01 7.07139194e-01 2.66358197e-01 -1.12884605e+00
3.89139473e-01 -8.54765326e-02 -1.35419503e-01 -8.03279519e-01
-6.10751867e-01 -2.88774699e-01 -3.87088925e-01 -4.23522413e-01
6.57145381e-01 -6.67779088e-01 -1.22209287e+00 2.24322796e-01
-1.19855678e+00 -1.20357335e+00 -4.85014498e-01 3.71260643e-01
-1.11911142e+00 2.74186075e-01 -4.82141823e-01 -1.46698189e+00
-3.86584997e-01 -1.28141868e+00 9.22493517e-01 1.93543553e-01
-3.98344964e-01 -1.04730332e+00 3.49329740e-01 2.86238313e-01
4.50922191e-01 9.82290804e-02 7.39878297e-01 -1.05727863e+00
-2.21627846e-01 5.25668338e-02 1.63201988e-01 4.27865028e-01
-1.34976536e-01 -4.04423296e-01 -1.08806551e+00 -4.59435344e-01
2.86134947e-02 -1.26784194e+00 3.67272466e-01 2.19348222e-02
7.28156447e-01 -6.84467494e-01 5.72437532e-02 -2.66975343e-01
9.18080270e-01 2.09587753e-01 2.08184958e-01 2.08426207e-01
2.91758776e-01 1.19280374e+00 1.19783270e+00 6.44369066e-01
3.59235227e-01 9.76606786e-01 4.53336000e-01 1.90131143e-01
1.10017568e-01 -4.98252034e-01 9.30086136e-01 3.48509133e-01
-2.37926841e-02 -2.07170621e-01 -7.10047901e-01 5.13838649e-01
-2.13542414e+00 -9.56182003e-01 3.01693797e-01 2.16718459e+00
1.35140407e+00 2.76306599e-01 5.64066648e-01 -2.62696207e-01
2.42007241e-01 2.81913616e-02 -6.86802149e-01 -6.88034058e-01
4.54810739e-01 1.18176267e-01 2.34812483e-01 7.23421931e-01
-6.93720818e-01 1.25195050e+00 5.33682060e+00 8.11793625e-01
-9.17742372e-01 1.14988327e-01 5.47332644e-01 -4.99338061e-02
9.60367471e-02 8.28505903e-02 -8.24847698e-01 2.92424768e-01
1.27175689e+00 6.81177825e-02 8.22887838e-01 1.00252450e+00
6.10186458e-01 -4.39705104e-01 -1.41159952e+00 5.78041494e-01
-3.67375731e-01 -8.76528680e-01 -4.36589152e-01 1.71663880e-01
4.18979317e-01 -2.37576887e-02 -8.67119655e-02 9.48489904e-01
8.95137429e-01 -9.84267116e-01 6.15563571e-01 3.99504006e-01
6.44168496e-01 -7.63005972e-01 6.40552461e-01 1.09647024e+00
-3.29329133e-01 -1.50703952e-01 -2.13477820e-01 -1.02549940e-01
6.86308295e-02 5.91115281e-02 -1.87749028e+00 2.84308821e-01
2.21027479e-01 3.14822972e-01 -2.39167009e-02 3.03438902e-01
-4.29096609e-01 5.96098483e-01 -2.33941540e-01 -5.70296407e-01
6.10631049e-01 -1.15729466e-01 7.21638918e-01 1.27857471e+00
-9.02036205e-02 3.51319909e-02 5.21239400e-01 7.40084589e-01
9.31889042e-02 4.68117278e-03 -8.19227576e-01 -1.58236295e-01
2.78270304e-01 1.19253588e+00 -1.58300161e-01 -3.62090528e-01
3.93439792e-02 8.87364864e-01 5.51967323e-01 1.12021044e-01
-5.90780854e-01 -5.95055930e-02 3.88316721e-01 -2.55372614e-01
-4.74950206e-03 -1.09036036e-01 2.68869519e-01 -8.92058909e-01
-2.88285047e-01 -1.55192435e+00 6.65465742e-02 -2.95322478e-01
-9.33360040e-01 4.70586896e-01 2.71556735e-01 -9.31418657e-01
-1.14543676e+00 -5.35315394e-01 -2.51512229e-01 8.42804790e-01
-1.44476295e+00 -7.77960241e-01 2.42122784e-01 4.76375014e-01
1.23804176e+00 -3.62038523e-01 1.02149415e+00 -3.32108855e-01
-2.58261472e-01 3.99816960e-01 -1.48297399e-02 -1.64183423e-01
8.97766352e-01 -1.63372946e+00 1.84851378e-01 3.02060217e-01
-9.18548554e-02 3.45935702e-01 1.14871824e+00 -4.82424736e-01
-1.47141099e+00 -6.28858387e-01 6.05722785e-01 -4.61030304e-01
6.45652473e-01 -4.47243273e-01 -6.13754392e-01 3.68450493e-01
5.53273737e-01 -4.80677366e-01 2.08313599e-01 2.19009951e-01
8.68044794e-03 1.14925556e-01 -1.21527874e+00 7.66877234e-01
6.72376156e-01 -3.11252028e-01 -6.43944681e-01 6.79110706e-01
6.72770619e-01 -6.25724375e-01 -8.42487097e-01 8.94574448e-02
3.62068564e-01 -1.02614510e+00 6.67508245e-01 -9.29853439e-01
5.12591779e-01 7.80715048e-02 1.01997614e-01 -1.72198963e+00
4.43758518e-01 -1.22508466e+00 -1.90176368e-01 1.08779156e+00
4.30144966e-01 -5.48411489e-01 6.36954725e-01 6.23299778e-01
-9.66419280e-02 -8.09960783e-01 -8.58072996e-01 -7.00954676e-01
9.22193378e-02 -2.42075250e-01 1.99169785e-01 5.42138755e-01
2.57086545e-01 7.80037105e-01 -7.79318273e-01 -3.90119672e-01
5.32690048e-01 -2.18876675e-02 1.36828732e+00 -8.99139166e-01
-7.45001197e-01 -3.59832406e-01 3.61704648e-01 -1.28904903e+00
4.75091070e-01 -4.54243958e-01 5.83398044e-01 -1.09047580e+00
-2.46750295e-01 -6.08951390e-01 3.04208249e-01 3.74358386e-01
-1.78374514e-01 -6.68211937e-01 4.44659829e-01 1.74974337e-01
-7.39154279e-01 8.58351171e-01 1.42721820e+00 -3.73943001e-02
-5.12087047e-01 2.47649938e-01 -1.95203543e-01 6.02420986e-01
9.50699270e-01 -5.17592609e-01 -6.79754376e-01 1.58448070e-01
-4.52994965e-02 8.44987929e-01 1.75053179e-01 -7.72301197e-01
4.08604220e-02 -4.08697248e-01 -1.53866082e-01 -2.62441635e-01
5.06514132e-01 -5.22729814e-01 -3.80781889e-01 7.38638163e-01
-9.72379684e-01 -5.51683493e-02 1.00621969e-01 8.02631319e-01
8.34375396e-02 -4.13565427e-01 7.56293535e-01 -4.55547869e-01
-5.34312129e-01 -1.08780019e-01 -4.83747512e-01 3.40157717e-01
8.94097745e-01 2.63161868e-01 -2.24876821e-01 -8.43421638e-01
-4.57925290e-01 5.89721441e-01 8.45778510e-02 4.14278477e-01
4.10785466e-01 -7.27626383e-01 -8.92345250e-01 -2.81597257e-01
-2.50791386e-02 8.46233219e-02 -5.05970232e-02 8.86440098e-01
-2.09243074e-01 5.74880302e-01 -1.54336661e-01 -6.22554541e-01
-1.16627681e+00 3.97441536e-01 3.23387593e-01 -1.05656540e+00
-5.91868281e-01 6.87355518e-01 -1.20012881e-02 -7.46078551e-01
5.07302821e-01 -2.63149112e-01 -3.13512534e-01 -1.28340840e-01
3.06278229e-01 2.31451631e-01 -3.31604511e-01 -9.85885225e-03
1.44572631e-01 -2.42714927e-01 -3.40737760e-01 -8.58783603e-01
1.23517990e+00 2.02187262e-02 2.94030190e-01 7.80987918e-01
7.70421624e-01 -1.98258936e-01 -1.69874024e+00 -2.34670639e-01
2.05400661e-01 -2.69863307e-01 -3.34702700e-01 -1.18970180e+00
-3.00240040e-01 9.64776576e-01 4.64299649e-01 3.82140785e-01
5.32395244e-01 -3.54644299e-01 5.77075481e-01 8.85136724e-01
5.53632319e-01 -1.37656951e+00 5.15403092e-01 6.84813440e-01
1.01679409e+00 -1.52314568e+00 -1.66354820e-01 2.94603765e-01
-1.34193254e+00 1.10613298e+00 7.29318917e-01 -1.30265355e-01
-7.26405904e-02 -1.02207460e-01 8.98070037e-02 -3.02945040e-02
-1.36573660e+00 -7.79467672e-02 -1.49620056e-01 6.90202594e-01
4.07997906e-01 3.87635715e-02 -1.87741250e-01 -1.20344877e-01
-1.52090222e-01 -2.74733324e-02 4.62855101e-01 8.05327952e-01
-4.26938087e-01 -1.42137015e+00 -1.79280460e-01 1.97826073e-01
-3.10880363e-01 1.54294416e-01 -4.55993980e-01 8.88772190e-01
-4.75074351e-01 1.15798891e+00 -4.67635900e-01 -1.58381194e-01
3.45773757e-01 3.14002544e-01 4.94897813e-01 -6.47420287e-01
-9.97075558e-01 -2.12682225e-02 6.38729751e-01 -7.70227075e-01
-3.70701581e-01 -8.33992779e-01 -1.13520813e+00 -5.30667715e-02
-2.33586296e-01 4.96191978e-01 7.77753770e-01 1.01805937e+00
1.79479361e-01 5.46240628e-01 8.97471189e-01 -9.36124623e-01
-1.56212068e+00 -1.45219696e+00 -2.13457271e-01 3.39160323e-01
4.02058840e-01 -6.14843011e-01 -2.24740848e-01 -2.62287408e-01] | [13.02002239227295, 8.060592651367188] |
6aba92cf-15ad-4fb7-84a1-4b2ef4bb6269 | a-universally-deployable-asr-frontend-for | 2209.0641 | null | https://arxiv.org/abs/2209.06410v1 | https://arxiv.org/pdf/2209.06410v1.pdf | A Universally-Deployable ASR Frontend for Joint Acoustic Echo Cancellation, Speech Enhancement, and Voice Separation | Recent work has shown that it is possible to train a single model to perform joint acoustic echo cancellation (AEC), speech enhancement, and voice separation, thereby serving as a unified frontend for robust automatic speech recognition (ASR). The joint model uses contextual information, such as a reference of the playback audio, noise context, and speaker embedding. In this work, we propose a number of novel improvements to such a model. First, we improve the architecture of the Cross-Attention Conformer that is used to ingest noise context into the model. Second, we generalize the model to be able to handle varying lengths of noise context. Third, we propose Signal Dropout, a novel strategy that models missing contextual information. In the absence of one or more signals, the proposed model performs nearly as well as task-specific models trained without these signals; and when such signals are present, our system compares well against systems that require all context signals. Over the baseline, the final model retains a relative word error rate reduction of 25.0% on background speech when speaker embedding is absent, and 61.2% on AEC when device playback is absent. | ['Quan Wang', 'Arun Narayanan', "Tom O'Malley"] | 2022-09-14 | null | null | null | null | ['acoustic-echo-cancellation', 'acoustic-echo-cancellation'] | ['medical', 'speech'] | [ 4.99762088e-01 -6.50776103e-02 3.95253330e-01 -3.24568152e-01
-1.31894052e+00 -3.97762179e-01 4.20264691e-01 -6.71710074e-02
-6.61982000e-01 3.11897725e-01 5.09656370e-01 -5.25997698e-01
2.88706899e-01 -2.51012370e-02 -8.35303962e-01 -6.40056431e-01
2.21125588e-01 -2.17981204e-01 3.91156077e-01 -3.61356527e-01
-1.40475512e-01 5.46589673e-01 -1.56647241e+00 3.48304749e-01
6.60955667e-01 8.59301925e-01 4.44434196e-01 1.12665427e+00
1.10888980e-01 5.23641288e-01 -9.99884486e-01 -6.84640631e-02
1.22896349e-02 -2.78777778e-01 -3.88937801e-01 -8.50535110e-02
5.68136394e-01 -3.95964444e-01 -5.71064830e-01 8.01574171e-01
9.30795193e-01 2.08513632e-01 2.59481281e-01 -6.86350942e-01
-3.52003634e-01 5.72575331e-01 -1.25502214e-01 2.02995270e-01
2.06203714e-01 2.02885777e-01 7.73413420e-01 -1.08675528e+00
1.66553304e-01 1.21317506e+00 6.08905196e-01 8.77559006e-01
-1.39676821e+00 -7.28488266e-01 4.69852954e-01 3.90405506e-02
-1.26928294e+00 -1.24314892e+00 7.89209962e-01 -9.27894711e-02
1.30336106e+00 5.64234078e-01 2.93344557e-01 1.30544960e+00
-1.40811369e-01 8.15009475e-01 6.51437342e-01 -7.06091285e-01
2.18917623e-01 2.01933846e-01 3.14213097e-01 7.26387352e-02
-3.29365253e-01 2.15832517e-01 -5.58964491e-01 -3.11258584e-01
2.30021074e-01 -3.27922553e-01 -6.49526656e-01 1.78985611e-01
-7.63929963e-01 4.03842539e-01 -1.75897032e-02 4.75801259e-01
-3.14306110e-01 1.60803154e-01 3.99086505e-01 3.88455421e-01
5.19866645e-01 3.03356111e-01 -3.23629409e-01 -1.49782434e-01
-1.12016404e+00 -1.70760620e-02 8.68368804e-01 9.04995382e-01
3.64574730e-01 7.78024435e-01 -2.36556515e-01 1.27456331e+00
2.51141429e-01 7.32686043e-01 4.48049784e-01 -7.86173344e-01
6.15504384e-01 -2.57809132e-01 1.47778675e-01 -6.21921241e-01
-1.50658190e-01 -8.21814656e-01 -4.90794420e-01 7.38138929e-02
5.11661135e-02 -3.25201660e-01 -1.10624063e+00 2.00397635e+00
6.87613559e-04 5.82485676e-01 1.85519382e-01 7.26410329e-01
6.56889677e-01 7.21830547e-01 -2.29740459e-02 -2.14662999e-01
1.00717831e+00 -9.08788323e-01 -1.17461491e+00 -5.03060639e-01
3.35431814e-01 -1.08541787e+00 1.01832342e+00 5.18560469e-01
-1.25397003e+00 -6.46587193e-01 -1.42646194e+00 5.28853610e-02
-1.91163987e-01 1.54716164e-01 -6.96875528e-02 8.91219497e-01
-1.47311163e+00 4.56407100e-01 -7.78048098e-01 -1.28766522e-01
-1.95254207e-01 5.48506141e-01 -2.89757162e-01 -1.18361212e-01
-1.27911103e+00 7.64356256e-01 -2.90769730e-02 3.33463371e-01
-9.24429536e-01 -6.02235675e-01 -1.01544297e+00 1.96912363e-01
2.97861516e-01 -2.53208101e-01 1.46540511e+00 -9.03543234e-01
-1.74205339e+00 3.14704269e-01 -5.32079995e-01 -4.65949625e-01
2.08205879e-01 -5.71072698e-01 -9.28887188e-01 5.37891053e-02
-5.43408930e-01 2.26441965e-01 1.16573930e+00 -1.22942162e+00
-4.56747115e-01 -5.09084240e-02 -2.57315814e-01 1.35147840e-01
-3.84217799e-01 4.29823458e-01 -8.60114515e-01 -8.53924274e-01
-1.25651628e-01 -8.58347833e-01 -1.82846874e-01 -3.93930376e-01
-4.16670769e-01 1.81479812e-01 8.64087999e-01 -1.11745441e+00
1.43575895e+00 -2.64456248e+00 -8.05968121e-02 2.84702420e-01
-2.74203390e-01 7.05182850e-01 -4.74963546e-01 2.35013515e-01
-2.59092510e-01 1.34885654e-01 -3.50604177e-01 -8.43480766e-01
-1.36236975e-03 1.21250547e-01 -3.37668985e-01 2.18553379e-01
5.12571812e-01 4.23433572e-01 -4.52012330e-01 1.12672552e-01
1.74091756e-01 9.41002369e-01 -7.63502836e-01 2.20196575e-01
1.58890709e-01 2.57168084e-01 1.06445462e-01 2.19353333e-01
7.12173343e-01 4.50969815e-01 7.20831826e-02 -9.97269526e-02
-7.37697780e-02 9.27697301e-01 -1.45423937e+00 1.43040740e+00
-7.01635242e-01 7.85167217e-01 9.06343937e-01 -6.50120735e-01
8.30553591e-01 7.78903842e-01 -4.92191836e-02 -5.51241994e-01
-8.60582367e-02 4.26192433e-01 2.15889618e-01 -2.10834846e-01
4.07842755e-01 -7.43223950e-02 1.79023787e-01 1.18153483e-01
1.09765634e-01 -1.36242837e-01 -1.70815930e-01 1.37056842e-01
1.31330323e+00 -3.70058149e-01 -1.74225494e-01 6.13693446e-02
6.85242116e-01 -7.50380695e-01 5.88553131e-01 8.74300659e-01
-1.47231102e-01 9.07280385e-01 1.00882590e-01 2.93205142e-01
-8.29569221e-01 -9.96217489e-01 -2.64158435e-02 1.19090855e+00
-2.71353513e-01 -4.83848840e-01 -8.27877581e-01 -3.06375146e-01
-1.66130647e-01 1.06217682e+00 -1.38533637e-01 -3.63179028e-01
-1.02296019e+00 -5.02179861e-01 6.54213071e-01 6.23900950e-01
3.76936458e-02 -8.07432830e-01 1.01329111e-01 4.09271836e-01
-1.90824315e-01 -1.23884714e+00 -9.58838105e-01 4.67390299e-01
-6.15218461e-01 -5.05692601e-01 -6.78530335e-01 -7.92620361e-01
2.16770425e-01 1.22794613e-01 7.80709684e-01 9.47225913e-02
-8.47031623e-02 5.68250358e-01 -1.99134052e-01 -2.36433089e-01
-7.58548617e-01 -1.63919508e-01 2.37874329e-01 1.67747393e-01
8.24940950e-02 -5.38004041e-01 -3.52877736e-01 3.35680753e-01
-8.84253144e-01 -3.38653594e-01 5.28844059e-01 9.27632689e-01
3.44296277e-01 -1.28555462e-01 7.78068304e-01 -5.90462267e-01
6.99627638e-01 -2.26542905e-01 -2.70471931e-01 8.13430175e-02
-2.20502824e-01 -4.35821712e-02 6.19638741e-01 -6.77053928e-01
-1.17146742e+00 3.55589688e-02 -8.20864677e-01 -3.91346097e-01
-3.54061186e-01 1.90629646e-01 -6.52965426e-01 2.03721806e-01
4.75854576e-01 2.44568720e-01 -1.89324424e-01 -9.59345222e-01
2.29640856e-01 1.10160267e+00 6.14993751e-01 -2.57194638e-01
6.16296411e-01 3.82406041e-02 -5.98664284e-01 -1.15727675e+00
-3.05684149e-01 -6.51446342e-01 -2.94368207e-01 1.02275923e-01
6.43203855e-01 -9.01835799e-01 -2.73820460e-01 5.09667933e-01
-1.27730381e+00 -3.19314599e-01 -4.68382351e-02 8.34166169e-01
-2.44304135e-01 3.31120908e-01 -7.52727926e-01 -1.25031686e+00
-3.81162614e-01 -1.30720878e+00 9.18232024e-01 -2.23085463e-01
-1.48506925e-01 -6.55980349e-01 -2.72696942e-01 9.63958502e-02
8.59151185e-01 -4.07866985e-01 6.99535131e-01 -9.75854933e-01
-2.46072084e-01 -2.77911395e-01 3.14470977e-01 9.44786489e-01
2.24071369e-01 -1.34933233e-01 -1.52467895e+00 -5.54619491e-01
3.78153145e-01 1.07800856e-01 9.65106010e-01 2.59023249e-01
8.89461517e-01 -2.73439765e-01 -1.55157596e-01 4.57860082e-01
8.38572800e-01 6.02131307e-01 6.43595934e-01 -2.26314604e-01
4.23264712e-01 5.69441736e-01 2.96369940e-02 -1.40680000e-01
-1.33361205e-01 9.39260840e-01 7.63677210e-02 -3.57056946e-01
-5.50077915e-01 -3.65452841e-02 7.74691284e-01 1.32728159e+00
4.69529688e-01 -3.07674497e-01 -7.19191551e-01 6.30373120e-01
-1.31530452e+00 -8.18174422e-01 4.19913209e-04 2.40680432e+00
7.96455681e-01 3.39723378e-01 -1.60258502e-01 3.98260415e-01
9.09756958e-01 1.04150191e-01 -4.75712627e-01 -5.14302492e-01
-1.95023686e-01 4.21538413e-01 4.03631419e-01 1.01685953e+00
-9.98292029e-01 7.59166777e-01 6.85614872e+00 8.48292768e-01
-1.26730216e+00 2.85353571e-01 2.33054087e-01 -4.26019192e-01
-3.49916548e-01 -2.66140640e-01 -7.43023396e-01 3.35699290e-01
1.44182003e+00 4.13682401e-01 5.10028362e-01 5.46645284e-01
4.41171974e-01 1.31061852e-01 -1.17779505e+00 8.31427157e-01
3.00502270e-01 -6.41377747e-01 -1.94616064e-01 -1.81623012e-01
1.93358824e-01 2.32600477e-02 2.13034511e-01 4.65992749e-01
-2.13557072e-02 -8.17979991e-01 7.96835661e-01 2.76616514e-01
6.93686783e-01 -7.10064709e-01 5.76078236e-01 2.28128314e-01
-1.04436815e+00 -7.33632743e-02 4.72416617e-02 2.86458433e-01
2.67949611e-01 4.35344487e-01 -8.84444773e-01 3.87964934e-01
4.50309098e-01 9.29322168e-02 -2.57887751e-01 1.11540282e+00
-2.91354746e-01 1.22280371e+00 -5.31223118e-01 3.21640760e-01
-1.18842207e-01 3.29374045e-01 9.41699028e-01 1.59450698e+00
2.78117627e-01 1.07152769e-02 -6.44616187e-02 5.12017310e-01
-6.18499564e-03 1.25563592e-01 -3.44846696e-01 1.24568135e-01
5.60035110e-01 6.83704853e-01 2.25118664e-03 -2.49765545e-01
-5.44853210e-01 1.17829800e+00 1.52261347e-01 8.68361473e-01
-6.63606882e-01 -7.75948405e-01 7.46293902e-01 3.23908310e-03
4.90501136e-01 -1.89930081e-01 1.87615864e-02 -9.49765742e-01
2.38737866e-01 -9.67403114e-01 -1.48780015e-03 -6.94235086e-01
-8.80241930e-01 8.78088713e-01 -3.59945714e-01 -8.35700393e-01
-3.96370351e-01 -6.19064987e-01 -7.46592641e-01 1.31571388e+00
-1.61645246e+00 -6.87348127e-01 3.54807913e-01 4.42895740e-01
7.14555025e-01 -5.80186471e-02 8.84748578e-01 8.17134976e-01
-6.91649377e-01 1.02736795e+00 1.24250427e-01 9.56288427e-02
9.20008957e-01 -1.12151158e+00 6.78129375e-01 1.19848359e+00
1.44741416e-01 9.87650454e-01 8.72479975e-01 -5.73693752e-01
-1.25218356e+00 -1.04027140e+00 9.67806578e-01 -2.20313787e-01
4.06852335e-01 -8.96855593e-01 -1.25364602e+00 5.21740854e-01
2.57919252e-01 -9.76632982e-02 7.77091563e-01 2.44380951e-01
-4.33385968e-01 -3.31833661e-01 -8.45458865e-01 6.12585783e-01
7.21202135e-01 -8.71344805e-01 -7.38150358e-01 -1.06470041e-01
1.20842540e+00 -3.18233877e-01 -3.73345971e-01 2.43292660e-01
3.40343535e-01 -5.63657820e-01 8.51291716e-01 -3.64881903e-01
-3.82628351e-01 -2.89348662e-01 -4.48914319e-01 -1.36217213e+00
-5.41555248e-02 -1.09503162e+00 -1.66955158e-01 1.51871622e+00
8.57997179e-01 -6.41220927e-01 2.39714086e-01 7.23049641e-01
-6.82189822e-01 -3.04778606e-01 -1.00040269e+00 -9.30278480e-01
-2.93032639e-02 -9.08439100e-01 4.06821489e-01 4.37792420e-01
-1.63858533e-01 3.05917829e-01 -5.43779016e-01 4.55074698e-01
1.93044975e-01 -5.87382436e-01 3.99454534e-01 -7.59463072e-01
-6.10021174e-01 -3.41556937e-01 -2.18896344e-02 -1.35580957e+00
1.44700155e-01 -6.83050752e-01 4.45031226e-01 -1.36845565e+00
-3.88783485e-01 -2.01487973e-01 -6.62814617e-01 3.18554163e-01
-4.08704281e-01 -2.38192957e-02 4.32615042e-01 -1.68677717e-01
-2.51862347e-01 6.80901170e-01 5.50051033e-01 -9.72315595e-02
-5.47425866e-01 3.14947903e-01 -6.59787476e-01 6.85175180e-01
7.52214134e-01 -4.85960364e-01 -2.08561286e-01 -5.32279551e-01
-4.57431763e-01 7.15205818e-02 1.77345112e-01 -1.08399630e+00
3.98535252e-01 4.15974855e-01 1.48809016e-01 -4.75907028e-01
8.07297409e-01 -8.41274202e-01 6.05417415e-02 2.55207866e-01
-5.08301973e-01 -2.48027042e-01 6.48597181e-01 6.36636078e-01
-2.10755363e-01 -2.43946463e-01 8.02254140e-01 3.73632491e-01
-3.47189158e-01 -2.64056057e-01 -7.65963912e-01 1.30826579e-02
3.33745271e-01 1.68319903e-02 -4.71925363e-02 -5.22213995e-01
-1.01179492e+00 1.76680814e-02 -1.80243813e-02 5.30113399e-01
6.38493538e-01 -1.12859952e+00 -7.57262290e-01 5.07272065e-01
-2.36492157e-01 -3.98734272e-01 2.98492819e-01 7.35473871e-01
2.06742659e-01 4.26111698e-01 5.35340011e-01 -3.59456539e-01
-1.47544503e+00 4.54104900e-01 4.70270544e-01 1.91208884e-01
-5.18898666e-01 8.66924405e-01 1.43109247e-01 -3.21481794e-01
8.09134364e-01 -4.57054257e-01 -3.41052599e-02 -2.60580242e-01
8.77808690e-01 1.70224205e-01 6.21675014e-01 -7.70609438e-01
-3.89677405e-01 3.79523426e-01 -3.29353660e-01 -6.12540662e-01
1.21247554e+00 -2.39476174e-01 4.34267044e-01 6.00183129e-01
1.21996593e+00 5.59709370e-01 -1.21079624e+00 -2.88305402e-01
4.95677209e-03 -2.18525127e-01 3.79324585e-01 -1.03115594e+00
-7.53007948e-01 1.09762752e+00 7.08511114e-01 6.61720037e-02
1.29974127e+00 -2.28618577e-01 7.77729750e-01 2.20719323e-01
-3.08993571e-02 -1.10480976e+00 -1.96058646e-01 7.15627432e-01
1.13377464e+00 -7.83614099e-01 -6.24035537e-01 -3.80663306e-01
-4.83157665e-01 7.25488544e-01 3.33886415e-01 1.75583258e-01
7.45572209e-01 6.37032211e-01 1.80538148e-01 3.51022750e-01
-8.67004514e-01 -3.20462167e-01 5.34381628e-01 6.69119060e-01
4.74416465e-01 -1.54953972e-01 5.91437444e-02 9.13395762e-01
-5.58970086e-02 -4.93372083e-01 2.48360440e-01 8.43574107e-01
-5.07701397e-01 -1.08464730e+00 -5.41813135e-01 1.10405408e-01
-7.46411443e-01 -5.40685773e-01 -4.32617575e-01 4.74838972e-01
-2.69586831e-01 1.53790140e+00 -4.50888909e-02 -4.00401682e-01
9.04718578e-01 5.73237658e-01 -3.03513817e-02 -6.82025313e-01
-8.28047752e-01 6.98209465e-01 2.97384948e-01 -4.39526469e-01
1.52472898e-01 -4.36663300e-01 -1.12332702e+00 2.16922775e-01
-6.89180970e-01 1.94507822e-01 1.00478029e+00 8.40728819e-01
4.67936724e-01 9.22166109e-01 5.34054458e-01 -7.52050757e-01
-6.30678833e-01 -1.09408653e+00 -5.17623663e-01 2.62359530e-01
1.01029027e+00 -3.15271974e-01 -7.45020747e-01 -6.26890734e-02] | [14.767834663391113, 6.161407470703125] |
73f811b4-206c-42e9-8fcf-1655f911ca28 | augmenting-robot-knowledge-consultants-with | 1811.10229 | null | http://arxiv.org/abs/1811.10229v1 | http://arxiv.org/pdf/1811.10229v1.pdf | Augmenting Robot Knowledge Consultants with Distributed Short Term Memory | Human-robot communication in situated environments involves a complex
interplay between knowledge representations across a wide variety of
modalities. Crucially, linguistic information must be associated with
representations of objects, locations, people, and goals, which may be
represented in very different ways. In previous work, we developed a Consultant
Framework that facilitates modality-agnostic access to information distributed
across a set of heterogeneously represented knowledge sources. In this work, we
draw inspiration from cognitive science to augment these distributed knowledge
sources with Short Term Memory Buffers to create an STM-augmented algorithm for
referring expression generation. We then discuss the potential performance
benefits of this approach and insights from cognitive science that may inform
future refinements in the design of our approach. | ['Matthias Scheutz', 'Bradley Oosterveld', 'Evan Krause', 'Ravenna Thielstrom', 'Tom Williams'] | 2018-11-26 | null | null | null | null | ['referring-expression-generation'] | ['computer-vision'] | [ 2.99185038e-01 2.90099651e-01 1.99955016e-01 -3.86674285e-01
-6.71177924e-01 -6.84720755e-01 8.70033860e-01 4.58763331e-01
-3.21175307e-01 7.59469569e-01 1.04489517e+00 -1.59969941e-01
-2.94339687e-01 -1.02614522e+00 -3.48834068e-01 -1.01169147e-01
2.34397538e-02 3.63052249e-01 2.52945453e-01 -5.71270585e-01
5.59795499e-01 5.01685441e-01 -1.78998291e+00 5.28034627e-01
2.87358403e-01 6.31467521e-01 4.07923043e-01 4.34029430e-01
-4.23155606e-01 1.34770489e+00 -6.83373809e-01 -2.07037836e-01
-3.72745931e-01 -4.20177490e-01 -1.29644430e+00 -1.24522328e-01
-1.53340504e-01 5.24811866e-03 -4.20870781e-02 7.01301813e-01
3.88766021e-01 6.61539197e-01 6.18783832e-01 -8.94339561e-01
-1.02154326e+00 7.17041552e-01 5.34669608e-02 2.51565635e-01
1.01043046e+00 3.14056613e-02 6.55894637e-01 -8.80744100e-01
9.36764896e-01 1.53592837e+00 5.42352736e-01 3.16704363e-01
-1.07968652e+00 -7.91035891e-02 2.05830157e-01 4.26885635e-01
-1.39130306e+00 -8.38633239e-01 6.03380382e-01 -3.47167432e-01
1.31384408e+00 1.10044360e-01 6.53924406e-01 1.04991376e+00
-2.37051472e-01 5.08081436e-01 9.67745721e-01 -8.53603721e-01
2.38597497e-01 2.16656327e-01 1.33576885e-01 5.83252907e-01
5.94831444e-02 2.86841094e-02 -1.21581197e+00 -3.13427657e-01
1.03698123e+00 -3.76131445e-01 5.28184846e-02 -3.14965725e-01
-1.55853760e+00 4.88885462e-01 5.71735382e-01 6.35044754e-01
-6.36390269e-01 2.01011047e-01 3.40484053e-01 2.80635685e-01
-8.11298266e-02 7.60082006e-01 -1.48523197e-01 -4.43820775e-01
3.27031426e-02 1.62821516e-01 9.10304546e-01 1.09109533e+00
7.64063239e-01 -2.71069139e-01 -1.30188182e-01 8.45148206e-01
5.48783123e-01 3.46946150e-01 3.52863580e-01 -1.49139678e+00
3.69731933e-01 5.03201842e-01 5.80737591e-01 -1.29684317e+00
-5.97632706e-01 3.52953025e-03 -1.84381157e-01 -9.07512084e-02
3.09314311e-01 -3.57404090e-02 -5.12242734e-01 1.89412415e+00
2.79186457e-01 -2.64157832e-01 4.13933843e-01 8.59871328e-01
7.74113059e-01 2.44477421e-01 5.65693259e-01 2.57798105e-01
1.25931859e+00 -5.02466440e-01 -7.09990144e-01 -4.96112943e-01
7.41130650e-01 -4.59259301e-01 1.01182747e+00 -5.41342683e-02
-1.14623368e+00 -2.42830351e-01 -8.09625924e-01 -5.40657103e-01
-7.99148619e-01 -4.10262913e-01 8.34123075e-01 4.71804231e-01
-1.37817216e+00 1.35589689e-01 -5.83459914e-01 -1.05773103e+00
1.88858330e-01 1.42449681e-02 -2.41733611e-01 -2.99008526e-02
-1.28108394e+00 1.60584152e+00 5.75745881e-01 1.69888631e-01
-3.34803939e-01 -7.72437528e-02 -9.44855154e-01 -1.85629919e-01
3.42713684e-01 -1.18338978e+00 1.41189635e+00 -1.02016509e+00
-1.53533781e+00 8.06848407e-01 -4.14139539e-01 -1.37942299e-01
-4.08300534e-02 7.73343220e-02 -3.48298877e-01 1.03391945e-01
3.52152616e-01 7.00949252e-01 2.18518004e-01 -1.35535383e+00
-6.39338970e-01 -5.25363207e-01 5.47524512e-01 8.33132684e-01
-5.95072890e-03 1.48600221e-01 -1.39986187e-01 -3.03879440e-01
3.24126184e-01 -4.97292489e-01 -1.30595639e-01 5.83705232e-02
6.77300543e-02 1.01202443e-01 1.98799849e-01 -3.35000575e-01
9.05925453e-01 -2.12180161e+00 3.51288050e-01 3.57462287e-01
7.10772946e-02 -3.74625891e-01 -2.35177532e-01 9.39565539e-01
3.69126856e-01 1.38354689e-01 8.58202949e-02 -2.09480703e-01
2.10884795e-01 2.61790216e-01 -3.62613797e-01 5.13969734e-02
-1.37360226e-02 1.02519786e+00 -1.17071104e+00 -5.78307867e-01
3.56662750e-01 6.45102501e-01 -3.99592444e-02 -3.01492643e-02
-2.03248218e-01 4.64089632e-01 -6.51527524e-01 5.05710244e-01
-6.23060539e-02 -1.46900147e-01 3.85727793e-01 1.97392389e-01
-2.32423082e-01 6.65765822e-01 -8.93926859e-01 2.21609831e+00
-7.59378254e-01 5.77177584e-01 1.26194507e-01 -4.67300624e-01
7.39391148e-01 4.11389083e-01 -8.76801088e-02 -7.11181939e-01
1.79434597e-01 -1.09753154e-01 -1.26797602e-01 -6.41155183e-01
8.53650033e-01 -4.38466668e-01 -2.95436978e-01 7.93640375e-01
-2.21184507e-01 -2.03486264e-01 -1.09228455e-01 2.54623264e-01
1.13380158e+00 2.07338244e-01 5.67248106e-01 -6.97335526e-02
2.72788584e-01 3.35753500e-01 -2.48164833e-02 9.32015419e-01
-2.35895887e-01 1.91670403e-01 1.01412535e-01 -2.43170291e-01
-5.91103435e-01 -1.18314302e+00 -4.35157679e-02 1.65476859e+00
3.38010490e-01 -3.20626229e-01 -3.15957576e-01 1.24837957e-01
-3.36687177e-01 1.15189874e+00 -6.08355999e-01 -3.35287303e-01
-3.54754746e-01 -3.30896109e-01 9.24862802e-01 7.56205678e-01
3.65571827e-01 -1.59642863e+00 -1.38928473e+00 3.30069363e-01
-4.68053669e-01 -8.34882617e-01 1.97967395e-01 1.49046540e-01
-5.56617320e-01 -8.11919451e-01 -1.83349028e-01 -7.08791733e-01
5.63696861e-01 3.15733314e-01 1.22515392e+00 5.59549732e-03
6.36503622e-02 1.04413331e+00 -5.56546271e-01 -4.58411962e-01
-3.94147843e-01 -8.40157792e-02 -3.04841816e-01 -2.87871718e-01
4.56846088e-01 -5.54631770e-01 -8.61544237e-02 2.28551030e-02
-7.96330750e-01 2.10405946e-01 3.99427593e-01 4.72000182e-01
1.86482549e-01 -1.94922909e-01 6.60902023e-01 -6.99349582e-01
9.89988863e-01 -9.74967420e-01 4.74876491e-03 3.68070185e-01
1.17911704e-01 2.27094620e-01 1.08773045e-01 -3.43567401e-01
-1.55771577e+00 -7.68015832e-02 1.92646071e-01 1.94734171e-01
-4.80010331e-01 9.94466424e-01 -2.54813075e-01 -1.94071718e-02
8.77752185e-01 2.05998242e-01 -7.33235851e-02 -1.34062737e-01
9.91740048e-01 6.29243255e-01 4.94861454e-01 -1.07720017e+00
1.20528743e-01 4.20607895e-01 -1.65521055e-01 -8.50281596e-01
-5.09637654e-01 -1.02113284e-01 -7.34954059e-01 -3.20335448e-01
4.82253373e-01 -6.82291687e-01 -5.83160520e-01 3.08223873e-01
-1.36285555e+00 -5.93237221e-01 -6.05190754e-01 2.06753448e-01
-8.33588421e-01 5.17115444e-02 -4.12826478e-01 -9.22102392e-01
1.22974209e-01 -5.91579556e-01 9.92587686e-01 6.02604784e-02
-9.96333361e-01 -1.27656341e+00 -2.46567726e-02 1.81156591e-01
7.71718502e-01 1.54781371e-01 1.03029108e+00 -5.20994544e-01
-5.94533563e-01 3.18517238e-02 -2.73264915e-01 -5.72714806e-01
2.19954133e-01 -4.52364862e-01 -7.54475355e-01 3.15292150e-01
4.74816412e-02 -5.37045598e-01 3.30204934e-01 -1.92096941e-02
3.93205255e-01 -1.36873320e-01 -5.03293335e-01 9.50864777e-02
1.25016296e+00 2.63663322e-01 5.68093538e-01 6.25552952e-01
4.63666081e-01 9.43385482e-01 5.91427982e-01 4.55852568e-01
1.21764827e+00 5.79687655e-01 5.12989238e-02 3.41684371e-01
-5.38941147e-03 -2.55516797e-01 1.41316533e-01 4.13002014e-01
-1.82748679e-02 -1.02474794e-01 -1.20291293e+00 8.08401823e-01
-2.02650452e+00 -1.22808778e+00 1.96328282e-01 1.98055339e+00
9.27665055e-01 -3.70345384e-01 -6.61200583e-02 -2.61484653e-01
5.51755786e-01 1.56874731e-01 -5.44874489e-01 -4.97428566e-01
-1.71345696e-01 -6.37752637e-02 -2.48847436e-02 6.83354199e-01
-5.89653015e-01 1.14956748e+00 7.72367048e+00 4.47622202e-02
-8.12828064e-01 2.69938827e-01 -3.64372544e-02 -1.53641820e-01
-5.18499076e-01 5.86149804e-02 -2.30873749e-01 -3.99563499e-02
1.02050948e+00 -4.28352058e-01 7.36575484e-01 3.66046160e-01
2.49773599e-02 -6.04368627e-01 -1.16356218e+00 8.29218984e-01
2.32976109e-01 -1.23195446e+00 1.78323276e-02 -2.08578780e-01
2.75066376e-01 -1.51435621e-02 -4.55596708e-02 1.11687295e-01
8.95045400e-01 -9.64910686e-01 1.09840906e+00 9.62515712e-01
3.79517168e-01 -4.83394414e-01 2.76219845e-01 3.66687864e-01
-1.20376408e+00 -1.45430475e-01 -9.07733738e-02 -6.05035901e-01
4.15426672e-01 -5.69788553e-02 -4.90690649e-01 4.85441566e-01
3.92146081e-01 4.96040732e-01 -4.07239974e-01 7.00062513e-01
-1.68121159e-01 -1.80902243e-01 -3.59423935e-01 -1.73011854e-01
-1.26771823e-01 1.87030092e-01 4.63250071e-01 1.06599867e+00
2.50900894e-01 4.40615386e-01 4.86613177e-02 1.11082125e+00
3.07122827e-01 -6.89899772e-02 -1.14377975e+00 7.06931129e-02
1.16408515e+00 7.99592972e-01 -6.58680797e-01 -4.23702240e-01
-3.91451269e-01 7.86283016e-01 6.07396603e-01 6.28601909e-01
-4.51024592e-01 -6.59101978e-02 6.13612533e-01 -4.46936414e-02
-5.09289354e-02 -4.97256428e-01 -4.38914865e-01 -9.39319015e-01
-1.45190641e-01 -5.39311707e-01 3.27368528e-01 -1.29748058e+00
-1.37705266e+00 5.14917076e-01 2.88730204e-01 -6.18603051e-01
-5.49252927e-01 -2.25137606e-01 -2.12829441e-01 1.01519322e+00
-1.04451907e+00 -1.43036485e+00 -2.89129257e-01 7.01331139e-01
1.47745878e-01 1.71251640e-01 1.37428677e+00 -2.82237589e-01
-9.66800004e-02 -6.86374903e-02 -2.88336426e-01 -6.45003393e-02
4.04283375e-01 -9.15269017e-01 3.34703863e-01 5.77687919e-01
6.24966286e-02 1.10977817e+00 5.38003981e-01 -6.57791555e-01
-1.50479662e+00 -8.41969490e-01 9.11415219e-01 -9.09480989e-01
7.09921956e-01 4.76081334e-02 -8.36920202e-01 1.18162668e+00
3.28816682e-01 -4.49058920e-01 1.02330172e+00 4.20335919e-01
-4.26083297e-01 5.09720802e-01 -1.17453456e+00 7.83027947e-01
1.39700961e+00 -9.86940205e-01 -1.19583559e+00 -8.22447613e-02
3.80071878e-01 -4.13751721e-01 -7.69841731e-01 -2.09839478e-01
5.33055246e-01 -9.74476755e-01 9.40955043e-01 -4.20575589e-01
-6.29355060e-03 -4.07914758e-01 -6.04256690e-01 -1.24676239e+00
-5.09335399e-01 -2.07898498e-01 8.55902880e-02 1.16348672e+00
3.15937012e-01 -9.58332360e-01 1.01673454e-01 1.28906512e+00
-4.48290259e-02 -7.14854673e-02 -9.73071456e-01 -3.07643056e-01
-2.88055688e-02 -7.45864630e-01 8.75798285e-01 9.06871438e-01
7.81246006e-01 6.80408180e-01 1.66704252e-01 4.64788675e-02
2.20136747e-01 -8.91499072e-02 5.13932586e-01 -1.32878387e+00
-3.29987146e-02 -4.92603689e-01 -4.03504759e-01 -9.19025719e-01
3.61436009e-01 -8.14545810e-01 2.25439578e-01 -1.97920918e+00
-6.26156926e-02 -5.50801694e-01 -1.37206167e-01 7.30026960e-01
2.39487737e-01 -1.82032272e-01 2.84907401e-01 1.66583940e-01
-7.86469042e-01 5.12399375e-01 8.11921239e-01 2.52199739e-01
-4.24197078e-01 -6.94952428e-01 -1.18410563e+00 8.32136571e-01
7.62812674e-01 -1.37470618e-01 -5.80277324e-01 -9.13877249e-01
5.47523081e-01 1.23370022e-01 5.49619555e-01 -8.52391958e-01
5.10089993e-01 -4.44170475e-01 2.32452795e-01 -1.88617870e-01
7.53770649e-01 -9.06774402e-01 3.97715181e-01 -1.46193147e-01
-6.42925620e-01 1.42097503e-01 4.48705435e-01 5.78823388e-01
-1.20043121e-01 -8.85608420e-02 2.55966395e-01 -5.95409989e-01
-1.11597323e+00 -6.36519015e-01 -9.70015407e-01 -5.11211231e-02
9.01721120e-01 -4.59723741e-01 -4.24470216e-01 -4.66093570e-01
-7.50876188e-01 4.78815027e-02 8.52241576e-01 5.77229679e-01
7.20535159e-01 -1.31301618e+00 -1.84628040e-01 5.35384305e-02
2.98323691e-01 -8.38530883e-02 -1.23224724e-02 4.25191641e-01
-1.97028458e-01 4.16548759e-01 -4.58460748e-01 -4.33676168e-02
-6.24556124e-01 4.28936213e-01 3.61562163e-01 3.76076788e-01
-4.77935106e-01 6.53617203e-01 -1.14028595e-01 -5.88495493e-01
3.23399678e-02 -4.19468842e-02 -3.97023380e-01 2.08844766e-01
5.44424236e-01 3.61869276e-01 -2.80597270e-01 -1.13059425e+00
-5.25383532e-01 4.70284313e-01 4.15793449e-01 -9.42739666e-01
1.00806844e+00 -7.96486139e-01 -4.75296229e-01 1.14384902e+00
4.74284858e-01 -1.04286909e-01 -6.06416583e-01 -3.75780463e-01
2.63397366e-01 -4.10248786e-01 -2.28326425e-01 -1.11889613e+00
-3.56299132e-01 5.15908182e-01 1.96567506e-01 2.65928835e-01
1.00179124e+00 4.76086676e-01 2.75231868e-01 6.12056077e-01
1.04391527e+00 -8.83030117e-01 5.96324680e-03 7.23049462e-01
1.01133561e+00 -7.39687979e-01 -2.93567270e-01 -2.28076458e-01
-8.81600618e-01 1.01297319e+00 5.23747504e-01 3.87566984e-01
3.98925900e-01 2.17836276e-01 2.90752798e-01 -4.58290160e-01
-1.01869643e+00 -6.10778511e-01 -1.24716289e-01 1.18098390e+00
5.88671267e-01 -1.77195761e-02 -5.16157772e-04 5.74721813e-01
-2.04223737e-01 1.93249971e-01 5.24182200e-01 1.44099081e+00
-4.86332953e-01 -1.05979252e+00 -6.23361588e-01 1.90177038e-01
1.68245494e-01 -2.04387143e-01 -8.24864566e-01 4.37181741e-01
-2.04483643e-02 1.34695435e+00 1.45761117e-01 -1.61746770e-01
4.78242636e-01 3.81876886e-01 6.28643334e-01 -8.96207929e-01
-5.82331717e-01 -4.97661740e-01 4.80447143e-01 -6.06567621e-01
-7.64175534e-01 -8.83804023e-01 -1.67003548e+00 -1.60905197e-01
5.24593927e-02 -2.09001273e-01 4.50264245e-01 1.13226700e+00
8.25342000e-01 4.16658252e-01 -2.89797902e-01 -1.01692760e+00
-8.78102891e-03 -8.64884079e-01 -3.01067621e-01 3.03274333e-01
1.05220459e-01 -7.73554862e-01 7.31219798e-02 1.56581745e-01] | [9.238121032714844, 6.730945110321045] |
83c6bf87-8254-4992-89fe-accb30b89e8b | autoexp-a-multidisciplinary-multi-sensor | 2306.03115 | null | https://arxiv.org/abs/2306.03115v1 | https://arxiv.org/pdf/2306.03115v1.pdf | AutoExp: A multidisciplinary, multi-sensor framework to evaluate human activities in self-driving cars | The adoption of self-driving cars will certainly revolutionize our lives, even though they may take more time to become fully autonomous than initially predicted. The first vehicles are already present in certain cities of the world, as part of experimental robot-taxi services. However, most existing studies focus on the navigation part of such vehicles. We currently miss methods, datasets, and studies to assess the in-cabin human component of the adoption of such technology in real-world conditions. This paper proposes an experimental framework to study the activities of occupants of self-driving cars using a multidisciplinary approach (computer vision associated with human and social sciences), particularly non-driving related activities. The framework is composed of an experimentation scenario, and a data acquisition module. We seek firstly to capture real-world data about the usage of the vehicle in the nearest possible, real-world conditions, and secondly to create a dataset containing in-cabin human activities to foster the development and evaluation of computer vision algorithms. The acquisition module records multiple views of the front seats of the vehicle (Intel RGB-D and GoPro cameras); in addition to survey data about the internal states and attitudes of participants towards this type of vehicle before, during, and after the experimentation. We evaluated the proposed framework with the realization of real-world experimentation with 30 participants (1 hour each) to study the acceptance of SDCs of SAE level 4. | ['Laure Tougne Rodet', 'Stephanie Souche-Le Corvec', 'Florent Laroche', 'Christophe Jallais', 'Romain Guesdon', 'Carlos Crispim-Junior'] | 2023-06-05 | null | null | null | null | ['self-driving-cars'] | ['computer-vision'] | [-3.41136813e-01 1.07849903e-01 -2.92851534e-02 -4.74283636e-01
6.90972954e-02 -2.21074969e-01 7.42952585e-01 -2.14878842e-01
-6.49125695e-01 3.72205198e-01 -3.27007979e-01 -6.22005761e-01
6.08170107e-02 -9.12030339e-01 -7.23121345e-01 -4.70258296e-01
1.65792197e-01 6.05226696e-01 4.11885858e-01 -5.76715767e-01
1.45348325e-01 7.88076639e-01 -2.32390976e+00 -1.23102337e-01
6.46189153e-01 6.82720244e-01 4.05412763e-01 4.70389247e-01
2.33202294e-01 4.34829354e-01 -1.30105197e-01 -9.71325487e-02
3.86086941e-01 3.27140480e-01 -2.84536421e-01 3.83572161e-01
2.01908767e-01 -3.58987987e-01 -2.91649252e-01 9.19309199e-01
1.17692433e-01 1.38191283e-01 4.19514894e-01 -1.99637818e+00
1.24716789e-01 -2.47032881e-01 -1.18421741e-01 8.14079642e-02
4.13782716e-01 7.44497597e-01 1.46227062e-01 -6.63256705e-01
6.48392379e-01 1.19332480e+00 3.06489676e-01 2.06414256e-02
-8.00363779e-01 -8.30774844e-01 -2.24498436e-01 8.34289253e-01
-1.60481310e+00 -4.83929425e-01 9.06518519e-01 -5.15309572e-01
8.23835909e-01 9.50527415e-02 8.94098520e-01 1.15655947e+00
3.65456700e-01 4.16067660e-01 1.18750131e+00 -2.44117051e-01
4.40464616e-01 1.08344483e+00 5.23624301e-01 3.70844841e-01
6.52008474e-01 4.18027073e-01 -6.80169687e-02 3.07137609e-01
1.05255835e-01 1.55508831e-01 3.83229136e-01 -7.30074108e-01
-8.81893873e-01 6.65731072e-01 2.83305049e-02 4.10963416e-01
-7.75532424e-01 -1.03713185e-01 2.35981196e-01 1.01272561e-01
-6.64728135e-02 -4.06784028e-01 -3.05715233e-01 -3.63898009e-01
-5.28680146e-01 4.42903578e-01 6.48971438e-01 1.21866381e+00
1.12391913e+00 -1.62221000e-01 3.53555024e-01 2.04681218e-01
6.12133682e-01 8.94638479e-01 3.16650510e-01 -8.99882078e-01
3.06966454e-01 6.77202344e-01 3.80757868e-01 -1.12154686e+00
-4.91760880e-01 -6.91185370e-02 -2.32647583e-01 5.65507174e-01
2.79294848e-01 -2.50255167e-01 -4.44201827e-01 1.23250341e+00
7.07559049e-01 -1.49306254e-02 -9.53743011e-02 7.53395259e-01
3.90611172e-01 4.62127894e-01 1.78679243e-01 -1.45361021e-01
1.60722375e+00 -6.08198881e-01 -9.84856725e-01 -2.04095542e-01
6.71472967e-01 -4.48935151e-01 9.91988599e-01 5.75923622e-01
-7.30388761e-01 -1.06154633e+00 -1.10527468e+00 3.26999545e-01
-8.43387365e-01 1.77875295e-01 2.86934793e-01 1.27935719e+00
-1.05050790e+00 -7.83406850e-03 -6.72591209e-01 -8.53610277e-01
3.09929643e-02 3.22559476e-01 -5.59785545e-01 -2.14405343e-01
-1.18576324e+00 1.40042579e+00 2.78991461e-02 1.31746158e-01
-1.05994248e+00 -3.51469576e-01 -7.56612003e-01 -3.30284268e-01
4.65857446e-01 -2.56645530e-01 1.11821127e+00 -7.86812246e-01
-1.14414787e+00 8.43248606e-01 -2.89949417e-01 -5.29382348e-01
6.03398740e-01 -1.54386133e-01 -9.80380476e-01 -3.03768814e-01
2.49557257e-01 5.87648869e-01 4.43912834e-01 -1.21765172e+00
-1.01842499e+00 -6.55765831e-01 1.46150559e-01 1.86459869e-02
5.70981503e-02 -2.68228590e-01 -2.72339821e-01 4.65651453e-01
-4.79040563e-01 -1.43902743e+00 -2.04217181e-01 -3.04987907e-01
-8.18096697e-02 -3.88366103e-01 1.23080111e+00 -3.62738252e-01
8.05795789e-01 -2.19862819e+00 -7.01537132e-01 3.58138770e-01
-1.12452134e-01 4.06984687e-01 2.71079540e-01 4.66862261e-01
4.45655733e-02 -3.51960540e-01 2.85154760e-01 -1.18614882e-01
1.05488166e-01 3.22258890e-01 2.12273896e-01 6.83329880e-01
-2.78261483e-01 3.91274929e-01 -5.43695211e-01 -4.09949630e-01
9.62894440e-01 4.56123292e-01 -2.61296123e-01 8.83098096e-02
3.26437324e-01 1.46413460e-01 -5.75847149e-01 3.40777755e-01
9.04715836e-01 8.25077593e-01 -2.78671607e-02 -1.60512716e-01
-8.32043529e-01 -1.27155200e-01 -1.34738851e+00 9.54490125e-01
-5.79016805e-01 7.51687825e-01 1.20713048e-01 -1.05136955e+00
7.01164603e-01 3.59106421e-01 4.71688598e-01 -1.23024988e+00
3.85334820e-01 1.03791416e-01 -3.55809890e-02 -1.10719717e+00
5.71346998e-01 2.00954139e-01 2.49321144e-02 2.82688737e-02
-2.74393648e-01 -1.30104601e-01 3.40462983e-01 -1.15916967e-01
9.06351328e-01 -1.19059429e-01 1.46597654e-01 -4.20601040e-01
9.42715883e-01 2.50777721e-01 1.46139309e-01 2.42633522e-01
-9.44991827e-01 -3.19537163e-01 9.78737772e-02 -4.91507530e-01
-1.02798963e+00 -9.85280693e-01 -5.01395836e-02 6.79408193e-01
4.69597399e-01 9.09823552e-02 -1.06897640e+00 -4.17791575e-01
-3.93117368e-02 1.38124418e+00 -3.93809706e-01 -2.34149769e-01
-2.70208359e-01 -1.72793970e-01 2.87283719e-01 1.10207722e-01
7.10734248e-01 -8.58888388e-01 -1.29018533e+00 5.57562634e-02
2.68134717e-02 -1.44729948e+00 2.05193851e-02 -1.81014091e-01
-4.53702092e-01 -1.32830644e+00 -7.66447280e-03 -4.99983579e-01
4.50811714e-01 6.42722011e-01 6.75664544e-01 -1.77643076e-02
-3.31928641e-01 8.01136553e-01 -5.26194572e-02 -9.31373358e-01
-4.90332186e-01 -2.06602573e-01 3.06432694e-01 1.85065553e-01
1.02474463e+00 -2.96002865e-01 -6.61875427e-01 8.00013244e-01
-4.78280813e-01 -1.90147892e-01 6.19513273e-01 -1.08748712e-01
1.49271652e-01 5.77197194e-01 3.53858352e-01 -5.39842486e-01
4.87128198e-01 -7.31664896e-01 -6.97099447e-01 -1.51364684e-01
-8.89054537e-01 -4.66837555e-01 2.19606519e-01 -4.93475120e-04
-1.13664639e+00 2.04795390e-01 -1.62972078e-01 -1.48250148e-01
-1.16846144e+00 6.74246103e-02 -4.54783559e-01 1.55712441e-01
4.89569515e-01 4.53915000e-02 3.34968448e-01 3.88946012e-02
3.73356223e-01 1.08761656e+00 3.85466993e-01 -1.45253316e-01
9.24412012e-01 6.98025286e-01 5.39715365e-02 -1.43370819e+00
1.44837201e-01 -7.32880890e-01 -7.49075174e-01 -9.72417176e-01
9.06358480e-01 -1.00633860e+00 -1.14459014e+00 4.35631543e-01
-9.13507998e-01 -2.01718226e-01 1.79854836e-02 6.88476264e-01
-4.88965511e-01 6.42696992e-02 2.33226001e-01 -1.17624116e+00
2.63842106e-01 -1.40941215e+00 8.22138786e-01 2.62397617e-01
-1.76250681e-01 -7.18733549e-01 4.38085198e-03 9.49354172e-01
4.72731322e-01 -8.45502838e-02 4.40619349e-01 -3.22953105e-01
-5.44866800e-01 -4.23223704e-01 6.90258145e-02 3.06799531e-01
-3.46373767e-02 1.20510599e-02 -1.03466654e+00 2.04199832e-03
1.07821971e-01 1.34836853e-01 8.82255845e-03 2.91931570e-01
4.61657524e-01 1.29712448e-01 -5.50439000e-01 -2.96247840e-01
1.26994789e+00 8.18449140e-01 1.03833175e+00 5.22044897e-01
2.27271795e-01 1.09694099e+00 1.24525595e+00 3.15726936e-01
8.12368512e-01 8.97355795e-01 6.91820085e-01 1.02565289e-02
1.36556506e-01 8.53566304e-02 6.22741282e-01 4.30076897e-01
-2.92667061e-01 3.86076467e-03 -9.72318649e-01 6.78994477e-01
-1.44417763e+00 -9.83700991e-01 -7.68165708e-01 2.20983148e+00
-1.85493872e-01 4.71771300e-01 5.52052736e-01 3.52308631e-01
6.82837307e-01 -5.17190635e-01 -2.54894793e-01 -6.43606603e-01
5.33379853e-01 -2.22167805e-01 8.57558727e-01 4.19834703e-01
-8.73837352e-01 5.31382322e-01 5.75804710e+00 4.39067930e-01
-1.04600847e+00 3.12651992e-01 3.79103333e-01 1.04159564e-01
-7.15333596e-02 -9.21684429e-02 -9.72115815e-01 5.44121921e-01
1.61990058e+00 -5.12259528e-02 2.94604808e-01 1.14889288e+00
1.03604198e+00 -6.12536669e-01 -8.62753272e-01 7.39571810e-01
-3.51732187e-02 -7.35567808e-01 -5.22267878e-01 4.51317310e-01
1.61870062e-01 1.65120050e-01 -6.82372674e-02 5.76355696e-01
-7.00121224e-02 -6.20335460e-01 1.01345849e+00 5.19956052e-01
2.87803233e-01 -1.02966940e+00 9.02929723e-01 8.11054468e-01
-1.12476099e+00 -2.27116376e-01 -2.69502886e-02 -1.85564995e-01
2.79284477e-01 2.66424626e-01 -9.75702941e-01 3.69595975e-01
7.38825142e-01 1.53357327e-01 -7.27140725e-01 6.69793427e-01
1.75027356e-01 5.09617507e-01 -3.07785124e-01 -4.34987158e-01
2.40350038e-01 -5.61739385e-01 4.08284605e-01 9.85371470e-01
4.34902519e-01 -1.61369145e-01 -9.57071707e-02 8.03422868e-01
6.40423119e-01 -1.10406853e-01 -1.21309710e+00 3.82770419e-01
3.12395245e-01 1.24021029e+00 -4.46185112e-01 -2.46888056e-01
-6.64499700e-01 4.19173360e-01 -3.34432274e-01 3.25985402e-01
-1.25357461e+00 -2.23270625e-01 8.88445616e-01 8.74742985e-01
-1.65760927e-02 -3.22994471e-01 -1.78549185e-01 -2.54289359e-01
3.64806801e-02 -6.23496115e-01 -2.73917526e-01 -9.84404027e-01
-4.24060404e-01 2.88700104e-01 5.22132635e-01 -1.22287786e+00
-2.72653490e-01 -8.03415000e-01 -4.95433390e-01 5.35732508e-01
-1.25460887e+00 -1.08512437e+00 -6.47267103e-01 7.42260754e-01
7.32248843e-01 -4.22843426e-01 3.31210375e-01 7.47432828e-01
-6.44690871e-01 1.53210104e-01 -1.05701126e-01 -4.89880443e-01
3.90648127e-01 -5.72355449e-01 1.14360146e-01 7.01906204e-01
-4.27459389e-01 4.88198817e-01 1.09547675e+00 -6.98293507e-01
-1.77658594e+00 -1.05138195e+00 7.42117226e-01 -4.42711949e-01
3.43722701e-01 -3.83222848e-01 -4.03288215e-01 6.59471333e-01
4.46290910e-01 -2.77901441e-01 2.89165407e-01 -1.13812394e-01
4.55887675e-01 -4.97365117e-01 -1.40327990e+00 6.55158997e-01
7.65382051e-01 -4.07691151e-01 -5.21557629e-01 5.68324998e-02
1.75560877e-01 1.55640662e-01 -3.67537439e-01 1.26230329e-01
6.78113222e-01 -1.23203194e+00 8.46122026e-01 -8.77622664e-02
-1.38612822e-01 -5.48099279e-01 -1.08953081e-01 -9.81396794e-01
-5.85340802e-03 -2.16939703e-01 4.10986423e-01 1.09633338e+00
2.46140957e-01 -8.74610245e-01 8.94853175e-01 8.40568542e-01
-3.82579207e-01 -2.84780622e-01 -1.11041665e+00 -6.99568391e-01
-2.63624698e-01 -1.12231994e+00 4.80843872e-01 4.69543934e-01
-1.58673584e-01 4.89045084e-02 1.51611315e-02 4.12915289e-01
6.34942949e-01 -7.96533108e-01 1.42832661e+00 -1.24845076e+00
4.33184505e-01 -1.89899862e-01 -9.95129049e-01 -3.58878881e-01
6.32620007e-02 -3.36575121e-01 1.01227112e-01 -1.44148469e+00
-1.10726818e-01 -1.83074817e-01 1.66372642e-01 -1.42575368e-01
4.98003066e-01 -1.37873009e-01 -4.68612127e-02 -1.48738995e-01
-2.79711127e-01 3.11516196e-01 7.46921241e-01 -1.04186505e-01
3.37118469e-02 3.24234843e-01 -1.47537425e-01 9.16024923e-01
6.25834882e-01 -3.23845118e-01 -7.82764435e-01 2.45733231e-01
-2.86029577e-02 1.55727891e-03 6.58472776e-01 -1.61014497e+00
3.75011593e-01 -4.28047717e-01 -3.26627158e-02 -1.08115411e+00
3.85180116e-01 -1.71282852e+00 7.56688058e-01 7.59367704e-01
3.02867889e-01 1.13823466e-01 2.02093512e-01 3.81672770e-01
-1.21579103e-01 -2.16525123e-01 7.31116056e-01 8.38161726e-03
-1.00419343e+00 -5.29336259e-02 -1.22050452e+00 -6.39139891e-01
1.93458879e+00 -7.59036720e-01 -8.66614878e-02 -2.45642021e-01
-4.37099576e-01 3.41786742e-01 4.62495267e-01 6.18102074e-01
2.88012236e-01 -1.16332543e+00 -1.34561241e-01 5.80569506e-01
1.89437613e-01 -4.14071292e-01 5.26098907e-01 8.71748924e-01
-6.88339114e-01 7.46495485e-01 -6.74827099e-01 -5.74821711e-01
-1.42313623e+00 8.79944563e-01 3.62102926e-01 1.71755090e-01
-2.57006735e-01 -1.63523182e-01 1.35093510e-01 -4.14855123e-01
1.56099021e-01 -1.98003948e-01 -5.14670014e-01 3.74536328e-02
2.95291513e-01 9.23860848e-01 3.27032715e-01 -1.14494610e+00
-4.68570769e-01 4.50945437e-01 3.46916109e-01 -3.08973908e-01
8.75327826e-01 -6.09822989e-01 4.09591883e-01 5.97432315e-01
9.90367651e-01 -1.27606601e-01 -8.78474355e-01 4.19610500e-01
6.89500868e-02 -2.54942298e-01 8.75406265e-02 -4.82197434e-01
-8.22056592e-01 8.23670805e-01 1.27889740e+00 2.61991203e-01
8.22134435e-01 -2.81301707e-01 6.31479919e-01 5.02149045e-01
9.15922582e-01 -1.58165133e+00 -3.71727049e-01 1.16549388e-01
6.15728617e-01 -1.26710749e+00 -2.08217442e-01 -4.72828120e-01
-7.68618822e-01 8.25092494e-01 7.14668691e-01 8.70191231e-02
1.07474887e+00 4.44693789e-02 1.10737897e-01 -4.96769279e-01
-5.41135490e-01 -4.22666848e-01 -9.68941078e-02 9.75789487e-01
6.49220645e-02 3.81591320e-01 -2.83744544e-01 4.03005004e-01
-1.53387681e-01 3.49427491e-01 8.40990186e-01 8.90980184e-01
-6.66415632e-01 -7.88977742e-01 -6.84100866e-01 2.00238883e-01
7.06809759e-02 8.31223905e-01 4.37387750e-02 1.25458276e+00
9.66638684e-01 1.46995890e+00 1.49520352e-01 -4.84977990e-01
1.12796068e+00 9.60279927e-02 -1.76165334e-03 -1.18792295e-01
-2.07033843e-01 -4.12453502e-01 4.04437482e-01 -6.79019570e-01
-4.40014660e-01 -1.23937416e+00 -1.05368221e+00 -5.68611681e-01
-1.74202770e-02 2.70633958e-02 1.32669854e+00 9.68249083e-01
2.23715380e-01 4.06778902e-01 8.17445040e-01 -9.54390407e-01
-9.76504236e-02 -8.99199903e-01 -7.63781786e-01 5.32569945e-01
-1.70978270e-02 -1.01332462e+00 -4.00483727e-01 1.11226575e-03] | [5.7157087326049805, 1.0884253978729248] |
b7929047-6f79-41e3-9635-874161211923 | dialog2api-task-oriented-dialogue-with-api | 2212.09946 | null | https://arxiv.org/abs/2212.09946v1 | https://arxiv.org/pdf/2212.09946v1.pdf | Dialog2API: Task-Oriented Dialogue with API Description and Example Programs | Functionality and dialogue experience are two important factors of task-oriented dialogue systems. Conventional approaches with closed schema (e.g., conversational semantic parsing) often fail as both the functionality and dialogue experience are strongly constrained by the underlying schema. We introduce a new paradigm for task-oriented dialogue - Dialog2API - to greatly expand the functionality and provide seamless dialogue experience. The conversational model interacts with the environment by generating and executing programs triggering a set of pre-defined APIs. The model also manages the dialogue policy and interact with the user through generating appropriate natural language responses. By allowing generating free-form programs, Dialog2API supports composite goals by combining different APIs, whereas unrestricted program revision provides natural and robust dialogue experience. To facilitate Dialog2API, the core model is provided with API documents, an execution environment and optionally some example dialogues annotated with programs. We propose an approach tailored for the Dialog2API, where the dialogue states are represented by a stack of programs, with most recently mentioned program on the top of the stack. Dialog2API can work with many application scenarios such as software automation and customer service. In this paper, we construct a dataset for AWS S3 APIs and present evaluation results of in-context learning baselines. | ['Dan Roth', 'Yi Zhang', 'Saab Mansour', 'Arshit Gupta', 'Salvatore Romeo', 'Nikolaos Pappas', 'Tamer Alkhouli', 'Elman Mansimov', 'Raphael Shu'] | 2022-12-20 | null | null | null | null | ['semantic-parsing', 'task-oriented-dialogue-systems'] | ['natural-language-processing', 'natural-language-processing'] | [ 1.41151920e-01 8.44686329e-01 3.40914540e-02 -7.67022848e-01
-6.03913665e-01 -1.05866146e+00 9.81028378e-01 -6.74973428e-02
-1.67413607e-01 5.51163137e-01 5.43037415e-01 -4.18667734e-01
8.80036652e-02 -8.58211279e-01 -9.31824967e-02 -6.62063658e-02
3.38805318e-01 9.06983793e-01 4.89337295e-01 -9.53334093e-01
1.28874525e-01 -5.74394949e-02 -1.51944995e+00 9.95740533e-01
8.67141664e-01 7.33870029e-01 4.49259847e-01 9.93973553e-01
-1.03309035e+00 1.16975689e+00 -9.02234674e-01 -3.80586594e-01
-5.05814441e-02 -4.24497098e-01 -1.48896182e+00 6.41452745e-02
-1.78648308e-01 -4.04140621e-01 3.87967736e-01 7.18567908e-01
3.79945993e-01 2.11615086e-01 7.63828829e-02 -1.54881585e+00
-5.10140788e-03 1.12989223e+00 4.28685009e-01 -5.35067737e-01
1.07817805e+00 5.38857698e-01 1.19391823e+00 -4.49078441e-01
6.59232199e-01 1.63135827e+00 3.13168257e-01 1.11783969e+00
-1.29281211e+00 -8.10948163e-02 1.02076851e-01 -3.06189686e-01
-5.09532154e-01 -5.58612108e-01 6.03613436e-01 -4.34753835e-01
1.21840560e+00 8.91428947e-01 2.74255335e-01 1.19438326e+00
-3.90278071e-01 8.86149108e-01 9.87328649e-01 -6.30414903e-01
2.47801408e-01 8.22148740e-01 7.72214532e-01 4.35159445e-01
-7.45684505e-01 -3.34210962e-01 -4.12448436e-01 -6.71181023e-01
3.31504554e-01 -3.96495253e-01 -2.31635377e-01 -3.35436195e-01
-1.08628964e+00 8.55945170e-01 -3.13046962e-01 3.64566714e-01
-1.01629142e-02 -3.54216754e-01 1.04510641e+00 6.78654552e-01
-6.86637238e-02 8.05192590e-01 -7.17077672e-01 -6.33968651e-01
-1.12394035e-01 6.28793776e-01 1.92330456e+00 1.25776422e+00
6.13604307e-01 -3.54570359e-01 -5.01664400e-01 1.23272884e+00
2.39095360e-01 1.92484394e-01 3.13381881e-01 -1.41862071e+00
6.43623948e-01 1.17401671e+00 4.60960865e-01 -2.11135000e-01
-5.40650845e-01 4.65121388e-01 -1.46371335e-01 2.71202832e-01
6.78632855e-01 -4.69822437e-01 -1.25228703e-01 1.77767491e+00
5.13436913e-01 -7.54584610e-01 5.93080401e-01 5.91151118e-01
1.23328042e+00 6.11910462e-01 4.42635477e-01 -8.63132328e-02
1.82579219e+00 -1.23922741e+00 -8.47676694e-01 -2.01821789e-01
9.06367838e-01 -6.49142146e-01 1.87867510e+00 2.27536708e-01
-1.21983516e+00 -5.78595459e-01 -5.78689098e-01 -7.06332475e-02
-4.78729486e-01 -1.40741929e-01 6.17103875e-01 7.19932437e-01
-1.06846964e+00 3.58731300e-01 -4.52748507e-01 -6.07514679e-01
-4.37444746e-01 3.20349991e-01 -2.18592063e-01 5.51538050e-01
-1.31050622e+00 8.98912013e-01 5.92084289e-01 -4.16560322e-01
-4.24287498e-01 -4.33391362e-01 -1.12104285e+00 2.02730611e-01
6.15984738e-01 -8.63856018e-01 2.18783569e+00 -8.13913047e-01
-2.24965692e+00 7.97539353e-01 2.43385375e-01 -3.64574760e-01
6.11084104e-01 -3.92265499e-01 -2.46564895e-01 -8.62852708e-02
-1.37164481e-02 5.77693403e-01 1.78698868e-01 -1.21071649e+00
-8.49217534e-01 -2.64696687e-01 9.98431444e-01 4.65158522e-01
-8.40681195e-02 4.29596066e-01 -4.75275069e-01 1.37675583e-01
-5.57049870e-01 -9.57405984e-01 -2.44836867e-01 -6.33530378e-01
-5.80507278e-01 -4.62061554e-01 8.47221553e-01 -4.30784822e-01
1.28730047e+00 -2.05700350e+00 8.87002051e-02 -1.16332449e-01
8.20109248e-03 1.10953741e-01 -8.29441473e-02 8.19804728e-01
2.15872392e-01 6.21669786e-03 -1.01335563e-01 -2.64473617e-01
5.85018516e-01 2.34494522e-01 -2.34844476e-01 -5.60379148e-01
1.89575087e-02 5.22492290e-01 -7.82263339e-01 -4.99825805e-01
4.48550493e-01 -6.90577179e-02 -7.73343682e-01 9.43130970e-01
-1.12941110e+00 6.41808689e-01 -7.40568519e-01 1.94877088e-01
3.14961880e-01 -1.75319090e-01 5.88445246e-01 8.22282955e-02
-3.79165053e-01 8.25669348e-01 -1.21999192e+00 1.97277260e+00
-1.09280157e+00 1.95469111e-02 5.55695176e-01 -4.60307270e-01
1.02412212e+00 6.17165387e-01 4.80477549e-02 -3.78300577e-01
-1.24345683e-01 -4.34223153e-02 1.37958610e-02 -9.10461664e-01
6.92379355e-01 3.31832469e-01 -7.34278381e-01 7.02902138e-01
1.09699681e-01 -5.24518490e-01 2.96668589e-01 4.72695142e-01
1.02158558e+00 4.10417110e-01 5.55488884e-01 -1.95427909e-01
9.97712135e-01 3.40132535e-01 1.79899991e-01 8.74811828e-01
3.45751531e-02 -7.26585239e-02 9.14040983e-01 -3.54272932e-01
-8.94613802e-01 -6.73803926e-01 1.64320335e-01 1.83872390e+00
-1.60718367e-01 -7.92377532e-01 -1.09130907e+00 -9.53642786e-01
-3.59360039e-01 1.19775200e+00 -1.59441531e-02 1.88797802e-01
-7.05782354e-01 -3.41831297e-02 6.14177823e-01 2.05000058e-01
8.52898598e-01 -1.53242350e+00 -7.82727957e-01 4.64472800e-01
-5.00634909e-01 -1.31560707e+00 -3.41796935e-01 1.03789397e-01
-4.85190749e-01 -1.10409260e+00 9.96706262e-02 -7.21374273e-01
-1.65878050e-02 -2.20665067e-01 1.44259822e+00 5.12231626e-02
2.07609341e-01 7.57330954e-01 -3.95333141e-01 -2.09721148e-01
-1.31827474e+00 2.28077814e-01 -5.09034276e-01 -2.82058597e-01
2.58472115e-01 -3.27110738e-01 -2.81220049e-01 3.62842530e-01
-6.30315840e-01 4.95369554e-01 -4.39095311e-02 8.57547939e-01
-1.83591768e-01 -4.32826906e-01 5.71456432e-01 -1.60660100e+00
1.09140372e+00 -2.29472697e-01 -6.06660247e-01 3.86151075e-01
-2.47230485e-01 1.50785655e-01 8.77145112e-01 -1.93576023e-01
-1.87455249e+00 1.74861848e-01 -4.65161890e-01 4.27762240e-01
-7.25771189e-01 3.82202178e-01 -7.03302026e-01 4.38799202e-01
8.68489921e-01 8.34417194e-02 1.00157298e-01 -4.61214393e-01
6.65851831e-01 1.08362067e+00 5.07716179e-01 -1.33832896e+00
3.07868630e-01 -1.48981899e-01 -6.68812156e-01 -7.11225271e-01
-4.39451307e-01 -5.31625211e-01 -3.57533038e-01 -2.54215389e-01
7.35960782e-01 -5.08907795e-01 -1.27634013e+00 2.09096700e-01
-1.42947137e+00 -9.34692323e-01 -2.99928993e-01 -3.08853332e-02
-1.03775120e+00 3.00105155e-01 -6.67979717e-01 -1.05147731e+00
-6.84514225e-01 -1.38061965e+00 1.07693350e+00 1.45264268e-01
-9.00599658e-01 -1.01099265e+00 1.51007492e-02 5.64553201e-01
6.60356700e-01 8.56613368e-02 1.21995842e+00 -1.41240656e+00
-1.92153484e-01 1.19830213e-01 6.08343445e-02 2.97022104e-01
6.88535199e-02 -4.52910140e-02 -1.07537448e+00 3.02181810e-01
5.64659312e-02 -6.10310137e-01 -1.62374616e-01 -2.42528811e-01
8.14669013e-01 -6.21384978e-01 -1.71452895e-01 3.05316448e-02
8.32910538e-01 5.85914075e-01 4.10016239e-01 4.23510700e-01
2.69787252e-01 1.27264214e+00 7.58142650e-01 4.84338373e-01
6.24767780e-01 1.04488945e+00 4.18003798e-02 1.48870483e-01
2.07759678e-01 -2.54322231e-01 4.58138943e-01 2.95219481e-01
2.96416879e-01 2.99615655e-02 -9.42607224e-01 5.96917719e-02
-2.07835412e+00 -9.94850993e-01 -2.72125691e-01 1.97577226e+00
1.35112679e+00 1.66983172e-01 4.07749802e-01 -2.71658182e-01
6.24565601e-01 2.48499483e-01 -3.23413521e-01 -8.69638026e-01
2.98285365e-01 5.56785986e-02 -4.05193359e-01 9.52994406e-01
-8.07600617e-01 1.18453753e+00 5.30129290e+00 3.60296726e-01
-7.72910535e-01 7.82137066e-02 2.10185945e-01 2.57848382e-01
-3.12560022e-01 2.98428982e-01 -1.00256717e+00 2.96961516e-01
1.11718798e+00 -3.09978664e-01 4.77414340e-01 1.20895886e+00
2.80364633e-01 -1.07704187e-02 -1.69799519e+00 4.87872720e-01
-4.84100401e-01 -1.30006504e+00 -9.57101211e-02 -3.68955106e-01
-5.29798865e-02 -3.32766116e-01 -3.46912235e-01 9.97014999e-01
6.85949445e-01 -4.40288812e-01 5.40804982e-01 9.98139605e-02
6.27044022e-01 -3.62469524e-01 3.82644176e-01 7.45836616e-01
-9.45730269e-01 -8.95116031e-02 1.84396699e-01 3.34105007e-02
1.93193942e-01 -1.08331494e-01 -1.18485367e+00 3.06298345e-01
5.93489647e-01 -1.50308788e-01 -8.30671489e-02 3.74667555e-01
-1.72235042e-01 1.55456722e-01 -1.63595006e-01 -1.91707477e-01
1.05652772e-01 -3.76392037e-01 6.28290713e-01 1.48257565e+00
-2.40633681e-01 2.54014730e-01 6.69490933e-01 9.79389787e-01
2.57971048e-01 4.48589236e-01 -7.78874576e-01 9.70074236e-02
6.28419638e-01 1.42885995e+00 -1.35936335e-01 -5.89056909e-01
-7.07571626e-01 7.85852849e-01 1.31041706e-01 3.01043957e-01
-5.25016963e-01 -4.85054493e-01 6.96276844e-01 -5.37876152e-02
-4.32373106e-01 1.07073128e-01 5.64311519e-02 -9.59405541e-01
-2.94233076e-02 -1.54614687e+00 5.88660657e-01 -7.58963764e-01
-9.24500167e-01 9.16103899e-01 1.80425063e-01 -6.76306903e-01
-7.59918571e-01 -4.63176817e-01 -8.95598650e-01 9.80242133e-01
-1.01770759e+00 -1.16148245e+00 -4.81513143e-01 7.72858500e-01
1.12393713e+00 -2.41988808e-01 1.53134131e+00 -5.73944263e-02
-3.19314986e-01 2.28212014e-01 -6.04615688e-01 6.88092411e-02
7.35666394e-01 -1.68090022e+00 5.38903356e-01 5.93434125e-02
-3.73451948e-01 8.19406986e-01 9.21479344e-01 -4.27781403e-01
-1.42875183e+00 -6.99782193e-01 8.12026322e-01 -5.60954869e-01
7.53470361e-01 -5.72920561e-01 -9.89723146e-01 7.72462845e-01
6.57440901e-01 -7.20347345e-01 7.76824594e-01 4.00430590e-01
-2.46049389e-01 1.55366912e-01 -1.22987401e+00 7.71545887e-01
8.72445643e-01 -6.06836557e-01 -9.03189242e-01 5.51589251e-01
1.07454813e+00 -8.02465260e-01 -9.44078624e-01 5.06559610e-02
3.13729286e-01 -1.16603816e+00 6.68237746e-01 -8.25676382e-01
2.52614349e-01 5.00089815e-03 -1.66337222e-01 -1.08420277e+00
4.31000888e-01 -1.13842297e+00 7.57661164e-02 1.62990439e+00
6.62719727e-01 -6.33239508e-01 5.16834795e-01 1.47781682e+00
-3.04157704e-01 -2.16532201e-01 -2.00837925e-01 -4.23602670e-01
-2.23916322e-01 -4.92182404e-01 9.32132423e-01 6.72008097e-01
9.56439435e-01 9.34414387e-01 -5.92308352e-03 2.14405544e-02
2.41629351e-02 3.87584180e-01 1.40200710e+00 -1.23150754e+00
-7.64936209e-01 -3.87274414e-01 4.86355782e-01 -1.24067724e+00
3.91165674e-01 -6.98056221e-01 8.88854489e-02 -1.33233523e+00
-1.48366243e-01 -6.17657363e-01 6.59746289e-01 5.55611014e-01
5.61613142e-02 -9.74497080e-01 2.63960451e-01 1.12047173e-01
-6.52305126e-01 1.85224012e-01 1.04006290e+00 -8.12923312e-02
-9.26292121e-01 4.39291477e-01 -6.49665356e-01 8.40364158e-01
8.69699776e-01 2.83383671e-02 -7.23660171e-01 -8.74759406e-02
-8.79002884e-02 8.44658852e-01 1.60083789e-02 -7.37168133e-01
3.84349942e-01 -3.89831245e-01 -6.13632977e-01 -4.81176451e-02
3.84490550e-01 -8.54476690e-01 6.66162223e-02 1.99987426e-01
-9.96041715e-01 -1.43275425e-01 9.82217863e-02 4.71748449e-02
-2.67969459e-01 -5.67518353e-01 6.20957971e-01 -4.70180601e-01
-6.87653065e-01 -2.30651364e-01 -4.50710654e-01 1.63631529e-01
9.60298598e-01 8.75334069e-02 -7.49827981e-01 -5.24097681e-01
-1.21185350e+00 5.06155312e-01 4.29012686e-01 6.15165055e-01
1.20859087e-01 -7.36433983e-01 -3.09640288e-01 1.94932804e-01
4.86729026e-01 6.98946789e-02 -3.72361168e-02 4.14049476e-01
-3.83787453e-01 4.68995631e-01 -1.71622738e-01 -5.67751944e-01
-1.46617424e+00 3.72936010e-01 5.06263554e-01 -3.66703928e-01
-6.10678017e-01 5.48504710e-01 3.59850734e-01 -1.18879473e+00
5.01637340e-01 -2.62103200e-01 -5.33578217e-01 -5.20755015e-02
6.40092432e-01 -8.81531313e-02 -4.60028648e-03 -1.46365479e-01
-2.49076933e-02 -1.46778554e-01 -1.16273537e-01 -4.90522265e-01
1.10044229e+00 -7.67100379e-02 -2.63190389e-01 4.63177562e-01
6.62604570e-01 3.74688096e-02 -1.10250330e+00 -3.65058780e-01
4.18622524e-01 -1.54818654e-01 -5.72452009e-01 -1.17433441e+00
-3.83538604e-01 6.04920506e-01 1.29070684e-01 9.81983423e-01
6.23745024e-01 1.66937605e-01 5.67697167e-01 7.88575888e-01
7.02657640e-01 -1.15649545e+00 8.33275095e-02 7.31387854e-01
1.13957381e+00 -1.15896428e+00 -7.06828475e-01 -5.52518487e-01
-1.21305001e+00 1.27184117e+00 1.10054362e+00 4.85994518e-01
1.05429813e-01 6.64343834e-01 4.03571010e-01 -3.39040458e-01
-1.21478212e+00 -7.73190036e-02 -2.98597306e-01 6.64928317e-01
7.24594235e-01 4.47853878e-02 -3.60786498e-01 1.14580071e+00
-4.49567467e-01 -1.87328666e-01 4.97640520e-01 9.60105479e-01
-5.45792937e-01 -1.65298605e+00 -2.85304397e-01 1.09755419e-01
-2.98756033e-01 -7.12461621e-02 -7.57651627e-01 9.08787072e-01
-3.98397982e-01 1.28113616e+00 -9.83947515e-02 -1.41989037e-01
9.00957942e-01 7.66048670e-01 1.31585434e-01 -1.17742503e+00
-1.39895523e+00 -1.92479789e-01 1.10730994e+00 -7.45960057e-01
-1.62646428e-01 -4.96655256e-01 -1.58258247e+00 -2.10383981e-01
-2.59533316e-01 6.56272471e-01 5.64849019e-01 8.14493835e-01
3.22403729e-01 2.87547857e-01 6.76170170e-01 -4.02263343e-01
-9.83788908e-01 -1.01723862e+00 -1.54701501e-01 5.43109059e-01
-4.56846729e-02 -1.97285339e-01 -1.15241162e-01 1.93125471e-01] | [12.8721284866333, 7.939924240112305] |
41f9c8cb-7bf4-4172-9064-4a9592490f45 | hate-a-little-less-love-a-little-more | null | null | https://openreview.net/forum?id=KSvkXL6bRU7 | https://openreview.net/pdf?id=KSvkXL6bRU7 | Hate a Little Less, Love a Little More! Proactively Curbing Online Hatred via Hate Speech Normalization | Curbing online hate speech has become the need of the hour; however, a blanket ban on such activities is infeasible due to several political, geographical, and cultural reasons. To reduce the severity of the problem, in this paper, we introduce a novel task, hate speech normalization – weakening the intensity of hatred exhibited by an online post by paraphrasing the original content. The intention of hate speech normalization is to not support hate but instead, provide the users with a stepping stone towards non-hate while giving online platforms more time to monitor any improvement in the user’s behaviour. To this end, we manually curated a parallel corpus of hate texts and their normalized counterparts (a normalized text is less hateful and more benign). We then introduce NACL, a
Neural hAte speeCh normaLizer that operates in three stages – first, it measures the hate intensity of the original sample; second, it identifies the harmful span(s) within it; and finally, it reduces hate intensity by paraphrasing the hate spans. We perform extensive experiments to measure the efficacy of individual components and the overall performance of NACL via three-way evaluation (intrinsic, extrinsic, and human-study). We observe that NACL outperforms its respective baselines – NACL yields a score of 0.683 Pearson correlation for the intensity prediction, 0.6911 F1-score in the span identification, and 67.71 BLEU and 75.83 perplexity for the normalized text generation. We further show the generalizability of NACL across other platforms (Reddit, Facebook, Gab). A scalable prototype of NACL was also deployed for the user study. | ['Anonymous'] | 2021-10-16 | null | null | null | acl-arr-october-2021-10 | ['hate-speech-normalization'] | ['natural-language-processing'] | [ 1.03695750e-01 9.39786783e-04 1.10693552e-01 3.31084244e-02
-5.37455499e-01 -7.99711883e-01 5.41055143e-01 1.26937300e-01
-2.94363737e-01 4.47517425e-01 5.18427074e-01 -6.35706410e-02
1.56671867e-01 -4.51124698e-01 -3.72008830e-01 -7.15607822e-01
2.92818844e-01 -2.57131577e-01 6.48258394e-03 -3.65305275e-01
3.24909240e-01 3.17169577e-01 -1.21852946e+00 9.94028747e-02
9.73796427e-01 3.03319812e-01 -2.98410505e-01 7.98207879e-01
3.19241166e-01 1.07457697e+00 -1.15811586e+00 -7.74869382e-01
-6.60292730e-02 -5.33996224e-01 -5.76056600e-01 -3.91200045e-03
6.41151011e-01 -5.90413809e-01 -4.57612574e-01 1.00148880e+00
6.53876185e-01 1.53003037e-01 5.24969578e-01 -1.35062277e+00
-1.10566294e+00 6.19584739e-01 -6.41251504e-01 2.70203203e-01
2.10688710e-01 3.02130073e-01 8.59171629e-01 -5.82013786e-01
3.88085723e-01 1.09858572e+00 6.05836749e-01 7.95120835e-01
-1.16257167e+00 -8.56634855e-01 -2.67875224e-01 -1.85194835e-01
-1.23590052e+00 -4.00470763e-01 8.57738793e-01 -7.33925760e-01
7.27293670e-01 4.14817601e-01 4.25730169e-01 1.51672626e+00
-1.25710189e-01 6.24037385e-01 8.92598748e-01 -2.96560943e-01
2.43975688e-02 2.81717420e-01 2.87132561e-01 4.53109086e-01
1.99253455e-01 -3.42980146e-01 -5.58505476e-01 -2.43277296e-01
2.13809520e-01 -5.35307527e-02 -2.45893136e-01 3.39336187e-01
-7.30152845e-01 9.45917726e-01 1.99075758e-01 5.71285069e-01
-1.35326579e-01 1.21308370e-02 6.00276113e-01 -5.11276498e-02
5.78087628e-01 9.46007788e-01 7.56157339e-02 -5.75505257e-01
-1.03115284e+00 4.37279403e-01 7.22990870e-01 5.72852015e-01
4.07951236e-01 -5.66347539e-02 -5.09695292e-01 9.22668517e-01
-2.13885993e-01 6.44762039e-01 3.74070495e-01 -8.20573509e-01
3.54061306e-01 4.62325782e-01 3.58474441e-02 -1.24063337e+00
-4.21158731e-01 -3.42452198e-01 -8.42641056e-01 -1.82034656e-01
5.11678159e-01 -5.16372144e-01 -8.31454575e-01 1.88255596e+00
3.51566300e-02 -8.41493979e-02 -4.37924594e-01 6.94302797e-01
3.90794069e-01 7.68662989e-01 3.59255016e-01 -1.59318805e-01
1.27572203e+00 -9.91497874e-01 -1.12929320e+00 -2.35034630e-01
9.70420361e-01 -1.01500773e+00 1.37417650e+00 3.84781778e-01
-7.61002123e-01 -1.05553895e-01 -1.09196007e+00 -2.07982630e-01
-5.33499420e-01 -1.44555420e-01 1.32061064e-01 1.10349131e+00
-7.28828549e-01 6.23930395e-01 -3.27605575e-01 -4.34246570e-01
2.13382915e-01 -8.45776573e-02 -2.86173850e-01 2.68955708e-01
-1.39538395e+00 1.02814996e+00 3.42928283e-02 -2.08284229e-01
-5.19193113e-01 -8.64238560e-01 -7.77320743e-01 1.74490720e-01
1.65816665e-01 -2.77015213e-02 1.16946471e+00 -9.57330942e-01
-1.24465203e+00 8.53556275e-01 1.29138097e-01 -3.35964173e-01
2.75131166e-01 -5.51649272e-01 -4.04483199e-01 -1.23000428e-01
1.30501785e-03 3.83576810e-01 1.03433967e+00 -1.14834797e+00
-2.69538611e-01 -2.88964808e-01 7.73243010e-02 -1.60777103e-02
-1.04827487e+00 3.31867725e-01 1.06848814e-02 -8.95503938e-01
-7.85389125e-01 -1.11347830e+00 4.43712831e-01 -5.94997048e-01
-6.62327826e-01 -1.78256258e-02 1.20494342e+00 -1.34102607e+00
2.17080212e+00 -2.45829916e+00 -7.77325034e-02 1.00914389e-01
4.12217319e-01 7.19558537e-01 -5.90817407e-02 4.98411536e-01
-5.82842678e-02 5.88028908e-01 -3.21882665e-01 -4.08897132e-01
1.27552688e-01 -9.33151022e-02 -2.69007236e-01 5.76145530e-01
2.09720105e-01 5.75287104e-01 -8.21090460e-01 -2.15210006e-01
3.57553363e-02 6.59316838e-01 -7.01766491e-01 3.17334712e-01
2.49168932e-01 3.55546921e-02 2.14037985e-01 4.65860963e-01
5.32976806e-01 2.26985514e-01 -1.16455130e-01 3.19868177e-02
-2.71317273e-01 1.93265513e-01 -5.43804228e-01 1.02990675e+00
-2.77987033e-01 1.00494170e+00 5.89528959e-03 -2.51227081e-01
8.14535081e-01 2.96232194e-01 2.67462075e-01 -7.09719598e-01
2.49081701e-01 -1.83057487e-02 4.65188213e-02 -6.03148520e-01
7.57116854e-01 -3.44058610e-02 -3.88672322e-01 4.74502295e-01
-1.72415599e-02 3.11737340e-02 2.60405034e-01 4.16707814e-01
1.28271759e+00 -2.45958015e-01 2.29658529e-01 -4.82472107e-02
3.28810096e-01 -4.29011345e-01 1.27963409e-01 5.80185175e-01
-7.60385692e-01 5.29364765e-01 1.01492321e+00 -1.12638570e-01
-1.44592798e+00 -8.60675335e-01 2.78035194e-01 1.45418036e+00
-3.38126570e-01 -6.62803650e-01 -1.47843540e+00 -8.23724031e-01
-9.78066996e-02 1.23565888e+00 -8.81196141e-01 -5.57782650e-01
-5.95530450e-01 -6.87599719e-01 1.08031750e+00 8.52656290e-02
4.38228995e-01 -1.02921844e+00 -5.21295607e-01 -3.06796223e-01
-3.51595700e-01 -1.04733491e+00 -9.30201352e-01 -6.32420927e-02
1.61253270e-02 -7.13619292e-01 -5.98419011e-01 -4.41234171e-01
2.76946843e-01 4.45110917e-01 5.09596705e-01 3.53752792e-01
3.60249951e-02 1.98380109e-02 -5.41434824e-01 -3.95537972e-01
-6.03732228e-01 4.50102687e-01 7.31935576e-02 7.93320592e-04
3.81039560e-01 -5.90926051e-01 -3.87634188e-01 1.44350290e-01
-1.18048894e+00 -1.59472331e-01 3.15383554e-01 5.89637458e-01
-3.21608365e-01 2.90957987e-02 3.65317017e-01 -8.83203030e-01
1.04078925e+00 -6.24929368e-01 8.29104148e-03 -8.19350183e-02
-4.36547339e-01 -3.05222869e-01 8.78487051e-01 -6.11822307e-01
-9.94727135e-01 -2.50731021e-01 -1.38544142e-01 -1.73847139e-01
-1.52198166e-01 7.69287348e-02 -5.49058430e-02 2.44810373e-01
8.36936653e-01 7.16296770e-03 1.99808422e-02 -4.36503410e-01
4.53311890e-01 1.02562511e+00 6.39400482e-01 -2.54747182e-01
1.26214635e+00 3.97586673e-02 -4.48989242e-01 -1.12626839e+00
-1.04651582e+00 -5.00466824e-01 -5.17508924e-01 -3.08335930e-01
1.01949382e+00 -5.33057451e-01 -7.69227147e-01 7.24880040e-01
-1.40419054e+00 -2.78494209e-01 2.14024246e-01 -1.03603140e-01
2.69396678e-02 5.73320448e-01 -6.65275633e-01 -1.12400174e+00
-6.95611358e-01 -7.45799780e-01 8.13251317e-01 3.20118934e-01
-6.63689256e-01 -7.61807323e-01 3.35894734e-01 5.48601747e-01
3.66708785e-01 5.11049509e-01 9.78897154e-01 -9.71987009e-01
3.23209643e-01 -3.60401183e-01 -3.56808782e-01 7.67013371e-01
1.72133088e-01 4.68762964e-01 -1.18463862e+00 -2.21802026e-01
-1.84037805e-01 -2.40498975e-01 3.60784322e-01 -1.01323761e-01
8.48662078e-01 -7.78653026e-01 1.63387582e-01 2.67655730e-01
1.09016740e+00 1.42130166e-01 8.60132813e-01 5.47161639e-01
8.31456006e-01 5.89227021e-01 2.00559810e-01 6.98354363e-01
3.96236591e-02 6.36962116e-01 2.77069479e-01 -1.17212728e-01
-1.07062437e-01 -6.20663345e-01 7.17342317e-01 9.20562208e-01
4.70269471e-02 -3.24510545e-01 -9.82301414e-01 5.36237299e-01
-1.53491616e+00 -1.36275113e+00 -2.01823279e-01 2.15155745e+00
8.27610016e-01 2.23603308e-01 6.64671004e-01 1.99279606e-01
9.13758457e-01 3.39852422e-01 -8.55127573e-02 -8.65343034e-01
-7.90122375e-02 -4.34805546e-03 4.80066895e-01 4.49468136e-01
-1.19746554e+00 9.94352579e-01 5.75634623e+00 8.38164568e-01
-9.53304410e-01 2.21597373e-01 6.99591041e-01 -3.26444149e-01
9.58625898e-02 -3.83947462e-01 -4.89506900e-01 8.52821112e-01
1.23052585e+00 -2.36089960e-01 8.67311954e-01 7.62566566e-01
4.64952558e-01 4.70463596e-02 -7.93433905e-01 8.43556643e-01
3.59518975e-01 -8.39635253e-01 -9.04079974e-02 1.64996475e-01
6.00932240e-01 -3.04638296e-01 2.96756089e-01 5.62540770e-01
-4.57354705e-04 -1.01711810e+00 9.18613493e-01 2.18287647e-01
5.07179260e-01 -1.02717292e+00 7.79358327e-01 3.95694494e-01
-5.44999063e-01 -1.54050007e-01 -1.56680234e-02 -2.69746393e-01
-5.62312193e-02 3.53774041e-01 -8.49473178e-01 -1.35955304e-01
5.80192029e-01 7.78509378e-02 -8.67481291e-01 6.80892706e-01
-4.27881330e-01 8.10893178e-01 1.95601024e-02 -1.52610019e-01
3.60346287e-01 3.65229771e-02 5.75923741e-01 1.74001598e+00
9.89617705e-02 -1.14495017e-01 -3.87221664e-01 7.18098700e-01
-3.57125968e-01 1.50932819e-01 -6.55298412e-01 -4.90371704e-01
8.18616033e-01 1.45445347e+00 -2.43631631e-01 6.92453012e-02
-2.75373459e-01 1.22560537e+00 5.26301086e-01 1.82146788e-01
-1.34087789e+00 -8.50088954e-01 7.95241714e-01 1.21562123e-01
-1.58148915e-01 -1.53172135e-01 -4.52723861e-01 -7.91079819e-01
-1.93307251e-01 -1.14648795e+00 1.08175389e-01 -7.90370405e-01
-1.20351434e+00 2.60820508e-01 -2.70227760e-01 -6.53278649e-01
2.11509969e-02 -3.60062242e-01 -6.04516327e-01 7.08930671e-01
-9.38575089e-01 -1.05257010e+00 -3.33302766e-01 1.64975777e-01
4.15493906e-01 2.91137666e-01 6.29131854e-01 4.52540576e-01
-1.10227096e+00 9.39098835e-01 -5.00165634e-02 6.16095781e-01
1.04295230e+00 -1.20140326e+00 4.11953121e-01 1.07799423e+00
-3.31686735e-01 8.00122201e-01 9.35972095e-01 -6.91997170e-01
-7.86975563e-01 -1.03403068e+00 1.12071061e+00 -7.84323275e-01
1.20099032e+00 -6.26961350e-01 -9.93849039e-01 4.17662859e-01
5.36430597e-01 -6.99173391e-01 8.66113722e-01 4.77447473e-02
-6.89966023e-01 2.08903059e-01 -1.09140468e+00 8.97946596e-01
7.74966538e-01 -6.69397771e-01 -4.08751994e-01 2.40137175e-01
1.03572488e+00 -8.22628736e-02 -7.71620035e-01 -2.28980228e-01
6.74612403e-01 -1.09793067e+00 4.74134415e-01 -6.60430491e-01
8.31970751e-01 5.86028472e-02 2.57256255e-03 -1.30721009e+00
-7.14942813e-01 -1.09465969e+00 -2.12823167e-01 1.73439920e+00
3.71062011e-01 -1.29596531e-01 4.35725749e-01 7.92853057e-01
-8.83534253e-02 -5.67096829e-01 -5.82488954e-01 -5.94683409e-01
2.61402845e-01 -1.91066504e-01 3.86751384e-01 1.33143783e+00
2.96493709e-01 6.16358876e-01 -9.06250536e-01 6.89057186e-02
4.85099345e-01 -8.04583848e-01 9.09095526e-01 -8.71582925e-01
1.26608461e-01 -6.04135513e-01 -1.01547197e-01 -2.85821140e-01
1.70806721e-01 -5.72272241e-01 -9.40349996e-02 -9.90520120e-01
5.91141462e-01 3.03389609e-01 -3.08007803e-02 6.95633292e-01
-3.36057693e-01 3.60253513e-01 6.49579465e-01 1.52295440e-01
-5.36694765e-01 2.76333153e-01 9.77490544e-01 -4.06493098e-02
-3.04592609e-01 -3.64113420e-01 -9.12271678e-01 6.43940508e-01
9.24665928e-01 -4.59591895e-01 -2.38571540e-01 -1.71386957e-01
2.33196318e-01 -5.54082453e-01 3.07372659e-01 -9.86807585e-01
-2.43672520e-01 -1.34495676e-01 4.02524062e-02 -1.82169259e-01
9.18756351e-02 -4.81862247e-01 -2.98001528e-01 3.66951883e-01
-4.08907235e-01 1.15607873e-01 1.09935261e-01 1.16677679e-01
1.98434591e-01 -3.25883746e-01 1.14166105e+00 2.96746522e-01
-1.14484906e-01 -1.11785159e-01 -6.06789768e-01 2.59970129e-01
9.08348203e-01 -6.39201403e-02 -8.51355433e-01 -5.72959423e-01
-2.31858134e-01 -1.51734814e-01 5.58753371e-01 5.29508710e-01
2.54903764e-01 -1.21615171e+00 -5.48307300e-01 2.14562397e-02
6.49293140e-02 -8.53437126e-01 2.82092929e-01 9.54851985e-01
-4.74031568e-01 3.61381322e-01 -9.33475420e-02 9.81619209e-02
-1.45136464e+00 6.86325490e-01 2.54169792e-01 -1.53448313e-01
-2.24336043e-01 5.07119000e-01 1.57525584e-01 -1.72239199e-01
2.02142105e-01 2.38363981e-01 -1.18840113e-01 2.44571403e-01
7.93233514e-01 7.20903933e-01 -2.24811416e-02 -9.98845160e-01
-2.62872875e-01 -6.68358132e-02 -1.63150221e-01 -3.09763622e-04
1.20001960e+00 -5.18304519e-02 -2.62707978e-01 1.99521899e-01
1.38088727e+00 4.39810961e-01 -9.23648298e-01 1.91814378e-01
4.84821349e-02 -5.28899372e-01 -3.02001815e-02 -8.63075733e-01
-5.31083107e-01 6.16849363e-01 3.83616626e-01 6.93627179e-01
9.91480589e-01 -2.98985749e-01 1.13989151e+00 1.57376900e-01
-3.46363544e-01 -1.30788589e+00 2.81834126e-01 6.71760976e-01
8.58103335e-01 -7.91150391e-01 -1.56333998e-01 -1.52787000e-01
-8.11032712e-01 9.05681610e-01 7.72840261e-01 1.13278210e-01
1.18422180e-01 1.59685791e-01 3.76736093e-03 -1.26585454e-01
-4.64481145e-01 3.08452751e-02 2.19544694e-01 6.16903961e-01
7.20692515e-01 4.28102016e-02 -3.67987573e-01 7.24720478e-01
-5.36667824e-01 -5.05842507e-01 8.54943395e-01 6.79511964e-01
-6.14583969e-01 -5.04572272e-01 -5.80156446e-01 2.45042354e-01
-6.00490987e-01 -1.91399902e-01 -1.07770658e+00 8.84500384e-01
2.36979976e-01 1.09456909e+00 -2.39151597e-01 -8.90664935e-01
4.70275432e-01 2.78123945e-01 1.37236476e-01 -4.31732625e-01
-8.77608299e-01 1.28166936e-02 2.63420403e-01 -2.77392149e-01
4.01999690e-02 -5.15227199e-01 -9.17255402e-01 -9.58281577e-01
-2.47230396e-01 7.16997012e-02 6.49223089e-01 8.31331789e-01
3.22332084e-01 3.38690698e-01 7.93697476e-01 -6.03605747e-01
-4.45265412e-01 -1.20178509e+00 -5.87266564e-01 9.70225096e-01
3.74965340e-01 -4.99893457e-01 -7.36383080e-01 1.69417467e-02] | [8.743552207946777, 10.565234184265137] |
9102d190-bcb3-4099-a321-d350955911f4 | sent2span-span-detection-for-pico-extraction | 2109.02254 | null | https://arxiv.org/abs/2109.02254v1 | https://arxiv.org/pdf/2109.02254v1.pdf | Sent2Span: Span Detection for PICO Extraction in the Biomedical Text without Span Annotations | The rapid growth in published clinical trials makes it difficult to maintain up-to-date systematic reviews, which requires finding all relevant trials. This leads to policy and practice decisions based on out-of-date, incomplete, and biased subsets of available clinical evidence. Extracting and then normalising Population, Intervention, Comparator, and Outcome (PICO) information from clinical trial articles may be an effective way to automatically assign trials to systematic reviews and avoid searching and screening - the two most time-consuming systematic review processes. We propose and test a novel approach to PICO span detection. The major difference between our proposed method and previous approaches comes from detecting spans without needing annotated span data and using only crowdsourced sentence-level annotations. Experiments on two datasets show that PICO span detection results achieve much higher results for recall when compared to fully supervised methods with PICO sentence detection at least as good as human annotations. By removing the reliance on expert annotations for span detection, this work could be used in human-machine pipeline for turning low-quality crowdsourced, and sentence-level PICO annotations into structured information that can be used to quickly assign trials to relevant systematic reviews. | ['Adam G. Dunn', 'Florence T. Bourgeois', 'Wei Wang', 'Bing Li', 'Yifang Sun', 'Shifeng Liu'] | 2021-09-06 | null | https://aclanthology.org/2021.findings-emnlp.147 | https://aclanthology.org/2021.findings-emnlp.147.pdf | findings-emnlp-2021-11 | ['pico'] | ['natural-language-processing'] | [ 2.89363682e-01 2.86813408e-01 -6.63810909e-01 -3.05391252e-01
-1.39292228e+00 -6.29827440e-01 3.01579654e-01 1.07080829e+00
-7.56057620e-01 8.52522969e-01 4.65822428e-01 -7.43516505e-01
-4.54680622e-02 -4.42172587e-01 -5.61838925e-01 -1.95655301e-01
3.11283946e-01 4.20069665e-01 2.72218287e-01 2.56434321e-01
4.45359379e-01 3.23294342e-01 -1.13004160e+00 6.12599492e-01
9.38594937e-01 4.73546118e-01 3.46646070e-01 5.73408782e-01
-2.22338453e-01 6.52303517e-01 -8.73630404e-01 -3.95930231e-01
-2.75162049e-02 -5.53619564e-01 -6.90569878e-01 -2.21982479e-01
4.90355901e-02 2.12878617e-03 4.35961694e-01 9.59752679e-01
8.77010584e-01 -4.71060067e-01 4.77123797e-01 -7.19754159e-01
-6.21753454e-01 8.52343321e-01 -6.08430028e-01 1.84401497e-01
8.21708441e-01 1.45100519e-01 5.96657932e-01 -7.55558074e-01
9.04990137e-01 1.08154047e+00 7.71288633e-01 3.95323604e-01
-9.91166174e-01 -5.90548515e-01 -3.69710177e-01 -2.47857034e-01
-1.09963405e+00 -5.37229478e-01 2.77760565e-01 -8.19869280e-01
1.08011198e+00 1.34356573e-01 6.04691505e-01 9.57780898e-01
5.59536576e-01 1.54286191e-01 1.08418190e+00 -7.81450510e-01
5.19985914e-01 2.01494470e-01 2.37024292e-01 4.78451550e-01
9.12473679e-01 -4.25656021e-01 -3.48329365e-01 -5.89548469e-01
3.21865939e-02 -6.15601465e-02 -1.63804457e-01 1.52562410e-01
-1.16082883e+00 7.33123124e-01 1.72103979e-02 7.88666308e-02
-6.25588179e-01 -4.04525250e-01 9.85109091e-01 2.06797197e-02
6.68440044e-01 5.54995358e-01 -4.34990466e-01 -2.53572196e-01
-1.25535226e+00 1.73452288e-01 8.07090163e-01 7.89368808e-01
2.70894110e-01 -5.42562902e-01 -4.20392632e-01 8.03004503e-01
1.86420456e-01 5.81488490e-01 8.29662740e-01 -5.39780617e-01
6.54487848e-01 9.96063769e-01 2.42076650e-01 -6.83007360e-01
-6.87779725e-01 1.33203000e-01 -5.12244344e-01 -5.53279482e-02
2.46533379e-01 -3.53333563e-01 -9.09850538e-01 1.21954453e+00
4.64495629e-01 -5.85443437e-01 -2.05465872e-02 7.69570351e-01
1.23337257e+00 2.20248103e-01 5.10135114e-01 -5.53263903e-01
1.88856912e+00 -6.69986904e-01 -9.92176950e-01 -1.32393157e-02
1.18563128e+00 -1.18228161e+00 9.38236356e-01 1.27374530e-01
-1.03874218e+00 -6.96319863e-02 -1.07670069e+00 -2.09032055e-02
-4.28200692e-01 1.40596911e-01 2.30059788e-01 7.21769929e-01
-6.98477149e-01 4.32908893e-01 -7.20595479e-01 -4.79347467e-01
8.28672528e-01 1.59045890e-01 -5.64066827e-01 -1.72717273e-01
-1.13604355e+00 1.17547858e+00 2.47305065e-01 4.43699211e-02
-5.68954408e-01 -7.74686575e-01 -9.44491982e-01 -3.06421518e-01
3.89642477e-01 -7.03143120e-01 1.32515764e+00 -5.50160825e-01
-9.78771448e-01 9.71070886e-01 -3.19877088e-01 -5.22432387e-01
3.46472770e-01 -9.73749682e-02 -3.94555420e-01 4.47479427e-01
5.34630001e-01 4.62689221e-01 3.05716157e-01 -3.86214554e-01
-4.51505870e-01 -5.16871274e-01 -3.28026235e-01 1.06593281e-01
-2.27651924e-01 8.04674745e-01 -3.87538075e-02 -4.69132304e-01
-2.92254865e-01 -8.53343785e-01 -5.75007975e-01 4.12393920e-03
-4.17255163e-01 -4.38588411e-01 3.65802228e-01 -8.62654150e-01
1.47180533e+00 -1.57854962e+00 -5.17120481e-01 -3.01353097e-01
3.78236115e-01 5.87522566e-01 -8.43852088e-02 6.07748270e-01
-5.81337586e-02 5.92252910e-01 -5.15269898e-02 -2.10907385e-01
-3.79519433e-01 -9.84259471e-02 1.49377525e-01 5.41720867e-01
4.60544169e-01 1.06811440e+00 -1.13008881e+00 -9.11783755e-01
-5.45487478e-02 1.76598176e-01 -1.03933543e-01 7.24576861e-02
9.65521038e-02 2.40365162e-01 -3.94131005e-01 4.74168152e-01
4.75422531e-01 -2.93587953e-01 6.67945147e-02 9.70017239e-02
-9.86241698e-02 8.94662082e-01 -8.76548648e-01 1.49494851e+00
-4.16810572e-01 5.38690329e-01 -7.96673149e-02 -8.90813708e-01
7.98233986e-01 6.04944944e-01 3.49697649e-01 -6.99012220e-01
6.87948912e-02 4.57140565e-01 7.38474652e-02 -9.75163639e-01
1.16172761e-01 -2.86862135e-01 -2.22506210e-01 5.23949444e-01
-2.20315993e-01 -7.53266960e-02 3.91244739e-01 1.13272734e-01
1.32009923e+00 -2.37952605e-01 8.50394905e-01 -2.36358359e-01
4.11466748e-01 2.89843917e-01 6.44226968e-01 6.92903042e-01
-4.02037024e-01 7.60994792e-01 7.58422315e-01 -4.81434733e-01
-1.13487339e+00 -4.77751911e-01 -3.35085958e-01 3.88769090e-01
-6.82049692e-01 -5.64726889e-01 -8.21199298e-01 -7.80204356e-01
-3.42241019e-01 3.07099551e-01 -7.30479419e-01 2.46027615e-02
-3.15832466e-01 -7.16369510e-01 6.21764421e-01 3.77864271e-01
4.37294282e-02 -1.18804133e+00 -1.11031282e+00 3.70406181e-01
-4.58570085e-02 -1.25687718e+00 -5.18617153e-01 2.14767288e-02
-7.99501061e-01 -1.36409402e+00 -1.22814226e+00 -7.94202745e-01
5.99174261e-01 -4.34552543e-02 9.28322554e-01 -1.63509846e-01
-6.99886382e-01 -1.23660013e-01 -4.92290825e-01 -1.00428843e+00
-8.70871246e-01 4.92153317e-02 -1.80317327e-01 -7.33870089e-01
8.29091191e-01 2.36869883e-02 -8.04803312e-01 2.92465370e-02
-8.95388603e-01 -1.60575733e-01 6.83096468e-01 5.49324751e-01
4.66166228e-01 -4.95277137e-01 1.22286701e+00 -1.20045817e+00
1.00602138e+00 -3.96206826e-01 -5.40714562e-01 2.35624328e-01
-9.00408030e-01 -1.39046267e-01 4.46421683e-01 -5.25047898e-01
-5.43332636e-01 5.35318702e-02 -1.13035128e-01 5.86552508e-02
-2.61397690e-01 9.20566738e-01 1.10380603e-02 3.79384160e-01
1.00282109e+00 -4.22743291e-01 3.56284052e-01 -2.51932621e-01
2.17971861e-01 1.26862633e+00 -2.39914522e-01 1.04874417e-01
-7.50465412e-03 1.67466462e-01 -1.64195836e-01 -7.32921898e-01
-8.45058501e-01 -7.65615642e-01 -3.89229506e-01 2.90033042e-01
9.46052790e-01 -9.62439239e-01 -4.76856649e-01 3.32559124e-02
-1.32666552e+00 -9.59188938e-02 -2.51143873e-01 6.37066305e-01
6.21216707e-02 6.46134377e-01 -4.71507519e-01 -7.40414262e-01
-9.68148589e-01 -1.37124515e+00 1.18294144e+00 1.07970811e-01
-8.83074403e-01 -7.65701354e-01 4.79530454e-01 3.16894412e-01
2.04310820e-01 2.39148229e-01 6.33468926e-01 -9.39231515e-01
3.49848062e-01 -7.83282995e-01 -2.23759741e-01 1.78478003e-01
3.26324910e-01 3.11673414e-02 -6.66555643e-01 2.15995654e-01
5.31127397e-03 -2.73133159e-01 4.85949486e-01 6.84277356e-01
7.01859593e-01 -6.32601321e-01 -5.09389639e-01 -1.24110244e-01
1.30515873e+00 2.89079189e-01 5.07957160e-01 3.50797266e-01
4.56500113e-01 8.42394650e-01 6.51581109e-01 3.83659273e-01
2.91029274e-01 6.27703428e-01 -2.67709672e-01 -1.56177673e-02
-1.85440913e-01 1.73078105e-02 3.02943081e-01 6.58724666e-01
3.48522455e-01 -3.80555727e-02 -1.26642001e+00 1.00811756e+00
-1.78005862e+00 -6.98221207e-01 -4.02129233e-01 2.34345841e+00
1.28072906e+00 2.49292895e-01 3.47976536e-01 -5.21921143e-02
9.41771746e-01 -3.35385919e-01 -1.62087336e-01 -9.68113184e-01
6.38791025e-02 3.85790676e-01 5.43183684e-01 2.00414568e-01
-1.01635540e+00 4.00100261e-01 6.41114807e+00 5.77200174e-01
-1.04469800e+00 4.10869241e-01 4.60584611e-01 -1.67519450e-01
-2.01811679e-02 -1.28854718e-02 -7.32609212e-01 7.49908328e-01
1.41911554e+00 -2.55592078e-01 -4.41946864e-01 6.39987230e-01
8.54804337e-01 -4.43774134e-01 -1.08861470e+00 7.78312385e-01
-3.70409973e-02 -1.44022095e+00 -1.49558797e-01 -7.65264630e-02
7.15175569e-01 5.71556985e-02 -5.59716463e-01 -1.55013949e-01
1.90754503e-01 -9.98514295e-01 4.68292415e-01 2.03346446e-01
8.98110807e-01 -3.21725398e-01 1.25184405e+00 2.84537554e-01
-9.63247716e-01 1.60353571e-01 -4.82038140e-01 -3.93560082e-02
2.63206124e-01 1.21523726e+00 -1.33839583e+00 6.42156065e-01
6.36860073e-01 5.86773634e-01 -6.20295107e-01 1.39090574e+00
-3.00181836e-01 7.68108070e-01 -1.95078984e-01 -5.63945234e-01
-4.88405302e-03 3.86790752e-01 3.63570660e-01 1.55657828e+00
2.04100579e-01 -1.78549681e-02 2.62885660e-01 5.80692470e-01
-1.59103170e-01 5.57018161e-01 -7.61026144e-01 -2.52285302e-01
5.47233343e-01 1.25943196e+00 -9.82000053e-01 -4.34633493e-01
-3.89969438e-01 4.46029484e-01 1.76041320e-01 -8.43960568e-02
-4.85707670e-01 -6.34768486e-01 -1.67384058e-01 3.03634971e-01
6.81951568e-02 2.52907574e-01 -5.79839826e-01 -6.77119493e-01
3.05779278e-01 -9.44923639e-01 5.04067540e-01 -6.16624475e-01
-1.06633854e+00 6.69421434e-01 4.06394973e-02 -1.28853023e+00
-1.24510385e-01 -4.26606566e-01 -4.44159418e-01 1.08618343e+00
-1.25577533e+00 -8.52655053e-01 -2.54745521e-02 -1.21366993e-01
6.93060935e-01 1.19248196e-01 8.43706429e-01 2.24115267e-01
-5.59023201e-01 4.42153662e-01 -3.34063500e-01 5.95918484e-02
1.07924736e+00 -1.03282571e+00 1.19782574e-01 5.00405014e-01
-3.15304965e-01 6.59590364e-01 5.43809891e-01 -1.13227296e+00
-8.89018655e-01 -9.37996507e-01 1.45872092e+00 -7.11935163e-01
6.90649748e-01 -1.92848608e-01 -8.87758017e-01 7.00125704e-03
2.56151706e-01 -2.43809670e-01 9.34370697e-01 4.33125580e-03
-1.58754453e-01 8.61923099e-02 -9.83583391e-01 5.05553544e-01
6.33208990e-01 -3.73292089e-01 -1.06246042e+00 6.82627559e-01
7.85220742e-01 -3.06086868e-01 -8.15507948e-01 3.02769959e-01
4.99024272e-01 -2.15645477e-01 5.12513936e-01 -5.61219692e-01
8.21853697e-01 -6.97261021e-02 6.48471773e-01 -1.02527046e+00
2.36516878e-01 -5.73599100e-01 4.27600354e-01 1.13087595e+00
9.26177621e-01 -5.04463136e-01 5.76698720e-01 7.65393913e-01
-2.11512242e-02 -9.59173262e-01 -8.54257464e-01 -5.71550012e-01
1.12333782e-01 -2.71017313e-01 3.50208580e-01 7.85303175e-01
6.62645817e-01 5.31416595e-01 1.31318197e-01 1.78975298e-03
2.42037669e-01 -7.73359984e-02 4.30641443e-01 -1.16982484e+00
1.74585983e-01 -4.16622877e-01 -2.82209426e-01 -2.77781319e-02
-3.22740972e-02 -8.06535184e-01 3.40058744e-01 -2.15016508e+00
6.01918161e-01 -3.94552767e-01 -2.96451058e-03 6.07091308e-01
-5.08981526e-01 9.16723236e-02 -1.71698526e-01 2.57351011e-01
-6.99695468e-01 2.45748460e-02 1.09036398e+00 -2.36494765e-02
-3.40961546e-01 -1.09006941e-01 -6.88199461e-01 5.72336853e-01
6.86830819e-01 -1.08302534e+00 -2.38117710e-01 -4.97294888e-02
5.06067872e-01 -1.13810159e-01 8.32575858e-02 -5.63787520e-01
3.38785291e-01 -9.36592743e-03 1.16500340e-01 -5.11522949e-01
-6.38203800e-01 -4.98967528e-01 3.28265093e-02 6.65926635e-01
-5.72796941e-01 4.10718709e-01 4.23945159e-01 3.92276138e-01
-1.15913078e-01 -8.46707225e-01 3.46409470e-01 -4.32150543e-01
-5.58096655e-02 -2.53732651e-01 -8.32583129e-01 1.74689636e-01
9.55259919e-01 -5.27550653e-02 -4.39495564e-01 -1.18467808e-01
-5.08781672e-01 2.20830172e-01 3.58367115e-01 3.94875824e-01
4.69526201e-01 -7.72074282e-01 -9.12290990e-01 -4.00036961e-01
3.07040751e-01 1.94657430e-01 2.65009373e-01 9.70286548e-01
-6.79568529e-01 7.04498351e-01 8.70974064e-02 -4.57182944e-01
-1.43929148e+00 9.34575737e-01 -2.28367239e-01 -7.27990150e-01
-6.36325121e-01 2.39465222e-01 -1.73251569e-01 -3.22760731e-01
2.69493222e-01 -5.82626641e-01 -4.32404131e-01 3.68442893e-01
8.69795918e-01 3.17591339e-01 5.13357222e-01 -2.80291200e-01
-7.56499469e-01 4.98599857e-01 -1.80635795e-01 -2.36105323e-01
1.15120661e+00 1.66758094e-02 -1.74203083e-01 4.16037679e-01
1.10062397e+00 2.27966636e-01 -2.62473524e-01 2.30142653e-01
3.54601562e-01 1.54013738e-01 -9.25712734e-02 -9.20263350e-01
-2.48799160e-01 9.33646202e-01 3.68292451e-01 1.24796189e-01
8.07563484e-01 1.97580922e-02 5.34240127e-01 1.44946665e-01
6.44774139e-02 -1.17597151e+00 -2.42985412e-01 -1.48962110e-01
7.93232441e-01 -1.39954352e+00 4.85419065e-01 -3.71873289e-01
-6.36172175e-01 9.81188118e-01 1.87046871e-01 1.71929181e-01
6.74484313e-01 3.01741660e-01 2.10561424e-01 -3.74876857e-01
-6.89936459e-01 6.03489764e-02 5.30091763e-01 5.26607811e-01
7.27515757e-01 2.90848296e-02 -1.14331055e+00 9.14957404e-01
2.33242840e-01 5.90370417e-01 6.98123336e-01 1.13364506e+00
-2.36861244e-01 -1.26153767e+00 -3.41738015e-01 7.16081619e-01
-1.06689453e+00 -3.81586581e-01 -3.57094437e-01 6.17980719e-01
-6.61416352e-02 1.15570068e+00 -1.82132468e-01 3.26064825e-01
5.19163549e-01 1.70318455e-01 -1.83288828e-02 -1.12015355e+00
-9.24818635e-01 1.88194558e-01 5.25863767e-01 -3.27973574e-01
-7.83974409e-01 -5.55867970e-01 -1.09026015e+00 3.25044841e-01
-6.40687943e-01 3.98511410e-01 7.77377129e-01 1.02662838e+00
8.39806974e-01 3.56004924e-01 2.75231510e-01 -3.70993644e-01
-4.76156384e-01 -1.06698751e+00 8.87678266e-02 4.15262669e-01
2.90620267e-01 -2.85391867e-01 -2.06636176e-01 1.30219877e-01] | [8.426085472106934, 8.724601745605469] |
0504b42d-3c66-41f2-baf1-1ac078965827 | 190807888 | 1908.07888 | null | https://arxiv.org/abs/1908.07888v1 | https://arxiv.org/pdf/1908.07888v1.pdf | Towards Better Understanding of Spontaneous Conversations: Overcoming Automatic Speech Recognition Errors With Intent Recognition | In this paper, we present a method for correcting automatic speech recognition (ASR) errors using a finite state transducer (FST) intent recognition framework. Intent recognition is a powerful technique for dialog flow management in turn-oriented, human-machine dialogs. This technique can also be very useful in the context of human-human dialogs, though it serves a different purpose of key insight extraction from conversations. We argue that currently available intent recognition techniques are not applicable to human-human dialogs due to the complex structure of turn-taking and various disfluencies encountered in spontaneous conversations, exacerbated by speech recognition errors and scarcity of domain-specific labeled data. Without efficient key insight extraction techniques, raw human-human dialog transcripts remain significantly unexploited. Our contribution consists of a novel FST for intent indexing and an algorithm for fuzzy intent search over the lattice - a compact graph encoding of ASR's hypotheses. We also develop a pruning strategy to constrain the fuzziness of the FST index search. Extracted intents represent linguistic domain knowledge and help us improve (rescore) the original transcript. We compare our method with a baseline, which uses only the most likely transcript hypothesis (best path), and find an increase in the total number of recognized intents by 25%. | ['Łukasz Augustyniak', 'Piotr Szymański', 'Mikołaj Morzy', 'Piotr Żelasko', 'Yishay Carmiel', 'Jan Mizgajski', 'Adrian Szymczak'] | 2019-08-21 | null | null | null | null | ['intent-recognition'] | ['natural-language-processing'] | [ 5.55569351e-01 6.23585045e-01 -1.26714140e-01 -5.14249802e-01
-7.82321274e-01 -8.40885460e-01 6.04904890e-01 8.63890126e-02
-1.93827271e-01 7.55180180e-01 7.78032422e-01 -8.23114634e-01
7.56835788e-02 -2.80828983e-01 1.72203988e-01 -4.44431342e-02
1.22253977e-01 9.12349105e-01 3.21317941e-01 -9.46169138e-01
5.33360660e-01 4.80482757e-01 -1.19724905e+00 4.49274987e-01
7.64709413e-01 5.42002857e-01 2.08742291e-01 1.01393783e+00
-6.69914961e-01 1.33069253e+00 -9.60210264e-01 -4.33900476e-01
-9.08889398e-02 -6.32509351e-01 -1.55808270e+00 3.07598084e-01
7.75851607e-02 -1.12585187e-01 -4.78075773e-01 9.58942413e-01
7.83397406e-02 5.18570244e-01 5.30064881e-01 -1.12699640e+00
4.05236036e-02 8.50606620e-01 2.00225547e-01 4.56610322e-01
1.10104108e+00 1.19421475e-01 1.12184072e+00 -4.89079744e-01
7.29734182e-01 1.50061631e+00 4.39750105e-01 9.24362302e-01
-1.04183340e+00 -1.04020528e-01 1.46594405e-01 1.15457885e-01
-1.11160946e+00 -9.85075831e-01 7.71584094e-01 -2.65545040e-01
1.63762319e+00 8.76000941e-01 2.14076042e-01 1.00480103e+00
-3.34532298e-02 6.83607340e-01 7.88338482e-01 -7.76514471e-01
1.34685367e-01 3.29426140e-01 5.98616958e-01 1.04645348e+00
-4.97095972e-01 -1.05696157e-01 -7.17793941e-01 -4.38354284e-01
3.94013941e-01 -4.05694038e-01 -3.47088069e-01 3.59752744e-01
-1.00370491e+00 1.04059875e+00 -3.14083993e-01 6.95617557e-01
-1.52646884e-01 -4.57109898e-01 5.47726035e-01 7.07182288e-01
2.12797537e-01 5.68252683e-01 -3.93800944e-01 -7.00175226e-01
-7.96661496e-01 1.73984379e-01 1.57898796e+00 9.60276663e-01
6.96534038e-01 4.90585007e-02 -2.35487565e-01 9.27979827e-01
2.50274777e-01 1.50497839e-01 6.31625295e-01 -1.08275139e+00
5.22984385e-01 8.67894948e-01 7.26342425e-02 -8.66020501e-01
-4.55974162e-01 3.58721048e-01 -5.12393832e-01 -2.81436652e-01
3.99857730e-01 -1.40598744e-01 -7.25390553e-01 1.47599685e+00
1.11324638e-01 -4.87976193e-01 3.09108347e-01 5.55806339e-01
6.26046360e-01 6.81939065e-01 -1.67366147e-01 -6.63772583e-01
1.57019949e+00 -8.06619585e-01 -1.08921397e+00 -5.56302965e-01
9.21959341e-01 -7.74906695e-01 1.17427778e+00 1.94237456e-01
-9.15732563e-01 -2.18362972e-01 -6.38429761e-01 -5.87089509e-02
-2.52762079e-01 -1.26592144e-01 8.01523030e-01 9.75364387e-01
-1.29298282e+00 1.90616041e-01 -4.36749548e-01 -5.31837404e-01
-3.72730672e-01 6.26464784e-01 -1.52469784e-01 2.87676066e-01
-1.41674781e+00 1.13698542e+00 3.00876468e-01 -2.16072887e-01
-1.71933755e-01 -2.18447924e-01 -1.16974962e+00 4.44990881e-02
8.30223799e-01 -1.79038465e-01 1.96562183e+00 -3.96078527e-01
-1.87161517e+00 6.41995847e-01 -6.24648035e-01 -7.05033898e-01
-7.13303909e-02 2.83503741e-01 -3.98189247e-01 1.75468445e-01
-1.41019210e-01 5.00562370e-01 5.62708080e-01 -9.11772132e-01
-7.23951101e-01 -2.42640808e-01 1.37100264e-01 4.12909746e-01
-1.06268965e-01 3.83052438e-01 -1.38024837e-01 -4.89167035e-01
1.77434310e-01 -9.84657466e-01 -2.09491640e-01 -7.59539664e-01
-3.49758297e-01 -6.14670455e-01 8.75564754e-01 -8.06197345e-01
1.71258318e+00 -1.96927547e+00 3.99743207e-02 1.86169520e-01
4.49648499e-02 4.27960247e-01 1.36022717e-01 8.01388979e-01
2.55112320e-01 1.93454266e-01 -2.26323038e-01 -3.47577065e-01
1.35767058e-01 5.88817596e-01 -6.84283793e-01 -2.14010492e-01
-8.90607163e-02 9.32011127e-01 -7.24306226e-01 -6.88974380e-01
5.56820154e-01 -1.87485769e-01 -3.36601615e-01 4.63493913e-01
-5.87260604e-01 2.91752964e-01 -2.61938423e-01 5.53966105e-01
3.36997472e-02 -1.20466590e-01 5.26409388e-01 1.51282459e-01
-1.53965771e-01 1.07705295e+00 -9.30788279e-01 1.48045957e+00
-5.14357030e-01 5.97017407e-01 1.99975550e-01 -7.16954112e-01
1.12763441e+00 6.50429070e-01 1.60829034e-02 -3.08194607e-01
3.61385718e-02 6.64247200e-02 -4.00037542e-02 -4.94572490e-01
8.53870630e-01 -3.67243111e-01 -4.78379786e-01 7.22275555e-01
2.03164309e-01 -3.52322847e-01 2.80564845e-01 5.38980126e-01
1.25389397e+00 -8.64499986e-01 6.51697576e-01 -2.88176537e-02
9.16969597e-01 3.86672616e-01 1.89232647e-01 8.09883177e-01
-3.57818782e-01 1.61645114e-01 5.64315557e-01 -4.49256867e-01
-5.08466721e-01 -4.47375447e-01 4.73341763e-01 1.45852852e+00
-1.59606233e-01 -5.43053448e-01 -7.39888906e-01 -1.02681541e+00
-4.48499054e-01 1.26381660e+00 -3.20278220e-02 -1.01408005e-01
-9.03074205e-01 -2.33736724e-01 9.61692274e-01 1.50924265e-01
4.32773441e-01 -1.26226032e+00 -2.92814374e-01 3.50249350e-01
-7.60282159e-01 -1.24865603e+00 -7.78850138e-01 4.13705528e-01
-7.25688279e-01 -8.02649319e-01 -7.35328253e-03 -8.58185351e-01
2.94576198e-01 9.68338773e-02 9.28489804e-01 2.22476438e-01
6.67565092e-02 4.65330362e-01 -5.84686935e-01 -1.08419154e-02
-1.31368160e+00 1.85640559e-01 2.65231114e-02 -3.37908357e-01
6.70342505e-01 -2.65443474e-01 1.63450405e-01 3.95522356e-01
-6.93912685e-01 -1.61413625e-01 8.64028335e-02 9.05407429e-01
-3.55546057e-01 7.68624023e-02 4.78303790e-01 -8.82990420e-01
1.19282985e+00 3.94124575e-02 -3.78950536e-01 4.50271875e-01
-4.59032983e-01 4.34508771e-01 6.71817422e-01 -1.95694327e-01
-1.51436520e+00 1.34925812e-01 -5.23508489e-01 -4.93176170e-02
-5.56469202e-01 3.75755370e-01 -4.25036140e-02 -1.74594775e-01
6.75338745e-01 3.58443379e-01 2.43432328e-01 -3.95325541e-01
2.76196390e-01 1.29014885e+00 5.34003913e-01 -3.71394128e-01
2.30666205e-01 1.79815106e-03 -3.31702828e-01 -1.20582914e+00
-5.43313920e-01 -9.25830066e-01 -4.34378684e-01 -1.98862866e-01
6.17384970e-01 -3.11365932e-01 -9.36922193e-01 -3.36971804e-02
-1.51579976e+00 -2.96591938e-01 -3.37970495e-01 1.88587487e-01
-5.55881739e-01 8.98244321e-01 -9.14182425e-01 -1.38597691e+00
-4.31936592e-01 -1.13695467e+00 1.03007650e+00 6.12795167e-03
-1.05787218e+00 -1.06984103e+00 6.46935999e-02 7.93460727e-01
1.38484955e-01 -6.10903502e-01 1.15670896e+00 -1.39687955e+00
-1.84517160e-01 -8.18314496e-03 2.46459290e-01 1.23725735e-01
3.73947799e-01 -4.20202732e-01 -7.44923592e-01 1.65473253e-01
4.64024395e-01 -4.01582956e-01 5.29131770e-01 -7.32438117e-02
3.84319872e-01 -9.40138161e-01 -2.44780511e-01 -2.67365098e-01
5.69711804e-01 7.96380520e-01 4.69956517e-01 -1.05760306e-01
2.61925459e-01 9.22110438e-01 5.72594285e-01 3.64814937e-01
4.37775671e-01 8.44844282e-01 -5.74975759e-02 5.18832445e-01
2.01406796e-02 -2.96076745e-01 5.84288955e-01 1.06606340e+00
2.58097023e-01 -5.96915901e-01 -1.13561046e+00 3.79110992e-01
-1.74385965e+00 -1.03801274e+00 1.05487406e-01 1.83809245e+00
1.01476896e+00 3.00902009e-01 3.02458018e-01 3.45084548e-01
7.95850873e-01 2.25761577e-01 6.94413707e-02 -1.01686907e+00
1.72437847e-01 1.22079492e-01 2.02862591e-01 1.26583886e+00
-7.78050721e-01 1.33964252e+00 6.94092846e+00 6.71446681e-01
-8.54151666e-01 -1.19773224e-01 3.17460954e-01 4.71070588e-01
-2.83714473e-01 9.79990289e-02 -9.20326710e-01 1.04381002e-01
1.19348943e+00 -5.38120195e-02 7.31296420e-01 7.36423552e-01
9.76349264e-02 -1.53386340e-01 -1.04910111e+00 7.75294125e-01
1.70113295e-01 -1.41988707e+00 -2.02178583e-02 -1.33358970e-01
6.17959872e-02 -4.70145166e-01 -3.16761404e-01 5.08417308e-01
4.45952922e-01 -8.00084651e-01 2.40263507e-01 2.03185067e-01
5.77751815e-01 -5.96563876e-01 5.85061491e-01 6.96284592e-01
-1.06445980e+00 -1.57573164e-01 -3.20366472e-02 -3.14183831e-01
3.20373297e-01 1.79798245e-01 -1.69261777e+00 3.80267054e-01
-5.92989884e-02 -2.49199662e-02 -2.57614374e-01 1.75464347e-01
2.00979467e-02 6.25326037e-01 -4.05861616e-01 -5.12734830e-01
2.08791867e-01 -2.06843540e-02 1.06054330e+00 1.51417649e+00
-1.22745037e-01 5.34340799e-01 4.06156510e-01 4.88448560e-01
9.78004038e-02 -1.01218589e-01 -8.19155216e-01 -4.16065603e-01
5.83050787e-01 9.13119912e-01 -8.85448456e-01 -5.25017321e-01
-1.81646064e-01 1.09035218e+00 1.63194522e-01 8.03725421e-03
-2.16869652e-01 -4.19973850e-01 4.89873141e-01 -2.17097074e-01
-1.43305901e-02 -4.33013707e-01 -1.98079899e-01 -1.05455947e+00
-1.27704293e-01 -1.42434859e+00 6.50164485e-01 -4.05051708e-01
-1.04304183e+00 9.07221973e-01 1.32742628e-01 -5.66639364e-01
-1.04003370e+00 -3.98462862e-01 -6.76485956e-01 5.78020215e-01
-8.22200358e-01 -6.26702607e-01 2.77643204e-01 4.97328401e-01
1.24703765e+00 -2.76799232e-01 1.09872663e+00 -1.73838526e-01
-1.89501569e-01 5.99661291e-01 -5.86251080e-01 9.96603444e-02
3.48357260e-01 -1.23759544e+00 6.22539878e-01 6.30549848e-01
4.46498305e-01 8.92326057e-01 9.23433363e-01 -8.74185920e-01
-1.42592049e+00 -6.14806592e-01 1.67783833e+00 -4.55852270e-01
7.06975698e-01 -4.44147110e-01 -9.92465496e-01 8.41486990e-01
2.71526754e-01 -8.08328629e-01 6.84943855e-01 2.13230267e-01
-2.06120219e-02 4.12050277e-01 -1.11818838e+00 8.08085084e-01
1.09160316e+00 -8.52181554e-01 -1.37550604e+00 4.21823770e-01
1.00953817e+00 -5.23355544e-01 -4.48196530e-01 2.02827424e-01
1.04646370e-01 -8.58815610e-01 6.35310173e-01 -5.74430466e-01
-3.26086134e-01 2.65882462e-02 -1.51064619e-01 -1.04504919e+00
-2.34050341e-02 -1.41779673e+00 -2.49329329e-01 1.15123796e+00
4.03195649e-01 -4.87363786e-01 7.55188823e-01 9.45563555e-01
-3.15714210e-01 -3.46144021e-01 -1.13316381e+00 -6.13148272e-01
-6.21821582e-01 -5.37623763e-01 4.53977317e-01 6.73080504e-01
1.03929055e+00 9.62827444e-01 -3.84436965e-01 -1.09791204e-01
2.37242747e-02 1.49832532e-01 5.12817621e-01 -1.18735373e+00
-1.91044241e-01 -2.74091542e-01 -2.31962621e-01 -1.45116079e+00
5.37239850e-01 -6.78381383e-01 4.77594256e-01 -1.21154904e+00
-3.75122577e-01 -2.28223279e-01 4.58738178e-01 5.62928319e-01
1.41763672e-01 -3.67714942e-01 2.25238770e-01 1.30976394e-01
-6.81212604e-01 3.35776329e-01 7.33729482e-01 -1.42283857e-01
-7.42901146e-01 3.47914785e-01 -6.17712617e-01 7.41354525e-01
7.92673528e-01 -3.40607166e-01 -5.19622743e-01 1.94273904e-01
-1.59636363e-01 8.22791696e-01 1.83494575e-02 -7.25041926e-01
6.34046972e-01 -3.56373578e-01 -5.14257669e-01 -6.29125416e-01
4.43304658e-01 -6.81253552e-01 -9.43097919e-02 4.34365809e-01
-7.95597136e-01 -2.22951155e-02 1.50583684e-01 4.72235799e-01
-1.82760671e-01 -7.17522681e-01 3.29591393e-01 -3.53402883e-01
-8.85292411e-01 -3.55913877e-01 -1.23764932e+00 2.05954552e-01
5.00613809e-01 -2.65125662e-01 -1.51964113e-01 -8.50690603e-01
-6.61843836e-01 -2.05328632e-02 2.40111932e-01 4.51673150e-01
6.05707586e-01 -6.71153843e-01 -1.73025444e-01 2.44558185e-01
2.23675594e-02 -3.54633152e-01 -1.35846302e-01 4.52058077e-01
-1.88911706e-01 9.69309270e-01 1.03776887e-01 -2.68399686e-01
-1.71543348e+00 2.88457721e-01 1.07319914e-01 -5.61553240e-01
-5.45170963e-01 8.70817304e-01 -2.38201946e-01 -5.93584061e-01
5.61811149e-01 -4.00513947e-01 -3.25645387e-01 -2.79206112e-02
6.07896864e-01 3.20789158e-01 3.50677997e-01 -7.80369341e-01
-5.49564779e-01 -1.41135022e-01 -3.44964027e-01 -6.06158257e-01
7.28590608e-01 -4.89587903e-01 -1.00525185e-01 5.45731187e-01
8.59531581e-01 9.63876396e-02 -4.30236578e-01 -1.43434703e-01
5.88257909e-01 -3.18382084e-01 -2.84054786e-01 -7.13859677e-01
-2.17165098e-01 6.54632211e-01 -1.12169990e-02 7.57143021e-01
8.26640427e-01 1.38713166e-01 1.09918797e+00 1.16532314e+00
4.40460503e-01 -1.10272968e+00 1.61755443e-01 1.30221391e+00
7.72217870e-01 -1.10691500e+00 -4.10682321e-01 -5.80973566e-01
-1.19572616e+00 1.22052252e+00 4.15342450e-01 6.22385144e-01
1.82373628e-01 4.41265374e-01 2.52388060e-01 -2.71137029e-01
-1.06141520e+00 -2.68048972e-01 9.19209719e-02 6.30893111e-01
3.97504359e-01 -1.55760691e-01 -2.63998210e-01 4.81649935e-01
-4.72560495e-01 -2.48369977e-01 6.45178854e-01 1.22632432e+00
-8.68555129e-01 -1.25255144e+00 -4.14489657e-01 4.84162688e-01
-2.81463504e-01 -2.13092744e-01 -1.07530296e+00 3.66418242e-01
-5.46019495e-01 1.63982534e+00 -1.26912698e-01 -7.66989112e-01
2.60112196e-01 8.55805457e-01 1.61778122e-01 -9.92753148e-01
-1.01560187e+00 -6.30794093e-02 8.35661948e-01 -4.10498381e-01
-2.23418474e-01 -5.20180881e-01 -1.43030298e+00 -4.21283096e-01
-5.96233964e-01 7.04847932e-01 3.75757903e-01 1.18736649e+00
1.96761429e-01 8.91375691e-02 6.25478208e-01 -3.71981651e-01
-8.76479745e-01 -9.18021798e-01 -2.63128817e-01 8.59399363e-02
3.37224275e-01 -3.48076999e-01 -5.37002802e-01 1.63453251e-01] | [12.756237030029297, 7.813971042633057] |
0c10e6b3-1cda-474b-b1fd-b79892445759 | tdeer-an-efficient-translating-decoding | null | null | https://aclanthology.org/2021.emnlp-main.635 | https://aclanthology.org/2021.emnlp-main.635.pdf | TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations | Joint extraction of entities and relations from unstructured texts to form factual triples is a fundamental task of constructing a Knowledge Base (KB). A common method is to decode triples by predicting entity pairs to obtain the corresponding relation. However, it is still challenging to handle this task efficiently, especially for the overlapping triple problem. To address such a problem, this paper proposes a novel efficient entities and relations extraction model called TDEER, which stands for Translating Decoding Schema for Joint Extraction of Entities and Relations. Unlike the common approaches, the proposed translating decoding schema regards the relation as a translating operation from subject to objects, i.e., TDEER decodes triples as subject + relation \rightarrow objects. TDEER can naturally handle the overlapping triple problem, because the translating decoding schema can recognize all possible triples, including overlapping and non-overlapping triples. To enhance model robustness, we introduce negative samples to alleviate error accumulation at different stages. Extensive experiments on public datasets demonstrate that TDEER produces competitive results compared with the state-of-the-art (SOTA) baselines. Furthermore, the computation complexity analysis indicates that TDEER is more efficient than powerful baselines. Especially, the proposed TDEER is 2 times faster than the recent SOTA models. The code is available at https://github.com/4AI/TDEER. | ['Zhen He', 'Beidi Luan', 'Daichuan Yang', 'Chenghao Dong', 'Xiaotian Luo', 'Xianming Li'] | null | null | null | null | emnlp-2021-11 | ['joint-entity-and-relation-extraction'] | ['natural-language-processing'] | [-1.12133317e-01 4.87190396e-01 -5.00657141e-01 -2.44381130e-01
-9.82349455e-01 -5.22975802e-01 4.23506677e-01 8.90851170e-02
-1.04077205e-01 9.11608279e-01 3.01177531e-01 -4.49393600e-01
2.14179918e-01 -1.06727278e+00 -9.88747895e-01 -3.30771267e-01
3.91256034e-01 8.03276598e-01 2.37765789e-01 -3.92357558e-01
-2.68452078e-01 -1.75754964e-01 -1.18793190e+00 5.58326066e-01
1.38636506e+00 8.33609641e-01 -2.75186542e-02 1.11151896e-01
-4.61177588e-01 7.40755856e-01 -2.93248892e-01 -1.21275187e+00
9.89110619e-02 -2.30362207e-01 -1.00570893e+00 -3.29922646e-01
1.35786816e-01 -1.82265282e-01 -2.60933787e-01 1.04166889e+00
2.05392823e-01 -3.07633162e-01 5.66090226e-01 -1.38211656e+00
-9.54732478e-01 1.29103291e+00 -6.06220722e-01 -9.94438529e-02
6.13845587e-01 -5.95158577e-01 1.45957184e+00 -1.42471623e+00
6.58081293e-01 1.12545443e+00 4.97807443e-01 3.41255426e-01
-7.90322602e-01 -9.40627694e-01 6.30248562e-02 4.13056850e-01
-1.80910885e+00 -5.03516972e-01 3.43857914e-01 -7.16347769e-02
1.23108244e+00 5.16608834e-01 4.84782070e-01 7.12876260e-01
-8.72895643e-02 1.23472583e+00 7.21164823e-01 -4.96244490e-01
-3.40062112e-01 1.21550038e-01 4.45931345e-01 5.30102789e-01
7.40593493e-01 -4.01068151e-01 -6.21377826e-01 -1.44670486e-01
3.86863440e-01 -3.21113616e-01 -3.25599641e-01 -3.01672239e-02
-1.38830900e+00 3.35390449e-01 3.32937270e-01 2.03675330e-01
-3.38959783e-01 -1.71702474e-01 3.01883757e-01 1.15794025e-01
4.79762197e-01 2.81743836e-02 -7.28810430e-01 -1.09887961e-02
-4.74915981e-01 4.04003620e-01 9.61943567e-01 1.65744686e+00
8.45478535e-01 -5.06841421e-01 -1.56088874e-01 7.74833202e-01
4.15339112e-01 5.93343914e-01 1.88550577e-02 -4.41349924e-01
1.25148976e+00 9.97758985e-01 1.93918720e-01 -1.11598778e+00
-1.30738586e-01 -2.73693025e-01 -8.93245459e-01 -8.98105979e-01
1.73137203e-01 -1.92934871e-01 -7.63212442e-01 1.39840376e+00
7.36029685e-01 1.92423403e-01 5.80898941e-01 7.90207088e-01
1.50121927e+00 9.22530532e-01 1.75517619e-01 -3.69360030e-01
1.66166484e+00 -9.27617669e-01 -1.05874276e+00 -3.43705237e-01
1.00086284e+00 -7.86992431e-01 6.18223071e-01 8.62146989e-02
-9.87531126e-01 -1.58024073e-01 -7.68121600e-01 -5.48395872e-01
-4.08321798e-01 5.48960567e-01 9.17750657e-01 4.07406121e-01
-6.32383049e-01 -8.49342346e-02 -7.40078151e-01 -1.95400104e-01
2.34569594e-01 2.58533597e-01 -5.26310802e-01 -1.10712469e-01
-1.76228404e+00 9.54008162e-01 9.73515332e-01 5.73818743e-01
-1.63269043e-01 -6.69397712e-01 -1.17452860e+00 1.65068671e-01
8.30098331e-01 -8.12472105e-01 1.28458893e+00 -3.18815410e-01
-9.88368869e-01 7.26825297e-01 -8.23231041e-01 -2.58895874e-01
1.59768596e-01 -4.82778579e-01 -6.85195744e-01 -3.30340683e-01
3.26005846e-01 2.21747160e-01 6.10925257e-02 -1.27909446e+00
-8.51782024e-01 -2.05010727e-01 4.25196327e-02 4.16451991e-01
-2.17805624e-01 2.27577642e-01 -1.07314432e+00 -4.67291385e-01
5.65114021e-01 -7.71949351e-01 2.35056996e-01 -7.15376139e-01
-1.00281966e+00 -7.39512801e-01 5.03539383e-01 -8.46227407e-01
1.80461621e+00 -1.80446947e+00 1.66035503e-01 2.57498622e-01
4.29857910e-01 4.30355370e-01 2.39286914e-01 5.92589796e-01
-1.53249756e-01 3.81478816e-01 -1.59196183e-01 -6.55466411e-03
1.32691950e-01 2.00927824e-01 -4.78410304e-01 -1.10230856e-01
2.40629196e-01 1.27532089e+00 -8.56205106e-01 -7.66548097e-01
-4.13274765e-01 2.75963306e-01 -1.51208550e-01 1.28205717e-02
-2.52358645e-01 -5.89757748e-02 -7.71249950e-01 9.17907476e-01
9.45764005e-01 -4.87949371e-01 7.44022250e-01 -5.89088023e-01
1.13586321e-01 7.39893854e-01 -1.21883821e+00 1.27517891e+00
-1.17913246e-01 2.29941070e-01 -3.89662653e-01 -7.53720760e-01
9.54975724e-01 5.62196374e-01 2.50863373e-01 -6.77852750e-01
1.62366450e-01 5.79827726e-01 -1.82807818e-01 -6.27530217e-01
8.66959870e-01 -1.12757057e-01 -3.22505563e-01 2.12184832e-01
-3.08499560e-02 3.00073922e-01 4.91804451e-01 5.97658336e-01
9.12381709e-01 3.20098490e-01 6.03818953e-01 1.98806733e-01
5.13111651e-01 2.01197341e-01 1.23846650e+00 1.98765635e-01
2.34519795e-01 2.62639940e-01 6.05818033e-01 -2.03948557e-01
-7.33499825e-01 -1.01317894e+00 6.10045828e-02 6.79416835e-01
5.85654497e-01 -9.48708177e-01 -4.64204788e-01 -9.67939496e-01
7.62726143e-02 6.87467933e-01 -4.01104301e-01 6.21823333e-02
-8.13468575e-01 -8.43378186e-01 5.96738636e-01 6.16363585e-01
6.53018117e-01 -6.80847824e-01 3.00817251e-01 2.42004201e-01
-1.02457094e+00 -1.52574313e+00 -4.14297998e-01 -2.30867773e-01
-4.59674686e-01 -1.18738508e+00 -2.79472709e-01 -1.01812947e+00
7.36702085e-01 3.54750216e-01 1.35183907e+00 1.65090129e-01
4.31387961e-01 -2.38580689e-01 -6.96003497e-01 -3.74123245e-01
-1.90422788e-01 2.70679861e-01 -1.26844019e-01 -2.97055602e-01
9.95633900e-01 -2.29027346e-01 -2.25447655e-01 3.09394211e-01
-7.76923180e-01 5.90253949e-01 6.69454575e-01 6.28859997e-01
7.96769559e-01 2.03286886e-01 5.88333547e-01 -1.37412333e+00
5.81188917e-01 -7.70017862e-01 -3.46643358e-01 1.01048684e+00
-5.58325231e-01 9.02469978e-02 5.48221588e-01 -6.14336058e-02
-1.21689701e+00 -5.34705222e-02 -1.12047821e-01 1.47407455e-02
2.58346766e-01 1.06605780e+00 -6.89127564e-01 4.75041330e-01
2.45199114e-01 2.65011787e-01 -6.24748230e-01 -3.18921059e-01
3.30856264e-01 9.12651718e-01 4.09624815e-01 -8.11305523e-01
8.91200602e-01 9.11655426e-02 -2.83090740e-01 -1.68358579e-01
-1.17258930e+00 -4.86063093e-01 -5.14984131e-01 4.39069346e-02
5.47957718e-01 -1.34702265e+00 -7.26473391e-01 3.50643963e-01
-1.41536999e+00 6.88636079e-02 1.12797074e-01 3.91138494e-01
-1.79695468e-02 3.14699411e-01 -7.05987632e-01 -6.02105916e-01
-6.06326044e-01 -8.40988040e-01 9.97635603e-01 3.55807513e-01
-6.50646240e-02 -8.73958588e-01 -1.29381105e-01 7.46357560e-01
-1.95441946e-01 6.29585311e-02 8.61139357e-01 -7.58079171e-01
-8.05204988e-01 -5.82997873e-02 -4.83291954e-01 -2.14670766e-02
2.81760037e-01 6.24816157e-02 -4.46956724e-01 1.53277770e-01
-5.25474429e-01 -3.43048275e-01 7.45719075e-01 -2.83084750e-01
6.61369205e-01 -4.69188958e-01 -6.41712368e-01 3.14462036e-01
1.13279808e+00 1.74537688e-01 8.43815267e-01 3.18486422e-01
1.02675617e+00 4.50801134e-01 1.06010163e+00 1.52733907e-01
1.52405071e+00 5.78903496e-01 1.32407872e-02 1.92308314e-02
5.51607497e-02 -6.29144907e-01 3.01317066e-01 1.29276049e+00
-1.19793974e-01 -5.25522411e-01 -1.13225663e+00 5.87082565e-01
-2.14720416e+00 -8.13526452e-01 -6.58119857e-01 1.85041940e+00
1.39041603e+00 -3.69623527e-02 -1.80971533e-01 1.44835830e-01
8.42016995e-01 -1.75905228e-01 -2.06384167e-01 -7.37585276e-02
-3.19449216e-01 5.24036996e-02 4.04610395e-01 3.20116699e-01
-9.70360518e-01 1.29795837e+00 5.03614378e+00 9.66474831e-01
-6.58352911e-01 9.61319506e-02 3.45640868e-01 3.27788234e-01
-7.42834687e-01 3.73055011e-01 -1.38577569e+00 4.09150600e-01
6.14551306e-01 -4.56918001e-01 1.51413560e-01 4.97781307e-01
-9.95004773e-02 -4.83505577e-02 -1.03166080e+00 8.64630044e-01
6.37232512e-02 -1.34539592e+00 2.89280921e-01 -1.72819808e-01
5.49493074e-01 -2.65558243e-01 -3.53978008e-01 7.06526935e-01
5.52997410e-01 -7.99243987e-01 7.46642947e-01 3.06692839e-01
8.76293063e-01 -6.88506961e-01 9.53503489e-01 3.84431988e-01
-1.70843422e+00 2.66130626e-01 -2.99610853e-01 1.65763706e-01
3.08830500e-01 9.56452966e-01 -8.47400904e-01 1.30608952e+00
5.97043157e-01 8.19154024e-01 -3.52875471e-01 6.38934851e-01
-6.39529228e-01 5.25563359e-01 -3.33668530e-01 -2.80155465e-02
-9.35515389e-02 -2.76991159e-01 3.11803907e-01 1.28130400e+00
5.83103001e-01 5.25243580e-01 1.12202562e-01 6.34946465e-01
-6.03150308e-01 2.99903452e-01 -3.19952577e-01 -7.99928531e-02
1.01145244e+00 1.23481083e+00 -3.65049064e-01 -5.63446283e-01
-5.00666201e-01 6.09583914e-01 7.90858388e-01 4.12123322e-01
-9.19735074e-01 -5.30895889e-01 2.24582791e-01 -6.68814704e-02
4.03541267e-01 2.71713939e-02 -2.23784357e-01 -1.69602549e+00
6.11072123e-01 -9.58628654e-01 6.79214895e-01 -8.19953203e-01
-1.00353491e+00 5.66986442e-01 2.55498886e-02 -1.31652153e+00
-3.73184010e-02 -2.19116002e-01 -1.82870865e-01 8.22635531e-01
-1.68604958e+00 -1.40527272e+00 -2.49202847e-01 4.30911243e-01
1.07624196e-01 2.81715989e-01 6.19480789e-01 6.02042854e-01
-9.63450015e-01 8.59971583e-01 -2.27832913e-01 6.08385623e-01
7.20593333e-01 -1.18302333e+00 5.75432539e-01 1.06346273e+00
2.08136022e-01 1.05314696e+00 4.89616871e-01 -1.06201804e+00
-1.67626834e+00 -1.13854170e+00 1.69532478e+00 -5.12495279e-01
6.85174704e-01 -3.56925815e-01 -1.13691056e+00 1.19574690e+00
1.68500558e-01 4.31307591e-03 7.89427042e-01 3.75312775e-01
-6.52319551e-01 -2.80740768e-01 -8.04385602e-01 6.39303386e-01
1.17737520e+00 -4.46684390e-01 -7.56908894e-01 2.73882419e-01
8.58167589e-01 -9.55761790e-01 -1.11524272e+00 7.43819594e-01
5.04992008e-01 -5.74019909e-01 6.64345503e-01 -3.61472279e-01
5.63670278e-01 -6.86233163e-01 -5.62250949e-02 -1.11225104e+00
-4.46437970e-02 -5.44807017e-01 -8.13427567e-01 1.72439897e+00
9.50316966e-01 -7.57276177e-01 5.84256709e-01 8.27432632e-01
-7.14416131e-02 -9.44167495e-01 -8.29240441e-01 -6.44221067e-01
-1.01269424e-01 -3.19275141e-01 9.70513582e-01 1.08484459e+00
3.90728086e-01 6.94406569e-01 -3.38067114e-01 5.12186706e-01
4.21793938e-01 5.29772460e-01 8.09226215e-01 -9.47485507e-01
-3.70270796e-02 1.57520279e-01 -3.77791636e-02 -1.34529161e+00
2.62316614e-01 -1.18435848e+00 2.26732399e-02 -1.94090009e+00
4.78768229e-01 -8.64708126e-01 -7.26490170e-02 8.90892327e-01
-6.62585974e-01 -8.38806480e-02 3.71159986e-02 3.05716962e-01
-7.84262061e-01 5.70802450e-01 1.25129998e+00 -6.78361431e-02
-1.77433975e-02 -2.07956061e-01 -1.15885353e+00 4.30132955e-01
6.66956663e-01 -5.73393762e-01 -3.52918684e-01 -7.73951352e-01
8.46135795e-01 2.93194145e-01 3.26411761e-02 -4.16644067e-01
5.53628445e-01 -2.22790658e-01 -7.46127684e-03 -8.61180007e-01
7.83670396e-02 -7.10387528e-01 5.14324665e-01 -2.23758630e-02
-2.41276994e-02 6.03489466e-02 -5.22477701e-02 2.82972127e-01
-5.95966756e-01 -4.46829479e-03 -6.05277345e-02 7.88276270e-02
-7.16842592e-01 3.67412090e-01 2.43485913e-01 3.59265774e-01
9.62029815e-01 4.70984764e-02 -7.65061378e-01 -4.21043709e-02
-4.91218537e-01 6.81830823e-01 1.10677272e-01 3.33450258e-01
5.54142118e-01 -1.57491314e+00 -8.96721303e-01 -1.83958262e-01
3.20622623e-01 5.58726549e-01 1.58380836e-01 9.97789383e-01
-3.63526374e-01 4.84838665e-01 4.31675553e-01 -2.44473308e-01
-1.40905237e+00 3.05507749e-01 3.04074753e-02 -6.24463379e-01
-3.67583394e-01 8.76610219e-01 4.44406755e-02 -6.34670913e-01
-6.60402477e-02 -4.37239379e-01 -2.47736499e-01 7.40438923e-02
4.65675920e-01 1.19658537e-01 3.14961344e-01 -7.38785863e-01
-5.50826073e-01 3.83536607e-01 -4.39082474e-01 2.84014016e-01
1.08605492e+00 -2.01407954e-01 -5.69803894e-01 1.58444285e-01
9.15919662e-01 3.23278666e-01 -4.96725380e-01 -6.00478888e-01
2.19657838e-01 -3.00221473e-01 -3.48033130e-01 -7.36964464e-01
-9.44047272e-01 2.76200175e-01 -4.16389942e-01 1.68410569e-01
1.16575313e+00 1.65907666e-01 1.26325214e+00 5.05521059e-01
6.90946817e-01 -7.35987186e-01 -6.53044999e-01 7.38256752e-01
6.98312700e-01 -1.30110133e+00 2.01852307e-01 -1.33059931e+00
-8.27830732e-01 8.16025496e-01 8.15666378e-01 4.33342069e-01
5.64733446e-01 3.67077947e-01 -9.26555879e-03 -1.61359146e-01
-9.28785861e-01 -3.35091680e-01 3.95340294e-01 1.83004394e-01
5.96377254e-01 2.62329429e-01 -7.15038538e-01 9.68529284e-01
-2.97150254e-01 2.51166821e-01 3.64175618e-01 9.16291833e-01
-1.09736947e-02 -1.43894327e+00 -7.18360543e-02 4.35509861e-01
-5.39439023e-01 -5.18655360e-01 -4.59779263e-01 7.44495213e-01
2.76523650e-01 9.71963227e-01 -2.38814399e-01 -6.85335040e-01
4.16521847e-01 -3.89519371e-02 2.21520424e-01 -7.71752775e-01
-5.58815122e-01 -2.06418663e-01 6.93196893e-01 -2.05437943e-01
-5.65286160e-01 -6.19552374e-01 -1.72970366e+00 -4.95549679e-01
-7.68317640e-01 5.05932033e-01 1.45273477e-01 1.12254834e+00
5.54137945e-01 3.25432420e-01 4.72175360e-01 9.35844928e-02
-6.19372576e-02 -7.70466387e-01 -3.29993248e-01 2.05832511e-01
-1.61159262e-01 -7.24001884e-01 3.81127857e-02 7.36136734e-02] | [9.232139587402344, 8.569710731506348] |
57a6271c-8c34-4d09-b64a-0b2438b53c7e | parallel-data-augmentation-for-formality | 2005.07522 | null | https://arxiv.org/abs/2005.07522v1 | https://arxiv.org/pdf/2005.07522v1.pdf | Parallel Data Augmentation for Formality Style Transfer | The main barrier to progress in the task of Formality Style Transfer is the inadequacy of training data. In this paper, we study how to augment parallel data and propose novel and simple data augmentation methods for this task to obtain useful sentence pairs with easily accessible models and systems. Experiments demonstrate that our augmented parallel data largely helps improve formality style transfer when it is used to pre-train the model, leading to the state-of-the-art results in the GYAFC benchmark dataset. | ['Xu sun', 'Tao Ge', 'Yi Zhang'] | 2020-05-14 | parallel-data-augmentation-for-formality-1 | https://aclanthology.org/2020.acl-main.294 | https://aclanthology.org/2020.acl-main.294.pdf | acl-2020-6 | ['formality-style-transfer'] | ['natural-language-processing'] | [ 4.16039646e-01 3.11857730e-01 -9.00361910e-02 -5.38941562e-01
-7.68842638e-01 -5.19085050e-01 7.58272350e-01 -2.38280203e-02
-7.76978910e-01 1.10887408e+00 2.97233403e-01 -5.22067130e-01
3.32193404e-01 -5.10394394e-01 -6.75654292e-01 -1.41568735e-01
2.27432892e-01 7.48220682e-01 -3.35897096e-02 -1.02304125e+00
2.87228435e-01 1.38413757e-01 -1.20367408e+00 6.22973740e-01
1.26261926e+00 4.61702406e-01 2.29078367e-01 7.00331509e-01
-2.52852738e-01 5.30393064e-01 -8.42481196e-01 -8.16959143e-01
2.27124825e-01 -7.09277987e-01 -1.39151669e+00 -4.67785358e-01
6.09639108e-01 -3.12004089e-01 -1.18383504e-01 7.30778515e-01
3.58980536e-01 3.72145362e-02 6.05914474e-01 -1.01707900e+00
-9.85500097e-01 8.58141661e-01 -2.45435014e-01 3.08496952e-01
3.81427199e-01 9.31954682e-02 1.09536362e+00 -8.62650216e-01
6.65071011e-01 1.10656214e+00 6.79247439e-01 1.38540018e+00
-1.39298427e+00 -4.67276692e-01 9.19392854e-02 2.37270847e-01
-1.04614782e+00 -5.24153531e-01 7.54943609e-01 4.46802005e-02
1.25049436e+00 3.52141231e-01 6.69173241e-01 1.30520391e+00
-6.00916892e-02 8.92013609e-01 1.21799684e+00 -9.05474246e-01
-1.97234914e-01 2.04986244e-01 3.92807424e-01 6.26364172e-01
6.97840005e-02 1.00270882e-01 -4.92291927e-01 1.27330229e-01
5.58410883e-01 -4.82945085e-01 -3.38760465e-01 -4.77706417e-02
-1.27100027e+00 7.87381470e-01 4.82251644e-01 5.64846516e-01
1.17307402e-01 -1.70568317e-01 6.67066276e-01 8.36453497e-01
5.32201946e-01 1.34577501e+00 -8.17175686e-01 -4.48747933e-01
-7.63847291e-01 4.10084218e-01 8.02396357e-01 1.15629327e+00
2.95948774e-01 -1.62678007e-02 -2.17850447e-01 8.16285253e-01
-1.00079283e-01 4.67427671e-01 4.55736220e-01 -7.99030125e-01
1.06662321e+00 5.61090350e-01 -1.30864948e-01 -2.96427548e-01
-2.45002553e-01 -3.91113192e-01 -8.83958340e-01 -2.03026041e-01
4.31717813e-01 -3.89122367e-02 -7.34110594e-01 1.93525183e+00
-6.48238871e-04 -2.80056596e-01 3.91041964e-01 4.64854956e-01
9.34239984e-01 6.91742897e-01 1.77487850e-01 -4.52150889e-02
1.09101963e+00 -1.22002935e+00 -7.35042989e-01 -2.88536489e-01
1.37446094e+00 -7.43583024e-01 1.79301262e+00 3.33329797e-01
-1.45403647e+00 -8.05826247e-01 -1.04846156e+00 -3.61769348e-01
-3.46018285e-01 -4.95799072e-02 7.10976005e-01 4.86268401e-01
-1.17886937e+00 8.52953851e-01 -6.56141758e-01 -3.40912759e-01
4.60952908e-01 3.43850046e-01 -4.29503590e-01 -2.97637075e-01
-1.39385569e+00 1.36707234e+00 5.67481220e-01 -9.34003070e-02
-3.59808415e-01 -1.14872694e+00 -8.83868814e-01 -1.53704867e-01
1.46991005e-02 -9.11134899e-01 1.36389101e+00 -9.49164033e-01
-1.55049396e+00 8.94325256e-01 -3.68675590e-02 -4.17456895e-01
4.57864076e-01 -4.58674520e-01 -3.28358263e-01 -1.32158503e-01
-1.07832119e-01 1.27713072e+00 3.27087224e-01 -1.05867231e+00
-4.72505689e-01 -4.25051823e-02 2.37319514e-01 4.19067681e-01
-8.81560385e-01 1.63439840e-01 -4.77213338e-02 -8.21588933e-01
-4.68488306e-01 -8.41866851e-01 -1.24466255e-01 -4.14180309e-01
-1.68209076e-01 -6.22968674e-01 5.80656826e-01 -8.00246119e-01
1.22040999e+00 -1.82873487e+00 5.00067174e-01 -3.14738691e-01
-2.96461154e-02 7.32224941e-01 -6.74865365e-01 5.26502550e-01
-6.46994337e-02 3.79112393e-01 -2.76300043e-01 -6.47216976e-01
-1.19861260e-01 4.48748887e-01 -5.36672473e-01 -1.93923384e-01
7.37177253e-01 1.22723830e+00 -8.64092469e-01 -4.29644138e-01
4.87621613e-02 2.60386407e-01 -8.44873190e-01 6.16292894e-01
-2.84724325e-01 6.69193387e-01 -1.14736781e-01 -1.21021196e-02
4.96387899e-01 1.17581859e-01 8.84782616e-03 2.03861240e-02
2.04062849e-01 1.01937258e+00 -4.61523086e-01 2.15850830e+00
-6.17832959e-01 5.88093460e-01 -3.56659085e-01 -8.84722352e-01
8.78509700e-01 3.51446539e-01 -1.43027939e-02 -8.78196478e-01
-2.51706634e-02 2.36860633e-01 3.52285445e-01 -2.86038607e-01
7.69371986e-01 -3.13934654e-01 -1.59945235e-01 4.42940056e-01
3.18257034e-01 -5.65777421e-01 5.78329384e-01 1.20338149e-01
8.95825028e-01 2.98422754e-01 3.12933549e-02 -7.33332276e-01
6.79657757e-01 1.47340655e-01 2.90814400e-01 4.50219572e-01
4.60496033e-03 5.07112205e-01 2.93354243e-01 -4.94550884e-01
-1.37560821e+00 -8.58467638e-01 2.52348594e-02 1.17512000e+00
-4.31955248e-01 -7.30534256e-01 -9.57109630e-01 -1.23603725e+00
-3.89012605e-01 1.05134594e+00 -7.59249449e-01 -4.27107483e-01
-1.08123004e+00 -5.12632191e-01 7.92575061e-01 9.39399183e-01
5.18749833e-01 -1.19927263e+00 -5.51945493e-02 1.26990944e-01
-4.39906746e-01 -9.25494969e-01 -5.24946392e-01 4.29605693e-02
-1.16083491e+00 -5.97430885e-01 -7.40238428e-01 -8.77522230e-01
8.68439674e-01 5.24759628e-02 1.69526350e+00 4.29322958e-01
2.55653232e-01 -3.16127896e-01 -4.63541389e-01 -4.89097476e-01
-8.35577965e-01 7.60257900e-01 -4.11947705e-02 -9.12288904e-01
3.42431426e-01 -4.19848084e-01 -1.97340667e-01 7.49383196e-02
-7.75330544e-01 5.40521920e-01 3.92749637e-01 1.17686343e+00
7.82957766e-03 -5.80422223e-01 8.63818705e-01 -1.10670602e+00
7.73526490e-01 1.50941983e-01 -3.16689342e-01 4.32442933e-01
-6.22832477e-01 2.52366513e-01 9.31591690e-01 -3.17291707e-01
-1.06195354e+00 -2.56181270e-01 -4.97637749e-01 1.09303005e-01
-2.11973950e-01 4.78966743e-01 -2.14431703e-01 4.87066433e-02
8.57470214e-01 2.33001057e-02 1.08957157e-01 -6.21925950e-01
6.03615046e-01 5.44164836e-01 4.75124180e-01 -9.83681560e-01
7.87046731e-01 -1.69124082e-01 -8.32291767e-02 -8.22766900e-01
-1.19895196e+00 -4.30421941e-02 -9.00925279e-01 3.17509264e-01
5.53627074e-01 -8.24292600e-01 -1.57946751e-01 1.38406679e-01
-1.45589483e+00 -6.46597087e-01 -5.25467873e-01 1.20183423e-01
-5.53343892e-01 2.12627187e-01 -7.54419744e-01 -2.80402541e-01
-6.94625556e-01 -8.81423652e-01 8.96667302e-01 -1.09966241e-01
-7.34985650e-01 -1.27867353e+00 3.12109113e-01 5.78449070e-01
5.84108293e-01 -2.59655118e-01 1.16487730e+00 -5.80930412e-01
-1.11445002e-01 -4.09584725e-03 -1.73877329e-02 7.88195610e-01
1.00730270e-01 -1.17403075e-01 -8.08089077e-01 -3.84308428e-01
-1.09252974e-01 -7.27892339e-01 6.40276253e-01 -2.45771915e-01
1.16176641e+00 -3.31489563e-01 7.23626614e-02 6.17576003e-01
1.05538738e+00 -1.67532444e-01 8.53653193e-01 2.16886818e-01
8.12106073e-01 8.05647492e-01 5.86189270e-01 -1.67637810e-01
5.13045311e-01 6.03384137e-01 -2.35475868e-01 -3.58968377e-01
-3.96023512e-01 -3.71587068e-01 3.78330499e-01 1.41192269e+00
-1.19099751e-01 -1.10627025e-01 -9.70644832e-01 5.30364633e-01
-1.61846566e+00 -6.09451234e-01 -1.93747550e-01 1.79262638e+00
1.52335441e+00 1.57378286e-01 8.28575864e-02 2.34109432e-01
2.65227437e-01 -2.27821007e-01 1.45307973e-01 -8.18329155e-01
-1.26544505e-01 6.63752198e-01 -2.66086240e-03 7.37418592e-01
-8.82140577e-01 1.39690816e+00 7.50149870e+00 7.91522026e-01
-8.48902941e-01 6.70272037e-02 8.04348350e-01 -1.55881895e-02
-5.78886330e-01 -2.35079169e-01 -1.05340171e+00 1.68718323e-01
1.25945842e+00 -3.32366349e-03 4.49271768e-01 3.71334314e-01
-7.89170563e-02 2.53142476e-01 -1.57418859e+00 4.91437793e-01
2.15670973e-01 -1.34271121e+00 3.31170559e-01 -2.09115967e-01
8.50168645e-01 -1.10552445e-01 2.20826059e-03 7.15564549e-01
2.37022102e-01 -1.08806229e+00 4.68914509e-01 2.21366614e-01
8.58292222e-01 -8.11368406e-01 8.82560372e-01 2.60175139e-01
-7.06552386e-01 2.74897933e-01 -3.59856963e-01 -5.18258095e-01
-1.14931620e-03 1.81190565e-01 -8.27907443e-01 7.09021986e-01
4.61089134e-01 6.51510239e-01 -8.52124333e-01 4.86391008e-01
-5.59913814e-01 7.24428356e-01 -1.70668975e-01 -3.29715401e-01
1.50515705e-01 8.16126317e-02 1.44727618e-01 1.16965520e+00
1.65382226e-05 -2.64487248e-02 7.59468377e-02 8.03150773e-01
-2.60608405e-01 1.95888996e-01 -8.60643148e-01 -1.99284121e-01
1.41698942e-01 1.06690073e+00 -1.91582173e-01 -4.72262621e-01
-4.20258701e-01 1.02300143e+00 1.05690777e+00 1.12737902e-01
-5.08399606e-01 -3.86861622e-01 3.17115337e-01 -1.06321909e-01
-3.54976840e-02 -3.84092838e-01 -8.60295534e-01 -1.17462170e+00
1.70309275e-01 -1.25827658e+00 3.55108649e-01 -5.95847487e-01
-1.55373037e+00 8.62748027e-01 1.27435774e-01 -9.62238133e-01
-4.17260081e-01 -8.12304378e-01 -7.26257682e-01 1.27633440e+00
-1.41810954e+00 -1.32350779e+00 6.15545083e-03 4.47158128e-01
4.71522629e-01 -4.39249545e-01 1.28114319e+00 1.79522485e-01
-3.85419041e-01 1.05216718e+00 -8.23743641e-02 1.23471506e-01
8.41917515e-01 -1.47264981e+00 1.09157777e+00 8.83210123e-01
1.66097730e-01 7.24619627e-01 6.61181033e-01 -5.87951779e-01
-1.21585202e+00 -9.33183789e-01 1.42110968e+00 -9.44701910e-01
6.63988471e-01 -7.49640763e-01 -9.87667739e-01 5.60952961e-01
6.10304594e-01 -1.67853594e-01 8.20108712e-01 5.59660375e-01
-3.57766718e-01 -2.53649745e-02 -9.91156399e-01 8.39473963e-01
1.19805562e+00 -4.92048740e-01 -1.21557033e+00 1.87091112e-01
1.07594538e+00 -2.76395380e-01 -1.06342196e+00 5.61749816e-01
1.23990275e-01 -3.72124553e-01 7.64359117e-01 -1.21297777e+00
9.46773171e-01 1.59350127e-01 7.98109639e-03 -1.81838524e+00
-3.46449077e-01 -7.47805774e-01 -4.84637842e-02 1.54728627e+00
8.83516490e-01 -3.99618685e-01 8.04590940e-01 5.65725267e-01
-4.47383314e-01 -8.21419120e-01 -8.30440104e-01 -8.05866718e-01
8.55828762e-01 -9.92413163e-02 5.62161267e-01 1.06480849e+00
3.48873943e-01 9.43083405e-01 -1.35690525e-01 -5.54813445e-01
1.78019643e-01 -1.55961633e-01 8.99655640e-01 -9.95441377e-01
-3.56859326e-01 -4.42519307e-01 8.64187554e-02 -9.29777265e-01
4.65879500e-01 -1.12099528e+00 1.23002660e-02 -1.47210109e+00
1.04659230e-01 -6.23627663e-01 -1.30612895e-01 5.65155387e-01
-7.11999118e-01 3.43311965e-01 4.17295098e-01 -4.56910469e-02
-5.29109180e-01 8.91142905e-01 1.56020939e+00 -1.60570234e-01
-1.49415627e-01 -3.26195508e-01 -9.72989857e-01 3.46420556e-01
9.79658961e-01 -2.52810836e-01 -5.52711844e-01 -9.63221192e-01
7.08059445e-02 -3.95473003e-01 2.19030455e-02 -8.06823134e-01
-4.15302932e-01 1.17971882e-01 3.28795940e-01 -4.15546238e-01
2.43654877e-01 -5.67573071e-01 -5.68320990e-01 5.53421497e-01
-6.65000081e-01 5.19157350e-01 7.18681037e-01 -1.77458242e-01
-2.33118549e-01 -3.30482036e-01 6.64201498e-01 -2.09222715e-02
-1.89581051e-01 -4.37387824e-02 -6.62797913e-02 6.09367907e-01
5.48149705e-01 2.20770225e-01 -6.18794143e-01 -6.36286810e-02
-2.78657854e-01 3.49811971e-01 4.19604689e-01 5.97973108e-01
4.61942047e-01 -1.58824027e+00 -1.14728510e+00 4.01204258e-01
3.22477400e-01 -2.86768447e-03 4.89124563e-03 6.19990051e-01
-4.90012586e-01 6.61861837e-01 -5.42283714e-01 -4.70452398e-01
-1.32246625e+00 5.69025695e-01 7.29225725e-02 -6.28776073e-01
-5.10164738e-01 9.55407143e-01 9.68512613e-03 -8.31247985e-01
1.29380912e-01 -4.80646610e-01 -1.56568959e-01 -4.00806695e-01
6.51921272e-01 1.59806356e-01 3.43921810e-01 -2.40360692e-01
-1.02995522e-01 2.20874593e-01 -6.29954636e-01 -2.88889378e-01
1.34893584e+00 2.17538401e-01 -2.15864316e-01 4.09741253e-01
1.26105058e+00 -4.82216030e-01 -9.28527534e-01 -2.59219408e-01
4.82460298e-02 -3.08222651e-01 -1.35905504e-01 -1.14367378e+00
-5.45843422e-01 1.17414844e+00 2.96360135e-01 1.17324680e-01
9.50131118e-01 -1.57752469e-01 8.82828832e-01 8.26876223e-01
1.75162464e-01 -1.12663198e+00 1.73260607e-02 1.12765658e+00
1.34538531e+00 -1.22261930e+00 -2.44357407e-01 -5.23016274e-01
-6.50106132e-01 1.03679240e+00 9.77692425e-01 -1.29032776e-01
2.66697526e-01 2.36769512e-01 7.89904520e-02 2.11626768e-01
-9.58459139e-01 6.40312359e-02 5.43462098e-01 7.18600571e-01
1.01688707e+00 -9.88826677e-02 -6.28098071e-01 5.74420393e-01
-7.50206172e-01 -6.35554343e-02 3.56765747e-01 9.07127142e-01
-4.45770137e-02 -1.73074067e+00 2.81899273e-02 3.37110907e-01
-3.38747084e-01 -6.04990184e-01 -7.35129416e-01 9.41040099e-01
-2.31035843e-01 7.87157714e-01 7.57291690e-02 -2.53682613e-01
5.78884602e-01 3.40346724e-01 1.14482784e+00 -8.29816163e-01
-9.89332736e-01 -4.19567823e-01 6.15413725e-01 -3.08109015e-01
-2.28140086e-01 -5.13850927e-01 -1.11901629e+00 -4.23999101e-01
-2.33158231e-01 3.39599013e-01 3.71815890e-01 1.17258632e+00
2.49665141e-01 6.83943510e-01 4.97134477e-01 -7.90133953e-01
-7.88380265e-01 -1.51339209e+00 4.99127060e-02 7.05475330e-01
5.33320829e-02 -3.24639648e-01 6.87868744e-02 7.79949725e-02] | [11.468095779418945, 9.582596778869629] |
b305b605-78d2-4a60-a362-500e0b1762c3 | a-faithful-deep-sensitivity-estimation-for | 2210.12723 | null | https://arxiv.org/abs/2210.12723v1 | https://arxiv.org/pdf/2210.12723v1.pdf | A Faithful Deep Sensitivity Estimation for Accelerated Magnetic Resonance Imaging | Recent deep learning is superior in providing high-quality images and ultra-fast reconstructions in accelerated magnetic resonance imaging (MRI). Faithful coil sensitivity estimation is vital for MRI reconstruction. However, most deep learning methods still rely on pre-estimated sensitivity maps and ignore their inaccuracy, resulting in the significant quality degradation of reconstructed images. In this work, we propose a Joint Deep Sensitivity estimation and Image reconstruction network, called JDSI. During the image artifacts removal, it gradually provides more faithful sensitivity maps, leading to greatly improved image reconstructions. To understand the behavior of the network, the mutual promotion of sensitivity estimation and image reconstruction is revealed through the visualization of network intermediate results. Results on in vivo datasets and radiologist reader study demonstrate that, the proposed JDSI achieves the state-of-the-art performance visually and quantitatively, especially when the accelerated factor is high. Additionally, JDSI owns nice robustness to abnormal subjects and different number of autocalibration signals. | ['Xiaobo Qu', 'Di Guo', 'Jianzhong Lin', 'Wenping Wei', 'Jianjun Zhou', 'Liuhong Zhu', 'Lijun Bao', 'Boxuan Shi', 'Chen Qian', 'Haoming Fang', 'Zi Wang'] | 2022-10-23 | null | null | null | null | ['mri-reconstruction'] | ['computer-vision'] | [ 8.72251857e-03 -1.09003089e-01 1.51381284e-01 -3.80511761e-01
-5.89146972e-01 -1.19336203e-01 9.35586244e-02 -1.34550080e-01
-3.67265463e-01 6.97736740e-01 2.10867018e-01 -9.53967571e-02
-4.61729616e-01 -2.93164611e-01 -7.42179930e-01 -9.53405023e-01
-4.59026754e-01 1.21277705e-01 3.51497591e-01 -1.74335361e-01
-1.54070795e-01 4.71035570e-01 -7.73434103e-01 -1.87414065e-01
9.08850670e-01 8.24818432e-01 4.00123864e-01 1.73611313e-01
4.45841998e-01 9.66829896e-01 -3.75149637e-01 -1.44130528e-01
3.79802436e-02 -2.16141015e-01 -7.62213707e-01 -3.72853190e-01
-7.05420375e-02 -7.36296654e-01 -6.29664779e-01 1.26359701e+00
9.88202572e-01 -1.70066327e-01 5.00698209e-01 -7.43844151e-01
-3.48355263e-01 1.02558064e+00 -9.00341213e-01 6.82986021e-01
-4.48694862e-02 2.77746052e-01 1.13293439e-01 -5.88319778e-01
5.11177063e-01 6.11410320e-01 8.42106640e-01 2.24534750e-01
-1.30875444e+00 -7.78338611e-01 -3.28311354e-01 3.50725710e-01
-1.30658424e+00 -2.10985720e-01 1.09324670e+00 -3.91971916e-01
5.18252432e-01 1.70115307e-01 6.07482553e-01 7.67761171e-01
6.53046191e-01 5.86851656e-01 1.34860301e+00 -1.04215667e-01
-2.97168214e-02 -4.05226573e-02 1.40788764e-01 5.33859313e-01
2.59672016e-01 2.85799623e-01 -7.92592987e-02 1.43628865e-01
1.25221038e+00 -8.55469033e-02 -7.91530073e-01 -4.96715069e-01
-1.46727395e+00 3.09836775e-01 9.04106855e-01 6.81991935e-01
-5.25041163e-01 7.43985176e-03 6.28302813e-01 1.25622779e-01
6.02981299e-02 3.34666222e-01 -8.90453253e-03 4.58611771e-02
-9.21778321e-01 -2.27954671e-01 1.89935386e-01 3.74813557e-01
1.41182169e-01 4.44658577e-01 -2.39190623e-01 7.84932017e-01
5.84814399e-02 5.57988524e-01 8.45204830e-01 -8.05361450e-01
1.26056135e-01 8.19881335e-02 4.35702391e-02 -1.26090395e+00
-1.00576055e+00 -1.23616159e+00 -1.39354193e+00 2.66756177e-01
2.53272235e-01 -1.37573540e-01 -6.82225883e-01 1.80226517e+00
3.15453708e-01 6.49482980e-02 -2.28804752e-01 1.51158023e+00
8.42175186e-01 3.67001683e-01 5.55416569e-02 -4.96471941e-01
1.23694408e+00 -6.73864663e-01 -1.10347307e+00 -1.11313714e-02
2.80641347e-01 -4.96036321e-01 1.05823421e+00 4.53749985e-01
-1.25389755e+00 -6.82265222e-01 -1.50487721e+00 4.58663166e-01
3.79963398e-01 1.59130827e-01 7.14364469e-01 4.48511004e-01
-9.66646194e-01 8.64409626e-01 -1.14395666e+00 3.23752791e-01
3.69456381e-01 4.34152722e-01 -3.12271059e-01 -6.64087944e-03
-1.56309760e+00 1.08678818e+00 1.25861093e-01 3.28880817e-01
-1.02885270e+00 -1.14001465e+00 -3.41294646e-01 -1.28873438e-01
6.45016581e-02 -4.23869014e-01 1.14893985e+00 -7.12990522e-01
-1.37925661e+00 6.02450788e-01 5.28910697e-01 -4.33327615e-01
7.90372670e-01 -9.25500765e-02 -6.28402948e-01 5.52798212e-01
8.09113868e-03 3.33425850e-01 7.70065546e-01 -1.23187447e+00
3.34280342e-01 -4.91758674e-01 -1.32422477e-01 7.76859447e-02
-1.16551667e-01 -3.62747349e-02 -1.61966115e-01 -5.16150773e-01
4.26578104e-01 -6.91169262e-01 -2.77877837e-01 1.21549889e-01
-3.67114991e-01 3.70843649e-01 4.67435181e-01 -1.00297916e+00
1.01448679e+00 -2.14662075e+00 -1.44021422e-01 2.19437763e-01
6.32570505e-01 2.51924187e-01 1.65363520e-01 -2.10695818e-01
-4.96031642e-01 -3.78433913e-01 -2.72750169e-01 4.14382190e-01
-5.48233986e-01 -1.46021560e-01 2.24326611e-01 9.56520975e-01
-2.85000473e-01 8.21425080e-01 -9.90014553e-01 -5.87911725e-01
3.88448298e-01 7.82457232e-01 -2.11923286e-01 2.24946320e-01
6.98942065e-01 1.08644032e+00 -3.87323201e-01 2.79055238e-01
1.13732600e+00 -5.53918958e-01 4.43286270e-01 -1.14944577e+00
-3.78020853e-02 -2.36721948e-01 -9.83364522e-01 1.91443241e+00
-5.19579589e-01 5.30466855e-01 3.53528291e-01 -1.07151079e+00
5.94217420e-01 3.32167506e-01 8.15115631e-01 -1.22536623e+00
4.63571370e-01 3.05884004e-01 3.67802978e-01 -6.53887033e-01
-2.82074302e-01 -2.48217642e-01 4.26957130e-01 5.28477848e-01
4.40922454e-02 1.18327744e-01 -1.59378901e-01 2.68330336e-01
7.32868612e-01 -1.28311291e-01 -1.59621555e-02 -7.45081246e-01
4.86472934e-01 -4.69172210e-01 2.16259256e-01 7.14568496e-01
-5.07213235e-01 6.43731177e-01 3.95069033e-01 -5.12882888e-01
-1.19934905e+00 -1.18294418e+00 -6.63480520e-01 3.24873447e-01
3.85334224e-01 3.36018205e-01 -8.60132515e-01 -1.93139538e-01
-4.59457666e-01 2.44770721e-01 -5.34106433e-01 -4.25175726e-01
-7.46595681e-01 -1.13045585e+00 4.53748167e-01 4.95037913e-01
8.85825932e-01 -7.28542745e-01 -8.20314646e-01 2.68834949e-01
-4.83709723e-01 -9.00701702e-01 -2.52742350e-01 1.30081594e-01
-1.14727259e+00 -9.44626987e-01 -1.13507330e+00 -5.95241308e-01
7.07063079e-01 1.07807644e-01 9.88684475e-01 -5.08582518e-02
-4.44436640e-01 -2.49015629e-01 4.90505882e-02 2.33140782e-01
-4.20007706e-01 -2.08568454e-01 1.86560810e-01 -1.90344557e-01
-3.05670768e-01 -9.26470041e-01 -1.23139524e+00 4.06255573e-01
-8.51108432e-01 1.86234295e-01 8.72206926e-01 9.60156262e-01
4.46349561e-01 6.44333512e-02 5.54850757e-01 -5.34276605e-01
5.86788714e-01 -3.18776786e-01 -5.08989036e-01 2.35935450e-01
-7.73257017e-01 3.00660521e-01 6.19078219e-01 -4.29906398e-01
-1.23982584e+00 -1.07048780e-01 -4.34245527e-01 -2.50516832e-01
1.97203696e-01 3.89021099e-01 1.69974312e-01 -5.35382748e-01
9.15346622e-01 4.59456533e-01 3.11210632e-01 -3.20953727e-01
-8.06471854e-02 2.39527941e-01 8.79863977e-01 -2.08282083e-01
3.56658250e-01 4.77424592e-01 1.10721976e-01 -3.89443725e-01
-5.43628335e-01 6.20807074e-02 -4.14207429e-01 -8.06736052e-01
6.47458434e-01 -7.98676789e-01 -8.96742284e-01 6.90820396e-01
-9.01519954e-01 -1.56092066e-02 1.10144578e-01 8.98252666e-01
-2.68629134e-01 6.39278412e-01 -9.08448756e-01 -2.97279984e-01
-7.70401835e-01 -1.72287345e+00 4.74760175e-01 1.35016307e-01
1.53591320e-01 -8.63189995e-01 -9.03512016e-02 1.32155344e-01
8.23341489e-01 4.51588511e-01 8.89886618e-01 8.00490286e-03
-3.36392462e-01 -1.69513956e-01 -4.35684890e-01 3.63018841e-01
1.21858507e-01 -5.24191439e-01 -9.28408682e-01 -4.97738898e-01
5.16409159e-01 -2.73984492e-01 4.50111032e-01 9.45913553e-01
1.34992230e+00 5.12561575e-02 -1.47695601e-01 9.05344367e-01
1.56405377e+00 2.80628502e-01 8.53933394e-01 2.47724816e-01
5.88916361e-01 2.83435583e-01 1.33776605e-01 3.12578976e-01
-3.17388736e-02 4.83799666e-01 4.62967187e-01 -5.63747466e-01
-3.42409551e-01 -9.34902355e-02 -1.91244170e-01 1.12957454e+00
-1.87167063e-01 4.23534989e-01 -9.25549448e-01 3.13663036e-01
-1.43521047e+00 -4.62438971e-01 -3.40333581e-01 2.11316180e+00
1.00354135e+00 1.49457455e-01 -1.28513813e-01 3.04326892e-01
8.17906559e-01 -1.84072554e-02 -8.33424509e-01 2.90369540e-01
-9.80919078e-02 1.23856636e-03 6.92704797e-01 4.13093746e-01
-7.19805896e-01 1.95936352e-01 7.10448551e+00 8.35983992e-01
-1.48326588e+00 7.14024901e-01 8.57372940e-01 1.07882721e-02
-2.21043006e-01 -4.24250036e-01 8.82721543e-02 4.99867618e-01
6.49300218e-01 1.68349579e-01 3.14485997e-01 6.57033980e-01
3.20954472e-01 -2.95903385e-01 -5.89164257e-01 1.20163858e+00
-1.69465587e-01 -1.40577245e+00 -2.29135200e-01 -4.04139996e-01
5.55931389e-01 8.10232945e-03 1.80386573e-01 -1.30764782e-01
-1.91334859e-01 -7.90533364e-01 5.41008532e-01 5.78473091e-01
1.07760561e+00 -9.22732890e-01 9.60873544e-01 1.03491016e-01
-6.31265342e-01 8.86394754e-02 -2.57218957e-01 3.15976530e-01
1.79326341e-01 9.45569336e-01 -4.56874311e-01 6.38733506e-01
8.98897290e-01 4.40516561e-01 -4.21689868e-01 1.00299728e+00
-1.54284373e-01 5.10078490e-01 -8.70246589e-02 3.13865691e-01
1.24910027e-02 -4.37255614e-02 4.31620240e-01 1.03852344e+00
-4.17136475e-02 1.67472914e-01 -2.59818017e-01 9.41676438e-01
1.42388761e-01 -5.21022975e-02 -1.81216955e-01 4.51458573e-01
1.25724584e-01 1.37746513e+00 -8.71776998e-01 -3.15091580e-01
-1.23318784e-01 7.60873377e-01 7.34803230e-02 5.16435564e-01
-1.05066276e+00 -3.47323805e-01 -9.56507120e-03 4.41383541e-01
-3.30894291e-01 -9.83833298e-02 -4.00351852e-01 -1.03633869e+00
4.26667854e-02 -6.49839580e-01 -4.53334637e-02 -1.10066760e+00
-8.26784849e-01 9.64731932e-01 1.88227296e-01 -1.20663345e+00
-6.18795007e-02 -3.39006484e-01 -4.01763558e-01 6.83724046e-01
-1.41288674e+00 -6.55022740e-01 -4.62146312e-01 6.21232927e-01
-1.51606547e-02 1.36198640e-01 3.42174441e-01 8.30971658e-01
-4.68173504e-01 6.97820663e-01 2.38628507e-01 8.01154822e-02
5.22087216e-01 -8.76413703e-01 -9.25586820e-02 9.17085290e-01
-6.12262845e-01 6.38408899e-01 1.00524092e+00 -5.11150479e-01
-1.27705443e+00 -6.14478946e-01 -3.37937586e-02 2.49926075e-01
7.17779458e-01 -6.56071007e-02 -1.01446331e+00 1.15768373e-01
3.19874674e-01 2.32592627e-01 1.30047634e-01 -4.66855973e-01
4.64332551e-02 -6.43020451e-01 -1.28191221e+00 3.99709553e-01
7.06150413e-01 -3.78832966e-01 -2.28388250e-01 4.65648055e-01
6.63994431e-01 -6.83114946e-01 -1.15379512e+00 5.34818530e-01
6.82349861e-01 -1.17553294e+00 1.07516110e+00 -1.30805029e-02
5.40554345e-01 -2.24588349e-01 3.93787146e-01 -1.36841345e+00
-6.86311543e-01 -2.39978313e-01 3.15074176e-02 6.35731280e-01
2.27209598e-01 -4.75923836e-01 4.82398838e-01 3.04158181e-01
-2.41705254e-01 -6.97120190e-01 -1.01365387e+00 -7.44290113e-01
-5.27370460e-02 -2.89951265e-01 4.56791908e-01 1.11467016e+00
-3.85721400e-02 5.64249381e-02 -6.32648349e-01 2.28154182e-01
1.12061310e+00 -2.29587376e-01 -3.17353383e-02 -8.18211257e-01
-3.87525946e-01 -2.45508373e-01 -3.23090434e-01 -8.71254802e-01
-3.11385095e-01 -7.31540740e-01 -8.63581523e-02 -1.32794821e+00
4.42553997e-01 -4.87769544e-01 -6.18710995e-01 2.00554326e-01
-1.27552569e-01 3.92357528e-01 -2.88869172e-01 4.67073709e-01
-3.75115335e-01 3.72738630e-01 1.96221185e+00 -9.10909399e-02
1.09859832e-01 -2.83492684e-01 -4.55710858e-01 3.93093050e-01
6.43914759e-01 -3.72200578e-01 -5.15984952e-01 -5.71217477e-01
1.43291026e-01 4.92002964e-01 4.20202106e-01 -1.37326348e+00
2.49244511e-01 4.28869516e-01 7.18775868e-01 -3.93734604e-01
2.26690318e-03 -8.28266680e-01 4.75954860e-01 9.01548564e-01
-2.30567858e-01 1.69030745e-02 1.78177029e-01 1.30950958e-01
-2.87036449e-01 -4.81005423e-02 1.37655807e+00 -2.65110523e-01
-3.51961792e-01 1.89424977e-01 -2.29125932e-01 -1.16814025e-01
5.03845930e-01 -1.15183428e-01 4.28466126e-02 -3.74839395e-01
-8.89543951e-01 -1.53146476e-01 -6.67117834e-02 6.93301708e-02
7.11363018e-01 -1.48336482e+00 -6.61216021e-01 3.40351403e-01
-2.57725656e-01 -3.89072955e-01 1.05049074e+00 1.68169737e+00
-7.37219870e-01 1.46875232e-01 -5.91790676e-01 -1.00912404e+00
-5.88109672e-01 5.52585900e-01 8.83336306e-01 -3.75981092e-01
-9.18540895e-01 6.80742204e-01 2.31805384e-01 -1.71822101e-01
2.06713483e-01 -3.68755102e-01 -1.83501661e-01 -4.01248187e-01
6.99660659e-01 2.86296129e-01 3.28085572e-01 -4.28432822e-01
-5.20725131e-01 6.49763167e-01 -1.78591520e-01 1.10179372e-01
1.25832677e+00 -2.33543724e-01 5.10243922e-02 9.16114151e-02
1.26276779e+00 -4.12895441e-01 -1.44222867e+00 -1.91908091e-01
-5.07789612e-01 -3.14873159e-01 6.52926922e-01 -1.16847372e+00
-1.68424535e+00 9.67593372e-01 1.42033601e+00 -1.76484942e-01
1.24541974e+00 -2.30950937e-01 8.13648641e-01 -9.79236066e-02
4.57110792e-01 -8.65625501e-01 2.17873007e-01 -1.01200707e-01
9.17957544e-01 -1.30539596e+00 1.88872010e-01 -2.41947100e-01
-6.92828774e-01 9.45082128e-01 5.12466609e-01 -2.04306498e-01
6.87961698e-01 6.17020607e-01 1.93649858e-01 -3.58439445e-01
-2.11471617e-02 5.30052364e-01 9.06236246e-02 6.95159614e-01
5.27427316e-01 4.35176753e-02 -3.79236370e-01 6.27939165e-01
-1.73151249e-03 1.98457941e-01 3.92826766e-01 6.10702574e-01
-2.13344172e-01 -3.28438222e-01 -3.29933137e-01 2.77824998e-01
-6.30244076e-01 -5.80657721e-02 4.19382304e-01 7.50160933e-01
-2.09268689e-01 5.94331324e-01 -2.08571345e-01 -2.91459799e-01
3.56318057e-01 -5.54565191e-01 7.58714378e-01 3.28900009e-01
-5.45730829e-01 2.28868082e-01 -2.42681816e-01 -6.90910459e-01
-4.39304680e-01 -1.93383932e-01 -1.50709093e+00 -2.20369294e-01
-2.66875148e-01 2.37875775e-01 8.79458487e-01 7.81579196e-01
1.63579658e-01 1.00694942e+00 7.77659535e-01 -6.23654962e-01
-5.44930041e-01 -9.64741349e-01 -7.64130771e-01 3.87285262e-01
3.55236530e-01 -7.32447028e-01 -3.54251802e-01 -4.23764080e-01] | [13.628854751586914, -2.4136414527893066] |
489746af-147b-4642-b361-29d283f3ba51 | multiwave-multiresolution-deep-architectures | 2306.10164 | null | https://arxiv.org/abs/2306.10164v1 | https://arxiv.org/pdf/2306.10164v1.pdf | MultiWave: Multiresolution Deep Architectures through Wavelet Decomposition for Multivariate Time Series Prediction | The analysis of multivariate time series data is challenging due to the various frequencies of signal changes that can occur over both short and long terms. Furthermore, standard deep learning models are often unsuitable for such datasets, as signals are typically sampled at different rates. To address these issues, we introduce MultiWave, a novel framework that enhances deep learning time series models by incorporating components that operate at the intrinsic frequencies of signals. MultiWave uses wavelets to decompose each signal into subsignals of varying frequencies and groups them into frequency bands. Each frequency band is handled by a different component of our model. A gating mechanism combines the output of the components to produce sparse models that use only specific signals at specific frequencies. Our experiments demonstrate that MultiWave accurately identifies informative frequency bands and improves the performance of various deep learning models, including LSTM, Transformer, and CNN-based models, for a wide range of applications. It attains top performance in stress and affect detection from wearables. It also increases the AUC of the best-performing model by 5% for in-hospital COVID-19 mortality prediction from patient blood samples and for human activity recognition from accelerometer and gyroscope data. We show that MultiWave consistently identifies critical features and their frequency components, thus providing valuable insights into the applications studied. | ['Madalina Fiterau', 'Iman Deznabi'] | 2023-06-16 | null | null | null | null | ['activity-recognition', 'human-activity-recognition', 'mortality-prediction', 'human-activity-recognition', 'time-series-prediction'] | ['computer-vision', 'computer-vision', 'medical', 'time-series', 'time-series'] | [-3.62318754e-02 -4.48405892e-01 -3.28654557e-01 -2.64141828e-01
-7.63438046e-01 -2.84763813e-01 -2.30128076e-02 4.81636792e-01
-1.73355386e-01 5.35260737e-01 5.83769739e-01 -1.74306761e-02
-6.46027923e-02 -7.16729522e-01 -5.95173776e-01 -6.06325746e-01
-6.58392310e-01 -1.16700873e-01 -2.39589438e-01 -8.95514414e-02
-2.64303237e-01 3.03427368e-01 -1.21456766e+00 5.82080007e-01
3.92637938e-01 1.20745409e+00 -4.36968118e-01 5.55697978e-01
3.47668290e-01 5.79492569e-01 -9.46059167e-01 8.31147581e-02
-2.30212733e-01 -3.05637240e-01 -1.95129484e-01 -4.24065948e-01
5.42058237e-02 -2.52476692e-01 -2.30166033e-01 5.63423693e-01
8.41261208e-01 -1.73588505e-03 3.06379378e-01 -1.00807941e+00
-9.34512615e-02 6.49813771e-01 -3.77854735e-01 6.95841789e-01
3.21470201e-01 -9.03143883e-02 8.18677127e-01 -7.15743661e-01
-1.87584952e-01 9.03400719e-01 1.41896391e+00 2.63537705e-01
-1.37003696e+00 -7.65031278e-01 -2.24423129e-02 1.39388815e-01
-1.02477789e+00 -3.20270628e-01 1.08668816e+00 -2.96775967e-01
1.41383004e+00 1.78877354e-01 9.53822315e-01 1.68138278e+00
9.33474600e-01 4.55872416e-01 7.58060694e-01 5.98707236e-02
2.33293906e-01 -5.07470131e-01 3.27425957e-01 4.31193978e-01
7.56536424e-02 -7.04282746e-02 -1.07681441e+00 -5.76585770e-01
5.69039762e-01 6.43484771e-01 -3.31509590e-01 3.38605732e-01
-1.40911126e+00 7.25575507e-01 2.02937633e-01 5.09109974e-01
-8.50215316e-01 5.37476182e-01 7.11860836e-01 4.40852165e-01
6.83728218e-01 4.47562128e-01 -8.90257418e-01 -4.35187370e-01
-8.84784281e-01 1.90634012e-01 6.49013937e-01 1.80990249e-01
1.26601025e-01 3.54625940e-01 -9.32114124e-02 7.58268833e-01
-2.69449456e-03 5.30903995e-01 1.10804772e+00 -6.75357819e-01
2.93732315e-01 3.95920455e-01 -1.51483119e-01 -1.29978883e+00
-1.05395389e+00 -9.74304378e-01 -1.10725915e+00 -6.14935040e-01
7.40577281e-03 -4.41313386e-01 -4.82407093e-01 1.94901884e+00
6.63411021e-02 6.48906231e-01 -1.66124225e-01 4.39804703e-01
8.75380218e-01 4.99867350e-01 2.57404149e-01 -4.44474846e-01
1.47260594e+00 -3.25749546e-01 -1.05546391e+00 -3.77976865e-01
5.82633734e-01 -3.14476460e-01 8.94534349e-01 4.71983910e-01
-1.03781283e+00 -6.06272280e-01 -1.14725292e+00 1.97359711e-01
-2.26440907e-01 -3.88817117e-02 5.01340687e-01 6.25399888e-01
-9.01079237e-01 8.63158286e-01 -1.30368292e+00 -3.00957244e-02
4.57601339e-01 3.82394314e-01 -2.68540159e-02 3.64030182e-01
-1.52747416e+00 7.21901238e-01 -2.17432871e-01 4.65115234e-02
-5.90008557e-01 -1.09332991e+00 -7.93953955e-01 3.12892705e-01
-3.85764092e-01 -7.45668411e-01 9.97780144e-01 -7.20184505e-01
-1.16080391e+00 3.16588044e-01 -1.36044636e-01 -8.12032163e-01
5.12768552e-02 -5.13575017e-01 -7.27174878e-01 2.12954342e-01
-1.53051525e-01 -4.07850593e-02 1.01538897e+00 -2.74252653e-01
-6.73741847e-02 -4.26956654e-01 -5.26150823e-01 -2.41226137e-01
-7.32959986e-01 -2.43841391e-02 2.56066144e-01 -9.65061009e-01
8.75200033e-02 -7.90663838e-01 -1.86272562e-02 -4.94389296e-01
-1.26480818e-01 -3.71669643e-02 6.95172191e-01 -7.52562881e-01
1.45475805e+00 -2.37261581e+00 -6.12470247e-02 4.83089611e-02
5.00165224e-01 1.31694367e-02 1.49989808e-02 6.24149442e-01
-4.56896394e-01 -1.10739149e-01 1.02998847e-02 -3.53777468e-01
-3.21168005e-01 3.31134722e-02 -4.98123407e-01 5.80601215e-01
1.86891466e-01 8.94015074e-01 -7.93395281e-01 4.38617170e-03
1.91231370e-01 9.55171466e-01 -5.34520864e-01 2.16436535e-02
2.12544993e-01 3.08697134e-01 -3.55217963e-01 4.24902171e-01
2.11823136e-01 -3.43067169e-01 1.36839718e-01 -4.96627122e-01
1.95085570e-01 4.74292278e-01 -6.52619481e-01 1.69454789e+00
-5.29037118e-01 6.09521866e-01 -4.04373050e-01 -1.31247592e+00
1.00053179e+00 8.30662608e-01 1.14377642e+00 -5.99388838e-01
1.83333144e-01 1.74760476e-01 1.50014190e-02 -8.22639406e-01
-1.18792832e-01 -4.28718001e-01 -2.25384519e-01 2.78254151e-01
1.66815653e-01 3.02559316e-01 -2.90913194e-01 -4.21757549e-01
1.53928101e+00 -4.36704218e-01 2.62046993e-01 -1.55941233e-01
-6.29192889e-02 -5.83906829e-01 7.43946373e-01 5.37759602e-01
-3.17309737e-01 5.36874592e-01 4.16086376e-01 -8.68328869e-01
-4.00653929e-01 -9.80204046e-01 -2.29152814e-01 1.21422958e+00
-4.88494754e-01 -5.45024097e-01 -4.12635446e-01 -3.41421604e-01
1.42691389e-01 4.18620259e-01 -8.52485716e-01 -8.05933893e-01
-7.11405575e-01 -1.40817797e+00 8.20272386e-01 8.46761405e-01
1.38724059e-01 -9.24118519e-01 -1.27357852e+00 7.32708275e-01
-6.85201645e-01 -9.30946350e-01 -3.13699514e-01 6.97488070e-01
-1.28705621e+00 -1.01074600e+00 -3.86214018e-01 -4.80371505e-01
4.42516357e-02 2.85831802e-02 1.20378006e+00 -1.15843877e-01
-1.91436008e-01 2.34966308e-01 -2.67271757e-01 -6.59384310e-01
4.95727845e-02 1.14551164e-01 3.18140298e-01 2.31876269e-01
5.60996115e-01 -1.11389923e+00 -7.35781789e-01 -1.33464217e-01
-6.22659087e-01 -3.49100441e-01 2.27569312e-01 8.31518173e-01
3.22589785e-01 1.20275177e-01 1.14533055e+00 -3.56208801e-01
8.60437274e-01 -9.87967491e-01 2.35310227e-01 -3.05118024e-01
-2.38227531e-01 -2.81356275e-01 8.72177005e-01 -7.68176675e-01
-3.23289335e-01 -2.72562325e-01 -1.85565233e-01 -4.87428844e-01
4.31983247e-02 9.16148901e-01 3.03031534e-01 3.17341089e-01
9.23655689e-01 2.10707903e-01 -4.17566709e-02 -5.22782207e-01
-3.58884931e-01 4.02420223e-01 4.95008141e-01 -2.74270058e-01
1.27338305e-01 4.03634936e-01 2.08459496e-02 -8.76850069e-01
-8.65531147e-01 -2.69873410e-01 -2.65914917e-01 -2.66790092e-01
6.65714562e-01 -1.19209898e+00 -6.78326905e-01 5.58866680e-01
-1.02466869e+00 -1.21365152e-01 -2.47112095e-01 6.65023983e-01
-2.92157590e-01 -8.33689347e-02 -8.53336930e-01 -7.60450840e-01
-7.47501969e-01 -7.16394126e-01 1.25161350e+00 -4.36157659e-02
-7.98726857e-01 -1.08830595e+00 2.30642676e-01 -1.45125687e-01
5.50450802e-01 9.58683491e-01 9.93685424e-01 -6.71738148e-01
4.08304065e-01 -4.91239339e-01 5.37982523e-01 3.03810805e-01
2.83871710e-01 -2.38732159e-01 -1.13999009e+00 -5.00435054e-01
6.67154849e-01 -2.84213543e-01 9.09850121e-01 8.46049964e-01
1.26057839e+00 -2.34029606e-01 -2.53428161e-01 7.45472968e-01
1.19614351e+00 2.29175910e-01 3.89964014e-01 1.24799432e-02
5.52532852e-01 2.96595365e-01 -9.32630673e-02 7.10894585e-01
2.69926190e-01 3.72136891e-01 2.60657907e-01 -2.44103253e-01
2.63057142e-01 3.73082198e-02 5.46131909e-01 1.13671684e+00
5.18050082e-02 1.21432185e-01 -1.03525722e+00 6.16256058e-01
-1.70530879e+00 -1.06760585e+00 -1.25230834e-01 2.05016994e+00
9.44697857e-01 1.57669783e-01 4.10597891e-01 7.01920033e-01
3.15557271e-01 2.73484081e-01 -7.54331231e-01 -3.86881262e-01
3.97947505e-02 6.12776041e-01 1.22197576e-01 -8.41680765e-02
-1.14193285e+00 6.59973919e-02 6.98500395e+00 1.60814822e-01
-1.60534358e+00 3.37476313e-01 7.32951343e-01 -6.53453887e-01
8.41236264e-02 -8.90808225e-01 -1.83935165e-01 7.28181183e-01
1.64629114e+00 -7.71904513e-02 1.59307867e-01 5.92895567e-01
6.73676372e-01 2.58965433e-01 -1.28712916e+00 1.12037671e+00
-4.65997979e-02 -1.08496976e+00 -3.57078582e-01 -1.74603835e-01
4.27810609e-01 4.26740408e-01 2.81084329e-01 2.89362073e-01
-2.42516607e-01 -1.16060817e+00 4.43844140e-01 4.96320665e-01
5.90243638e-01 -8.23637843e-01 7.71161854e-01 2.00344875e-01
-1.02428579e+00 -4.02669698e-01 3.21841193e-03 -4.46345776e-01
-1.59976318e-01 1.19581687e+00 -5.55293083e-01 2.49669567e-01
8.25690806e-01 9.68224764e-01 -2.02192321e-01 9.00062859e-01
3.22056621e-01 1.08710420e+00 -3.51528347e-01 1.80459023e-01
-1.81900501e-01 4.28805172e-01 3.25175077e-01 1.38468802e+00
5.86724222e-01 5.08508820e-04 1.20670334e-01 4.06370461e-01
2.68960744e-02 -1.91599473e-01 -5.05191445e-01 4.22918191e-03
5.40758789e-01 9.27692831e-01 -4.98023301e-01 -3.12896848e-01
-4.69350427e-01 4.63965088e-01 -1.23074584e-01 3.90110582e-01
-1.12716007e+00 -4.30202335e-01 9.63213980e-01 1.20665476e-01
-3.46253999e-02 -3.06622952e-01 -5.03203571e-01 -1.20627701e+00
1.34049565e-01 -1.06774914e+00 6.61369383e-01 -4.99457926e-01
-1.20719576e+00 5.49242735e-01 -2.99580991e-01 -1.39014745e+00
-3.47820014e-01 -1.86055720e-01 -5.90266168e-01 7.76779473e-01
-1.39443934e+00 -7.15553463e-01 -3.63929242e-01 7.18079567e-01
5.11830032e-01 1.38235986e-01 1.35565460e+00 4.90337789e-01
-6.95186317e-01 4.36384827e-01 6.19331524e-02 2.18275189e-01
5.87290466e-01 -9.53905940e-01 4.85426337e-01 6.18182480e-01
-1.21954381e-02 7.37237871e-01 7.34339535e-01 -5.03877044e-01
-1.41123021e+00 -1.34641421e+00 9.92505491e-01 -3.29545856e-01
6.26114786e-01 -3.72595698e-01 -9.21169937e-01 5.80339968e-01
-1.23144291e-01 1.94102213e-01 1.28106904e+00 3.42170745e-01
-3.06712359e-01 -3.77934724e-01 -9.91307855e-01 1.55345052e-01
6.28897130e-01 -6.76314712e-01 -7.63407230e-01 2.72437483e-01
6.99180663e-01 -4.01236147e-01 -1.18899357e+00 5.52735388e-01
7.68225193e-01 -9.92440999e-01 1.13116801e+00 -6.06257796e-01
5.27016222e-01 2.45447844e-01 -5.22749536e-02 -1.68272030e+00
-4.55303311e-01 -6.67096078e-01 -7.15681493e-01 7.24144816e-01
1.58181638e-01 -8.03766489e-01 3.42585355e-01 2.59225219e-01
-7.36236423e-02 -1.00268340e+00 -1.00087368e+00 -5.62246978e-01
-1.41182840e-01 -6.22864366e-01 7.23396301e-01 1.14604104e+00
4.38785493e-01 2.84093618e-01 -4.37801600e-01 1.32090300e-01
3.30090404e-01 1.00572146e-01 -1.98033415e-02 -1.38620591e+00
-4.85396981e-01 -3.18668544e-01 -3.01398128e-01 -4.09497917e-01
-1.25205949e-01 -6.80560529e-01 -2.07596242e-01 -1.14313221e+00
-1.63865387e-01 1.82666294e-02 -9.06998873e-01 7.35383153e-01
-1.73870280e-01 3.99988204e-01 -2.01976314e-01 8.72400403e-02
-1.04377896e-01 4.86447990e-01 6.23563528e-01 -1.49341539e-01
-4.27064091e-01 1.47839054e-01 -6.40980184e-01 7.55361974e-01
9.99390602e-01 -4.95327115e-01 -3.81345212e-01 -5.12427032e-01
3.02947074e-01 3.81168127e-01 4.05560106e-01 -1.39584303e+00
-1.97338358e-01 1.26479253e-01 8.32899630e-01 -2.76441038e-01
4.22214806e-01 -6.38737977e-01 2.65182018e-01 8.61395955e-01
-4.86254543e-01 5.08828461e-01 4.52980489e-01 4.56500053e-01
-1.84954271e-01 5.83900094e-01 6.44192934e-01 6.48897663e-02
9.33573693e-02 2.15954408e-01 -6.24495804e-01 6.63308650e-02
4.78259504e-01 1.86301813e-01 -1.96495563e-01 -3.23082000e-01
-8.79417002e-01 -6.32459670e-02 -3.45997423e-01 6.27976298e-01
5.66516519e-01 -1.51309502e+00 -6.63214684e-01 5.66971362e-01
-1.29615888e-01 -3.32390696e-01 2.89288878e-01 1.17004657e+00
1.97506743e-03 3.02642107e-01 -2.78633744e-01 -6.52532697e-01
-1.07294595e+00 3.50659996e-01 6.03492022e-01 -1.93697169e-01
-7.67500281e-01 6.92413211e-01 -2.44198665e-02 1.91970378e-01
3.08345973e-01 -1.04033518e+00 -2.92628318e-01 4.90802228e-01
7.14984119e-01 3.54029298e-01 5.43458581e-01 -3.12266678e-01
-6.25611305e-01 4.28768814e-01 3.50789160e-01 2.16894180e-01
1.69356310e+00 2.80171931e-01 -2.89199110e-02 9.24853265e-01
1.45853341e+00 -2.72459149e-01 -8.54578853e-01 -8.92013758e-02
-1.10816970e-01 2.94864736e-02 2.21702486e-01 -8.00700486e-01
-1.16714370e+00 9.22816932e-01 6.93025291e-01 4.56932753e-01
1.54200745e+00 -4.27570492e-01 1.22572327e+00 1.77505046e-01
2.74219871e-01 -9.73130405e-01 3.51519108e-01 4.20371443e-01
8.04104865e-01 -7.01476157e-01 -3.33118618e-01 2.48890445e-01
-9.53426436e-02 1.21401203e+00 9.71216261e-02 -2.54289687e-01
9.21875596e-01 4.76306617e-01 5.41780293e-02 -2.77946085e-01
-9.57861185e-01 3.66830736e-01 1.39736012e-01 4.11944896e-01
7.57498920e-01 1.73483253e-01 -2.36746803e-01 1.10527599e+00
-3.55956882e-01 1.72085345e-01 3.33969951e-01 7.30596423e-01
-3.06130201e-01 -6.74921572e-01 -4.15999889e-01 7.84648538e-01
-9.13134634e-01 -8.82991850e-02 -6.06669411e-02 2.51845896e-01
1.19372480e-01 1.14348292e+00 1.28957659e-01 -6.84521079e-01
4.27632123e-01 5.58644354e-01 1.92223072e-01 -5.25751114e-01
-1.06854582e+00 2.90640354e-01 3.82751897e-02 -8.15523982e-01
-2.92446733e-01 -8.02975357e-01 -1.22096562e+00 -9.96735394e-02
1.58588752e-01 -5.88875227e-02 5.65524995e-01 8.91500473e-01
6.68414056e-01 1.20171213e+00 8.28383863e-01 -8.16349149e-01
-5.05047262e-01 -1.17340243e+00 -4.89290118e-01 4.49937403e-01
9.94503617e-01 -5.31488001e-01 -3.67775530e-01 1.00535087e-01] | [13.694453239440918, 3.3457751274108887] |
07400cf0-57bf-4b7a-bc0f-7c0fc28cc04c | ttan-two-stage-temporal-alignment-network-for | 2107.04782 | null | https://arxiv.org/abs/2107.04782v4 | https://arxiv.org/pdf/2107.04782v4.pdf | TA2N: Two-Stage Action Alignment Network for Few-shot Action Recognition | Few-shot action recognition aims to recognize novel action classes (query) using just a few samples (support). The majority of current approaches follow the metric learning paradigm, which learns to compare the similarity between videos. Recently, it has been observed that directly measuring this similarity is not ideal since different action instances may show distinctive temporal distribution, resulting in severe misalignment issues across query and support videos. In this paper, we arrest this problem from two distinct aspects -- action duration misalignment and action evolution misalignment. We address them sequentially through a Two-stage Action Alignment Network (TA2N). The first stage locates the action by learning a temporal affine transform, which warps each video feature to its action duration while dismissing the action-irrelevant feature (e.g. background). Next, the second stage coordinates query feature to match the spatial-temporal action evolution of support by performing temporally rearrange and spatially offset prediction. Extensive experiments on benchmark datasets show the potential of the proposed method in achieving state-of-the-art performance for few-shot action recognition.The code of this project can be found at https://github.com/R00Kie-Liu/TA2N | ['Weiyao Lin', 'Xiaoyuan Yu', 'Mengjuan Fei', 'John See', 'Yuxi Li', 'Rui Qian', 'Huabin Liu', 'Shuyuan Li'] | 2021-07-10 | null | null | null | null | ['few-shot-action-recognition'] | ['computer-vision'] | [ 5.45713484e-01 -4.48545694e-01 -4.21778172e-01 -4.50517446e-01
-8.25818658e-01 -4.44470853e-01 6.33653760e-01 -1.71107620e-01
-3.46674740e-01 4.47006702e-01 3.10878307e-01 2.49699101e-01
-1.07569635e-01 -3.06814939e-01 -5.06146550e-01 -8.48205328e-01
-1.01863153e-01 -3.01795099e-02 6.26958311e-01 1.11760244e-01
6.03228569e-01 4.96379554e-01 -1.58325541e+00 5.21093547e-01
5.37644923e-01 1.08021736e+00 -2.72373110e-02 6.34946883e-01
1.52277321e-01 1.04337406e+00 -5.62977374e-01 -1.20354079e-01
5.42610109e-01 -8.48343134e-01 -5.75172246e-01 9.50918570e-02
6.01270080e-01 -4.16038841e-01 -5.77943921e-01 1.06670034e+00
5.01129866e-01 4.51898694e-01 4.65515316e-01 -1.59518838e+00
-3.55083317e-01 1.45184100e-01 -6.41563118e-01 6.39646471e-01
4.11429971e-01 4.15465504e-01 8.18716049e-01 -9.97989535e-01
5.53839624e-01 9.77194667e-01 4.97722566e-01 4.52843517e-01
-9.28790808e-01 -6.10627472e-01 2.26774186e-01 7.77851641e-01
-1.42685497e+00 -5.88060617e-01 9.59507465e-01 -5.03522515e-01
8.81924570e-01 2.65933603e-01 6.91982329e-01 1.06159282e+00
3.68096113e-01 1.01440716e+00 9.24452543e-01 -2.60931581e-01
3.91914785e-01 -4.58713025e-01 -2.13177621e-01 5.50928473e-01
-2.74528474e-01 9.19743255e-02 -6.72292352e-01 1.25767753e-01
5.33139706e-01 3.70058537e-01 -2.50119030e-01 -5.52362502e-01
-1.27579093e+00 4.90320712e-01 1.45609349e-01 5.65222919e-01
-4.40047383e-01 1.07584864e-01 6.14234149e-01 4.37030315e-01
2.82663792e-01 2.55077869e-01 -2.59059131e-01 -6.35549426e-01
-9.17154849e-01 1.28676891e-01 4.70612973e-01 8.18213701e-01
6.28892958e-01 -7.53694307e-03 -5.41727304e-01 6.51175380e-01
-1.21203169e-01 1.08530410e-01 7.58506536e-01 -1.00307953e+00
4.60916162e-01 5.06734908e-01 1.15687862e-01 -1.14501190e+00
-1.46161333e-01 -2.77157705e-02 -5.53183317e-01 1.36441708e-01
4.99312371e-01 9.19888839e-02 -7.68642664e-01 1.57427609e+00
4.29945856e-01 7.69635916e-01 -2.44121313e-01 9.70275760e-01
4.01577830e-01 4.70170856e-01 3.58239897e-02 -3.83231491e-01
1.04238558e+00 -1.21835577e+00 -6.17352486e-01 -1.92105174e-01
6.31280124e-01 -7.06820369e-01 9.83575583e-01 1.41215682e-01
-9.55533087e-01 -6.52356148e-01 -1.05158329e+00 2.52891302e-01
-1.95519626e-01 3.25363986e-02 2.34317869e-01 2.52638280e-01
-6.52966142e-01 8.75204921e-01 -1.07062697e+00 -5.07524610e-01
4.94084060e-01 8.09535235e-02 -3.61870766e-01 -2.05590740e-01
-1.07968152e+00 6.46220744e-01 3.99598360e-01 -3.36856060e-02
-8.35593402e-01 -5.77176273e-01 -8.38455141e-01 -1.77846670e-01
6.94017649e-01 -2.69123286e-01 1.30246484e+00 -1.22836220e+00
-1.62331665e+00 6.14041090e-01 -1.36315838e-01 -3.28267455e-01
5.97034276e-01 -3.34007293e-01 -6.68313205e-01 3.08287859e-01
1.70463651e-01 3.69120777e-01 1.07350695e+00 -7.24502981e-01
-8.84819269e-01 -3.63301277e-01 2.84822639e-02 3.13619912e-01
-3.22869301e-01 2.46292546e-01 -5.59187353e-01 -8.39327514e-01
1.30932346e-01 -9.01281714e-01 1.36889126e-02 1.54962435e-01
-7.98297971e-02 -1.46640897e-01 8.54266047e-01 -5.02386510e-01
1.44825506e+00 -2.29604411e+00 2.00322896e-01 -1.26333103e-01
-6.00958131e-02 4.15748805e-01 -2.85882384e-01 6.08172417e-01
-3.02285820e-01 -3.81300658e-01 -1.90436989e-01 -9.81813744e-02
-1.20730288e-01 1.35269776e-01 -2.66226053e-01 7.45320082e-01
2.84911990e-01 9.82082069e-01 -1.13230562e+00 -5.54619491e-01
3.72297198e-01 2.10139260e-01 -2.94204593e-01 3.07990313e-01
8.34223926e-02 5.49203157e-01 -4.75898415e-01 9.95085835e-01
3.16507638e-01 -9.39162001e-02 7.81767070e-03 -4.74327892e-01
-2.52275229e-01 6.65435493e-02 -1.25554359e+00 1.74585843e+00
6.70169964e-02 5.05753040e-01 -4.20206696e-01 -1.26207936e+00
7.56111383e-01 2.15522990e-01 1.09621203e+00 -8.95370424e-01
5.98325171e-02 6.95211217e-02 4.41036560e-02 -8.42051983e-01
1.94148660e-01 -5.54470010e-02 1.98287126e-02 5.37314236e-01
-1.15264617e-02 1.70458332e-01 3.18725258e-01 -1.28107101e-01
1.43043804e+00 4.22478914e-01 5.78061461e-01 1.92846179e-01
5.43785453e-01 -1.03294887e-01 8.48129094e-01 6.35147750e-01
-8.46794009e-01 6.19126797e-01 3.89474660e-01 -5.64709783e-01
-8.93299341e-01 -9.99736011e-01 2.67268836e-01 1.18554735e+00
2.96384126e-01 -4.73170698e-01 -6.27807856e-01 -8.78012836e-01
-5.85844815e-02 5.52048683e-01 -6.65611029e-01 -5.17995715e-01
-9.28934634e-01 -3.41869712e-01 3.70968550e-01 7.39421785e-01
5.39745569e-01 -1.19089127e+00 -1.06702650e+00 1.84367180e-01
-1.04455799e-01 -9.85630870e-01 -8.08512270e-01 -2.38802750e-02
-8.27820778e-01 -1.11113203e+00 -7.38708854e-01 -5.93907952e-01
4.51592445e-01 5.48905969e-01 7.54776239e-01 -1.01276174e-01
-5.08724570e-01 5.56707919e-01 -6.69290423e-01 -9.15900767e-02
-1.63707957e-01 -3.07173193e-01 1.97898820e-01 3.86512250e-01
6.31812513e-01 -5.89034140e-01 -8.59440446e-01 6.19064450e-01
-9.32801783e-01 -6.83162510e-02 6.16553485e-01 7.01199055e-01
7.56169677e-01 3.11191590e-03 3.20892215e-01 -2.86042988e-01
1.65011585e-01 -3.76705378e-01 -2.88574696e-01 4.23582315e-01
-3.42199802e-01 -3.22066963e-01 6.33348823e-01 -6.99410915e-01
-7.34848678e-01 2.51799792e-01 3.64661038e-01 -8.21999729e-01
-2.76750922e-01 3.39337558e-01 -1.76508933e-01 7.34593347e-02
3.07903796e-01 4.94890153e-01 2.63165515e-02 -2.29409561e-01
2.23499119e-01 5.29199302e-01 6.62018657e-01 -2.60475427e-01
7.44216561e-01 6.03295028e-01 -9.64273885e-02 -7.15242028e-01
-8.94902110e-01 -7.00449765e-01 -9.81126606e-01 -5.77014327e-01
8.85174811e-01 -6.61005378e-01 -2.98698455e-01 6.21477187e-01
-7.60640562e-01 -3.49121034e-01 -4.80467647e-01 7.23948181e-01
-8.82934749e-01 5.34149468e-01 -3.51247221e-01 -5.34752667e-01
-6.58629835e-02 -9.24371362e-01 9.83231306e-01 2.55779833e-01
-2.58596838e-01 -5.43845296e-01 3.08331102e-01 3.17460269e-01
2.18706191e-01 3.25306743e-01 5.34758627e-01 -7.41888940e-01
-4.54591751e-01 -3.43762875e-01 3.61321233e-02 3.23645175e-01
5.75643897e-01 1.20293520e-01 -6.18474305e-01 -4.60679889e-01
2.09311336e-01 -3.07581693e-01 7.68698752e-01 3.51528019e-01
1.13979542e+00 -1.28946900e-01 -1.19884521e-01 5.79881430e-01
1.18767941e+00 5.56492448e-01 6.98259950e-01 3.77754986e-01
6.97238505e-01 4.29704785e-01 1.25976956e+00 6.22006476e-01
3.51361707e-02 9.83136296e-01 3.10037047e-01 1.56272694e-01
-1.14089996e-01 -2.11073399e-01 6.16190732e-01 6.15828276e-01
-1.86157480e-01 -1.58640016e-02 -7.42761195e-01 3.76426131e-01
-2.19237113e+00 -1.44957733e+00 4.33377445e-01 2.30702829e+00
6.12682104e-01 1.47465527e-01 3.65219682e-01 6.93229884e-02
7.11344779e-01 4.65586066e-01 -8.92095804e-01 -1.76770482e-02
1.25989839e-01 -5.59738353e-02 2.42894918e-01 8.58192593e-02
-1.33380258e+00 8.72745574e-01 5.24161291e+00 8.58087897e-01
-1.19219255e+00 2.62354854e-02 4.59646761e-01 -5.17956913e-01
3.33457470e-01 -8.95359647e-03 -5.08820832e-01 6.16714776e-01
6.76038384e-01 -3.00749809e-01 2.89462477e-01 6.80922568e-01
4.02623713e-01 -1.65438265e-01 -1.23248374e+00 1.01535571e+00
3.94378245e-01 -1.02086329e+00 -7.77058303e-02 -2.77745306e-01
6.07417405e-01 -9.64965820e-02 -1.24968275e-01 3.87747109e-01
-2.84445405e-01 -6.82407260e-01 6.29445851e-01 7.96350181e-01
6.41413093e-01 -5.83153963e-01 3.86419266e-01 1.54442444e-01
-1.47318840e+00 -4.06634897e-01 -2.13027552e-01 -6.58323914e-02
1.95917055e-01 1.14261307e-01 -4.94578034e-01 3.98092598e-01
7.07572103e-01 1.21974373e+00 -6.20058000e-01 1.13509703e+00
-4.55086455e-02 3.78180087e-01 9.03504789e-02 1.76282972e-01
2.03720495e-01 -3.51704389e-01 7.04698026e-01 9.43789482e-01
4.08831179e-01 2.28298381e-01 2.45367318e-01 4.32704210e-01
3.13044161e-01 1.28784001e-01 -6.16016805e-01 -2.65153885e-01
3.50216180e-01 9.77090359e-01 -8.18460464e-01 -4.11599278e-01
-7.35774636e-01 1.29543293e+00 1.85158148e-01 2.26826280e-01
-1.08905339e+00 -2.64589608e-01 6.60878181e-01 -4.18563522e-02
6.90978050e-01 -1.07547484e-01 2.76284486e-01 -1.17767107e+00
2.33273730e-01 -1.10513461e+00 6.92390561e-01 -5.96376717e-01
-1.10699904e+00 2.54749894e-01 1.90958530e-01 -1.91755843e+00
-2.97577947e-01 -3.48392725e-01 -7.32446611e-01 3.61000091e-01
-1.06418955e+00 -9.68888521e-01 -3.45307320e-01 6.72554910e-01
1.10111570e+00 -2.75115460e-01 5.12092888e-01 2.98095942e-01
-6.78008080e-01 5.74870884e-01 1.47612214e-01 5.97752780e-02
9.04829919e-01 -9.84888136e-01 2.57386684e-01 8.25518608e-01
2.85581291e-01 2.69567162e-01 7.48768985e-01 -6.06018186e-01
-1.44579315e+00 -1.06223726e+00 6.98840201e-01 -3.11980575e-01
8.73863518e-01 2.85462681e-02 -9.40047204e-01 5.06934226e-01
-2.54599806e-02 3.36142987e-01 7.12916553e-01 -5.62154651e-01
-3.10551912e-01 -3.37872505e-01 -8.58778715e-01 7.04751134e-01
1.18393123e+00 -5.66717446e-01 -6.44178271e-01 2.25697935e-01
3.87797594e-01 -1.47006139e-01 -8.12668145e-01 5.05891025e-01
8.41732264e-01 -1.34220183e+00 8.10903072e-01 -7.79790461e-01
4.24172610e-01 -4.46374208e-01 -3.60624075e-01 -1.07033360e+00
-3.30248863e-01 -5.75511038e-01 -4.18778867e-01 9.64161336e-01
-1.92509964e-01 -3.08934540e-01 8.01545918e-01 4.74752337e-01
-6.41780496e-02 -1.04107785e+00 -1.13314223e+00 -1.15397000e+00
-3.33491206e-01 -2.57528037e-01 3.78770918e-01 9.17361736e-01
6.23375252e-02 4.47436273e-02 -5.47457755e-01 -9.02086422e-02
3.08091223e-01 3.83746207e-01 7.62111783e-01 -7.04373956e-01
-4.11057264e-01 -5.73463798e-01 -7.73246169e-01 -9.86916423e-01
6.03844672e-02 -6.16815448e-01 1.72234342e-01 -1.08180916e+00
3.26529086e-01 2.08815917e-01 -6.93620145e-01 4.59447384e-01
-1.37110606e-01 2.48096213e-01 2.84343123e-01 3.76425654e-01
-9.40449536e-01 6.93481386e-01 1.19591343e+00 -1.58368915e-01
-1.88929230e-01 1.76567033e-01 -1.36588827e-01 7.44125783e-01
8.89135003e-01 -4.88146067e-01 -5.64778507e-01 -1.37060910e-01
-2.95478582e-01 8.99797752e-02 3.67829740e-01 -1.38203847e+00
3.06487054e-01 -5.66901505e-01 2.96051830e-01 -5.05978227e-01
3.54946703e-01 -8.13990116e-01 1.59711942e-01 6.16728485e-01
-3.98809850e-01 1.78923890e-01 -7.91878067e-03 7.07082987e-01
-2.77799189e-01 -2.22911432e-01 7.68657148e-01 -5.65762036e-02
-1.06980288e+00 4.77986902e-01 -1.53015003e-01 7.68189505e-02
1.41975570e+00 -5.98145366e-01 -1.46591559e-01 -3.17873776e-01
-4.96054322e-01 2.68991645e-02 4.49848890e-01 6.44082367e-01
7.96435535e-01 -1.48830473e+00 -5.70789754e-01 1.69317037e-01
3.46415907e-01 -5.78916252e-01 5.45710921e-01 1.25088632e+00
-7.46531561e-02 2.59496093e-01 -3.93928885e-01 -6.01740599e-01
-1.53354979e+00 6.39486790e-01 3.71612072e-01 -1.07103446e-02
-7.24914432e-01 7.50819862e-01 7.15486184e-02 1.64591894e-01
2.83920348e-01 -4.31603566e-02 -1.83258414e-01 1.87203467e-01
7.00537503e-01 5.86358547e-01 -2.89477438e-01 -8.44326854e-01
-5.05539417e-01 7.31898487e-01 -1.80920169e-01 5.52955903e-02
1.27907360e+00 -7.70197287e-02 1.50217846e-01 7.06513643e-01
1.29491997e+00 -3.97859544e-01 -1.60119176e+00 -3.19566071e-01
1.14970081e-01 -9.22912538e-01 -3.00072849e-01 -4.49290425e-01
-9.72755373e-01 5.83634198e-01 8.25730920e-01 1.84655897e-02
1.37786281e+00 3.41182342e-03 7.71965504e-01 3.32470447e-01
2.51996845e-01 -1.35470295e+00 6.32568717e-01 4.18348908e-01
9.08373356e-01 -1.28922713e+00 1.41061842e-01 -1.98671073e-02
-7.58324504e-01 1.00663519e+00 7.99611270e-01 -7.09467158e-02
6.23387218e-01 2.32676845e-02 -2.54752375e-02 -2.59359151e-01
-6.53527021e-01 -1.06652781e-01 3.66276085e-01 3.98786932e-01
2.04843611e-01 -8.67957026e-02 -3.77852172e-01 2.69489855e-01
2.84319133e-01 5.55812828e-02 2.61895001e-01 1.44396460e+00
-3.52799386e-01 -9.49518025e-01 -9.13522243e-02 4.74099338e-01
-3.23565513e-01 1.21996149e-01 -3.95882398e-01 6.48391247e-01
5.19293807e-02 6.91630542e-01 1.63097233e-01 -6.40223861e-01
5.01674771e-01 1.25805154e-01 4.80563521e-01 -5.17521501e-01
-2.70896405e-01 1.77410364e-01 -1.87615335e-01 -1.21190667e+00
-7.39726841e-01 -1.04888308e+00 -1.07903111e+00 6.36400357e-02
-5.40335551e-02 -2.02259257e-01 2.29103655e-01 9.48150575e-01
5.02839744e-01 3.34054649e-01 8.79379690e-01 -8.90790701e-01
-8.80280435e-01 -8.26750100e-01 -6.51021004e-01 6.05234683e-01
2.54565924e-01 -8.33924234e-01 -4.44338560e-01 2.73641676e-01] | [8.454169273376465, 0.7487806081771851] |
9bed4ad0-a7c6-4095-8d9c-c8f002229957 | re2tal-rewiring-pretrained-video-backbones | null | null | http://openaccess.thecvf.com//content/CVPR2023/html/Zhao_Re2TAL_Rewiring_Pretrained_Video_Backbones_for_Reversible_Temporal_Action_Localization_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Zhao_Re2TAL_Rewiring_Pretrained_Video_Backbones_for_Reversible_Temporal_Action_Localization_CVPR_2023_paper.pdf | Re2TAL: Rewiring Pretrained Video Backbones for Reversible Temporal Action Localization | Temporal action localization (TAL) requires long-form reasoning to predict actions of various durations and complex content. Given limited GPU memory, training TAL end to end (i.e., from videos to predictions) on long videos is a significant challenge. Most methods can only train on pre-extracted features without optimizing them for the localization problem, consequently limiting localization performance. In this work, to extend the potential in TAL networks, we propose a novel end-to-end method Re2TAL, which rewires pretrained video backbones for reversible TAL. Re2TAL builds a backbone with reversible modules, where the input can be recovered from the output such that the bulky intermediate activations can be cleared from memory during training. Instead of designing one single type of reversible module, we propose a network rewiring mechanism, to transform any module with a residual connection to a reversible module without changing any parameters. This provides two benefits: (1) a large variety of reversible networks are easily obtained from existing and even future model designs, and (2) the reversible models require much less training effort as they reuse the pre-trained parameters of their original non-reversible versions. Re2TAL, only using the RGB modality, reaches 37.01% average mAP on ActivityNet-v1.3, a new state-of-the-art record, and mAP 64.9% at tIoU=0.5 on THUMOS-14, outperforming all other RGB-only methods. Code is available at https://github.com/coolbay/Re2TAL. | ['Bernard Ghanem', 'Karttikeya Mangalam', 'Shuming Liu', 'Chen Zhao'] | 2023-01-01 | null | null | null | cvpr-2023-1 | ['action-localization', 'action-recognition'] | ['computer-vision', 'computer-vision'] | [ 1.69372991e-01 -1.72349159e-02 -4.79947686e-01 -1.58998400e-01
-4.99480695e-01 -6.05791748e-01 3.88494432e-01 -5.45868874e-01
-6.00898504e-01 6.59468234e-01 3.07124883e-01 -3.82255018e-02
2.79311717e-01 -5.90113819e-01 -1.22844326e+00 -5.51624000e-01
-4.50840220e-02 1.32383600e-01 5.68299830e-01 4.80400324e-02
9.67659801e-02 3.48279923e-01 -1.12505853e+00 6.88693762e-01
5.02000988e-01 1.14534724e+00 4.42756385e-01 6.38632417e-01
2.56220251e-01 1.46531308e+00 -2.16405392e-01 -2.13987991e-01
2.72369236e-01 -4.62036192e-01 -7.73669899e-01 -2.65358329e-01
4.64037657e-01 -7.18433619e-01 -9.82766807e-01 5.54275036e-01
4.02276814e-01 1.61595553e-01 2.34799609e-01 -1.07769680e+00
-5.81595838e-01 7.12301552e-01 -3.05300742e-01 2.02617392e-01
7.15365112e-02 5.97825468e-01 9.15017426e-01 -1.01708722e+00
8.11917424e-01 1.02336586e+00 7.06138909e-01 8.07987571e-01
-1.23925447e+00 -7.75840461e-01 2.84362704e-01 5.60481906e-01
-1.42377365e+00 -6.78992331e-01 3.63858163e-01 -2.92304069e-01
1.50562918e+00 -6.36465773e-02 9.06351745e-01 1.37798262e+00
3.28684241e-01 9.59209561e-01 9.01683867e-01 1.76834941e-01
1.55025005e-01 -4.62590545e-01 -2.26860136e-01 1.00450110e+00
-7.31782764e-02 -1.89540118e-01 -9.66345727e-01 3.79052699e-01
9.79897380e-01 3.15122485e-01 -3.15543890e-01 -1.80302516e-01
-1.40245962e+00 3.26535821e-01 8.37197363e-01 1.27388179e-01
-3.75217557e-01 9.82379138e-01 3.51989329e-01 1.27218604e-01
2.80419588e-01 4.06512171e-01 -4.68500197e-01 -4.04873937e-01
-1.00313425e+00 -6.95296656e-03 6.09413981e-01 8.60746205e-01
9.11974490e-01 1.44388191e-02 -2.14158088e-01 3.89418274e-01
1.84344803e-03 4.79032874e-01 4.68589306e-01 -1.19845295e+00
5.94162524e-01 5.67685366e-01 -3.72610539e-02 -5.74230015e-01
-4.31648254e-01 -3.86522591e-01 -6.82693005e-01 -1.28629372e-01
1.88805550e-01 -1.29857495e-01 -1.15205765e+00 1.86127949e+00
-5.08081056e-02 6.79797709e-01 2.42888313e-02 8.11896622e-01
7.28062749e-01 8.63511562e-01 1.88420862e-02 1.62083209e-01
8.36662591e-01 -1.53276181e+00 -3.11238080e-01 -6.40424728e-01
7.78700292e-01 -3.18197519e-01 1.12211215e+00 3.71462464e-01
-1.18282795e+00 -4.77249473e-01 -1.16272557e+00 -4.32609230e-01
-1.03806317e-01 2.06827000e-01 7.09044874e-01 1.14553710e-02
-1.34625626e+00 9.06593978e-01 -1.40769374e+00 -3.03210884e-01
6.75519466e-01 6.08678818e-01 -4.93179560e-01 -2.64918327e-01
-9.22249317e-01 7.48939633e-01 4.17051345e-01 3.83288294e-01
-1.33327985e+00 -6.44276261e-01 -7.19266176e-01 1.90916985e-01
4.80991691e-01 -7.19182253e-01 1.21866584e+00 -1.23006153e+00
-1.72417331e+00 4.17904407e-01 -3.09293181e-01 -6.02891147e-01
5.83673537e-01 -4.68718171e-01 -5.95232770e-02 3.97225618e-01
-1.45090386e-01 1.14775467e+00 7.66210794e-01 -6.51659667e-01
-4.24289286e-01 1.51516706e-01 2.19603345e-01 2.04770058e-01
-3.77250284e-01 -3.49902958e-01 -9.53127086e-01 -4.16836768e-01
2.57853437e-02 -1.19619644e+00 -7.95759186e-02 2.28305012e-01
-1.85293853e-01 -3.15077454e-02 6.38009429e-01 -7.31082320e-01
1.04161227e+00 -2.17565131e+00 4.58580971e-01 -9.83623490e-02
2.83770770e-01 2.12675259e-01 -4.86142486e-01 2.93303728e-01
2.79922597e-02 6.74085468e-02 -1.54333010e-01 -5.37886918e-01
2.09173486e-02 2.61070490e-01 -2.96531618e-01 5.44658244e-01
3.03226292e-01 1.30498874e+00 -8.05760801e-01 -3.21530282e-01
1.39826417e-01 5.65185428e-01 -8.57522726e-01 -2.82973628e-02
-2.99335063e-01 4.11345482e-01 -1.95722654e-01 5.91459870e-01
3.27214658e-01 -4.75468010e-01 3.23436737e-01 -2.97146976e-01
-9.83098373e-02 5.40597677e-01 -7.26474166e-01 2.16987920e+00
-6.01712525e-01 8.72671247e-01 -2.55554825e-01 -9.04177070e-01
5.11106133e-01 1.37758791e-01 5.70948780e-01 -9.63215113e-01
3.35406028e-02 1.54759020e-01 -4.37255539e-02 -3.01382154e-01
3.44923347e-01 2.73845017e-01 -4.96555604e-02 4.82067347e-01
3.39580536e-01 3.51307869e-01 3.42911094e-01 1.59839034e-01
1.75591624e+00 6.11511528e-01 -1.93210199e-01 6.69166520e-02
7.09054396e-02 -1.30747259e-01 8.36740017e-01 6.93246841e-01
-1.40125483e-01 5.86554170e-01 6.86823606e-01 -5.58393359e-01
-1.02699506e+00 -1.12699437e+00 3.56989205e-01 1.21739805e+00
1.95969552e-01 -6.63126707e-01 -7.79470563e-01 -5.97025752e-01
-2.28712767e-01 4.41131860e-01 -6.05379999e-01 -4.28743720e-01
-1.03860116e+00 -3.91884804e-01 6.91412389e-01 8.80636632e-01
9.31074083e-01 -1.15137196e+00 -6.28088892e-01 3.04372579e-01
-3.87078881e-01 -1.13334906e+00 -5.56186259e-01 3.05788159e-01
-1.07780302e+00 -8.92451882e-01 -4.31553125e-01 -6.06267750e-01
6.38012469e-01 2.74082720e-01 1.03208542e+00 1.94166467e-01
4.21487540e-02 2.21706256e-01 -2.41074413e-01 3.34573805e-01
6.02599904e-02 5.27887821e-01 -1.39653295e-01 -1.16438761e-01
1.21403590e-01 -7.04047978e-01 -9.33162749e-01 4.48334306e-01
-7.61354387e-01 4.52386320e-01 8.87852907e-01 8.61695290e-01
7.09332526e-01 -2.92770416e-01 3.00288975e-01 -5.38824320e-01
-8.33419412e-02 -4.94298875e-01 -4.47105229e-01 2.02955648e-01
-3.10300440e-01 2.28228584e-01 6.39065683e-01 -7.07297325e-01
-8.63908827e-01 4.61086333e-01 -9.15011093e-02 -6.97458029e-01
2.45126560e-01 4.35774237e-01 -2.07040720e-02 5.49257174e-02
6.01797879e-01 4.13106561e-01 -1.55076995e-01 -3.27936381e-01
3.25081825e-01 1.46524459e-01 6.10795975e-01 -4.70967948e-01
5.25905073e-01 5.26199579e-01 -9.86629203e-02 -4.40555632e-01
-8.66300881e-01 -1.27269894e-01 -7.04133809e-01 -2.28071809e-01
9.01333392e-01 -1.20434213e+00 -9.30169106e-01 5.73066652e-01
-1.08047009e+00 -1.22854531e+00 -1.94780499e-01 4.30215329e-01
-5.94267190e-01 -8.47573802e-02 -9.66531634e-01 -1.16507940e-01
-3.39326262e-01 -1.17389560e+00 7.51137316e-01 9.57496017e-02
-1.83262289e-01 -6.99513972e-01 -4.49768044e-02 4.31142211e-01
4.83468235e-01 -3.17328461e-02 5.14052570e-01 -1.51983546e-02
-1.08191121e+00 -1.04482554e-01 -1.90392971e-01 3.56618822e-01
-3.22887123e-01 -9.58073437e-02 -9.04417694e-01 -4.72281992e-01
-2.94704884e-01 -6.77726865e-01 1.38599086e+00 1.53980896e-01
1.40136158e+00 -3.58507454e-01 -2.57779241e-01 9.81063306e-01
1.12070978e+00 1.72343086e-02 9.97136533e-01 3.93021673e-01
9.63585854e-01 -3.17903161e-02 2.98138142e-01 2.15335891e-01
3.91077816e-01 6.28614366e-01 5.54692566e-01 2.19782833e-02
-3.09462130e-01 -6.17166519e-01 1.07109845e+00 7.80182838e-01
-1.56459838e-01 -3.23217571e-01 -7.84390628e-01 3.51118356e-01
-2.12943220e+00 -1.08146453e+00 2.83348590e-01 1.97434354e+00
8.85223746e-01 2.76609242e-01 -3.31628956e-02 -3.50412756e-01
5.32827497e-01 3.85175079e-01 -9.29689765e-01 -1.68113299e-02
-4.73176055e-02 4.31862533e-01 7.89796531e-01 3.50736350e-01
-9.98334527e-01 1.31779087e+00 5.40607977e+00 8.58809471e-01
-1.52902246e+00 4.20341253e-01 6.40482605e-01 -7.00646579e-01
-5.83389774e-02 2.53436953e-01 -7.85776317e-01 4.71797705e-01
1.15531969e+00 2.77154624e-01 7.59383142e-01 7.05207407e-01
2.32394695e-01 -1.46815673e-01 -1.29139411e+00 9.37408447e-01
-4.11791392e-02 -1.62821710e+00 -1.26268312e-01 -7.53085390e-02
7.05338299e-01 4.30240303e-01 5.78755923e-02 5.60548306e-01
1.56869814e-01 -1.15012836e+00 1.07146955e+00 6.49450541e-01
9.18962836e-01 -6.53928041e-01 4.95544702e-01 1.24464095e-01
-1.31774318e+00 -1.86389104e-01 -3.97688299e-01 -1.87795028e-01
1.58885196e-01 1.82682082e-01 -6.20689213e-01 -4.84693609e-02
7.28753388e-01 1.25853395e+00 -6.45955861e-01 9.21946764e-01
-6.67155147e-01 9.01059747e-01 -3.83184761e-01 6.06397390e-02
3.56598318e-01 2.16162413e-01 2.69761141e-02 1.12637782e+00
4.38297033e-01 -4.56163026e-02 7.72230700e-02 6.93843365e-01
-5.82074881e-01 -3.58888239e-01 -3.36460710e-01 -1.34837225e-01
4.52021480e-01 1.16315114e+00 -6.94935620e-01 -3.22437465e-01
-3.66952121e-01 1.46081841e+00 6.65799201e-01 4.13666397e-01
-1.27711403e+00 -1.04828179e-01 4.83896554e-01 3.05826455e-01
4.71127689e-01 -4.25245970e-01 -7.04088761e-03 -1.33291435e+00
1.08669892e-01 -6.91575050e-01 6.10372648e-02 -8.71484458e-01
-7.46325731e-01 4.96714354e-01 -2.87351638e-01 -1.08490992e+00
-8.42176378e-02 -5.95632672e-01 -4.95625943e-01 3.73298258e-01
-1.18053269e+00 -1.18835652e+00 -4.29336160e-01 7.10611880e-01
5.26834846e-01 1.69323176e-01 5.90210438e-01 5.21511972e-01
-8.62347424e-01 6.89910173e-01 -5.19895069e-02 1.20482266e-01
7.68525004e-01 -9.25182104e-01 5.27698576e-01 1.04609346e+00
1.27777576e-01 5.57120681e-01 1.75882816e-01 -5.57393909e-01
-1.71855855e+00 -1.28403807e+00 5.25098443e-01 -2.67515451e-01
8.50424111e-01 -6.57524824e-01 -6.73732042e-01 1.11078644e+00
1.47081614e-01 3.59537840e-01 2.95045465e-01 -6.85537681e-02
-4.83110219e-01 -3.98794532e-01 -6.13873839e-01 8.04280221e-01
1.56936252e+00 -6.63796008e-01 -3.59903201e-02 3.31692219e-01
7.06359982e-01 -6.26973152e-01 -7.71360695e-01 1.48691386e-01
6.66142642e-01 -8.12061667e-01 8.98149848e-01 -3.21586996e-01
7.75391877e-01 -3.95267546e-01 -8.87369439e-02 -9.73594368e-01
-3.88950557e-01 -7.45201290e-01 -4.76315260e-01 7.56597817e-01
6.05454028e-01 -5.63268363e-01 9.71060276e-01 5.82745552e-01
-3.38725001e-01 -9.17153418e-01 -9.83975053e-01 -8.06786597e-01
-1.24377429e-01 -4.15481836e-01 2.20043585e-01 6.64558232e-01
-1.77646607e-01 4.00878668e-01 -7.57887363e-01 -2.14209594e-02
1.62372738e-01 -9.71948132e-02 7.72309005e-01 -4.84544247e-01
-6.58142924e-01 -2.03281283e-01 -4.04687762e-01 -1.65532672e+00
2.65114158e-01 -9.64053869e-01 1.86884850e-01 -1.42732263e+00
3.51782024e-01 -5.23233831e-01 -4.58513230e-01 1.20218635e+00
1.53876081e-01 5.41414738e-01 3.86108875e-01 4.23000604e-01
-9.91182804e-01 6.59482956e-01 1.26260543e+00 -1.84985474e-01
-1.90275058e-01 -3.59742463e-01 -4.29972231e-01 7.43453860e-01
9.87902880e-01 -6.36731267e-01 -5.23475289e-01 -8.19207072e-01
3.75455439e-01 1.20238625e-01 6.19428992e-01 -1.37281215e+00
3.39268804e-01 -1.19297333e-01 5.79956889e-01 -4.87480342e-01
5.81021309e-01 -5.47244251e-01 3.19016010e-01 6.27921939e-01
-2.98073262e-01 3.25655848e-01 1.64426282e-01 4.76036489e-01
-5.51735722e-02 -8.55401382e-02 6.77010834e-01 -1.48674041e-01
-1.14726555e+00 4.00022238e-01 -3.85845691e-01 -9.08665359e-02
9.88355160e-01 -8.94895196e-02 -7.35453308e-01 -1.92548662e-01
-7.55537450e-01 1.19744994e-01 6.60838425e-01 3.14591110e-01
6.06068552e-01 -1.19543970e+00 -3.18901151e-01 -1.46308869e-01
-1.90882087e-01 9.22792852e-02 4.61176097e-01 1.19365489e+00
-8.37741435e-01 2.25162312e-01 -3.38099390e-01 -5.96854329e-01
-8.39019001e-01 3.94875824e-01 5.30991852e-01 -3.56632739e-01
-8.30058634e-01 9.64267492e-01 2.18746677e-01 -1.60412043e-01
1.38756812e-01 -3.34147811e-01 3.03199828e-01 -1.28598303e-01
4.34739292e-01 2.77448386e-01 -8.88376907e-02 -4.16959226e-01
-4.24756825e-01 3.68396044e-01 -1.64402694e-01 -1.66085556e-01
1.56418872e+00 2.55979121e-01 -1.52241305e-01 2.32595652e-01
1.30293536e+00 -3.82002085e-01 -2.04907203e+00 -1.15438908e-01
-3.36562157e-01 -2.96609282e-01 1.63785502e-01 -7.98227966e-01
-1.53502214e+00 9.28908169e-01 5.62938750e-01 -5.91180623e-01
1.18919218e+00 -8.34206864e-02 9.37317669e-01 8.03129792e-01
3.35295022e-01 -1.02117038e+00 5.75635374e-01 6.66493833e-01
8.10439706e-01 -8.45230222e-01 2.10905187e-02 2.46923789e-02
-5.67756534e-01 1.07743990e+00 8.25183153e-01 -3.16138446e-01
2.08606198e-01 2.87491143e-01 -3.71718884e-01 -7.74753019e-02
-1.12181306e+00 3.55965346e-02 3.33735198e-02 1.15036696e-01
3.13574880e-01 -1.39919370e-01 2.22484916e-02 4.03634995e-01
8.24183375e-02 3.73077154e-01 4.76500660e-01 1.21592689e+00
-3.11776400e-01 -8.05149198e-01 2.26494923e-01 4.10579354e-01
-2.79481828e-01 -3.26830834e-01 -2.06480846e-01 6.60837829e-01
1.80261895e-01 5.87776542e-01 1.11604810e-01 -6.77688301e-01
1.76080599e-01 -1.29532680e-01 5.54786682e-01 -4.67705190e-01
-4.43645626e-01 -1.12211488e-01 1.52907878e-01 -1.18779850e+00
-2.76129305e-01 -5.65774918e-01 -1.48746276e+00 -6.98355019e-01
-4.13152017e-02 -4.00064349e-01 4.90137607e-01 8.71568680e-01
7.34590471e-01 6.42458200e-01 2.45656312e-01 -1.32534921e+00
-1.81420654e-01 -8.28655660e-01 -1.11367635e-01 6.75077066e-02
4.53263335e-02 -6.75496697e-01 -1.53090745e-01 1.51057616e-01] | [8.91839599609375, 0.5209043622016907] |
98d68d95-f49f-4afa-bdd0-e8247c1dd4e3 | impact-of-visual-assistance-for-automated | 2211.10539 | null | https://arxiv.org/abs/2211.10539v2 | https://arxiv.org/pdf/2211.10539v2.pdf | Impact of visual assistance for automated audio captioning | We study the impact of visual assistance for automated audio captioning. Utilizing multi-encoder transformer architectures, which have previously been employed to introduce vision-related information in the context of sound event detection, we analyze the usefulness of incorporating a variety of pretrained features. We perform experiments on a YouTube-based audiovisual data set and investigate the effect of applying the considered transfer learning technique in terms of a variety of captioning metrics. We find that only one of the considered kinds of pretrained features provides consistent improvements, while the others do not provide any noteworthy gains at all. Interestingly, the outcomes of prior research efforts indicate that the exact opposite is true in the case of sound event detection, leading us to conclude that the optimal choice of visual embeddings is strongly dependent on the task at hand. More specifically, visual features focusing on semantics appear appropriate in the context of automated audio captioning, while for sound event detection, time information seems to be more important. | ['Hugo Van hamme', 'Wim Boes'] | 2022-11-18 | null | null | null | null | ['sound-event-detection', 'audio-captioning'] | ['audio', 'audio'] | [ 2.35605955e-01 2.31970288e-02 1.54169887e-01 -2.08515614e-01
-6.89467609e-01 -5.27378023e-01 1.03103042e+00 7.30180085e-01
-8.66333723e-01 4.26238507e-01 6.90521836e-01 -1.02050833e-01
-2.40212932e-01 -5.09001493e-01 -6.26482964e-01 -6.34580433e-01
2.94421017e-02 1.85243994e-01 3.11084360e-01 -2.81765968e-01
3.33822042e-01 3.17371309e-01 -1.83126640e+00 2.03879938e-01
2.62861609e-01 1.05435395e+00 1.87110946e-01 4.42654043e-01
3.63630503e-02 6.06232762e-01 -5.77817440e-01 -4.73139703e-01
-4.79074381e-03 -2.55735874e-01 -7.59487212e-01 -1.40962442e-02
4.41374332e-01 -6.64691329e-02 -3.10697556e-01 6.90399885e-01
6.26341045e-01 7.19823465e-02 6.02017760e-01 -1.19024396e+00
-5.45477986e-01 5.41678190e-01 9.95410047e-03 5.88603675e-01
5.88672042e-01 2.12397695e-01 1.35153568e+00 -7.19233871e-01
5.60621381e-01 1.00202644e+00 5.26588261e-01 7.33536482e-02
-1.14456224e+00 -2.60979325e-01 6.21218495e-02 3.87589663e-01
-1.14904106e+00 -6.61805809e-01 8.30748260e-01 -5.92764735e-01
8.05727839e-01 1.44184366e-01 4.53712612e-01 1.22279525e+00
-3.22614200e-02 2.91494757e-01 1.00932670e+00 -5.69565296e-01
2.00232148e-01 5.71216285e-01 1.00634009e-01 1.78929910e-01
3.28628570e-01 9.54424404e-03 -6.58298314e-01 -7.04443380e-02
2.85781235e-01 -3.64445210e-01 -5.32110155e-01 -4.95570540e-01
-1.26894403e+00 7.86737561e-01 3.22097152e-01 8.45194221e-01
-4.36295331e-01 1.35106862e-01 9.32428718e-01 3.48353475e-01
5.22450864e-01 5.63121855e-01 -3.44834119e-01 -4.27096575e-01
-9.09353554e-01 8.80355835e-02 3.68353188e-01 2.68534511e-01
7.18122840e-01 1.15514733e-01 -6.28330529e-01 7.12955534e-01
1.46153390e-01 3.89497578e-02 4.48872030e-01 -7.63769746e-01
4.03853893e-01 4.63608086e-01 1.51532292e-01 -9.61910963e-01
-3.19844186e-01 -4.40267593e-01 -9.68304873e-02 2.63544247e-02
5.79127908e-01 -6.41816184e-02 -5.60319722e-01 1.73695159e+00
3.69397812e-02 1.18152522e-01 -5.03945500e-02 1.12797356e+00
7.20455587e-01 3.39934587e-01 3.63264829e-01 -1.20036595e-01
1.54372406e+00 -5.31489730e-01 -5.92742741e-01 -2.00295761e-01
3.54407132e-01 -6.90339863e-01 1.36065519e+00 8.90445709e-02
-7.59838521e-01 -6.64639771e-01 -8.72519970e-01 9.40416083e-02
-6.20267510e-01 6.52159080e-02 3.71509194e-01 5.14859974e-01
-1.10786259e+00 4.65837598e-01 -4.18645263e-01 -6.72164619e-01
-1.05567873e-01 -2.89900545e-02 -3.63464117e-01 1.67515650e-01
-1.23900604e+00 1.07081938e+00 3.22247446e-01 -4.84267026e-02
-7.80897975e-01 -4.68097150e-01 -7.02383518e-01 4.05330300e-01
1.85617372e-01 -5.90057850e-01 1.19211185e+00 -1.22598779e+00
-1.26299608e+00 8.09068501e-01 5.94182387e-02 -6.31595850e-01
5.60443878e-01 -9.79338661e-02 -3.91348690e-01 4.72174823e-01
-1.73410084e-02 7.27774799e-01 1.02384162e+00 -1.05350614e+00
-2.90673107e-01 -2.44663879e-01 3.60280335e-01 9.45748091e-02
-8.36996436e-01 2.30525956e-01 -1.92213565e-01 -6.41330898e-01
-6.82886004e-01 -7.44607568e-01 2.44951010e-01 -1.42811626e-01
1.89085558e-01 -3.75684857e-01 6.35619402e-01 -5.70333600e-01
1.23802352e+00 -2.33656549e+00 1.56437293e-01 -1.32794261e-01
-1.10704243e-01 1.98625952e-01 -6.32908568e-02 6.77679420e-01
-2.37445056e-01 8.45561549e-02 -8.83540884e-02 -3.70038092e-01
1.88811615e-01 -1.25930130e-01 -2.98041314e-01 3.57819617e-01
3.79405499e-01 7.02710807e-01 -7.59407818e-01 -4.63462323e-01
4.11201447e-01 8.45183551e-01 -5.36379933e-01 2.11458616e-02
-1.81229189e-01 3.28942597e-01 -3.14405143e-01 1.37616813e-01
-6.94196206e-03 -2.00335011e-01 -4.96277437e-02 -3.02140325e-01
-2.52593398e-01 3.80467117e-01 -7.06726849e-01 1.57942152e+00
-7.15021551e-01 1.09996152e+00 -1.25478163e-01 -8.56322765e-01
6.97378218e-01 6.90971971e-01 4.27038312e-01 -8.04731965e-01
1.81655750e-01 -7.27148503e-02 1.71384737e-01 -6.63071156e-01
5.90410531e-01 -1.55841976e-01 1.24703109e-01 2.04397708e-01
1.96370453e-01 2.85408109e-01 1.82549104e-01 3.63801606e-02
1.14879322e+00 1.45439342e-01 1.25678986e-01 -8.75308588e-02
5.49893200e-01 -3.46075483e-02 5.55269234e-02 4.26233649e-01
-3.40338737e-01 7.87312865e-01 3.90580833e-01 -1.41882539e-01
-8.75210226e-01 -8.14791143e-01 -1.90383524e-01 1.40622509e+00
-4.68353219e-02 -5.78207672e-01 -7.07623303e-01 -4.28902298e-01
-1.42027423e-01 8.18583608e-01 -7.39135146e-01 -2.83265024e-01
-2.36096770e-01 -4.03723300e-01 4.21324044e-01 2.91946411e-01
7.64357820e-02 -1.28863919e+00 -1.17524958e+00 1.47097021e-01
-2.87392288e-01 -1.36336553e+00 -2.79417187e-01 1.53056726e-01
-6.76237464e-01 -8.52556169e-01 -8.44550312e-01 -3.93414170e-01
8.32464248e-02 1.33609086e-01 1.10519052e+00 -7.01192617e-02
-1.16175242e-01 1.03505039e+00 -7.33351588e-01 -3.83255213e-01
-2.82063246e-01 7.35190809e-02 -1.95293233e-01 3.18672687e-01
3.87385070e-01 -5.93381047e-01 -6.53952837e-01 -4.74784039e-02
-9.01185274e-01 -4.70274508e-01 5.52960455e-01 4.52329040e-01
7.80173996e-03 -3.28344882e-01 6.88660204e-01 -4.28499639e-01
7.55064607e-01 -5.06817043e-01 -4.23804596e-02 1.89646736e-01
-4.93395656e-01 4.57977280e-02 4.85025615e-01 -4.67182070e-01
-7.64239490e-01 -1.67440265e-01 -3.97886559e-02 -6.55546844e-01
-5.84348023e-01 4.56867188e-01 8.17273557e-02 5.72518855e-02
5.68201780e-01 1.52686805e-01 -1.37787834e-01 -3.86118710e-01
2.25611940e-01 6.39343560e-01 2.36214697e-01 -3.42403263e-01
5.36919475e-01 3.79293233e-01 -2.35231921e-01 -1.02913249e+00
-4.42878336e-01 -5.07292628e-01 -3.29651356e-01 -3.56147349e-01
1.23722398e+00 -7.72658527e-01 -5.27654290e-01 -1.95321217e-01
-1.08381081e+00 -5.73041067e-02 -3.61990333e-01 5.12215376e-01
-7.72230744e-01 3.90012980e-01 -3.37148160e-01 -6.51964784e-01
-4.84853536e-02 -1.31217718e+00 1.22100508e+00 -1.10266104e-01
-4.67578411e-01 -8.38143468e-01 2.16391385e-01 3.50150824e-01
5.59553325e-01 1.49820939e-01 1.05020356e+00 -8.92958164e-01
-2.66390771e-01 -2.70282835e-01 -2.31535316e-01 1.32927448e-01
1.51979476e-01 -1.21838160e-01 -1.32605147e+00 -1.33659363e-01
-1.25050142e-01 -1.64858609e-01 9.78889763e-01 1.56823337e-01
7.98858702e-01 -1.10665187e-01 6.45542666e-02 -3.65950838e-02
1.35609221e+00 -4.97081093e-02 5.13821959e-01 5.89518428e-01
3.67251098e-01 7.26557374e-01 6.55218303e-01 5.41828990e-01
4.77464020e-01 1.10321033e+00 6.05069518e-01 7.54631758e-02
-1.93806157e-01 -2.60196239e-01 5.59162915e-01 2.41435766e-01
-7.03237206e-02 -2.32325628e-01 -7.98259437e-01 7.38821387e-01
-1.61450136e+00 -8.79735112e-01 3.25309038e-01 2.27880955e+00
5.47346711e-01 1.52915046e-01 5.49090207e-01 4.94115323e-01
6.61976278e-01 3.46917182e-01 7.82471225e-02 -6.76077247e-01
2.01809749e-01 1.95307985e-01 2.55726695e-01 1.87484741e-01
-9.60894704e-01 6.47273064e-01 5.79473639e+00 3.63368243e-01
-1.45110416e+00 2.01744094e-01 1.60770684e-01 -9.97329280e-02
-4.35377598e-01 5.82561120e-02 -2.25192845e-01 6.17366552e-01
1.30095685e+00 1.03183147e-02 1.85241312e-01 4.44580078e-01
4.51816171e-01 -5.16413003e-02 -1.25370097e+00 8.56477857e-01
1.72523737e-01 -8.62322509e-01 7.80424997e-02 -8.97571966e-02
-9.84900370e-02 -1.28876418e-01 1.20402120e-01 2.57837832e-01
-5.00219405e-01 -7.82877564e-01 1.04327941e+00 4.37029094e-01
3.95535171e-01 -5.32626271e-01 6.21549308e-01 1.03860805e-02
-9.07596827e-01 -9.91917402e-02 2.14290600e-02 -1.34027153e-01
1.90259576e-01 3.31919909e-01 -9.90997136e-01 4.42503184e-01
8.17529261e-01 4.48759079e-01 -8.90890718e-01 1.10728478e+00
-1.40842116e-02 7.79334843e-01 -1.16562046e-01 -1.54864299e-03
2.79919326e-01 1.58766180e-01 6.53477311e-01 1.47678387e+00
2.96413571e-01 -5.61161757e-01 -3.80381227e-01 5.29837072e-01
1.44958630e-01 4.33138043e-01 -8.39417040e-01 -2.05786571e-01
3.63626271e-01 1.18009305e+00 -7.87333906e-01 -6.86041117e-02
-7.19673455e-01 7.95744121e-01 1.70681059e-01 3.45443249e-01
-9.27851558e-01 -2.46116892e-01 5.58979452e-01 3.85441303e-01
7.58890092e-01 -1.69038266e-01 -1.90282357e-03 -8.43639851e-01
1.49149597e-01 -7.15311468e-01 3.68352652e-01 -9.42563415e-01
-8.50780249e-01 6.33216858e-01 1.30487993e-01 -1.29770803e+00
-3.60392421e-01 -5.13978302e-01 -6.91140950e-01 4.72258985e-01
-1.67145455e+00 -8.84189129e-01 -1.73084304e-01 4.92253333e-01
5.04430056e-01 1.29401103e-01 6.95866644e-01 5.66638649e-01
-2.84744173e-01 3.74326289e-01 -5.00383735e-01 -1.03146784e-01
9.07411397e-01 -1.06936109e+00 -5.55941239e-02 6.88083589e-01
6.66899323e-01 3.79073441e-01 1.28997076e+00 -2.03824148e-01
-1.15370941e+00 -8.11357319e-01 1.00116920e+00 -4.28892493e-01
6.70363307e-01 -8.04504156e-02 -8.30464184e-01 5.35124481e-01
6.27050161e-01 -8.24949220e-02 6.54249251e-01 1.73309401e-01
-4.52225268e-01 1.38514629e-03 -7.46899605e-01 3.47628444e-01
7.80350804e-01 -9.28471804e-01 -7.73138463e-01 -6.68452960e-03
7.34668732e-01 1.33844897e-01 -8.86903405e-01 3.69225413e-01
4.39437866e-01 -1.03558230e+00 1.02376747e+00 -4.90889102e-01
4.89454865e-01 -1.25273257e-01 -2.12306321e-01 -1.21822417e+00
-3.13542515e-01 -9.55146253e-02 1.12288922e-01 1.56095779e+00
4.75286275e-01 -5.05656421e-01 4.97463524e-01 2.41382718e-01
-1.09669410e-01 -3.12960535e-01 -1.07031906e+00 -5.88168144e-01
-1.61633804e-01 -5.23587823e-01 3.40913773e-01 9.46477771e-01
6.17561713e-02 5.38871706e-01 -4.13089365e-01 9.61830653e-03
8.43268633e-02 1.12291008e-01 6.34076178e-01 -1.26704049e+00
-3.43506962e-01 -5.44963717e-01 -6.89531744e-01 -3.82320166e-01
2.45041072e-01 -8.28502357e-01 -4.83493432e-02 -1.48760867e+00
-1.69858858e-01 1.68011729e-02 -6.60378993e-01 3.12482864e-01
7.39777554e-03 2.67198473e-01 5.73750615e-01 -3.11820060e-02
-6.31308675e-01 5.45264244e-01 8.30808461e-01 -8.27226695e-03
-4.15253118e-02 -1.20300919e-01 -7.14410603e-01 5.38284719e-01
7.15058565e-01 -3.07278693e-01 -3.36790591e-01 -5.53058445e-01
2.68587708e-01 2.87817642e-02 7.05793500e-01 -9.38764691e-01
4.48135063e-02 1.33515283e-01 4.16611023e-02 8.29073638e-02
6.25327885e-01 -1.07316279e+00 -1.90213025e-01 2.64138699e-01
-6.02955043e-01 1.99694619e-01 4.57431942e-01 7.27672279e-01
-5.92084348e-01 -3.15263212e-01 4.55624878e-01 8.62544104e-02
-8.06627631e-01 -1.84948117e-01 -5.28333187e-01 4.22546342e-02
8.40369999e-01 -3.85433912e-01 8.36488754e-02 -6.39881551e-01
-7.53393531e-01 -2.54687279e-01 3.21832269e-01 8.34611416e-01
2.58788586e-01 -1.12866557e+00 -5.70222735e-01 -1.90531045e-01
4.88854885e-01 -8.41090918e-01 -8.36549967e-04 9.20018077e-01
-2.50871964e-02 6.29523814e-01 -2.97547430e-01 -6.07094526e-01
-1.14496315e+00 5.79565227e-01 2.60194466e-02 3.51557769e-02
-4.87763375e-01 4.03236926e-01 1.12917416e-01 2.98616320e-01
5.26633918e-01 -5.55494368e-01 -5.40253341e-01 5.42359114e-01
1.85477644e-01 3.61633599e-01 4.13160861e-01 -7.90643215e-01
-4.71838921e-01 5.41437805e-01 2.02111647e-01 -1.89360097e-01
1.37047899e+00 -2.37956375e-01 3.85725439e-01 7.36508906e-01
1.12195373e+00 -3.10057811e-02 -9.35673475e-01 -1.27042532e-01
2.25068986e-01 -2.83112317e-01 2.01251239e-01 -6.20899677e-01
-8.84459853e-01 1.26850188e+00 8.15223992e-01 4.75005627e-01
1.17743087e+00 5.38850501e-02 3.42159361e-01 -6.45474195e-02
3.36773217e-01 -8.52530658e-01 1.29723057e-01 2.13429123e-01
8.76055598e-01 -1.19506896e+00 -2.71462679e-01 3.43923382e-02
-7.64176905e-01 1.09857345e+00 3.02379131e-01 -9.64627936e-02
4.25807804e-01 -1.55745819e-01 -7.09740371e-02 -1.90953821e-01
-8.23964596e-01 -5.46156943e-01 2.84236044e-01 4.17884678e-01
5.93316078e-01 -2.23734409e-01 -4.10563439e-01 3.04159552e-01
-8.51345584e-02 -4.79433015e-02 4.22083884e-01 5.77819586e-01
-2.18447253e-01 -9.87933099e-01 -3.25282395e-01 2.08606035e-01
-6.39564991e-01 4.25321329e-03 -5.09515345e-01 8.52187634e-01
5.37670329e-02 8.76049280e-01 2.65813649e-01 -1.84740722e-01
4.40478504e-01 3.44770670e-01 4.94254082e-01 -6.83562458e-01
-8.74787152e-01 -1.27044946e-01 1.50577292e-01 -2.98302412e-01
-6.13183677e-01 -6.91227674e-01 -8.73207688e-01 2.82889307e-01
-1.32735938e-01 2.98132896e-01 6.80089653e-01 1.04182816e+00
4.75231379e-01 5.65291643e-01 2.99154639e-01 -8.02344799e-01
-4.06696081e-01 -9.77804065e-01 -1.22259989e-01 5.37679017e-01
5.87315917e-01 -8.10129106e-01 -4.51842159e-01 -5.47265112e-02] | [15.180192947387695, 5.005707740783691] |
ae15daed-856b-49e3-ab0a-5e1a40c47713 | multi-domain-learning-for-accurate-and-few | null | null | http://openaccess.thecvf.com/content_CVPR_2020/html/Xiao_Multi-Domain_Learning_for_Accurate_and_Few-Shot_Color_Constancy_CVPR_2020_paper.html | http://openaccess.thecvf.com/content_CVPR_2020/papers/Xiao_Multi-Domain_Learning_for_Accurate_and_Few-Shot_Color_Constancy_CVPR_2020_paper.pdf | Multi-Domain Learning for Accurate and Few-Shot Color Constancy | Color constancy is an important process in camera pipeline to remove the color bias of captured image caused by scene illumination. Recently, significant improvements in color constancy accuracy have been achieved by using deep neural networks (DNNs). However, existing DNNbased color constancy methods learn distinct mappings for different cameras, which require a costly data acquisition process for each camera device. In this paper, we start a pioneer work to introduce multi-domain learning to color constancy area. For different camera devices, we train a branch of networks which share the same feature extractor and illuminant estimator, and only employ a camera-specific channel re-weighting module to adapt to the camera-specific characteristics. Such a multi-domain learning strategy enables us to take benefit from crossdevice training data. The proposed multi-domain learning color constancy method achieved state-of-the-art performance on three commonly used benchmark datasets. Furthermore, we also validate the proposed method in a fewshot color constancy setting. Given a new unseen device with limited number of training samples, our method is capable of delivering accurate color constancy by merely learning the camera-specific parameters from the few-shot dataset. Our project page is publicly available at https://github.com/msxiaojin/MDLCC.
| [' Lei Zhang', ' Shuhang Gu', 'Jin Xiao'] | 2020-06-01 | null | null | null | cvpr-2020-6 | ['color-constancy'] | ['computer-vision'] | [ 9.68774706e-02 -8.04562211e-01 -1.77434444e-01 -4.88870412e-01
-4.77887571e-01 -7.48872995e-01 3.72720391e-01 -3.90766203e-01
-5.01387417e-01 4.83031273e-01 -3.11034411e-01 -8.91576633e-02
3.61755610e-01 -4.50853854e-01 -8.39093089e-01 -7.78411925e-01
5.73245525e-01 -2.14532882e-01 2.50072479e-01 -1.51476651e-01
2.81810999e-01 3.11714649e-01 -1.35815811e+00 6.96887672e-02
9.08631742e-01 1.23494518e+00 3.70449245e-01 9.11891222e-01
-1.62808895e-01 6.93821371e-01 -3.49607646e-01 -3.40354890e-01
6.46010339e-01 -5.78859270e-01 -1.82283238e-01 1.02337182e-01
8.44738722e-01 -6.22121990e-01 -3.46662730e-01 1.28091335e+00
6.76528215e-01 -3.22082005e-02 3.50358069e-01 -1.44560468e+00
-1.13554907e+00 1.10175036e-01 -7.20220566e-01 1.94385514e-01
-2.17112154e-01 4.21396405e-01 7.49123096e-01 -7.30183125e-01
2.22566113e-01 7.05761492e-01 5.79807878e-01 9.96507347e-01
-1.07378352e+00 -1.12643659e+00 1.00741714e-01 2.34278411e-01
-1.07217240e+00 -5.25265157e-01 1.06065488e+00 -1.55726612e-01
5.65149903e-01 6.81529343e-02 6.69047892e-01 1.16007173e+00
2.60777652e-01 5.44146061e-01 1.44171262e+00 -2.40388334e-01
2.72545308e-01 2.12277025e-01 -8.36031213e-02 6.86635852e-01
4.16655242e-01 9.24693123e-02 -4.84098345e-01 4.83722568e-01
1.16958940e+00 2.83053726e-01 -3.95282000e-01 -5.14333725e-01
-9.49172854e-01 4.53618050e-01 5.76714337e-01 1.04487985e-01
2.29698062e-01 5.28603554e-01 4.46993470e-01 4.04957950e-01
3.39011759e-01 3.43538612e-01 -7.36540139e-01 -2.76110053e-01
-6.37829900e-01 -2.18531445e-01 4.24080759e-01 1.26854241e+00
9.03987944e-01 3.38968486e-01 -9.86285694e-03 8.41349900e-01
1.71576999e-02 6.61552727e-01 6.78238928e-01 -9.07490969e-01
4.32924122e-01 2.85762846e-01 9.11426768e-02 -7.01372206e-01
-3.81918460e-01 -2.02733919e-01 -1.01829827e+00 5.52362919e-01
3.45793396e-01 -2.30765507e-01 -1.11887944e+00 1.69026279e+00
1.32205755e-01 4.50841993e-01 6.26692697e-02 1.15667760e+00
7.30329156e-01 5.15766561e-01 -1.66256592e-01 -8.55220575e-03
1.09825909e+00 -1.23116863e+00 -5.51730514e-01 -2.81464636e-01
-4.86853998e-03 -9.26970303e-01 1.40541458e+00 6.47194147e-01
-9.01921570e-01 -8.51620734e-01 -1.41054702e+00 -3.00338894e-01
-4.56387579e-01 2.80130208e-01 8.74289989e-01 1.07146013e+00
-9.64000285e-01 4.78265554e-01 -6.77308083e-01 -2.81417668e-01
5.20218968e-01 1.48512676e-01 -2.38026813e-01 -3.93583447e-01
-9.06633377e-01 5.04901111e-01 2.45471016e-01 1.13868706e-01
-1.07191575e+00 -7.09107220e-01 -5.33611953e-01 -2.24771664e-01
2.95322806e-01 -4.73417372e-01 1.19823182e+00 -1.57187021e+00
-2.01501703e+00 6.94215655e-01 2.43919834e-01 4.06250432e-02
4.83604759e-01 -3.94895881e-01 -6.03372931e-01 -3.87811512e-02
-1.64807156e-01 3.80296022e-01 1.18176734e+00 -1.44518018e+00
-6.61244392e-01 -1.81667387e-01 3.53096873e-02 1.19892679e-01
-5.71958601e-01 -1.83176234e-01 -9.15261745e-01 -4.74556297e-01
-3.07482034e-02 -8.49178493e-01 2.10657030e-01 4.69645381e-01
-2.21614137e-01 2.21479222e-01 7.47660398e-01 -4.38003302e-01
8.31838250e-01 -2.23293853e+00 -1.89673796e-01 -2.85209328e-01
2.43197992e-01 3.79275352e-01 -4.32448834e-01 -7.48250401e-03
-1.80563405e-01 -1.72215015e-01 -4.04789485e-02 -4.21179295e-01
-1.26457736e-01 5.69467666e-03 1.21612847e-01 7.21713185e-01
2.33033359e-01 6.97252572e-01 -8.74616504e-01 -3.54751259e-01
4.74242151e-01 3.92877370e-01 -5.10294378e-01 5.25795341e-01
-1.40691668e-01 4.29625273e-01 -8.68707895e-02 8.31069589e-01
1.32649791e+00 -1.23427317e-01 8.42961296e-03 -6.46400094e-01
-3.18252355e-01 -4.70581502e-01 -1.13664448e+00 2.17621255e+00
-7.99843550e-01 8.07109773e-01 -3.87992375e-02 -8.08113337e-01
8.29264343e-01 -8.11440721e-02 4.18579727e-01 -1.04235518e+00
4.71161216e-01 2.39905462e-01 -1.42610326e-01 -5.06368160e-01
4.85011876e-01 -9.67581496e-02 -2.41662208e-02 3.40878725e-01
1.95483327e-01 -2.88995028e-01 -2.01346308e-01 -1.49075687e-01
6.47278666e-01 2.57833213e-01 1.45865500e-01 4.93078008e-02
2.38035247e-01 -2.84837812e-01 6.79615974e-01 5.92001021e-01
-5.77320635e-01 9.69682038e-01 1.29934534e-01 -4.72791314e-01
-1.23415363e+00 -1.28120208e+00 -6.36265278e-02 1.19756508e+00
6.52099133e-01 9.61089358e-02 -5.25401354e-01 -2.96734184e-01
-2.38857776e-01 3.67554635e-01 -6.98620081e-01 -2.67361939e-01
-3.78582388e-01 -7.58063614e-01 4.02913272e-01 5.58614671e-01
1.04386306e+00 -4.54133511e-01 -7.62206793e-01 -1.55284896e-01
2.49646261e-01 -1.16303968e+00 -7.62101531e-01 5.38533390e-01
-6.27536774e-01 -1.16337490e+00 -7.94395208e-01 -8.16305578e-01
4.98349726e-01 7.22936988e-01 9.55312014e-01 -9.29595381e-02
-4.37614590e-01 4.11448121e-01 -3.76175851e-01 -3.22244853e-01
-1.22950440e-02 1.90981710e-03 -7.61181582e-04 4.82120551e-02
2.79328048e-01 -2.79231101e-01 -1.00096262e+00 8.88653100e-02
-1.02839029e+00 2.86874741e-01 5.42475581e-01 9.12097514e-01
4.61574554e-01 2.63011106e-03 3.02528560e-01 -8.06021273e-01
5.15975356e-01 -2.58270890e-01 -8.81147444e-01 3.60986531e-01
-7.43018329e-01 6.44345507e-02 8.82095098e-01 -5.33954680e-01
-1.31485760e+00 2.98271030e-01 2.35811040e-01 -6.05457783e-01
-6.00117482e-02 -2.57438481e-01 -3.35078239e-01 -2.97221065e-01
6.64291859e-01 1.94227561e-01 -1.84613749e-01 -2.18264759e-01
7.19187140e-01 6.92396700e-01 8.27275753e-01 -5.34205556e-01
9.34886932e-01 5.37424862e-01 -9.76889953e-02 -3.41888130e-01
-7.48899817e-01 -4.89139438e-01 -6.61582530e-01 -4.03120250e-01
9.76806879e-01 -1.22134531e+00 -6.79525793e-01 1.03743291e+00
-9.68045473e-01 -6.25887811e-01 1.27437234e-01 2.63012677e-01
-2.17062473e-01 2.18737692e-01 -4.07964885e-01 -5.84867537e-01
-3.53254586e-01 -9.94542003e-01 8.92985225e-01 8.05871964e-01
6.50216758e-01 -9.54920292e-01 7.66016394e-02 -2.35488135e-02
6.77677989e-01 2.42537543e-01 6.02214873e-01 5.80603741e-02
-7.01862633e-01 -1.74441636e-01 -7.71775424e-01 6.92174375e-01
7.16082096e-01 1.08756550e-01 -1.33213854e+00 -4.04626369e-01
-4.88499738e-02 -4.62145150e-01 9.69930410e-01 2.88113296e-01
1.40955985e+00 1.43167824e-01 1.71693519e-01 1.19521713e+00
2.07232618e+00 1.30057663e-01 4.78772014e-01 5.12671709e-01
1.15756381e+00 3.10162045e-02 3.77045840e-01 5.57401836e-01
3.06449205e-01 4.87679094e-01 6.92344248e-01 -4.92206275e-01
-3.80955428e-01 -1.34345338e-01 2.87234455e-01 6.24966681e-01
-8.00297558e-02 -1.89050794e-01 -4.59536761e-01 3.68245006e-01
-1.63194215e+00 -7.16188371e-01 -4.54542600e-03 2.23298430e+00
9.91693616e-01 1.58146936e-02 1.42726183e-01 -2.34539568e-01
7.46460557e-01 8.42980072e-02 -1.10827088e+00 -2.86640584e-01
-3.46287876e-01 2.52826750e-01 1.05805612e+00 1.92509502e-01
-1.01331651e+00 9.76687312e-01 5.44379377e+00 5.61928451e-01
-1.60870409e+00 2.00222373e-01 7.43376672e-01 -3.64105225e-01
-2.36170173e-01 -2.11456254e-01 -3.48796546e-01 5.73997021e-01
6.57969773e-01 -1.39643103e-02 8.88297975e-01 9.06767964e-01
8.06722343e-02 -2.24841788e-01 -1.07554042e+00 1.58018172e+00
4.01980877e-01 -1.17696321e+00 -3.56992811e-01 -5.17387152e-01
1.12421560e+00 1.18003890e-01 6.04077339e-01 8.45289975e-02
1.43395782e-01 -7.50321925e-01 6.26799464e-01 5.15062571e-01
1.24075091e+00 -5.82173169e-01 5.07843673e-01 -2.33570889e-01
-1.22520900e+00 -2.24485457e-01 -7.03810990e-01 6.85714334e-02
-1.84120014e-01 5.07264495e-01 -4.76344347e-01 4.10883784e-01
9.42912400e-01 9.15395021e-01 -8.14070940e-01 1.05158544e+00
-1.10139757e-01 2.97870189e-01 9.31614190e-02 -6.05703592e-02
-7.27582315e-04 -1.91119790e-01 -1.53493196e-01 1.16702652e+00
3.51624072e-01 -1.28313214e-01 -2.95980006e-01 8.03599358e-01
-3.12823683e-01 -3.05067718e-01 -2.02159882e-01 2.14746699e-01
4.09474492e-01 1.60504353e+00 -5.98482966e-01 -1.29749045e-01
-7.33409226e-01 1.75904322e+00 2.84471959e-01 4.50787872e-01
-1.15645206e+00 -5.22139609e-01 7.95574129e-01 -3.91543597e-01
2.59800404e-01 -2.40193844e-01 -4.18453932e-01 -1.37246871e+00
-4.55603190e-02 -6.79628909e-01 7.03271292e-03 -1.03083050e+00
-1.42895198e+00 5.01276612e-01 -3.37788075e-01 -1.60451865e+00
3.82460922e-01 -1.10340321e+00 -7.09327161e-01 7.94651449e-01
-1.97568500e+00 -1.40130246e+00 -9.90701258e-01 8.85571837e-01
5.47146499e-01 -2.94978410e-01 5.14696538e-01 4.72112924e-01
-7.99858749e-01 7.91862130e-01 5.16800880e-01 8.22273344e-02
1.38222444e+00 -1.45304275e+00 3.78071278e-01 1.04588127e+00
-1.21480584e-01 4.45571989e-01 6.10172808e-01 -1.56143859e-01
-1.75415516e+00 -1.23476541e+00 -1.08192436e-01 -3.24290156e-01
6.34887457e-01 -6.20357513e-01 -5.77179849e-01 3.64024848e-01
4.46111590e-01 4.41962063e-01 5.34469724e-01 -1.48105428e-01
-6.48874700e-01 -7.80554354e-01 -9.91715372e-01 5.00294268e-01
9.01297510e-01 -6.37962103e-01 -4.35803551e-03 1.83433339e-01
7.12998569e-01 -6.17767453e-01 -4.80512708e-01 -1.94710508e-01
7.91778326e-01 -1.22403109e+00 6.99454248e-01 -3.41096163e-01
5.94418228e-01 -4.80115920e-01 -2.66653210e-01 -1.45330536e+00
-3.22942883e-01 -4.61827517e-01 2.48142093e-01 1.27809560e+00
1.65886685e-01 -4.82576847e-01 6.86119854e-01 8.27686071e-01
-2.62982845e-01 -3.54521632e-01 -7.61358321e-01 -7.67766595e-01
1.56962782e-01 -3.86905134e-01 5.95010877e-01 8.34305465e-01
-5.00513077e-01 1.44692779e-01 -9.01712477e-01 2.09503606e-01
6.77414179e-01 2.18199924e-01 9.39139664e-01 -8.64260793e-01
-4.91581261e-01 -2.98082292e-01 -1.65789023e-01 -9.31080222e-01
-3.15802842e-02 -4.78725731e-01 2.49386579e-01 -1.23199236e+00
4.90868568e-01 -4.11673546e-01 -6.21035814e-01 2.89746404e-01
-2.97409415e-01 5.10981977e-01 2.85908937e-01 -3.24400887e-02
-8.26579928e-01 4.56015646e-01 1.39233363e+00 -2.93486834e-01
-2.07022533e-01 -1.43666908e-01 -8.92449737e-01 3.85642439e-01
1.05623460e+00 -1.27746001e-01 -6.14102542e-01 -9.96971130e-01
1.92029327e-01 -4.98757988e-01 4.38034177e-01 -1.17351842e+00
3.15250218e-01 -4.59469944e-01 8.20303261e-01 -5.04143052e-02
2.76878685e-01 -1.10396373e+00 4.28391173e-02 3.13893527e-01
4.28760201e-02 1.05642229e-01 4.19046432e-01 5.20039916e-01
5.30309938e-02 -6.69755042e-02 1.09846020e+00 -9.39802304e-02
-1.30535293e+00 5.04837990e-01 1.37934774e-01 -3.94360274e-02
9.19612706e-01 -3.34544957e-01 -7.25683212e-01 -1.28394678e-01
4.25765067e-02 -2.11847782e-01 7.56400645e-01 4.36344028e-01
6.06604099e-01 -1.49054253e+00 -3.22065204e-01 2.18964338e-01
5.17787993e-01 -8.08799937e-02 6.35690689e-01 3.74217004e-01
-6.54911935e-01 -2.43581589e-02 -7.13213265e-01 -4.85012233e-01
-9.78708088e-01 6.90536082e-01 5.79637647e-01 4.81841356e-01
-2.60800809e-01 1.06066167e+00 1.62401035e-01 -9.38572362e-02
-4.99581359e-03 -6.78122461e-01 3.73286337e-01 -3.22500139e-01
4.52558219e-01 2.24005744e-01 3.63837481e-02 -2.12435514e-01
-2.65965939e-01 8.01011741e-01 1.64067354e-02 1.60574079e-01
1.30875874e+00 -3.64935517e-01 1.63628131e-01 5.96217096e-01
1.43382859e+00 -1.48287669e-01 -2.01022577e+00 -3.83018740e-02
-5.43010712e-01 -7.51133978e-01 2.55627543e-01 -9.26055372e-01
-1.56518757e+00 8.33580136e-01 1.24466968e+00 -1.65687338e-01
1.70139027e+00 -2.87046790e-01 7.00169265e-01 1.70668885e-01
1.52079508e-01 -1.39423978e+00 5.45814693e-01 1.73278213e-01
4.74588186e-01 -1.88083482e+00 1.03590973e-01 -1.12450838e-01
-8.52921307e-01 1.28972220e+00 1.07402039e+00 -2.34098926e-01
4.40861642e-01 1.60557762e-01 4.50561881e-01 1.02765746e-01
-4.21622247e-01 -1.06191717e-01 4.33881348e-03 8.73509109e-01
5.33740282e-01 1.09222047e-01 2.13757813e-01 5.19111693e-01
1.47185951e-01 1.14933746e-02 6.88572109e-01 6.29649162e-01
-2.97365278e-01 -1.11372340e+00 -1.38263881e-01 1.97644681e-01
-1.13725401e-01 -3.01384807e-01 -1.75236523e-01 7.27162242e-01
3.56291801e-01 8.23601544e-01 8.18857104e-02 -5.40074825e-01
2.69708157e-01 -4.23606575e-01 6.78367734e-01 -3.47709358e-01
-2.26570457e-01 -6.32409379e-02 -4.13103163e-01 -6.72559917e-01
-5.79932451e-01 -4.47140008e-01 -9.30008590e-01 -3.92854959e-01
-2.10690930e-01 -5.31554759e-01 8.77021432e-01 5.01079977e-01
4.44513746e-02 6.52647138e-01 1.04088604e+00 -8.54664564e-01
-2.02013269e-01 -7.73333669e-01 -7.84398913e-01 5.22808135e-01
7.45740652e-01 -5.23460746e-01 -2.59171814e-01 3.75137329e-01] | [10.502601623535156, -2.5569045543670654] |
ba096bb5-2462-4036-9c6c-73e9ebdae712 | cbnet-a-plug-and-play-network-for | 2212.0234 | null | https://arxiv.org/abs/2212.02340v2 | https://arxiv.org/pdf/2212.02340v2.pdf | CBNet: A Plug-and-Play Network for Segmentation-based Scene Text Detection | Recently, segmentation-based methods are quite popular in scene text detection, which mainly contain two steps: text kernel segmentation and expansion. However, the segmentation process only considers each pixel independently, and the expansion process is difficult to achieve a favorable accuracy-speed trade-off. In this paper, we propose a Context-aware and Boundary-guided Network (CBN) to tackle these problems. In CBN, a basic text detector is firstly used to predict initial segmentation results. Then, we propose a context-aware module to enhance text kernel feature representations, which considers both global and local contexts. Finally, we introduce a boundary-guided module to expand enhanced text kernels adaptively with only the pixels on the contours, which not only obtains accurate text boundaries but also keeps high speed, especially on high-resolution output maps. In particular, with a lightweight backbone, the basic detector equipped with our proposed CBN achieves state-of-the-art results on several popular benchmarks, and our proposed CBN can be plugged into several segmentation-based methods. Code will be available on https://github.com/XiiZhao/cbn.pytorch. | ['Jingping Shao', 'Jinghe Hu', 'Zhangang Lin', 'Xin Zhu', 'Jingjing Lv', 'Zheng Zhang', 'Wei Feng', 'Xi Zhao'] | 2022-12-05 | null | null | null | null | ['scene-text-detection'] | ['computer-vision'] | [ 1.40469655e-01 -4.60128725e-01 -1.03880875e-01 -2.38176182e-01
-4.33137923e-01 -1.18733704e-01 2.51342058e-01 1.42214894e-01
-5.37240684e-01 1.01535683e-02 -3.97834219e-02 -1.44250467e-01
3.67672443e-01 -9.90426958e-01 -4.07197773e-01 -6.51988864e-01
6.55723870e-01 2.05555409e-01 1.00424063e+00 8.10928717e-02
3.00286889e-01 3.03266376e-01 -1.36017334e+00 1.38662045e-03
1.17080116e+00 1.03375328e+00 4.97061223e-01 4.66409504e-01
-5.35893381e-01 4.85875100e-01 -1.26317799e-01 -4.59917299e-02
1.03139430e-01 -3.15517962e-01 -5.29002547e-01 2.15541229e-01
2.14370072e-01 -5.65340817e-01 -3.79961967e-01 1.28483176e+00
5.43455422e-01 5.78620173e-02 5.06186962e-01 -1.00596404e+00
-4.69954461e-01 7.09032834e-01 -9.27411616e-01 -2.64499802e-02
-9.43633839e-02 2.06642538e-01 8.51605177e-01 -9.59368527e-01
3.39267552e-01 1.05357659e+00 5.25538862e-01 3.79652172e-01
-9.07249510e-01 -7.11803675e-01 4.21601236e-01 1.57273337e-01
-1.50237978e+00 -2.56962210e-01 8.67444038e-01 -2.96952695e-01
4.58084941e-01 2.17024565e-01 7.21254647e-01 5.75456202e-01
-3.93984504e-02 1.40976822e+00 7.18336582e-01 -3.18572551e-01
6.48800433e-02 5.14588803e-02 2.97827333e-01 6.42362654e-01
1.02449030e-01 -4.55746353e-01 -2.40297481e-01 1.79605767e-01
1.01583815e+00 2.98437476e-01 -4.14876997e-01 -1.86520427e-01
-1.24908042e+00 6.19554996e-01 4.91963118e-01 4.22242820e-01
-1.54347509e-01 7.06844106e-02 5.30993164e-01 -2.38590717e-01
4.61429447e-01 -1.06217317e-01 -3.14946264e-01 4.31820489e-02
-1.19729578e+00 7.51689598e-02 5.10443270e-01 8.06616306e-01
9.94394898e-01 -2.25785196e-01 -4.11236703e-01 1.08417952e+00
3.26181769e-01 5.14444053e-01 5.43867290e-01 -4.80490535e-01
5.52400589e-01 9.02171433e-01 -1.26945049e-01 -1.10267365e+00
-5.47600269e-01 -1.23008825e-01 -1.11228466e+00 -1.86722819e-02
3.44087929e-01 -1.55577496e-01 -1.08106649e+00 1.19735646e+00
6.54377043e-01 2.35112265e-01 -3.31050277e-01 1.02678931e+00
9.05588508e-01 9.90206659e-01 6.73433989e-02 -1.67285040e-01
1.41565752e+00 -1.42268538e+00 -7.06349134e-01 -2.52961427e-01
7.23066807e-01 -9.05583084e-01 1.42679572e+00 3.52172971e-01
-9.54107463e-01 -5.18042505e-01 -8.52821290e-01 -3.47567767e-01
-1.98995024e-01 6.02501988e-01 2.66809911e-01 4.12050158e-01
-9.99888957e-01 3.78791332e-01 -9.99749184e-01 -3.98517549e-01
4.25860614e-01 2.71114290e-01 1.52302265e-01 -4.55962606e-02
-9.89349544e-01 2.42148429e-01 7.14281619e-01 2.49605864e-01
-3.09559822e-01 -3.76487970e-01 -7.34096229e-01 1.80644274e-01
7.67773926e-01 -4.36607033e-01 1.21348512e+00 -6.33234859e-01
-1.55084383e+00 5.43753982e-01 -2.15578496e-01 -1.86233167e-02
7.57372379e-01 -2.15267137e-01 -2.34916627e-01 3.04964721e-01
1.35909587e-01 6.66639924e-01 7.91678727e-01 -9.16784108e-01
-8.57080638e-01 -2.25788593e-01 -2.73036271e-01 4.74796057e-01
-7.40304589e-01 3.41018364e-02 -1.29223013e+00 -8.18611085e-01
3.33132684e-01 -4.58650351e-01 -2.95722395e-01 3.39068383e-01
-6.59100473e-01 -3.88705403e-01 1.11010361e+00 -7.66944289e-01
1.58345783e+00 -2.18538094e+00 -1.47791252e-01 9.60918609e-03
2.85397828e-01 4.78215307e-01 9.33599100e-02 1.41946301e-01
3.19571614e-01 1.54996186e-01 -3.98881763e-01 -5.26244283e-01
6.34379759e-02 -3.51244062e-01 -8.28611255e-02 4.09272015e-01
-3.82551178e-02 9.22687054e-01 -5.07190466e-01 -1.00823963e+00
6.14499211e-01 3.70450199e-01 -3.15888584e-01 6.93192184e-02
-4.53742743e-01 1.50863916e-01 -8.22486162e-01 7.96377897e-01
1.12205291e+00 -3.57970029e-01 -1.77859381e-01 -3.01387757e-01
-4.68865573e-01 -1.78898677e-01 -1.40615368e+00 1.57522202e+00
-2.55440146e-01 4.21365678e-01 2.96609521e-01 -7.78613269e-01
9.75112081e-01 -8.56239721e-02 3.25913876e-01 -6.81861997e-01
4.38664287e-01 2.16244385e-01 -4.21584129e-01 -2.86156863e-01
6.29475892e-01 3.28150094e-01 1.70992717e-01 5.01585960e-01
-4.73421365e-01 -1.61454845e-02 2.42354691e-01 1.94274500e-01
8.00670266e-01 2.41759896e-01 1.88058510e-01 -2.68762201e-01
9.50438559e-01 8.46593827e-02 7.21598089e-01 5.01312733e-01
-2.25780323e-01 7.20659852e-01 5.10166466e-01 -3.73269230e-01
-8.87886882e-01 -6.24617636e-01 -3.57692689e-01 1.10393906e+00
7.68548906e-01 -5.20701647e-01 -1.08204770e+00 -6.78414941e-01
-1.77035108e-01 4.68324423e-01 -3.93439233e-01 8.95925239e-02
-5.99493980e-01 -7.90098965e-01 4.67816383e-01 6.91561759e-01
1.19712210e+00 -1.21338379e+00 -3.85343283e-01 1.93927914e-01
-1.45832732e-01 -1.13418996e+00 -9.09714699e-01 -8.81079808e-02
-9.28574502e-01 -7.17630982e-01 -1.05087495e+00 -9.97800291e-01
6.66909635e-01 4.22728628e-01 4.58766818e-01 3.78289312e-01
-1.80492535e-01 -3.34461704e-02 -4.81122583e-01 -4.57072258e-02
-2.59269103e-02 3.58209372e-01 -3.84576082e-01 1.29210234e-01
2.41246045e-01 -3.41443986e-01 -8.63604724e-01 5.45636117e-01
-1.13472974e+00 5.20650148e-01 7.29156792e-01 6.21687174e-01
7.25836515e-01 1.60844654e-01 1.51331991e-01 -7.61768222e-01
4.18344319e-01 -2.43387725e-02 -7.65118062e-01 3.45878065e-01
-5.05059242e-01 -3.40965003e-01 9.07158792e-01 -3.97789121e-01
-1.19275236e+00 3.32051963e-01 -4.18242872e-01 -3.92035514e-01
-3.59165370e-01 2.88242340e-01 -4.80866641e-01 -3.67491171e-02
2.47453734e-01 6.13361597e-01 -2.46159688e-01 -6.86713099e-01
2.06330344e-01 9.76028204e-01 4.45710450e-01 -5.10082006e-01
7.04672575e-01 5.38930714e-01 -3.45428586e-01 -8.96101117e-01
-6.35824502e-01 -7.43457377e-01 -7.80706286e-01 5.30559290e-03
9.25928950e-01 -8.24555278e-01 -6.00482225e-01 1.13756526e+00
-1.03933609e+00 -7.86399662e-01 4.66642305e-02 2.55273134e-01
-3.39368790e-01 7.81980813e-01 -9.84178185e-01 -5.06128848e-01
-6.79471076e-01 -1.20607388e+00 1.29093766e+00 7.60499179e-01
4.46078300e-01 -9.52794969e-01 -1.92603633e-01 1.84522972e-01
2.94080794e-01 -1.06363088e-01 6.48272753e-01 -5.25280297e-01
-6.67337894e-01 -8.15954357e-02 -8.81926894e-01 2.52012730e-01
1.59974486e-01 1.06609978e-01 -8.23881924e-01 -1.55038744e-01
-2.03159466e-01 -1.40216574e-01 1.10028827e+00 4.51647788e-01
1.41495252e+00 3.16130146e-02 -5.35356939e-01 9.08847511e-01
1.43462813e+00 2.53516715e-02 4.87513632e-01 4.40065593e-01
1.03958154e+00 3.27052385e-01 7.62177706e-01 4.99159902e-01
3.77320111e-01 5.50638258e-01 1.82044655e-01 -4.26790386e-01
-1.73429921e-02 -1.50314480e-01 1.46287218e-01 8.09247911e-01
2.46595442e-01 -3.63271683e-01 -1.06137109e+00 4.35122341e-01
-2.09540606e+00 -3.87515038e-01 -3.31824780e-01 1.96968532e+00
8.18916142e-01 2.35936657e-01 2.05461502e-01 -1.94785856e-02
1.22566855e+00 3.22958350e-01 -9.01493371e-01 9.24293995e-02
3.43126841e-02 -7.70778628e-03 3.82606030e-01 2.48987630e-01
-1.36217344e+00 1.33410788e+00 4.76982832e+00 1.45746469e+00
-1.15205598e+00 3.66411917e-02 7.72136271e-01 1.67842731e-01
5.63528575e-02 -4.11506258e-02 -1.05519331e+00 5.29061735e-01
2.17475280e-01 -2.05530345e-01 1.02708288e-01 9.70574617e-01
4.64530945e-01 -2.66489953e-01 -6.02473795e-01 9.54657733e-01
-7.86280856e-02 -1.29044819e+00 4.01925184e-02 -1.09627523e-01
5.86045206e-01 -8.69439095e-02 -1.86553627e-01 1.20072708e-01
-5.55013455e-02 -6.33169115e-01 6.11637771e-01 2.74323076e-01
8.84736419e-01 -8.14521432e-01 6.25209033e-01 5.48758388e-01
-1.77561569e+00 1.61343172e-01 -6.38156652e-01 3.12895149e-01
1.00533672e-01 9.00658846e-01 -3.07414204e-01 5.35284579e-01
7.55300045e-01 8.81189525e-01 -6.38200641e-01 1.22810507e+00
-3.16127896e-01 6.38787985e-01 -4.80054349e-01 -2.69147694e-01
3.13835174e-01 -3.65036100e-01 2.88453013e-01 1.45862126e+00
2.01062217e-01 8.91623199e-02 6.98419273e-01 9.41987514e-01
-1.09995358e-01 6.90008461e-01 5.47961965e-02 1.73564687e-01
3.57576698e-01 1.67402065e+00 -1.43130589e+00 -5.42175233e-01
-3.88491988e-01 1.15072572e+00 2.57346720e-01 2.43348956e-01
-8.56482446e-01 -8.63297641e-01 2.25295559e-01 1.31534651e-01
3.64189535e-01 -1.00553952e-01 -2.78388172e-01 -1.36673152e+00
2.13761315e-01 -6.05495036e-01 2.44973198e-01 -7.43053973e-01
-1.00188315e+00 4.47439015e-01 -2.46756539e-01 -1.12308764e+00
5.79413176e-01 -6.17424369e-01 -9.40539956e-01 8.78675759e-01
-1.53196692e+00 -1.25268757e+00 -7.40296423e-01 5.49489081e-01
8.55449796e-01 3.62438202e-01 1.67917848e-01 3.48768741e-01
-1.16050994e+00 5.86863458e-01 2.05042988e-01 5.10689020e-01
8.01868498e-01 -1.09301126e+00 5.68355680e-01 1.01381779e+00
-2.74076939e-01 3.39838386e-01 1.19463064e-01 -8.67814898e-01
-9.86626804e-01 -1.34777296e+00 2.54785269e-01 2.17400432e-01
5.89817762e-01 -4.35236782e-01 -1.22100043e+00 4.49959189e-01
3.13851349e-02 6.62066564e-02 7.14004263e-02 -2.83788532e-01
-2.27496587e-02 -3.73654440e-02 -8.21316242e-01 8.34075391e-01
8.78575921e-01 -1.71137258e-01 -1.93414420e-01 4.17733550e-01
8.74747336e-01 -6.62074268e-01 -4.93384421e-01 3.78547281e-01
3.21625084e-01 -1.10565257e+00 6.38771772e-01 2.42807880e-01
3.20658058e-01 -5.23155272e-01 2.36138776e-01 -7.47993171e-01
-3.09967428e-01 -4.83582318e-01 2.59272847e-02 1.40944684e+00
1.57128289e-01 -7.78787196e-01 1.04843855e+00 2.37799972e-01
-1.40546113e-01 -9.40617502e-01 -5.61360359e-01 -5.47137320e-01
1.02511264e-01 -4.87653464e-01 6.25858545e-01 7.25622714e-01
-2.24537596e-01 1.94769815e-01 -2.04064921e-01 1.31986856e-01
4.47565138e-01 2.61019975e-01 7.71644115e-01 -1.07555258e+00
-7.02299997e-02 -7.69843757e-01 -1.80825844e-01 -1.66558671e+00
-1.14287846e-01 -7.05171227e-01 3.26457977e-01 -1.73873842e+00
4.62673873e-01 -5.91079056e-01 -5.66619262e-02 5.54697931e-01
-6.04468405e-01 1.18982539e-01 2.54910767e-01 3.75840008e-01
-8.18527460e-01 6.43833816e-01 1.44401968e+00 -1.08517095e-01
-5.28813899e-01 1.12056388e-02 -4.59951758e-01 1.03413463e+00
1.04206598e+00 -3.18635583e-01 -2.81082481e-01 -3.29386562e-01
-3.03214379e-02 -1.27661929e-01 2.51478553e-01 -1.20097709e+00
6.01736069e-01 -1.99599549e-01 4.16000128e-01 -1.05941594e+00
6.88891932e-02 -5.44412315e-01 -3.60457480e-01 4.55839455e-01
-1.47180960e-01 -3.10915172e-01 2.73461729e-01 5.54914653e-01
-6.15731478e-02 -4.09953386e-01 9.30680752e-01 -2.53749290e-03
-8.55122387e-01 7.38033891e-01 -2.78398216e-01 7.82264918e-02
1.02240896e+00 -1.17284581e-01 -2.76235133e-01 -3.92500274e-02
-4.04266685e-01 6.23236120e-01 7.48959363e-01 1.68706030e-01
5.94954669e-01 -1.08627474e+00 -5.44273615e-01 7.70929977e-02
2.76091471e-02 5.49174666e-01 5.16292036e-01 1.05691695e+00
-9.24699783e-01 2.34155044e-01 2.24070266e-01 -8.13046873e-01
-1.21411192e+00 4.97388184e-01 3.26643884e-01 -4.09372658e-01
-9.31533277e-01 6.94747686e-01 5.88384569e-01 -4.81152087e-01
2.88269758e-01 -4.43681657e-01 -1.91535249e-01 -6.94385394e-02
5.98098457e-01 3.84778708e-01 -1.84404209e-01 -4.94717062e-01
-2.29286760e-01 1.04970396e+00 -2.81348795e-01 5.63426055e-02
8.31936419e-01 -1.98813170e-01 -2.03054413e-01 2.80322641e-01
9.66488898e-01 -4.73558903e-04 -1.31187499e+00 -5.23378074e-01
-2.50612646e-01 -4.18242157e-01 3.27815741e-01 -4.56730992e-01
-1.29712605e+00 1.04368317e+00 4.27308768e-01 9.75815877e-02
1.46050882e+00 -1.86562315e-01 1.32746482e+00 3.36648971e-01
3.08756027e-02 -1.21936476e+00 1.15135282e-01 4.39128458e-01
3.62344921e-01 -1.20564771e+00 1.62976727e-01 -8.05377603e-01
-5.56424081e-01 1.23234236e+00 9.32976604e-01 -5.07423915e-02
6.71182990e-01 2.81017393e-01 7.93716013e-02 3.28536797e-03
-3.03744525e-01 -3.80250394e-01 1.52590841e-01 1.36395842e-01
2.65690953e-01 -3.27240974e-02 -5.12015939e-01 6.41024470e-01
2.96587765e-01 -8.80385488e-02 3.61802250e-01 8.45358074e-01
-7.58108139e-01 -1.03496134e+00 -5.04345953e-01 6.29652381e-01
-3.16733658e-01 -3.10335428e-01 -2.14164987e-01 8.44661415e-01
1.34946451e-01 6.99068964e-01 4.37403172e-02 -4.13512856e-01
2.76799887e-01 -1.96805060e-01 -1.28067344e-01 -6.32726014e-01
-4.07591134e-01 6.74269855e-01 -3.85807008e-01 -5.32636285e-01
-1.82011545e-01 -6.67164087e-01 -1.59769905e+00 -3.09541017e-01
-7.93489218e-01 3.46592106e-02 4.72794592e-01 8.02543759e-01
2.09693760e-01 4.74397868e-01 6.21920168e-01 -8.01164031e-01
-1.83924496e-01 -9.43972647e-01 -7.26733267e-01 6.16170000e-03
7.63172470e-03 -2.38281667e-01 -3.53950113e-01 8.82504582e-02] | [12.107073783874512, 2.207473039627075] |
a1aff1a1-6df5-4979-ad32-7f73a690fe8e | learning-syntactic-and-dynamic-selective | 2003.11173 | null | https://arxiv.org/abs/2003.11173v1 | https://arxiv.org/pdf/2003.11173v1.pdf | Learning Syntactic and Dynamic Selective Encoding for Document Summarization | Text summarization aims to generate a headline or a short summary consisting of the major information of the source text. Recent studies employ the sequence-to-sequence framework to encode the input with a neural network and generate abstractive summary. However, most studies feed the encoder with the semantic word embedding but ignore the syntactic information of the text. Further, although previous studies proposed the selective gate to control the information flow from the encoder to the decoder, it is static during the decoding and cannot differentiate the information based on the decoder states. In this paper, we propose a novel neural architecture for document summarization. Our approach has the following contributions: first, we incorporate syntactic information such as constituency parsing trees into the encoding sequence to learn both the semantic and syntactic information from the document, resulting in more accurate summary; second, we propose a dynamic gate network to select the salient information based on the context of the decoder state, which is essential to document summarization. The proposed model has been evaluated on CNN/Daily Mail summarization datasets and the experimental results show that the proposed approach outperforms baseline approaches. | ['Haiyang Xu', 'Xiangang Li', 'Yahao He', 'Kun Han', 'Junwen Chen'] | 2020-03-25 | null | null | null | null | ['constituency-parsing'] | ['natural-language-processing'] | [ 5.96389174e-01 2.66205579e-01 -2.48899102e-01 -5.30028880e-01
-7.51780927e-01 -3.47119391e-01 4.47743833e-01 3.14183652e-01
-2.75370628e-01 6.94181979e-01 1.23692822e+00 -4.72748448e-04
4.50190902e-01 -7.65558898e-01 -6.63244724e-01 -3.98975343e-01
5.24613798e-01 1.43820018e-01 2.46561214e-01 -3.73014003e-01
7.75709808e-01 -1.13518469e-01 -1.15470922e+00 7.70058215e-01
1.15194666e+00 7.11912572e-01 7.47809172e-01 8.64050388e-01
-5.87006807e-01 8.64172041e-01 -1.05750191e+00 -1.18899159e-01
-1.84870929e-01 -1.13662255e+00 -8.42711389e-01 -1.30835231e-02
3.13378513e-01 -6.85988486e-01 -5.16544104e-01 1.14571726e+00
8.15097511e-01 1.10458665e-01 5.68449259e-01 -5.40523946e-01
-7.23395526e-01 1.13683653e+00 -3.10743719e-01 4.03107584e-01
3.88798922e-01 -6.63261861e-02 1.18654382e+00 -4.99456197e-01
6.80454373e-01 1.27882850e+00 1.46981448e-01 6.64110124e-01
-5.16463637e-01 -3.36002201e-01 5.52115798e-01 2.18763813e-01
-5.32263041e-01 -6.50683939e-01 8.80763590e-01 -6.53985813e-02
1.15535784e+00 2.84564704e-01 6.28524005e-01 1.07939255e+00
6.93715513e-01 1.08968425e+00 4.80380177e-01 -3.14978242e-01
1.78955212e-01 -2.54984528e-01 7.00152695e-01 7.26908207e-01
3.07216465e-01 -5.68766952e-01 -6.27185106e-01 1.10079288e-01
2.95781672e-01 -2.61588603e-01 -3.19332600e-01 4.00688797e-01
-1.02038419e+00 7.89803505e-01 3.77005309e-01 1.99908510e-01
-5.75167537e-01 1.18052818e-01 9.31183398e-01 1.16456479e-01
5.27131975e-01 4.10518259e-01 -1.40167251e-01 -1.66651994e-01
-1.12643814e+00 1.90344393e-01 1.00790215e+00 1.12250900e+00
4.48755592e-01 3.05337816e-01 -7.85858572e-01 5.97897589e-01
3.59240144e-01 2.01939076e-01 7.94541717e-01 -6.75579786e-01
1.11705077e+00 6.81817234e-01 -1.18739665e-01 -9.51554775e-01
-1.65540189e-01 -4.96066958e-01 -8.98750424e-01 -5.45221031e-01
-3.11988801e-01 -5.13047159e-01 -8.38847280e-01 1.49090958e+00
-1.72997817e-01 -1.50147527e-01 4.72472101e-01 7.61822999e-01
1.42134500e+00 1.23943233e+00 -3.47447582e-02 -3.09780926e-01
1.33544326e+00 -1.35764360e+00 -1.20983720e+00 -6.15805984e-01
5.51347971e-01 -6.38184428e-01 6.78954363e-01 -7.96061605e-02
-1.33256018e+00 -5.99327147e-01 -1.44562232e+00 -4.08382118e-01
8.80823806e-02 4.05197203e-01 2.00011879e-01 9.51560289e-02
-1.10290372e+00 5.67273021e-01 -7.76903808e-01 -4.47352201e-01
3.07969928e-01 1.27452970e-01 2.80826446e-02 1.50250465e-01
-1.29617596e+00 8.00990999e-01 9.60730076e-01 2.21979097e-01
-6.04895413e-01 -2.39957824e-01 -1.01916540e+00 5.58629751e-01
1.01125002e-01 -1.14722502e+00 1.41407466e+00 -1.13500118e+00
-1.71583283e+00 2.32459128e-01 -6.07556224e-01 -5.87035596e-01
2.41591409e-01 -2.82296538e-01 3.40241119e-02 3.34626168e-01
1.97083279e-01 6.09149516e-01 4.32288498e-01 -9.51271176e-01
-7.67838836e-01 -3.12095344e-01 -2.71080602e-02 6.51364028e-01
-1.41545728e-01 1.43060744e-01 -5.54156780e-01 -7.52686381e-01
-8.21896195e-02 -4.50849682e-01 -2.13746011e-01 -8.08107376e-01
-8.83209348e-01 -2.22648263e-01 6.16937816e-01 -1.32346475e+00
1.67325032e+00 -1.94781160e+00 4.80795860e-01 -3.81369650e-01
-1.57321155e-01 3.45843971e-01 -1.44311160e-01 8.39861989e-01
2.40812153e-01 6.87841773e-02 -3.93245608e-01 -4.24414068e-01
-7.44040012e-02 5.00239469e-02 -6.61105633e-01 1.66509952e-02
2.20124856e-01 1.10543633e+00 -8.39918196e-01 -6.77867770e-01
-6.98761493e-02 1.05937742e-01 -4.81806695e-01 5.48547983e-01
-3.75840575e-01 2.76231527e-01 -8.03191841e-01 1.38780758e-01
3.03862393e-01 4.61175479e-02 3.20423469e-02 -2.86514908e-01
-1.72082648e-01 9.29391980e-01 -7.00185657e-01 1.86760664e+00
-2.10862473e-01 6.22656524e-01 -6.39313459e-02 -1.03565240e+00
9.93807673e-01 3.47377509e-01 -8.75510946e-02 -6.18042767e-01
3.74800891e-01 1.06259443e-01 -7.43107870e-02 -5.65802932e-01
1.07894802e+00 2.18506411e-01 -3.38014811e-01 5.52678585e-01
1.34875551e-01 -4.52588536e-02 4.05071348e-01 4.50476885e-01
9.73375857e-01 1.17156796e-01 3.90758872e-01 -1.37146696e-01
5.62288880e-01 2.95364633e-02 6.21920347e-01 7.54613400e-01
6.81788027e-02 6.94616973e-01 8.38941157e-01 -5.17772622e-02
-9.71860588e-01 -4.57431287e-01 4.58962709e-01 8.15228164e-01
2.98303276e-01 -5.96040726e-01 -1.24949133e+00 -7.29962766e-01
-6.12796009e-01 1.20757997e+00 -3.21334451e-01 -5.23162246e-01
-1.03782773e+00 -6.35817885e-01 5.12530506e-01 6.43147230e-01
8.63096118e-01 -1.35338831e+00 -3.73527348e-01 3.87332022e-01
-5.75858057e-01 -9.81077194e-01 -8.77938807e-01 -5.02402186e-02
-1.15314746e+00 -6.66328251e-01 -4.65347290e-01 -1.08062756e+00
6.82683766e-01 8.10314044e-02 6.52485311e-01 -3.09963059e-02
3.05920810e-01 -5.65843359e-02 -4.26538795e-01 -4.14106816e-01
-6.89376473e-01 6.98685050e-01 -6.22497618e-01 -1.44638056e-02
1.16207808e-01 -3.07990134e-01 -6.00994468e-01 -3.70812595e-01
-9.38855588e-01 6.12440288e-01 8.22445154e-01 6.39821470e-01
4.10034806e-01 -2.18149796e-01 9.78665590e-01 -1.03408194e+00
1.28159201e+00 -4.25825924e-01 -1.69706382e-02 3.31560045e-01
-3.14793855e-01 4.77880508e-01 9.43689942e-01 1.41211867e-01
-1.48302066e+00 -2.24688932e-01 -3.97123665e-01 4.31220919e-01
1.76885217e-01 7.00667202e-01 -4.35877800e-01 7.51999736e-01
1.51372820e-01 6.99541748e-01 -1.88831896e-01 -5.27558386e-01
2.62714118e-01 1.01336300e+00 4.71960217e-01 -3.45195800e-01
1.43198967e-01 1.39947966e-01 -4.66832787e-01 -6.78472519e-01
-1.15361166e+00 -2.74755657e-01 -5.87123811e-01 -3.84222344e-02
1.07268333e+00 -8.13085496e-01 -1.59502164e-01 4.57609713e-01
-1.77729511e+00 2.75359750e-02 -1.82361528e-01 2.99371421e-01
-4.29587185e-01 7.37601459e-01 -8.01547348e-01 -3.29111993e-01
-1.17411244e+00 -1.19446182e+00 1.08273590e+00 6.14707291e-01
-4.07319009e-01 -8.22563291e-01 -3.60648222e-02 2.70915240e-01
2.73928583e-01 1.81539245e-02 1.19835746e+00 -1.01342690e+00
-4.94657695e-01 -1.94039494e-01 -2.50176817e-01 4.69385147e-01
2.31220454e-01 2.68648267e-02 -6.33914292e-01 -5.80005385e-02
1.17708892e-01 -5.78143261e-02 1.36662018e+00 4.42001551e-01
9.98320401e-01 -7.77316451e-01 -2.14622155e-01 4.53153610e-01
1.12272441e+00 3.12015504e-01 8.64416778e-01 2.92868882e-01
7.63525486e-01 6.71922088e-01 4.39269453e-01 2.31339619e-01
6.73609555e-01 2.31584802e-01 3.23665679e-01 2.40653157e-01
-4.76797462e-01 -6.39083505e-01 7.49199748e-01 1.61103046e+00
2.58118182e-01 -6.74398184e-01 -2.58327603e-01 4.72121030e-01
-1.95715868e+00 -9.91925657e-01 -7.11216703e-02 1.77534699e+00
1.01853740e+00 2.05047041e-01 -3.91696185e-01 -3.21951896e-01
1.02196801e+00 7.36227453e-01 -5.24904966e-01 -8.35416138e-01
-9.32061300e-02 -9.15928632e-02 2.80533999e-01 6.92508876e-01
-7.83404052e-01 1.10283506e+00 6.02226496e+00 6.15964353e-01
-1.15896869e+00 -1.27151683e-01 3.96151245e-01 -9.73890126e-02
-4.81459200e-01 9.90660116e-02 -1.15769565e+00 6.96417391e-01
1.03803027e+00 -4.38376009e-01 -7.97882751e-02 5.40204644e-01
4.02010322e-01 -1.00715727e-01 -9.59878027e-01 4.90573078e-01
5.07358730e-01 -1.41026998e+00 7.21926033e-01 -4.19861406e-01
6.76385820e-01 -1.58383697e-01 -4.30179447e-01 3.05016071e-01
8.65067542e-02 -7.28423119e-01 8.87017846e-01 6.08262539e-01
4.18207586e-01 -7.80090868e-01 8.90623510e-01 5.49706161e-01
-9.56163108e-01 6.54527396e-02 -5.04075229e-01 -1.07337814e-02
4.66992348e-01 3.48374993e-01 -8.78513992e-01 8.49380016e-01
-2.13330518e-02 1.04222095e+00 -5.26918590e-01 7.90663838e-01
-5.75548768e-01 7.80445337e-01 3.01806659e-01 -4.31229323e-01
4.22302037e-01 -2.53803909e-01 7.99229503e-01 1.61641860e+00
3.56944114e-01 3.03210095e-02 9.72626284e-02 6.22786105e-01
-2.85332233e-01 2.10862830e-01 -3.32295358e-01 -2.75300354e-01
3.27840060e-01 9.02242005e-01 -6.13562047e-01 -5.69425881e-01
-1.69339672e-01 1.27444434e+00 2.52855808e-01 4.18999016e-01
-5.90137005e-01 -9.22616243e-01 1.27598047e-01 -1.70750886e-01
4.14049447e-01 -1.21738248e-01 -4.57187384e-01 -1.34656048e+00
2.74241626e-01 -7.01982081e-01 2.63512582e-01 -7.42049813e-01
-5.20079195e-01 7.06985533e-01 -6.27873689e-02 -6.77307010e-01
-2.66911447e-01 -1.13979392e-01 -1.07415307e+00 1.00883031e+00
-1.60822570e+00 -9.68019247e-01 -1.79917216e-01 -1.72734186e-01
1.32295024e+00 -1.82908729e-01 6.28858447e-01 -4.58971262e-02
-9.21173513e-01 1.72557980e-01 1.28912985e-01 3.20865780e-01
6.20838225e-01 -1.14326072e+00 8.42304170e-01 1.11173153e+00
-3.37457001e-01 6.53353333e-01 7.11425245e-01 -1.00176477e+00
-1.20970881e+00 -1.17613888e+00 1.34256887e+00 1.20816380e-02
1.98380023e-01 -2.81165987e-01 -8.94626975e-01 8.10423434e-01
8.90534282e-01 -8.90708566e-01 5.14886200e-01 -4.20855641e-01
1.18336722e-01 -2.23089457e-02 -6.68991983e-01 6.78348482e-01
8.39242220e-01 -1.82241946e-01 -1.20029247e+00 1.74903439e-03
1.21208060e+00 -5.14687955e-01 -2.78460175e-01 1.16776116e-01
3.81607682e-01 -7.02774048e-01 4.06025320e-01 -6.57887876e-01
1.09050035e+00 -2.01747149e-01 3.99186648e-02 -1.53453517e+00
-2.42444828e-01 -3.49920422e-01 -2.76997179e-01 1.46274364e+00
3.61110061e-01 -4.53992665e-01 4.20364201e-01 1.71620756e-01
-8.13051522e-01 -7.91800797e-01 -6.27088785e-01 -7.54823387e-02
-1.62509486e-01 1.46467492e-01 6.15098655e-01 2.78520852e-01
-3.76889482e-02 9.55488026e-01 -2.87927896e-01 -1.27430916e-01
1.91770062e-01 2.53529161e-01 5.36209941e-01 -8.57374251e-01
-1.94202401e-02 -5.51087618e-01 3.80984209e-02 -1.64107907e+00
4.19799596e-01 -1.10482645e+00 3.29754233e-01 -2.53224087e+00
5.43206275e-01 3.19895297e-01 4.94152494e-03 5.56046031e-02
-5.41241050e-01 -6.70387924e-01 8.71850178e-02 1.60304472e-01
-8.00003052e-01 9.18224096e-01 1.31887937e+00 -3.33157778e-01
-1.56303734e-01 -2.13829689e-02 -1.21208310e+00 4.34859276e-01
8.54867816e-01 -3.72019470e-01 -4.45612699e-01 -8.81454647e-01
1.12427555e-01 3.92813295e-01 -4.00123894e-02 -6.80043936e-01
4.53330696e-01 -2.90893335e-02 2.58346379e-01 -1.03804219e+00
6.16424484e-03 -2.28618860e-01 -4.99627531e-01 4.59264964e-01
-9.09786046e-01 4.93566599e-03 1.10160194e-01 6.24928415e-01
-3.89997810e-01 -7.76494563e-01 5.23980618e-01 -3.03272784e-01
-5.54032862e-01 5.58549874e-02 -4.80253249e-01 2.97270566e-01
5.84129453e-01 -1.63629949e-01 -4.56923276e-01 -5.25302708e-01
-2.10856006e-01 3.58088911e-01 2.79543668e-01 5.08537412e-01
6.57063365e-01 -1.00879014e+00 -9.84473884e-01 2.81796474e-02
-2.06091762e-01 2.64051616e-01 2.66759843e-01 3.76843929e-01
-8.25987160e-01 8.16578805e-01 -1.45634070e-01 -1.08364396e-01
-1.20286465e+00 1.37940258e-01 1.59234285e-01 -3.52323234e-01
-7.07150578e-01 4.95443702e-01 3.42035413e-01 -5.60224280e-02
2.61656821e-01 -4.82855946e-01 -6.88671708e-01 2.64165699e-01
7.81969190e-01 3.42289776e-01 5.54388911e-02 -5.69231808e-01
7.55560547e-02 2.94263095e-01 -5.56212604e-01 -1.16181470e-01
1.28540945e+00 -3.38986278e-01 -4.54427093e-01 3.90191078e-01
1.24512577e+00 -4.46374528e-02 -1.10839856e+00 -1.97459921e-01
8.03131163e-02 1.38130877e-03 -2.02657413e-02 -5.67459583e-01
-7.78669357e-01 9.94395554e-01 -2.71813065e-01 8.64508562e-03
9.91173625e-01 -1.72262788e-01 1.37331998e+00 4.51857418e-01
-2.93977499e-01 -1.35712886e+00 1.11413158e-01 9.34415817e-01
9.91004646e-01 -8.53753388e-01 -1.25767142e-02 -1.67577863e-01
-8.94092917e-01 1.31137252e+00 7.03442872e-01 -3.15230221e-01
-4.09707427e-02 5.82161080e-03 -2.21444517e-01 -1.63244501e-01
-9.67739046e-01 1.65569007e-01 1.41082451e-01 1.43728346e-01
5.83166897e-01 -2.20885888e-01 -7.54465222e-01 1.04145455e+00
-4.39223886e-01 -1.18630387e-01 8.33592057e-01 8.73748779e-01
-9.58076417e-01 -9.38321948e-01 5.80619089e-02 5.81032336e-01
-5.98073304e-01 -3.08055192e-01 -7.75804460e-01 1.39990568e-01
-4.18679386e-01 8.98099661e-01 1.90005288e-01 -1.04972877e-01
4.75257367e-01 2.70326495e-01 2.10878402e-01 -1.14811480e+00
-8.21402073e-01 -3.93097773e-02 3.45845550e-01 -1.37818500e-01
-2.01514855e-01 -4.90782738e-01 -1.56305480e+00 -9.35854297e-03
-1.78970203e-01 4.28940177e-01 7.15188861e-01 1.09472764e+00
6.58952534e-01 1.14811242e+00 6.11908376e-01 -6.67013168e-01
-7.15571880e-01 -1.25124693e+00 -1.15432158e-01 9.88514745e-04
4.46574241e-01 1.99760884e-01 -1.51025534e-01 1.04383647e-01] | [12.4804105758667, 9.439338684082031] |
448dd757-6537-43f2-b11c-73905f677cb1 | prediction-of-prognosis-and-survival-of | null | null | https://doi.org/10.5114/aoms/135594 | https://www.archivesofmedicalscience.com/pdf-135594-63895?filename=Prediction%20of%20Prognosis.pdf | Prediction of Prognosis and Survival of Patients with Gastric Cancer by Weighted Improved Random Forest Model | Introduction:
It’s very necessary to predict the survival status of patients based on their prognosis. This can assist physicians in evaluating treatment decisions. Random Forest is an excellent machine learning algorithm even without any modification. We propose a new Random Forest weighting method and apply it to the gastric cancer patient data from the Surveillance, Epidemiology, and End Results (SEER) program, and then evaluated the generalization ability of this weighted Random Forest algorithm on 10 public medical datasets. Furthermore, for the same weighting mode, the difference between using out-of-bag (OOB) data and all training sets as the weighting basis is explored.
Material and methods:
110697 cases of gastric cancer patients diagnosed between 1975 and 2016 obtained from the SEER database were contained in the experiment. In addition, 10 public medical datasets are used for the generalization ability evaluation of this weighted Random Forest algorithm.
Results:
Through experimental verification, on the SEER gastric cancer patient data, the weighted Random Forest algorithm improves the accuracy by 0.79% compared with the original Random Forest. In AUC, Macro-averaging increased by 2.32% and Micro-averaging increased by 0.51% on average. Among the 10 public datasets, the Random Forest weighted in accuracy has the best performance on 6 datasets, with an average increase of 1.44% in accuracy and an average increase of 1.2% in AUC.
Conclusions:
Compared with the original Random Forest, the weighted Random Forest model has a significant improvement in performance, and the effect of using all training data as the weighting basis is better than using OOB data. | ['Fan Ye', 'Yue Cao', 'TianLong Zheng', 'Jing Wang', 'Cheng Xu'] | 2021-04-10 | null | null | null | archives-of-medical-science-2021-4 | ['epidemiology'] | ['medical'] | [ 6.20980971e-02 2.81460192e-02 -9.01125312e-01 -4.76081192e-01
-6.91149354e-01 4.36129458e-02 3.36968243e-01 3.57156277e-01
-6.60255551e-01 1.07304394e+00 3.58366251e-01 -6.81425273e-01
-3.33817780e-01 -1.22587216e+00 -5.36351046e-03 -9.81334567e-01
-3.15251797e-01 5.74645460e-01 1.70613855e-01 7.35649467e-02
-4.63805422e-02 3.02964240e-01 -1.01980829e+00 3.70282710e-01
1.07041180e+00 9.35747445e-01 6.84488267e-02 3.17255557e-01
9.36445817e-02 6.93091154e-01 -3.17684025e-01 -1.16806053e-01
1.21253356e-01 -9.21724141e-02 -8.28818440e-01 -4.80251253e-01
-3.53652626e-01 -2.89291024e-01 -1.13001063e-01 6.08808756e-01
5.42900980e-01 -2.12734252e-01 9.29295838e-01 -1.17955518e+00
-1.02577507e-01 7.52888799e-01 -7.48099208e-01 -9.38252658e-02
3.17526042e-01 -1.09371163e-01 7.27714062e-01 -5.58280110e-01
5.43339550e-01 8.66663814e-01 1.15114379e+00 6.12457633e-01
-1.04998779e+00 -9.72051978e-01 -5.59169278e-02 3.95975828e-01
-1.34427381e+00 1.10151149e-01 2.08039194e-01 -5.24215102e-01
6.01304889e-01 5.59620261e-01 1.05749309e+00 5.19489050e-01
6.81199253e-01 5.85479438e-01 1.41270828e+00 -4.58907038e-01
1.23104546e-02 1.08511463e-01 6.93207383e-01 8.61920178e-01
6.66757464e-01 5.81100702e-01 -1.06158830e-01 -5.92255235e-01
1.70501441e-01 6.08710766e-01 -4.81641948e-01 -2.18713969e-01
-1.18444622e+00 1.06241953e+00 7.31813967e-01 2.08213091e-01
-3.72635424e-01 -2.04181030e-01 2.99444020e-01 2.51264095e-01
4.44451958e-01 1.31879359e-01 -7.23671913e-01 3.08944553e-01
-9.56562221e-01 9.64131728e-02 5.79651177e-01 4.69782650e-01
3.73440057e-01 -4.25825030e-01 -3.59209597e-01 9.30610061e-01
4.91089016e-01 8.75583649e-01 8.41554344e-01 -4.41534460e-01
1.20149836e-01 9.78448093e-01 2.33802646e-02 -6.71275496e-01
-9.17157531e-01 -7.49759555e-01 -1.49892676e+00 1.57801241e-01
5.18523335e-01 -2.16039009e-02 -1.28159010e+00 1.43625045e+00
2.09792420e-01 -3.13587517e-01 1.50214672e-01 4.79579031e-01
9.68628287e-01 5.78322768e-01 3.53601784e-01 -6.51384056e-01
1.67242050e+00 -7.91566551e-01 -7.32368588e-01 1.91904873e-01
9.49274659e-01 -4.29576635e-01 6.80364370e-01 4.46105570e-01
-3.95124644e-01 -4.15719636e-02 -7.89528370e-01 5.12342334e-01
-3.83923858e-01 1.05548576e-02 7.34944224e-01 8.13203931e-01
-5.62995315e-01 3.83645207e-01 -7.21946180e-01 -4.94089037e-01
3.39184105e-01 2.20766157e-01 -4.83929008e-01 -5.55865586e-01
-1.45278847e+00 9.94510055e-01 4.26874638e-01 -2.17778295e-01
-5.51259220e-01 -7.47659087e-01 -6.66013777e-01 -1.76597275e-02
6.65833801e-02 -1.07247400e+00 1.00258791e+00 -6.72260404e-01
-7.10627258e-01 5.94291210e-01 -4.28675324e-01 -5.88852286e-01
4.54967111e-01 4.03619073e-02 -4.61245000e-01 -2.29770854e-01
2.14168027e-01 1.90530345e-01 -3.33110839e-02 -8.75728250e-01
-8.45768094e-01 -7.25585401e-01 -3.67633432e-01 -8.22479278e-02
-6.31705970e-02 -3.09169926e-02 1.76177919e-01 -7.57983685e-01
2.16881126e-01 -1.01350439e+00 -7.62288213e-01 -3.30131143e-01
-1.34081692e-01 -1.43105388e-01 4.15110499e-01 -8.74802768e-01
1.77280164e+00 -1.80330241e+00 -4.61189359e-01 4.95532662e-01
1.60856277e-01 5.80269145e-03 4.69388664e-01 1.76819280e-01
-2.81638622e-01 2.46569201e-01 -5.53841233e-01 5.05469561e-01
-7.63912022e-01 1.21396286e-02 2.09975764e-01 3.18991750e-01
-2.96806157e-01 6.26639068e-01 -8.33618164e-01 -7.57506847e-01
-4.65774909e-02 1.37179330e-01 -4.58370864e-01 1.11900046e-01
5.16448200e-01 3.56117785e-02 -2.88350642e-01 8.63944232e-01
6.73939764e-01 -1.38456613e-01 2.69136369e-01 -2.34087016e-02
1.97593980e-02 -9.50423442e-03 -8.76992047e-01 1.06648672e+00
-4.12498087e-01 3.09545428e-01 -3.59115601e-01 -8.09062779e-01
1.00673985e+00 5.51889718e-01 7.38927782e-01 -2.77077436e-01
-1.59706756e-01 2.52203614e-01 1.83576614e-01 -3.62384081e-01
-1.72513366e-01 -6.56490624e-01 -1.04183517e-01 2.58921146e-01
-4.43411767e-01 1.14286445e-01 -4.49305475e-02 1.38822511e-01
1.19928992e+00 -4.76869881e-01 1.31677568e+00 -4.76884067e-01
5.44065058e-01 4.58077610e-01 8.88583541e-01 5.04406929e-01
-1.38351709e-01 3.64165694e-01 3.48167598e-01 -9.01746392e-01
-3.54288399e-01 -8.92768502e-01 -6.65167689e-01 6.21582508e-01
-2.48842552e-01 -2.03966901e-01 -2.80538023e-01 -1.06108975e+00
2.42289066e-01 8.96501362e-01 -9.24343109e-01 -1.71326578e-01
-2.36404747e-01 -1.59451842e+00 2.33885959e-01 4.00700957e-01
8.17028224e-01 -7.33130097e-01 -2.95149654e-01 2.45734453e-01
-4.60615337e-01 -2.83958524e-01 -3.56472105e-01 2.87071228e-01
-1.23741150e+00 -1.35414851e+00 -8.78199756e-01 -6.13234639e-01
7.27001309e-01 3.78287733e-01 1.14174616e+00 2.38159463e-01
-7.56206736e-02 -2.95575529e-01 -5.37652194e-01 -6.65941119e-01
-4.96673524e-01 3.14817339e-01 -8.14958587e-02 -3.40755463e-01
3.41862738e-01 -1.31731108e-01 -7.55920529e-01 7.20557988e-01
-5.48400700e-01 2.53076345e-01 9.12105203e-01 1.28355563e+00
4.28607702e-01 3.00958246e-01 7.88733780e-01 -1.32213330e+00
1.80491954e-01 -6.30362272e-01 -2.38957599e-01 2.26549670e-01
-1.53000391e+00 -5.16147017e-02 2.61575639e-01 -1.65294409e-01
-9.14542317e-01 2.11942345e-01 -1.71553522e-01 4.35029447e-01
2.26174682e-01 6.85861647e-01 -2.88093276e-02 2.63237953e-01
5.96516013e-01 -2.92779803e-02 2.26319402e-01 -4.65212643e-01
-3.22458416e-01 1.15781808e+00 -1.79239720e-01 -2.09039263e-02
5.84017098e-01 3.65178198e-01 2.00976416e-01 -2.97244728e-01
-6.63008869e-01 -7.78977990e-01 -3.42765898e-01 -1.73442394e-01
8.14880371e-01 -8.04643333e-01 -4.67049748e-01 7.32014835e-01
-5.02486050e-01 -1.54463619e-01 -1.02065444e-01 7.16559529e-01
-3.33820611e-01 1.05815511e-02 -2.37863064e-01 -7.77582049e-01
-8.80573153e-01 -1.01453185e+00 5.66922188e-01 3.44736576e-02
-3.47564429e-01 -9.15951252e-01 9.68169123e-02 3.83904994e-01
5.04480839e-01 4.93977845e-01 1.18046629e+00 -6.47417545e-01
8.75705257e-02 -7.00764000e-01 -2.31650501e-01 -9.98453889e-03
4.14963067e-01 -6.81639910e-02 -5.63387752e-01 -3.92066330e-01
-2.04208896e-01 3.89416754e-01 1.14469850e+00 6.27092063e-01
1.16506457e+00 -3.96410227e-01 -9.47150052e-01 4.81189668e-01
1.56045699e+00 7.09587693e-01 5.52634120e-01 5.48035324e-01
2.45759651e-01 5.12133300e-01 9.77287591e-01 1.31759584e-01
4.32355821e-01 6.48265064e-01 3.80752981e-01 -2.59362638e-01
1.01328947e-01 -1.30104750e-01 9.73185450e-02 4.07129765e-01
-6.33308411e-01 2.16357395e-01 -1.26375711e+00 4.49827284e-01
-1.63050485e+00 -1.11826611e+00 -6.39939964e-01 2.56878543e+00
9.05184865e-01 1.32079169e-01 2.03712791e-01 5.60196579e-01
6.77432418e-01 -1.79419294e-01 -2.33525082e-01 -3.85405719e-01
2.67980278e-01 5.68338446e-02 8.24129701e-01 3.78825694e-01
-9.73901629e-01 4.99576256e-02 6.44439554e+00 8.32590401e-01
-9.80661273e-01 9.82525572e-02 9.40042496e-01 7.65248910e-02
-6.52618781e-02 9.06862784e-03 -7.52198517e-01 5.92876792e-01
8.21161449e-01 -2.83479273e-01 -8.19690675e-02 8.90659451e-01
3.68680656e-01 -4.23737615e-01 -5.57926476e-01 4.97621685e-01
-3.22659820e-01 -1.12960494e+00 3.09744407e-03 4.24501121e-01
5.71393073e-01 -2.49008134e-01 -5.35759270e-01 4.46609437e-01
5.42425632e-01 -1.09902000e+00 1.54136032e-01 7.34853446e-01
1.17121124e+00 -6.21610761e-01 1.78634953e+00 5.49203277e-01
-9.56409097e-01 -2.84244120e-01 6.22751005e-02 -1.04403414e-01
2.77602561e-02 1.18720031e+00 -1.19424927e+00 8.76100898e-01
8.63651872e-01 4.80164856e-01 -4.84682709e-01 1.16696680e+00
9.05746594e-03 1.06576192e+00 -1.34021387e-01 -2.15946838e-01
-2.39910454e-01 1.21616170e-01 1.85006514e-01 1.05584121e+00
4.16068375e-01 3.11289132e-01 -1.57769009e-01 -2.31284186e-01
2.92669803e-01 4.60220754e-01 -4.86797035e-01 6.50920212e-01
2.81522453e-01 1.06703663e+00 -4.17837769e-01 -4.84487623e-01
-4.75731462e-01 1.02350637e-01 -1.61594301e-01 -8.62001777e-02
-7.72518754e-01 -4.21916395e-01 7.48568848e-02 6.60096586e-01
-2.88093090e-01 4.38097298e-01 -5.93701005e-01 -8.62843513e-01
-4.19631720e-01 -8.14470947e-01 1.00139821e+00 -5.85878730e-01
-1.21281934e+00 5.86673021e-01 2.10831210e-01 -1.46549690e+00
-1.51879638e-01 -5.01449347e-01 -4.73226607e-01 8.75251949e-01
-1.24664855e+00 -1.03681815e+00 -7.25896358e-01 2.62117982e-01
2.51137435e-01 -1.75229639e-01 1.21743762e+00 3.67532447e-02
-4.01660532e-01 5.86864948e-01 2.84400076e-01 1.51226714e-01
7.48363078e-01 -1.23738897e+00 -2.85176754e-01 1.70722827e-01
-5.95709622e-01 5.75550437e-01 4.10039097e-01 -6.51468396e-01
-5.68513393e-01 -1.24807239e+00 1.19634926e+00 -1.88190565e-01
2.26021007e-01 3.90821129e-01 -6.34889841e-01 4.56481546e-01
-7.65267164e-02 -2.34473988e-01 1.16081989e+00 3.40500861e-01
-1.27767980e-01 -4.98042405e-01 -1.90238953e+00 2.74981230e-01
7.13192582e-01 4.23523724e-01 -6.11303926e-01 1.70286894e-01
5.11712551e-01 4.78923880e-02 -1.35666871e+00 1.03431141e+00
1.22135758e+00 -8.06887269e-01 9.49910760e-01 -5.27070880e-01
4.39505100e-01 -2.94156164e-01 -1.77742884e-01 -1.37987208e+00
-7.09404409e-01 7.37977549e-02 3.02902997e-01 8.59909654e-01
8.13985646e-01 -1.20896399e+00 7.41659939e-01 4.80436713e-01
3.14220101e-01 -1.43608451e+00 -9.70453262e-01 -6.34293854e-01
1.93315178e-01 -2.25747257e-01 8.10842991e-01 9.42264915e-01
2.33810730e-02 1.82866454e-01 -1.66213617e-01 -2.76599199e-01
6.51127219e-01 1.75955757e-01 6.70947075e-01 -1.37578392e+00
-1.65268749e-01 -2.00160310e-01 -4.28887069e-01 -2.82069027e-01
-5.85069060e-01 -8.47545981e-01 -4.29498762e-01 -1.99657595e+00
9.41388309e-01 -8.31825614e-01 -6.37621045e-01 7.55172610e-01
-6.22882128e-01 1.05740383e-01 3.66356981e-04 5.09385884e-01
2.06431389e-01 4.37050946e-02 1.11906934e+00 -3.23515058e-01
-2.17275470e-01 9.41201985e-01 -7.01483130e-01 7.63313890e-01
1.00952744e+00 -7.64144778e-01 1.10771492e-01 3.23587894e-01
-1.49584100e-01 3.66994381e-01 5.52155077e-02 -9.07551408e-01
-2.80509651e-01 -3.87091875e-01 5.11960804e-01 -7.37202108e-01
-2.17743546e-01 -1.15501654e+00 6.60607934e-01 1.44678915e+00
-1.60225749e-01 1.66150257e-02 -2.29713872e-01 6.35578632e-01
-1.80104136e-01 -3.37179959e-01 8.67138863e-01 -3.73182036e-02
-3.13195288e-01 1.61528796e-01 -4.77801234e-01 -4.08059895e-01
1.25783801e+00 -3.76555026e-01 -2.60880142e-01 -2.36025065e-01
-8.56257558e-01 3.20640743e-01 2.81214088e-01 -1.73931271e-01
2.14396805e-01 -1.49592340e+00 -8.65764141e-01 1.22071482e-01
3.49727422e-01 -7.67713413e-03 1.14082813e-01 1.09599423e+00
-5.39695144e-01 4.77090448e-01 -1.13131940e-01 -3.51343393e-01
-1.76852393e+00 5.42853057e-01 4.45377439e-01 -1.14509773e+00
-1.44302800e-01 3.53133529e-01 -1.68286059e-02 -5.26191413e-01
-7.51184821e-02 -3.98751408e-01 -5.07084548e-01 2.33802915e-01
4.39692885e-01 8.39464486e-01 1.57206476e-01 -2.68914998e-01
-6.29128277e-01 5.58232605e-01 2.50365324e-02 8.47407952e-02
1.30323470e+00 3.26183319e-01 -2.23897606e-01 3.69002670e-01
9.83278573e-01 3.06572914e-01 -2.44935945e-01 -1.29653830e-02
-1.83066428e-02 -3.88806641e-01 2.46539917e-02 -1.32183933e+00
-1.12419832e+00 4.68690813e-01 8.80997479e-01 3.66197169e-01
1.61195529e+00 -1.61660939e-01 5.31467617e-01 -5.67586645e-02
7.22030997e-01 -4.68806684e-01 -8.11112046e-01 1.33473665e-01
7.78874457e-01 -1.41746163e+00 4.62916523e-01 -6.03423536e-01
-5.98922431e-01 9.81813431e-01 1.59243345e-01 7.25797266e-02
1.13583136e+00 1.14690624e-01 1.74090892e-01 1.41220078e-01
-8.13472569e-01 6.28452301e-02 4.48954776e-02 6.79427028e-01
5.20877838e-01 7.62613297e-01 -1.11269498e+00 9.57722485e-01
-2.45641038e-01 4.72815216e-01 2.04714775e-01 6.27955317e-01
-5.16684532e-01 -1.02842176e+00 -5.60794652e-01 1.22243905e+00
-6.15442455e-01 -1.65113375e-01 -2.74205860e-02 9.53111947e-01
1.46276280e-01 9.47982669e-01 -2.93731987e-01 -5.45830607e-01
4.33889210e-01 3.59643370e-01 -1.43542320e-01 -2.29575783e-01
-6.16639495e-01 -5.04913330e-01 3.84285212e-01 -1.83858469e-01
-5.94812036e-01 -7.50352025e-01 -1.20373857e+00 -3.32438320e-01
-7.80454516e-01 5.28435111e-01 6.16301477e-01 5.29558539e-01
1.86542161e-02 5.73903441e-01 8.82223129e-01 6.50012726e-03
-6.14395320e-01 -1.24777067e+00 -5.88223100e-01 8.88223946e-02
7.34789222e-02 -7.63875127e-01 -6.59842193e-01 -1.00041926e-01] | [8.391419410705566, 4.92259407043457] |
06a3ef2e-3c98-4861-af2a-5e32d8525613 | overview-and-evaluation-of-sound-event | 2009.02792 | null | https://arxiv.org/abs/2009.02792v2 | https://arxiv.org/pdf/2009.02792v2.pdf | Overview and Evaluation of Sound Event Localization and Detection in DCASE 2019 | Sound event localization and detection is a novel area of research that emerged from the combined interest of analyzing the acoustic scene in terms of the spatial and temporal activity of sounds of interest. This paper presents an overview of the first international evaluation on sound event localization and detection, organized as a task of the DCASE 2019 Challenge. A large-scale realistic dataset of spatialized sound events was generated for the challenge, to be used for training of learning-based approaches, and for evaluation of the submissions in an unlabeled subset. The overview presents in detail how the systems were evaluated and ranked and the characteristics of the best-performing systems. Common strategies in terms of input features, model architectures, training approaches, exploitation of prior knowledge, and data augmentation are discussed. Since ranking in the challenge was based on individually evaluating localization and event classification performance, part of the overview focuses on presenting metrics for the joint measurement of the two, together with a reevaluation of submissions using these new metrics. The new analysis reveals submissions that performed better on the joint task of detecting the correct type of event close to its original location than some of the submissions that were ranked higher in the challenge. Consequently, ranking of submissions which performed strongly when evaluated separately on detection or localization, but not jointly on both, was affected negatively. | ['Tuomas Virtanen', 'Toni Heittola', 'Sharath Adavanne', 'Annamaria Mesaros', 'Archontis Politis'] | 2020-09-06 | null | null | null | null | ['sound-event-localization-and-detection'] | ['audio'] | [-2.46420186e-02 -4.69350666e-01 7.10126638e-01 -2.04479843e-01
-1.63162541e+00 -9.48646367e-01 4.88720357e-01 6.82799876e-01
-7.64473498e-01 3.52495372e-01 3.52809608e-01 6.67929649e-03
-3.00861746e-01 -3.02190930e-01 -4.85104322e-01 -6.42963111e-01
-5.01080692e-01 3.05690039e-02 7.82968938e-01 1.78103924e-01
4.03914958e-01 5.02974689e-01 -1.93578827e+00 7.35130429e-01
-4.87629473e-02 9.97692883e-01 3.28770190e-01 1.19143295e+00
1.92621633e-01 7.21827090e-01 -1.17262149e+00 1.32196009e-01
-1.81762755e-01 -4.64928240e-01 -6.86338544e-01 -7.16000438e-01
6.57747447e-01 2.83873826e-01 -8.00345242e-02 6.22083902e-01
1.09915173e+00 4.75917190e-01 3.65876079e-01 -1.12561882e+00
1.49324670e-01 5.87825358e-01 2.71077007e-01 1.16983771e+00
7.27743387e-01 -2.44605809e-01 1.09237731e+00 -1.24859786e+00
3.15307915e-01 7.51319349e-01 1.05524194e+00 1.29085347e-01
-8.54444385e-01 -6.46458507e-01 3.01037375e-02 5.87135196e-01
-1.46957016e+00 -6.24795258e-01 5.26679933e-01 -6.54936969e-01
1.36662781e+00 6.15474582e-01 3.87578487e-01 8.48930180e-01
-1.63306594e-01 5.25715828e-01 7.75399923e-01 -7.74456143e-01
5.32382488e-01 1.55911475e-01 4.88215350e-02 7.65034109e-02
-5.38340472e-02 4.03984845e-01 -1.03337216e+00 -4.42023247e-01
1.93927497e-01 -6.75036490e-01 -1.52868047e-01 2.00576037e-01
-1.32355952e+00 3.46386462e-01 6.57287017e-02 6.43505752e-01
-3.51406157e-01 8.29847604e-02 6.21609330e-01 6.72928393e-02
5.16901791e-01 7.69930184e-01 -6.12423003e-01 -5.87055743e-01
-1.31042445e+00 3.84639233e-01 7.89080441e-01 4.31458801e-01
2.70705283e-01 3.04015547e-01 -4.30489272e-01 9.04903591e-01
2.11677119e-01 3.45812768e-01 5.03227592e-01 -7.97078669e-01
3.74549150e-01 -2.91747414e-02 1.88768759e-01 -8.44302535e-01
-8.60051930e-01 -5.79246104e-01 8.81349891e-02 8.01417381e-02
4.48874950e-01 -3.25783044e-01 -6.51206255e-01 1.61738086e+00
8.17768574e-02 5.50832987e-01 -1.74279705e-01 7.72758842e-01
1.12028062e+00 7.98145771e-01 1.78247273e-01 -1.61215395e-01
1.47338080e+00 -7.16137171e-01 -5.80564201e-01 -1.30653949e-02
4.73362714e-01 -1.20771110e+00 6.74035788e-01 5.25949597e-01
-1.22053909e+00 -8.21996927e-01 -9.99518156e-01 4.07158762e-01
-6.28496766e-01 1.68284237e-01 1.19485252e-01 7.13455021e-01
-1.11141717e+00 4.62455541e-01 -7.34151363e-01 -4.53883231e-01
-3.25843394e-02 8.32528099e-02 -1.03175595e-01 5.36578715e-01
-1.25798774e+00 8.27839851e-01 4.49543148e-02 -1.43023282e-01
-1.08722937e+00 -9.61304963e-01 -5.70068538e-01 4.59722392e-02
-1.10807501e-01 1.22125044e-01 1.73725283e+00 -4.02947003e-03
-1.12148535e+00 7.11766243e-01 4.80910763e-02 -5.51888645e-01
3.22547942e-01 -2.13207319e-01 -1.12302709e+00 3.19851607e-01
4.28509325e-01 2.69664288e-01 4.63844746e-01 -9.73867714e-01
-1.45472825e+00 7.80446380e-02 -2.90333480e-01 1.32751346e-01
-2.57632006e-02 6.62109733e-01 -1.43266067e-01 -6.81295633e-01
3.81284617e-02 -5.43137670e-01 5.78713929e-03 -6.83855653e-01
-1.58033520e-01 -3.81424934e-01 6.69712067e-01 -5.05672157e-01
1.48200965e+00 -2.45383930e+00 -5.57507217e-01 9.83263999e-02
-1.64438188e-01 1.17171608e-01 -5.20409718e-02 8.50872099e-01
-4.49173033e-01 1.05237007e-01 1.96351767e-01 -4.55002695e-01
1.82129160e-01 -3.60538691e-01 -7.33292639e-01 3.95760953e-01
-2.86883339e-02 1.32872164e-01 -1.10997474e+00 -2.75925905e-01
3.58700067e-01 3.22999835e-01 -2.01720789e-01 2.55936474e-01
3.72396678e-01 3.84886324e-01 -1.19080670e-01 4.40203458e-01
3.04319501e-01 3.05696785e-01 -3.53471577e-01 -3.36601168e-01
-7.40164459e-01 6.88784599e-01 -1.61515951e+00 1.33118713e+00
-5.41327000e-01 9.77255881e-01 -6.53740135e-04 -7.46040821e-01
6.81316555e-01 1.01860106e+00 6.75998807e-01 -5.85404754e-01
-3.36716920e-01 5.60989082e-01 -6.03818409e-02 -4.39476609e-01
4.99079227e-01 4.82921042e-02 -2.67691135e-01 5.75286269e-01
3.27568382e-01 -5.30923717e-02 4.70245570e-01 4.35413644e-02
1.31096232e+00 -1.29187917e-02 2.40437493e-01 -1.18784681e-01
4.07199562e-01 -7.92499185e-02 1.32519946e-01 1.21247005e+00
-3.30795646e-01 9.99372363e-01 1.97862331e-02 -3.79850179e-01
-5.55360258e-01 -1.28405166e+00 -6.05747342e-01 1.55171871e+00
-1.25757858e-01 -7.30055809e-01 -7.25663543e-01 -5.48996150e-01
-3.86339009e-01 7.96455562e-01 -4.37627077e-01 -6.90042749e-02
-6.11249626e-01 -8.99642289e-01 1.18113780e+00 6.24116719e-01
-4.71987091e-02 -1.46504045e+00 -1.09383500e+00 4.55133528e-01
-3.89804095e-01 -1.05419409e+00 -1.30844370e-01 7.79664814e-01
-3.30281287e-01 -9.79585350e-01 -4.41938937e-01 -9.05796170e-01
-4.43562120e-03 1.22898906e-01 1.15847564e+00 -2.69874245e-01
-4.96183574e-01 9.73165274e-01 -6.53903961e-01 -1.04337192e+00
-1.87377006e-01 -1.41078949e-01 1.96330145e-01 -9.43768248e-02
3.70917380e-01 -5.44948876e-01 -5.37118256e-01 3.82660627e-01
-7.76433647e-01 -8.22945774e-01 1.68102056e-01 4.43535268e-01
4.75085795e-01 -6.51505291e-02 9.51173723e-01 -2.53144950e-01
5.75844049e-01 -4.45784599e-01 -2.97369450e-01 7.83728659e-02
-1.97357267e-01 -6.15229487e-01 2.26689517e-01 -3.02225620e-01
-7.66440570e-01 1.59197703e-01 -4.81279582e-01 -2.09836289e-02
-6.54696941e-01 2.47509137e-01 2.13733777e-01 -3.46448161e-02
9.95203078e-01 1.07963890e-01 -6.88167155e-01 -8.19383442e-01
-5.72417416e-02 6.98801160e-01 6.35888159e-01 -4.48080182e-01
4.45788413e-01 2.97677964e-01 -2.59562850e-01 -9.80322957e-01
-7.59182811e-01 -9.37508762e-01 -5.78916728e-01 -4.31652218e-01
7.38589287e-01 -9.07385290e-01 -1.80413738e-01 5.22657871e-01
-1.22681832e+00 4.08667810e-02 -7.02865779e-01 1.03799272e+00
-4.02335793e-01 -1.45188831e-02 -2.32289031e-01 -1.03732908e+00
4.09303717e-02 -9.25113738e-01 1.07944572e+00 2.48668250e-03
-5.14165580e-01 -8.91584396e-01 8.41824949e-01 -3.21826898e-02
3.63683492e-01 4.45417762e-02 4.28209513e-01 -1.35112309e+00
-1.59681037e-01 -6.79753363e-01 2.13771895e-01 2.92069048e-01
9.45828564e-04 -1.21739544e-01 -1.71003306e+00 -2.33090203e-02
6.80190995e-02 -8.72191321e-03 8.79087865e-01 5.29780447e-01
8.19874525e-01 2.93318301e-01 -2.65473723e-01 2.30694816e-01
9.44990814e-01 5.67158222e-01 2.68096745e-01 3.72203737e-01
1.79462165e-01 6.57305419e-01 5.81714094e-01 5.11402488e-01
7.79175684e-02 1.01595736e+00 2.96082526e-01 -5.16386516e-02
-4.75837141e-01 -1.83237791e-01 4.68201607e-01 7.57211566e-01
5.85101284e-02 -3.15517098e-01 -9.44732308e-01 9.51468170e-01
-1.49566245e+00 -1.21063781e+00 -2.23184809e-01 2.34134150e+00
4.60778564e-01 -5.65892495e-02 3.68605167e-01 6.26148224e-01
8.86927068e-01 2.35156208e-01 1.58990130e-01 -3.79628301e-01
-4.53534871e-02 5.31349182e-01 -4.18285094e-02 3.90459776e-01
-1.48753953e+00 3.94479811e-01 7.90432167e+00 8.55105519e-01
-1.04812586e+00 3.98332357e-01 2.83995364e-02 -3.90316963e-01
4.56471533e-01 -2.52189577e-01 -9.37169671e-01 5.01842320e-01
1.44578695e+00 4.86788116e-02 1.50703834e-02 6.42652571e-01
3.32670838e-01 -1.92934781e-01 -1.15784931e+00 8.46411765e-01
2.00455040e-01 -1.27643311e+00 -4.85647172e-01 -4.09705967e-01
5.11953354e-01 3.43281776e-01 -9.01461206e-03 4.07923400e-01
-2.21822679e-01 -5.67552865e-01 1.36027527e+00 4.01249826e-01
3.33482265e-01 -6.11453533e-01 8.17462564e-01 6.37950376e-02
-1.53289354e+00 -4.31345291e-02 -2.48499569e-02 -3.53069484e-01
4.71859276e-01 4.41282213e-01 -8.05296957e-01 4.67658907e-01
1.24842668e+00 3.20465952e-01 -7.53030002e-01 1.69698727e+00
-1.11350238e-01 1.15849698e+00 -6.76299632e-01 3.31525542e-02
9.19294953e-02 6.46946847e-01 1.01987088e+00 2.01479435e+00
5.11370003e-01 -2.81072408e-01 3.94222558e-01 3.70039642e-01
3.66492301e-01 2.59656966e-01 -4.92554814e-01 4.08111006e-01
7.71888673e-01 1.26663423e+00 -7.81700373e-01 -7.84981623e-02
-3.14868450e-01 2.32687175e-01 -2.77440250e-02 3.47807288e-01
-8.69028986e-01 -6.98617160e-01 3.43738496e-01 1.20329522e-01
3.45326126e-01 2.06780374e-01 -1.76417425e-01 -3.63650382e-01
1.21454552e-01 -4.12904859e-01 7.01428056e-01 -8.07555437e-01
-1.01938200e+00 9.62399364e-01 3.96648258e-01 -1.54085875e+00
-2.81005114e-01 -3.63176525e-01 -1.04758155e+00 7.94491827e-01
-1.05737722e+00 -5.76556921e-01 -1.09901108e-01 2.89724499e-01
3.02315772e-01 -2.62306601e-01 1.11322498e+00 8.24718773e-01
-3.76857162e-01 6.78898752e-01 -3.83358859e-02 -3.76837738e-02
9.61915195e-01 -1.41294062e+00 2.64830917e-01 9.12696362e-01
9.59867358e-01 1.87031016e-01 7.85034180e-01 -2.90437102e-01
-3.54290843e-01 -1.08265865e+00 1.28619039e+00 -8.40292752e-01
6.64091170e-01 -3.46522063e-01 -6.71275854e-01 3.66327345e-01
7.77968615e-02 6.11190945e-02 8.86913776e-01 1.47429377e-01
-3.01781110e-02 -1.79727972e-01 -8.16549838e-01 7.89485127e-03
7.03423977e-01 -7.61412561e-01 -7.06484020e-01 5.47690213e-01
4.01060104e-01 -4.97928828e-01 -6.73531711e-01 2.95184374e-01
4.06119138e-01 -9.15340006e-01 1.14117754e+00 -5.33168733e-01
-1.35117158e-01 -4.87496763e-01 -4.25572932e-01 -1.10562098e+00
-3.77181709e-01 -5.24187565e-01 6.54283464e-02 1.39830554e+00
5.61573327e-01 -2.52183855e-01 3.05794209e-01 -2.24710822e-01
-6.49751723e-01 -3.66662353e-01 -1.41187346e+00 -8.70954990e-01
-2.87576497e-01 -1.20341611e+00 1.91876799e-01 3.89769733e-01
6.88867271e-02 2.37432092e-01 -1.16903648e-01 5.76817214e-01
3.02387565e-01 -2.03211665e-01 3.83662462e-01 -1.12859142e+00
-1.55493617e-01 -5.14606774e-01 -8.29303801e-01 -5.64262331e-01
-5.16861379e-01 -8.43130112e-01 5.58350742e-01 -1.40343320e+00
-2.89150178e-01 -7.35092014e-02 -9.78312373e-01 2.98044473e-01
-2.77660843e-02 6.53413594e-01 4.55452055e-02 1.94273174e-01
-8.05147827e-01 -1.40601531e-01 3.81780267e-01 2.72183746e-01
-3.49138081e-01 5.38226724e-01 -3.83402109e-01 8.89415920e-01
5.11557221e-01 -8.18248749e-01 -1.62210867e-01 -2.09064156e-01
3.32101315e-01 -1.20641142e-01 7.36361206e-01 -1.74925387e+00
6.20311797e-01 3.54903817e-01 2.73395807e-01 -9.95734096e-01
4.36746329e-01 -5.37868857e-01 4.84770387e-02 9.25115794e-02
-5.92972875e-01 1.26834750e-01 5.55512369e-01 4.79397297e-01
-6.23631775e-01 -4.94546443e-01 7.60254502e-01 6.65241778e-02
-8.97584319e-01 -2.23453283e-01 -7.79401779e-01 4.05682236e-01
9.57091093e-01 -1.34966642e-01 6.43967539e-02 -3.59527439e-01
-1.27879429e+00 -3.19524467e-01 -4.65029329e-01 5.62768102e-01
3.13684702e-01 -1.28147709e+00 -8.98170412e-01 8.75438377e-02
2.72117794e-01 -5.00771761e-01 4.80536401e-01 9.75117922e-01
-3.77677470e-01 5.55127501e-01 9.24985036e-02 -7.27050424e-01
-1.29582453e+00 1.13008350e-01 5.03202200e-01 -3.05567175e-01
-4.50559735e-01 1.23466587e+00 1.91411093e-01 -2.93658346e-01
7.37648368e-01 -4.89873469e-01 -5.11951268e-01 4.61684704e-01
8.98845017e-01 6.78125918e-01 6.48125410e-01 -6.26511037e-01
-8.19967449e-01 4.30230319e-01 2.55194277e-01 -5.03523231e-01
1.23125231e+00 -1.15768146e-02 2.03568086e-01 8.00549090e-01
1.01951504e+00 3.58879983e-01 -7.90547848e-01 -3.37366872e-02
1.42671019e-01 -1.09684236e-01 2.44692937e-01 -1.24996269e+00
-6.32978559e-01 1.11092806e+00 1.03331769e+00 6.92863762e-01
9.55417752e-01 2.21941844e-01 3.67472261e-01 1.52164191e-01
1.93869770e-01 -1.19105041e+00 1.13877840e-01 5.87567627e-01
9.99363184e-01 -7.53281832e-01 -2.07699880e-01 -1.22686982e-01
-2.79399067e-01 1.11794233e+00 3.07852179e-01 -8.78403410e-02
1.07829130e+00 4.95986134e-01 1.77192807e-01 -3.27787578e-01
-5.49297333e-01 -1.13192782e-01 5.35299003e-01 8.06378543e-01
4.18500900e-01 -7.56583139e-02 -3.57622355e-02 1.09404719e+00
-3.88327271e-01 -4.94508743e-01 5.99960834e-02 1.03391981e+00
-6.26514256e-01 -7.38445222e-01 -6.53317571e-01 2.63342559e-01
-8.08400095e-01 -1.48914754e-01 -3.51198405e-01 6.30401611e-01
5.59776306e-01 1.33041263e+00 1.87017843e-01 -4.63090330e-01
9.62821662e-01 2.28925362e-01 1.56150386e-01 -9.21732962e-01
-1.23144913e+00 1.73887357e-01 3.63857239e-01 -4.48508263e-01
-2.81620979e-01 -1.05990696e+00 -1.11376095e+00 5.72388589e-01
-3.35319668e-01 6.56588137e-01 7.73678839e-01 8.40033054e-01
1.14488542e-01 9.90098238e-01 6.56694949e-01 -1.04266107e+00
-3.94097477e-01 -1.11622155e+00 -6.61603808e-01 1.88042015e-01
3.97165895e-01 -5.53056955e-01 -8.85891914e-01 1.79743722e-01] | [15.120392799377441, 5.16060733795166] |
3fbd9332-d9a3-4787-a16e-79c2e7afc9b6 | l3das21-challenge-machine-learning-for-3d | 2104.05499 | null | https://arxiv.org/abs/2104.05499v3 | https://arxiv.org/pdf/2104.05499v3.pdf | L3DAS21 Challenge: Machine Learning for 3D Audio Signal Processing | The L3DAS21 Challenge is aimed at encouraging and fostering collaborative research on machine learning for 3D audio signal processing, with particular focus on 3D speech enhancement (SE) and 3D sound localization and detection (SELD). Alongside with the challenge, we release the L3DAS21 dataset, a 65 hours 3D audio corpus, accompanied with a Python API that facilitates the data usage and results submission stage. Usually, machine learning approaches to 3D audio tasks are based on single-perspective Ambisonics recordings or on arrays of single-capsule microphones. We propose, instead, a novel multichannel audio configuration based multiple-source and multiple-perspective Ambisonics recordings, performed with an array of two first-order Ambisonics microphones. To the best of our knowledge, it is the first time that a dual-mic Ambisonics configuration is used for these tasks. We provide baseline models and results for both tasks, obtained with state-of-the-art architectures: FaSNet for SE and SELDNet for SELD. This report is aimed at providing all needed information to participate in the L3DAS21 Challenge, illustrating the details of the L3DAS21 dataset, the challenge tasks and the baseline models. | ['Danilo Comminiello', 'Aurelio Uncini', 'Enrico Rocchi', 'Sveva Pepe', 'Marco Pennese', 'Ludovica Paglialunga', 'Leonardo Nucciarelli', 'Giuseppe Nachira', 'Claudia Medaglia', 'Edoardo Massaro', 'Christian Marinoni', 'Saeid Jamili', 'Riccardo F. Gramaccioni', 'Eric Guizzo'] | 2021-04-12 | null | null | null | null | ['audio-signal-processing'] | ['audio'] | [-1.74326077e-01 -3.23482394e-01 7.02403486e-01 -7.79503840e-04
-1.37887120e+00 -5.83244920e-01 4.63024974e-01 -9.73306298e-02
-2.89687127e-01 -5.34335561e-02 5.99709392e-01 -9.74242613e-02
-5.23483716e-02 -1.62041172e-01 -7.14275420e-01 -7.07307339e-01
-4.54544544e-01 1.40313581e-01 3.83443050e-02 -5.94732426e-02
-1.08612813e-01 5.19132555e-01 -1.93613231e+00 6.12923265e-01
-1.50492415e-01 1.36267090e+00 1.23858303e-01 1.32517529e+00
2.78143138e-01 2.32950911e-01 -8.41827154e-01 7.72137847e-03
3.41300368e-01 -7.33057931e-02 -3.56726378e-01 -2.60687500e-01
6.86742902e-01 -9.67587680e-02 -2.12597504e-01 5.97041547e-01
1.42854917e+00 1.77445248e-01 4.38148439e-01 -1.15563726e+00
-2.36385912e-01 6.30115688e-01 -2.13895902e-01 2.97106445e-01
7.19119489e-01 7.25550577e-02 1.10680163e+00 -1.40131199e+00
4.29412760e-02 1.28366804e+00 1.07400501e+00 2.14797914e-01
-9.04004037e-01 -5.95027506e-01 -5.80956712e-02 2.35672548e-01
-1.36344516e+00 -8.81097853e-01 9.63396847e-01 -5.52108765e-01
1.27277553e+00 4.83189940e-01 7.43766546e-01 1.53267181e+00
-4.10694957e-01 8.80887568e-01 1.12193882e+00 -5.76352894e-01
4.36200261e-01 -4.82902452e-02 -1.61113158e-01 2.11237203e-02
-4.25401002e-01 3.17492396e-01 -1.11644816e+00 -2.32196733e-01
3.36417615e-01 -6.67963445e-01 -2.55128860e-01 -3.60831209e-02
-1.26403153e+00 3.47731024e-01 -5.57430908e-02 5.36220789e-01
-4.35349911e-01 -9.03503001e-02 5.62271714e-01 3.94660741e-01
8.24966311e-01 4.37073648e-01 -6.94175601e-01 -5.96000135e-01
-9.56693947e-01 3.27239871e-01 7.69187093e-01 8.32850635e-01
1.81748718e-01 3.74521017e-01 8.10751244e-02 1.24955297e+00
4.36168581e-01 7.70385027e-01 1.78365037e-01 -8.32352936e-01
3.76800835e-01 -1.79682732e-01 -2.02547893e-01 -7.48661637e-01
-4.51054186e-01 -6.60225749e-01 -5.66869974e-01 2.71169931e-01
-4.63427557e-03 -3.72085929e-01 -5.58011591e-01 1.51673174e+00
4.25772578e-01 4.99601811e-01 2.33550370e-02 1.20349705e+00
1.13556659e+00 6.41798735e-01 -4.77033049e-01 1.20662905e-01
1.12686813e+00 -8.88093531e-01 -6.20377302e-01 1.91737384e-01
2.91467488e-01 -1.28194499e+00 1.08608067e+00 9.97551799e-01
-1.28149927e+00 -8.07208717e-01 -8.15641999e-01 2.16195919e-02
-3.47703904e-01 1.47414148e-01 7.26747364e-02 9.17058408e-01
-1.31001258e+00 1.48353875e-01 -7.87809193e-01 -1.79622456e-01
8.99166316e-02 -8.06697831e-03 -4.50916171e-01 2.11173743e-01
-1.07614636e+00 5.37129343e-01 -3.78302932e-01 1.15224794e-01
-1.26404679e+00 -1.19288826e+00 -5.93392253e-01 -3.19387347e-01
1.58260912e-02 -4.59882230e-01 1.45575404e+00 -2.82217622e-01
-1.76160312e+00 9.57226098e-01 6.38104156e-02 -4.90365416e-01
4.26395714e-01 -7.43240237e-01 -6.10265434e-01 4.53099683e-02
-1.85722690e-02 3.84784818e-01 1.01141071e+00 -1.07224190e+00
-5.64288080e-01 -3.49497765e-01 -8.53361562e-02 1.00602619e-01
-2.43247107e-01 4.42460626e-01 -3.24127436e-01 -8.38787735e-01
9.69819576e-02 -7.66460478e-01 7.18431175e-02 -2.78616279e-01
-6.13767087e-01 1.31503627e-01 7.51454234e-01 -8.68307352e-01
9.11996245e-01 -2.46371675e+00 1.74858913e-01 -7.12443218e-02
1.87812690e-02 3.73990208e-01 -2.28217170e-01 4.15418208e-01
-3.41029704e-01 -1.44218847e-01 -1.57270193e-01 -1.01783967e+00
4.61735874e-01 -5.11808813e-01 -4.75174159e-01 4.64532435e-01
-3.41461413e-02 1.52708575e-01 -4.52622175e-01 5.84031679e-02
4.48991090e-01 8.45453680e-01 -9.09606099e-01 4.18070465e-01
2.38060996e-01 6.24600947e-01 1.45429730e-01 8.59964907e-01
8.34036231e-01 5.76876998e-01 -7.23857820e-01 -3.39835286e-01
-4.24264759e-01 6.81041539e-01 -1.52630830e+00 1.93174744e+00
-8.66955280e-01 6.70097113e-01 9.08987403e-01 -8.15354943e-01
1.10045493e+00 7.56382763e-01 5.25540411e-01 -3.56043130e-01
-3.33550163e-02 6.35989845e-01 -4.08127248e-01 -5.61116397e-01
2.37220839e-01 -1.02559052e-01 -3.59473191e-02 4.67129588e-01
3.11464518e-01 -6.52220726e-01 -1.16754517e-01 -2.05061704e-01
1.22378254e+00 -1.26501516e-01 -7.40223527e-02 -1.21616937e-01
6.58885181e-01 -5.12542844e-01 1.12136304e-01 6.48068488e-01
-2.39378393e-01 1.09885037e+00 4.21118140e-02 -7.86442682e-02
-9.09396708e-01 -1.27579963e+00 -1.49011523e-01 1.10412765e+00
-5.45372009e-01 -5.47031701e-01 -7.79042602e-01 -3.02581847e-01
1.47047359e-03 5.24994254e-01 -2.23198578e-01 2.06700668e-01
-4.85498726e-01 -3.83294195e-01 1.22830296e+00 2.92227179e-01
3.35347474e-01 -7.47988403e-01 -2.73295671e-01 2.60055184e-01
-1.35727912e-01 -1.23231590e+00 -4.70176488e-01 3.23683172e-01
-3.41205716e-01 -8.98231268e-01 -8.83889079e-01 -6.51508510e-01
-2.85454959e-01 2.24984393e-01 9.44310844e-01 -4.72100019e-01
-3.22289914e-01 1.00258839e+00 -4.49086934e-01 -7.79760182e-01
-3.14609319e-01 -8.48556533e-02 6.72188282e-01 1.19170465e-01
1.82329759e-01 -1.11120021e+00 -4.74832892e-01 2.24513724e-01
-5.64040363e-01 -3.68503749e-01 2.93338954e-01 3.80541921e-01
6.20509803e-01 -1.42799720e-01 5.95343590e-01 7.37408400e-02
6.07270122e-01 -3.65341812e-01 -3.80588204e-01 -5.39491594e-01
7.13078603e-02 -7.01248765e-01 5.52416444e-01 -3.25947881e-01
-8.71561468e-01 -5.69861867e-02 -1.18160653e+00 -7.06840515e-01
-7.42326379e-01 3.96929793e-02 -4.11934376e-01 1.19522676e-01
7.71583557e-01 2.36041248e-02 -3.07779908e-01 -1.32309449e+00
2.20758706e-01 1.41326642e+00 4.92531538e-01 -4.01577443e-01
4.76536155e-01 5.35958052e-01 -2.20711343e-02 -1.46780229e+00
-6.94969356e-01 -6.97624862e-01 -5.66655159e-01 -1.55076727e-01
8.01432550e-01 -1.29758048e+00 -4.70649660e-01 1.02230024e+00
-1.21075439e+00 -4.21946079e-01 -4.46429610e-01 8.74602079e-01
-7.19910383e-01 1.05640121e-01 -6.63999796e-01 -1.07294989e+00
-3.45284671e-01 -1.18391204e+00 1.52492261e+00 -3.87789696e-01
-3.04564953e-01 -9.09999907e-01 4.89113957e-01 5.01794338e-01
6.06364667e-01 -7.34314844e-02 4.34001416e-01 -7.24713326e-01
-1.55841023e-01 -4.83601764e-02 3.52335125e-01 8.11620951e-01
-6.01208955e-02 -2.60381550e-01 -1.84114110e+00 -1.40070692e-01
2.66546130e-01 -2.75964886e-01 7.55703986e-01 6.84948623e-01
1.04279089e+00 7.47091323e-02 1.34798050e-01 6.43367887e-01
6.32051528e-01 1.56479955e-01 2.11594373e-01 1.74283326e-01
4.66223836e-01 6.29065156e-01 5.59305906e-01 6.44644499e-01
2.33071581e-01 9.56538260e-01 5.84200323e-01 -2.84325004e-01
-6.87029421e-01 -1.84971631e-01 6.06600463e-01 1.36787927e+00
2.35634789e-01 -2.26487070e-01 -9.13666368e-01 8.32210004e-01
-9.51400042e-01 -5.96618891e-01 -2.93258548e-01 2.02350783e+00
6.27581656e-01 -2.19107702e-01 3.05274665e-01 8.41254652e-01
6.98745608e-01 4.03604925e-01 -8.80264565e-02 -5.32820344e-01
-3.04292768e-01 4.93054658e-01 -2.08334729e-01 7.62880087e-01
-1.39274406e+00 4.15074557e-01 6.32750177e+00 8.68413866e-01
-1.28376198e+00 4.93166178e-01 1.41023502e-01 -6.20682359e-01
1.96940713e-02 -4.94029820e-01 -9.48013186e-01 3.01398754e-01
1.09022212e+00 4.84478235e-01 5.19146621e-01 7.84941316e-01
5.43400228e-01 2.51210511e-01 -1.16981184e+00 1.24823475e+00
1.60244077e-01 -1.00008261e+00 -3.14392209e-01 -1.19670779e-01
3.88410419e-01 3.67590278e-01 3.53649706e-01 2.10949033e-01
-3.25786769e-01 -6.60382926e-01 1.18280518e+00 3.03425819e-01
7.77202070e-01 -6.21153295e-01 3.28228414e-01 2.49921709e-01
-1.25379097e+00 -1.13723107e-01 6.84061795e-02 -5.55340685e-02
3.71041387e-01 9.97364700e-01 -9.04781878e-01 3.93206060e-01
1.40308249e+00 6.90527022e-01 -2.72020493e-02 1.23288226e+00
-1.33964241e-01 1.00382864e+00 -7.11421013e-01 2.73372352e-01
7.99590647e-02 3.63027841e-01 1.50703466e+00 1.64783025e+00
7.32335210e-01 -2.53105313e-01 -1.37790501e-01 6.44222200e-01
8.02232549e-02 7.56053850e-02 -5.91011882e-01 2.06893340e-01
4.19695407e-01 1.06632769e+00 -4.95051630e-02 2.33815059e-01
-2.63112456e-01 5.00566006e-01 -4.26895380e-01 1.28895715e-01
-6.03868127e-01 -6.49089277e-01 1.14909101e+00 2.57129192e-01
4.13311630e-01 -3.80753964e-01 -2.13690937e-01 -7.39305019e-01
3.99441570e-02 -9.75601375e-01 2.24383786e-01 -1.05504394e+00
-1.40237272e+00 7.50513375e-01 -7.49931931e-02 -1.24958706e+00
-1.81883842e-01 -7.20963120e-01 -5.94720244e-01 8.11343610e-01
-1.56678033e+00 -9.81412351e-01 1.55405225e-02 7.66570210e-01
5.81316650e-01 -4.28947449e-01 9.14422452e-01 8.83822620e-01
-1.13816507e-01 4.78530526e-01 2.21677087e-02 -2.39734873e-01
1.01015425e+00 -1.20710182e+00 6.21500313e-01 5.77178717e-01
3.80481482e-01 1.87011212e-01 8.81045520e-01 -1.82579622e-01
-1.53261387e+00 -1.09073508e+00 8.82752061e-01 -3.19883853e-01
6.62567973e-01 -8.39572251e-01 -5.65162539e-01 3.74677628e-01
6.90730512e-02 -3.43032368e-02 8.25007081e-01 1.73230708e-01
-2.08785251e-01 -2.76835799e-01 -9.73009050e-01 2.77680963e-01
1.27067423e+00 -8.14259112e-01 -5.69111884e-01 3.54885936e-01
8.98865223e-01 -6.99796379e-01 -9.61659372e-01 3.40864420e-01
4.30335999e-01 -1.17430699e+00 1.30071819e+00 -4.96556163e-02
3.54936048e-02 -4.10847396e-01 -8.17252457e-01 -1.58478415e+00
2.04281151e-01 -8.92823935e-01 -1.69274136e-01 1.43448448e+00
2.44720489e-01 -4.67196703e-01 4.49276686e-01 -4.93123770e-01
-8.89803946e-01 -3.34342897e-01 -1.59746039e+00 -7.77194321e-01
1.01921171e-01 -1.37330437e+00 7.49603152e-01 5.82379639e-01
-3.10412467e-01 1.87178716e-01 -4.17254180e-01 5.25382042e-01
5.72733223e-01 -2.19684556e-01 9.83678758e-01 -1.06045747e+00
-6.23409271e-01 -2.08453983e-01 -4.52817947e-01 -1.16956282e+00
-4.61186618e-02 -7.17750311e-01 7.52530098e-02 -1.05968046e+00
-6.91810846e-01 -5.15587270e-01 -1.27065331e-01 2.13955104e-01
5.19958794e-01 5.81532061e-01 1.50298730e-01 -2.95638323e-01
-5.08548677e-01 6.40645564e-01 7.81681776e-01 -2.22489517e-02
-4.13281143e-01 4.37748969e-01 -5.04353821e-01 8.66260946e-01
6.04969978e-01 -3.78506541e-01 -1.47962347e-01 -6.30965710e-01
6.83515221e-02 -3.61342207e-02 6.85244262e-01 -1.30284882e+00
3.46214026e-01 6.54361904e-01 8.56729317e-03 -9.75580335e-01
1.11619925e+00 -6.91968620e-01 1.20946333e-01 -4.26499248e-02
-3.00053030e-01 -3.19945663e-01 5.29980719e-01 2.55356848e-01
-6.17667913e-01 2.34144405e-01 7.13217735e-01 6.78583756e-02
-1.93228126e-01 1.09317712e-01 -6.14040792e-01 1.49616152e-01
5.92714071e-01 2.41751224e-02 9.78781208e-02 -5.19801199e-01
-1.14090621e+00 -3.02384198e-01 -9.13163275e-02 5.23853600e-01
5.49225926e-01 -1.39318573e+00 -9.63570714e-01 6.13702953e-01
-1.15467533e-01 -8.43276642e-03 5.79994142e-01 1.01997495e+00
-1.32319480e-01 6.54044032e-01 9.06934440e-02 -9.48161960e-01
-1.48716855e+00 9.00414065e-02 5.95488548e-01 1.44269273e-01
-5.78634858e-01 1.28780961e+00 2.89404718e-03 -8.87749553e-01
6.20549381e-01 -2.79343367e-01 -1.36871323e-01 1.71985894e-01
6.75356507e-01 8.91787708e-01 7.95515239e-01 -7.11766064e-01
-4.58829790e-01 6.94555521e-01 4.26891983e-01 -5.97822130e-01
1.64316750e+00 -2.60725349e-01 5.79739548e-02 7.15159774e-01
1.42497182e+00 6.33120120e-01 -9.34858859e-01 -1.39374450e-01
-5.06703079e-01 -4.83389407e-01 5.47641933e-01 -9.90227461e-01
-8.27642143e-01 1.46770287e+00 9.23535049e-01 3.78116578e-01
1.36892140e+00 1.96602255e-01 7.31836855e-01 2.23874792e-01
2.26075396e-01 -8.86232913e-01 1.69944093e-01 7.44920790e-01
1.42773271e+00 -7.21207142e-01 -6.35659695e-01 -1.24565415e-01
-3.34758759e-01 8.46617162e-01 1.88861609e-01 6.07681647e-02
1.05995023e+00 8.19699764e-01 2.86046147e-01 -4.47332151e-02
-6.42303348e-01 -8.53032768e-02 3.18818122e-01 9.27278936e-01
4.06035990e-01 -1.32078797e-01 5.96663475e-01 1.00814891e+00
-6.26956344e-01 -4.68924880e-01 1.43297985e-01 7.08104312e-01
-1.79142743e-01 -1.06691396e+00 -9.19762909e-01 -6.57748878e-02
-6.78596616e-01 -2.45447233e-01 -5.87129116e-01 3.49399656e-01
3.06708097e-01 1.37715018e+00 -1.09112030e-02 -5.40977597e-01
9.32309091e-01 1.40902326e-01 3.43822092e-01 -4.80419368e-01
-9.00094569e-01 4.93745089e-01 2.21655920e-01 -4.80368376e-01
-2.72783846e-01 -1.01291335e+00 -7.62202382e-01 -1.84688509e-01
-2.65746832e-01 1.33870468e-01 1.22620714e+00 4.44269031e-01
6.80671275e-01 6.02216840e-01 8.38109195e-01 -1.47400570e+00
-4.71652389e-01 -1.08545244e+00 -9.88129497e-01 -2.06226632e-01
8.40751469e-01 -6.53113365e-01 -9.12182987e-01 -2.62789637e-01] | [15.03058910369873, 5.6143012046813965] |
c9536c10-3bd8-4c1c-9a44-26195bebcbc2 | complex-a-new-corpus-for-lexical-complexity-1 | null | null | https://aclanthology.org/2020.readi-1.9 | https://aclanthology.org/2020.readi-1.9.pdf | CompLex --- A New Corpus for Lexical Complexity Prediction from Likert Scale Data | Predicting which words are considered hard to understand for a given target population is a vital step in many NLP applications such astext simplification. This task is commonly referred to as Complex Word Identification (CWI). With a few exceptions, previous studieshave approached the task as a binary classification task in which systems predict a complexity value (complex vs. non-complex) fora set of target words in a text. This choice is motivated by the fact that all CWI datasets compiled so far have been annotated using abinary annotation scheme. Our paper addresses this limitation by presenting the first English dataset for continuous lexical complexityprediction. We use a 5-point Likert scale scheme to annotate complex words in texts from three sources/domains: the Bible, Europarl,and biomedical texts. This resulted in a corpus of 9,476 sentences each annotated by around 7 annotators. | ['Michael Cooper', 'Matthew Shardlow', 'Marcos Zampieri'] | 2020-05-01 | null | null | null | lrec-2020-5 | ['lexical-complexity-prediction', 'complex-word-identification'] | ['natural-language-processing', 'natural-language-processing'] | [ 7.04783946e-02 3.85791928e-01 -4.52540964e-01 -5.56390166e-01
-8.55955362e-01 -7.88102806e-01 7.06873715e-01 9.12710428e-01
-1.12722170e+00 1.04950428e+00 6.56039774e-01 -2.86231399e-01
-1.35804281e-01 -5.34380734e-01 -7.27065578e-02 -1.53810307e-01
4.85799849e-01 7.95490980e-01 -1.68474585e-01 -2.33206391e-01
5.14301181e-01 3.42012048e-01 -1.36788988e+00 2.40018755e-01
1.16380692e+00 5.83622158e-01 2.14351386e-01 6.78785264e-01
-5.46307385e-01 4.57258016e-01 -8.37034881e-01 -7.51665831e-01
-2.44139552e-01 -4.03004378e-01 -1.02937675e+00 -4.22776192e-01
1.89913496e-01 4.54674393e-01 2.15747565e-01 8.88913393e-01
6.70318067e-01 -6.53408021e-02 7.70268083e-01 -7.91241884e-01
-1.70291409e-01 9.36898232e-01 5.29978937e-03 2.76234031e-01
7.25144804e-01 -2.98410624e-01 1.32582426e+00 -7.02994347e-01
7.22033083e-01 1.34142148e+00 7.71310151e-01 4.37382102e-01
-1.19741261e+00 -6.99025869e-01 -1.34443164e-01 3.49104404e-01
-1.53067696e+00 -5.46842217e-01 4.86386806e-01 -5.34122884e-01
1.27619624e+00 4.41501081e-01 6.13411307e-01 9.56528127e-01
2.59966105e-01 3.05128187e-01 1.24059355e+00 -7.38349259e-01
2.47436225e-01 1.95835635e-01 5.10633171e-01 1.72790110e-01
6.44259393e-01 -4.84271675e-01 -4.68022048e-01 -1.88819885e-01
-7.56522864e-02 -5.10451198e-01 -6.73299134e-02 5.13116062e-01
-1.09200454e+00 9.23900485e-01 -1.88909203e-01 6.56390727e-01
-2.93142378e-01 -3.39735717e-01 6.94492936e-01 6.92791820e-01
6.09910727e-01 9.47321773e-01 -7.77257264e-01 -4.17866617e-01
-7.21927047e-01 3.72321337e-01 1.23816657e+00 5.37023425e-01
3.56660038e-01 -2.87753493e-01 4.85048145e-02 1.11244702e+00
3.15131634e-01 5.71901798e-01 9.24215257e-01 -4.15004253e-01
4.91810203e-01 6.45722389e-01 1.61200315e-02 -8.33027720e-01
-8.49564552e-01 -6.78458810e-02 -5.97222865e-01 -8.54122732e-03
4.87147748e-01 -1.70990452e-01 -6.78962052e-01 1.56931365e+00
1.75271600e-01 -6.70807660e-01 -6.69123828e-02 4.21604842e-01
1.20683503e+00 4.96981025e-01 6.40628636e-01 -3.82032871e-01
1.67471766e+00 -2.81190664e-01 -9.88587618e-01 -9.28944722e-02
8.62002909e-01 -1.16344428e+00 1.21770644e+00 7.49310255e-01
-9.38300014e-01 -4.48331296e-01 -9.00711417e-01 -2.29497790e-01
-8.47775459e-01 -1.82010770e-01 3.76375824e-01 9.74839032e-01
-7.62299061e-01 3.79135102e-01 -4.46474105e-01 -4.38709140e-01
8.69572014e-02 1.34893090e-01 -5.85843444e-01 1.87447414e-01
-1.40352631e+00 1.45456994e+00 6.41957343e-01 -5.21279693e-01
-1.00076422e-01 -5.21126747e-01 -7.68167913e-01 -1.62749127e-01
2.79429644e-01 -3.31073135e-01 1.16351557e+00 -8.85572374e-01
-1.29589689e+00 1.28438449e+00 -6.20700456e-02 -3.54812533e-01
1.62667960e-01 -2.01746061e-01 -6.37305856e-01 -2.24465847e-01
2.83345133e-01 3.82148534e-01 4.90404785e-01 -6.56154573e-01
-6.09410286e-01 -3.03042948e-01 5.31857423e-02 4.07715857e-01
-2.94202775e-01 4.28328127e-01 -2.41447449e-01 -1.03005135e+00
-1.96621343e-01 -7.89316773e-01 2.45211963e-02 -2.05930591e-01
-3.51756752e-01 -8.45673800e-01 7.12469965e-02 -8.75252068e-01
1.84038937e+00 -1.76510286e+00 3.57161254e-01 -1.32107288e-02
2.88945079e-01 4.74455655e-01 -4.91742278e-03 6.13304496e-01
-2.45588377e-01 4.73083407e-01 -1.16592377e-01 -3.15929115e-01
1.49631649e-01 3.20871919e-01 1.10496417e-01 3.46745998e-01
1.66992459e-03 7.42666364e-01 -9.61315513e-01 -8.93093705e-01
1.92320213e-01 1.23481266e-01 -5.17364204e-01 1.21356778e-01
-9.34335515e-02 4.47468422e-02 -1.58391565e-01 5.66172957e-01
2.42762491e-01 2.76083529e-01 2.24399835e-01 -1.00360714e-01
-4.88878757e-01 4.41662490e-01 -8.56977701e-01 1.26917243e+00
-7.01724291e-01 6.36516690e-01 -1.19963996e-01 -8.49533319e-01
6.10362172e-01 4.81311351e-01 2.51742333e-01 -4.64016587e-01
3.44042182e-01 4.82960790e-01 4.82137829e-01 -4.31541324e-01
4.17819530e-01 -3.68231326e-01 -7.09219754e-01 2.16994748e-01
1.05762303e-01 -6.39755487e-01 4.75866407e-01 -1.66663706e-01
9.26481783e-01 -1.80350795e-01 1.00564790e+00 -6.96749449e-01
6.89275146e-01 1.96546778e-01 6.15599215e-01 7.42356420e-01
-2.64448106e-01 2.62133837e-01 3.78259242e-01 -4.25028503e-01
-1.10492384e+00 -7.86633074e-01 -5.42791605e-01 1.16900957e+00
-5.02022922e-01 -7.25024819e-01 -6.44982636e-01 -2.58217365e-01
-2.67787755e-01 8.52328479e-01 -5.01915812e-01 5.45160752e-03
-4.50433880e-01 -5.73898256e-01 7.40979612e-01 9.32732597e-02
1.66209966e-01 -1.11467361e+00 -5.01840591e-01 2.76945353e-01
-4.88512397e-01 -9.75479782e-01 -3.66953313e-01 3.70356262e-01
-2.15251312e-01 -1.06981051e+00 -4.10463959e-01 -8.87259185e-01
1.26268432e-01 -2.82516986e-01 1.49409044e+00 -2.01978255e-02
-3.81346405e-01 -5.00625139e-03 -7.64341891e-01 -9.60834503e-01
-6.66161299e-01 5.02345562e-01 1.26619592e-01 -6.12397909e-01
6.24962091e-01 -7.68148527e-02 -2.39572078e-01 -7.80194923e-02
-1.00439978e+00 -3.86926606e-02 4.86218065e-01 6.80805922e-01
4.57154006e-01 -2.00707614e-02 5.54482758e-01 -1.01827788e+00
9.80848968e-01 -4.61290807e-01 -2.68796265e-01 3.17273289e-01
-5.63283145e-01 -3.62198390e-02 6.51416123e-01 -4.37666237e-01
-7.73922384e-01 2.26875283e-02 -7.81186461e-01 5.07088959e-01
-3.35820705e-01 8.92599285e-01 -2.14343280e-01 -7.28191994e-03
7.44419336e-01 -2.03652859e-01 -2.77622193e-01 -3.44876796e-01
2.76413262e-01 1.04285574e+00 2.25195020e-01 -3.81983459e-01
6.09062254e-01 -1.04035132e-01 -2.17699289e-01 -1.28546059e+00
-1.12309206e+00 -7.27950633e-01 -7.51911163e-01 -1.13799185e-01
1.07693076e+00 -7.75996506e-01 -8.06590617e-01 3.55504155e-01
-1.06204462e+00 -1.67691052e-01 -1.05936863e-01 5.18005192e-01
-1.75528884e-01 4.48648781e-01 -3.27665985e-01 -7.73249149e-01
-7.37788737e-01 -7.46340394e-01 9.03874934e-01 -7.93102384e-02
-1.19344306e+00 -1.10520792e+00 2.65834153e-01 2.14452505e-01
2.71231115e-01 2.68162161e-01 1.21777439e+00 -9.33175445e-01
6.22726440e-01 -3.99941713e-01 1.08427808e-01 2.03027800e-01
5.96562363e-02 -1.33661002e-01 -6.42721117e-01 1.36818916e-01
1.96628004e-01 -5.16460061e-01 4.52556640e-01 1.27532363e-01
8.86824608e-01 -3.36997747e-01 -9.71623436e-02 1.28875315e-01
1.33755279e+00 6.46695942e-02 5.35283983e-01 3.37675095e-01
5.20592332e-01 6.36767209e-01 7.61236548e-01 4.49152738e-01
4.31538403e-01 7.08302379e-01 -2.07880959e-01 1.13317877e-01
-1.23847872e-02 1.45738423e-01 1.46875069e-01 1.13672316e+00
1.31701201e-01 -4.45143312e-01 -1.44150758e+00 4.43481416e-01
-1.18665898e+00 -6.82720244e-01 -9.19071883e-02 2.00736427e+00
1.39215291e+00 4.27132636e-01 9.11088586e-02 4.86744374e-01
4.62123394e-01 -8.77309889e-02 -1.02925442e-01 -7.94633448e-01
-1.86110169e-01 5.33824325e-01 4.46535528e-01 7.79672384e-01
-1.01555634e+00 1.01024461e+00 6.27979279e+00 1.11567068e+00
-9.70833480e-01 1.36308384e-03 6.15065515e-01 2.29592279e-01
-2.50111252e-01 -2.75335163e-01 -9.84466076e-01 5.42849064e-01
1.36823988e+00 -5.75074077e-01 3.39277267e-01 5.25620759e-01
2.25344658e-01 -3.33326966e-01 -9.02590871e-01 9.73654032e-01
2.47924596e-01 -7.49052942e-01 1.53809473e-01 -2.50540435e-01
1.35847285e-01 1.43270552e-01 -2.23234698e-01 5.61951756e-01
2.28951827e-01 -1.21407855e+00 6.92457080e-01 5.00283539e-01
1.13010406e+00 -6.66059196e-01 8.44669580e-01 4.55520213e-01
-9.44374979e-01 8.75177830e-02 -1.65716708e-01 -1.25506684e-01
1.17305532e-01 5.64572036e-01 -6.95844769e-01 2.63913810e-01
5.93452692e-01 2.92110264e-01 -5.56794822e-01 9.01167393e-01
-1.05347291e-01 6.83345795e-01 -3.94418776e-01 -4.33139950e-01
-9.78309382e-03 -3.15656513e-02 3.51166695e-01 1.46770561e+00
-2.76848581e-02 2.34325409e-01 1.75174832e-01 1.24626897e-01
-8.06209072e-02 7.65464127e-01 -3.15579206e-01 -5.05995929e-01
7.19787776e-01 1.18266022e+00 -8.62905920e-01 -3.80318224e-01
-5.77749729e-01 7.19240785e-01 3.36407334e-01 -2.69423634e-01
-6.11317039e-01 -9.17879641e-01 3.89043242e-01 -3.05636283e-02
-1.50010154e-01 -2.11528286e-01 -6.24116361e-01 -1.05256522e+00
-2.45482415e-01 -1.00228965e+00 6.50273860e-01 -4.56789643e-01
-1.42337191e+00 7.75597870e-01 3.20841640e-01 -9.46791828e-01
-8.37618262e-02 -7.78815866e-01 -2.67517686e-01 9.65429842e-01
-1.51669347e+00 -6.80446029e-01 -1.35317191e-01 1.97265431e-01
7.61815369e-01 2.09576562e-02 1.26805365e+00 4.25660819e-01
-3.03310782e-01 6.00970924e-01 -5.70505559e-02 2.77352314e-02
9.19880152e-01 -1.42089653e+00 3.06229234e-01 1.61162972e-01
-2.96580881e-01 6.46026969e-01 9.77320194e-01 -8.76677692e-01
-8.20324957e-01 -7.59144247e-01 1.99059093e+00 -5.72050810e-01
9.08374071e-01 -4.35410380e-01 -8.08306813e-01 1.27384424e-01
2.45930582e-01 -5.90782821e-01 1.27106214e+00 1.43329695e-01
-1.84587970e-01 3.26424986e-01 -1.11568117e+00 7.13581324e-01
7.66167402e-01 -6.07824981e-01 -1.04333413e+00 5.37931740e-01
5.19585311e-01 -3.30693156e-01 -1.27059519e+00 2.10550845e-01
6.11473382e-01 -5.01180053e-01 8.20570946e-01 -6.07941329e-01
3.54053676e-01 9.64461565e-02 3.96849103e-02 -1.48603201e+00
-2.70793945e-01 -4.37614471e-01 1.82230487e-01 9.44454372e-01
4.77189511e-01 -5.77050805e-01 4.75702345e-01 7.07457542e-01
-2.68689454e-01 -7.41515100e-01 -1.12711620e+00 -4.88216639e-01
5.99937499e-01 -3.39110374e-01 4.33311492e-01 1.04345655e+00
2.82734454e-01 7.76647270e-01 -2.37087887e-02 -4.28721279e-01
9.88063887e-02 -2.84783959e-01 3.82971168e-01 -1.71881711e+00
2.74046715e-02 -7.65241563e-01 -5.66143751e-01 -3.80652130e-01
3.84185880e-01 -1.02127206e+00 -3.84687334e-02 -1.36751997e+00
1.56337261e-01 -3.02358121e-01 1.27193332e-01 4.07911986e-01
-4.37497973e-01 2.50071853e-01 -1.11853711e-01 1.02169059e-01
-4.04856056e-01 3.53511542e-01 7.58401752e-01 1.33994445e-01
-4.25751414e-03 -1.80875033e-01 -6.91723704e-01 8.17531466e-01
1.10611355e+00 -5.46541929e-01 -2.92004526e-01 -2.58644730e-01
5.34173608e-01 -2.34970465e-01 -3.09663296e-01 -8.47146571e-01
-7.59442598e-02 -2.93927699e-01 2.47854427e-01 -4.76026326e-01
2.11464852e-01 -6.44245327e-01 2.28923962e-01 7.22065628e-01
-4.73997086e-01 3.04679543e-01 2.88111806e-01 1.95942178e-01
-1.57009587e-01 -7.24702120e-01 7.90852904e-01 -2.58184999e-01
-5.31790793e-01 2.88125277e-02 -7.70926476e-01 5.38051307e-01
9.35385346e-01 -1.26333818e-01 -8.16811845e-02 -2.60537714e-01
-8.68994415e-01 -2.18574833e-02 2.32668802e-01 3.09449643e-01
2.81757027e-01 -1.00863922e+00 -9.80710030e-01 -2.90268630e-01
4.12614167e-01 -4.36093122e-01 -9.81861800e-02 5.15275836e-01
-7.08542645e-01 6.84494436e-01 -1.41837880e-01 -4.04829858e-03
-1.45907867e+00 3.44123453e-01 1.04911542e-02 -4.24691290e-01
-2.89916456e-01 6.84712768e-01 -2.43763492e-01 -5.50671339e-01
1.92522436e-01 -3.39919180e-01 -7.89637506e-01 5.71698606e-01
5.39140165e-01 2.67595857e-01 3.12844336e-01 -9.90146279e-01
-2.42130175e-01 3.73020560e-01 -1.51340678e-01 -1.47342160e-01
1.23871291e+00 -1.12334572e-01 -3.09629887e-01 8.60550106e-01
1.23364604e+00 9.60153788e-02 5.17339110e-02 -1.96789309e-01
4.94481117e-01 -1.64507389e-01 -4.08780128e-02 -7.34877467e-01
-6.35372251e-02 4.59687471e-01 4.30339843e-01 2.24286407e-01
8.69570732e-01 -5.65489894e-03 6.25976205e-01 7.01197565e-01
1.53453559e-01 -1.68518400e+00 -2.28139490e-01 8.62465203e-01
1.04275596e+00 -1.32554221e+00 1.12367958e-01 -6.00293636e-01
-6.41211212e-01 1.02714205e+00 2.16519773e-01 2.93667823e-01
8.64018977e-01 2.26766360e-03 1.34656042e-01 -1.94024861e-01
-5.08795083e-01 -3.32906157e-01 4.62545335e-01 3.48969400e-01
1.07187903e+00 2.00791836e-01 -1.33816111e+00 7.44367719e-01
-6.63927853e-01 -3.05104166e-01 4.64612037e-01 8.38992536e-01
-4.71512079e-01 -1.32810640e+00 -2.20273092e-01 9.42690849e-01
-8.52623045e-01 -3.85692626e-01 -6.28314674e-01 7.84671426e-01
8.94540623e-02 1.04043555e+00 -1.84878334e-01 -1.41911432e-01
3.84570628e-01 1.55231744e-01 2.02948287e-01 -1.00052559e+00
-8.86768341e-01 -2.39286691e-01 5.15031874e-01 -1.94444776e-01
-3.18519890e-01 -6.96335495e-01 -1.11141229e+00 -3.27274203e-01
-2.41998330e-01 4.68310773e-01 7.61257887e-01 9.42829609e-01
-1.85770229e-01 3.01480740e-01 1.55567423e-01 -6.37796223e-01
-3.81466776e-01 -1.13221753e+00 -3.31379980e-01 7.33684480e-01
-1.79294718e-03 -5.41928709e-01 -1.86293438e-01 -6.92615658e-03] | [10.678643226623535, 10.400710105895996] |
dc6d93f4-7fb1-496b-be1a-e60a861af777 | feature-compression-for-rate-constrained | 2204.07314 | null | https://arxiv.org/abs/2204.07314v1 | https://arxiv.org/pdf/2204.07314v1.pdf | Feature Compression for Rate Constrained Object Detection on the Edge | Recent advances in computer vision has led to a growth of interest in deploying visual analytics model on mobile devices. However, most mobile devices have limited computing power, which prohibits them from running large scale visual analytics neural networks. An emerging approach to solve this problem is to offload the computation of these neural networks to computing resources at an edge server. Efficient computation offloading requires optimizing the trade-off between multiple objectives including compressed data rate, analytics performance, and computation speed. In this work, we consider a "split computation" system to offload a part of the computation of the YOLO object detection model. We propose a learnable feature compression approach to compress the intermediate YOLO features with light-weight computation. We train the feature compression and decompression module together with the YOLO model to optimize the object detection accuracy under a rate constraint. Compared to baseline methods that apply either standard image compression or learned image compression at the mobile and perform image decompression and YOLO at the edge, the proposed system achieves higher detection accuracy at the low to medium rate range. Furthermore, the proposed system requires substantially lower computation time on the mobile device with CPU only. | ['Yao Wang', 'Elza Erkip', 'Siddharth Garg', 'Samyak Rawlekar', 'Zhongzheng Yuan'] | 2022-04-15 | null | null | null | null | ['feature-compression'] | ['computer-vision'] | [ 2.64376700e-01 -2.59540915e-01 -3.08389455e-01 -2.14400128e-01
-1.55681387e-01 -9.23775882e-02 -2.57132966e-02 -4.67080288e-02
-6.40272975e-01 -1.15856223e-01 -3.06516975e-01 -1.76297188e-01
1.55482784e-01 -8.20169091e-01 -7.70691037e-01 -5.96812963e-01
2.34076768e-01 3.48620385e-01 3.41638893e-01 2.76163995e-01
-1.12385745e-03 4.01160747e-01 -1.92548740e+00 1.99879587e-01
7.53739655e-01 1.59797871e+00 5.72014213e-01 1.17982590e+00
2.98168570e-01 9.33080554e-01 -3.79344910e-01 -2.20024064e-01
4.82347906e-01 -1.90834459e-02 -1.73013918e-02 1.24203473e-01
7.33553946e-01 -7.51855016e-01 -5.35135508e-01 1.17525744e+00
6.10694110e-01 -8.04395042e-03 3.69003028e-01 -1.72245336e+00
-5.64158976e-01 2.77278930e-01 -6.76693499e-01 5.73110163e-01
-1.73261538e-01 1.71647564e-01 8.29821467e-01 -9.49884772e-01
4.48795378e-01 7.60173738e-01 6.62688136e-01 2.24789396e-01
-7.62178779e-01 -4.87541586e-01 2.88034091e-03 6.84169710e-01
-1.33783245e+00 -5.91824293e-01 5.05389571e-01 -2.33207345e-01
1.36239421e+00 1.99976265e-01 8.64092886e-01 3.53505313e-01
1.48785934e-01 8.18431079e-01 4.39121425e-01 -5.06631792e-01
4.02531981e-01 1.83186561e-01 1.19872600e-01 9.11179364e-01
5.62870443e-01 -1.08098455e-01 -8.64076853e-01 1.62291065e-01
4.76998240e-01 5.61638772e-01 -3.28168012e-02 -2.34026968e-01
-5.92804849e-01 6.27087176e-01 5.45226991e-01 -2.08815739e-01
-5.11870801e-01 5.02301931e-01 5.81135333e-01 3.51680845e-01
3.83239210e-01 -3.33251506e-01 -3.15278739e-01 -2.13235095e-01
-1.32347918e+00 8.76602158e-02 7.34039783e-01 1.03575027e+00
6.72543287e-01 1.46284893e-01 1.94603987e-02 6.25306964e-01
3.75481606e-01 6.96362019e-01 7.02058613e-01 -9.40486252e-01
7.44851351e-01 7.74917245e-01 -3.54346961e-01 -1.21783602e+00
-2.84226984e-01 -3.61939877e-01 -8.39523315e-01 2.73160845e-01
1.32426143e-01 -1.09632015e-01 -1.01383734e+00 1.11875761e+00
5.19014716e-01 2.92448252e-01 -4.98053469e-02 1.24605978e+00
6.29954636e-01 7.72035956e-01 -7.04217181e-02 -1.72338396e-01
1.40102756e+00 -1.44444752e+00 -4.73738700e-01 -3.67759049e-01
6.19975507e-01 -6.14875376e-01 1.28213084e+00 2.79196531e-01
-1.07999241e+00 -4.64295477e-01 -1.40909624e+00 -5.46574473e-01
-1.71114907e-01 6.35197282e-01 6.03271008e-01 7.24014640e-01
-9.37704444e-01 2.48195320e-01 -1.15443063e+00 -1.55517891e-01
5.96085966e-01 5.86393714e-01 3.59508581e-02 -1.13978297e-01
-3.83547902e-01 3.49963844e-01 3.28212410e-01 7.66011402e-02
-8.93230796e-01 -6.79607213e-01 -6.29154086e-01 6.48170710e-01
5.01292408e-01 -7.83516049e-01 1.17490149e+00 -1.08289397e+00
-1.33247638e+00 6.29572511e-01 -1.39868379e-01 -7.94587612e-01
4.39189702e-01 -5.69991887e-01 4.44430895e-02 3.91711503e-01
-2.64068972e-02 6.13894403e-01 1.17608118e+00 -6.43680573e-01
-1.07984662e+00 -5.88307917e-01 -1.01487324e-01 4.96206015e-01
-8.92602444e-01 -2.86342174e-01 -1.05993140e+00 -4.87653345e-01
8.86227284e-03 -1.00676548e+00 -5.40822968e-02 2.67667472e-01
-4.12611440e-02 -4.01369967e-02 1.32545459e+00 -5.70819676e-01
1.29673791e+00 -2.25799823e+00 -7.97806457e-02 1.87774688e-01
5.31577587e-01 4.14694816e-01 1.91912621e-01 -2.48263270e-01
4.71107483e-01 -3.21951300e-01 1.29447088e-01 -5.32541215e-01
-2.35775173e-01 1.17213950e-02 -2.90900737e-01 3.12250882e-01
-1.79627314e-01 9.01219845e-01 -3.31785500e-01 -5.82281828e-01
1.45620912e-01 6.31525397e-01 -9.63575304e-01 2.93606669e-01
-1.76829845e-01 -3.60480815e-01 -2.96591938e-01 1.03674948e+00
4.91015136e-01 -6.42468572e-01 -5.89354187e-02 -1.98604763e-01
1.16898619e-01 -3.06658447e-01 -9.02758420e-01 1.25806713e+00
-5.42014480e-01 9.91437554e-01 1.30077571e-01 -9.47047412e-01
6.06499970e-01 -6.61390424e-02 4.01636899e-01 -8.01662266e-01
3.63407671e-01 1.61068588e-02 -2.00694770e-01 -6.03163600e-01
6.23721242e-01 3.70308250e-01 3.84990484e-01 2.60993540e-01
-1.55321449e-01 3.18569571e-01 1.55096188e-01 2.08194762e-01
1.16882217e+00 -1.01634033e-01 1.46261707e-01 3.38349640e-01
2.35292077e-01 1.45715699e-01 3.78267556e-01 7.56019711e-01
-2.88805574e-01 2.07335636e-01 3.12407166e-01 -6.07609987e-01
-1.27216816e+00 -6.83418632e-01 1.82720274e-01 1.67969203e+00
2.07322508e-01 -5.47431946e-01 -1.08900869e+00 -3.13195646e-01
-2.48075463e-02 2.47595739e-03 -2.10091412e-01 -1.56714529e-01
-5.62108397e-01 -6.87002718e-01 5.49917579e-01 6.53960109e-01
8.78451765e-01 -8.37804854e-01 -1.70172882e+00 -1.75542921e-01
1.51858956e-01 -1.36313713e+00 -5.52380383e-01 2.07030654e-01
-1.02628672e+00 -9.21570957e-01 -5.57176411e-01 -8.78995061e-01
7.71863401e-01 6.23250902e-01 6.67395890e-01 1.76685721e-01
-6.55975342e-01 2.60030627e-01 -3.30353826e-01 -6.90396905e-01
2.66473889e-01 3.34384143e-01 7.73859099e-02 5.03002182e-02
6.23753369e-01 -4.26821053e-01 -7.58419573e-01 4.60105715e-04
-9.20395136e-01 2.34092072e-01 6.54642940e-01 6.78274989e-01
1.00470138e+00 -6.05926774e-02 1.40081927e-01 -7.14164317e-01
4.92956161e-01 -3.85955036e-01 -8.79656613e-01 2.56131411e-01
-1.04927516e+00 -1.67474952e-02 8.76322329e-01 -5.69521427e-01
-6.28887415e-01 4.39109117e-01 2.78925061e-01 -1.02435195e+00
3.36783916e-01 3.60447109e-01 -1.27032384e-01 -1.60400122e-01
4.69427407e-01 2.41125003e-01 -5.42846806e-02 -2.64727294e-01
2.81990826e-01 8.70807290e-01 5.92182815e-01 7.67813846e-02
4.19334799e-01 6.14973664e-01 2.25626081e-02 -9.68548656e-01
-5.66000342e-01 -4.10420775e-01 -1.73373923e-01 -1.76349208e-01
6.91855490e-01 -1.06089830e+00 -1.03536129e+00 3.73807669e-01
-7.59120286e-01 -2.63567716e-01 -2.93995887e-01 4.20433372e-01
-5.81858933e-01 1.23735145e-01 -4.36409026e-01 -5.98377109e-01
-8.98874283e-01 -1.13644660e+00 1.04734910e+00 5.00101566e-01
3.79217654e-01 -3.39889944e-01 -3.18123937e-01 3.88388276e-01
5.18031240e-01 -7.50418156e-02 4.36184496e-01 -1.53302759e-01
-9.06931698e-01 -4.74405169e-01 -7.60535538e-01 1.99068561e-01
-4.75985229e-01 -2.71389991e-01 -9.49489594e-01 -5.20333350e-01
9.82308313e-02 -3.88330013e-01 1.06923306e+00 6.47462428e-01
1.29470408e+00 -5.20625949e-01 -4.06014830e-01 1.33679831e+00
1.46431470e+00 2.01867431e-01 1.20955646e-01 3.74278367e-01
9.57304657e-01 9.85326469e-02 6.30461752e-01 6.80545330e-01
5.22540927e-01 6.52742326e-01 5.08215964e-01 1.03595302e-01
-1.55628651e-01 -2.03629270e-01 3.85331839e-01 7.73009062e-01
-2.07330912e-01 -1.21589854e-01 -9.28478122e-01 3.00369143e-01
-2.10270905e+00 -7.22866952e-01 5.01608074e-01 2.01898217e+00
4.17391807e-01 1.35892674e-01 6.47164583e-02 1.76617190e-01
4.77645814e-01 7.11731752e-03 -1.02303696e+00 -3.02537382e-01
1.93988204e-01 -2.30913550e-01 8.93575490e-01 3.23717177e-01
-1.07662153e+00 9.95690465e-01 5.98623991e+00 6.96977675e-01
-1.55801177e+00 3.57369065e-01 8.96358073e-01 -9.20538545e-01
4.27709490e-01 -1.26947016e-01 -1.12797046e+00 4.89896864e-01
1.13551044e+00 -2.54782647e-01 7.75547147e-01 1.78190064e+00
1.31932467e-01 -2.59900123e-01 -1.02399933e+00 1.54045737e+00
4.69813555e-01 -1.48606026e+00 1.61693450e-02 1.95872933e-01
4.54347968e-01 2.56538987e-01 1.77294672e-01 1.36193052e-01
-2.40896553e-01 -9.86924946e-01 8.48177791e-01 3.74003977e-01
1.11136973e+00 -7.91891217e-01 6.46984100e-01 4.45295632e-01
-1.42716587e+00 -4.82317626e-01 -7.05700159e-01 -1.70027778e-01
1.42556652e-01 4.89629567e-01 -9.06505466e-01 -3.17790121e-01
1.32254672e+00 5.16546190e-01 -6.01443470e-01 7.98163474e-01
3.05138797e-01 4.73091841e-01 -5.71037173e-01 -2.19607577e-01
-1.79266576e-02 -1.06371066e-03 2.92802930e-01 9.05125678e-01
4.48678851e-01 -4.05199006e-02 2.60206372e-01 3.21752131e-01
-3.92038286e-01 4.85386774e-02 -5.96616209e-01 -6.64288998e-02
5.02668977e-01 1.24953413e+00 -9.34403360e-01 -5.82677186e-01
-5.57893395e-01 1.18815708e+00 5.98547041e-01 7.88346305e-02
-8.60633314e-01 -4.71054077e-01 4.13925618e-01 3.42345327e-01
5.16345501e-01 -4.04071927e-01 -6.30719662e-01 -1.11241841e+00
3.72959405e-01 -6.38072610e-01 3.56503516e-01 -7.12732375e-01
-5.14670014e-01 6.13230765e-01 -2.03302637e-01 -1.04469597e+00
-1.00234367e-01 -7.35845029e-01 -2.86065221e-01 3.14902812e-01
-1.43658030e+00 -1.17484939e+00 -7.91271627e-01 6.36515021e-01
8.82744610e-01 -4.87645745e-01 1.25709504e-01 5.83330095e-01
-6.57215118e-01 9.12183285e-01 6.74317032e-02 -9.18152407e-02
2.26965562e-01 -7.26486742e-01 6.69941455e-02 9.78318393e-01
2.17889309e-01 2.95661211e-01 4.98477548e-01 -6.50456190e-01
-1.86263835e+00 -1.10161865e+00 4.89129603e-01 -3.08822598e-02
3.21626663e-01 -2.52179354e-01 -5.15935540e-01 6.86429739e-01
-1.26367688e-01 5.44329405e-01 5.56146681e-01 -3.57155889e-01
-7.37177879e-02 -5.10014951e-01 -9.92626727e-01 4.82358694e-01
9.84415650e-01 -2.76134193e-01 3.81583683e-02 2.96930134e-01
7.85132766e-01 -5.02722800e-01 -3.78675431e-01 6.27578273e-02
7.10295498e-01 -7.28408992e-01 9.18818116e-01 -3.78918946e-01
5.42805135e-01 -2.68416941e-01 -3.83138418e-01 -6.12135649e-01
7.51556922e-03 -3.38744670e-01 -1.00473869e+00 6.43580139e-01
9.12003368e-02 -1.37016430e-01 1.32426405e+00 6.90433323e-01
1.27936080e-01 -9.37875271e-01 -1.09153366e+00 -3.37062567e-01
-8.61244619e-01 -5.76018393e-01 2.33332798e-01 3.24998528e-01
-2.37237200e-01 3.56564879e-01 -4.99291360e-01 3.35593313e-01
5.99468768e-01 -3.56575940e-03 9.21442628e-01 -9.07773077e-01
-5.57800055e-01 -1.68205678e-01 -6.54992580e-01 -1.14242208e+00
-3.59671682e-01 -8.28336000e-01 -1.82430238e-01 -1.07476902e+00
2.34036058e-01 -4.31330502e-01 -4.98681180e-02 4.36850876e-01
4.54666745e-03 6.12301290e-01 6.21259272e-01 6.72941089e-01
-9.07339096e-01 3.99552912e-01 6.55657172e-01 3.96795683e-02
-4.75800931e-01 -1.25931695e-01 -4.41071808e-01 8.87369096e-01
5.23288667e-01 -5.11912286e-01 -5.96387148e-01 -7.45818436e-01
4.66930687e-01 -9.67324823e-02 3.51945221e-01 -1.45459151e+00
8.91844630e-01 1.06764846e-01 5.65793514e-01 -6.08717799e-01
3.62901986e-01 -1.09614503e+00 -1.37913018e-01 6.62919283e-01
-1.88835010e-01 3.67891610e-01 -7.99976885e-02 6.44022346e-01
-9.01650861e-02 -1.86944172e-01 7.47702003e-01 7.46292472e-02
-7.28256583e-01 3.99800122e-01 -1.34783655e-01 -2.92416960e-01
1.35452032e+00 -5.62596738e-01 -3.95500511e-01 -1.37124240e-01
-6.90012515e-01 1.85576156e-01 3.67813647e-01 3.83069783e-01
9.04220819e-01 -1.04574430e+00 -1.73120633e-01 5.05312741e-01
-2.48527423e-01 2.30001390e-01 1.83450729e-01 8.27722371e-01
-1.14632618e+00 3.74571174e-01 -3.27587783e-01 -6.81947112e-01
-1.66818058e+00 6.03544474e-01 1.56657666e-01 -2.71883458e-01
-6.87597990e-01 7.70312011e-01 -1.49728581e-01 3.28570336e-01
5.69869339e-01 -2.63006866e-01 -2.94718463e-02 -4.33614536e-04
7.92480707e-01 8.03852677e-01 6.17817417e-02 -4.73528683e-01
-1.98323518e-01 6.40613556e-01 -1.60194889e-01 6.31708279e-02
1.29343259e+00 -2.67118484e-01 1.39227554e-01 2.29549557e-01
1.06515467e+00 -2.21412793e-01 -1.43606365e+00 -1.87300071e-01
-2.45454848e-01 -6.01805568e-01 5.56539297e-01 -2.08870590e-01
-1.38827598e+00 8.93921256e-01 1.18345284e+00 9.40455049e-02
1.51862991e+00 -6.35140911e-02 9.95426834e-01 6.69303775e-01
1.72029063e-01 -1.52511168e+00 1.97467849e-01 2.80602962e-01
4.81468946e-01 -1.32164717e+00 1.50910527e-01 -3.59346628e-01
-6.64172649e-01 1.03364444e+00 8.97402644e-01 -4.38297927e-01
7.40703821e-01 7.10440516e-01 -6.76366165e-02 -1.22642882e-01
-7.87950873e-01 7.75220841e-02 5.22486903e-02 4.45139796e-01
1.02770701e-02 4.27221060e-02 -1.61816031e-01 6.11770511e-01
-2.47470990e-01 3.55085164e-01 1.91919297e-01 8.98937464e-01
-7.28831649e-01 -4.15410072e-01 -4.02873784e-01 8.25302005e-01
-4.75293815e-01 -1.39451981e-01 7.06479475e-02 2.72625715e-01
2.90134430e-01 6.87836230e-01 3.83610964e-01 -5.72978735e-01
1.18100248e-01 -1.98567256e-01 -8.52540135e-02 -3.58966410e-01
-3.22461545e-01 4.80043478e-02 -4.80471581e-01 -7.84084558e-01
-4.48722132e-02 -2.28186831e-01 -1.15979099e+00 -4.23048556e-01
-3.39150369e-01 -3.38998556e-01 9.53009248e-01 7.62871027e-01
8.45970035e-01 4.99320865e-01 2.19164401e-01 -1.07116413e+00
-5.60037553e-01 -6.42709136e-01 -3.85778755e-01 8.67081136e-02
3.03236067e-01 -3.45795065e-01 -6.40558153e-02 4.02671546e-01] | [8.487523078918457, 2.760322093963623] |
ac265321-1442-4f84-bfde-e2f7d43a29d3 | a-dataset-of-multi-illumination-images-in-the | 1910.08131 | null | https://arxiv.org/abs/1910.08131v1 | https://arxiv.org/pdf/1910.08131v1.pdf | A Dataset of Multi-Illumination Images in the Wild | Collections of images under a single, uncontrolled illumination have enabled the rapid advancement of core computer vision tasks like classification, detection, and segmentation. But even with modern learning techniques, many inverse problems involving lighting and material understanding remain too severely ill-posed to be solved with single-illumination datasets. To fill this gap, we introduce a new multi-illumination dataset of more than 1000 real scenes, each captured under 25 lighting conditions. We demonstrate the richness of this dataset by training state-of-the-art models for three challenging applications: single-image illumination estimation, image relighting, and mixed-illuminant white balance. | ['Miika Aittala', 'Lukas Murmann', 'Michael Gharbi', 'Fredo Durand'] | 2019-10-17 | a-dataset-of-multi-illumination-images-in-the-1 | http://openaccess.thecvf.com/content_ICCV_2019/html/Murmann_A_Dataset_of_Multi-Illumination_Images_in_the_Wild_ICCV_2019_paper.html | http://openaccess.thecvf.com/content_ICCV_2019/papers/Murmann_A_Dataset_of_Multi-Illumination_Images_in_the_Wild_ICCV_2019_paper.pdf | iccv-2019-10 | ['image-relighting'] | ['computer-vision'] | [ 7.63624072e-01 -3.98651689e-01 -1.26218628e-02 -3.72455388e-01
-7.49947965e-01 -6.50859475e-01 6.12978637e-01 -4.45217907e-01
-2.58069158e-01 7.43920267e-01 -2.79175639e-01 -2.73753792e-01
2.62881905e-01 -2.34084368e-01 -7.43427038e-01 -7.07070291e-01
4.19659317e-01 2.63403058e-01 -8.22516754e-02 -4.63634208e-02
1.92647398e-01 3.81850362e-01 -1.85971987e+00 1.23627722e-01
8.81025493e-01 7.98538804e-01 8.51991028e-02 8.75630200e-01
-6.54917285e-02 5.93524516e-01 -3.57012600e-01 -3.36521566e-01
4.66058820e-01 -4.54314172e-01 -4.21374470e-01 5.45601904e-01
9.69611764e-01 -5.88463724e-01 -1.43267497e-01 1.15767562e+00
4.15635318e-01 1.25491753e-01 4.86851782e-01 -1.21629441e+00
-7.70911276e-01 -3.04403901e-01 -9.80135322e-01 1.02423042e-01
5.97029448e-01 4.86255050e-01 7.99894810e-01 -7.85293698e-01
6.32088244e-01 1.08923817e+00 6.94109976e-01 4.22624886e-01
-1.51629853e+00 -4.21070099e-01 -6.33690655e-02 1.09991960e-01
-1.00243390e+00 -6.20097339e-01 7.99417794e-01 -2.89957672e-01
7.04034030e-01 2.22864255e-01 6.60248041e-01 1.09456205e+00
3.93825732e-02 6.08808994e-01 1.86442554e+00 -5.95651031e-01
6.20693080e-02 1.05513640e-01 -2.55799562e-01 7.43229508e-01
3.05656910e-01 2.33161241e-01 -6.40183985e-01 1.60012439e-01
8.36871743e-01 -1.78384140e-01 -4.24109101e-01 -1.62169129e-01
-1.22173440e+00 5.63345253e-01 2.35687897e-01 -1.55002207e-01
-3.14105228e-02 3.78694460e-02 9.30693932e-03 6.05794936e-02
6.85389757e-01 4.94964421e-01 -5.00445187e-01 8.37114751e-02
-8.03533494e-01 3.00969519e-02 7.99335539e-01 8.78326893e-01
1.08167696e+00 2.22076118e-01 3.52192283e-01 7.90171683e-01
2.71215677e-01 1.00307822e+00 -1.37488872e-01 -1.29731596e+00
3.95661667e-02 2.31208920e-01 2.48488307e-01 -8.77204239e-01
-3.30761641e-01 -3.54711145e-01 -7.89405167e-01 4.90753353e-01
5.95246732e-01 4.56118174e-02 -1.13487232e+00 1.34675109e+00
5.51427066e-01 3.14654619e-01 -1.25442848e-01 9.09952581e-01
7.50696719e-01 5.91620505e-01 -3.10643464e-01 -3.09793413e-01
1.17760015e+00 -1.09687674e+00 -7.17644691e-01 -6.28687799e-01
1.13224916e-01 -1.20428562e+00 1.30544543e+00 9.82283056e-01
-1.15645623e+00 -4.29603577e-01 -9.07262683e-01 -5.06987929e-01
-2.62999237e-01 -2.10193291e-01 8.07753444e-01 7.04307079e-01
-8.17558706e-01 1.84259489e-01 -3.82454097e-01 -2.58358985e-01
5.19154489e-01 -5.28305732e-02 -2.07530677e-01 -6.51070356e-01
-6.89020157e-01 1.08346772e+00 -1.21231034e-01 1.27242193e-01
-1.01780617e+00 -9.85817492e-01 -8.54456425e-01 -5.17701507e-01
2.73459196e-01 -6.41330123e-01 1.01717412e+00 -1.13692617e+00
-1.51478148e+00 1.29986143e+00 -3.95038873e-01 2.45880112e-02
5.54668605e-01 -4.11748260e-01 -1.90338671e-01 1.62542418e-01
-1.10232212e-01 4.34537739e-01 1.09218490e+00 -1.99229252e+00
-3.72317135e-01 -3.56427521e-01 -7.81246796e-02 3.45553696e-01
-9.87826586e-02 1.72751516e-01 -5.42818069e-01 -2.47713372e-01
2.13577766e-02 -7.08526611e-01 -3.11556697e-01 2.22382009e-01
-4.58522469e-01 5.87202668e-01 7.98806489e-01 -7.45492876e-01
4.25344706e-01 -2.00795627e+00 5.92551790e-02 -2.60058492e-01
7.91281164e-02 7.99211413e-02 -2.05818385e-01 -7.74834678e-02
2.23849844e-02 -1.77270666e-01 -3.09835345e-01 -7.82283366e-01
-6.16526119e-02 4.23191756e-01 -4.29886281e-01 8.60798657e-01
-2.79799160e-02 8.44269931e-01 -9.84003603e-01 -5.94951689e-01
8.69018793e-01 8.52334321e-01 -4.08886522e-01 2.35452354e-01
-3.14279437e-01 1.03038824e+00 5.41892275e-02 1.03629959e+00
8.20706248e-01 -6.16047010e-02 -2.05508038e-01 -4.45598662e-01
-1.53778926e-01 -3.74859542e-01 -1.15749514e+00 1.77578926e+00
-6.12707794e-01 1.04779470e+00 4.23543543e-01 -6.44438803e-01
5.85061014e-01 -1.35953620e-01 6.41063333e-01 -1.03355432e+00
1.76542327e-01 1.42833099e-01 -4.04048234e-01 -8.17358673e-01
5.14791429e-01 -2.35607326e-01 3.02659273e-01 4.56325084e-01
-2.33534902e-01 -9.06897724e-01 2.10911691e-01 -1.31059960e-01
5.47708154e-01 3.56129766e-01 1.10462300e-01 -4.51547056e-02
2.67970592e-01 -2.54777726e-02 5.28228998e-01 6.37499928e-01
-3.00341338e-01 1.00622737e+00 -1.19899428e-02 -5.65216601e-01
-1.20212567e+00 -1.08698738e+00 -3.00049603e-01 1.03711808e+00
4.60458815e-01 1.96175545e-01 -8.18726659e-01 -1.31901756e-01
-1.47254616e-01 6.83267355e-01 -5.10234058e-01 3.26777279e-01
-4.30162311e-01 -9.93529081e-01 2.64043212e-01 7.72773996e-02
7.98841655e-01 -8.20093513e-01 -6.19696915e-01 -2.60292411e-01
-4.89547372e-01 -1.57953787e+00 -3.32708389e-01 5.66482097e-02
-4.63122487e-01 -1.14595044e+00 -4.94129509e-01 -5.68849921e-01
6.70710385e-01 6.37377620e-01 1.59715509e+00 1.54517025e-01
-9.83259559e-01 6.74243689e-01 1.05710851e-03 -5.12455463e-01
-3.03651482e-01 -3.78660053e-01 -4.87356819e-02 1.37755096e-01
-5.47911711e-02 -4.80360508e-01 -7.48399973e-01 5.00319481e-01
-9.96022522e-01 3.13748688e-01 4.48550969e-01 7.00331271e-01
7.78760672e-01 4.64337356e-02 -2.91640814e-02 -6.61997736e-01
1.55801803e-01 -8.74287635e-02 -7.12593734e-01 3.81332695e-01
-2.31319070e-01 -4.14622158e-01 5.01712918e-01 -5.18052340e-01
-1.51518857e+00 9.38557163e-02 8.70520025e-02 -4.28171724e-01
-4.51126039e-01 -1.62079483e-01 -2.47874707e-01 -6.54202759e-01
7.54827440e-01 3.37284476e-01 -2.82722712e-01 -3.28743517e-01
7.88399756e-01 3.69344801e-01 1.01881826e+00 -6.39901936e-01
9.38125014e-01 1.04051888e+00 3.24430704e-01 -1.23262548e+00
-1.40365839e+00 -2.80292660e-01 -7.54360795e-01 -4.78873014e-01
9.54351008e-01 -8.37196290e-01 -6.00954533e-01 7.74810195e-01
-1.07080126e+00 -6.76271498e-01 -3.17600220e-01 2.04724625e-01
-6.81576967e-01 3.88687193e-01 -2.64866233e-01 -8.62239957e-01
-1.24286279e-01 -1.24629891e+00 1.27264905e+00 4.69323933e-01
1.39089003e-01 -1.26210737e+00 1.14914693e-01 8.19758058e-01
4.00337905e-01 5.26522279e-01 6.03171289e-01 4.66803253e-01
-7.52658486e-01 5.21866791e-03 -5.18001974e-01 5.15768826e-01
2.55509824e-01 2.62263566e-01 -1.50582695e+00 -2.39000812e-01
1.69758812e-01 -6.57821596e-01 8.06789756e-01 5.24993777e-01
1.28276920e+00 3.14479768e-01 -2.03481726e-02 1.27381027e+00
1.70062101e+00 -1.29008055e-01 6.65896416e-01 3.68750751e-01
8.74578595e-01 5.64708054e-01 5.22312641e-01 3.02457362e-01
4.55214471e-01 4.43985820e-01 8.06802511e-01 -7.91679442e-01
-6.33552015e-01 -1.00823706e-02 -6.92292824e-02 5.34454346e-01
-1.66410729e-01 -1.85974807e-01 -8.24375033e-01 4.46167946e-01
-1.26431334e+00 -8.17225218e-01 -3.29905659e-01 2.09795189e+00
8.85047853e-01 -1.57898620e-01 -3.74285847e-01 3.64884809e-02
4.56178516e-01 3.07612240e-01 -9.19564068e-01 -2.71469086e-01
-6.30064964e-01 -1.09914327e-02 5.92289984e-01 6.19194388e-01
-1.10221732e+00 7.98409522e-01 7.46845579e+00 4.23048139e-01
-9.91337001e-01 2.53588092e-02 9.87591267e-01 7.19540864e-02
-3.86219114e-01 -3.56912166e-02 -7.30280876e-01 2.12188900e-01
2.77762443e-01 3.58175814e-01 1.03917468e+00 4.34158206e-01
2.68412232e-01 -8.19467425e-01 -9.79927242e-01 1.30352497e+00
6.20611608e-01 -8.80909204e-01 -2.28384361e-01 7.98519421e-03
1.35104799e+00 1.28728315e-01 4.94388938e-01 -1.95913181e-01
3.23680997e-01 -1.02197206e+00 5.22237778e-01 5.32553971e-01
1.12722802e+00 -2.68125087e-01 7.99532756e-02 1.68296099e-01
-9.02680635e-01 -1.66627783e-02 -2.14247614e-01 2.47035362e-02
4.81728137e-01 7.40627825e-01 -2.68277377e-01 4.56981361e-01
7.97203243e-01 7.83550799e-01 -5.76186359e-01 1.02416706e+00
-4.19503331e-01 3.57056975e-01 -4.85134929e-01 5.36564469e-01
-1.34191200e-01 -4.74313140e-01 3.56335491e-01 1.12165093e+00
-3.41634750e-02 1.67054400e-01 2.36663997e-01 8.33928525e-01
-1.15130089e-01 -3.26592565e-01 -5.76885819e-01 3.72054011e-01
7.08808154e-02 1.48507357e+00 -8.53850305e-01 -6.99611604e-02
-5.94661832e-01 9.66915309e-01 3.01298946e-02 8.93096924e-01
-1.01920366e+00 -3.37497815e-02 8.28356981e-01 -1.47432342e-01
-1.34374753e-01 -4.81832832e-01 -8.33154023e-01 -1.39686823e+00
-1.11267909e-01 -8.29305112e-01 -1.02036066e-01 -1.27285480e+00
-1.26933134e+00 1.09253742e-01 6.92026764e-02 -8.86009157e-01
1.99014589e-01 -7.69311845e-01 -6.28450811e-01 7.14420080e-01
-2.15906382e+00 -1.41621721e+00 -7.34978080e-01 7.58469820e-01
8.26018035e-01 3.47430766e-01 7.12137103e-01 3.03512186e-01
-6.52780056e-01 6.57584891e-02 4.24548537e-01 -2.15899646e-01
9.88901854e-01 -1.22516382e+00 1.42083898e-01 9.80159461e-01
1.42605484e-01 3.16237152e-01 1.03691781e+00 -2.77770579e-01
-1.89670396e+00 -8.96272302e-01 3.00503224e-01 -5.56132853e-01
5.19704342e-01 -4.35914218e-01 -7.30255127e-01 5.94637632e-01
3.88103455e-01 3.76443207e-01 4.41628456e-01 -1.49760038e-01
-4.91838932e-01 -1.69977158e-01 -1.30174625e+00 6.25971854e-01
1.00641668e+00 -5.05617738e-01 -1.91167578e-01 5.04669070e-01
3.80804121e-01 -5.80733776e-01 -7.70095110e-01 3.32746834e-01
6.73606694e-01 -1.11992896e+00 1.34899819e+00 -1.73718885e-01
5.60223460e-01 -2.38304645e-01 -3.67347568e-01 -1.37267542e+00
1.65334806e-01 -9.17609870e-01 -6.55332804e-02 1.15916038e+00
4.12576236e-02 -6.41527116e-01 5.90117276e-01 8.16496372e-01
-3.84314805e-02 -5.10451674e-01 -5.25520146e-01 -5.03606796e-01
-9.16050151e-02 -4.62005675e-01 3.20929408e-01 9.17175293e-01
-7.20566511e-01 7.14270324e-02 -5.88616788e-01 -1.30679482e-03
1.42482126e+00 3.11589122e-01 1.12385130e+00 -1.04232633e+00
-2.30154946e-01 -3.07198644e-01 5.58449402e-02 -8.56282294e-01
1.76692992e-01 -3.68912935e-01 3.79015177e-01 -1.62601984e+00
4.29923534e-01 -2.37968653e-01 1.64453730e-01 2.53872871e-01
-2.36615583e-01 8.71123791e-01 -5.81912287e-02 4.56848219e-02
-6.94386661e-01 3.75746071e-01 1.57042742e+00 -1.26393646e-01
8.18550289e-02 -3.83225322e-01 -6.07614577e-01 1.01831174e+00
8.26635122e-01 -1.25520125e-01 -3.91353041e-01 -9.58383501e-01
4.10263419e-01 -4.09444064e-01 4.54275638e-01 -6.76481187e-01
1.74186826e-01 -5.10283172e-01 6.99275911e-01 -4.78537440e-01
6.99511290e-01 -6.84920073e-01 7.59187117e-02 8.77471343e-02
-5.78540936e-02 -2.66083390e-01 3.05448025e-01 3.99735242e-01
1.16638631e-01 1.02063559e-01 1.08907747e+00 -2.51670331e-01
-7.94617414e-01 1.71095356e-01 3.66592407e-02 3.36053014e-01
9.33106065e-01 -4.20920700e-01 -6.27701461e-01 -3.10579956e-01
-3.66819113e-01 -3.54629867e-02 9.42085087e-01 1.14110939e-01
8.26383114e-01 -9.33964789e-01 -6.63976014e-01 4.73547071e-01
-3.27635817e-02 1.93345204e-01 4.15884703e-01 8.50322306e-01
-7.03931630e-01 -6.92740157e-02 -1.59666255e-01 -9.08153951e-01
-1.35352814e+00 5.11562228e-01 2.85817236e-01 5.85688278e-02
-5.50559461e-01 7.68818557e-01 4.63579595e-01 -3.51653934e-01
1.18987121e-01 -2.96419747e-02 2.70433545e-01 -2.84701556e-01
5.71967185e-01 4.82434124e-01 -4.96523045e-02 -6.86318517e-01
-2.50257105e-02 1.17047811e+00 2.36828715e-01 -1.81777269e-01
1.30154228e+00 -5.34186184e-01 -2.34856516e-01 4.89152730e-01
1.13741159e+00 -2.73293555e-01 -1.68684042e+00 -2.13737160e-01
-6.17653310e-01 -1.00729215e+00 2.89658874e-01 -8.46469104e-01
-1.11704540e+00 1.04514897e+00 4.50485229e-01 6.48556203e-02
1.46996701e+00 -2.66651869e-01 7.01994002e-01 3.85360092e-01
3.18988949e-01 -9.85980451e-01 3.13571632e-01 4.27732378e-01
6.62043154e-01 -1.73685431e+00 3.69212896e-01 -4.39604759e-01
-5.56059062e-01 9.57447410e-01 4.92746830e-01 1.25362724e-01
5.25996327e-01 5.15215516e-01 3.22077334e-01 -8.12628344e-02
-3.88275295e-01 -2.86356777e-01 2.15602368e-01 8.45840991e-01
2.87519664e-01 -2.57638782e-01 4.37420577e-01 -3.98139775e-01
6.29384478e-04 -1.54513538e-01 5.89563549e-01 7.56333053e-01
-4.76279885e-01 -5.68236828e-01 -7.81207979e-01 1.63188159e-01
-3.92052650e-01 -6.22441527e-03 -2.54187882e-01 6.45169497e-01
1.07246958e-01 1.07848859e+00 -1.07965015e-01 1.99525610e-01
1.29882857e-01 -3.85659695e-01 1.01698411e+00 -3.12719941e-01
-1.74220502e-01 1.81237981e-01 -1.08840041e-01 -6.39181077e-01
-8.62877786e-01 -7.98390329e-01 -7.63489723e-01 -2.07163706e-01
-4.09841031e-01 -6.02640033e-01 1.19433188e+00 8.15266371e-01
-2.16994941e-01 4.07975495e-01 7.55246162e-01 -1.56445742e+00
-8.75405446e-02 -5.92956126e-01 -5.15128732e-01 5.80782890e-01
6.23525321e-01 -6.20913982e-01 -6.90184593e-01 4.87499207e-01] | [9.98889446258545, -2.764709949493408] |
9754cfbc-1dd2-4809-a57a-8cc31fcfe541 | planar-object-tracking-in-the-wild-a | 1703.07938 | null | http://arxiv.org/abs/1703.07938v2 | http://arxiv.org/pdf/1703.07938v2.pdf | Planar Object Tracking in the Wild: A Benchmark | Planar object tracking is an actively studied problem in vision-based robotic
applications. While several benchmarks have been constructed for evaluating
state-of-the-art algorithms, there is a lack of video sequences captured in the
wild rather than in constrained laboratory environment. In this paper, we
present a carefully designed planar object tracking benchmark containing 210
videos of 30 planar objects sampled in the natural environment. In particular,
for each object, we shoot seven videos involving various challenging factors,
namely scale change, rotation, perspective distortion, motion blur, occlusion,
out-of-view, and unconstrained. The ground truth is carefully annotated
semi-manually to ensure the quality. Moreover, eleven state-of-the-art
algorithms are evaluated on the benchmark using two evaluation metrics, with
detailed analysis provided for the evaluation results. We expect the proposed
benchmark to benefit future studies on planar object tracking. | ['Haibin Ling', 'Chunyuan Liao', 'Liming Wang', 'Hu Lu', 'Yifan Wu', 'Pengpeng Liang'] | 2017-03-23 | null | null | null | null | ['homography-estimation'] | ['computer-vision'] | [-3.29725333e-02 -5.26251674e-01 -1.20044351e-01 -1.32426977e-01
-4.00762081e-01 -9.50564921e-01 5.94992578e-01 -2.90651888e-01
-3.22916746e-01 4.91481006e-01 -2.17689380e-01 2.90709198e-01
6.58618100e-03 -1.08734556e-01 -8.65767539e-01 -6.75685167e-01
-4.57028985e-01 3.54170620e-01 1.10017765e+00 2.46653765e-01
1.99453428e-01 7.08672166e-01 -1.39960146e+00 -1.84186921e-01
3.98269564e-01 9.51575994e-01 4.30615932e-01 6.66707098e-01
3.78342241e-01 7.12088943e-01 -7.26797998e-01 -5.69387078e-01
6.31231964e-01 1.26613155e-01 -3.31153989e-01 3.85268718e-01
1.00524986e+00 -4.99234796e-01 -6.91672385e-01 1.54973376e+00
3.32738250e-01 1.43043339e-01 4.45124090e-01 -1.44303453e+00
-4.63943660e-01 6.72971159e-02 -7.74689615e-01 1.69741496e-01
4.15855527e-01 5.18299758e-01 5.28004169e-01 -7.62495100e-01
1.06436610e+00 1.38891506e+00 6.46945536e-01 4.32246357e-01
-8.30747962e-01 -6.10788643e-01 3.80609185e-01 2.68938571e-01
-1.06387901e+00 -3.38038474e-01 7.89058864e-01 -8.18250537e-01
4.56331789e-01 -5.70578128e-02 7.69214034e-01 9.04740334e-01
3.95885110e-01 7.44818091e-01 6.32236063e-01 -9.34265330e-02
4.50394340e-02 1.64678730e-02 1.83187380e-01 6.84456885e-01
9.75596070e-01 4.75960881e-01 -1.20464519e-01 -3.42745408e-02
8.87131870e-01 1.17809124e-01 -4.52345222e-01 -1.27291679e+00
-1.50216496e+00 2.50935048e-01 3.82405818e-01 -5.44245690e-02
-1.68492317e-01 2.61230677e-01 6.03015244e-01 5.10730594e-03
-3.93328331e-02 7.63821974e-02 -4.07777548e-01 1.10975102e-01
-5.78133047e-01 6.77743077e-01 6.08201027e-01 1.64578426e+00
2.93660223e-01 2.15588570e-01 -3.97409350e-01 4.93384749e-01
5.63029885e-01 7.69808173e-01 2.34477192e-01 -1.15583277e+00
4.67100799e-01 3.04339051e-01 6.96564496e-01 -1.19679403e+00
-3.36319953e-01 -3.91270041e-01 -3.95754337e-01 4.37000394e-01
8.33368778e-01 -6.21234775e-02 -7.21433997e-01 1.49876380e+00
5.44355094e-01 2.90174901e-01 4.35525998e-02 1.38615763e+00
9.51025665e-01 3.41950119e-01 -1.42141357e-01 -4.26447392e-01
1.53387308e+00 -1.53328681e+00 -8.13389778e-01 -1.70299262e-01
1.11720361e-01 -1.07328975e+00 5.88094592e-01 5.14706135e-01
-9.40698743e-01 -5.95253050e-01 -9.95128274e-01 2.66085923e-01
8.37150291e-02 3.12726736e-01 3.67931247e-01 4.77878213e-01
-5.04950404e-01 2.23742157e-01 -7.69518435e-01 -6.50882423e-01
3.42163473e-01 1.38210014e-01 -5.38782835e-01 -2.25327760e-01
-7.42476463e-01 9.15032446e-01 1.56173617e-01 1.09230913e-01
-1.27006125e+00 -5.36305904e-01 -6.88288212e-01 -4.62950170e-01
6.17308021e-01 -6.50905907e-01 1.31193340e+00 -5.26270032e-01
-1.32085299e+00 9.25653100e-01 -1.41210571e-01 -4.24676120e-01
8.29844773e-01 -4.89640981e-01 -2.59634614e-01 6.45436868e-02
3.63301039e-02 3.93079311e-01 8.55502486e-01 -1.53486013e+00
-6.41299129e-01 -6.49380207e-01 1.58043981e-01 1.60148889e-01
1.95628226e-01 2.92216063e-01 -1.10399556e+00 -7.30788946e-01
-8.76261145e-02 -1.23356998e+00 -7.44412616e-02 5.41995823e-01
-3.94420594e-01 -1.91302747e-01 1.43643939e+00 -3.85186493e-01
7.99392760e-01 -2.25998688e+00 1.08148614e-02 -4.27582234e-01
-8.00655922e-04 4.47280973e-01 1.94191765e-02 -2.73201782e-02
2.82015145e-01 -5.09780943e-01 1.35497794e-01 -2.25123167e-01
-9.07080621e-02 -1.12701833e-01 -1.05446100e-01 9.77359295e-01
9.21797659e-03 6.32001698e-01 -9.51872706e-01 -5.82739592e-01
4.72604632e-01 3.15564156e-01 -3.34913999e-01 2.61142135e-01
-2.64101744e-01 5.82117677e-01 -6.12722278e-01 1.04773092e+00
9.94057417e-01 9.25431475e-02 -1.91570863e-01 -5.70122182e-01
-1.56444177e-01 -4.88458693e-01 -1.39232326e+00 1.72849834e+00
3.12499076e-01 7.01196015e-01 1.60416886e-01 -6.51371717e-01
7.67146945e-01 1.59135684e-01 5.15693128e-01 -1.66550800e-01
2.93700814e-01 -1.19312152e-01 2.17841953e-01 -8.02869022e-01
5.00479817e-01 3.78172070e-01 2.63982326e-01 -2.75657862e-01
-1.94379035e-02 -2.23437980e-01 5.29150069e-01 -8.08398798e-02
1.07961988e+00 4.36140627e-01 1.87086701e-01 -2.53780127e-01
6.92550600e-01 3.10492218e-01 7.48714626e-01 4.31872725e-01
-1.06890500e+00 6.31693006e-01 7.34639764e-02 -6.05526030e-01
-1.02654004e+00 -1.11419451e+00 -1.63720280e-01 7.40224540e-01
8.55438650e-01 -1.68648526e-01 -6.15477979e-01 -4.40415382e-01
9.29067433e-02 1.68963343e-01 -3.33753526e-01 1.91406682e-01
-6.99611664e-01 -3.01586688e-01 5.32279849e-01 5.48780441e-01
6.36998594e-01 -1.00979280e+00 -1.04778671e+00 5.70710413e-02
-1.02173224e-01 -1.78638816e+00 -7.15709686e-01 -4.11334693e-01
-8.56382012e-01 -1.41126871e+00 -9.62605834e-01 -9.94550288e-01
5.67822337e-01 9.73378718e-01 9.70296204e-01 -2.14083835e-01
-3.26069951e-01 5.00792205e-01 -1.59343891e-02 -6.33433163e-01
9.18098688e-02 -4.65781808e-01 2.89829105e-01 -1.92019418e-01
2.61001945e-01 2.04872824e-02 -8.44407260e-01 8.62545311e-01
-5.65022588e-01 -2.43069723e-01 4.26307380e-01 4.67617571e-01
5.39534152e-01 2.27111336e-02 -3.73086184e-02 -3.71078610e-01
-1.29900984e-02 -8.19437057e-02 -1.22956538e+00 1.92975506e-01
5.34752868e-02 -3.86725128e-01 2.72951365e-01 -8.58162344e-01
-8.98989439e-01 4.32165056e-01 5.54046750e-01 -9.22128141e-01
-2.64837325e-01 -2.15592563e-01 -3.21391523e-01 -3.50459039e-01
4.27231193e-01 -1.56996734e-02 -1.60123155e-01 -1.45929605e-01
2.30266675e-01 2.94904679e-01 9.23893452e-01 -6.09252036e-01
1.18812835e+00 6.83361650e-01 -6.20463602e-02 -1.03973949e+00
-6.00414336e-01 -6.09875202e-01 -5.38279176e-01 -6.12956882e-01
9.69471633e-01 -1.02560735e+00 -8.25167060e-01 6.77826524e-01
-1.39962173e+00 -4.69023734e-02 2.31555998e-01 7.81538963e-01
-6.35670006e-01 5.02689004e-01 -3.24654639e-01 -8.52361202e-01
-3.27789426e-01 -1.49866819e+00 1.08900917e+00 5.30403972e-01
5.59713468e-02 -4.79104191e-01 1.19307645e-01 3.29056442e-01
2.99616188e-01 4.55328405e-01 2.26829067e-01 -2.16482714e-01
-1.06139374e+00 -3.75561655e-01 -3.77343237e-01 1.94186866e-02
1.61119968e-01 2.86916375e-01 -8.00351739e-01 -5.86670160e-01
-1.15242846e-01 -1.50274873e-01 3.42666000e-01 5.75168788e-01
8.98514986e-01 -2.62504742e-02 -6.07538462e-01 5.71726263e-01
1.37051213e+00 5.90610743e-01 4.86451447e-01 3.85162324e-01
7.37573862e-01 5.12017429e-01 1.02772796e+00 2.27595329e-01
1.67610511e-01 1.00683832e+00 7.25895107e-01 4.41946417e-01
-1.24976352e-01 2.16495559e-01 4.08771187e-01 1.66548729e-01
-3.62411767e-01 -2.76701719e-01 -7.04049349e-01 6.13426328e-01
-1.72224712e+00 -1.04969096e+00 -4.73591477e-01 2.39033556e+00
1.99464679e-01 2.71667868e-01 3.58796328e-01 -6.02939054e-02
9.83157456e-01 6.63896501e-02 -7.23745644e-01 5.64298213e-01
-5.94151467e-02 -6.57142043e-01 6.20640337e-01 1.84245169e-01
-1.33083344e+00 9.91563022e-01 5.88563633e+00 3.18344712e-01
-1.23508191e+00 -1.41543955e-01 -6.12008683e-02 -7.26490915e-02
5.32038212e-01 -1.30656689e-01 -9.88208711e-01 3.75943482e-01
4.70880903e-02 -1.13607764e-01 1.83888853e-01 1.19133472e+00
1.51939526e-01 -3.08644138e-02 -1.03517747e+00 1.17597198e+00
9.90701541e-02 -8.41655254e-01 -2.94261187e-01 -2.58088559e-01
8.46272647e-01 2.00429484e-01 3.15227136e-02 1.05782665e-01
2.06093103e-01 -4.28761959e-01 9.19890046e-01 3.74228865e-01
4.26463872e-01 -2.86205828e-01 5.98879158e-01 1.42721400e-01
-1.52073133e+00 -1.59530994e-02 -5.68081737e-01 3.89413357e-01
3.29335630e-01 2.48983234e-01 -1.92863807e-01 6.04467988e-01
1.04951286e+00 7.97893584e-01 -5.69705963e-01 1.63958597e+00
1.28806233e-01 1.49672151e-01 -2.48978406e-01 -2.41796076e-02
1.78155527e-01 -9.83173028e-02 9.39388454e-01 1.15837812e+00
2.47054502e-01 4.71731201e-02 4.00027454e-01 4.59968954e-01
2.68868655e-01 -2.09944770e-01 -9.65511143e-01 1.44278631e-01
3.91188890e-01 1.40208507e+00 -5.48065960e-01 -2.23178193e-01
-6.39074385e-01 6.49786174e-01 -3.69848236e-02 4.75362599e-01
-1.10820162e+00 -9.98973921e-02 7.78901696e-01 2.17722863e-01
5.89588821e-01 -4.57455546e-01 1.56729773e-01 -1.29300666e+00
2.28781864e-01 -8.34250331e-01 5.95795289e-02 -9.39698219e-01
-1.18606865e+00 5.00436246e-01 2.23031968e-01 -1.61671472e+00
7.01672062e-02 -6.94880605e-01 -5.77201188e-01 3.80587548e-01
-1.32380521e+00 -9.29539025e-01 -9.42314744e-01 6.23275101e-01
9.10993278e-01 -3.29664141e-01 2.64454544e-01 4.45049614e-01
-4.77227569e-01 3.88011992e-01 4.77173142e-02 3.77877980e-01
1.05381811e+00 -8.38633835e-01 2.51750410e-01 9.10254598e-01
-1.80888370e-01 6.65355265e-01 1.03356564e+00 -6.53274775e-01
-2.06868100e+00 -1.37458396e+00 3.64362448e-02 -5.85382164e-01
6.78715885e-01 -1.56193912e-01 -9.22234654e-01 7.98962831e-01
1.69884115e-01 7.59911418e-01 -1.42642688e-02 -6.61931992e-01
-1.43247545e-01 -1.11717269e-01 -1.14721513e+00 5.65255582e-01
1.33111227e+00 2.71227777e-01 -4.87757832e-01 2.35209391e-01
6.85716093e-01 -7.93607295e-01 -7.36491859e-01 6.17110848e-01
9.36184943e-01 -8.50136518e-01 1.10399127e+00 -4.76059318e-01
2.70425174e-02 -9.82448101e-01 -4.22915041e-01 -1.00394273e+00
-4.14512426e-01 -5.11534274e-01 -2.57374823e-01 1.09751487e+00
-1.19925894e-01 -3.95807147e-01 9.78346288e-01 1.24902703e-01
-8.14943910e-02 -4.80234802e-01 -5.88024557e-01 -1.24586797e+00
-2.23604560e-01 -1.95241213e-01 1.98725089e-01 6.16598487e-01
-4.47671235e-01 2.33230770e-01 -4.58483011e-01 4.69117343e-01
1.17919981e+00 9.31220576e-02 1.46757388e+00 -1.29582536e+00
-6.63090646e-02 -2.60706991e-01 -8.68139446e-01 -1.29043674e+00
-9.82548520e-02 -2.82270372e-01 3.16669405e-01 -1.32432652e+00
3.66612375e-01 -1.26598075e-01 3.18716802e-02 -2.66686141e-01
-8.32790285e-02 2.40288779e-01 5.02711952e-01 3.76076847e-01
-8.87307465e-01 5.14061809e-01 1.50102961e+00 -4.32223767e-01
2.22809583e-01 8.04016087e-03 -1.49633139e-01 1.03011096e+00
5.37652850e-01 -5.03744125e-01 -4.40500051e-01 -6.76912129e-01
-5.63149512e-01 1.86753362e-01 5.00200391e-01 -1.30608499e+00
4.02236849e-01 -3.99944514e-01 4.07885879e-01 -1.11133838e+00
4.49165225e-01 -1.28047621e+00 3.32714051e-01 7.05329180e-01
1.54559210e-01 2.95444041e-01 2.66691864e-01 7.92419374e-01
-1.15574077e-01 -1.39276356e-01 1.07339919e+00 1.14862947e-02
-8.90291929e-01 5.56515157e-01 3.90831418e-02 2.67882049e-01
1.54383337e+00 -3.30933571e-01 -5.46597660e-01 -1.01422511e-01
-3.74831468e-01 2.74014592e-01 6.91839576e-01 7.05916405e-01
5.35841107e-01 -1.41958988e+00 -6.97568595e-01 -1.36329047e-02
3.94804388e-01 1.82667166e-01 1.02841839e-01 7.82087564e-01
-8.47821236e-01 6.59323573e-01 -3.90659273e-01 -1.06291902e+00
-1.55624700e+00 9.38083589e-01 2.88464129e-01 -1.41989633e-01
-6.93990111e-01 3.72974247e-01 4.83554512e-01 -2.53011465e-01
7.04922676e-01 -5.23767829e-01 -6.13247789e-02 -4.44351971e-01
6.14037454e-01 4.29752976e-01 -2.69205570e-01 -7.67269135e-01
-5.67043006e-01 1.12541735e+00 5.97350970e-02 2.01567098e-01
8.48215878e-01 1.40451416e-02 3.90578449e-01 2.64998704e-01
8.32341194e-01 -1.71060458e-01 -1.56243193e+00 -4.03175563e-01
2.33072061e-02 -7.77936816e-01 -5.16549587e-01 -3.33491594e-01
-1.13569415e+00 5.70737898e-01 7.92655528e-01 -9.83146578e-02
6.24152243e-01 -2.80534238e-01 5.11656046e-01 5.62948048e-01
8.40124667e-01 -6.50864184e-01 2.55517662e-01 6.52300179e-01
1.02972651e+00 -1.48101950e+00 8.66439864e-02 -7.21376300e-01
-5.89140177e-01 8.79418492e-01 9.74365294e-01 -4.49974149e-01
4.58757162e-01 4.92728829e-01 1.77907646e-01 -1.06035182e-02
-5.90782046e-01 -2.51003560e-02 1.93882883e-01 8.81358802e-01
3.22398841e-01 -2.67327279e-01 -1.23393700e-01 1.78509802e-01
4.06031646e-02 3.30366120e-02 3.10873419e-01 9.81861055e-01
-4.27534312e-01 -4.32949305e-01 -8.39562118e-01 1.53335789e-02
-6.16784513e-01 6.16791964e-01 -2.79026240e-01 1.06440783e+00
-1.36163887e-02 8.62263560e-01 -9.66908932e-02 3.78868766e-02
7.39166319e-01 -5.05505741e-01 8.79595697e-01 -2.21981898e-01
-2.23029181e-01 1.83983073e-01 -2.60248296e-02 -5.65229058e-01
-5.86049438e-01 -8.27493131e-01 -1.14657998e+00 -5.74870855e-02
-5.14301062e-01 -1.39813378e-01 6.71300292e-01 6.53265834e-01
-2.47886451e-03 6.03946090e-01 1.39253631e-01 -1.27129447e+00
-5.87776780e-01 -1.02531886e+00 -3.00675035e-01 5.28258681e-01
3.30006629e-01 -1.27058423e+00 -2.09668204e-01 3.71719897e-01] | [6.650651454925537, -2.0493946075439453] |
3538462f-7c21-446b-bf9d-d67b4f1e46b9 | diachronic-embedding-for-temporal-knowledge | 1907.03143 | null | https://arxiv.org/abs/1907.03143v1 | https://arxiv.org/pdf/1907.03143v1.pdf | Diachronic Embedding for Temporal Knowledge Graph Completion | Knowledge graphs (KGs) typically contain temporal facts indicating relationships among entities at different times. Due to their incompleteness, several approaches have been proposed to infer new facts for a KG based on the existing ones-a problem known as KG completion. KG embedding approaches have proved effective for KG completion, however, they have been developed mostly for static KGs. Developing temporal KG embedding models is an increasingly important problem. In this paper, we build novel models for temporal KG completion through equipping static models with a diachronic entity embedding function which provides the characteristics of entities at any point in time. This is in contrast to the existing temporal KG embedding approaches where only static entity features are provided. The proposed embedding function is model-agnostic and can be potentially combined with any static model. We prove that combining it with SimplE, a recent model for static KG embedding, results in a fully expressive model for temporal KG completion. Our experiments indicate the superiority of our proposal compared to existing baselines. | ['Rishab Goel', 'Marcus Brubaker', 'Pascal Poupart', 'Seyed Mehran Kazemi'] | 2019-07-06 | null | null | null | null | ['temporal-knowledge-graph-completion'] | ['knowledge-base'] | [-4.35743690e-01 6.18001461e-01 -4.21711147e-01 -7.30530992e-02
-3.70832413e-01 -6.45301044e-01 8.38425756e-01 7.24836528e-01
-3.32628548e-01 6.97031200e-01 4.06959832e-01 -1.12983644e-01
-4.12629575e-01 -1.16400540e+00 -7.18928993e-01 -4.23368871e-01
-6.98861361e-01 5.13504922e-01 6.39179409e-01 -2.07334712e-01
-2.69761384e-01 2.44252384e-01 -1.36826539e+00 5.88177405e-02
6.15277886e-01 6.25072956e-01 -1.05795644e-01 5.26932716e-01
-2.73372084e-01 9.34303641e-01 -3.13304424e-01 -1.01243567e+00
7.80531615e-02 1.11467406e-01 -9.84462261e-01 -4.67106253e-01
2.34325320e-01 -2.87309080e-01 -6.95766091e-01 6.84496939e-01
3.62850547e-01 8.90407339e-02 2.79187113e-01 -1.79068005e+00
-6.49649680e-01 1.18552339e+00 -1.24821514e-01 8.00274219e-03
5.47497809e-01 -3.35518271e-01 1.46823490e+00 -7.99667835e-01
9.92778003e-01 1.13050127e+00 9.95010912e-01 4.16683465e-01
-1.19757521e+00 -2.49445528e-01 3.56903046e-01 6.13098502e-01
-1.26320481e+00 -1.27732456e-01 8.20969224e-01 -2.55762249e-01
1.19191790e+00 2.05774784e-01 8.90353858e-01 9.57044244e-01
-1.01942688e-01 1.02203095e+00 8.44569087e-01 -5.23963273e-01
4.75916862e-02 1.87601894e-01 4.04669911e-01 6.90328538e-01
6.66930377e-01 -3.37461196e-02 -6.39581621e-01 -2.00527042e-01
3.51693809e-01 -9.63136256e-02 -3.75659794e-01 -8.73492897e-01
-1.28248942e+00 6.85370803e-01 4.77237850e-01 5.01412392e-01
-2.32221752e-01 4.89765018e-01 5.41439295e-01 3.05385679e-01
5.76717854e-01 4.36103523e-01 -7.95999885e-01 -1.36585563e-01
-7.52782881e-01 5.93866646e-01 1.09879923e+00 1.04669464e+00
7.96499610e-01 -1.36995047e-01 -9.68982875e-02 2.85585374e-01
1.70469850e-01 2.02552434e-02 3.57546628e-01 -5.15540242e-01
4.32015240e-01 9.98310983e-01 2.49859318e-01 -1.23845685e+00
-5.23999333e-01 -3.92613232e-01 -3.77468199e-01 -2.90246129e-01
1.00269735e-01 1.11894242e-01 -7.05939174e-01 2.00460243e+00
6.51692510e-01 6.51023567e-01 4.10529137e-01 2.74373651e-01
9.54231858e-01 5.11221230e-01 1.56300515e-01 -1.04755305e-01
1.14186740e+00 -9.20863807e-01 -8.13987553e-01 1.68991417e-01
9.13158774e-01 -8.51394385e-02 6.76160216e-01 1.54983371e-01
-9.45375919e-01 -1.32213861e-01 -1.13705337e+00 -2.73924798e-01
-1.11792982e+00 -1.13717727e-01 1.06104803e+00 6.65089369e-01
-1.38974261e+00 8.73334885e-01 -9.83226418e-01 -5.61601222e-01
6.23187535e-02 3.60458612e-01 -5.41038036e-01 3.24245989e-02
-1.68557680e+00 9.61046755e-01 1.07492244e+00 1.59249738e-01
-5.40386260e-01 -8.43677700e-01 -1.17931056e+00 1.48514494e-01
9.09107685e-01 -9.83230770e-01 1.09913838e+00 -2.64500082e-01
-1.11152983e+00 4.33014065e-01 -1.05367443e-02 -7.81959832e-01
4.61874783e-01 -3.30536127e-01 -8.09233487e-01 1.07251972e-01
1.43743530e-01 3.02576423e-01 6.46732628e-01 -1.36909211e+00
-5.70914984e-01 -3.64981920e-01 7.98216879e-01 -2.19379254e-02
-6.56805098e-01 -3.47149879e-01 -7.54857183e-01 -6.13591671e-01
-9.83851328e-02 -8.08515012e-01 -1.77614510e-01 -2.51481414e-01
-4.60364908e-01 -3.51019144e-01 1.05584562e+00 -6.72601640e-01
1.74911356e+00 -1.74101710e+00 3.48912835e-01 3.67982611e-02
4.70173061e-01 3.30282658e-01 1.72173277e-01 1.04448545e+00
-7.76865184e-02 3.26810867e-01 -1.75467312e-01 -5.22663951e-01
3.30163449e-01 3.83746952e-01 -3.41872871e-01 6.10109866e-02
1.82740003e-01 1.41634023e+00 -1.34350145e+00 -6.08057380e-01
2.50438452e-01 3.96671563e-01 -4.66639012e-01 -1.31540760e-01
-3.81031483e-01 -2.04485223e-01 -4.00418460e-01 5.68226755e-01
4.77541149e-01 -3.04479003e-01 4.74932700e-01 -4.71110761e-01
9.58067272e-03 1.04097493e-01 -1.25018549e+00 1.86501312e+00
-4.09191161e-01 1.71940506e-01 -4.33088481e-01 -9.02739406e-01
4.49402273e-01 6.26978099e-01 5.22318900e-01 -1.14498660e-01
-2.88902700e-01 1.23556115e-01 -3.62673998e-01 -4.19887543e-01
1.00823700e+00 -9.49440747e-02 -2.61757731e-01 2.50907749e-01
3.18670094e-01 3.33120584e-01 5.13688087e-01 7.33805060e-01
1.23366022e+00 4.93222237e-01 5.36765218e-01 3.80199812e-02
4.49936509e-01 -7.63448477e-02 6.41610801e-01 6.09071374e-01
-8.26224908e-02 3.72195393e-02 6.48247957e-01 -4.80887771e-01
-8.10516119e-01 -1.02915943e+00 7.52103627e-02 5.34106851e-01
1.96938440e-01 -1.29146457e+00 -2.75660753e-01 -1.23430789e+00
3.06108236e-01 5.76329172e-01 -8.93414915e-01 -3.50216031e-01
-5.24755478e-01 -5.13025999e-01 6.86299503e-01 8.73036623e-01
4.08997267e-01 -7.69837499e-01 -4.12301362e-01 5.40644705e-01
-1.14510499e-01 -1.32585669e+00 4.20633778e-02 2.90154703e-02
-8.56958687e-01 -1.22788143e+00 -3.79681170e-01 -5.05410969e-01
4.27503288e-01 -4.67858873e-02 1.18025923e+00 -7.57697178e-03
-1.22393683e-01 7.69860208e-01 -6.49213254e-01 -3.34458232e-01
-2.27638051e-01 2.41049781e-01 2.12477535e-01 1.81035884e-02
1.62538826e-01 -8.79184902e-01 -4.25188243e-01 -1.45132065e-01
-1.22145641e+00 6.75426275e-02 5.93953073e-01 7.59349823e-01
3.73209774e-01 3.77397925e-01 8.25853884e-01 -1.39664280e+00
4.21392292e-01 -6.23560250e-01 -4.03529435e-01 6.23739362e-01
-1.04710376e+00 4.86602098e-01 6.72494113e-01 -2.00171813e-01
-1.02340329e+00 -3.45990688e-01 1.84764937e-02 -5.05985081e-01
3.41523141e-01 1.22063553e+00 -2.45296553e-01 8.94745365e-02
3.23436975e-01 1.62843287e-01 -4.08586234e-01 -5.06031752e-01
8.32014322e-01 1.89964455e-02 5.29098988e-01 -7.26488948e-01
1.20764029e+00 5.66205919e-01 1.73730731e-01 -4.61918265e-01
-6.95940614e-01 -6.83595896e-01 -8.47558916e-01 2.03616340e-02
3.94170672e-01 -8.36135864e-01 -5.70498645e-01 2.81883895e-01
-9.74791586e-01 -6.43461496e-02 -5.92457891e-01 3.80268961e-01
-4.20605242e-01 7.23055661e-01 -4.16112810e-01 -7.15314925e-01
-2.92102128e-01 -4.39783365e-01 1.04038954e+00 -1.40814424e-01
-1.29426196e-01 -1.46811223e+00 2.94082671e-01 -3.82965319e-02
3.52167517e-01 6.31469727e-01 1.02307618e+00 -6.69203639e-01
-6.88605785e-01 -3.15596551e-01 -3.57444361e-02 -6.80740625e-02
2.56864220e-01 6.96384013e-02 -7.33470380e-01 -2.90680975e-01
-5.85356355e-01 -9.70408916e-02 1.02194536e+00 -8.89494866e-02
8.33346128e-01 -5.82437932e-01 -8.03101659e-01 4.04438317e-01
1.75480115e+00 -1.12312794e-01 5.69231212e-01 5.25979757e-01
7.23950744e-01 3.34832102e-01 7.12755024e-01 4.85701919e-01
8.98214817e-01 9.40158069e-01 3.99735361e-01 2.19011500e-01
-1.33793697e-01 -5.50244510e-01 3.85302663e-01 9.53791380e-01
-2.64307588e-01 -2.62495607e-01 -7.94600904e-01 1.12382400e+00
-2.20269823e+00 -1.17612827e+00 -4.77012545e-02 2.07931352e+00
8.22300971e-01 1.02451421e-01 8.40129405e-02 3.91802758e-01
3.16345185e-01 3.53303760e-01 -3.63965839e-01 -1.16637737e-01
-1.09125204e-01 2.77499110e-01 5.38564622e-01 4.38414425e-01
-1.12849951e+00 1.06064546e+00 5.77646494e+00 5.01717985e-01
-7.36734033e-01 2.41957784e-01 -4.06067848e-01 2.04998448e-01
-6.74320996e-01 4.82898951e-01 -8.89515221e-01 2.69319028e-01
8.03781986e-01 -7.99073935e-01 -7.60972500e-03 8.54482591e-01
-3.65463614e-01 1.25514165e-01 -1.21789598e+00 6.55158997e-01
-2.71892864e-02 -1.36176515e+00 2.02988610e-01 -1.35058120e-01
6.20748758e-01 -4.35513765e-01 -9.95404124e-02 7.71278560e-01
6.00127459e-01 -5.06827056e-01 6.14372253e-01 4.39693332e-01
6.12174928e-01 -7.51343668e-01 7.31139123e-01 9.93526727e-02
-1.80015385e+00 -4.03002724e-02 -8.46928335e-04 1.93183243e-01
2.68794745e-01 5.92136562e-01 -1.12554586e+00 1.68129516e+00
6.48696601e-01 1.00127721e+00 -8.97181392e-01 9.38776374e-01
-5.00730157e-01 4.45871055e-01 -2.06956863e-01 2.46134415e-01
1.30513638e-01 1.70524269e-01 6.71098769e-01 1.16742468e+00
3.54282081e-01 -2.75106937e-01 6.13813698e-02 7.03343034e-01
-1.40654892e-01 6.00097142e-02 -9.40374911e-01 -2.63151467e-01
5.06432593e-01 1.22130919e+00 -6.11522198e-01 -4.79544520e-01
-5.18103480e-01 1.04476821e+00 5.42842448e-01 2.58437306e-01
-9.31896687e-01 -3.48788381e-01 4.51849282e-01 3.91468890e-02
5.79163074e-01 -3.35354686e-01 4.55961376e-01 -1.54985607e+00
3.00571293e-01 -3.48143399e-01 9.32017148e-01 -6.74185395e-01
-1.10335171e+00 3.53244007e-01 5.58429539e-01 -9.59181011e-01
-3.93913180e-01 -3.39898288e-01 -3.47387463e-01 4.51578051e-01
-1.82084644e+00 -1.77747548e+00 -3.28795686e-02 8.01546037e-01
7.54880160e-02 4.51691449e-01 8.91056657e-01 3.49127412e-01
-4.01916772e-01 5.40919483e-01 -1.07287653e-01 1.96693093e-02
5.20505607e-01 -1.80955291e+00 4.72985506e-01 1.15315139e+00
4.82429475e-01 9.04589236e-01 7.45956182e-01 -9.43256199e-01
-1.56261683e+00 -1.36056805e+00 1.33528316e+00 -6.35492086e-01
9.85275626e-01 -3.28192472e-01 -9.58731532e-01 1.27807653e+00
1.29549159e-02 1.37115300e-01 6.00672364e-01 6.28005803e-01
-5.47619104e-01 -1.96098521e-01 -8.43604147e-01 7.28359222e-01
1.37189245e+00 -5.37577033e-01 -8.09943259e-01 3.82360257e-02
1.13295865e+00 -2.83084333e-01 -1.27847409e+00 7.64113486e-01
5.73098958e-01 -5.35923898e-01 1.04466963e+00 -7.45515525e-01
1.68064386e-02 -5.94700396e-01 1.02112621e-01 -1.35429370e+00
-2.40733340e-01 -6.59347057e-01 -1.00356042e+00 1.48522234e+00
3.62830997e-01 -7.93615580e-01 7.34032035e-01 5.94752192e-01
-2.26590425e-01 -7.04246044e-01 -8.51912141e-01 -1.28741419e+00
-3.42819571e-01 -4.37590420e-01 8.81778359e-01 1.29617918e+00
3.25730294e-01 1.17348462e-01 -5.06160200e-01 5.54136336e-01
5.00981390e-01 4.25173610e-01 6.93987608e-01 -1.46684229e+00
-3.29844862e-01 -2.06062317e-01 -9.30977941e-01 -4.70650405e-01
2.98174500e-01 -1.17885268e+00 -5.71318030e-01 -1.94853878e+00
1.52925000e-01 -5.34254670e-01 -4.54155266e-01 9.46459651e-01
-2.97403246e-01 -2.68730164e-01 -6.48995191e-02 3.20632420e-02
-6.42309010e-01 6.98122084e-01 6.30194008e-01 -1.61205336e-01
-1.66153133e-01 -4.26897764e-01 -5.62743843e-01 4.59797621e-01
5.55018902e-01 -3.56677651e-01 -8.20900023e-01 -9.71489996e-02
8.02895367e-01 -5.03804311e-02 4.16749507e-01 -9.37110126e-01
4.67586815e-01 1.81661218e-01 -2.54378080e-01 -5.86437285e-01
4.31232810e-01 -9.95551825e-01 6.45303249e-01 2.48183295e-01
8.66744742e-02 1.04991749e-01 3.66362959e-01 1.03621769e+00
-4.70961452e-01 -1.30677760e-01 -9.46474299e-02 -1.54250264e-02
-1.34771335e+00 5.81679583e-01 2.99021602e-01 -9.75844860e-02
1.28087628e+00 -2.41076961e-01 -3.41398239e-01 -2.74187386e-01
-1.07179248e+00 3.49059343e-01 4.53866869e-01 4.75709349e-01
5.95279515e-01 -1.50383997e+00 -3.69071126e-01 -3.71389776e-01
4.85942036e-01 -1.08718956e-02 1.91137046e-01 9.98326540e-01
-1.65422589e-01 4.43865359e-01 1.65447429e-01 -8.83756727e-02
-1.27224934e+00 1.04920149e+00 -1.03926085e-01 -9.36797023e-01
-7.61634052e-01 4.31583166e-01 -3.72102968e-02 -3.95163298e-01
-3.65754403e-02 -6.19284987e-01 -3.47669303e-01 2.68496394e-01
1.30134910e-01 3.36775362e-01 1.99180305e-01 -4.06566620e-01
-3.11310053e-01 3.12127054e-01 -1.93176493e-01 -5.23831099e-02
1.48041570e+00 -1.05542295e-01 -1.79106623e-01 8.11558366e-01
8.89219463e-01 3.37877572e-01 -5.75097561e-01 -4.11834270e-01
4.28130597e-01 -3.43118966e-01 -2.29783803e-01 -7.97899187e-01
-9.17428434e-01 3.86357427e-01 -1.01802759e-01 4.69024509e-01
1.04217398e+00 1.91212460e-01 7.20166266e-01 4.35542762e-01
7.98825502e-01 -8.06844354e-01 -1.84746608e-01 2.23219350e-01
6.32402420e-01 -1.00577164e+00 9.63598639e-02 -6.60068870e-01
-3.13842863e-01 1.04439819e+00 4.16119397e-01 2.61612713e-01
6.01136148e-01 1.26969501e-01 -4.96939808e-01 -5.16729951e-01
-9.61949587e-01 -5.33116579e-01 1.42085031e-01 5.47417223e-01
5.74715249e-02 6.42028525e-02 -4.37208474e-01 8.01646054e-01
-1.04775190e-01 3.29651833e-01 5.72340548e-01 1.19534910e+00
1.13289863e-01 -1.67018330e+00 2.74340630e-01 2.53944039e-01
-3.88858676e-01 -1.86344981e-01 -3.32742512e-01 1.32157564e+00
1.66182175e-01 5.74089646e-01 -5.22043169e-01 -4.56221581e-01
3.33323300e-01 4.31057930e-01 5.72353125e-01 -6.09392226e-01
-3.89178813e-01 -6.69764102e-01 4.83349979e-01 -5.61560273e-01
-6.50613844e-01 -6.50847614e-01 -1.07424557e+00 -1.51877269e-01
-5.35019279e-01 2.30566710e-01 3.61738861e-01 5.68872154e-01
5.10989249e-01 4.33318317e-01 3.91093433e-01 -2.15375766e-01
-2.26597652e-01 -6.05655849e-01 -7.60886312e-01 3.86396557e-01
1.53733879e-01 -9.85024393e-01 -2.14784443e-01 4.26792428e-02] | [8.58368968963623, 7.845951557159424] |
6bfda603-949f-44d0-908f-67dd64193135 | iranis-a-large-scale-dataset-of-farsi-license | 2101.00295 | null | https://arxiv.org/abs/2101.00295v1 | https://arxiv.org/pdf/2101.00295v1.pdf | Iranis: A Large-scale Dataset of Farsi License Plate Characters | Providing huge amounts of data is a fundamental demand when dealing with Deep Neural Networks (DNNs). Employing these algorithms to solve computer vision problems resulted in the advent of various image datasets to feed the most common visual imagery deep structures, known as Convolutional Neural Networks (CNNs). In this regard, some datasets can be found that contain hundreds or even thousands of images for license plate detection and optical character recognition purposes. However, no publicly available image dataset provides such data for the recognition of Farsi characters used in car license plates. The gap has to be filled due to the numerous advantages of developing accurate deep learning-based systems for law enforcement and surveillance purposes. This paper introduces a large-scale dataset that includes images of numbers and characters used in Iranian car license plates. The dataset, named Iranis, contains more than 83,000 images of Farsi numbers and letters collected from real-world license plate images captured by various cameras. The variety of instances in terms of camera shooting angle, illumination, resolution, and contrast make the dataset a proper choice for training DNNs. Dataset images are manually annotated for object detection and image classification. Finally, and to build a baseline for Farsi character recognition, the paper provides a performance analysis using a YOLO v.3 object detector. | ['Alireza Akoushideh', 'Asadollah Shahbahrami', 'Sajjad Soroori', 'Ali Tourani'] | 2021-01-01 | null | null | null | null | ['license-plate-detection'] | ['computer-vision'] | [-4.28480245e-02 -7.56163061e-01 3.59808207e-02 -1.84497282e-01
-2.41454914e-01 -7.07771838e-01 5.67020774e-01 -4.37840462e-01
-5.40291488e-01 6.39033616e-01 -3.11053395e-01 -1.35852143e-01
1.53019696e-01 -7.90333211e-01 -7.63140202e-01 -8.61020505e-01
3.36581916e-01 3.25787485e-01 3.78507078e-01 -1.81560665e-01
6.56845033e-01 1.19999421e+00 -1.49297059e+00 1.96247101e-01
4.96616662e-01 9.52020705e-01 4.06549543e-01 7.79655099e-01
-6.66225851e-02 1.07247734e+00 -7.50223219e-01 -6.18390620e-01
5.38746655e-01 -4.41505611e-02 -1.68068275e-01 5.29073954e-01
7.27371812e-01 -7.36358404e-01 -6.87422991e-01 1.20184231e+00
3.08433235e-01 1.14418983e-01 9.10153210e-01 -1.29808009e+00
-1.10184658e+00 -1.45503478e-02 -3.77102941e-01 5.50093532e-01
-2.17377201e-01 2.47631371e-01 3.31441283e-01 -9.31679070e-01
4.82533067e-01 8.56370986e-01 7.24802792e-01 4.80681688e-01
-3.43874305e-01 -6.65683448e-01 -6.51209176e-01 3.70718688e-01
-1.50473928e+00 -4.40576047e-01 5.80681920e-01 -7.49583066e-01
9.23861086e-01 1.02643266e-01 5.65455019e-01 8.63152981e-01
1.36457697e-01 7.41147995e-01 9.25793588e-01 -3.98946315e-01
-6.78197294e-02 5.01397967e-01 3.34277570e-01 6.85700178e-01
5.83252609e-01 1.23894356e-01 -1.48968371e-02 3.40980887e-01
1.11378860e+00 3.02503198e-01 2.52544582e-02 2.80104309e-01
-8.97858143e-01 8.45183492e-01 3.66299152e-01 3.21243763e-01
-1.86724856e-01 -1.20400935e-01 4.12118316e-01 1.03781514e-01
-1.08681753e-01 3.15260530e-01 -1.27968580e-01 -1.52684018e-01
-7.20681071e-01 1.39849737e-01 4.78583515e-01 9.94716346e-01
5.83097816e-01 6.45087957e-01 3.74076277e-01 1.21359396e+00
1.43224612e-01 6.50542259e-01 5.29021382e-01 -4.00059462e-01
5.21024048e-01 7.50801921e-01 -5.16356528e-02 -1.51243269e+00
-2.02398509e-01 -5.59784770e-02 -1.01606238e+00 6.07592046e-01
4.91419017e-01 -1.13825329e-01 -1.13986254e+00 6.39049947e-01
-3.44969302e-01 -5.77813946e-02 2.20543116e-01 1.21428537e+00
1.03596008e+00 1.09768116e+00 -1.34125143e-01 2.70657837e-01
1.46515191e+00 -8.79259825e-01 -6.10458374e-01 -3.40467334e-01
1.81959242e-01 -9.04318094e-01 8.15678298e-01 5.34034729e-01
-7.14345515e-01 -8.49118173e-01 -1.31545675e+00 3.57591012e-03
-7.57658243e-01 8.29786241e-01 5.03346622e-01 7.09873736e-01
-7.77502537e-01 5.20625859e-02 -3.13323915e-01 -3.14585596e-01
6.44157052e-01 4.39214706e-01 -5.89605093e-01 -2.47892588e-01
-8.30928147e-01 1.04298139e+00 5.11663854e-01 3.10828328e-01
-9.46251333e-01 2.80566532e-02 -5.30469596e-01 8.93300250e-02
7.22901598e-02 2.83417106e-01 8.13664258e-01 -1.54883397e+00
-1.10288000e+00 1.16042697e+00 5.59740067e-01 -3.80578727e-01
2.54986852e-01 2.19588190e-01 -8.80157113e-01 1.63205251e-01
-2.11195126e-01 5.69757938e-01 7.88544893e-01 -9.36601341e-01
-7.63402402e-01 -3.60895693e-01 2.53594536e-02 1.76154003e-01
-4.45797026e-01 4.83068734e-01 -6.21099591e-01 -4.90319937e-01
-3.20948511e-01 -9.03918087e-01 1.62407249e-01 -1.35683283e-01
-4.42133278e-01 -1.71001956e-01 1.13861299e+00 -7.91608155e-01
7.30272591e-01 -2.28987098e+00 -5.16891003e-01 -7.28696631e-03
1.52339891e-01 9.35798109e-01 -1.32336393e-01 3.13263297e-01
-2.22549541e-03 -6.42903522e-02 3.73024936e-03 2.27311090e-01
-3.00023139e-01 1.74616694e-01 5.47823608e-02 6.69820487e-01
3.16940427e-01 6.94958627e-01 -5.08113988e-02 -3.29460144e-01
4.87979203e-01 3.69696617e-01 4.10433039e-02 1.45617113e-01
2.00981662e-01 -2.25287244e-01 -2.78956831e-01 1.00876462e+00
9.83573675e-01 3.39519158e-02 -4.95696306e-01 -1.88911721e-01
-2.58832753e-01 -6.71471000e-01 -9.29055929e-01 7.64500201e-01
6.85702115e-02 1.68851578e+00 -7.25995749e-02 -1.18620932e+00
1.23292351e+00 2.12404832e-01 -4.85920198e-02 -7.65114129e-01
4.49470699e-01 3.14273417e-01 1.98379040e-01 -9.51657534e-01
7.48929620e-01 1.64561160e-02 1.18945256e-01 -1.96306705e-01
5.47296628e-02 7.30651170e-02 4.66326892e-01 -1.24393284e-01
5.33012748e-01 -5.17379224e-01 1.95577629e-02 -7.42961764e-02
7.50759542e-01 4.54639852e-01 3.52536142e-01 5.79372287e-01
-2.61469692e-01 6.43395066e-01 3.43954712e-01 -1.08412933e+00
-1.62814486e+00 -6.20553672e-01 -2.52028704e-01 5.99590003e-01
-3.21557932e-03 6.02239192e-01 -5.95010996e-01 -4.60390113e-02
-1.48069888e-01 1.28686994e-01 -4.23043042e-01 1.85815632e-01
-5.81286550e-01 -6.32937849e-01 9.58130479e-01 5.93271911e-01
1.14140487e+00 -1.31921649e+00 -4.52295214e-01 -1.47395330e-02
4.71932799e-01 -1.48393893e+00 -1.49040610e-01 -9.54688117e-02
-7.50994027e-01 -1.26982522e+00 -9.20463443e-01 -1.27513528e+00
7.46929526e-01 3.25523019e-01 7.42344916e-01 1.33485282e-02
-5.97030103e-01 -1.40827209e-01 -1.84738681e-01 -6.13192260e-01
-5.80196679e-01 -1.82282731e-01 7.42939785e-02 5.53730130e-02
8.59680414e-01 -1.17583349e-02 -1.68418869e-01 1.06284313e-01
-1.03684294e+00 -1.02127708e-01 9.74388957e-01 5.18551886e-01
-1.29546374e-01 2.10594654e-01 4.11431670e-01 -5.66383004e-01
7.67653942e-01 -3.19735587e-01 -1.18485141e+00 2.52022207e-01
4.69390862e-02 -5.26774466e-01 8.35076928e-01 -2.63757259e-01
-8.19256246e-01 4.61340621e-02 -1.55730590e-01 -4.65479523e-01
-7.85469055e-01 4.57498342e-01 -5.38131734e-03 -3.05751294e-01
5.88922143e-01 7.39192665e-01 1.19596682e-01 -2.53710866e-01
-1.65597498e-01 1.35868812e+00 7.85510659e-01 4.39270260e-03
6.34540021e-01 5.90617247e-02 -2.17268199e-01 -1.41419184e+00
-3.10966372e-01 -4.54784364e-01 -6.04804873e-01 -5.76222003e-01
1.13503408e+00 -8.41602623e-01 -8.57437134e-01 1.37681472e+00
-1.13253498e+00 2.24289641e-01 4.18945789e-01 4.83550340e-01
-1.66254994e-02 3.36268723e-01 -7.86479890e-01 -8.93206656e-01
-1.49676949e-01 -1.34815180e+00 5.97963333e-01 6.77048862e-01
6.27304792e-01 -8.69688034e-01 -2.52727270e-01 6.21156573e-01
5.17297387e-01 2.31674030e-01 7.07149923e-01 -7.59672284e-01
-9.43139911e-01 -8.10159743e-01 -7.30857134e-01 9.94480312e-01
7.09309056e-02 4.35641348e-01 -9.83271182e-01 1.03524432e-01
-3.79070401e-01 -6.10203445e-01 6.04317427e-01 4.10750508e-01
9.82555211e-01 -3.24899316e-01 1.23985849e-01 6.02017939e-01
1.85166061e+00 9.14986491e-01 1.12546694e+00 6.42955065e-01
9.01727796e-01 2.09802285e-01 2.43808866e-01 3.35542172e-01
-1.09639362e-01 3.37455302e-01 3.85798573e-01 -2.50350177e-01
1.06601544e-01 2.79054970e-01 3.26747835e-01 6.96809769e-01
-4.24830228e-01 -4.09010947e-01 -1.15704727e+00 3.43765616e-01
-1.05950689e+00 -1.16154253e+00 -3.14959079e-01 1.70038605e+00
4.41403687e-01 -3.62779759e-02 9.10221711e-02 3.40953529e-01
9.58650649e-01 -1.10248163e-01 -3.58676255e-01 -5.58187366e-01
-3.90819550e-01 -3.58695269e-01 8.36077392e-01 -2.18657721e-02
-1.35082126e+00 1.03114367e+00 5.90049028e+00 8.39922726e-01
-1.55628800e+00 -4.31492895e-01 7.86620021e-01 3.89656842e-01
5.27675450e-01 -6.43324554e-01 -1.04342258e+00 5.50371647e-01
9.29650545e-01 2.81720430e-01 3.47136557e-01 1.00819516e+00
7.18201846e-02 -1.48977354e-01 -6.20515645e-01 1.34668159e+00
4.90301430e-01 -1.80996811e+00 1.60768971e-01 1.36861414e-01
7.63942480e-01 1.73808962e-01 6.38963655e-02 2.10687980e-01
-4.06653732e-02 -1.15481961e+00 5.47739804e-01 3.62887591e-01
7.96063721e-01 -1.00180781e+00 1.10192919e+00 4.41451609e-01
-6.26211941e-01 -3.84458095e-01 -9.35955882e-01 -1.49536744e-01
-4.12714511e-01 1.87428445e-02 -9.81518149e-01 -9.73033085e-02
5.92571437e-01 8.41319859e-01 -6.00021601e-01 1.24826849e+00
3.43151122e-01 5.49336195e-01 -8.51296782e-02 -4.67224240e-01
8.75889838e-01 -4.76417333e-01 2.19734251e-01 1.22401726e+00
3.08344513e-01 5.47322109e-02 -1.45026222e-01 8.40304554e-01
-1.90183416e-01 -4.21914756e-02 -9.11398888e-01 -5.52065015e-01
4.89072412e-01 1.33606827e+00 -7.74553418e-01 -4.61683214e-01
-6.70714200e-01 8.83302450e-01 -1.48426726e-01 3.19042206e-01
-8.22556257e-01 -6.01815343e-01 6.55464888e-01 5.52042499e-02
2.49921530e-01 -3.99503738e-01 -8.09732452e-02 -9.85361636e-01
-2.11917147e-01 -1.02324891e+00 1.55468006e-02 -9.95454311e-01
-1.14413786e+00 7.70092428e-01 -9.06930864e-02 -1.47671700e+00
1.75642088e-01 -1.61829507e+00 -5.69209158e-01 7.64780879e-01
-1.29322827e+00 -1.08451843e+00 -6.35142744e-01 6.97212279e-01
9.97088611e-01 -1.14988053e+00 5.25094271e-01 5.54731190e-01
-8.36846650e-01 2.72560269e-01 5.56830347e-01 1.08330870e+00
1.94971502e-01 -7.62316883e-01 1.81164980e-01 9.80197489e-01
-9.24572721e-02 3.48986685e-01 2.57865012e-01 -2.64809161e-01
-1.32392490e+00 -8.72967422e-01 4.71323967e-01 -2.16016799e-01
3.25150013e-01 -2.45395750e-01 -7.26260900e-01 6.64653838e-01
4.45725411e-01 2.05936581e-01 5.49892128e-01 -7.25490928e-01
5.80197945e-02 -2.82436162e-01 -1.10750723e+00 3.64137143e-01
1.04077578e-01 -2.30160028e-01 -5.35019815e-01 3.50820065e-01
-9.03998911e-02 -2.54086316e-01 -3.64721328e-01 -1.27690271e-01
4.51860994e-01 -9.57744420e-01 9.46597278e-01 -5.06849945e-01
6.38638079e-01 -3.25895816e-01 -1.92702368e-01 -8.38197708e-01
-1.61237985e-01 2.53136635e-01 5.16252756e-01 1.20367789e+00
9.04658213e-02 -4.41752106e-01 8.13436270e-01 6.08081043e-01
-2.66453505e-01 -2.36199737e-01 -7.70719230e-01 -6.62098765e-01
-2.23200351e-01 -1.36119992e-01 1.59113169e-01 1.03552222e+00
-7.51078665e-01 2.09180694e-02 -6.84265912e-01 1.67033017e-01
5.48521876e-01 -2.99594164e-01 7.19254434e-01 -1.29803050e+00
2.16579452e-01 -4.98878717e-01 -1.19367516e+00 -5.93870759e-01
-1.24687120e-01 -4.46169287e-01 -1.59826487e-01 -1.45486760e+00
2.15844512e-01 -3.09386998e-01 1.72964916e-01 3.47089410e-01
3.54371697e-01 7.37296581e-01 3.47617477e-01 5.31681836e-01
-2.18872592e-01 1.57285333e-01 1.10274446e+00 -3.88655722e-01
3.02569121e-01 4.62443717e-02 -2.48308823e-01 8.95568490e-01
9.33743894e-01 -2.27097109e-01 -2.19655871e-01 -6.25158072e-01
-5.91740618e-03 2.27080137e-02 4.31454003e-01 -1.29096210e+00
3.96638721e-01 -1.67996123e-01 1.01324737e+00 -8.53536069e-01
4.36150372e-01 -9.10616875e-01 -3.50291654e-02 4.14957851e-01
-1.72769204e-01 2.22176448e-01 4.15106475e-01 1.42401323e-01
-5.92059970e-01 -6.59423232e-01 1.14325488e+00 -5.12598157e-01
-1.60876751e+00 2.14095190e-01 -1.00428987e+00 -2.58933067e-01
1.28443229e+00 -9.58539605e-01 -4.62164730e-01 -9.07006189e-02
-1.23845160e-01 -3.76062959e-01 2.21729100e-01 5.47721624e-01
1.00536025e+00 -1.37310636e+00 -7.82288074e-01 3.98163944e-01
1.85866758e-01 -3.12450349e-01 3.19051534e-01 3.63506854e-01
-1.58134043e+00 6.90726280e-01 -1.17571759e+00 -4.63323057e-01
-1.37933183e+00 2.72503793e-01 5.88425338e-01 4.06008005e-01
-5.07361412e-01 9.02889907e-01 -1.16990849e-01 -2.49011725e-01
1.90393150e-01 -1.66087300e-01 -5.83609760e-01 -8.64932984e-02
7.14975893e-01 3.17878664e-01 3.81390415e-02 -8.72495055e-01
-3.78486156e-01 5.23652613e-01 -5.43886460e-02 3.32500577e-01
1.46277857e+00 1.65733069e-01 -1.19842596e-01 1.10081263e-01
1.31648910e+00 -2.53888398e-01 -1.12746763e+00 5.83895519e-02
-1.16995245e-01 -7.08953738e-01 1.43496886e-01 -8.50071967e-01
-1.49322557e+00 1.00674117e+00 7.38822281e-01 1.18330568e-02
1.00598669e+00 -4.96002793e-01 5.70506215e-01 9.30440962e-01
1.19565718e-01 -1.28378510e+00 2.73750890e-02 5.55040240e-01
8.45280170e-01 -1.53307962e+00 -3.01758468e-01 2.08116770e-01
-9.57738578e-01 1.74863684e+00 8.56086314e-01 -4.27408725e-01
2.13017777e-01 5.50928116e-01 3.61090034e-01 -1.84601545e-01
-1.44851625e-01 1.27189785e-01 1.02729946e-01 7.34199882e-01
2.79356003e-01 -3.48942466e-02 7.71832541e-02 4.02650982e-01
2.23257914e-01 7.03062341e-02 1.12322319e+00 6.92211866e-01
-7.72260427e-01 -5.76446116e-01 -7.97433853e-01 5.52215099e-01
-5.22410512e-01 -1.47545680e-01 -4.48259026e-01 1.17633927e+00
1.69684812e-01 5.95882952e-01 3.10734689e-01 -2.14631304e-01
1.27942353e-01 -2.87861019e-01 9.27683190e-02 -1.51032150e-01
-3.33395481e-01 -3.58184278e-01 -3.51960473e-02 2.99528927e-01
-3.61045659e-01 -3.45138967e-01 -8.96854699e-01 -6.75219297e-01
-2.76867539e-01 -1.84620351e-01 9.91171241e-01 7.73021817e-01
-2.16430977e-01 1.86455727e-01 5.38402081e-01 -9.50506151e-01
-3.73052329e-01 -1.03720379e+00 -9.96242583e-01 3.94763947e-01
3.00528258e-01 -4.75728542e-01 -9.63576660e-02 3.88949364e-01] | [9.825026512145996, -4.93101692199707] |
1d2b870e-e182-46f1-9fae-1c7edb25f1a5 | 3d-dual-fusion-dual-domain-dual-query-camera-1 | 2211.13529 | null | https://arxiv.org/abs/2211.13529v2 | https://arxiv.org/pdf/2211.13529v2.pdf | 3D Dual-Fusion: Dual-Domain Dual-Query Camera-LiDAR Fusion for 3D Object Detection | Fusing data from cameras and LiDAR sensors is an essential technique to achieve robust 3D object detection. One key challenge in camera-LiDAR fusion involves mitigating the large domain gap between the two sensors in terms of coordinates and data distribution when fusing their features. In this paper, we propose a novel camera-LiDAR fusion architecture called, 3D Dual-Fusion, which is designed to mitigate the gap between the feature representations of camera and LiDAR data. The proposed method fuses the features of the camera-view and 3D voxel-view domain and models their interactions through deformable attention. We redesign the transformer fusion encoder to aggregate the information from the two domains. Two major changes include 1) dual query-based deformable attention to fuse the dual-domain features interactively and 2) 3D local self-attention to encode the voxel-domain queries prior to dual-query decoding. The results of an experimental evaluation show that the proposed camera-LiDAR fusion architecture achieved competitive performance on the KITTI and nuScenes datasets, with state-of-the-art performances in some 3D object detection benchmarks categories. | ['Jun Won Choi', 'Dongsuk Kum', 'Minwook Kim', 'Konyul Park', 'Yecheol Kim'] | 2022-11-24 | 3d-dual-fusion-dual-domain-dual-query-camera | https://arxiv.org/abs/2211.13529 | https://arxiv.org/abs/2211.13529 | null | ['robust-3d-object-detection'] | ['computer-vision'] | [ 8.06602985e-02 -4.25500602e-01 1.84174255e-02 -5.54664671e-01
-1.42608535e+00 -7.17516541e-01 5.86658537e-01 -3.73521373e-02
-2.41200656e-01 1.95994973e-02 4.61336784e-02 -1.21133529e-01
1.65572062e-01 -6.19651973e-01 -9.99303043e-01 -5.23087800e-01
4.53954875e-01 4.28543150e-01 6.31400347e-01 -1.16093829e-02
2.28714824e-01 8.04533958e-01 -2.00773168e+00 4.48580503e-01
8.46056879e-01 1.43978941e+00 6.03608906e-01 7.17144310e-01
-3.34420800e-01 2.51753151e-01 -3.17011267e-01 -3.10122192e-01
6.25204504e-01 2.58337796e-01 -6.60785735e-02 2.70015866e-01
1.17494583e+00 -5.82804263e-01 -3.56932700e-01 1.12231410e+00
6.10626221e-01 -1.41689116e-02 6.76413536e-01 -1.30125129e+00
-9.71580446e-01 1.01766542e-01 -9.49690521e-01 3.49486321e-01
3.64587098e-01 1.78176120e-01 8.00157607e-01 -1.41521871e+00
6.78332075e-02 1.82851303e+00 5.73841035e-01 2.90334255e-01
-1.00776076e+00 -9.81850147e-01 3.61368746e-01 1.30058303e-01
-1.64154232e+00 -3.42876136e-01 7.52870560e-01 -6.67786300e-01
1.27499008e+00 1.36842877e-01 5.40192783e-01 6.89826727e-01
2.58129239e-01 7.47744262e-01 7.06179500e-01 -7.76284933e-02
-1.77137852e-01 1.52533680e-01 1.26156479e-01 5.35106480e-01
3.51938725e-01 2.22636282e-01 -5.70204258e-01 -6.56590462e-02
6.46566987e-01 2.87234664e-01 1.33322239e-01 -6.35120213e-01
-9.43304718e-01 7.68509209e-01 7.25010753e-01 -2.08961517e-01
-1.16825052e-01 2.16411069e-01 9.10331085e-02 -8.42495188e-02
6.53983057e-01 -2.11166993e-01 -1.76240698e-01 4.29887980e-01
-6.82697594e-01 3.38172227e-01 1.53716102e-01 1.49054193e+00
8.67445767e-01 -1.51554197e-01 -2.41900906e-01 5.28027058e-01
7.47948170e-01 1.11373353e+00 9.94502380e-03 -7.03571916e-01
9.21175539e-01 7.81345844e-01 9.17898864e-02 -9.29587901e-01
1.03774235e-01 -3.22316736e-02 -4.62658167e-01 2.58057714e-01
-4.94936109e-02 3.07784230e-01 -1.17624617e+00 1.43344939e+00
6.18459225e-01 3.16391289e-01 -6.46171570e-02 1.13042223e+00
1.15595770e+00 5.44844151e-01 5.37245795e-02 2.99737155e-01
1.42793787e+00 -6.56761646e-01 -4.70553219e-01 -2.99697012e-01
1.80435479e-01 -8.77340734e-01 6.36967301e-01 -2.40199357e-01
-1.32559431e+00 -1.15879142e+00 -1.20174885e+00 -7.54135311e-01
-6.69329762e-01 2.00208738e-01 2.06763595e-01 3.54483664e-01
-8.39193821e-01 -4.71966118e-02 -9.40586567e-01 -3.79033685e-01
5.21848023e-01 6.69843078e-01 -3.50413263e-01 -2.30577186e-01
-7.15655625e-01 8.70322049e-01 4.09112632e-01 -8.23080540e-02
-8.75027955e-01 -8.50227416e-01 -1.16209793e+00 1.49691090e-01
4.29097861e-01 -7.86229849e-01 1.10428929e+00 -1.44354641e-01
-8.35906565e-01 1.05706406e+00 -2.65534669e-01 -2.38776579e-01
2.56521970e-01 -4.16572124e-01 -1.34365290e-01 -5.66463657e-02
3.81520331e-01 1.19161129e+00 1.04410040e+00 -1.28861642e+00
-1.24507654e+00 -8.38213921e-01 -6.88821524e-02 4.87901717e-01
1.60274789e-01 -1.84634104e-01 -8.45460951e-01 -4.49727744e-01
3.57673347e-01 -7.62815118e-01 9.50983465e-02 2.58941054e-01
-1.70585737e-01 -4.46289212e-01 1.54437923e+00 -1.78459540e-01
6.43791318e-01 -2.46094131e+00 2.74631530e-01 -2.57684737e-01
2.00211927e-01 4.08156216e-01 -2.20785037e-01 -2.75090635e-02
-6.34120628e-02 -3.26687731e-02 -4.64359745e-02 -7.65166581e-01
-1.80932228e-02 2.90866405e-01 -5.86983383e-01 4.88228977e-01
6.40806437e-01 1.13328886e+00 -7.53758073e-01 -5.33498943e-01
8.68039548e-01 8.21282327e-01 -6.06446683e-01 5.04966974e-01
-1.51596755e-01 2.18954310e-01 -5.79601824e-01 1.07415545e+00
1.20375049e+00 1.14564568e-01 -5.84172785e-01 -6.39446437e-01
-2.28339449e-01 2.34348401e-01 -1.18558240e+00 1.79688656e+00
-1.43755570e-01 4.66338664e-01 2.92343646e-01 -4.05474484e-01
1.10827804e+00 -1.49713069e-01 3.88667464e-01 -6.75248206e-01
2.09965914e-01 2.53239237e-02 -4.95298713e-01 -2.59356409e-01
7.18966782e-01 3.34452465e-02 -3.95790905e-01 4.83077019e-02
2.30785713e-01 -7.62564719e-01 -1.04256488e-01 1.41295254e-01
6.14306867e-01 9.60632116e-02 7.59932548e-02 -7.87143335e-02
6.71332359e-01 -1.81419536e-01 4.16047007e-01 6.13837600e-01
-2.24923342e-01 7.79992759e-01 -2.96356808e-03 -2.53092915e-01
-8.17872286e-01 -1.30919123e+00 -4.84937206e-02 7.53635228e-01
5.48585653e-01 -3.19520712e-01 -3.49629134e-01 -7.96134651e-01
6.68643117e-01 6.89627767e-01 -4.95482236e-01 -2.96332300e-01
-3.75121266e-01 -8.56092200e-02 3.73402476e-01 8.64019990e-01
4.72689182e-01 -2.31478974e-01 -8.41960132e-01 -2.45170090e-02
5.56110078e-03 -1.46231687e+00 -9.06094730e-01 4.15326566e-01
-6.54583514e-01 -1.03007519e+00 -3.14078033e-01 -6.23331487e-01
4.25043523e-01 1.12015748e+00 8.18396211e-01 -3.30137432e-01
-3.83785427e-01 6.80558622e-01 -2.30736524e-01 -7.49662817e-01
8.98730680e-02 -1.21569246e-01 5.84855117e-02 6.87239543e-02
7.13329315e-01 -2.50680834e-01 -3.19716007e-01 3.97990078e-01
-9.30054724e-01 -1.96641102e-01 5.66201389e-01 5.58265448e-01
1.00131571e+00 -1.92817181e-01 -2.76714657e-02 -2.40645841e-01
1.82977691e-01 -4.28128958e-01 -9.71469104e-01 2.30394959e-01
-5.66967614e-02 7.18010068e-02 -6.89770700e-03 -3.31112772e-01
-8.69533896e-01 6.67791963e-01 8.02467987e-02 -1.22748268e+00
-2.02031270e-01 -1.18814986e-02 -7.19581127e-01 -1.33208171e-01
8.22456479e-02 1.70271832e-03 -1.89872310e-01 -7.34433711e-01
6.21002913e-01 8.76721203e-01 8.60943854e-01 -5.55696726e-01
8.99941325e-01 6.87446117e-01 -8.67865309e-02 -7.39862025e-01
-8.54138434e-01 -7.08841980e-01 -9.59141791e-01 -4.34311777e-02
1.32099581e+00 -1.39294159e+00 -7.02032268e-01 4.48461920e-01
-1.48576105e+00 3.99681062e-01 -4.78663802e-01 4.40983385e-01
-4.18384582e-01 2.43255600e-01 -1.32827088e-02 -8.69405627e-01
-1.29611686e-01 -1.69635499e+00 2.03615570e+00 2.98195839e-01
5.03288448e-01 -3.67655247e-01 -1.56855583e-01 3.89312327e-01
-1.13163553e-02 1.50852889e-01 6.15460515e-01 -4.07131433e-01
-1.02312386e+00 -2.89698958e-01 -7.62616277e-01 4.09355521e-01
1.83887184e-01 4.36819298e-03 -1.12445259e+00 -3.19678754e-01
-7.99628254e-03 -2.26432905e-01 9.92283940e-01 2.46504799e-01
9.77303803e-01 4.70851839e-01 -5.11536598e-01 8.20588350e-01
1.32589400e+00 2.28545785e-01 2.13274345e-01 -4.37781781e-01
1.05272508e+00 3.05551678e-01 7.34156787e-01 3.03012401e-01
7.76846349e-01 8.23601246e-01 8.92702699e-01 -3.78502090e-03
-3.41703504e-01 -5.32245338e-01 4.97587502e-01 5.77437162e-01
3.48092914e-01 -2.97072291e-01 -8.16139817e-01 4.65238184e-01
-1.85789692e+00 -7.76556313e-01 -1.04772478e-01 2.09148550e+00
1.93690300e-01 1.75989300e-01 -7.84449726e-02 -2.50954330e-01
9.30329978e-01 8.89887065e-02 -8.00432086e-01 -1.21729165e-01
-2.25741714e-01 4.60711755e-02 8.22396815e-01 6.93896472e-01
-1.36600339e+00 8.77531767e-01 5.92257500e+00 7.01137722e-01
-1.00175023e+00 1.95530012e-01 1.49746507e-03 -3.19195002e-01
-1.87808216e-01 -1.47729501e-01 -1.57207787e+00 4.91923392e-01
5.56385994e-01 6.64016679e-02 6.87016025e-02 6.89337194e-01
-1.67867348e-01 -5.79388030e-02 -1.38702941e+00 1.34461224e+00
2.90139914e-01 -1.18500113e+00 3.32072228e-01 2.48207703e-01
3.76351178e-01 3.42828482e-01 2.16975212e-01 2.38656133e-01
3.57715696e-01 -7.67650068e-01 1.17618990e+00 5.13899148e-01
9.55887020e-01 -6.59505010e-01 4.91944313e-01 3.21576238e-01
-1.84317219e+00 -2.45803848e-01 -4.78158295e-01 2.30642512e-01
1.79634631e-01 3.72622073e-01 -6.48911119e-01 6.69840276e-01
1.05622220e+00 9.84439909e-01 -7.11980343e-01 7.83399224e-01
1.22015983e-01 -1.36880785e-01 -6.93970025e-01 3.68667662e-01
2.54171222e-01 -3.72741092e-03 8.10933769e-01 1.08740234e+00
6.31550431e-01 1.88989699e-01 4.11027223e-01 1.14615798e+00
3.30963582e-02 -5.49366891e-01 -9.70743179e-01 1.76181808e-01
7.69639611e-01 9.45553184e-01 -4.15257305e-01 -2.76019335e-01
-7.87687719e-01 6.15963042e-01 2.45672390e-01 1.87428873e-02
-1.06025219e+00 -1.29120693e-01 9.66198623e-01 2.50211865e-01
9.71024692e-01 -4.79280084e-01 -2.04129890e-01 -1.06789935e+00
6.65870607e-02 -3.00377876e-01 4.73605663e-01 -1.16966534e+00
-1.33353376e+00 3.27686727e-01 3.91865790e-01 -1.22751081e+00
1.47020549e-01 -6.36225402e-01 -1.68051049e-01 1.08419049e+00
-1.61387014e+00 -1.71423054e+00 -5.51055789e-01 8.62900913e-01
6.79947257e-01 -3.99162155e-03 2.45056361e-01 5.48621833e-01
-2.40156084e-01 4.27537858e-01 -3.48833382e-01 -1.34452477e-01
6.91809416e-01 -1.18221855e+00 6.26330853e-01 8.16805542e-01
1.35343790e-01 1.51293173e-01 1.13552861e-01 -7.33363628e-01
-1.77671647e+00 -1.31041026e+00 7.20583081e-01 -8.57215405e-01
1.93859681e-01 -8.12495828e-01 -7.43662477e-01 6.95461631e-01
1.00695737e-01 2.14671120e-01 3.26507598e-01 -4.87230688e-01
-5.69286525e-01 -3.19782406e-01 -1.15242171e+00 1.31923705e-01
1.11191809e+00 -7.13027000e-01 -8.88981044e-01 6.85655698e-02
1.09876680e+00 -7.99346447e-01 -6.75125241e-01 7.08338320e-01
4.06652629e-01 -9.11398828e-01 1.34705472e+00 -2.53221750e-01
-5.11276759e-02 -7.60601699e-01 -1.02911675e+00 -8.44949841e-01
-3.45731646e-01 -1.60220698e-01 -2.65260518e-01 1.32332575e+00
-1.96079910e-01 -2.51899213e-01 5.44460237e-01 5.02463341e-01
-4.91076827e-01 -4.14127022e-01 -1.22132730e+00 -4.06554848e-01
-7.97939226e-02 -5.88448822e-01 8.44131410e-01 3.34240824e-01
-7.83591628e-01 5.49919486e-01 -4.91332337e-02 5.44493675e-01
7.67733753e-01 1.22989304e-01 8.78316581e-01 -1.20738208e+00
5.64798079e-02 -3.95926267e-01 -6.87830091e-01 -1.44402242e+00
8.76788870e-02 -9.99823093e-01 6.14949465e-02 -1.21203613e+00
1.50361955e-01 -1.88470095e-01 -1.44932717e-01 3.96058798e-01
-1.95791364e-01 3.27890247e-01 5.21746457e-01 -5.93527919e-03
-5.37189007e-01 6.95971310e-01 1.14463627e+00 -4.39233214e-01
-1.85715750e-01 -2.43276924e-01 -7.57369816e-01 5.27157843e-01
4.22318093e-02 -4.03141260e-01 -4.83021975e-01 -1.00633585e+00
-2.04378471e-01 -8.63194093e-02 7.60639369e-01 -1.07821679e+00
5.39211273e-01 2.88784467e-02 5.26552916e-01 -1.79186130e+00
7.41909206e-01 -1.20398295e+00 5.11332862e-02 8.49682242e-02
-3.70283835e-02 2.07005620e-01 4.81797129e-01 7.79598951e-01
-1.68998510e-01 2.98935294e-01 9.37842369e-01 -5.31264441e-03
-8.06974053e-01 4.20906037e-01 7.23741055e-02 -1.63024887e-01
1.32980108e+00 -4.41929877e-01 -1.23656154e-01 3.35855037e-02
-5.09343088e-01 5.77443182e-01 4.61054534e-01 8.13212931e-01
9.19931531e-01 -1.56980228e+00 -6.53476954e-01 7.84266710e-01
3.39495480e-01 6.25881135e-01 2.80919075e-01 5.40145159e-01
-1.36924043e-01 7.20527709e-01 -1.33705139e-01 -1.28921616e+00
-1.41088486e+00 7.38450646e-01 3.13635349e-01 7.33508542e-02
-3.59028876e-01 1.12437928e+00 5.39818287e-01 -4.39578831e-01
5.24317205e-01 -8.83119404e-01 2.27677733e-01 2.27979317e-01
3.92626911e-01 2.73908883e-01 2.37648666e-01 -1.01204753e+00
-7.41022885e-01 1.23296607e+00 -2.01107651e-01 1.49794921e-01
1.06805980e+00 -3.90620559e-01 2.24302113e-01 2.64171571e-01
1.25875115e+00 -2.81892359e-01 -1.50246000e+00 -3.56661886e-01
-5.38718700e-01 -8.95455420e-01 2.82278210e-01 -4.33371395e-01
-1.07605100e+00 1.29258931e+00 8.65830362e-01 -1.40352258e-02
1.06078863e+00 3.25552166e-01 6.83705211e-01 1.00319162e-01
2.31519118e-01 -6.05245709e-01 -2.00469489e-03 5.68139017e-01
9.10735190e-01 -1.40769482e+00 6.69558421e-02 -5.48565269e-01
-3.98220628e-01 7.70905912e-01 8.95272434e-01 -2.77608961e-01
7.87045181e-01 4.20028061e-01 -1.97861210e-01 -2.01731816e-01
-7.22114503e-01 -5.51269114e-01 6.44238353e-01 8.11751306e-01
-3.09932306e-02 -1.09448001e-01 4.11567152e-01 6.75209999e-01
1.92185149e-01 -3.13352734e-01 -1.09460704e-01 9.97827888e-01
-4.47609633e-01 -8.93467724e-01 -7.02948630e-01 3.10437769e-01
7.56916925e-02 8.25541168e-02 -6.89154863e-01 8.46577227e-01
6.14271104e-01 8.45608234e-01 4.51454371e-01 -7.26428151e-01
6.93835974e-01 -1.07903667e-01 6.51090026e-01 -7.25572288e-01
-4.23192441e-01 3.46989512e-01 -5.44033766e-01 -6.67575359e-01
-4.69498843e-01 -7.33166754e-01 -9.30539787e-01 -1.34868190e-01
-5.62232375e-01 -2.05642402e-01 6.87142730e-01 7.36889124e-01
8.27987015e-01 4.05208290e-01 4.85178679e-01 -1.42771590e+00
-6.19041324e-01 -6.80194795e-01 -4.17658240e-01 1.78101152e-01
6.72102332e-01 -1.24544573e+00 -1.47480279e-01 8.77840165e-03] | [7.749001502990723, -2.668344259262085] |
da05a02e-48b7-49fd-b03a-c063f39d19ee | implementation-and-comparative-quantitative | 1511.04659 | null | http://arxiv.org/abs/1511.04659v1 | http://arxiv.org/pdf/1511.04659v1.pdf | Implementation and comparative quantitative assessment of different multispectral image pansharpening approches | In remote sensing, images acquired by various earth observation satellites
tend to have either a high spatial and low spectral resolution or vice versa.
Pansharpening is a technique which aims to improve spatial resolution of
multispectral image. The challenges involve in the pansharpening are not only
to improve the spatial resolution but also to preserve spectral quality of the
multispectral image. In this paper, various pansharpening algorithms are
discussed and classified based on approaches they have adopted. Using MATLAB
image processing toolbox, several state-of-art pan-sharpening algorithms are
implemented. Quality of pansharpened images are assessed visually and
quantitatively. Correlation coefficient (CC), Root mean square error (RMSE),
Relative average spectral error (RASE) and Universal quality index (Q) indices
are used to easure spectral quality while to spatial-CC (SCC) quantitative
parameter is used for spatial quality measurement. Finally, the paper is
concluded with useful remarks. | ['Shailesh Panchal', 'Rajesh Thakker'] | 2015-11-15 | null | null | null | null | ['pansharpening'] | ['computer-vision'] | [ 7.95682669e-01 -5.76338112e-01 8.38127732e-02 -6.12240145e-03
-6.32802129e-01 -6.56443059e-01 3.79221141e-01 4.61819842e-02
-2.97618866e-01 8.73535097e-01 -8.20330009e-02 -1.36358276e-01
-6.95546389e-01 -1.05725288e+00 9.66000929e-03 -1.02560318e+00
-4.56834920e-02 -4.29580569e-01 2.68637002e-01 -4.57328349e-01
2.52263784e-01 8.72093856e-01 -1.48441386e+00 -2.37786621e-01
1.36063302e+00 8.95066321e-01 6.62893355e-01 7.91424990e-01
3.62647086e-01 2.67898172e-01 -2.03147903e-01 2.65827507e-01
4.98229384e-01 -4.73077595e-01 -6.86618924e-01 3.69735718e-01
2.17946693e-01 -1.92355856e-01 8.65409523e-02 1.57130182e+00
2.73668408e-01 2.67870903e-01 6.53513253e-01 -7.50877261e-01
-5.89714348e-01 2.18471348e-01 -1.12679636e+00 3.48169237e-01
-1.75730549e-02 6.30182307e-03 7.01187611e-01 -7.59359658e-01
2.34084800e-01 6.82984352e-01 6.67982519e-01 -3.16758186e-01
-1.34943783e+00 -4.04815912e-01 -5.04801452e-01 2.56491423e-01
-1.37597942e+00 8.17558914e-02 6.72814250e-01 -3.88538569e-01
3.63902599e-01 7.42909789e-01 8.24837029e-01 -2.79233307e-01
5.68284929e-01 2.51857042e-02 1.62947989e+00 -5.69842100e-01
-1.74537823e-01 -1.52335048e-01 9.80906934e-02 1.66969180e-01
2.89714783e-01 4.56745684e-01 1.27417177e-01 -8.38470925e-03
7.58829117e-01 9.02505070e-02 -6.00901008e-01 -2.39484593e-01
-8.63943160e-01 7.07668006e-01 8.63949955e-01 6.17478490e-01
-7.78512836e-01 -4.69344288e-01 1.19634317e-02 4.30267811e-01
4.13855910e-01 4.69282955e-01 -2.54260451e-01 3.53271008e-01
-1.31570935e+00 1.24498762e-01 1.03477538e-01 4.67442006e-01
1.06922889e+00 1.75780818e-01 1.35310635e-01 1.16878343e+00
3.69160563e-01 1.04187357e+00 3.28384191e-01 -8.66180956e-01
-7.13827685e-02 5.27079344e-01 2.41570994e-01 -1.30698836e+00
-3.91499639e-01 -3.46978784e-01 -1.07796216e+00 4.39823776e-01
-2.35733375e-01 -6.15197718e-02 -8.57731640e-01 1.05978549e+00
6.58403710e-02 -2.69503593e-01 1.16169527e-01 1.00605810e+00
5.37746668e-01 1.27259767e+00 2.26081789e-01 -4.99663293e-01
1.34171009e+00 -7.75283098e-01 -6.83360338e-01 -3.55383486e-01
2.92593464e-02 -1.14149785e+00 8.24419081e-01 3.20983618e-01
-9.29668844e-01 -5.92175663e-01 -1.04388821e+00 4.22692806e-01
-4.51516151e-01 3.91604722e-01 3.30093414e-01 7.48613298e-01
-9.16249871e-01 7.29933798e-01 -5.72333992e-01 -6.21408463e-01
3.46034616e-02 -1.05550423e-01 -3.75315070e-01 -5.17882034e-03
-9.39538181e-01 1.01383543e+00 7.84946263e-01 3.17412406e-01
-1.99197173e-01 -8.42345536e-01 -5.66858530e-01 2.29952913e-02
-6.31552264e-02 -4.23995778e-02 8.35957766e-01 -1.29527438e+00
-1.47590411e+00 9.36305046e-01 2.52489269e-01 -1.43730268e-01
2.38251358e-01 -1.37636632e-01 -1.20305514e+00 5.16929984e-01
1.84156135e-01 7.65714273e-02 5.58291793e-01 -1.42908549e+00
-7.83874452e-01 -4.15534407e-01 -4.52338308e-01 2.69382864e-01
-5.66454744e-03 1.96373761e-01 1.62382036e-01 -7.73265004e-01
6.26803696e-01 -5.76969266e-01 -2.29635566e-01 5.08829467e-02
-4.63518091e-02 4.79645967e-01 9.85291779e-01 -1.01711226e+00
1.14872587e+00 -2.21894932e+00 -6.31286800e-02 6.07174754e-01
-4.30049211e-01 6.69790447e-01 -1.70063704e-01 4.61652398e-01
-4.25145090e-01 -1.87513586e-02 -7.76038766e-01 6.95218742e-01
-6.09401405e-01 1.20552495e-01 -1.49674311e-01 7.44837046e-01
-2.49596387e-02 3.15075964e-01 -7.71141589e-01 -3.00687879e-01
7.16702640e-01 5.03651142e-01 7.49025866e-02 -8.72647166e-02
3.07963997e-01 2.52405584e-01 -2.41367757e-01 6.39153659e-01
1.37594593e+00 2.45339394e-01 -1.05859190e-01 -4.65745091e-01
-7.88035333e-01 -4.80973393e-01 -1.40690362e+00 1.17391109e+00
-4.39242899e-01 4.40100670e-01 4.88230467e-01 -6.37335837e-01
1.17814207e+00 2.70696461e-01 3.50570202e-01 -8.12401235e-01
-1.54749691e-01 4.91278797e-01 -4.43859786e-01 -4.30289090e-01
9.27047312e-01 -4.57727313e-01 7.12839127e-01 1.04223274e-01
-4.67448175e-01 -6.34372473e-01 2.57993519e-01 -2.85194904e-01
-1.80338901e-02 1.74601786e-02 7.92396009e-01 -7.20336378e-01
8.83099735e-01 3.62817585e-01 1.53926343e-01 2.79919177e-01
-1.96562216e-01 4.73741829e-01 -5.41314222e-02 -8.47871155e-02
-1.34382164e+00 -1.02913368e+00 -6.63915157e-01 7.84035981e-01
2.72252679e-01 3.92990917e-01 -4.23684627e-01 4.67709541e-01
-2.32289582e-01 7.94428706e-01 -3.00932109e-01 1.32996634e-01
-1.82035178e-01 -1.22548020e+00 9.05165300e-02 -1.51172644e-02
1.14193523e+00 -8.78751159e-01 -7.40799010e-01 2.49538198e-01
-1.49870008e-01 -6.15622580e-01 -2.52848119e-02 -2.88551927e-01
-1.25504398e+00 -9.35852706e-01 -1.05331826e+00 -4.23490822e-01
4.26347077e-01 8.98817956e-01 8.79300117e-01 -1.60794884e-01
-2.42351755e-01 1.75685391e-01 -6.95555151e-01 -8.45162570e-02
-4.08873558e-01 -2.21937150e-01 -4.77180511e-01 6.92131817e-02
-2.26021577e-02 -6.70422494e-01 -7.18501568e-01 4.59835589e-01
-1.40830243e+00 -1.48079991e-01 8.75371218e-01 5.45787573e-01
9.16957736e-01 6.33291066e-01 6.82816654e-02 -4.67826277e-01
4.44921225e-01 -1.90210491e-01 -9.99995887e-01 3.76420170e-01
-8.39067161e-01 -6.42070293e-01 2.54957765e-01 4.86153625e-02
-1.26970279e+00 -1.77419260e-01 2.59929616e-03 3.43405008e-01
-1.70135185e-01 9.25788224e-01 2.40393151e-02 -4.08051372e-01
9.78758276e-01 5.03094077e-01 -1.02666698e-01 -5.94045520e-01
1.95535511e-01 7.63456762e-01 7.96814144e-01 -4.93573584e-02
9.70748663e-01 5.59773326e-01 1.98029399e-01 -1.51964939e+00
-6.47580981e-01 -8.51617455e-01 -5.87194085e-01 -4.11099225e-01
8.66927862e-01 -7.59963453e-01 -1.72840461e-01 7.88490832e-01
-6.46349072e-01 -2.01681301e-01 6.75703883e-02 5.31108022e-01
-3.47788632e-01 7.14470446e-01 -3.05861324e-01 -8.70766759e-01
-4.73352134e-01 -7.26485431e-01 5.34336805e-01 5.82011223e-01
2.74743587e-01 -1.00673211e+00 2.61535853e-01 1.74333319e-01
6.08777642e-01 5.32600582e-01 5.38414896e-01 4.92353499e-01
-1.53596565e-01 -7.07790926e-02 -8.21279109e-01 5.51872194e-01
4.31734741e-01 4.31570768e-01 -7.83816457e-01 -3.61016929e-01
4.64538895e-02 2.57068962e-01 7.19072878e-01 9.58186805e-01
9.18664575e-01 -2.25110784e-01 -1.23682819e-01 8.96386504e-01
2.21170068e+00 1.76190451e-01 1.12407053e+00 8.24290156e-01
1.12036906e-01 4.41136569e-01 1.06626368e+00 3.11562270e-01
-4.24596041e-01 3.03068042e-01 6.40080690e-01 -3.47598702e-01
9.10171680e-03 8.31799060e-02 4.95458208e-02 3.20002824e-01
-6.41198277e-01 2.53700502e-02 -9.65069532e-01 5.68123162e-01
-1.38616121e+00 -1.28207898e+00 -8.39339018e-01 2.10877228e+00
5.86802721e-01 -4.85665053e-01 1.30420402e-02 6.10978842e-01
1.04125214e+00 4.05582517e-01 -2.65746042e-02 -1.70675650e-01
-6.09662950e-01 2.09033489e-01 1.12702394e+00 7.22830713e-01
-1.33407724e+00 6.63965464e-01 6.09959412e+00 5.04086018e-01
-1.46439850e+00 -4.86293025e-02 7.00435042e-02 6.70609534e-01
-4.86376137e-02 -9.31290239e-02 3.45495269e-02 7.11346641e-02
7.07273364e-01 -3.26484829e-01 4.14024323e-01 6.63904309e-01
5.58115244e-01 -7.72439778e-01 2.04559788e-01 9.87658858e-01
-3.01694930e-01 -8.56283367e-01 -7.72171617e-02 -1.03409784e-02
1.02419150e+00 2.41025120e-01 1.51505083e-01 -5.17562568e-01
2.29968533e-01 -7.44256794e-01 4.81808752e-01 7.86566198e-01
8.63376677e-01 -9.31583464e-01 8.40699911e-01 7.29481801e-02
-1.41738153e+00 -6.65556937e-02 -7.33626783e-01 1.10179879e-01
1.39430806e-01 9.22055423e-01 -4.63733636e-02 1.15964985e+00
7.89937079e-01 7.03491151e-01 -5.20442426e-01 1.68704593e+00
-4.50390607e-01 4.46673721e-01 -2.84198672e-01 4.29554671e-01
5.50765514e-01 -9.39684033e-01 6.23621643e-01 1.17545402e+00
8.37709188e-01 5.70890486e-01 -1.60569862e-01 7.62091756e-01
6.94398880e-01 5.19740939e-01 -1.85566112e-01 -1.79611608e-01
3.24622720e-01 1.30857611e+00 -6.54422939e-01 -1.78759485e-01
-2.07787305e-01 9.50210989e-01 -9.15732265e-01 4.27189440e-01
-5.65342546e-01 -5.64878643e-01 5.67769527e-01 -3.67550254e-02
1.04380799e-02 -1.83521882e-01 -2.78594762e-01 -9.05562818e-01
-3.15535039e-01 -7.37155259e-01 5.21520913e-01 -1.35287559e+00
-8.92915547e-01 4.29899305e-01 9.40417051e-02 -1.49805176e+00
4.80818212e-01 -6.28852606e-01 -4.88655955e-01 1.49259055e+00
-1.89850080e+00 -1.18138921e+00 -7.11252034e-01 4.53873694e-01
2.70897835e-01 1.01515047e-01 8.10640454e-01 1.88924998e-01
-3.18081498e-01 -4.08373594e-01 6.42840803e-01 -2.76964664e-01
4.49272990e-01 -1.03171670e+00 -3.17806095e-01 1.25325227e+00
-5.10957003e-01 3.43754031e-02 1.21270907e+00 -5.88625312e-01
-7.35526681e-01 -1.08242404e+00 7.82684267e-01 5.16884148e-01
7.96757817e-01 9.62537467e-01 -9.22829926e-01 4.65055555e-01
1.83554530e-01 -8.77106786e-02 5.20123661e-01 -5.17741144e-01
2.75702607e-02 -3.91045064e-01 -1.45809603e+00 3.35516304e-01
1.35147929e-01 -3.73909146e-01 -4.77505475e-01 7.50185102e-02
8.20419565e-03 -7.78730065e-02 -1.07416022e+00 3.70890260e-01
5.72152913e-01 -1.36315620e+00 1.12653828e+00 2.23023165e-02
4.14936721e-01 -6.40649438e-01 -2.44587958e-01 -1.50342715e+00
-8.32298636e-01 -1.79859847e-01 9.35230255e-01 9.09367323e-01
4.20176595e-01 -6.34978473e-01 2.34782755e-01 -1.46954641e-01
8.22919887e-03 1.61447540e-01 -4.80181873e-01 -8.39616895e-01
2.35472713e-02 -1.39673457e-01 5.71356535e-01 1.03613555e+00
-3.12214553e-01 -7.44087473e-02 -4.10566539e-01 8.30427945e-01
8.23020160e-01 2.23765403e-01 2.79894829e-01 -1.61257291e+00
1.30560435e-02 -5.54811418e-01 -2.19827175e-01 -4.81823057e-01
-4.74668682e-01 -3.63744557e-01 -2.62367368e-01 -1.81624055e+00
1.92115128e-01 -1.67875692e-01 -3.27405393e-01 1.99850172e-01
-2.39177540e-01 4.92309242e-01 6.84362352e-02 3.80938739e-01
4.84181136e-01 2.75900930e-01 1.35319638e+00 -1.94155246e-01
-5.24664819e-01 2.17410192e-01 -3.16882670e-01 5.53719103e-01
1.01119268e+00 -2.61667401e-01 -2.75690854e-01 -4.07027334e-01
4.60183501e-01 2.73310721e-01 6.46711528e-01 -1.13865066e+00
-2.46392921e-01 -6.19377255e-01 1.85537115e-01 -8.67251217e-01
1.26792312e-01 -1.31178129e+00 6.45890236e-01 6.78048015e-01
1.87700987e-01 -1.81250811e-01 2.84341246e-01 1.52065068e-01
-4.62896168e-01 -5.54964244e-01 1.69748795e+00 -1.23937085e-01
-1.11374080e+00 1.69672549e-01 -4.84004050e-01 -7.66544640e-01
1.08426809e+00 -5.21942139e-01 -1.89212024e-01 -2.30526507e-01
-7.03150272e-01 -1.38968825e-01 6.20889306e-01 -2.88451254e-01
4.08118129e-01 -1.21956754e+00 -7.71446407e-01 3.40896435e-02
3.25452238e-01 -5.21804452e-01 7.49947488e-01 9.59420383e-01
-1.36413634e+00 2.95630842e-01 -8.00297260e-01 -2.93104231e-01
-1.50961506e+00 3.75491530e-01 8.19679916e-01 4.30168100e-02
-3.07228059e-01 4.94485915e-01 -3.07260871e-01 -3.26390237e-01
-6.49210155e-01 -1.99669898e-01 -5.26201248e-01 9.70845968e-02
7.46437013e-01 9.49510157e-01 2.78434251e-02 -1.04253721e+00
-2.23024711e-01 1.04769278e+00 6.89174175e-01 -7.18150586e-02
1.60815883e+00 -4.86806750e-01 -7.00164497e-01 2.03653410e-01
7.20749080e-01 8.25437754e-02 -1.13748622e+00 -2.47367129e-01
-1.19623885e-01 -7.57670820e-01 6.94712579e-01 -1.02257323e+00
-1.00434649e+00 7.98073351e-01 1.03918803e+00 6.83483481e-01
1.71525896e+00 -6.03524387e-01 3.33255351e-01 2.13426724e-01
-1.47297010e-02 -1.31349194e+00 -6.38440967e-01 2.08464354e-01
1.04118264e+00 -1.16924548e+00 4.74832892e-01 -7.37420917e-01
-5.14243066e-01 1.56584978e+00 -1.45979017e-01 4.43063639e-02
7.79889524e-01 -1.38061211e-01 2.71803081e-01 -7.25642070e-02
3.12462658e-01 -4.34102178e-01 3.25459212e-01 7.15835869e-01
4.81164098e-01 3.52504671e-01 -5.88349521e-01 -3.07258159e-01
-1.92595452e-01 1.57892808e-01 4.27955776e-01 4.96898025e-01
-1.19680619e+00 -6.73823118e-01 -1.08814311e+00 2.80229360e-01
-3.27947617e-01 2.35259850e-02 -4.71121520e-02 7.08957970e-01
2.64505278e-02 1.24517977e+00 -1.35876015e-01 1.09352194e-01
4.41738158e-01 -3.53129089e-01 2.26874873e-01 -1.31528080e-01
-1.58151820e-01 3.17832351e-01 -2.43542999e-01 -1.36649817e-01
-1.06788743e+00 -6.03917778e-01 -6.79895759e-01 -5.83003700e-01
-3.20233166e-01 2.61909634e-01 7.55446196e-01 6.63349867e-01
-4.50904161e-01 3.88773471e-01 6.78688347e-01 -6.57550156e-01
-1.24337785e-01 -1.01398253e+00 -1.49548864e+00 -2.51471885e-02
4.82852429e-01 -3.75529051e-01 -3.45882744e-01 1.45385191e-01] | [10.146171569824219, -2.130579948425293] |
5594e2a2-9850-463f-bf56-e7d401089ccd | improving-contextualized-topic-models-with | 2303.14951 | null | https://arxiv.org/abs/2303.14951v1 | https://arxiv.org/pdf/2303.14951v1.pdf | Improving Contextualized Topic Models with Negative Sampling | Topic modeling has emerged as a dominant method for exploring large document collections. Recent approaches to topic modeling use large contextualized language models and variational autoencoders. In this paper, we propose a negative sampling mechanism for a contextualized topic model to improve the quality of the generated topics. In particular, during model training, we perturb the generated document-topic vector and use a triplet loss to encourage the document reconstructed from the correct document-topic vector to be similar to the input document and dissimilar to the document reconstructed from the perturbed vector. Experiments for different topic counts on three publicly available benchmark datasets show that in most cases, our approach leads to an increase in topic coherence over that of the baselines. Our model also achieves very high topic diversity. | ['Partha Pratim Das', 'Debarshi Kumar Sanyal', 'Avishek Lahiri', 'Suman Adhya'] | 2023-03-27 | null | null | null | null | ['topic-models'] | ['natural-language-processing'] | [-1.21659353e-01 3.44806492e-01 -4.01051790e-01 -2.31317371e-01
-1.14857638e+00 -4.27607536e-01 1.09328794e+00 2.15502217e-01
-9.68897156e-03 8.10566604e-01 7.34853923e-01 -6.53776079e-02
1.55782342e-01 -7.28716791e-01 -8.18613112e-01 -9.30832803e-01
1.56019941e-01 8.97979319e-01 1.66275054e-01 -5.18496186e-02
3.92451674e-01 -2.37433732e-01 -1.43176246e+00 2.37564906e-01
8.74039590e-01 5.19914508e-01 5.06003320e-01 4.81582642e-01
-6.23334706e-01 1.42528564e-01 -9.61199760e-01 -1.08807169e-01
2.61492208e-02 -3.28149170e-01 -6.08352542e-01 2.20270291e-01
2.32745767e-01 -1.40535280e-01 -6.97758645e-02 8.53573382e-01
2.15212271e-01 4.07388449e-01 9.60430503e-01 -1.07270801e+00
-4.73172396e-01 8.86193216e-01 -8.29434276e-01 -5.28629497e-02
2.12510396e-02 -3.66163313e-01 1.14023089e+00 -1.01069605e+00
8.93876135e-01 1.57875443e+00 2.26677954e-01 4.92189229e-01
-1.69101536e+00 -7.41944075e-01 6.56993508e-01 -1.96766958e-01
-1.34841001e+00 -2.11589094e-02 9.98065591e-01 -4.03199017e-01
6.28143728e-01 2.15502568e-02 7.63624728e-01 1.48174560e+00
3.57585192e-01 9.34771955e-01 6.71832979e-01 -5.07640064e-01
5.57782710e-01 7.83356607e-01 4.29810137e-01 7.35550234e-03
3.33274990e-01 -3.80023390e-01 -5.94764411e-01 -8.43259156e-01
3.67873430e-01 -4.99801291e-03 -3.17430735e-01 -7.44917929e-01
-9.37359631e-01 1.34019864e+00 3.82278897e-02 2.93783307e-01
-6.25192344e-01 1.62938178e-01 1.82613298e-01 -2.33935133e-01
1.06649470e+00 5.32663941e-01 -2.12888852e-01 -1.57755110e-02
-1.21437073e+00 9.64213431e-01 8.91509175e-01 9.01846826e-01
6.33671165e-01 -9.89774168e-02 -4.32483524e-01 9.62312222e-01
5.14449239e-01 4.32235003e-01 6.58321142e-01 -8.27310681e-01
4.68178004e-01 3.25669199e-01 2.50199527e-01 -8.52998376e-01
8.45547244e-02 -3.47388566e-01 -4.99457300e-01 -9.08865035e-02
-7.43547752e-02 -2.01106712e-01 -9.52988088e-01 1.84122288e+00
4.84085143e-01 1.87630460e-01 7.70859048e-02 4.92104799e-01
3.39403540e-01 1.45843518e+00 2.97395617e-01 -2.12794751e-01
1.16749406e+00 -7.75049806e-01 -8.87559414e-01 -1.34928793e-01
3.45132440e-01 -6.50930405e-01 1.15284956e+00 4.41126406e-01
-1.07086051e+00 -2.02328265e-01 -8.76894712e-01 -2.62309946e-02
-2.58691162e-01 -1.21939860e-01 4.27309930e-01 4.63024706e-01
-9.99615490e-01 1.26832545e-01 -9.71878648e-01 -3.79293293e-01
2.99217820e-01 -4.79309298e-02 1.07695222e-01 -4.62753214e-02
-1.06040871e+00 3.69476616e-01 6.35064721e-01 -7.38477707e-01
-1.09274459e+00 -1.21028960e+00 -5.58488369e-01 3.88224959e-01
2.53420502e-01 -6.78326428e-01 1.31304204e+00 -5.42417169e-01
-1.28894496e+00 2.51300216e-01 -6.90667093e-01 -7.44594932e-01
3.21665764e-01 -4.45161194e-01 -3.67636383e-02 9.41589326e-02
2.56865889e-01 1.02178741e+00 8.29990268e-01 -1.71008158e+00
-6.67568266e-01 -2.61314392e-01 -3.68394464e-01 3.62809360e-01
-6.33133471e-01 -1.81669801e-01 -6.71826065e-01 -9.00364459e-01
1.00369647e-01 -9.97872949e-01 -2.78526008e-01 -2.39522099e-01
-6.02502406e-01 -6.68655396e-01 1.12503362e+00 -4.89049673e-01
1.13237917e+00 -2.13124561e+00 2.33871564e-01 2.67001092e-01
2.05206066e-01 -1.74219385e-01 2.00822651e-01 5.50031304e-01
7.74861053e-02 3.13348472e-01 -2.09530771e-01 -9.28744078e-01
-6.63559884e-02 7.12769032e-02 -1.16443813e+00 1.26717478e-01
-4.83875610e-02 4.36843663e-01 -7.49296546e-01 -4.84509796e-01
-1.02917813e-01 7.61693001e-01 -9.32885766e-01 1.80550322e-01
-7.89296865e-01 1.00720771e-01 -5.49167156e-01 1.57229733e-02
6.64298236e-01 -3.94609541e-01 1.53728262e-01 3.42959285e-01
2.14720204e-01 5.07018745e-01 -1.03513241e+00 1.58534539e+00
-4.39379483e-01 9.11540091e-01 -1.81894928e-01 -5.94006002e-01
8.87889802e-01 5.42299986e-01 4.84020799e-01 -4.33870926e-02
-2.81278998e-01 -3.32955986e-01 -5.74595630e-01 1.80047020e-01
1.21081889e+00 -1.42649949e-01 1.66322425e-01 7.94699192e-01
6.53917268e-02 -2.44248345e-01 4.26212326e-02 7.96544075e-01
1.85865656e-01 -1.18706271e-01 -1.02533557e-01 -4.90285546e-01
-1.82756066e-01 9.31441337e-02 4.16687399e-01 1.00036657e+00
3.45276654e-01 7.25498974e-01 7.26209998e-01 -1.15695177e-02
-1.26794517e+00 -1.15046179e+00 -2.81005651e-01 1.11082578e+00
-4.04177830e-02 -8.07034791e-01 -6.88673019e-01 -4.07230288e-01
-1.39304355e-01 1.35572779e+00 -7.70103157e-01 -1.19266614e-01
-4.44392145e-01 -7.99743891e-01 6.60414770e-02 4.33726400e-01
5.50494939e-02 -6.80339754e-01 -3.19823533e-01 2.86156863e-01
-4.51208144e-01 -5.83840370e-01 -3.88574183e-01 -2.07667816e-02
-1.12508845e+00 -4.85590577e-01 -1.13550186e+00 -5.89854836e-01
5.41213572e-01 3.66348088e-01 1.12246025e+00 -5.26938915e-01
1.15449779e-01 8.59386697e-02 -1.24617688e-01 -7.25064158e-01
-3.57879072e-01 3.22271019e-01 -8.65522549e-02 -2.01041177e-01
2.53809571e-01 -3.35804999e-01 -5.08172095e-01 2.13644095e-02
-1.05860043e+00 -6.12753555e-02 -1.00425847e-01 9.13352847e-01
5.42872906e-01 6.22185506e-02 4.75449741e-01 -9.55891013e-01
9.90978777e-01 -9.06831264e-01 -5.51142216e-01 1.11798579e-02
-9.07266259e-01 1.17060535e-01 2.43738174e-01 -7.67885566e-01
-1.43907559e+00 -6.04842722e-01 3.15070152e-01 -5.49357116e-01
-8.66550282e-02 4.78210956e-01 3.15135755e-02 9.32057083e-01
6.40748024e-01 3.95190388e-01 -2.34723225e-01 -5.88592410e-01
5.66758156e-01 5.10034382e-01 8.10734332e-02 -8.01825404e-01
4.22242135e-01 8.19009840e-01 -5.15540898e-01 -1.00052059e+00
-5.71233749e-01 -5.04895329e-01 -5.60609326e-02 2.14456424e-01
8.17206919e-01 -1.17662072e+00 3.73801440e-02 9.10441205e-02
-1.21332705e+00 -2.03857288e-01 -4.92987275e-01 5.57399809e-01
-3.83660376e-01 3.99603024e-02 -3.31420749e-01 -9.26898718e-01
-4.15250540e-01 -1.17994452e+00 1.42140317e+00 2.01765448e-01
-4.02763695e-01 -1.23677516e+00 5.63542068e-01 -1.30490705e-01
4.84595746e-01 -6.56678975e-02 1.18079269e+00 -8.30078781e-01
-5.53843558e-01 -2.24131286e-01 1.21151783e-01 1.49489557e-02
6.57096133e-02 1.91186860e-01 -9.13742483e-01 -4.04995948e-01
-1.92089546e-02 -1.68480217e-01 1.12267375e+00 8.99252117e-01
9.47891057e-01 -3.36133718e-01 -9.31205928e-01 2.92545408e-01
1.09439325e+00 2.25174308e-01 3.93391639e-01 2.93655962e-01
3.13863873e-01 6.50746703e-01 5.43541074e-01 5.87790728e-01
3.95819634e-01 7.06971765e-01 -1.10428825e-01 2.22906366e-01
2.42839918e-01 -6.18210256e-01 2.56202638e-01 4.59757179e-01
5.97521663e-01 -7.13002443e-01 -8.89080524e-01 1.14826167e+00
-1.70332003e+00 -9.22101319e-01 2.25725815e-01 2.07691598e+00
9.11351740e-01 1.99218094e-01 1.80974230e-01 -3.97906810e-01
7.03931808e-01 4.69543308e-01 -3.75059396e-01 -1.16372146e-01
-2.62880862e-01 -2.36134231e-01 -5.18722422e-02 6.16731644e-01
-9.36817825e-01 1.18519759e+00 7.01592064e+00 7.68218458e-01
-9.35736775e-01 8.52738544e-02 5.85484743e-01 -6.47455752e-01
-8.20278049e-01 1.69955090e-01 -1.17337918e+00 5.52195251e-01
1.06570601e+00 -7.00139284e-01 -1.67187124e-01 1.17598510e+00
3.27964365e-01 -1.94739044e-01 -9.46519136e-01 4.78180528e-01
6.46137968e-02 -1.44742119e+00 5.31558692e-01 4.45712179e-01
1.18129230e+00 -3.07368431e-02 3.86455625e-01 3.23608309e-01
6.70717895e-01 -6.53877020e-01 6.56966031e-01 3.95923465e-01
2.18131736e-01 -9.22055364e-01 3.97857666e-01 2.76812166e-01
-7.07349777e-01 2.02678427e-01 -6.71356380e-01 4.66163695e-01
4.64476824e-01 8.59230757e-01 -1.25444651e+00 1.01714835e-01
8.06086838e-01 4.55093592e-01 -2.37406567e-01 8.72910976e-01
1.75103068e-01 1.22710407e+00 -4.34474438e-01 -7.27871656e-02
3.81834984e-01 -1.80300057e-01 1.02450299e+00 1.12779820e+00
2.92964876e-01 -1.58625379e-01 3.11212957e-01 1.09357154e+00
-9.81609374e-02 2.28911012e-01 -7.17482984e-01 -6.59912229e-02
5.85014880e-01 7.31023967e-01 -4.87321377e-01 -8.03582728e-01
5.20650223e-02 6.11442566e-01 7.93989971e-02 6.82293355e-01
-5.00308812e-01 -2.76211083e-01 8.31112087e-01 6.53566495e-02
5.74337661e-01 -7.02827424e-02 -2.56298333e-01 -1.18349349e+00
1.64605845e-02 -6.43906951e-01 3.07542652e-01 -7.41390228e-01
-9.56512570e-01 6.36498332e-01 5.70523977e-01 -6.75598860e-01
-7.30027497e-01 1.70798182e-01 -8.51353228e-01 1.07999802e+00
-9.84866738e-01 -8.41079891e-01 1.00649349e-01 3.11350703e-01
9.48731363e-01 -2.48965815e-01 6.82510555e-01 -3.15315694e-01
-2.01494575e-01 3.42737943e-01 6.39183164e-01 -4.80270088e-01
7.33526468e-01 -1.39023137e+00 5.43023765e-01 4.91560161e-01
2.04228058e-01 1.10599625e+00 1.22650373e+00 -9.69157636e-01
-8.03394794e-01 -1.13038349e+00 7.87045419e-01 -4.15657401e-01
4.62692708e-01 -6.78484678e-01 -1.31402004e+00 9.29599404e-01
6.20653808e-01 -8.57038140e-01 7.74588287e-01 4.29823697e-01
-3.88962924e-01 2.70302176e-01 -9.64469373e-01 7.78244555e-01
1.92156002e-01 -3.04490119e-01 -7.01988220e-01 5.71861684e-01
1.22520232e+00 -6.83960840e-02 -5.45601308e-01 -1.78619474e-01
3.44161719e-01 -4.81375426e-01 9.38068628e-01 -7.05346525e-01
5.48022032e-01 -2.17212811e-02 -2.45068416e-01 -1.69902384e+00
-1.65770665e-01 -4.62441802e-01 -3.87307882e-01 1.40020096e+00
4.43085372e-01 -4.66167390e-01 1.07861412e+00 5.68608582e-01
2.48226628e-01 -6.32222474e-01 -6.54533505e-01 -5.35905123e-01
6.65115356e-01 -3.72407585e-01 5.78318059e-01 6.33637428e-01
-2.63910238e-02 3.10223043e-01 -3.42600465e-01 9.98328924e-02
7.55893171e-01 2.22244263e-01 8.84293795e-01 -1.28104997e+00
-2.39300847e-01 -4.18452501e-01 2.44385228e-01 -1.23322892e+00
3.38773280e-01 -5.50683618e-01 1.24951683e-01 -1.57588100e+00
5.01838267e-01 -3.39942932e-01 -1.47175472e-02 -4.53488007e-02
-3.91906440e-01 -3.18641752e-01 1.20651066e-01 3.42919350e-01
-3.72049958e-01 1.04859138e+00 6.68943763e-01 -2.04834446e-01
-5.60630083e-01 4.92617041e-02 -9.62938845e-01 5.50170362e-01
7.50192761e-01 -7.75985003e-01 -6.54106677e-01 -3.44432265e-01
4.87479866e-02 -4.89839017e-02 3.57384607e-02 -6.03481770e-01
1.48471043e-01 -8.15471262e-02 2.68377036e-01 -1.23777950e+00
7.28873670e-01 -4.68139231e-01 -4.56261709e-02 1.64669871e-01
-8.20005894e-01 -1.03069298e-01 2.70421654e-01 1.15985668e+00
-2.14599311e-01 -8.51661712e-02 5.70785344e-01 6.67632446e-02
6.89208508e-02 7.23234788e-02 -6.64079189e-01 1.64119154e-01
8.20832610e-01 1.80688262e-01 -1.63367406e-01 -8.04432988e-01
-4.32568103e-01 3.81326348e-01 5.39380789e-01 6.02342606e-01
4.48247075e-01 -1.16903138e+00 -8.02118063e-01 -5.16312085e-02
2.19353080e-01 2.57556856e-01 1.73247561e-01 1.55396447e-01
1.32815987e-01 9.54635024e-01 4.03847247e-01 -8.17349851e-01
-1.01223087e+00 4.52821046e-01 -5.60480356e-02 -4.71702367e-01
-7.11517334e-01 7.00717747e-01 7.36749887e-01 -2.67331213e-01
4.35907841e-01 -2.36556500e-01 -1.30950063e-01 9.27924961e-02
7.33270884e-01 2.81922460e-01 -2.16111302e-01 -3.00578296e-01
4.77617979e-02 2.20315248e-01 -8.06711555e-01 -8.29077065e-01
1.41975951e+00 -1.84612378e-01 1.98696986e-01 8.64581883e-01
1.29623580e+00 -1.15433104e-01 -1.44782078e+00 -4.20037687e-01
7.24114627e-02 -3.93836349e-01 2.97160029e-01 -5.22523582e-01
-6.64806962e-01 8.25343192e-01 4.37444925e-01 3.95597786e-01
5.49028754e-01 4.20488685e-01 5.38850904e-01 4.09327090e-01
1.00933857e-01 -1.00113392e+00 1.18143104e-01 2.86878854e-01
9.83541846e-01 -1.14666259e+00 -8.16367380e-03 -1.97012290e-01
-9.42493379e-01 6.89383030e-01 3.90677661e-01 -2.34522700e-01
8.67983222e-01 -7.80317560e-02 -6.41228631e-02 -2.36539707e-01
-1.26957393e+00 4.91862029e-01 2.67527491e-01 5.06801605e-01
4.06757206e-01 -6.44276908e-04 -1.37041822e-01 4.84175205e-01
-3.43575656e-01 -3.59038085e-01 6.01575017e-01 7.32814968e-01
-5.77765822e-01 -9.46766555e-01 -5.74296415e-01 4.20359105e-01
-5.80281973e-01 -9.60754752e-02 -3.20034295e-01 7.49615729e-01
-6.50085926e-01 8.28952432e-01 5.01097560e-01 1.65989131e-01
-2.10634559e-01 4.49031413e-01 -1.39673933e-01 -7.73454487e-01
-2.41282448e-01 7.56861210e-01 -2.92421252e-01 -3.37550521e-01
1.13916993e-01 -9.06479895e-01 -1.04714274e+00 1.22105561e-01
-6.06616378e-01 7.05869138e-01 1.04534328e+00 6.16046071e-01
6.28234088e-01 3.65750074e-01 5.46390712e-01 -6.75041974e-01
-5.15963972e-01 -1.20834529e+00 -6.67942166e-01 2.78099746e-01
3.48416120e-01 -6.67540967e-01 -3.75400901e-01 5.66606000e-02] | [10.378274917602539, 6.942861080169678] |
20ba4b9b-5a06-4fe9-8774-202b2ef54b8d | std-net-search-of-image-steganalytic-deep | 2206.05651 | null | https://arxiv.org/abs/2206.05651v1 | https://arxiv.org/pdf/2206.05651v1.pdf | STD-NET: Search of Image Steganalytic Deep-learning Architecture via Hierarchical Tensor Decomposition | Recent studies shows that the majority of existing deep steganalysis models have a large amount of redundancy, which leads to a huge waste of storage and computing resources. The existing model compression method cannot flexibly compress the convolutional layer in residual shortcut block so that a satisfactory shrinking rate cannot be obtained. In this paper, we propose STD-NET, an unsupervised deep-learning architecture search approach via hierarchical tensor decomposition for image steganalysis. Our proposed strategy will not be restricted by various residual connections, since this strategy does not change the number of input and output channels of the convolution block. We propose a normalized distortion threshold to evaluate the sensitivity of each involved convolutional layer of the base model to guide STD-NET to compress target network in an efficient and unsupervised approach, and obtain two network structures of different shapes with low computation cost and similar performance compared with the original one. Extensive experiments have confirmed that, on one hand, our model can achieve comparable or even better detection performance in various steganalytic scenarios due to the great adaptivity of the obtained network architecture. On the other hand, the experimental results also demonstrate that our proposed strategy is more efficient and can remove more redundancy compared with previous steganalytic network compression methods. | ['Jiwu Huang', 'Bin Li', 'Laiyuan Li', 'Qiushi Li', 'Shunquan Tan'] | 2022-06-12 | null | null | null | null | ['steganalysis'] | ['computer-vision'] | [ 5.47017455e-01 -2.28222311e-02 4.41628508e-02 9.71627906e-02
3.17693949e-01 -3.25870246e-01 4.19543475e-01 -4.73927319e-01
-4.50106561e-01 3.19211572e-01 -1.44156724e-01 -5.31449676e-01
-3.67539860e-02 -9.82028544e-01 -5.36804080e-01 -1.03430390e+00
6.55706003e-02 -1.59851357e-01 5.95778286e-01 -3.80998224e-01
4.19895768e-01 4.19966340e-01 -1.39579642e+00 2.75839359e-01
6.20766997e-01 9.11755979e-01 3.04634213e-01 4.33623761e-01
2.48912171e-01 6.98344111e-01 -3.69818091e-01 -5.57419181e-01
5.47496736e-01 -7.21217930e-01 -5.80676496e-01 3.82536985e-02
-1.99809849e-01 -4.82070327e-01 -8.49771261e-01 1.48977435e+00
3.11373979e-01 -4.08441007e-01 4.56617415e-01 -8.81669402e-01
-2.12526619e-01 1.12891757e+00 -5.58070958e-01 2.56043434e-01
-4.84897435e-01 2.02237025e-01 7.39486992e-01 -4.26450580e-01
5.53868234e-01 1.11579061e+00 5.25469124e-01 4.45627153e-01
-9.82528865e-01 -1.05271101e+00 -2.08132342e-01 2.86947787e-01
-1.45275557e+00 -4.46940511e-01 1.03727126e+00 3.39022209e-03
7.28880048e-01 3.93594533e-01 8.83507788e-01 8.19521964e-01
2.84720749e-01 3.83969009e-01 1.06017089e+00 -4.03902650e-01
-5.64053021e-02 1.17964640e-01 -2.67873555e-01 9.91539359e-01
7.75822103e-01 2.81599969e-01 -2.23203618e-02 1.95648059e-01
9.87046003e-01 1.70275658e-01 -4.13740754e-01 -4.61048365e-01
-1.36822414e+00 7.99140990e-01 5.07162571e-01 7.91221082e-01
-1.86097622e-01 4.72478896e-01 4.49107945e-01 5.74262023e-01
-1.24798149e-01 2.52052695e-01 3.22317667e-02 1.81342959e-01
-1.10545313e+00 -3.00968140e-01 7.59408116e-01 6.89657986e-01
5.94306290e-01 4.74195659e-01 3.09777111e-01 3.10240775e-01
3.25717509e-01 2.17531532e-01 6.55841887e-01 -6.95527375e-01
4.81410861e-01 7.14652181e-01 -6.81214988e-01 -1.68571782e+00
-7.43115768e-02 -7.81818569e-01 -1.38739455e+00 2.80255079e-01
5.13522364e-02 5.86544685e-02 -6.28494322e-01 1.41368043e+00
-2.26861760e-02 2.86385328e-01 3.29402477e-01 6.40451491e-01
5.61188638e-01 5.47797441e-01 -2.33983889e-01 -1.43326715e-01
1.21635544e+00 -8.85824263e-01 -5.08626223e-01 -1.43155426e-01
9.04501200e-01 -8.13661635e-01 5.52741170e-01 4.15618390e-01
-8.89056265e-01 -3.81919742e-01 -1.49906099e+00 2.56083846e-01
-8.26092064e-02 2.88839936e-01 5.79930961e-01 1.01359868e+00
-8.87503743e-01 7.92037249e-01 -7.96879292e-01 -1.38026267e-01
3.59109461e-01 5.94415009e-01 -3.12685758e-01 -1.10033393e-01
-1.21342278e+00 4.79217291e-01 1.10112774e+00 2.45697752e-01
-1.06192267e+00 -3.95264104e-02 -5.43643773e-01 4.22433466e-01
1.78669602e-01 -1.90447524e-01 5.30744255e-01 -1.03241599e+00
-1.13597119e+00 4.75428849e-01 2.44717240e-01 -7.91586637e-01
4.73499209e-01 5.57637155e-01 -3.86292070e-01 4.20378566e-01
-5.55697322e-01 5.68701148e-01 1.14130926e+00 -9.91312027e-01
-4.91781205e-01 -1.53321847e-01 -4.82123755e-02 -5.29668480e-03
-9.11597013e-01 -1.20711587e-01 -5.45322537e-01 -7.41816819e-01
6.26248598e-01 -9.33057785e-01 -3.04466397e-01 -2.09023774e-01
-4.04848307e-01 1.93265125e-01 1.16294348e+00 -5.27571619e-01
1.41460574e+00 -2.20158362e+00 9.69264731e-02 5.48875272e-01
5.04410386e-01 7.60385573e-01 -6.74272254e-02 2.15524733e-01
-1.71783671e-01 3.76305908e-01 -3.11029524e-01 6.00275546e-02
-4.41950053e-01 1.24926001e-01 -1.23749189e-01 6.05817378e-01
-1.48627207e-01 7.19058335e-01 -6.14869893e-01 -7.69060731e-01
1.55513078e-01 6.00072265e-01 -5.91927052e-01 -2.07825422e-01
2.12215796e-01 2.01271340e-01 -4.70169008e-01 3.71481240e-01
8.11321855e-01 -3.05540532e-01 5.70690036e-01 -3.91897321e-01
2.16312408e-02 1.93441985e-03 -1.08698440e+00 1.22170722e+00
-1.03729077e-01 7.79512227e-01 -7.67562687e-02 -1.51154220e+00
1.30026555e+00 2.50989437e-01 3.25901598e-01 -7.01715708e-01
5.57998359e-01 3.97104591e-01 5.18541098e-01 -4.42953616e-01
4.22683537e-01 1.99639246e-01 2.46251658e-01 6.30815327e-01
-1.27248958e-01 1.96123883e-01 2.47631427e-02 2.21570238e-01
1.11172688e+00 -2.64788002e-01 8.07260498e-02 -1.97815552e-01
8.76971483e-01 -1.03256829e-01 4.44800407e-01 5.77109456e-01
4.45674099e-02 1.75279602e-01 7.67015636e-01 -2.76309282e-01
-1.50292659e+00 -9.90981311e-02 1.40309185e-01 5.97403049e-01
3.25169772e-01 -2.61903942e-01 -9.90746975e-01 -5.94246328e-01
-5.21986187e-01 3.23600531e-01 -3.19807738e-01 -5.66308260e-01
-9.47676361e-01 -8.13402474e-01 1.09601545e+00 -7.36735091e-02
1.29465413e+00 -1.03586602e+00 -7.76966989e-01 1.11598119e-01
-1.48317084e-01 -1.10864818e+00 -1.87276527e-01 -7.14629367e-02
-1.32250428e+00 -1.19654238e+00 -5.83013535e-01 -1.22626209e+00
9.60148752e-01 6.38732314e-01 4.15181100e-01 7.73918390e-01
-2.89939847e-02 -3.95946622e-01 -4.67433512e-01 2.78207362e-01
-8.23254347e-01 2.97265023e-01 -2.50325233e-01 1.78663090e-01
2.26677045e-01 -7.13481665e-01 -7.47841954e-01 3.95356536e-01
-1.27186787e+00 1.79524198e-01 9.99532819e-01 7.89146364e-01
1.87526315e-01 7.35346437e-01 7.96437934e-02 -8.46351087e-01
4.87843513e-01 -2.73545116e-01 -6.11439764e-01 1.75063401e-01
-9.84957218e-01 3.17269415e-01 6.73158765e-01 -4.48430389e-01
-6.59062505e-01 -7.63634825e-03 5.97212017e-02 -6.02504134e-01
3.05300832e-01 4.54600513e-01 -4.06644940e-02 -6.90138638e-01
5.32169700e-01 8.09496224e-01 2.85961241e-01 -4.17999208e-01
-1.53410375e-01 5.56050777e-01 3.86082113e-01 1.99779168e-01
1.11887491e+00 5.21935999e-01 3.65380645e-01 -6.26137435e-01
2.22873867e-01 5.54055069e-03 -5.84372401e-01 -5.22974730e-02
4.84607100e-01 -6.64664268e-01 -7.63318419e-01 6.79050326e-01
-1.09502828e+00 8.39419961e-02 1.80564284e-01 5.60425043e-01
-6.38501048e-02 9.60922062e-01 -5.77331066e-01 -5.05971014e-01
-5.60800314e-01 -1.38434160e+00 1.39329836e-01 -1.70504525e-01
4.95601863e-01 -8.47144663e-01 -4.74077672e-01 1.52025044e-01
5.51336408e-01 3.59092683e-01 1.05729961e+00 -6.49688840e-01
-8.16644430e-01 -3.19848359e-01 -4.46714252e-01 6.76726282e-01
-1.98136002e-01 -1.60413817e-01 -4.08387810e-01 -6.72885180e-01
3.28903615e-01 2.19671894e-02 1.35815847e+00 -1.13559470e-01
1.17695987e+00 -6.68909013e-01 -2.71519423e-01 9.08110678e-01
1.66047859e+00 2.78621733e-01 1.11860514e+00 4.73375559e-01
7.13165045e-01 5.56531668e-01 2.50804365e-01 1.37108445e-01
-1.21676415e-01 2.71600068e-01 9.31665421e-01 -1.06527537e-01
-2.02220246e-01 -1.69860348e-01 3.78262043e-01 1.13208830e+00
-3.93028259e-01 -3.46267134e-01 -6.15515471e-01 4.86120522e-01
-1.48974693e+00 -1.07592750e+00 -2.02332407e-01 2.11911678e+00
5.45520544e-01 3.43818486e-01 -3.40441436e-01 7.34488010e-01
9.13991809e-01 3.84902745e-01 -3.04209262e-01 -3.71393532e-01
-2.34351993e-01 1.29819110e-01 1.05174065e+00 6.99445680e-02
-8.19107294e-01 9.33277369e-01 5.83878469e+00 1.12614751e+00
-1.39848816e+00 2.31607020e-01 4.15121168e-01 6.60881847e-02
-3.56769234e-01 1.53721258e-01 -5.51751137e-01 4.87422675e-01
7.77189434e-01 1.61296114e-01 5.41883290e-01 6.18501544e-01
1.96967907e-02 3.52482200e-01 -4.67767507e-01 9.39505637e-01
7.24263787e-02 -1.45368385e+00 2.00059623e-01 4.67643380e-01
6.63677096e-01 -2.16546729e-01 1.39264181e-01 -7.49066621e-02
3.28702293e-02 -9.49869037e-01 4.69365060e-01 2.06279710e-01
8.99256408e-01 -9.57949162e-01 8.33020270e-01 4.11074519e-01
-1.04421759e+00 -2.71428615e-01 -8.23210955e-01 2.21915349e-01
-2.94730335e-01 3.33344609e-01 -8.26283038e-01 2.77065128e-01
5.33344805e-01 4.88063604e-01 -4.98007357e-01 9.24374521e-01
-1.90088883e-01 8.36930990e-01 -2.02020511e-01 -2.76941627e-01
5.49861431e-01 -5.81767038e-02 7.24045515e-01 1.05892849e+00
5.89495242e-01 8.88023525e-02 -4.20244187e-01 7.44484901e-01
-2.65144706e-01 6.94998577e-02 -7.16202617e-01 -2.31996030e-01
5.20213544e-01 1.08737409e+00 -9.14168596e-01 -3.48782480e-01
-1.63989589e-01 8.48843157e-01 -1.49203435e-01 1.00574508e-01
-7.57763743e-01 -7.23148227e-01 5.10471463e-02 1.07807472e-01
8.71242404e-01 -3.34348291e-01 -1.85237437e-01 -1.02287877e+00
-2.04086125e-01 -1.05564511e+00 1.27671078e-01 -1.66695565e-01
-1.34614304e-01 7.15497911e-01 -2.57831484e-01 -1.44299841e+00
-5.73283397e-02 -4.23720539e-01 -4.72139806e-01 3.96386296e-01
-1.45862389e+00 -1.16652298e+00 -3.45710009e-01 9.18928623e-01
3.29966217e-01 -6.47815883e-01 5.19030452e-01 3.02436590e-01
-6.75109863e-01 9.71632779e-01 3.77769709e-01 3.18250030e-01
1.30805716e-01 -3.17646563e-01 2.60914952e-01 1.33675086e+00
-9.27534923e-02 6.40766025e-01 6.09145105e-01 -6.98983431e-01
-1.46520925e+00 -9.88432288e-01 7.23478496e-01 5.49879551e-01
4.79941458e-01 -1.95906162e-01 -8.43560636e-01 5.19579172e-01
2.05185741e-01 -2.50562966e-01 1.60765320e-01 -6.75127208e-01
-4.35713530e-01 -1.95370078e-01 -1.29621851e+00 5.05482316e-01
9.46612656e-01 -9.24846083e-02 -2.09211364e-01 8.61205608e-02
7.97494650e-01 -7.90484473e-02 -6.42717242e-01 4.32986408e-01
6.03142321e-01 -1.14783370e+00 8.38950217e-01 -2.13882178e-01
6.53390050e-01 -2.52669841e-01 -6.05207197e-02 -6.41534567e-01
-4.25524920e-01 -5.89689672e-01 -2.70160764e-01 8.61052394e-01
3.04687202e-01 -7.39929318e-01 1.07349992e+00 -5.53250499e-02
5.25542013e-02 -6.34991527e-01 -8.02847028e-01 -6.88256443e-01
-2.23448426e-01 -1.35368064e-01 8.29415381e-01 9.75223184e-01
-2.74521112e-01 -1.72551945e-01 -7.64930904e-01 1.35694906e-01
8.71697545e-01 -3.51398140e-02 5.62249660e-01 -1.08784974e+00
-3.22742105e-01 -5.02194464e-01 -7.03554630e-01 -1.00445390e+00
-2.62100041e-01 -9.35066879e-01 -3.81298035e-01 -1.06009948e+00
1.45485014e-01 -6.56506777e-01 -4.39468414e-01 4.82589662e-01
5.80175638e-01 8.05326879e-01 4.27315421e-02 7.68856883e-01
-1.94955841e-01 2.53619969e-01 1.40282488e+00 -1.85590833e-01
-5.57664819e-02 -9.78411883e-02 -7.23345995e-01 6.99792027e-01
9.94832397e-01 -6.95934653e-01 -3.89947146e-01 -5.25850594e-01
2.09442243e-01 -1.15605809e-01 4.33141321e-01 -1.17708385e+00
4.72185582e-01 9.62774530e-02 2.93211013e-01 -3.44105929e-01
-4.45082318e-03 -1.04662347e+00 3.96245509e-01 1.29250431e+00
-2.22792387e-01 -1.69850320e-01 -2.56837517e-01 4.95936573e-01
-1.01149991e-01 -6.68490827e-01 8.95147920e-01 -3.31705451e-01
-7.34407723e-01 1.94540560e-01 -4.22528952e-01 -6.80053949e-01
9.89346027e-01 -6.65620029e-01 -1.84451118e-01 -1.11306787e-01
-3.74005884e-01 -3.06107312e-01 4.31449085e-01 2.73911923e-01
8.65090489e-01 -1.15152991e+00 -6.47090971e-01 5.33747137e-01
-3.47803593e-01 -3.46324831e-01 1.72912762e-01 9.24907267e-01
-1.09839761e+00 5.58888793e-01 -4.74619120e-01 -3.12223166e-01
-1.49522460e+00 6.69588745e-01 2.71776021e-01 -4.90741730e-01
-6.82462454e-01 5.82351208e-01 -1.14069872e-01 5.90157956e-02
1.42471895e-01 2.30105594e-02 -5.59978426e-01 -2.18875229e-01
3.07272077e-01 5.20744205e-01 -1.59194037e-01 -8.40654373e-01
3.50348391e-02 5.56178629e-01 -1.89518720e-01 1.62009031e-01
1.21199763e+00 -1.74867317e-01 -5.29529095e-01 -5.29051006e-01
1.37427998e+00 -3.06678444e-01 -7.96565831e-01 -2.89758325e-01
-4.25849617e-01 -4.63471025e-01 3.70271891e-01 -1.18314318e-01
-1.75138688e+00 9.72502112e-01 7.63946235e-01 3.22070360e-01
1.35790288e+00 -4.61625636e-01 9.88319039e-01 6.43363535e-01
3.54788065e-01 -7.53733456e-01 1.25806227e-01 2.40212083e-01
4.86330688e-01 -7.28512645e-01 1.36787727e-01 -4.28834170e-01
-3.09631884e-01 1.33954954e+00 5.00825465e-01 -3.36176872e-01
5.08503079e-01 3.79687063e-02 -4.95220602e-01 -3.75478536e-01
-4.01619315e-01 1.10741884e-01 -1.83511689e-01 3.00648808e-01
-9.32875425e-02 -2.23471597e-01 -7.21619666e-01 2.18559690e-02
-3.38612795e-01 -2.15785548e-01 6.43783271e-01 7.29346991e-01
-7.59550035e-01 -1.08595932e+00 -2.93325037e-01 3.00485343e-01
-6.58306897e-01 -1.51390329e-01 -9.53117758e-02 7.82068551e-01
2.49050319e-01 7.95037866e-01 -1.31478623e-01 -9.64512646e-01
-8.54501203e-02 -3.01227093e-01 2.46566027e-01 -9.69037190e-02
-5.55346847e-01 1.46440387e-01 -2.54270315e-01 -3.91971797e-01
-4.57298845e-01 -3.19727212e-01 -9.96181190e-01 -8.00062835e-01
-5.70072591e-01 1.15583330e-01 7.08813906e-01 6.93169355e-01
1.73010632e-01 4.76024896e-01 9.31036472e-01 -4.52718973e-01
-6.20046079e-01 -9.06512678e-01 -5.65240264e-01 1.02143638e-01
2.22594380e-01 -1.87120110e-01 -5.27329981e-01 1.44182481e-02] | [4.316509246826172, 8.054389953613281] |
5091e908-01fc-4193-9ac1-097513378708 | a-cooperation-aware-lane-change-method-for-1 | null | null | https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=A%20Cooperation-Aware%20Lane%20Change%20Method%20for%20Automated%20Vehicles | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9971784 | A Cooperation-Aware Lane Change Method for Automated Vehicles | Lane change for automated vehicles (AVs) is an important but challenging task in complex dynamic traffic environments. Due to difficulties in guaranteeing safety as well as a high efficiency, AVs are inclined to choose relatively conservative strategies for lane change. To avoid the conservatism, this paper presents a cooperation-aware lane change method utilizing
interactions between vehicles. We first propose an interactive trajectory prediction method to explore possible cooperations
between an AV and the others. Further, an evaluation on safety, efficiency and comfort is designed to make a decision on lane change. Thereafter, we propose a motion planning algorithm based on model predictive control (MPC), which incorporates AV’s decision and surrounding vehicles’ interactive behaviors into constraints so as to avoid collisions during lane change. Quantitative testing results show that compared with the methods without an interactive prediction, our method enhances driving efficiencies of the AV and other vehicles by 14.8% and 2.6%, respectively, which indicates that a proper utilization of vehicle interactions can effectively reduce the conservatism of the AV and promote the cooperation between the AV and others. | ['Shibei Xue', 'Lin Liu', 'Zihao Sheng'] | 2023-03-01 | null | null | null | ieee-transactions-on-intelligent-16 | ['trajectory-prediction', 'motion-planning'] | ['computer-vision', 'robots'] | [-3.64135891e-01 3.35781455e-01 -2.94283241e-01 -2.99439669e-01
2.66781193e-03 -3.49659592e-01 4.32604611e-01 -1.49083257e-01
-4.71865773e-01 8.05360198e-01 -1.36221156e-01 -7.98787892e-01
-1.57965139e-01 -9.67638969e-01 -5.01674056e-01 -8.72411072e-01
-4.37849686e-02 -2.11415254e-03 7.97559023e-01 -4.99558002e-01
2.91920662e-01 7.43944645e-01 -1.49186993e+00 -5.22421420e-01
1.28849018e+00 7.36997545e-01 5.71482897e-01 2.16626942e-01
2.54501589e-02 4.88490433e-01 5.88066839e-02 -2.05265373e-01
3.10021847e-01 -1.35053813e-01 -2.30362371e-01 4.59306911e-02
-5.72811186e-01 -4.86752123e-01 -3.20648342e-01 7.85388112e-01
9.64371487e-02 6.96722627e-01 6.39256120e-01 -2.05597281e+00
9.84574854e-02 1.92582339e-01 -4.90072191e-01 -8.57952237e-02
-2.73544043e-01 5.86011052e-01 5.39020777e-01 -4.71754581e-01
4.90870088e-01 1.13546634e+00 2.55602986e-01 3.91653657e-01
-1.07186115e+00 -6.84091330e-01 5.27152300e-01 6.66159511e-01
-1.64773548e+00 -5.42826653e-01 8.47674668e-01 -4.40215856e-01
5.01822889e-01 4.33085978e-01 8.02284420e-01 4.45041299e-01
6.33666992e-01 7.29108512e-01 4.62786078e-01 -1.27591923e-01
2.79164374e-01 4.16985512e-01 -1.38705252e-02 4.59374875e-01
5.41807830e-01 3.47643733e-01 3.00161332e-01 1.37328550e-01
2.18129486e-01 -1.34909019e-01 -3.21462960e-03 -6.30106628e-01
-8.37191164e-01 9.67383325e-01 1.65006816e-01 -2.13169426e-01
-5.10382295e-01 -9.18996558e-02 4.13949579e-01 -4.82756272e-02
4.69429232e-02 1.23245932e-01 -1.58511549e-01 -2.84377962e-01
-3.29199225e-01 5.28641880e-01 4.21085000e-01 1.19407380e+00
7.26881027e-01 1.39967576e-01 -2.61969119e-01 6.27458990e-01
5.31087279e-01 5.71052432e-01 -4.70395178e-01 -1.33940446e+00
5.26559591e-01 5.82465827e-01 4.15113449e-01 -1.42525363e+00
-4.03523773e-01 -1.22817131e-02 -5.45656025e-01 5.93611777e-01
5.25113046e-02 -4.16332811e-01 -2.89142907e-01 1.49488294e+00
3.55852485e-01 -4.95958095e-03 1.12789348e-01 9.55279946e-01
1.30335361e-01 9.15805817e-01 2.96035111e-01 -7.14424312e-01
8.98082793e-01 -9.78623271e-01 -1.11008561e+00 -4.85345349e-02
9.88760650e-01 -5.20272553e-01 6.73058808e-01 2.16114506e-01
-1.01610219e+00 -4.89966810e-01 -9.64251876e-01 4.22207236e-01
-1.78882405e-01 -8.51726234e-02 1.76485807e-01 5.43173432e-01
-8.73431206e-01 1.59556761e-01 -7.23206580e-01 -1.77556023e-01
1.18558429e-01 3.81785780e-01 -6.00073077e-02 1.02881506e-01
-1.33432722e+00 1.23683906e+00 2.97655672e-01 1.99755758e-01
-5.86171389e-01 -3.75418305e-01 -9.21849668e-01 -1.00218855e-01
7.32118428e-01 -2.01048121e-01 1.07778800e+00 -4.34831411e-01
-1.55707192e+00 -7.48584643e-02 -2.66452104e-01 -4.32826847e-01
7.77076244e-01 1.77839369e-01 -7.16345727e-01 -5.25702424e-02
2.35463619e-01 6.78159595e-01 1.87128991e-01 -1.49128771e+00
-1.15605736e+00 3.00589472e-01 1.24475047e-01 3.77711564e-01
-2.97645386e-02 -2.49580160e-01 -4.27566886e-01 -6.48924056e-03
-2.50437945e-01 -1.27343357e+00 -6.29834831e-01 9.07342806e-02
-4.86465424e-01 -5.17251790e-01 1.23650122e+00 -3.48055005e-01
1.43677628e+00 -2.10606956e+00 -1.58426628e-01 3.89511228e-01
6.90270355e-03 3.85571659e-01 -4.17944901e-02 4.53489035e-01
4.41137642e-01 -1.18041979e-02 6.78076744e-02 -3.87384407e-02
-1.44519797e-02 4.97513801e-01 -1.19530916e-01 3.38713408e-01
1.14457197e-01 5.52345395e-01 -6.15953565e-01 -6.00875199e-01
6.77746177e-01 1.49952546e-01 -6.98006749e-01 2.53521085e-01
1.23817232e-02 3.45439970e-01 -7.23048210e-01 2.21903652e-01
1.08118010e+00 6.04381084e-01 6.42152736e-03 7.30187893e-02
-9.82308149e-01 -1.51449382e-01 -1.06541455e+00 4.72376943e-01
-4.24500138e-01 8.17971528e-01 2.78272808e-01 -7.15817630e-01
1.09601021e+00 7.34714940e-02 5.66041470e-01 -7.86730707e-01
3.48760307e-01 1.54357627e-01 2.75952816e-01 -6.65201902e-01
6.68076396e-01 1.56588510e-01 -3.10124643e-02 1.92219466e-02
-9.66336846e-01 -2.65446282e-03 3.19651775e-02 9.54603851e-02
6.44358158e-01 -2.81024903e-01 2.12047875e-01 -5.10810316e-01
9.15947676e-01 1.90862775e-01 9.43585098e-01 2.61122078e-01
-7.64070630e-01 -4.00708079e-01 5.84252894e-01 -2.93334872e-01
-8.91263783e-01 -7.02140927e-01 7.34267160e-02 5.71886778e-01
9.98114228e-01 -1.78631555e-04 -6.21515751e-01 -3.65275502e-01
2.16518298e-01 1.52981889e+00 -3.27203810e-01 -5.94146192e-01
-5.93061149e-01 -2.50610895e-02 -4.41054404e-02 4.06459272e-01
6.97580814e-01 -5.26004374e-01 -7.14007378e-01 2.69372433e-01
-8.81188586e-02 -1.05752778e+00 -5.21152854e-01 -4.47244346e-01
-2.12053850e-01 -8.78336966e-01 -6.44303635e-02 -5.89146793e-01
7.48606801e-01 9.32214141e-01 -3.42951976e-02 2.09957689e-01
4.17261034e-01 -5.01909340e-03 -2.46248111e-01 -5.56054890e-01
-6.09214723e-01 -7.81666264e-02 3.14698607e-01 2.31249183e-01
2.59093046e-01 -1.10963874e-01 -5.20340443e-01 9.07309890e-01
-3.63974541e-01 5.98703682e-01 3.46440256e-01 4.05865729e-01
4.95236158e-01 5.44146240e-01 6.64154053e-01 -2.09368348e-01
4.09321308e-01 -6.63959324e-01 -1.01946497e+00 1.17294362e-03
-7.87587225e-01 -1.93530783e-01 7.54703104e-01 -2.00487584e-01
-1.32187891e+00 3.57241705e-02 -8.17239061e-02 -2.22389191e-01
-1.31636143e-01 5.97355850e-02 -5.81442893e-01 -2.10169241e-01
-3.15098017e-02 2.00633500e-02 5.05253553e-01 1.28328666e-01
2.51857311e-01 6.77807391e-01 1.86367258e-02 -1.09841362e-01
9.23673153e-01 3.06063265e-01 4.23743755e-01 -7.60364473e-01
7.87435696e-02 -2.17837870e-01 -5.60810089e-01 -8.99382532e-01
8.75186622e-01 -6.99559510e-01 -1.41099131e+00 1.72019750e-01
-1.13513315e+00 -3.81756306e-01 2.40772963e-01 7.30629325e-01
-7.29904830e-01 3.77429068e-01 -1.30752653e-01 -1.28003347e+00
3.62961769e-01 -1.49350476e+00 4.11706030e-01 3.41396362e-01
7.24096457e-03 -8.80085170e-01 -3.84067714e-01 3.49908262e-01
4.26981568e-01 2.88996428e-01 6.93081856e-01 -2.72381485e-01
-8.86052549e-01 -4.10823971e-02 -1.97399750e-01 7.32525438e-02
9.66500118e-02 2.87257820e-01 -2.88027197e-01 -2.21570402e-01
-2.80368268e-01 4.91370320e-01 2.69979894e-01 3.70000809e-01
8.70942593e-01 -6.28068626e-01 -8.45247865e-01 2.20910311e-01
1.26051438e+00 1.24421740e+00 8.04634035e-01 6.49983883e-01
5.51773727e-01 1.23159492e+00 1.44629836e+00 3.91304344e-01
6.96510017e-01 8.65657389e-01 8.03047657e-01 -1.09711133e-01
5.13577878e-01 -1.97620824e-01 2.33110905e-01 5.84249556e-01
-8.42300951e-02 -3.64272505e-01 -7.77788162e-01 6.21113300e-01
-2.16472149e+00 -8.87213945e-01 -7.84442544e-01 2.15559602e+00
3.81010264e-01 3.08367252e-01 2.14008421e-01 1.57143265e-01
9.76257682e-01 -1.49036467e-01 -4.17939216e-01 -8.26678574e-01
2.35237896e-01 -1.06103194e+00 9.86977279e-01 8.04758370e-01
-7.93616235e-01 9.17143047e-01 5.97030163e+00 1.10674512e+00
-8.59900415e-01 -1.92069203e-01 7.36744761e-01 7.78677091e-02
-4.71542895e-01 1.80537701e-01 -8.72112930e-01 8.05818617e-01
8.85778725e-01 -7.44731724e-01 3.15171331e-01 8.62315357e-01
1.28309643e+00 -5.01086354e-01 -6.41765833e-01 4.58716214e-01
-4.42180008e-01 -1.20917320e+00 -1.53546974e-01 2.17842519e-01
5.48563600e-01 -6.30543530e-01 -2.42265761e-01 2.63064921e-01
5.31623065e-02 -6.42774045e-01 8.50567102e-01 7.28565633e-01
2.26065293e-01 -1.44613516e+00 8.04807603e-01 6.86470568e-01
-1.33512974e+00 -2.11812794e-01 -2.04620287e-01 -2.46952355e-01
8.38464200e-01 1.06920831e-01 -6.30378664e-01 4.89580363e-01
1.25638902e-01 3.26798111e-01 -2.02589780e-01 9.39896464e-01
-8.29377472e-02 2.82800853e-01 -6.29568547e-02 -5.32905459e-01
5.14170647e-01 -6.46776617e-01 8.96818757e-01 8.32896292e-01
2.65489787e-01 3.82629544e-01 3.86565030e-01 7.92281568e-01
7.62979448e-01 2.58449018e-01 -9.77846205e-01 3.21578354e-01
7.68277228e-01 1.07251036e+00 -4.28697377e-01 -1.45284221e-01
-4.25359219e-01 3.20322394e-01 -1.96958452e-01 4.96160507e-01
-1.36507690e+00 -6.76141441e-01 1.06920946e+00 4.94893521e-01
3.84226069e-02 -4.56145048e-01 -5.92595816e-01 -1.34459242e-01
-2.93842740e-02 3.03380806e-02 -2.37053111e-01 -7.17632651e-01
-4.90213782e-01 3.41134071e-01 3.77877921e-01 -1.62110615e+00
-3.49530652e-02 -3.36578637e-01 -9.49526310e-01 7.82202303e-01
-1.54613876e+00 -7.11625159e-01 -7.91223496e-02 2.07629502e-01
5.97870409e-01 -3.03520530e-01 -1.26259699e-01 2.86766589e-01
-8.23921144e-01 3.55390728e-01 1.46675780e-01 -4.44205254e-01
2.27448881e-01 -3.69651616e-01 -8.83812010e-02 9.12448823e-01
-1.19033742e+00 2.49875993e-01 1.01875412e+00 -6.20187163e-01
-1.45012224e+00 -1.30891323e+00 9.86708403e-01 1.20412260e-01
5.92147589e-01 -4.73085828e-02 -8.45049441e-01 3.99562776e-01
1.57392055e-01 -4.62982148e-01 1.12237521e-01 -4.60007221e-01
6.36429489e-01 -3.60702753e-01 -1.03377640e+00 1.35239458e+00
9.56819117e-01 1.09553322e-01 -1.67335585e-01 -7.76202828e-02
1.01494646e+00 -5.03060035e-02 -3.34733218e-01 5.08556366e-01
3.73794138e-01 -7.48470068e-01 5.10125577e-01 -2.06747785e-01
-1.53113529e-01 -6.88268960e-01 -5.08036949e-02 -1.24069762e+00
-5.43356299e-01 -6.03811562e-01 2.53530681e-01 1.18015921e+00
3.81622881e-01 -9.33991969e-01 4.73678857e-01 1.27332890e+00
-5.49308419e-01 -7.93542385e-01 -1.09648001e+00 -1.14973783e+00
-2.05155811e-03 -5.84502876e-01 5.59480965e-01 5.28460741e-01
1.53052121e-01 5.30432165e-02 -5.22883058e-01 4.18367594e-01
4.44200426e-01 -2.36183062e-01 9.77025211e-01 -9.43999708e-01
4.26589042e-01 -6.32785618e-01 -3.47711802e-01 -9.34450328e-01
4.24380809e-01 -3.64084244e-01 4.28185254e-01 -1.62006998e+00
-1.24408774e-01 -5.84892631e-01 1.83971182e-01 2.84097314e-01
5.79745322e-02 -4.02651191e-01 1.85407773e-01 2.38184202e-02
-4.81380701e-01 9.55069840e-01 1.47996926e+00 -3.25250663e-02
-5.52612662e-01 2.76283681e-01 -4.45223749e-01 6.20267034e-01
1.02653503e+00 -1.65118296e-02 -7.88780510e-01 -2.96085551e-02
-2.37490535e-01 5.15274584e-01 1.09684855e-01 -7.10027754e-01
4.32829469e-01 -1.12346053e+00 -5.62864959e-01 -9.73768234e-01
2.55005836e-01 -1.25885713e+00 4.83693868e-01 9.09776390e-01
-1.48275897e-01 -1.63310215e-01 3.85885060e-01 7.47527659e-01
4.28371578e-02 1.87325645e-02 9.02902603e-01 6.04541004e-01
-1.05997777e+00 2.98317105e-01 -1.30761075e+00 -6.68464839e-01
2.12733579e+00 -5.30762136e-01 -1.88395455e-01 -5.74822426e-01
-4.97484088e-01 1.15448964e+00 3.45764220e-01 6.40008092e-01
5.22988141e-01 -1.59939754e+00 -3.81028146e-01 1.61504403e-01
-1.15243960e-02 -4.29481179e-01 6.53003156e-01 1.13063014e+00
-5.34425795e-01 8.38347256e-01 -4.40104395e-01 -3.99268955e-01
-1.33303618e+00 7.29927242e-01 2.09771156e-01 2.69933611e-01
-3.83969992e-01 1.35503575e-01 4.47615951e-01 -8.86129141e-02
-8.21413919e-02 -9.81249809e-02 -4.81696099e-01 -1.45697892e-01
2.25415379e-01 9.79834795e-01 -4.00298268e-01 -1.07690895e+00
-4.95396286e-01 3.28190863e-01 2.74293095e-01 -3.84555906e-02
7.02703118e-01 -8.05177629e-01 2.29277223e-01 2.44652003e-01
1.01732993e+00 -2.52755894e-03 -1.67490542e+00 2.84803778e-01
-1.26335844e-01 -8.14277053e-01 9.91530865e-02 -3.49862009e-01
-1.09882224e+00 6.02876186e-01 3.08628052e-01 3.75956595e-01
8.89853060e-01 -3.95293266e-01 9.74140406e-01 2.27000713e-01
7.42550075e-01 -1.48899484e+00 -4.70554471e-01 5.03383160e-01
8.98859918e-01 -1.06833577e+00 -3.07746351e-01 -8.94376814e-01
-1.03695905e+00 8.57908547e-01 1.06423330e+00 6.05082326e-02
6.57943308e-01 3.39550376e-02 -1.03583217e-01 4.28720772e-01
-9.66592550e-01 -2.35212654e-01 8.64950642e-02 5.47947168e-01
-3.16005528e-01 3.57888430e-01 -9.30304348e-01 5.02577126e-01
2.08957478e-01 -3.83927763e-01 7.67670751e-01 6.82680488e-01
-8.80770862e-01 -9.57169771e-01 -3.33142728e-01 2.97498792e-01
4.57200706e-01 5.64151347e-01 1.61923334e-01 1.06424117e+00
3.31075370e-01 1.50359976e+00 2.68322647e-01 -7.32939243e-01
6.15218103e-01 -3.71229738e-01 -4.74205822e-01 -9.12914202e-02
2.17006311e-01 -6.32622913e-02 4.90437806e-01 -4.88239139e-01
-2.01321423e-01 -7.65848339e-01 -1.60252404e+00 -9.28118885e-01
-3.63481432e-01 3.06884348e-01 4.83881265e-01 1.04373312e+00
4.97882813e-01 4.85082120e-01 1.26573753e+00 -5.68324208e-01
-1.34671807e-01 -3.00579876e-01 -5.87307692e-01 -1.14092708e-01
1.12317927e-01 -1.12718379e+00 -4.33834344e-01 -4.49095428e-01] | [5.543769836425781, 1.5516884326934814] |
32c5f3d0-8191-463d-b3b7-026c7f49fb44 | disfluencyfixer-a-tool-to-enhance-language | 2305.16957 | null | https://arxiv.org/abs/2305.16957v1 | https://arxiv.org/pdf/2305.16957v1.pdf | DisfluencyFixer: A tool to enhance Language Learning through Speech To Speech Disfluency Correction | Conversational speech often consists of deviations from the speech plan, producing disfluent utterances that affect downstream NLP tasks. Removing these disfluencies is necessary to create fluent and coherent speech. This paper presents DisfluencyFixer, a tool that performs speech-to-speech disfluency correction in English and Hindi using a pipeline of Automatic Speech Recognition (ASR), Disfluency Correction (DC) and Text-To-Speech (TTS) models. Our proposed system removes disfluencies from input speech and returns fluent speech as output along with its transcript, disfluency type and total disfluency count in source utterance, providing a one-stop destination for language learners to improve the fluency of their speech. We evaluate the performance of our tool subjectively and receive scores of 4.26, 4.29 and 4.42 out of 5 in ASR performance, DC performance and ease-of-use of the system. Our tool can be accessed openly at the following link. | ['Pushpak Bhattacharyya', 'Preethi Jyothi', 'Vineet Bhat'] | 2023-05-26 | null | null | null | null | ['automatic-speech-recognition'] | ['speech'] | [-1.50625721e-01 2.70319968e-01 2.74946958e-01 -5.03004670e-01
-8.48980248e-01 -9.64599192e-01 3.50917369e-01 -1.37570411e-01
-2.47287378e-01 9.46216345e-01 9.79909360e-01 -6.96116388e-01
3.06476653e-01 -1.33003145e-01 -4.13965493e-01 -2.55082428e-01
4.43946213e-01 4.43179190e-01 1.00362211e-01 -5.15489280e-01
1.28138095e-01 2.75245011e-01 -1.29954278e+00 7.24798739e-01
1.08173835e+00 9.45188180e-02 7.51618445e-01 1.18261290e+00
-1.93343312e-01 1.07444346e+00 -1.16671312e+00 -7.65817687e-02
-2.60560989e-01 -4.61436570e-01 -1.25904071e+00 -2.02429622e-01
-3.52681838e-02 -1.34845302e-01 -2.19531864e-01 8.37397814e-01
5.18234134e-01 4.06410664e-01 2.15949222e-01 -5.64169645e-01
-4.76048172e-01 1.03199196e+00 6.27877176e-01 7.43024409e-01
8.91397715e-01 3.46833825e-01 5.43000281e-01 -8.50939691e-01
6.24512613e-01 1.37094426e+00 2.06881851e-01 1.07778287e+00
-9.27238882e-01 -7.61518776e-01 -6.71444274e-03 -1.13452405e-01
-1.11270750e+00 -9.46903586e-01 1.84834138e-01 -5.58398843e-01
2.08512783e+00 6.59203112e-01 4.55637872e-01 1.11439002e+00
1.46263734e-01 5.64199805e-01 7.92938590e-01 -7.60652661e-01
3.31415609e-02 6.28516972e-02 4.01325405e-01 1.26807421e-01
-5.39079428e-01 1.61473170e-01 -7.76950538e-01 5.49785972e-01
2.01606020e-01 -4.37998980e-01 -4.36125964e-01 1.13967121e+00
-1.01025009e+00 3.95234138e-01 -1.95162505e-01 8.55856299e-01
-2.19630748e-01 -2.53881574e-01 4.16107982e-01 7.34762073e-01
6.72873437e-01 3.01125437e-01 -5.80819726e-01 -9.08025205e-01
-7.73981094e-01 1.30392656e-01 6.32198453e-01 1.10551047e+00
2.93945909e-01 2.45872647e-01 -3.99966836e-01 1.26157939e+00
2.86129057e-01 5.34350336e-01 1.00055432e+00 -6.67789102e-01
6.74507797e-01 3.78103256e-01 -9.44570750e-02 2.34768968e-02
-2.62171090e-01 3.80476564e-02 -2.20909208e-01 -5.26568815e-02
2.25510150e-01 -3.12056273e-01 -1.09577870e+00 1.64153087e+00
1.13243051e-01 -2.86790133e-01 4.58043307e-01 5.58561206e-01
1.17487168e+00 1.14935672e+00 3.57012928e-01 -7.57454813e-01
1.01336718e+00 -1.12858129e+00 -1.36264694e+00 -2.74225533e-01
1.12172341e+00 -1.41733110e+00 1.57553148e+00 3.95461142e-01
-1.40461850e+00 -4.07375485e-01 -8.00649762e-01 -1.86444253e-01
-2.64587134e-01 -1.33589447e-01 5.77164255e-03 8.96612048e-01
-1.29529333e+00 4.88202840e-01 -7.30188072e-01 -1.93449602e-01
-3.62672746e-01 3.02259147e-01 -5.31296611e-01 1.55054495e-01
-1.44124079e+00 1.14981544e+00 4.21840638e-01 -3.76774728e-01
-5.70504308e-01 -7.71872163e-01 -7.86022067e-01 -8.35725144e-02
-7.31163025e-02 -3.99395041e-02 1.95219600e+00 -8.33752513e-01
-1.94413292e+00 8.35980952e-01 -3.73070776e-01 -1.47868738e-01
4.07185912e-01 -4.01297063e-01 -7.89298117e-01 -2.35091612e-01
-3.97029109e-02 9.85040292e-02 3.39273155e-01 -4.45770472e-01
-9.13666785e-01 -2.29564652e-01 -6.23548746e-01 4.35625732e-01
1.62747458e-01 6.45168185e-01 2.18327921e-02 -8.04944098e-01
-5.30645810e-02 -8.73865426e-01 3.53973508e-01 -1.28325975e+00
-3.94278377e-01 -8.71924758e-01 7.01960504e-01 -1.28725755e+00
1.88540292e+00 -2.16229939e+00 -2.79344432e-02 -3.23640466e-01
-3.18597317e-01 7.97025979e-01 1.03108272e-01 4.66932923e-01
-2.93394893e-01 4.78475630e-01 1.10231705e-01 -3.34601700e-01
-2.99552470e-01 2.34390944e-01 -1.03723770e-02 1.14371940e-01
1.52550548e-01 6.67308688e-01 -1.02252388e+00 2.95220478e-03
6.73766077e-01 3.36046338e-01 -3.30066204e-01 6.71998322e-01
-9.43716243e-02 7.84425020e-01 2.94331193e-01 2.72265494e-01
4.20928359e-01 8.56764734e-01 1.21548295e-01 6.87772870e-01
-7.38969386e-01 1.50659883e+00 -6.67296767e-01 1.39746296e+00
-9.11021292e-01 5.53961813e-01 3.47123183e-02 -3.17626059e-01
6.42370284e-01 1.03741539e+00 -1.60071313e-01 -7.60207713e-01
9.96778682e-02 4.84162480e-01 1.69161305e-01 -9.03873980e-01
4.60371614e-01 -4.15707290e-01 -7.95397609e-02 2.78912395e-01
3.17249089e-01 -3.72683465e-01 2.71135300e-01 1.01539925e-01
1.30161786e+00 -2.89451420e-01 3.97338063e-01 -2.96932966e-01
6.33243918e-01 -2.07269639e-01 1.71289667e-01 5.14778852e-01
-3.22261453e-01 5.78739464e-01 1.29607230e-01 4.07043248e-02
-8.72015893e-01 -1.11436641e+00 9.04979184e-02 1.32235599e+00
-7.88262129e-01 -5.85211933e-01 -1.16746664e+00 -5.42411983e-01
-5.32152593e-01 1.62372267e+00 8.02406967e-02 -2.03130275e-01
-1.06237900e+00 9.31875873e-03 6.33449554e-01 1.21381171e-01
-1.82367191e-01 -1.87849617e+00 2.62143135e-01 4.56078380e-01
-7.61389375e-01 -9.13007021e-01 -9.10212755e-01 2.28379250e-01
-3.85654926e-01 -4.79586780e-01 -4.07923430e-01 -1.08793247e+00
5.08334190e-02 1.87156379e-01 8.98649335e-01 1.97012812e-01
2.06951141e-01 -1.28408968e-01 -7.36631095e-01 -2.65020221e-01
-1.49727201e+00 7.67322863e-03 2.67265528e-01 -7.27774262e-01
4.35401917e-01 -4.88962680e-01 -5.30158877e-02 2.72453707e-02
-6.27304077e-01 -1.20740170e-02 1.40743703e-01 3.52937013e-01
3.36371154e-01 -2.80671626e-01 6.09451890e-01 -7.86741257e-01
1.03167582e+00 -4.11079764e-01 -2.34095499e-01 2.22705118e-02
-4.08817738e-01 -1.37572572e-01 9.45336580e-01 -3.27343345e-01
-1.36093283e+00 1.36960953e-01 -1.08689272e+00 -1.08724684e-01
-5.38580298e-01 2.32262507e-01 -5.54318070e-01 5.42055309e-01
6.18799627e-01 2.67865181e-01 -2.31869534e-01 -7.00459123e-01
3.19769353e-01 1.55308151e+00 7.33061671e-01 -4.84827794e-02
9.76828784e-02 -6.22407794e-01 -9.64489996e-01 -1.15031004e+00
-7.08891928e-01 -8.51260841e-01 -6.47935867e-01 -4.06970143e-01
6.83370531e-01 -7.81196833e-01 -6.54722512e-01 6.29823267e-01
-1.50171745e+00 -4.10840690e-01 -1.30233407e-01 6.39273047e-01
-5.14199555e-01 1.74221337e-01 -6.36642575e-01 -1.04254460e+00
-6.29670143e-01 -1.29059219e+00 5.65315366e-01 1.07281851e-02
-7.46372640e-01 -5.41136742e-01 2.26237684e-01 5.53401291e-01
3.62404972e-01 -5.11291921e-01 6.83408380e-01 -8.26343656e-01
1.30382672e-01 1.55821025e-01 5.38529456e-01 8.63500714e-01
3.13819766e-01 1.70875322e-02 -1.05382395e+00 1.33560255e-01
4.00899798e-02 -6.89710900e-02 6.15265429e-01 4.17443484e-01
4.72056717e-01 -8.43959928e-01 1.44815817e-01 3.05107951e-01
7.83942819e-01 8.68510783e-01 7.48043299e-01 -1.30114228e-01
5.77584267e-01 7.81338811e-01 4.95254189e-01 1.84710398e-01
4.77254018e-02 6.88145876e-01 -1.65596142e-01 5.72843909e-01
-7.75212228e-01 -4.14510727e-01 1.03759825e+00 1.47661996e+00
2.17122719e-01 -7.77131140e-01 -9.77592826e-01 7.33125806e-01
-1.33044875e+00 -1.11734939e+00 -7.13600039e-01 2.15913248e+00
1.27980244e+00 1.46684796e-01 2.21250355e-01 3.92977178e-01
9.70883012e-01 -1.02396376e-01 2.48643622e-01 -1.36715555e+00
5.81006929e-02 3.64449292e-01 1.22208640e-01 1.34966552e+00
-6.83743834e-01 1.78213382e+00 6.09575367e+00 8.43914092e-01
-1.33975148e+00 5.26363969e-01 2.90059477e-01 -3.42674255e-01
-3.62124741e-01 -2.83483475e-01 -1.03518605e+00 7.73838043e-01
1.75649214e+00 -2.48163134e-01 9.30389643e-01 6.23334467e-01
9.16294992e-01 -7.05279037e-02 -8.75077784e-01 8.20631266e-01
-2.54537165e-01 -1.21529758e+00 -1.99191719e-01 -6.37508273e-01
2.12848902e-01 2.36247912e-01 -3.38077337e-01 5.19683123e-01
3.88996780e-01 -1.24730873e+00 1.10709774e+00 1.92117065e-01
9.41642821e-01 -9.36348975e-01 4.62536216e-01 4.72454697e-01
-8.36741209e-01 3.47561985e-01 1.32068349e-02 -3.76407653e-01
3.82918358e-01 5.81140518e-01 -1.46268165e+00 -1.49169546e-02
5.85096478e-01 2.44834125e-01 -9.65049937e-02 5.27211308e-01
-5.84848464e-01 1.30906677e+00 -3.44303668e-01 -3.60829294e-01
-1.16702020e-02 2.23764345e-01 8.96837175e-01 1.77185237e+00
3.77799332e-01 3.72569889e-01 -2.61242568e-01 3.82082611e-01
-1.65013094e-02 4.59208637e-01 -3.48927796e-01 -2.14104548e-01
9.22264516e-01 7.22026527e-01 -3.96544307e-01 -2.51360059e-01
-9.29528326e-02 1.14457631e+00 4.55925435e-01 9.32339672e-03
-2.78726280e-01 -4.87464428e-01 9.16925848e-01 9.59495604e-02
-1.10468678e-01 -1.44638196e-01 -2.34733880e-01 -7.26731837e-01
2.24759117e-01 -9.37337995e-01 2.12507024e-01 -6.04406536e-01
-8.41835022e-01 1.12581551e+00 -3.15354198e-01 -7.80943632e-01
-6.93060756e-01 -1.99877501e-01 -7.03272283e-01 1.28246582e+00
-1.05359983e+00 -8.06007624e-01 2.12531060e-01 4.08475727e-01
1.19106603e+00 -1.56115085e-01 9.84354615e-01 4.77142632e-01
-6.29746974e-01 5.71696758e-01 -7.45778233e-02 -2.09397137e-01
6.36938512e-01 -1.31518471e+00 7.47945547e-01 1.04536808e+00
-9.74286050e-02 5.39582551e-01 9.43357348e-01 -9.16388214e-01
-5.42549074e-01 -1.32149756e+00 2.04057789e+00 -5.04375458e-01
4.37974632e-01 -4.11728054e-01 -8.02930474e-01 7.58572638e-01
3.19008380e-01 -4.71841067e-01 6.15526915e-01 2.79830918e-02
3.53852749e-01 3.02885920e-01 -9.93884206e-01 4.55271035e-01
1.12430024e+00 -3.87262493e-01 -7.74693191e-01 6.38673127e-01
1.34513772e+00 -6.05629206e-01 -5.43205678e-01 -1.99728832e-01
1.58328429e-01 -1.00961006e+00 4.57620561e-01 -4.87230450e-01
2.83093810e-01 -2.42936406e-02 -2.44830083e-03 -1.81423843e+00
-3.66517007e-01 -1.29210865e+00 3.51892263e-01 1.54064012e+00
7.12858558e-01 -2.88130581e-01 6.73186854e-02 4.04190749e-01
-1.05767095e+00 -8.53297412e-02 -1.21355557e+00 -8.04213881e-01
3.76577318e-01 -7.90354311e-01 4.91560996e-01 5.66129029e-01
6.60680175e-01 5.18655062e-01 -2.03598022e-01 -9.31150652e-03
-4.40413624e-01 -7.59438753e-01 4.37023863e-02 -8.39048088e-01
1.10398054e-01 -4.04266298e-01 4.82542552e-02 -6.64101541e-01
4.07707214e-01 -1.13102496e+00 4.89394665e-01 -1.48648393e+00
-5.30666053e-01 -1.48473635e-01 2.16563806e-01 6.67101204e-01
-8.40390623e-02 -1.76709071e-01 2.83658713e-01 4.90206033e-02
-1.27928197e-01 3.00222754e-01 1.03618240e+00 3.64339858e-01
-9.03907061e-01 3.51982713e-01 -3.68597806e-01 5.28177738e-01
1.02906621e+00 -7.20938563e-01 -3.32849771e-01 -3.38656485e-01
-2.42976263e-01 3.71492505e-01 -3.83536398e-01 -8.48894119e-01
-1.20712146e-01 -3.64150822e-01 -1.08880043e-01 -5.32441139e-01
-9.03956443e-02 -2.74804950e-01 1.09817632e-01 5.27107179e-01
-3.63487691e-01 2.26246774e-01 3.32531929e-01 -3.01822156e-01
-1.57677189e-01 -5.42119443e-01 8.80359650e-01 -3.46919268e-01
-5.17734170e-01 -4.30897534e-01 -1.33445883e+00 2.07882136e-01
7.84405708e-01 -3.03414930e-02 -3.18272173e-01 -4.24148440e-01
-9.89454687e-01 -1.31749749e-01 -6.76603988e-02 7.45122015e-01
4.32926238e-01 -9.15808976e-01 -8.02816749e-01 5.03203630e-01
-1.02691054e-01 -1.21864557e-01 2.85668343e-01 6.34890854e-01
-7.98591316e-01 1.03075492e+00 3.11668199e-02 4.10111882e-02
-1.64161062e+00 2.33946174e-01 3.93283546e-01 1.46948304e-02
-5.45409739e-01 1.32942784e+00 -1.49191007e-01 -5.77798307e-01
4.11284238e-01 -5.34259140e-01 -2.99738765e-01 -1.19440794e-01
8.32830429e-01 5.32603681e-01 8.58458102e-01 -8.59447479e-01
-6.29528344e-01 -2.46606380e-01 -2.42229313e-01 -4.75354403e-01
9.55541611e-01 -5.55014849e-01 -6.38700724e-02 4.29802865e-01
1.12933350e+00 6.27637446e-01 -6.31977916e-01 4.13903087e-01
5.00055999e-02 -1.11511618e-01 1.44589901e-01 -1.35187078e+00
-3.84066761e-01 7.20830023e-01 2.92875797e-01 3.89626801e-01
8.27785850e-01 1.31955236e-01 1.17981982e+00 -2.32293401e-02
-2.67166674e-01 -1.43710124e+00 -3.86483222e-01 1.33620727e+00
1.19038939e+00 -8.48596990e-01 -9.09090400e-01 -6.32027686e-01
-7.56342649e-01 8.49587798e-01 4.82062876e-01 1.91901743e-01
6.14980936e-01 4.88597363e-01 5.34076631e-01 4.25332278e-01
-8.84744108e-01 -2.17581823e-01 3.46525796e-02 7.01339006e-01
1.16627395e+00 5.49723268e-01 -9.00635660e-01 7.09045172e-01
-1.19184339e+00 -2.44549975e-01 5.96762896e-01 6.13790274e-01
-6.48541391e-01 -1.27469087e+00 -3.29533875e-01 1.21980838e-01
-7.14474380e-01 -4.80453700e-01 -7.74000049e-01 1.49587139e-01
8.20005089e-02 1.60000169e+00 1.70070827e-01 -5.04458010e-01
5.77655435e-01 4.86570507e-01 1.82812586e-01 -1.17991865e+00
-1.10795796e+00 2.43190423e-01 4.94273692e-01 -4.75420594e-01
2.11352095e-01 -7.22900927e-01 -1.67443478e+00 -3.55663806e-01
-1.86598852e-01 2.77146220e-01 7.57509232e-01 1.24877799e+00
1.48345143e-01 6.06123984e-01 4.93856788e-01 -4.27473843e-01
-1.76198184e-01 -1.55886066e+00 -3.90042186e-01 2.36000434e-01
6.66358352e-01 -1.41668737e-01 -6.05250418e-01 2.10368127e-01] | [14.402436256408691, 6.85552453994751] |
4135c74a-a9ed-4b2d-8ab4-8859c422ed45 | faithful-learning-with-sure-data-for-lung | 2202.12515 | null | https://arxiv.org/abs/2202.12515v1 | https://arxiv.org/pdf/2202.12515v1.pdf | Faithful learning with sure data for lung nodule diagnosis | Recent evolution in deep learning has proven its value for CT-based lung nodule classification. Most current techniques are intrinsically black-box systems, suffering from two generalizability issues in clinical practice. First, benign-malignant discrimination is often assessed by human observers without pathologic diagnoses at the nodule level. We termed these data as "unsure data". Second, a classifier does not necessarily acquire reliable nodule features for stable learning and robust prediction with patch-level labels during learning. In this study, we construct a sure dataset with pathologically-confirmed labels and propose a collaborative learning framework to facilitate sure nodule classification by integrating unsure data knowledge through nodule segmentation and malignancy score regression. A loss function is designed to learn reliable features by introducing interpretability constraints regulated with nodule segmentation maps. Furthermore, based on model inference results that reflect the understanding from both machine and experts, we explore a new nodule analysis method for similar historical nodule retrieval and interpretable diagnosis. Detailed experimental results demonstrate that our approach is beneficial for achieving improved performance coupled with faithful model reasoning for lung cancer prediction. Extensive cross-evaluation results further illustrate the effect of unsure data for deep-learning-based methods in lung nodule classification. | ['Guang-Zhong Yang', 'Yun Gu', 'Zhexin Wang', 'Feng Yao', 'Yulei Qin', 'Minghui Zhang', 'Xiao Gu', 'Liang Chen', 'Hanxiao Zhang'] | 2022-02-25 | null | null | null | null | ['lung-nodule-classification'] | ['medical'] | [ 1.25561342e-01 7.29072511e-01 -6.45296514e-01 -6.69189692e-01
-1.16462052e+00 -4.28543419e-01 9.83700827e-02 -1.91473663e-01
1.24033637e-01 4.94709879e-01 8.31550136e-02 -5.47605574e-01
-6.16148174e-01 -7.65647411e-01 -4.72179562e-01 -6.99229836e-01
4.14036177e-02 9.18847322e-01 4.22789425e-01 2.15391234e-01
-3.29442948e-01 4.58115458e-01 -1.05663705e+00 8.72152746e-01
1.00445890e+00 1.23589802e+00 1.97877839e-01 5.60696661e-01
2.03662798e-01 1.47750330e+00 -3.09795700e-03 -5.76331496e-01
4.48103994e-01 -3.71760905e-01 -1.19085336e+00 3.75093400e-01
1.92182690e-01 -4.86789286e-01 -1.80863619e-01 8.61499548e-01
2.97648579e-01 -5.41498363e-01 1.13436091e+00 -9.86373007e-01
-6.83987677e-01 9.13320363e-01 -2.16156334e-01 -1.64952219e-01
-3.60140622e-01 2.41793677e-01 1.34093118e+00 -7.09737599e-01
3.52027774e-01 6.41545832e-01 1.16269052e+00 5.56695342e-01
-9.98643756e-01 -3.72753233e-01 -2.86380023e-01 3.06955606e-01
-1.35182881e+00 -4.20851409e-02 3.99935842e-01 -6.64098859e-01
3.28206241e-01 8.44343364e-01 8.14901590e-01 9.54571247e-01
6.06448352e-01 9.09877121e-01 8.54189336e-01 -9.96251777e-02
5.84463477e-02 3.82695973e-01 -1.64729431e-01 1.39576697e+00
4.42711264e-01 2.45269597e-01 8.01369399e-02 -1.79046556e-01
9.80510414e-01 3.19840819e-01 -2.55552381e-01 -7.99796045e-01
-1.29186475e+00 9.20253158e-01 1.15919900e+00 2.94476330e-01
-2.34834790e-01 2.03876525e-01 3.63014519e-01 1.16917521e-01
3.65044653e-01 5.11038065e-01 -3.01332772e-01 6.75037622e-01
-1.03540432e+00 -3.10173362e-01 1.11978996e+00 6.59448028e-01
3.88810843e-01 -2.79354781e-01 -6.39122069e-01 6.28431797e-01
5.68577945e-01 4.88177449e-01 7.43443131e-01 -9.18049335e-01
-3.05043250e-01 6.59908414e-01 -1.71975881e-01 -7.91818678e-01
-4.67188537e-01 -8.77343774e-01 -1.21862900e+00 1.75581798e-01
2.89992869e-01 3.10719073e-01 -1.13615561e+00 1.16254449e+00
2.21580900e-02 1.82741985e-01 -1.48380443e-01 8.08283448e-01
8.51657808e-01 -2.08656594e-01 1.07222728e-01 -5.84738981e-03
1.29650533e+00 -1.31167245e+00 -4.26825374e-01 9.46844965e-02
8.79215658e-01 -3.85868818e-01 9.38196003e-01 2.15549245e-01
-8.74074399e-01 -4.28075254e-01 -7.64742076e-01 7.75799304e-02
1.16066523e-01 4.84760582e-01 7.57223964e-01 6.23667955e-01
-1.05933905e+00 5.57354450e-01 -1.37424731e+00 -1.72177330e-01
8.52698326e-01 6.32593095e-01 -4.00471017e-02 4.00232114e-02
-8.26391041e-01 1.08724642e+00 3.63136798e-01 1.54066935e-01
-1.23579013e+00 -9.07475054e-01 -4.55330402e-01 1.65096104e-01
6.16078079e-01 -1.13926983e+00 1.71040738e+00 -1.14910328e+00
-1.24600482e+00 1.04751277e+00 1.13687612e-01 -6.53629005e-01
9.75633621e-01 1.84472337e-01 -1.78436339e-01 1.69500023e-01
1.83126599e-01 6.17777884e-01 1.01086187e+00 -1.23798156e+00
-3.97703856e-01 -3.64585035e-02 -2.63296157e-01 -3.71493003e-03
-2.49870420e-01 -6.26014650e-01 -3.04309309e-01 -4.34181392e-01
4.12274063e-01 -1.11531281e+00 -5.96607268e-01 7.11863399e-01
-5.47763646e-01 -1.56273440e-01 5.30924797e-01 -4.91074979e-01
1.12280893e+00 -1.80739951e+00 -1.66364178e-01 5.99195600e-01
9.92106318e-01 6.78440034e-02 2.44390041e-01 -3.14143777e-01
2.52949726e-02 3.96938682e-01 -2.77574420e-01 7.82001093e-02
-7.34497383e-02 4.97143269e-01 1.77698731e-01 1.78933665e-01
5.77855349e-01 1.57847869e+00 -8.07442784e-01 -1.15141571e+00
2.43093207e-01 1.84763625e-01 -8.07710290e-01 2.54530102e-01
-1.89692646e-01 5.19513905e-01 -8.52784097e-01 8.29466939e-01
2.45701641e-01 -1.34241104e+00 3.96189839e-01 -5.73873103e-01
4.38343138e-01 -1.39911264e-01 -5.08426845e-01 1.37044585e+00
-5.54999411e-01 1.99475378e-01 -1.65603548e-01 -7.83535480e-01
5.52094996e-01 5.56372762e-01 5.72987199e-01 -2.36790493e-01
6.72763959e-02 5.72774172e-01 4.08859193e-01 -7.91447282e-01
-2.40490153e-01 -2.32347161e-01 3.26723814e-01 4.22423661e-01
-1.20707043e-01 -4.46253866e-01 -3.57331604e-01 -4.46057767e-02
1.45408571e+00 -1.46792859e-01 6.30967498e-01 -4.56227601e-01
4.69136477e-01 3.13493043e-01 3.90843332e-01 9.45817709e-01
-5.65223873e-01 8.02741051e-01 4.20880169e-01 -4.86396134e-01
-9.37489510e-01 -1.26084483e+00 -4.34344918e-01 8.96712422e-01
-6.75746202e-02 7.62415305e-02 -4.61767882e-01 -1.15135670e+00
3.88303436e-02 3.80442709e-01 -1.09383953e+00 -2.91865826e-01
-3.88691217e-01 -6.93737149e-01 4.43061024e-01 8.92754436e-01
3.24063331e-01 -8.90119910e-01 -4.67113853e-01 1.02185428e-01
-3.10948610e-01 -5.42417467e-01 -2.10165918e-01 4.45527077e-01
-1.04092979e+00 -1.40390146e+00 -6.98160887e-01 -8.42775643e-01
9.53765988e-01 1.38414845e-01 1.42277586e+00 5.33970475e-01
-6.09787524e-01 3.55779499e-01 -1.37282655e-01 -2.55475640e-01
-9.39966619e-01 2.06452638e-01 -4.81178999e-01 -7.56143704e-02
1.06898218e-01 8.18724185e-03 -7.26131678e-01 6.10865235e-01
-9.08399940e-01 3.27567011e-01 1.33424282e+00 1.10817730e+00
8.16729367e-01 -4.99482229e-02 3.46065938e-01 -1.21720791e+00
1.44077674e-01 -5.84838510e-01 -5.23191802e-02 6.76895142e-01
-6.41713083e-01 1.45794049e-01 3.13243270e-01 -2.98131824e-01
-1.16497111e+00 2.29408786e-01 3.88973616e-02 -4.32621717e-01
1.22128651e-01 6.73122764e-01 3.12040776e-01 -9.46529433e-02
1.13128710e+00 -6.70838133e-02 4.45636004e-01 4.27640369e-03
7.80836567e-02 5.14563441e-01 3.61255169e-01 -2.54277259e-01
9.28572595e-01 7.55335271e-01 1.95736572e-01 -3.93301994e-02
-1.57281482e+00 -5.64017355e-01 -8.08832645e-01 -2.08903849e-01
8.68854284e-01 -9.19645190e-01 -4.43108559e-01 3.31831612e-02
-5.26642740e-01 -4.39672977e-01 -6.40120029e-01 6.47704244e-01
-7.50295520e-01 1.14536926e-01 -7.05977857e-01 -2.19380900e-01
-3.68604183e-01 -1.30529523e+00 1.15577495e+00 -1.95402861e-01
-3.58708113e-01 -1.20878279e+00 -1.75816476e-01 5.01291990e-01
7.60969937e-01 4.13949639e-02 1.12617803e+00 -1.12586522e+00
-1.01141906e+00 -3.56177390e-01 -4.67787236e-01 3.20445269e-01
3.93253207e-01 4.52919081e-02 -9.60837543e-01 -2.14422882e-01
2.76353031e-01 -6.57626867e-01 8.42943192e-01 5.60590923e-01
1.64057243e+00 -2.95372248e-01 -7.32255578e-01 5.50988913e-01
1.32833767e+00 -2.34549031e-01 2.68389791e-01 -1.95286088e-02
7.64575779e-01 3.47407073e-01 3.98484111e-01 2.12665632e-01
-4.52870081e-05 5.97415566e-02 6.38162196e-01 -2.80008584e-01
-4.75182801e-01 -1.54968455e-01 -4.00515258e-01 8.75419319e-01
-6.31510690e-02 -2.04991996e-01 -1.31155598e+00 3.76361310e-01
-1.87481570e+00 -6.37271523e-01 -1.88100353e-01 1.74675906e+00
9.52396989e-01 2.08169729e-01 -4.90357101e-01 -1.14770196e-01
5.72423995e-01 -3.53845239e-01 -7.72783399e-01 3.94640893e-01
3.35535705e-01 1.50932446e-01 4.52527225e-01 1.97308704e-01
-1.16689885e+00 3.99415672e-01 6.43164349e+00 1.12154412e+00
-1.13905942e+00 3.38714123e-01 1.06654298e+00 2.50654757e-01
-4.68538642e-01 -2.84474701e-01 -3.17255735e-01 -3.04308347e-02
5.26309729e-01 -1.09896071e-01 -2.37556905e-01 1.09038889e+00
-2.07799431e-02 2.33460665e-01 -1.49009717e+00 5.47528446e-01
-5.92376702e-02 -1.57203913e+00 1.14658140e-01 7.36090690e-02
8.99568617e-01 3.25609416e-01 2.72461265e-01 3.54880333e-01
4.59051192e-01 -1.30719447e+00 3.24752837e-01 8.78937602e-01
8.13904941e-01 -1.34785727e-01 1.00165272e+00 2.95274913e-01
-1.00414312e+00 -8.51205587e-02 -2.56177574e-01 6.88128948e-01
-4.45229560e-01 5.12453794e-01 -1.61197960e+00 6.14928067e-01
4.84253645e-01 8.30299735e-01 -9.71401930e-01 1.08926857e+00
-9.32207033e-02 7.95788705e-01 -2.71244138e-01 6.06856029e-03
1.62219554e-01 3.40421617e-01 1.08656108e-01 8.51038873e-01
3.60107094e-01 -8.18210542e-02 2.30813071e-01 1.18732131e+00
7.41728470e-02 -7.50176385e-02 -3.28986883e-01 1.49331138e-01
1.51968047e-01 1.48559391e+00 -1.01555884e+00 -3.31364900e-01
-3.29922318e-01 6.48562014e-01 1.41907960e-01 -1.75944194e-01
-1.04869163e+00 4.62626755e-01 -2.82745272e-01 3.48204702e-01
2.83719927e-01 3.80230844e-01 -4.80775774e-01 -1.01811564e+00
-2.95124203e-01 -6.79728508e-01 3.89719725e-01 -6.81827068e-01
-1.71757984e+00 7.01206386e-01 -2.80437946e-01 -1.70489776e+00
-3.87736410e-01 -8.74349415e-01 -5.84790349e-01 3.11130226e-01
-1.47478247e+00 -1.67240489e+00 -5.94911456e-01 5.21289349e-01
3.35122108e-01 -2.10016012e-01 8.88087749e-01 -5.33033982e-02
-1.99865296e-01 5.87694585e-01 1.08395882e-01 2.80567855e-01
7.41873622e-01 -1.43801916e+00 -2.46324614e-01 2.05122039e-01
-5.47780320e-02 7.20665231e-02 1.07041366e-01 -6.60335481e-01
-1.05922377e+00 -1.54092562e+00 3.96934569e-01 -7.97726035e-01
9.55965161e-01 2.44536966e-01 -1.05028915e+00 9.14780855e-01
-2.92216033e-01 4.73110378e-01 8.60569715e-01 -1.41392872e-01
-2.24199444e-01 -4.60018702e-02 -1.19984651e+00 4.62876260e-01
8.93679857e-01 -4.14862424e-01 -3.60590011e-01 7.44582057e-01
6.02278829e-01 -3.32446247e-01 -1.13127768e+00 1.07263470e+00
5.25412500e-01 -9.41085577e-01 8.10405195e-01 -5.80730498e-01
5.37945807e-01 -3.00237797e-02 8.00907984e-03 -7.88622022e-01
-7.54936039e-01 9.92011800e-02 4.46459576e-02 3.09328347e-01
8.84668410e-01 -3.39808673e-01 1.24484873e+00 7.91206479e-01
-3.77724349e-01 -1.09417522e+00 -6.77063346e-01 -5.51951706e-01
2.34102756e-01 -3.07401896e-01 1.93120897e-01 8.59207511e-01
-4.14316118e-01 -1.64988145e-01 4.06204388e-02 2.16249615e-01
5.81317008e-01 3.63717407e-01 2.08501995e-01 -1.31891894e+00
-6.22902215e-01 -6.00928426e-01 -3.28066230e-01 -5.58416188e-01
-4.20200750e-02 -1.40380573e+00 2.82900184e-01 -1.63015127e+00
8.24511886e-01 -6.18832231e-01 -4.69853193e-01 7.16643929e-01
-1.69338360e-01 3.73505354e-01 -2.49414876e-01 8.19997013e-01
-8.40244949e-01 1.36348218e-01 1.73965323e+00 -3.38609368e-01
2.30362356e-01 4.73033458e-01 -5.26157260e-01 9.87877429e-01
5.71731687e-01 -5.41326463e-01 -4.44466829e-01 -2.51288354e-01
1.70729503e-01 1.86025128e-01 7.38354802e-01 -9.99229610e-01
3.15046757e-01 -1.76538929e-01 6.10581517e-01 -6.12791061e-01
1.21618100e-02 -1.14718187e+00 3.91615599e-01 1.19632912e+00
-5.85445940e-01 -7.68327475e-01 -2.86280572e-01 7.85984814e-01
-2.43304521e-01 -3.82975847e-01 8.25687289e-01 -4.66754824e-01
-4.57246542e-01 6.03601992e-01 -3.11878324e-01 -9.01549235e-02
1.07207727e+00 -2.37990886e-01 3.45242135e-02 -1.78564638e-01
-1.30302107e+00 1.85599774e-01 1.53394401e-01 4.65581492e-02
5.07205427e-01 -1.30690277e+00 -1.00368607e+00 1.20168693e-01
2.45760784e-01 2.65222043e-01 1.72479674e-01 1.28994918e+00
-7.94728518e-01 5.30775666e-01 1.64816659e-02 -1.15508914e+00
-9.91235316e-01 3.84032696e-01 8.94605875e-01 -8.44854891e-01
-3.30475867e-01 9.03728187e-01 4.49023604e-01 -6.28266037e-01
1.62319854e-01 -6.25355244e-01 2.09320545e-01 -2.70580113e-01
-9.51569825e-02 5.46968244e-02 2.87783206e-01 2.89731380e-02
-1.30737260e-01 1.87216789e-01 -3.33010197e-01 3.30504805e-01
9.59792435e-01 1.31273612e-01 -1.52408168e-01 3.89981896e-01
1.02575123e+00 -3.04513454e-01 -9.79157031e-01 -4.31646198e-01
2.30998963e-01 -7.75055438e-02 1.70736499e-02 -1.18152392e+00
-1.23509657e+00 6.46363258e-01 7.95192540e-01 2.13495985e-01
8.80046189e-01 3.48615766e-01 3.87606204e-01 8.94032717e-01
1.31927520e-01 -4.66686994e-01 4.03204918e-01 1.07573129e-01
9.70708132e-01 -1.87988079e+00 4.69080657e-02 -7.04959810e-01
-7.99374521e-01 1.13599706e+00 7.19434083e-01 -4.80554253e-02
1.07001030e+00 3.01788062e-01 2.14639902e-01 -3.22789818e-01
-8.80808711e-01 -1.43293902e-01 7.36806333e-01 3.07223141e-01
4.27266687e-01 4.16338056e-01 1.48148030e-01 7.18317926e-01
2.09593773e-02 2.58047879e-01 1.95498705e-01 7.42744625e-01
-6.63206458e-01 -8.23628843e-01 -1.91873506e-01 1.15903258e+00
-3.91617060e-01 -3.95746231e-02 -3.44973356e-01 1.09840703e+00
3.36631350e-02 4.51119423e-01 7.38079548e-02 -1.72357604e-01
-1.85458750e-01 1.86156221e-02 4.46700513e-01 -1.01424789e+00
-6.30230188e-01 2.33634219e-01 -1.40319571e-01 -4.04426694e-01
-4.42049563e-01 -2.79304028e-01 -1.25618100e+00 5.11782020e-02
-7.16324866e-01 1.19246013e-01 2.41964698e-01 8.51587772e-01
1.77802399e-01 7.95285404e-01 6.77586675e-01 -3.18937689e-01
-1.21510589e+00 -7.44667232e-01 -5.99524975e-01 2.18747482e-01
2.34094962e-01 -3.47519308e-01 -3.73602629e-01 2.09256604e-01] | [15.28981876373291, -2.1584012508392334] |
44080de4-1e85-48d1-9fff-94574d5a28ae | multilingual-few-shot-learning-via-language | 2306.10964 | null | https://arxiv.org/abs/2306.10964v1 | https://arxiv.org/pdf/2306.10964v1.pdf | Multilingual Few-Shot Learning via Language Model Retrieval | Transformer-based language models have achieved remarkable success in few-shot in-context learning and drawn a lot of research interest. However, these models' performance greatly depends on the choice of the example prompts and also has high variability depending on how samples are chosen. In this paper, we conduct a comprehensive study of retrieving semantically similar few-shot samples and using them as the context, as it helps the model decide the correct label without any gradient update in the multilingual and cross-lingual settings. We evaluate the proposed method on five natural language understanding datasets related to intent detection, question classification, sentiment analysis, and topic classification. The proposed method consistently outperforms random sampling in monolingual and cross-lingual tasks in non-English languages. | ['Yash Chandarana', 'Soumya Vadlamannati', 'Liang-Kang Huang', 'Genta Indra Winata'] | 2023-06-19 | null | null | null | null | ['few-shot-learning', 'sentiment-analysis', 'intent-detection'] | ['methodology', 'natural-language-processing', 'natural-language-processing'] | [ 1.72616113e-02 -6.61402762e-01 -5.25477231e-01 -6.77490413e-01
-1.25909507e+00 -5.04283905e-01 9.39185143e-01 5.14391482e-01
-8.85743022e-01 4.84884769e-01 4.20979261e-01 -1.50000334e-01
2.17637226e-01 -5.50007761e-01 -3.06717396e-01 -3.71320307e-01
5.18980205e-01 5.35874665e-01 4.05180722e-01 -2.85839856e-01
5.41283607e-01 -2.30607092e-01 -1.42638862e+00 4.87503260e-01
9.33568478e-01 9.06388760e-01 5.00148237e-01 3.59572440e-01
-6.75246358e-01 1.08066201e+00 -4.85478878e-01 -5.48915863e-01
-3.14595789e-01 -4.46131825e-01 -7.80257761e-01 -1.29743710e-01
4.15328652e-01 1.02202103e-01 1.30613118e-01 8.77016187e-01
6.59216046e-01 4.08848375e-01 7.73342013e-01 -8.91012549e-01
-7.12402821e-01 7.53724635e-01 -4.32235152e-01 4.61476147e-01
3.40143383e-01 -1.56912163e-01 1.35308206e+00 -1.27896142e+00
5.87486088e-01 1.40298140e+00 5.49349308e-01 4.61486518e-01
-9.57975686e-01 -7.60105610e-01 4.04495180e-01 6.85701370e-01
-1.31071222e+00 -4.39429075e-01 8.56995046e-01 -2.92417794e-01
9.25001144e-01 -7.61947259e-02 3.02687019e-01 1.33954179e+00
2.36138761e-01 1.07640040e+00 1.27319193e+00 -8.45614076e-01
5.30719578e-01 6.42025054e-01 6.78138494e-01 4.70629662e-01
-2.43715122e-01 -2.54913896e-01 -7.42504299e-01 -2.61950880e-01
-2.12778330e-01 1.08290486e-01 -1.78262487e-01 4.57754470e-02
-8.33430827e-01 1.20971024e+00 2.18032636e-02 5.32707155e-01
-2.11504206e-01 -1.76149651e-01 6.02755010e-01 2.25278214e-01
6.68923020e-01 3.82621437e-01 -6.55941069e-01 -7.80111998e-02
-7.79920101e-01 1.16568685e-01 7.36838341e-01 9.50225651e-01
7.32248187e-01 -2.31833100e-01 -4.58388358e-01 1.35562575e+00
1.18476890e-01 5.11047184e-01 9.99051332e-01 -3.16961139e-01
4.95994806e-01 4.48435187e-01 -7.75900036e-02 -8.64478528e-01
-2.06762657e-01 -2.21154019e-01 -3.72049183e-01 -5.11913180e-01
1.32618025e-01 -1.40907869e-01 -7.09106863e-01 1.70346165e+00
3.15452367e-01 1.17974967e-01 1.08707555e-01 5.62686145e-01
8.14375758e-01 7.97931671e-01 5.78655839e-01 -2.26778314e-01
1.65238774e+00 -9.46816266e-01 -9.54570651e-01 -5.59525669e-01
7.43998230e-01 -1.09628356e+00 1.76605785e+00 2.54397333e-01
-3.04898947e-01 -4.66430306e-01 -6.43530130e-01 -2.34140784e-01
-7.22725093e-01 3.36935401e-01 5.19984543e-01 5.87774694e-01
-5.55551708e-01 1.15100138e-01 -2.62722582e-01 -7.13247120e-01
2.92567194e-01 -3.64651620e-01 1.75736517e-01 -5.00342548e-01
-1.50401413e+00 7.97840178e-01 2.18901500e-01 -5.11224508e-01
-9.06877518e-01 -6.50808752e-01 -7.82149315e-01 1.61643118e-01
6.82154477e-01 -2.58294910e-01 1.45382667e+00 -7.95868158e-01
-1.28645623e+00 9.06974614e-01 -4.09891188e-01 -4.12314117e-01
1.78036034e-01 -4.06920522e-01 -4.87264067e-01 -1.27850309e-01
3.95290762e-01 5.57086706e-01 8.32483351e-01 -6.65561974e-01
-1.07328784e+00 -4.22537893e-01 1.93562672e-01 4.53145653e-01
-4.77889597e-01 1.25222966e-01 -3.67729425e-01 -8.28350723e-01
-2.03779921e-01 -7.62665272e-01 1.66131463e-02 -3.89661193e-01
-1.02307007e-01 -8.23937595e-01 8.75004649e-01 -3.72561008e-01
1.15697742e+00 -1.95115852e+00 -3.37287337e-01 -5.06252170e-01
-4.82806265e-01 3.10997609e-02 6.83473870e-02 6.00657046e-01
3.49286914e-01 -8.80841389e-02 -1.64650919e-05 -2.67895311e-01
-3.35876569e-02 -7.93740600e-02 -5.90907574e-01 7.50127435e-02
-1.23240352e-01 5.76313198e-01 -1.09639406e+00 -6.62547112e-01
1.69803157e-01 2.59700030e-01 -3.78019959e-01 2.89282918e-01
-4.46377277e-01 1.32756069e-01 -6.56189501e-01 5.69029450e-01
7.06393197e-02 -3.19520026e-01 8.23019519e-02 -2.80203730e-01
4.56862040e-02 5.31309307e-01 -7.42082536e-01 1.69781899e+00
-1.07882011e+00 6.80458426e-01 -5.26821196e-01 -8.78129780e-01
8.54545116e-01 3.90652835e-01 5.66270463e-02 -9.33501601e-01
1.08926810e-01 5.85137680e-02 -2.04191297e-01 -6.82274044e-01
6.54687881e-01 -5.46913385e-01 -3.48577470e-01 5.45741916e-01
1.48565009e-01 -2.49405615e-02 3.88649404e-01 2.76195496e-01
5.28515220e-01 7.36523129e-04 6.21573150e-01 -3.73268485e-01
7.79450297e-01 1.10582337e-01 4.62306052e-01 8.64839852e-01
-2.12800384e-01 1.58325896e-01 1.83330700e-01 -1.54060289e-01
-5.77812135e-01 -7.09665835e-01 -3.38402152e-01 1.80646586e+00
8.66336673e-02 -3.58505636e-01 -5.37830293e-01 -9.40981805e-01
-3.05457413e-01 1.42928505e+00 -5.24769187e-01 -2.54795820e-01
-2.09469721e-01 -8.09844255e-01 2.31949031e-01 2.72476107e-01
4.03316408e-01 -1.12545276e+00 -3.98289651e-01 3.00743520e-01
-4.79368657e-01 -1.34682465e+00 -7.60008514e-01 1.91052541e-01
-6.67386949e-01 -1.07012129e+00 -6.14054084e-01 -9.46670651e-01
3.26114327e-01 3.25615793e-01 1.29678917e+00 -4.09566790e-01
-2.47607380e-01 6.06937349e-01 -6.14774764e-01 -5.54122448e-01
-1.77466884e-01 3.35852414e-01 -8.68941024e-02 1.62994474e-01
1.02358401e+00 -1.31241396e-01 -2.68308669e-01 2.67287582e-01
-7.37681329e-01 -1.62848502e-01 1.80587724e-01 8.57977450e-01
7.07801044e-01 -5.09971417e-02 9.34341311e-01 -1.21800923e+00
1.02437305e+00 -6.01347744e-01 -4.25575405e-01 7.35648692e-01
-7.92195082e-01 1.09302372e-01 7.74623871e-01 -3.99620086e-01
-1.35125136e+00 -4.11028415e-01 6.36640750e-03 -2.03259498e-01
-1.91670775e-01 5.21398544e-01 2.27270313e-02 3.56445819e-01
5.58926642e-01 3.24542642e-01 -7.66003311e-01 -6.79358959e-01
3.79214317e-01 8.16298604e-01 -6.27907515e-02 -7.09352553e-01
1.04347743e-01 2.94733614e-01 -7.36988246e-01 -1.01553643e+00
-1.40870273e+00 -7.35918522e-01 -3.27488631e-01 -1.27815276e-01
8.66421223e-01 -8.88386726e-01 -2.50113875e-01 4.90538388e-01
-9.34010684e-01 -7.19321221e-02 -1.88019902e-01 5.88477790e-01
-2.10702479e-01 5.65513968e-02 -4.35803235e-01 -8.57367694e-01
-5.71375966e-01 -1.14930999e+00 9.50403690e-01 2.77194679e-01
-1.37554824e-01 -1.19868243e+00 1.44829601e-01 3.58657718e-01
5.07425666e-01 -5.02580047e-01 1.20288575e+00 -1.00112832e+00
-3.59470487e-01 -2.45777309e-01 6.80998117e-02 1.48329929e-01
3.44461441e-01 -5.07412553e-01 -1.16232920e+00 -1.34005800e-01
3.38385284e-01 -8.33294094e-01 8.61097097e-01 3.61298978e-01
9.64891851e-01 -2.04453975e-01 -3.18822712e-01 1.56925201e-01
1.52548385e+00 2.20007792e-01 9.77816880e-02 1.53328657e-01
4.87657309e-01 7.09261775e-01 9.94014084e-01 2.71105528e-01
5.98403454e-01 6.53735042e-01 -2.77696967e-01 5.53764164e-01
-1.05744533e-01 -3.75173241e-01 3.90372902e-01 1.03354979e+00
6.89256728e-01 -2.80757815e-01 -9.19209063e-01 7.46963680e-01
-1.58636439e+00 -9.77877557e-01 3.89625609e-01 2.19202232e+00
1.11309147e+00 7.24418759e-02 -1.57778248e-01 -3.42839688e-01
7.51880586e-01 4.58658069e-01 -5.92209756e-01 -2.40688801e-01
-1.75312143e-02 1.58218235e-01 9.01512355e-02 5.61251640e-01
-1.12374485e+00 1.31976521e+00 5.50738764e+00 1.34567583e+00
-1.23392153e+00 4.28776711e-01 8.45114708e-01 -5.63617237e-02
-2.50086844e-01 4.54798527e-03 -1.23474848e+00 5.04818618e-01
9.13801610e-01 -3.92168403e-01 8.97128657e-02 9.94773209e-01
9.15681496e-02 -4.68097925e-01 -9.66374874e-01 9.36146736e-01
5.15462279e-01 -1.06516480e+00 1.69489294e-01 -6.01697326e-01
6.76487625e-01 1.86619028e-01 -5.47280721e-02 8.27080905e-01
2.14808583e-01 -6.23564661e-01 5.64520121e-01 2.87519574e-01
4.83515143e-01 -8.89834881e-01 4.81165409e-01 6.14701331e-01
-1.13973343e+00 -1.15129180e-01 -4.42592204e-01 2.91253805e-01
1.90664142e-01 4.43443537e-01 -8.76987875e-01 7.00756395e-03
7.33084440e-01 6.66585028e-01 -5.68030000e-01 6.25104666e-01
-3.45857143e-01 9.87661004e-01 -2.19109524e-02 -5.33316791e-01
3.73485178e-01 -9.08446684e-02 3.84583861e-01 1.32961488e+00
6.66963086e-02 8.59167799e-02 4.58521247e-01 5.93989789e-01
-2.41986960e-01 7.46534765e-01 -3.75983387e-01 -3.72392945e-02
4.59143877e-01 1.17258275e+00 -7.41245210e-01 -5.98229706e-01
-6.71832860e-01 5.66674411e-01 4.35310066e-01 3.31099153e-01
-6.27555370e-01 -3.78274709e-01 2.88610548e-01 -7.76023641e-02
3.75140816e-01 1.11343913e-01 -5.60565852e-02 -1.40507603e+00
-1.54677302e-01 -9.22110975e-01 6.37803316e-01 -5.55112600e-01
-1.65526295e+00 5.95397353e-01 6.51579350e-02 -1.04443181e+00
-3.94989252e-01 -3.83173198e-01 -6.55959904e-01 6.22804821e-01
-1.79759574e+00 -9.23893690e-01 1.89874659e-03 5.53319156e-01
1.29306579e+00 -3.34808648e-01 7.69005954e-01 4.27049190e-01
-4.79381531e-01 6.04020357e-01 1.19674370e-01 -2.13892795e-02
1.03126299e+00 -1.10713911e+00 1.62416846e-01 6.00172818e-01
4.38502640e-01 5.48992693e-01 6.35333538e-01 -5.65033793e-01
-1.08163714e+00 -1.05094278e+00 1.30502748e+00 -2.17676222e-01
5.91951191e-01 -2.74209619e-01 -8.96156669e-01 5.59084058e-01
4.17636454e-01 -2.72407591e-01 9.08597112e-01 3.92551541e-01
-4.88242805e-01 -1.74293011e-01 -1.05465710e+00 5.86253285e-01
5.48627555e-01 -8.70442986e-01 -8.45281363e-01 5.87714493e-01
7.99998701e-01 7.28829876e-02 -4.19714898e-01 5.04252836e-02
2.52865165e-01 -7.34669507e-01 7.86094308e-01 -6.20644689e-01
2.59145737e-01 2.76877545e-02 -4.58082139e-01 -1.26491964e+00
-3.74885835e-02 5.22813015e-02 1.61520645e-01 1.39803267e+00
4.09836411e-01 -4.64965224e-01 3.97939265e-01 3.93098772e-01
1.23095468e-01 -9.08309460e-01 -6.64359570e-01 -4.99766886e-01
3.41352001e-02 -5.96104860e-01 2.59163976e-01 1.13417506e+00
-6.50356784e-02 1.15236843e+00 -3.42307240e-01 -1.85819611e-01
6.04704678e-01 3.86605024e-01 4.94423062e-01 -9.66731608e-01
-1.99661225e-01 -1.94218025e-01 1.31557852e-01 -1.09144628e+00
3.27545941e-01 -9.41857219e-01 1.73093557e-01 -1.15436947e+00
3.98217320e-01 -5.34765601e-01 -3.34623843e-01 3.18143189e-01
-5.78657269e-01 -2.12072060e-01 5.84559664e-02 1.43944204e-01
-7.97474742e-01 8.41542602e-01 6.90334916e-01 -2.40620419e-01
-6.59144446e-02 1.78038940e-01 -5.52910328e-01 7.83413112e-01
6.41087592e-01 -8.18182826e-01 -6.58508718e-01 -3.54325324e-01
1.14249095e-01 1.72141679e-02 -1.53045207e-01 -8.00237715e-01
1.18923791e-01 -2.12396905e-01 7.14951083e-02 -7.34732330e-01
2.27786511e-01 -7.85595000e-01 -6.64969027e-01 1.12634696e-01
-9.61202681e-01 3.45073603e-02 3.37843746e-02 8.29911470e-01
-2.57149458e-01 -7.58974075e-01 8.32908630e-01 -3.25528979e-01
-1.01579642e+00 3.20686638e-01 -3.91068637e-01 8.91471386e-01
6.92329347e-01 2.50653148e-01 -7.32911229e-02 -5.35574019e-01
-3.75276476e-01 1.33139119e-01 2.79826134e-01 9.08372104e-01
4.62923884e-01 -1.19719231e+00 -6.85191453e-01 -5.07347919e-02
5.78031182e-01 -3.62296611e-01 2.68035740e-01 7.14188099e-01
2.17832804e-01 6.78223848e-01 4.18466657e-01 -6.57379329e-01
-1.05046844e+00 4.80688334e-01 2.05276743e-01 -5.12583852e-01
-2.60480344e-01 7.37048209e-01 2.75363445e-01 -6.03181899e-01
4.45800275e-01 -1.37504131e-01 -5.62689900e-01 4.76732880e-01
7.29258657e-01 1.64277717e-01 6.40683845e-02 -4.91016477e-01
-2.54728228e-01 5.16291797e-01 -5.95692158e-01 -2.20529541e-01
9.10663843e-01 -3.57779503e-01 2.90514112e-01 1.04416263e+00
1.28108847e+00 -1.27365440e-01 -7.30766118e-01 -8.45721543e-01
4.80709344e-01 -3.14159483e-01 2.12706894e-01 -7.30084538e-01
-7.84899056e-01 1.07588124e+00 6.82141304e-01 7.67563209e-02
7.88142920e-01 1.19791068e-01 9.01440680e-01 6.25482619e-01
5.56622982e-01 -1.39299750e+00 2.73868531e-01 8.64915848e-01
5.83333611e-01 -1.47992003e+00 -8.69042873e-02 2.92425659e-02
-9.59300637e-01 8.52216482e-01 7.32130587e-01 1.14995688e-01
8.13869417e-01 -1.41003534e-01 2.22202703e-01 -1.30349845e-01
-1.05832779e+00 -1.99803129e-01 3.19604486e-01 3.91886532e-01
8.95772159e-01 -1.45331159e-01 -4.40915138e-01 5.73228359e-01
-6.60681650e-02 -5.29040284e-02 2.41810784e-01 1.01357436e+00
-6.82297647e-01 -9.76895392e-01 -1.58081174e-01 4.46418196e-01
-6.01029277e-01 -5.41286051e-01 -9.87130329e-02 5.42180777e-01
-1.49518698e-01 9.86459613e-01 -1.27513200e-01 2.27251109e-02
1.44944727e-01 6.56211019e-01 1.43567905e-01 -8.25488925e-01
-5.90789497e-01 -3.73373367e-02 9.88821760e-02 -1.97597459e-01
-4.25583333e-01 -7.57961273e-01 -1.07274747e+00 3.09099108e-01
-5.66590071e-01 3.46375018e-01 5.91763735e-01 1.35448265e+00
2.84068823e-01 2.35825524e-01 8.02110195e-01 -1.74459368e-01
-6.98860049e-01 -1.22417271e+00 -3.03037971e-01 3.96355897e-01
9.74506978e-03 -5.11612594e-01 -4.24910486e-01 -4.94046323e-02] | [10.775749206542969, 7.647121429443359] |
8f90c4b6-a7e5-41d6-b8c1-38ac937ede5c | x-maps-direct-depth-lookup-for-event-based | null | null | https://fraunhoferhhi.github.io/X-maps/ | https://tub-rip.github.io/eventvision2023/papers/2023CVPRW_X-Maps_Direct_Depth_Lookup_for_Event-based_Structured_Light_Systems.pdf | X-maps: Direct Depth Lookup for Event-based Structured Light Systems | We present a new approach to direct depth estimation for Spatial Augmented Reality (SAR) applications using event cameras. These dynamic vision sensors are a great fit to be paired with laser projectors for depth estimation in a structured light approach. Our key contributions involve a conversion of the projector time map into a rectified X-map, capturing x-axis correspondences for incoming events and enabling direct disparity lookup without any additional search. Compared to previous implementations, this significantly simplifies depth estimation, making it more efficient, while the accuracy is similar to the time map-based process. Moreover, we compensate non-linear temporal behavior of cheap laser projectors by a simple time map calibration, resulting in improved performance and increased depth estimation accuracy. Since depth estimation is executed by two lookups only, it can be executed almost instantly (less than 3 ms per frame with a Python implementation) for incoming events. This allows for real-time interactivity and responsiveness, which makes our approach especially suitable for SAR experiences where low latency, high frame rates and direct feedback are crucial. We present valuable insights gained into data transformed into X-maps and evaluate our depth from disparity estimation against the state of the art time map-based results. | ['Peter Eisert', 'Anna Hilsmann', 'Simon Baumann', 'Niklas Gard', 'Wieland Morgenstern'] | 2023-06-19 | null | null | null | cvpr-workshop-on-event-based-vision-2023-6 | ['depth-estimation', 'disparity-estimation'] | ['computer-vision', 'computer-vision'] | [ 4.18842643e-01 -2.31668070e-01 3.40615928e-01 -5.09905577e-01
-5.54564416e-01 -5.01756072e-01 5.25922954e-01 3.66130397e-02
-7.63413668e-01 6.16921067e-01 3.32066640e-02 -1.51805043e-01
1.93141058e-01 -1.14366341e+00 -6.51431084e-01 -3.15643638e-01
2.54436940e-01 6.27245843e-01 7.81220496e-01 -2.03529894e-01
4.91693735e-01 8.38387430e-01 -2.05721951e+00 1.31583631e-01
4.85028535e-01 1.10139370e+00 5.08856654e-01 9.63712692e-01
6.98818788e-02 8.09851289e-01 -3.60474706e-01 -1.73428088e-01
4.01953161e-01 3.42173763e-02 -3.03073555e-01 -6.94486424e-02
8.07869315e-01 -1.05250680e+00 -5.03495812e-01 5.33205748e-01
6.77018464e-01 -1.59964734e-03 -2.86089387e-02 -8.38142514e-01
4.31449205e-01 -3.10601681e-01 -6.46854222e-01 4.17336114e-02
9.99701560e-01 1.23508744e-01 4.21804458e-01 -8.15080166e-01
9.84857142e-01 8.48366201e-01 8.00525188e-01 3.22242647e-01
-1.07374930e+00 -3.65765333e-01 -1.86618015e-01 2.66040176e-01
-1.11058176e+00 -5.78429043e-01 3.78371865e-01 -2.70088345e-01
1.39768469e+00 5.67348421e-01 1.16266525e+00 5.90673149e-01
3.03412229e-01 4.38369334e-01 1.12634909e+00 -5.58663309e-01
4.51764822e-01 1.59181073e-01 -1.08060390e-01 3.34712952e-01
-9.37776268e-02 6.15979314e-01 -9.07387733e-01 2.27702230e-01
1.22864091e+00 2.95340508e-01 -6.82723463e-01 -6.09745979e-01
-1.46252596e+00 4.09033239e-01 4.71751153e-01 -2.36704320e-01
-4.27263737e-01 4.12401885e-01 2.12224886e-01 3.48063439e-01
3.16072434e-01 1.12870149e-01 -4.17893708e-01 -6.25652730e-01
-9.06574011e-01 1.16502427e-01 5.77970564e-01 9.07923341e-01
1.03231585e+00 -1.62534058e-01 4.29240763e-01 3.24498892e-01
1.91838443e-01 8.97779524e-01 2.97354996e-01 -1.20758963e+00
3.90344441e-01 3.58468235e-01 3.04834723e-01 -7.86068380e-01
-5.60797393e-01 6.96473643e-02 -2.73231298e-01 1.06635463e+00
5.71969748e-01 3.85558717e-02 -5.87359369e-01 9.54064667e-01
3.61655533e-01 9.22232419e-02 4.00881888e-03 1.07602704e+00
6.41629577e-01 7.77972817e-01 -5.69470525e-01 -2.96379238e-01
1.46060431e+00 -5.51139414e-01 -5.61664760e-01 -4.42086309e-01
5.17939746e-01 -1.00695503e+00 1.15718615e+00 7.86487103e-01
-1.11403203e+00 -2.00868681e-01 -1.07946455e+00 -5.10174036e-01
4.98936884e-02 -3.97405699e-02 8.09199393e-01 7.54985094e-01
-1.17427552e+00 4.99203086e-01 -1.04972112e+00 -4.87302512e-01
-7.01045915e-02 5.07254422e-01 -3.91604513e-01 -2.66760170e-01
-5.80343246e-01 9.87523675e-01 -6.53525665e-02 -1.64497942e-02
-1.69422328e-01 -8.25873911e-01 -7.67748535e-01 -2.19268084e-01
2.59884894e-01 -7.12133765e-01 1.50126088e+00 -5.04219949e-01
-2.11305380e+00 1.10132158e+00 -3.81292522e-01 -4.07955945e-01
6.52482569e-01 -3.75412047e-01 5.81513382e-02 4.07209188e-01
-4.23594490e-02 6.81501329e-01 2.76380062e-01 -9.83878613e-01
-7.74557173e-01 -5.45839012e-01 2.50030994e-01 5.74183762e-01
8.32234919e-02 -3.84244658e-02 -4.81318712e-01 6.34987801e-02
6.81860507e-01 -6.77129149e-01 -2.10000932e-01 7.17772543e-01
2.58442432e-01 6.04866147e-01 7.43397415e-01 -4.34176922e-01
7.77763307e-01 -1.99157965e+00 -2.45718941e-01 5.40144891e-02
1.74483314e-01 -4.70828526e-02 4.69994277e-01 4.69648629e-01
1.76552251e-01 -7.59003580e-01 -9.84196085e-03 -4.99868572e-01
-3.72802675e-01 2.39289403e-01 -5.18398464e-01 4.64985281e-01
-5.07919133e-01 6.79213405e-01 -8.43193531e-01 -1.97644651e-01
1.11599994e+00 8.64974916e-01 -4.61983949e-01 1.10770613e-01
-6.70031682e-02 6.05381429e-01 1.58958375e-01 6.62744761e-01
8.43272150e-01 1.96361825e-01 4.41605737e-03 -2.49267027e-01
-7.23689973e-01 4.24418956e-01 -1.41552210e+00 1.84234393e+00
-9.58481550e-01 1.15978789e+00 -4.23751958e-02 -1.25069097e-01
1.16746843e+00 2.02741865e-02 4.28821504e-01 -1.23307168e+00
-7.36763468e-04 3.62718314e-01 -8.66882086e-01 -9.54806805e-02
1.01313794e+00 -2.13449791e-01 3.52450401e-01 4.54188854e-01
-4.50299293e-01 -7.51832426e-01 -2.15729997e-01 4.13342826e-02
1.15219176e+00 5.10462582e-01 4.14459974e-01 1.35016307e-01
1.75478995e-01 1.38906017e-01 3.61206174e-01 2.30987385e-01
1.60716385e-01 1.06517053e+00 1.11719899e-01 -7.99855530e-01
-9.99625683e-01 -1.16509604e+00 -2.11596727e-01 4.01104093e-01
5.75290740e-01 -4.40347195e-01 -2.54249722e-01 1.16441295e-01
-3.07768196e-01 4.83823419e-01 -2.51968950e-01 5.04596591e-01
-7.07237363e-01 -2.17312470e-01 -1.58829078e-01 5.67250013e-01
6.07900023e-01 -7.10929453e-01 -1.67890239e+00 3.48751426e-01
-1.65906668e-01 -1.10234237e+00 -1.80062383e-01 1.72425956e-01
-1.30410910e+00 -9.09310460e-01 -7.42289126e-01 -4.11189586e-01
5.50664723e-01 7.28401661e-01 1.24567437e+00 -4.47312534e-01
-3.04934382e-01 5.58001459e-01 -1.68436781e-01 -3.52228045e-01
2.89738476e-01 -6.51511073e-01 -2.54532069e-01 -3.40971500e-01
3.83617371e-01 -7.15622306e-01 -9.75496888e-01 5.74898779e-01
-5.96518040e-01 4.76312965e-01 1.19181402e-01 3.83322001e-01
8.33891332e-01 -4.25207287e-01 -4.83224511e-01 -4.97700244e-01
-2.05583736e-01 1.73194528e-01 -1.37627530e+00 -3.75019908e-01
-5.38965702e-01 -2.74493754e-01 1.30026191e-01 -1.59688309e-01
-1.19276786e+00 5.22696137e-01 -1.57957207e-02 -3.66143078e-01
4.71182028e-03 3.54031920e-02 2.05325976e-01 -4.22712743e-01
9.42594409e-01 2.24081799e-02 1.95292845e-01 -2.22888872e-01
2.50055343e-01 5.21569788e-01 8.62606585e-01 -7.58051947e-02
3.18975925e-01 1.13593531e+00 1.02605559e-01 -9.24624324e-01
-2.86316514e-01 -6.90406919e-01 -7.67664850e-01 -4.93441790e-01
6.67679608e-01 -1.10655832e+00 -9.78528857e-01 4.65579361e-01
-1.40252829e+00 -4.97915328e-01 -7.49259889e-01 9.02747452e-01
-8.34722817e-01 4.41954702e-01 -4.38478053e-01 -8.12665045e-01
-7.98047706e-02 -9.46180165e-01 1.42033541e+00 2.98279881e-01
-1.81936294e-01 -8.22430253e-01 3.59226048e-01 2.83211797e-01
4.08916831e-01 4.30985063e-01 -1.33950979e-01 6.36711657e-01
-1.22072768e+00 -3.03293854e-01 -4.64085400e-01 -2.31229246e-01
-2.22744033e-01 -7.31902719e-02 -1.33015776e+00 -2.30799690e-02
2.15732187e-01 7.13187307e-02 4.75490689e-01 5.80691516e-01
3.86520624e-01 2.25434884e-01 -3.60308170e-01 9.55227196e-01
1.84061503e+00 2.00989828e-01 1.29856384e+00 8.25537920e-01
5.06378770e-01 4.65505540e-01 1.03796542e+00 7.43985534e-01
6.20811164e-01 1.27422130e+00 5.77414155e-01 -2.28748277e-01
-2.04880640e-01 5.00116795e-02 3.68477583e-01 3.87885183e-01
-3.81827325e-01 8.16916302e-02 -1.06978559e+00 2.74151206e-01
-1.73404610e+00 -9.73116815e-01 -6.51370227e-01 2.95042562e+00
4.72039431e-01 -7.60440156e-02 -1.39556512e-01 3.99956852e-01
3.29917252e-01 -9.18689147e-02 -1.85961053e-01 -4.43572074e-01
-1.94217898e-02 5.48669517e-01 8.92404556e-01 9.37120616e-01
-5.81978738e-01 7.14906871e-01 6.47321129e+00 1.79831713e-01
-1.46586931e+00 6.94020912e-02 -5.87377213e-02 -6.10631108e-01
-3.07909310e-01 2.13748187e-01 -6.96593940e-01 2.98802644e-01
8.99000645e-01 -4.24325727e-02 2.60773897e-01 8.65951300e-01
3.85564536e-01 -9.98652279e-01 -1.07483876e+00 1.69817865e+00
-4.69425507e-02 -1.34234214e+00 -6.14543140e-01 2.62632430e-01
5.38998365e-01 3.94211233e-01 -4.37529087e-01 -2.78444797e-01
-2.16036793e-02 -5.76002002e-01 6.86380565e-01 4.75789070e-01
1.12225771e+00 -6.11669242e-01 6.99176431e-01 2.55243361e-01
-1.20109928e+00 2.63603419e-01 -5.86309135e-01 -6.01899445e-01
7.28062689e-01 9.78046954e-01 -8.02292049e-01 4.23334897e-01
6.92643106e-01 5.77193260e-01 -2.16995835e-01 1.23640776e+00
-2.37124115e-02 -2.56311357e-01 -8.64650607e-01 1.42056003e-01
-2.10037604e-01 -2.76318461e-01 3.99682313e-01 7.99482763e-01
5.10237873e-01 2.83423454e-01 -3.79484445e-01 2.52140939e-01
5.53059518e-01 -1.22311957e-01 -7.72754073e-01 9.08267438e-01
3.04044694e-01 1.00715435e+00 -8.57061386e-01 -1.80021122e-01
-4.82199520e-01 1.25532281e+00 -1.55845076e-01 9.70172259e-05
-6.51642859e-01 -6.67397618e-01 5.11484683e-01 5.91367543e-01
2.25206226e-01 -6.49297416e-01 -5.87071061e-01 -1.21340978e+00
4.40220833e-01 -3.43212992e-01 -8.98459330e-02 -1.34570658e+00
-4.06086802e-01 7.61644423e-01 -9.13182497e-02 -1.93993747e+00
-4.75296706e-01 -5.60010970e-01 -2.63416052e-01 7.84428596e-01
-1.78735971e+00 -7.69548357e-01 -1.13229740e+00 7.08478153e-01
3.53502989e-01 3.30054760e-01 1.00693095e+00 4.36715871e-01
2.84702390e-01 4.70360629e-02 3.78626920e-02 -6.29242003e-01
6.44976556e-01 -1.10868990e+00 6.03807390e-01 8.30908239e-01
7.88882673e-02 1.50371835e-01 7.21446216e-01 -4.66086119e-01
-1.57094121e+00 -2.89977521e-01 8.52702320e-01 -7.80895174e-01
1.58716992e-01 -3.27641815e-01 -5.53058147e-01 5.65100968e-01
-1.46366894e-01 1.93243966e-01 2.29175776e-01 -2.09730491e-01
-1.36890024e-01 -4.32200104e-01 -1.17294550e+00 3.14269334e-01
1.07418025e+00 -6.89342260e-01 -2.53185242e-01 3.01880836e-01
3.63023669e-01 -1.19865751e+00 -5.27387440e-01 1.26133025e-01
8.06661606e-01 -1.83860207e+00 1.06420743e+00 7.74972558e-01
2.63457119e-01 -6.00239277e-01 -2.82624722e-01 -7.31744349e-01
1.49248138e-01 -7.63271272e-01 -8.97229984e-02 5.69513500e-01
-1.00386865e-01 -8.36467326e-01 1.14860177e+00 7.60371804e-01
-3.02503947e-02 -3.90469819e-01 -1.16540575e+00 -6.10711098e-01
-9.27840233e-01 -7.38877177e-01 2.42755786e-01 6.04240656e-01
2.25211568e-02 9.20650363e-02 -2.29281023e-01 2.77935714e-01
6.67110980e-01 5.61929196e-02 1.10520065e+00 -1.27970791e+00
-3.86425585e-01 -2.28238311e-02 -1.02133346e+00 -1.59658504e+00
-7.20050573e-01 -2.48249069e-01 6.21121973e-02 -1.55034244e+00
-3.69004995e-01 -4.52631056e-01 6.19144320e-01 9.60471332e-02
4.18350339e-01 6.98624074e-01 3.43934372e-02 3.05323273e-01
-5.82806803e-02 2.16968417e-01 8.68890226e-01 5.65692723e-01
-5.09616792e-01 1.42354563e-01 2.79597491e-02 6.53918505e-01
4.45591807e-01 -2.64965683e-01 -4.61318731e-01 -7.63843775e-01
5.94860137e-01 5.27463675e-01 4.87448514e-01 -1.46400464e+00
5.46259522e-01 5.85649125e-02 1.67078242e-01 -9.52461779e-01
1.02371824e+00 -1.10881126e+00 4.89216208e-01 4.07179475e-01
4.70463008e-01 1.53935283e-01 3.33012253e-01 3.66342336e-01
-2.90297329e-01 -1.22916527e-01 6.95309639e-01 -2.52087325e-01
-1.01846099e+00 1.87284365e-01 -2.08254293e-01 -5.53730667e-01
1.20329678e+00 -1.20776415e+00 -2.16563880e-01 -6.74150288e-01
-5.40392995e-01 -1.94952756e-01 1.10429049e+00 -8.78910571e-02
9.72422600e-01 -1.07915056e+00 -3.11010957e-01 4.66590285e-01
1.48224086e-01 3.96032691e-01 3.05235744e-01 7.90388942e-01
-1.50973904e+00 3.03910881e-01 -3.45593929e-01 -1.16408885e+00
-1.50775552e+00 1.26606584e-01 3.03464532e-01 3.12348492e-02
-1.11307931e+00 7.45894492e-01 1.86906353e-01 -2.71172792e-01
1.28021896e-01 -4.46660608e-01 1.42759368e-01 -7.20956773e-02
9.45852220e-01 6.49090827e-01 4.87814635e-01 -1.41984701e-01
-4.40252095e-01 1.32431018e+00 2.55555421e-01 -7.51146615e-01
1.39102674e+00 -5.32652676e-01 5.05344719e-02 3.39712322e-01
8.85669351e-01 2.29413450e-01 -1.53941536e+00 -1.85291350e-01
-5.44069111e-01 -1.10963547e+00 5.86979091e-01 -6.47637486e-01
-7.89775848e-01 1.08122694e+00 8.86648953e-01 -1.49844632e-01
1.33181393e+00 -3.43618006e-01 6.35076404e-01 3.08591723e-01
1.05106080e+00 -8.81954670e-01 -1.25451624e-01 4.66063827e-01
7.27267504e-01 -1.17160261e+00 3.14716071e-01 -6.77659512e-01
-4.88485485e-01 1.46080112e+00 3.72269690e-01 1.00773878e-01
2.87540883e-01 7.41877496e-01 4.44858223e-01 -1.96226895e-01
-4.40106302e-01 -1.03087373e-01 -3.54501545e-01 1.03351438e+00
1.84016958e-01 -2.07406849e-01 1.56880133e-02 -5.65490186e-01
-3.92366767e-01 3.21643203e-01 9.84520912e-01 1.14369035e+00
-4.47215378e-01 -1.12537301e+00 -5.56560576e-01 -2.13781912e-02
1.56747103e-01 -6.71319216e-02 2.27151766e-01 6.30439281e-01
-3.32303435e-01 6.93772852e-01 5.11038244e-01 -2.09802315e-01
6.52602136e-01 -4.85220939e-01 7.88613200e-01 -5.77377260e-01
-4.39895600e-01 -1.29345864e-01 1.47376448e-01 -1.35946119e+00
-3.21013689e-01 -6.17820680e-01 -1.13776124e+00 -7.62033820e-01
-2.83176690e-01 -4.35517102e-01 1.17650282e+00 3.30024153e-01
4.73943949e-01 9.18353498e-02 5.83106756e-01 -1.48273683e+00
1.60277635e-01 -3.41106594e-01 -4.14234668e-01 -1.18058152e-01
4.16613609e-01 -4.12288338e-01 -3.51256222e-01 1.26264364e-01] | [8.986989974975586, -2.4647202491760254] |
edfec7e0-8f98-46a1-95c6-c2142a4bbfc1 | efficient-exploration-with-self-imitation | 1907.10247 | null | https://arxiv.org/abs/1907.10247v3 | https://arxiv.org/pdf/1907.10247v3.pdf | Memory Based Trajectory-conditioned Policies for Learning from Sparse Rewards | Reinforcement learning with sparse rewards is challenging because an agent can rarely obtain non-zero rewards and hence, gradient-based optimization of parameterized policies can be incremental and slow. Recent work demonstrated that using a memory buffer of previous successful trajectories can result in more effective policies. However, existing methods may overly exploit past successful experiences, which can encourage the agent to adopt sub-optimal and myopic behaviors. In this work, instead of focusing on good experiences with limited diversity, we propose to learn a trajectory-conditioned policy to follow and expand diverse past trajectories from a memory buffer. Our method allows the agent to reach diverse regions in the state space and improve upon the past trajectories to reach new states. We empirically show that our approach significantly outperforms count-based exploration methods (parametric approach) and self-imitation learning (parametric approach with non-parametric memory) on various complex tasks with local optima. In particular, without using expert demonstrations or resetting to arbitrary states, we achieve the state-of-the-art scores under five billion number of frames, on challenging Atari games such as Montezuma's Revenge and Pitfall. | ['Honglak Lee', 'Mohammad Norouzi', 'Samy Bengio', 'Shengyu Feng', 'Jongwook Choi', 'Yijie Guo', 'Marcin Moczulski'] | 2019-07-24 | memory-based-trajectory-conditioned-policies | http://proceedings.neurips.cc/paper/2020/hash/2df45244f09369e16ea3f9117ca45157-Abstract.html | http://proceedings.neurips.cc/paper/2020/file/2df45244f09369e16ea3f9117ca45157-Paper.pdf | neurips-2020-12 | ['montezumas-revenge'] | ['playing-games'] | [-2.96264201e-01 -1.53312802e-01 -4.20450389e-01 1.71321407e-01
-7.46869981e-01 -5.09736419e-01 6.70904875e-01 -2.12136298e-01
-8.92146647e-01 1.49723768e+00 7.06923604e-02 -1.66078985e-01
-1.30160809e-01 -5.15274704e-01 -9.11563456e-01 -7.91067183e-01
-6.59576476e-01 5.09867728e-01 2.77871817e-01 -3.11236620e-01
4.87800479e-01 2.34307796e-01 -1.49126911e+00 -2.48569876e-01
9.98680770e-01 6.03928983e-01 6.05399668e-01 8.28586936e-01
2.94240206e-01 1.09525061e+00 -6.24264836e-01 2.68220663e-01
4.46742445e-01 -4.98267591e-01 -5.95897257e-01 3.30225900e-02
-1.05527237e-01 -8.68599057e-01 -5.44639230e-01 1.00965679e+00
4.78673816e-01 6.29485309e-01 1.69179976e-01 -1.17240560e+00
-3.72446060e-01 7.24268675e-01 -4.44808036e-01 4.13517624e-01
2.93660730e-01 9.12608087e-01 5.13376832e-01 -4.01651263e-01
9.27752376e-01 1.29437220e+00 2.47101560e-01 7.40967453e-01
-9.43759143e-01 -6.76486909e-01 5.47609568e-01 2.66676813e-01
-8.10466886e-01 -2.11069718e-01 3.85358155e-01 2.13235877e-02
1.19041336e+00 -1.92845121e-01 1.05532026e+00 1.30482960e+00
2.70759374e-01 9.91873145e-01 1.39803624e+00 -6.67870371e-03
7.24939287e-01 -3.57859939e-01 -5.61668456e-01 8.10558558e-01
1.37752499e-02 8.82820547e-01 -4.80021149e-01 -2.15934753e-01
1.00072896e+00 8.89485776e-02 2.43262015e-03 -4.91147012e-01
-1.46947360e+00 8.32659364e-01 3.42152894e-01 -1.48342520e-01
-8.80459428e-01 6.46008134e-01 3.40512872e-01 6.00407481e-01
-2.25641385e-01 9.44385946e-01 -2.76138723e-01 -1.04969680e+00
-6.98673844e-01 7.05703735e-01 7.24572420e-01 7.92093515e-01
6.41038299e-01 5.92015088e-01 -2.70905614e-01 4.16038573e-01
-7.13330805e-02 5.86538672e-01 4.65453446e-01 -1.70630991e+00
2.76315242e-01 1.57705009e-01 7.96811521e-01 -3.74688774e-01
-1.81283444e-01 -3.24450582e-01 -3.45820785e-01 9.04157579e-01
4.34044093e-01 -8.04912627e-01 -1.12824702e+00 1.80450594e+00
3.60582352e-01 4.01332110e-01 2.88612753e-01 9.34905529e-01
-5.92334531e-02 7.68588603e-01 3.15358974e-02 -4.13821518e-01
4.73349214e-01 -1.20967340e+00 -6.01741552e-01 -4.22237515e-01
4.36189830e-01 -2.19093159e-01 1.12927639e+00 5.12673497e-01
-1.39868140e+00 -2.91470319e-01 -1.00145328e+00 7.78703153e-01
1.26154155e-01 -1.99064359e-01 5.63645720e-01 1.67925507e-01
-9.44705725e-01 1.15581644e+00 -1.34483290e+00 -2.61700958e-01
5.53002059e-01 4.25288826e-01 7.11848065e-02 7.56205097e-02
-9.16057944e-01 1.25127745e+00 5.92885911e-01 -2.51827955e-01
-1.84602988e+00 -4.90979224e-01 -5.04144549e-01 -2.08210051e-01
1.12847912e+00 -4.60774332e-01 1.46644878e+00 -7.91026890e-01
-2.18516111e+00 -5.38576357e-02 2.79571205e-01 -8.54435503e-01
5.92637241e-01 -5.42803705e-01 1.01570889e-01 9.70677808e-02
-3.41848135e-02 9.53197360e-01 8.89910460e-01 -1.05417919e+00
-7.31111348e-01 1.64910182e-01 3.46364617e-01 7.19897568e-01
-1.78564459e-01 -2.80846894e-01 -6.13086261e-02 -2.38694966e-01
-5.00506341e-01 -1.29823697e+00 -7.64852464e-01 -1.93999454e-01
-6.16146289e-02 -4.52789590e-02 7.20033169e-01 -2.38923937e-01
9.87805963e-01 -1.79852951e+00 5.53580701e-01 -4.82126027e-02
-8.39234740e-02 3.99482548e-01 -1.57853693e-01 6.45710468e-01
7.26339698e-01 -1.77859575e-01 6.05719797e-02 2.20363904e-02
1.74796749e-02 6.43108785e-01 -3.96638483e-01 3.60611141e-01
-8.39597583e-02 9.92779016e-01 -1.51261747e+00 -3.43853235e-01
3.60731632e-01 -7.59930462e-02 -6.97849691e-01 3.67257953e-01
-5.97603619e-01 8.00072312e-01 -7.61613488e-01 5.04061460e-01
1.70789391e-01 -2.41388664e-01 2.23753303e-01 6.91975534e-01
-3.96856129e-01 1.53176904e-01 -1.02776563e+00 1.68058646e+00
-3.21213037e-01 2.86480457e-01 1.23772159e-01 -8.79813552e-01
7.42942154e-01 5.89167289e-02 5.28881550e-01 -8.16808641e-01
7.11997151e-02 2.24951327e-01 1.30496919e-01 -4.12772268e-01
6.80472016e-01 1.19019739e-01 2.89571695e-02 5.26678622e-01
8.11802503e-03 -2.02163339e-01 4.87957060e-01 2.16133609e-01
1.30222213e+00 5.71889699e-01 2.23893940e-01 -1.61349662e-02
8.53062980e-03 3.47560614e-01 5.57856143e-01 1.23413563e+00
-4.35198486e-01 -6.26234524e-03 6.03274584e-01 -3.93845469e-01
-1.34393144e+00 -1.26096737e+00 5.93324304e-01 1.11107635e+00
4.21737939e-01 -2.55294710e-01 -4.66489524e-01 -5.71578205e-01
-1.52525762e-02 8.54747951e-01 -5.90435684e-01 -1.64186299e-01
-1.01868510e+00 -3.95604402e-01 1.73539788e-01 5.25128722e-01
6.87523961e-01 -1.57335317e+00 -1.51988959e+00 5.25470018e-01
1.62829861e-01 -7.54053712e-01 -5.63028395e-01 1.32995740e-01
-1.02217269e+00 -7.95716763e-01 -8.95341814e-01 -3.23819727e-01
4.24772382e-01 3.07555241e-03 9.00485277e-01 -6.46678880e-02
-7.62039330e-03 6.14469469e-01 -2.54759610e-01 -1.35209128e-01
-4.42430377e-01 -2.46785823e-02 3.04737687e-01 -7.56437898e-01
-1.87221199e-01 -5.77424765e-01 -7.87676334e-01 2.03889906e-01
-4.96106744e-01 1.13302772e-03 7.66918957e-01 1.20029426e+00
5.37574828e-01 -3.30776602e-01 7.91146696e-01 -2.54409879e-01
9.61901307e-01 -5.74713111e-01 -9.07835841e-01 6.92749694e-02
-6.74210370e-01 4.27676290e-01 8.27318132e-01 -1.17356789e+00
-9.69957173e-01 -1.40659213e-02 3.39386851e-01 -8.34564269e-01
1.79297090e-01 3.00466269e-01 6.43146753e-01 4.88953330e-02
7.51654744e-01 4.92910773e-01 3.60756040e-01 4.85158637e-02
4.97487932e-01 1.55939674e-02 4.17047948e-01 -1.02692962e+00
4.65895653e-01 3.18687558e-01 -3.52866501e-02 -3.45233381e-01
-3.58910471e-01 -1.25079900e-01 -1.27108932e-01 -6.01602435e-01
5.75937867e-01 -8.25060427e-01 -1.01537490e+00 3.24821472e-01
-6.30707562e-01 -9.23257649e-01 -5.78371644e-01 6.20472491e-01
-1.03173363e+00 2.40918934e-01 -6.27862334e-01 -1.10868454e+00
-4.37504165e-02 -1.25472629e+00 5.35770774e-01 6.91187680e-01
-8.23760778e-02 -5.70075214e-01 4.35165077e-01 -3.37327093e-01
6.24102116e-01 3.23883176e-01 3.11881959e-01 -2.41528884e-01
-9.83518362e-01 2.99523592e-01 4.01426256e-01 -3.30167189e-02
-9.54656079e-02 -3.37988138e-01 -2.33949065e-01 -7.72366822e-01
-3.38247836e-01 -1.01045585e+00 6.68765306e-01 4.15809989e-01
7.49271274e-01 -5.46058536e-01 -3.35338324e-01 3.33906859e-01
1.17676830e+00 5.90354919e-01 6.26702547e-01 8.07882369e-01
5.34314960e-02 1.25133336e-01 1.15834701e+00 9.67924714e-01
2.50377446e-01 4.25488383e-01 7.81332254e-01 4.96580243e-01
2.18763247e-01 -5.11019230e-01 7.32212007e-01 2.60236233e-01
-4.12907094e-01 5.78598715e-02 -4.67299223e-01 7.37515926e-01
-2.19284344e+00 -1.29524744e+00 7.34115183e-01 2.27744842e+00
9.70968604e-01 3.09363991e-01 5.57179034e-01 -6.18549824e-01
4.43986833e-01 1.68364465e-01 -1.33715856e+00 -3.37617964e-01
1.71877325e-01 9.47542340e-02 6.50816500e-01 4.61725235e-01
-7.93974161e-01 1.34191680e+00 6.88151073e+00 7.66156971e-01
-1.12367725e+00 -4.28765789e-02 4.65439975e-01 -8.15469921e-01
4.96492796e-02 1.33650275e-02 -6.77310050e-01 5.84092379e-01
1.01178694e+00 -3.90619338e-01 1.09755886e+00 1.07001412e+00
3.35491389e-01 -4.74844247e-01 -8.36057425e-01 7.29167700e-01
-5.08027196e-01 -1.51465487e+00 -4.49530900e-01 1.37865156e-01
1.07221007e+00 3.04371327e-01 3.39797527e-01 8.31516325e-01
1.17500985e+00 -1.12476742e+00 7.20220208e-01 4.94257540e-01
3.95086884e-01 -1.00374627e+00 2.69375443e-01 6.60296619e-01
-7.74694383e-01 -5.72668552e-01 -5.57055414e-01 -3.66374582e-01
4.10578221e-01 -2.55135238e-01 -1.01182795e+00 1.29943624e-01
5.92798769e-01 4.63910937e-01 3.19074802e-02 9.56838787e-01
-7.66051859e-02 5.39827764e-01 -5.08618057e-01 -7.61189818e-01
9.16079342e-01 -2.45522350e-01 8.03530157e-01 5.98988473e-01
4.87587273e-01 1.08164445e-01 6.84175968e-01 8.78261149e-01
3.12161475e-01 -3.56438130e-01 -6.54756308e-01 -2.30504721e-01
6.20081067e-01 9.24583375e-01 -5.98336041e-01 -5.37856162e-01
7.73411915e-02 8.07397604e-01 6.69311106e-01 4.87675548e-01
-1.09861648e+00 -5.34261800e-02 6.81834936e-01 -2.70432085e-01
5.67946851e-01 -6.53198004e-01 2.40329608e-01 -9.55245793e-01
-2.31501430e-01 -9.99153018e-01 1.63547620e-01 -5.64907312e-01
-7.87440181e-01 4.66835797e-01 1.76723957e-01 -1.27727199e+00
-9.39202428e-01 -1.11369394e-01 -6.51023030e-01 4.42917854e-01
-1.37112558e+00 -5.63830614e-01 1.63331047e-01 5.93408823e-01
8.00450623e-01 -4.74227130e-01 4.71563667e-01 -2.06886813e-01
-2.23879606e-01 2.42772862e-01 3.95802736e-01 -3.47699404e-01
4.80048001e-01 -1.27448690e+00 1.40248194e-01 6.75331891e-01
-1.84329793e-01 3.61947238e-01 1.02934897e+00 -9.50050473e-01
-1.62163675e+00 -6.97145820e-01 -2.99780309e-01 -9.43522975e-02
8.19243491e-01 1.78157151e-01 -7.22960234e-01 5.35983920e-01
4.14748192e-01 -1.13058120e-01 -1.35992512e-01 -1.80079103e-01
3.25012833e-01 1.92991853e-01 -9.27062452e-01 1.15397429e+00
1.12489784e+00 9.30848271e-02 -3.60844970e-01 2.71782458e-01
5.35119832e-01 -7.38478541e-01 -5.36697388e-01 1.74888045e-01
5.32130182e-01 -9.61654544e-01 1.00157201e+00 -8.94520342e-01
2.60821700e-01 -1.63318440e-01 8.71037915e-02 -1.68872142e+00
-7.47715831e-02 -1.26316810e+00 -5.81243038e-01 4.27049041e-01
2.28528589e-01 -4.76719409e-01 1.02411091e+00 3.35683763e-01
-1.68268323e-01 -1.07594097e+00 -1.08969700e+00 -1.22713649e+00
2.31713980e-01 -1.76831819e-02 4.17070121e-01 3.64951044e-01
3.02369356e-01 -1.11936696e-01 -1.02613354e+00 -4.20234585e-03
6.27227068e-01 1.25546068e-01 9.41681981e-01 -3.40958238e-01
-5.65989554e-01 -4.36194956e-01 2.36037716e-01 -1.46664906e+00
1.37398273e-01 -2.61494577e-01 3.56780469e-01 -1.23934567e+00
1.29560962e-01 -5.41267216e-01 -2.41117373e-01 2.36026779e-01
-1.42017230e-01 -4.60081488e-01 5.39716542e-01 3.02498072e-01
-1.24459445e+00 1.00418782e+00 1.81134081e+00 5.00174314e-02
-5.38056016e-01 -3.10426634e-02 -3.14288259e-01 5.70255876e-01
1.00576115e+00 -4.43164051e-01 -6.18894398e-01 -1.61965653e-01
6.45597875e-02 6.07778192e-01 2.29080722e-01 -1.04655802e+00
3.36766422e-01 -7.45119035e-01 1.14257731e-01 -5.36187053e-01
6.41807318e-01 -2.27283686e-01 7.34166428e-03 1.08431745e+00
-4.64100659e-01 3.23964477e-01 1.52865142e-01 1.00019264e+00
1.84475362e-01 -3.04015875e-01 6.34134531e-01 -6.28690064e-01
-9.72476959e-01 3.12249273e-01 -7.92964339e-01 2.04650119e-01
1.31837773e+00 -1.87627494e-01 -2.98390418e-01 -7.12422848e-01
-6.33875072e-01 8.59536350e-01 5.84931195e-01 2.72315145e-01
8.28604817e-01 -1.16044974e+00 -4.75971609e-01 -2.92123020e-01
-5.03582418e-01 -2.44104087e-01 2.18422890e-01 6.18989110e-01
-3.15590858e-01 1.89936012e-01 -6.92228854e-01 -5.48824966e-01
-8.70486438e-01 7.00708270e-01 3.33511978e-01 -6.39597058e-01
-8.14168215e-01 4.64143574e-01 -2.63039559e-01 -2.60431588e-01
2.70653397e-01 -3.04026783e-01 -7.83982947e-02 -4.98750627e-01
4.03018296e-01 6.94532454e-01 -7.13972867e-01 2.66250782e-02
-6.58597350e-02 1.34287253e-01 -1.44488826e-01 -6.09264910e-01
1.31091261e+00 -1.38951268e-03 5.43625414e-01 2.80731946e-01
5.60643256e-01 -3.82067561e-01 -2.35886884e+00 -8.06305483e-02
-1.30116820e-01 -6.68111324e-01 -4.63075303e-02 -8.63222480e-01
-7.09984541e-01 3.67297679e-01 5.20940959e-01 -4.95933406e-02
7.76550055e-01 -1.66557342e-01 9.58774447e-01 9.13390279e-01
8.37249577e-01 -1.45328307e+00 8.22088182e-01 7.51014054e-01
7.93281019e-01 -1.31529391e+00 -4.69514057e-02 4.95399177e-01
-1.24717283e+00 9.94758725e-01 8.84370089e-01 -5.89535654e-01
1.85674623e-01 2.61424720e-01 -1.78111270e-01 5.75663708e-02
-1.30110526e+00 -3.10818613e-01 -3.87300164e-01 7.33959317e-01
-3.81461322e-01 -2.41889842e-02 -8.95029530e-02 -1.38938844e-01
-8.31708089e-02 9.77203026e-02 7.59097397e-01 1.34019053e+00
-9.73584116e-01 -9.98920560e-01 -3.18817228e-01 4.69655305e-01
-2.84037888e-01 2.42555648e-01 1.71402290e-01 9.60135639e-01
-4.48167741e-01 7.17790544e-01 2.85970489e-03 -8.27365592e-02
-7.46292993e-02 -2.93022603e-01 8.18524301e-01 -2.75985807e-01
-4.59859967e-01 1.06530368e-01 1.56125993e-01 -9.11275744e-01
-2.90596098e-01 -9.69306469e-01 -1.44466186e+00 -5.23716867e-01
-2.07576137e-02 7.54025578e-02 3.21682334e-01 8.00834477e-01
4.48786169e-01 4.60521191e-01 5.26184201e-01 -1.06454563e+00
-1.28159356e+00 -9.12500203e-01 -2.07653135e-01 1.46957994e-01
4.44295943e-01 -1.12204409e+00 -6.29721656e-02 -3.62612158e-01] | [4.066275596618652, 1.8833699226379395] |
506f9b41-1671-44ef-995d-45e7d0ef31f2 | a-birds-eye-view-on-knowledge-graph | 2205.09088 | null | https://arxiv.org/abs/2205.09088v1 | https://arxiv.org/pdf/2205.09088v1.pdf | A Birds Eye View on Knowledge Graph Embeddings, Software Libraries, Applications and Challenges | In recent years, Knowledge Graph (KG) development has attracted significant researches considering the applications in web search, relation prediction, natural language processing, information retrieval, question answering to name a few. However, often KGs are incomplete due to which Knowledge Graph Completion (KGC) has emerged as a sub-domain of research to automatically track down the missing connections in a KG. Numerous strategies have been suggested to work out the KGC dependent on different representation procedures intended to embed triples into a low-dimensional vector space. Given the difficulties related to KGC, researchers around the world are attempting to comprehend the attributes of the problem statement. This study intends to provide an overview of knowledge bases combined with different challenges and their impacts. We discuss existing KGC approaches, including the state-of-the-art Knowledge Graph Embeddings (KGE), not only on static graphs but also for the latest trends such as multimodal, temporal, and uncertain knowledge graphs. In addition, reinforcement learning techniques are reviewed to model complex queries as a link prediction problem. Subsequently, we explored popular software packages for model training and examine open research challenges that can guide future research. | ['Dwaipayan Roy', 'Satvik Garg'] | 2022-05-18 | null | null | null | null | ['knowledge-graph-embeddings', 'knowledge-graph-embeddings'] | ['graphs', 'methodology'] | [-1.46876842e-01 4.39511269e-01 -5.96289694e-01 -1.33202761e-01
-2.39094749e-01 -4.20707405e-01 4.36863810e-01 9.04151618e-01
-1.80893868e-01 7.12656200e-01 1.69568151e-01 -3.75314802e-01
-6.40618801e-01 -1.07331729e+00 -5.60494483e-01 -2.59353667e-01
-4.47817266e-01 5.43575644e-01 2.78134584e-01 -3.70481491e-01
2.48922810e-01 2.60908991e-01 -1.54408836e+00 -4.68489015e-03
9.32477713e-01 7.92492270e-01 -8.59484002e-02 4.32511896e-01
-7.08109438e-01 8.08534443e-01 -2.90668726e-01 -1.11039925e+00
-3.15354317e-01 -3.07394825e-02 -1.14172673e+00 -3.19957167e-01
3.19737017e-01 3.12347740e-01 -5.99714398e-01 1.07766676e+00
3.46375227e-01 1.71529964e-01 6.36413872e-01 -1.71251512e+00
-1.22229111e+00 8.52241814e-01 -2.23469764e-01 -4.01153084e-04
6.44973695e-01 -5.39954901e-01 1.31462920e+00 -9.23371136e-01
7.12459385e-01 1.18786538e+00 6.65933132e-01 3.79789710e-01
-8.42902064e-01 -2.73504615e-01 3.42630714e-01 1.10353255e+00
-1.58154655e+00 1.45129457e-01 8.84208083e-01 -3.21496010e-01
1.17121542e+00 1.94550440e-01 8.83956432e-01 8.44313502e-01
-1.18672445e-01 6.45089686e-01 6.74323320e-01 -7.47919321e-01
1.22939825e-01 3.42714429e-01 5.34728885e-01 9.46464360e-01
6.18617773e-01 -3.01648647e-01 -8.57345283e-01 -2.65969694e-01
3.73750210e-01 -3.13687533e-01 -3.69625777e-01 -7.79190242e-01
-9.98417437e-01 9.75608408e-01 4.70884502e-01 2.19294474e-01
-2.27465957e-01 6.04185164e-02 4.70403790e-01 2.44688570e-01
3.64976883e-01 3.40805471e-01 -4.86174613e-01 -7.40222558e-02
-1.81094557e-01 2.72069663e-01 1.23838878e+00 1.22976565e+00
9.01934862e-01 1.45405475e-02 -4.32287063e-03 8.12048018e-01
4.61785108e-01 1.73487946e-01 2.85880715e-01 -3.75779629e-01
6.86985672e-01 1.14756048e+00 -2.05680639e-01 -1.50664735e+00
-3.12234849e-01 -2.21269950e-01 -6.75697446e-01 -5.17474592e-01
-3.97768058e-02 1.19224384e-01 -5.29869199e-01 1.39200544e+00
5.82274497e-01 2.82531053e-01 2.58785367e-01 5.72103322e-01
1.12688458e+00 4.15160000e-01 2.22877562e-01 -1.27466559e-01
1.18886018e+00 -8.80094409e-01 -1.13260710e+00 -5.83050912e-03
9.05114293e-01 -4.92302299e-01 8.23497474e-01 1.03875190e-01
-5.84982336e-01 -4.06101078e-01 -9.03420866e-01 -6.96189180e-02
-1.21083510e+00 -3.06815326e-01 1.11671555e+00 7.58972347e-01
-1.20327175e+00 5.07350147e-01 -7.28309929e-01 -7.68408716e-01
2.21707255e-01 2.16177970e-01 -4.65292484e-01 -4.86631364e-01
-1.77165496e+00 1.05554259e+00 9.45963979e-01 2.20877707e-01
-2.26744354e-01 -5.95217884e-01 -1.17873478e+00 -2.32008076e-03
8.61034095e-01 -7.05183029e-01 4.57258940e-01 -1.04063317e-01
-1.06337488e+00 5.49138308e-01 1.42859265e-01 -4.11320239e-01
-7.78533816e-02 -2.46736318e-01 -1.09333575e+00 -3.12330425e-02
-4.77027893e-02 2.47241929e-01 5.50956368e-01 -1.09948885e+00
-5.31629741e-01 -4.68744248e-01 1.33776173e-01 4.61056501e-01
-6.66893184e-01 -3.49614888e-01 -7.98220813e-01 -4.16730374e-01
-1.77427873e-01 -6.52849436e-01 1.00925855e-01 -4.03455228e-01
-4.80300844e-01 -7.74445891e-01 8.51916909e-01 -6.37937248e-01
1.85278440e+00 -1.74103904e+00 4.30580765e-01 3.79061073e-01
2.88174570e-01 3.99465263e-01 -2.94662993e-02 1.08795404e+00
-5.69804534e-02 2.50529140e-01 1.25864133e-01 -5.10277636e-02
1.07692465e-01 4.93683606e-01 -1.31229267e-01 1.52764574e-01
1.50013994e-02 1.32309890e+00 -1.01143301e+00 -7.52668262e-01
1.65842712e-01 3.75366807e-01 -3.27032715e-01 6.53522909e-02
-2.44496822e-01 -1.78886220e-01 -6.02544427e-01 9.94608879e-01
3.94058466e-01 -3.92274290e-01 6.36860609e-01 -5.40757179e-01
2.47446015e-01 -3.46195459e-01 -1.25708449e+00 1.55416214e+00
-2.12989002e-02 2.84098297e-01 -2.78769702e-01 -1.56396520e+00
9.82209742e-01 1.89905912e-01 3.53113562e-01 -4.78100359e-01
-1.81045502e-01 1.53564259e-01 -2.32414737e-01 -8.12445819e-01
8.72245014e-01 1.77799687e-01 7.92665109e-02 -9.39387456e-02
1.68372750e-01 5.21399714e-02 4.13943499e-01 5.93309581e-01
1.03113198e+00 4.00588661e-02 4.26185757e-01 1.49396539e-01
6.06127143e-01 2.05792636e-01 2.26278812e-01 4.83351082e-01
-1.84383839e-01 4.75102328e-02 4.59697157e-01 -2.55751997e-01
-3.26195657e-01 -8.23357165e-01 3.32318753e-01 7.99096525e-01
3.11958462e-01 -9.75435197e-01 -3.65706444e-01 -8.97377729e-01
4.72557038e-01 7.19010770e-01 -6.13847554e-01 -5.16774237e-01
-2.22027853e-01 -3.87599826e-01 4.36605483e-01 5.75168192e-01
2.93693006e-01 -1.08191276e+00 1.85581282e-01 2.54141361e-01
-5.84826320e-02 -1.25725341e+00 -1.37043267e-01 -5.19462265e-02
-7.83522725e-01 -1.62783492e+00 -2.62198865e-01 -1.04743290e+00
5.85890830e-01 2.58308560e-01 1.17329288e+00 2.09116787e-01
-3.37457627e-01 1.20612454e+00 -7.98943520e-01 -2.68062532e-01
1.34914350e-02 9.82276499e-02 1.52650878e-01 -6.14533313e-02
7.15601325e-01 -4.16189522e-01 -2.61758566e-01 9.38130170e-02
-1.02043486e+00 -2.29976013e-01 5.28168142e-01 7.00069010e-01
6.41187131e-01 3.41758817e-01 8.10204268e-01 -1.18914509e+00
1.14561760e+00 -6.74690723e-01 -4.49182391e-01 9.97118533e-01
-1.11103237e+00 1.70960754e-01 3.23727667e-01 -2.32880905e-01
-8.31258893e-01 -3.52488339e-01 2.07071900e-01 -4.72061396e-01
2.85118252e-01 1.46153402e+00 -6.78288490e-02 -3.03258002e-01
4.65817213e-01 1.53781444e-01 2.78393328e-02 -3.48961264e-01
9.02819633e-01 3.96218538e-01 2.73489267e-01 -6.18462026e-01
8.10306549e-01 -3.42386849e-02 1.27449021e-01 -8.48668456e-01
-8.91886711e-01 -7.42791951e-01 -5.30127108e-01 -3.30439001e-01
7.79813945e-01 -6.56643212e-01 -7.98106313e-01 6.41020536e-02
-1.02020323e+00 1.81574643e-01 -2.06756294e-01 6.23979688e-01
-2.25242645e-01 6.84841394e-01 -2.84247994e-01 -6.49388134e-01
-3.89124691e-01 -5.83589375e-01 5.97837806e-01 3.14790994e-01
-5.17375357e-02 -1.50178313e+00 2.23514721e-01 6.38188660e-01
4.82139796e-01 1.63870588e-01 1.55918443e+00 -8.07849646e-01
-5.19543052e-01 -3.74305427e-01 -1.68982014e-01 2.79896498e-01
2.60138661e-01 -5.36482967e-02 -4.42158490e-01 -2.14457989e-01
-6.75384939e-01 -3.97384256e-01 5.07596314e-01 9.30199027e-03
1.10298777e+00 -3.71142626e-01 -6.51853085e-01 2.03230828e-01
1.52467120e+00 2.60961447e-02 5.41851521e-01 2.58736730e-01
1.05070150e+00 7.20236480e-01 7.11133778e-01 1.97640151e-01
8.07172477e-01 5.30736983e-01 5.94902992e-01 4.16050225e-01
-7.34674856e-02 -7.13909686e-01 2.42504384e-02 1.43896568e+00
-2.18297675e-01 -3.73536348e-01 -8.95490646e-01 6.43231452e-01
-2.03636932e+00 -6.36348546e-01 -1.56321257e-01 1.99711251e+00
7.67087400e-01 -2.01118998e-02 -2.66382724e-01 1.37280539e-01
8.87354136e-01 1.58181161e-01 -4.37507659e-01 -2.60549039e-01
-1.56111956e-01 1.57813221e-01 3.93019050e-01 5.31337202e-01
-9.10925984e-01 1.13772023e+00 5.86612940e+00 8.94773781e-01
-6.70719981e-01 -1.91912472e-01 -1.19681500e-01 6.40358865e-01
-5.56004524e-01 3.18128735e-01 -8.81664395e-01 3.14042643e-02
7.95544922e-01 -5.13919890e-01 5.51594853e-01 1.03268123e+00
-4.22732770e-01 1.28862029e-02 -1.07293141e+00 1.25621438e+00
3.72206926e-01 -1.44559932e+00 5.86881042e-01 -1.16117224e-01
6.39678538e-01 -3.76817107e-01 -1.24426246e-01 9.33195829e-01
1.50191367e-01 -9.81364369e-01 4.41536941e-02 7.21261203e-01
6.17733538e-01 -6.94724202e-01 8.17205846e-01 1.53955653e-01
-1.50368094e+00 1.97216898e-01 -4.51045096e-01 8.67315978e-02
-1.56382825e-02 4.99034673e-01 -1.07134223e+00 1.45395541e+00
5.92175245e-01 9.20637131e-01 -9.58867192e-01 9.46508646e-01
-3.51732314e-01 5.43186128e-01 -2.86600366e-02 -3.54069144e-01
-1.22461781e-01 -3.48798901e-01 1.99863538e-01 8.84669960e-01
2.74802893e-01 3.14966515e-02 1.71264499e-01 5.13561487e-01
-2.33165815e-01 4.97589111e-01 -8.14035177e-01 -5.77084005e-01
6.54994667e-01 1.18046761e+00 -4.86254871e-01 -2.31127799e-01
-7.89275289e-01 7.75026143e-01 8.41117382e-01 6.18722677e-01
-5.77058733e-01 -6.21543765e-01 3.49605918e-01 -2.78973281e-02
2.28883460e-01 -2.63162136e-01 2.82496005e-01 -1.14063311e+00
1.81870848e-01 -5.74999332e-01 9.00764048e-01 -7.06802964e-01
-1.45855677e+00 2.98392445e-01 2.82455653e-01 -1.00762665e+00
-8.81084427e-02 -6.46755636e-01 -2.62248218e-01 6.15715325e-01
-1.85219860e+00 -1.13196647e+00 -3.56364340e-01 8.20775092e-01
1.57165043e-02 -1.88148305e-01 1.11277664e+00 3.58170211e-01
-5.38919091e-01 4.14790928e-01 6.39339834e-02 1.22545794e-01
5.98533392e-01 -1.30153978e+00 6.59993216e-02 3.97567540e-01
3.96704644e-01 7.69660473e-01 4.05083179e-01 -9.71900761e-01
-1.94090354e+00 -1.05994785e+00 1.20829701e+00 -3.45614523e-01
1.07860672e+00 -8.35570320e-02 -1.19213164e+00 7.35111773e-01
2.12359264e-01 4.41781104e-01 7.82251716e-01 5.85292518e-01
-4.07435626e-01 -2.42751673e-01 -7.84975827e-01 5.87707758e-01
1.01900673e+00 -6.27856433e-01 -5.37944853e-01 2.86669433e-01
8.18255424e-01 -2.09362805e-01 -1.25395977e+00 3.37347031e-01
2.03464985e-01 -5.45898736e-01 9.09626722e-01 -1.02531993e+00
-1.17212661e-01 -3.16339165e-01 -1.39677227e-01 -1.38427389e+00
-2.77947456e-01 -4.24937338e-01 -8.87105703e-01 1.35597253e+00
3.50728244e-01 -6.18189812e-01 1.07926154e+00 6.32638037e-01
-3.63553911e-02 -9.67760086e-01 -8.11551571e-01 -6.99031830e-01
-3.49312633e-01 -4.77729946e-01 4.11580890e-01 1.22419155e+00
4.99296427e-01 6.32830203e-01 -3.38474751e-01 2.44276926e-01
6.20490730e-01 1.65430620e-01 5.57023346e-01 -1.55160582e+00
1.33840621e-01 -1.93538591e-01 -8.75667989e-01 -7.43329525e-01
2.27424234e-01 -1.26612377e+00 -7.37460732e-01 -2.06409550e+00
-8.61016884e-02 -3.01189333e-01 -2.92867839e-01 5.93804598e-01
-3.20306510e-01 -3.90751153e-01 -1.77973971e-01 -6.57952055e-02
-9.05087948e-01 8.93606603e-01 1.19026005e+00 -4.71070856e-01
-9.84065831e-02 -2.64895260e-01 -7.54585028e-01 2.94140309e-01
6.72674894e-01 -1.61440536e-01 -9.40336823e-01 -2.51984656e-01
8.87949467e-01 8.08051899e-02 1.61964908e-01 -5.79849064e-01
7.20707893e-01 -1.06920347e-01 -5.87578826e-02 -6.97003961e-01
3.07151407e-01 -9.65705454e-01 2.49647155e-01 8.41700360e-02
-1.56327412e-01 9.47465301e-02 1.37749836e-01 1.11097872e+00
-6.06600702e-01 -2.48315275e-01 -7.01367781e-02 4.58159372e-02
-1.35776472e+00 4.23151433e-01 4.20244411e-02 2.47172222e-01
1.14424860e+00 -1.47967950e-01 -5.17648935e-01 -4.02101159e-01
-7.41164207e-01 6.91357195e-01 -1.57350823e-01 7.04253376e-01
1.06592715e+00 -1.59636009e+00 -3.85618746e-01 -1.20462619e-01
7.05630720e-01 -1.10764988e-01 2.87496060e-01 6.54706955e-01
-3.86166155e-01 7.10207164e-01 1.71832308e-01 -2.60348581e-02
-1.26092005e+00 9.45137322e-01 -1.96897805e-01 -4.64005858e-01
-3.98656487e-01 6.59368157e-01 -5.81154764e-01 -4.86704826e-01
6.34932935e-01 -1.77458227e-01 -7.80167580e-01 2.54882783e-01
6.46502376e-02 4.50507104e-01 2.71660715e-01 -3.25482965e-01
-5.18616021e-01 6.11397028e-01 -2.27865919e-01 4.73318309e-01
1.22361410e+00 -1.17796987e-01 -2.85258740e-01 4.51072991e-01
1.13572764e+00 -2.50789613e-01 -2.30920553e-01 -6.16711199e-01
3.96691442e-01 -2.52485156e-01 -1.27986684e-01 -6.98083639e-01
-9.63220417e-01 4.97910649e-01 2.58473814e-01 6.22368753e-01
6.40825093e-01 1.48195788e-01 3.38080347e-01 7.56038010e-01
5.68061054e-01 -1.31208372e+00 5.25215641e-02 5.48717618e-01
8.88680100e-01 -1.19151151e+00 2.93346375e-01 -7.83081651e-01
-6.81445599e-01 1.24242365e+00 6.14328146e-01 3.80948633e-01
1.11597550e+00 -4.19838041e-01 -2.84385979e-01 -6.23660803e-01
-5.76172531e-01 -3.82130712e-01 4.67889220e-01 1.02621067e+00
3.23577493e-01 4.84555811e-02 -4.57886010e-01 5.12913525e-01
-4.95398045e-02 -7.60956034e-02 2.56184071e-01 1.01444316e+00
-2.19060302e-01 -1.38851798e+00 -3.59776840e-02 6.30974233e-01
-3.69359553e-02 -1.56976625e-01 -5.10605633e-01 1.03987944e+00
-1.90573379e-01 1.03977239e+00 -5.03980041e-01 -6.03391647e-01
5.81177175e-01 2.84029067e-01 4.00129259e-01 -6.08992279e-01
-5.70049360e-02 -7.23226428e-01 3.68068278e-01 -3.96439701e-01
-7.13671744e-01 -1.86953574e-01 -1.12634301e+00 -2.02663809e-01
-6.04706526e-01 6.65041685e-01 5.54287255e-01 7.08768547e-01
4.12132740e-01 4.50022489e-01 1.65466473e-01 -1.82218730e-01
-3.63209158e-01 -8.38527560e-01 -9.96506572e-01 4.50481951e-01
-2.73562014e-01 -9.37484860e-01 -2.17972815e-01 -8.88935104e-02] | [8.797784805297852, 7.898748874664307] |
0520c5dd-fd6c-4db2-abce-fa5b7d550257 | end-to-end-music-source-separation-is-it | 1810.12187 | null | https://arxiv.org/abs/1810.12187v2 | https://arxiv.org/pdf/1810.12187v2.pdf | End-to-end music source separation: is it possible in the waveform domain? | Most of the currently successful source separation techniques use the magnitude spectrogram as input, and are therefore by default omitting part of the signal: the phase. To avoid omitting potentially useful information, we study the viability of using end-to-end models for music source separation --- which take into account all the information available in the raw audio signal, including the phase. Although during the last decades end-to-end music source separation has been considered almost unattainable, our results confirm that waveform-based models can perform similarly (if not better) than a spectrogram-based deep learning model. Namely: a Wavenet-based model we propose and Wave-U-Net can outperform DeepConvSep, a recent spectrogram-based deep learning model. | ['Francesc Lluís', 'Xavier Serra', 'Jordi Pons'] | 2018-10-29 | null | null | null | null | ['music-source-separation'] | ['music'] | [ 7.24923089e-02 -3.30447674e-01 2.46040002e-01 1.15319163e-01
-1.00373292e+00 -8.67019951e-01 5.16523123e-01 1.82039753e-01
-3.31323296e-01 5.86011112e-01 5.77105463e-01 -1.33239940e-01
-5.05101025e-01 -4.83367056e-01 -3.64744633e-01 -8.35567236e-01
-4.02989805e-01 4.91577052e-02 -1.99138243e-02 -2.94442713e-01
8.64462852e-02 2.22323239e-01 -1.65885806e+00 2.37725675e-01
7.49764502e-01 9.64927614e-01 -1.36809111e-01 9.78233874e-01
1.67244244e-02 8.76547098e-01 -7.02670515e-01 1.53821278e-02
2.32764915e-01 -8.57809007e-01 -5.04448533e-01 -5.81163287e-01
4.80349928e-01 -2.06989765e-01 -1.90899298e-01 9.10917938e-01
9.00956333e-01 1.66318059e-01 6.39357507e-01 -9.11943734e-01
-3.01577430e-02 9.49038923e-01 -2.55999237e-01 2.95883805e-01
4.03828651e-01 -4.40020002e-02 1.25159156e+00 -7.53027618e-01
3.29269320e-01 8.81682575e-01 1.16460013e+00 -1.10400841e-01
-1.45425344e+00 -5.88506341e-01 -2.67220110e-01 2.82566607e-01
-1.18481910e+00 -9.46816802e-01 1.35035157e+00 -4.19755846e-01
1.04853618e+00 3.22901994e-01 5.38107157e-01 1.10354996e+00
1.02023169e-01 6.92574978e-01 1.02868688e+00 -6.25770390e-01
2.26848140e-01 -4.19237375e-01 -3.23465355e-02 1.23475008e-01
-3.61049213e-02 3.55355650e-01 -8.60302687e-01 -4.47437882e-01
5.76033473e-01 -6.15492642e-01 -4.74070996e-01 -1.85186535e-01
-1.30281675e+00 5.75595081e-01 1.41943380e-01 5.21297455e-01
-3.82840425e-01 4.09584045e-01 5.01354516e-01 6.10052705e-01
5.39244056e-01 6.86667979e-01 -4.65412408e-01 -6.08184993e-01
-1.75679505e+00 4.45203096e-01 8.63873184e-01 2.17443749e-01
3.36769879e-01 8.44836712e-01 -9.99514982e-02 8.47352505e-01
1.46429941e-01 4.95347977e-01 5.89097321e-01 -9.61510241e-01
1.67093158e-01 -1.53996646e-01 1.75793529e-01 -9.65667903e-01
-7.80324340e-01 -9.67202246e-01 -7.71922767e-01 4.50155437e-01
7.66159654e-01 -5.47808111e-01 -7.24580169e-01 1.69962025e+00
-5.75744025e-02 7.80392051e-01 1.93160158e-02 9.41673636e-01
9.04490948e-01 4.33995426e-01 -3.48760903e-01 -2.57281035e-01
9.65816081e-01 -8.13703239e-01 -7.15662479e-01 -7.65459836e-02
3.00327748e-01 -1.13859665e+00 6.23424292e-01 9.90582943e-01
-1.32971859e+00 -7.87392914e-01 -1.28570724e+00 1.17597952e-01
-2.11551979e-01 2.18085960e-01 3.90574098e-01 8.21743548e-01
-1.04655123e+00 1.26725066e+00 -8.14381838e-01 1.35777906e-01
-1.77216046e-02 3.12162399e-01 -1.86773390e-01 4.63091761e-01
-1.16794288e+00 5.00795066e-01 3.60783458e-01 -2.89829001e-02
-8.43718648e-01 -9.10725117e-01 -6.33137763e-01 3.66274804e-01
2.81567544e-01 -5.12748539e-01 1.48245180e+00 -1.04403090e+00
-1.69472325e+00 2.10216999e-01 -1.78311691e-01 -7.29673862e-01
4.06842202e-01 -5.27290702e-01 -6.08793139e-01 3.11127126e-01
-3.11622769e-01 1.16773404e-01 1.26792061e+00 -1.11917150e+00
-3.39099586e-01 5.20552732e-02 -1.27159581e-01 2.25504749e-02
-7.87628591e-02 7.87881911e-02 1.97652385e-01 -1.18877268e+00
-2.12281477e-02 -7.85757124e-01 3.28398384e-02 -5.15963793e-01
-3.47298086e-01 3.68799120e-01 4.73185509e-01 -1.00713944e+00
1.21756256e+00 -2.21913338e+00 2.20175207e-01 7.35507011e-02
1.04660727e-01 3.68483305e-01 -3.74831378e-01 7.50048518e-01
-6.06300294e-01 -1.46971986e-01 -2.28715286e-01 -5.88618875e-01
-3.44239883e-02 -3.48481178e-01 -5.96506298e-01 4.12408203e-01
1.06134690e-01 6.38595879e-01 -9.47613239e-01 -4.82435748e-02
3.23129416e-01 7.70028353e-01 -4.87466961e-01 -9.05045569e-02
-8.16521272e-02 5.28730989e-01 1.15610652e-01 2.34243765e-01
6.71065688e-01 1.97832808e-01 -9.22327489e-03 -1.93139508e-01
-5.90642877e-02 8.10096025e-01 -1.55210984e+00 1.98507750e+00
-4.01758552e-01 9.73581195e-01 3.87008399e-01 -6.86610281e-01
6.89449489e-01 7.92593062e-01 8.27504754e-01 -5.44201612e-01
2.12739304e-01 4.10813868e-01 4.90132064e-01 -2.06983358e-01
4.28567469e-01 -2.41449326e-01 3.15144271e-01 5.19247830e-01
4.58938420e-01 -2.25236863e-01 -5.36114152e-04 -5.79912215e-02
9.62808490e-01 3.29212189e-01 2.39973873e-01 -2.88948536e-01
4.98490393e-01 -1.36835009e-01 3.29776198e-01 6.67126298e-01
8.87276083e-02 1.12615895e+00 4.42508966e-01 2.37566963e-01
-7.62018442e-01 -1.13218772e+00 3.25659737e-02 1.06688440e+00
-3.78595769e-01 -6.99593186e-01 -7.79147685e-01 -1.36791006e-01
4.21134420e-02 7.91546345e-01 -4.41804022e-01 -7.93866664e-02
-6.43782079e-01 -6.05136991e-01 9.40012038e-01 4.72143203e-01
2.45712381e-02 -8.55017424e-01 -5.48525274e-01 6.04910612e-01
-2.53177702e-01 -7.54204154e-01 -2.04384163e-01 5.71775258e-01
-8.49587977e-01 -7.65942097e-01 -8.13460171e-01 -1.62048966e-01
-3.87026697e-01 2.03903899e-01 9.91335034e-01 -3.15723628e-01
2.63555994e-04 3.77544135e-01 -5.08394241e-01 -7.78448224e-01
-3.68974447e-01 1.42595872e-01 1.44406006e-01 1.25739768e-01
-1.49303693e-02 -1.28426313e+00 -5.32269657e-01 -1.60743758e-01
-5.97463369e-01 -2.49787435e-01 3.51072341e-01 3.88478547e-01
1.49890080e-01 3.47986788e-01 1.02416897e+00 -4.10120308e-01
8.13936651e-01 -3.09047669e-01 -2.46100441e-01 -3.58598143e-01
-4.03074354e-01 -3.43229845e-02 9.82802868e-01 -3.73696327e-01
-7.72050321e-01 -1.87558383e-01 -4.20560330e-01 -6.29153073e-01
-1.11455873e-01 6.97788358e-01 -3.20695378e-02 3.87577042e-02
6.11150563e-01 2.82742113e-01 -1.10690832e-01 -9.11904395e-01
2.96145111e-01 4.60582912e-01 8.71216774e-01 -2.71151513e-01
8.64714742e-01 5.35797298e-01 1.11650407e-01 -9.70229030e-01
-6.15699530e-01 -7.68861890e-01 -7.43633151e-01 6.61942959e-02
6.60126626e-01 -1.06032884e+00 -5.30313432e-01 6.76383853e-01
-1.26965165e+00 -2.63309687e-01 -4.36002821e-01 8.52833211e-01
-5.30956328e-01 2.91054428e-01 -5.23371398e-01 -1.06257737e+00
-3.45017761e-01 -7.60249078e-01 9.27351832e-01 -7.21386746e-02
-5.13080716e-01 -1.09973848e+00 3.84280652e-01 -1.12127692e-01
6.40504539e-01 3.46163183e-01 7.97517300e-01 -8.83445024e-01
-1.44902468e-01 -3.34248468e-02 9.64246318e-02 4.22413677e-01
1.43179581e-01 -3.92339267e-02 -1.73558605e+00 -8.08132738e-02
3.36556137e-01 7.19551593e-02 1.19692302e+00 6.22114539e-01
5.80864310e-01 -5.68958186e-02 5.49479425e-02 6.08338535e-01
1.24565208e+00 4.27707620e-02 4.54947561e-01 -1.57654937e-02
7.33758688e-01 3.74431729e-01 7.79645368e-02 3.99589241e-01
-2.75459941e-02 7.05796897e-01 4.56853807e-01 -1.51807256e-02
-6.12534642e-01 -1.75532982e-01 4.95990545e-01 1.16706812e+00
-2.68209010e-01 -2.06546232e-01 -7.07971752e-01 7.65636444e-01
-1.71730149e+00 -1.29567766e+00 -4.96932447e-01 2.29439950e+00
9.97529626e-01 2.51607537e-01 5.38341761e-01 9.80675340e-01
-1.90260261e-02 6.40080512e-01 -2.49984831e-01 -2.55300283e-01
-1.85875013e-01 7.01342881e-01 3.24180216e-01 6.05561137e-01
-1.14708030e+00 3.27961147e-01 6.83938980e+00 9.66232955e-01
-1.43403399e+00 2.15723798e-01 -3.11219811e-01 -4.33949560e-01
-2.84390539e-01 -5.77251278e-02 -1.20406628e-01 3.12531233e-01
1.31011105e+00 5.45983389e-02 7.14776218e-01 5.20605862e-01
5.05180061e-01 -1.01195738e-01 -1.34699130e+00 1.02689075e+00
1.09440107e-02 -1.14195490e+00 -3.74388307e-01 -1.38166949e-01
3.50988656e-01 2.60569632e-01 -8.45518522e-03 1.86791077e-01
-4.65440229e-02 -1.16436577e+00 1.23531437e+00 5.09514689e-01
6.15098655e-01 -8.10619593e-01 5.74038625e-01 3.68848950e-01
-1.35099995e+00 -3.84979956e-02 -1.99454185e-02 -2.92890042e-01
1.84167653e-01 8.92781973e-01 -6.13882005e-01 9.90248084e-01
4.24359977e-01 7.94084013e-01 -4.75272208e-01 1.44291842e+00
-1.75906986e-01 1.24552000e+00 -2.75378525e-01 5.01389682e-01
2.34646827e-01 -1.10107642e-02 1.00464451e+00 1.59656990e+00
4.12620842e-01 -2.80132681e-01 -1.86237432e-02 6.86420739e-01
3.13178390e-01 -3.17580737e-02 -3.02900791e-01 -1.13485061e-01
1.78277478e-01 1.10334420e+00 -7.14699805e-01 2.61112824e-02
-3.35250676e-01 7.85389304e-01 -3.22585970e-01 5.26377439e-01
-6.05357647e-01 -6.47625506e-01 8.54645908e-01 4.50731441e-02
5.96123636e-01 -5.03965259e-01 -3.58740479e-01 -9.81432855e-01
-1.34160161e-01 -1.00640225e+00 8.84186476e-02 -8.55333984e-01
-1.05817139e+00 4.30030406e-01 -8.41367021e-02 -1.33452296e+00
-6.78123116e-01 -5.12324810e-01 -9.40656364e-01 1.02948415e+00
-1.56065738e+00 -8.11942220e-01 8.91247541e-02 5.14162838e-01
3.84918064e-01 -6.82112724e-02 8.51544857e-01 3.95633668e-01
-5.54024801e-02 3.87248427e-01 4.11225617e-01 2.70214677e-01
8.33174288e-01 -1.36792016e+00 4.08621192e-01 7.85202146e-01
8.26776266e-01 6.12274528e-01 1.11995924e+00 -3.92166913e-01
-1.28902352e+00 -8.39467824e-01 7.86427498e-01 -4.97649103e-01
7.92164743e-01 -4.22450960e-01 -9.83722687e-01 3.17961216e-01
5.97657025e-01 -2.75144666e-01 7.93686092e-01 3.05545986e-01
-3.60435933e-01 -1.35536358e-01 -5.51062644e-01 3.29816699e-01
8.20533633e-01 -9.41555679e-01 -9.55749869e-01 -7.87300020e-02
7.02139020e-01 -2.57443935e-01 -5.19392550e-01 1.61956385e-01
7.88069069e-01 -1.19684112e+00 1.28012061e+00 -3.64421934e-01
3.93309027e-01 -3.59013736e-01 -4.04808186e-02 -1.74123585e+00
-4.33428645e-01 -1.17894828e+00 -3.62287521e-01 1.36394441e+00
1.96342140e-01 -4.20311600e-01 4.56442863e-01 -2.82602251e-01
-1.95222884e-01 -2.16114402e-01 -1.07701457e+00 -1.14882028e+00
2.55701691e-01 -1.14291215e+00 6.36665523e-01 9.29750144e-01
1.77896284e-02 4.48484451e-01 -5.29179096e-01 1.95050508e-01
3.59805375e-01 2.40385085e-01 5.78506827e-01 -1.60377276e+00
-7.42253900e-01 -8.73749375e-01 -3.86896543e-02 -5.26378036e-01
8.81935209e-02 -9.09824967e-01 -1.41780913e-01 -1.48548365e+00
-3.82046491e-01 -5.21654449e-02 -6.86465859e-01 3.72623384e-01
-8.86934623e-03 2.67121285e-01 4.60427672e-01 7.35576674e-02
-1.67818204e-01 4.26050246e-01 7.45048225e-01 2.60985864e-04
-3.74138087e-01 9.21728760e-02 -6.07345223e-01 1.06130290e+00
5.83944142e-01 -6.98040128e-01 -6.26320183e-01 -3.38872313e-01
3.87032658e-01 2.80132949e-01 7.07844496e-01 -1.40253508e+00
1.52099505e-01 6.46145493e-02 2.26297989e-01 -6.06551349e-01
5.80066919e-01 -8.01360726e-01 2.82447636e-01 1.53847948e-01
-2.43740633e-01 -4.81530637e-01 5.60188413e-01 4.77941066e-01
-3.72166812e-01 -3.14075053e-01 2.29873225e-01 1.78513393e-01
-2.12949350e-01 -2.75636733e-01 -4.88834441e-01 1.77505225e-01
1.87555298e-01 -1.50834948e-01 -7.23619908e-02 -7.49979079e-01
-7.19607592e-01 -4.18535352e-01 5.10329008e-02 1.82115525e-01
1.83278114e-01 -1.24352932e+00 -9.66638625e-01 1.72500923e-01
-2.49435380e-01 -5.03579676e-01 3.14504236e-01 1.02316272e+00
-8.19553286e-02 4.93302435e-01 -1.42911941e-01 -3.21587294e-01
-1.12765992e+00 5.01879632e-01 4.08267558e-01 -1.24604240e-01
-5.58105826e-01 8.98648143e-01 -5.91831729e-02 -1.93948016e-01
1.50748506e-01 -6.21868730e-01 -2.85613686e-01 5.29377699e-01
5.70363343e-01 5.79161644e-01 3.53910536e-01 -7.02721894e-01
-5.15676796e-01 6.59220934e-01 5.27831256e-01 -5.81623197e-01
1.47820127e+00 1.17285162e-01 5.03862798e-02 8.57942224e-01
1.04707563e+00 8.77031803e-01 -1.13961339e+00 -1.47247046e-01
-7.18023777e-02 -2.33175978e-01 5.15366256e-01 -1.06227672e+00
-8.47856998e-01 1.26218379e+00 3.30590963e-01 4.47410285e-01
1.39354980e+00 -6.44241691e-01 7.84296215e-01 1.94199547e-01
3.75866562e-01 -9.47196364e-01 -1.18564777e-01 5.02196014e-01
8.93984735e-01 -8.96176517e-01 6.78439587e-02 -8.69861096e-02
-1.75092369e-01 1.26920140e+00 -2.91907459e-01 -3.43438566e-01
8.50980759e-01 5.09125590e-01 1.18969396e-01 1.81658283e-01
-5.01902640e-01 -4.64223117e-01 7.49711633e-01 6.35335088e-01
6.20316386e-01 -2.24265352e-01 1.15290180e-01 1.01639986e+00
-6.76919162e-01 2.98623554e-02 5.73527813e-01 6.18598819e-01
-3.33617747e-01 -1.19272184e+00 -7.86035538e-01 1.83197603e-01
-7.69920409e-01 -4.75894272e-01 -5.73911607e-01 5.23467004e-01
2.35521019e-01 1.35773849e+00 -1.79127336e-01 -3.58411908e-01
2.28275031e-01 4.34914500e-01 4.92301226e-01 -4.54284340e-01
-1.00521719e+00 7.14466035e-01 2.56975114e-01 -3.80772769e-01
-5.13850868e-01 -5.96276164e-01 -1.22025204e+00 -1.89527601e-01
-3.00697505e-01 1.10899270e-01 4.67431694e-01 9.96858239e-01
2.61138856e-01 1.04820359e+00 3.44414622e-01 -1.32449281e+00
-4.33342785e-01 -1.06204689e+00 -8.40220332e-01 -4.78001982e-02
1.02402210e+00 -4.67303485e-01 -5.06887972e-01 2.48813793e-01] | [15.423227310180664, 5.546756267547607] |
4d5ed394-596f-4204-b992-e2b2da10f9a3 | a-low-rank-tensor-regularization-strategy-for | 1803.06355 | null | http://arxiv.org/abs/1803.06355v1 | http://arxiv.org/pdf/1803.06355v1.pdf | A Low-rank Tensor Regularization Strategy for Hyperspectral Unmixing | Tensor-based methods have recently emerged as a more natural and effective
formulation to address many problems in hyperspectral imaging. In hyperspectral
unmixing (HU), low-rank constraints on the abundance maps have been shown to
act as a regularization which adequately accounts for the multidimensional
structure of the underlying signal. However, imposing a strict low-rank
constraint for the abundance maps does not seem to be adequate, as important
information that may be required to represent fine scale abundance behavior may
be discarded. This paper introduces a new low-rank tensor regularization that
adequately captures the low-rank structure underlying the abundance maps
without hindering the flexibility of the solution. Simulation results with
synthetic and real data show that the the extra flexibility introduced by the
proposed regularization significantly improves the unmixing results. | ['José Carlos Moreira Bermudez', 'Tales Imbiriba', 'Ricardo Augusto Borsoi'] | 2018-03-16 | null | null | null | null | ['hyperspectral-unmixing'] | ['computer-vision'] | [ 5.08491874e-01 -5.42389095e-01 1.03725299e-01 -1.32861644e-01
-1.29633456e-01 -5.15017450e-01 4.39021230e-01 -1.77364379e-01
-8.51376727e-02 6.66769028e-01 2.72701651e-01 7.35765919e-02
-7.19186604e-01 -4.74841058e-01 -1.69290349e-01 -1.23444724e+00
-1.37677789e-01 6.34205565e-02 -2.50244349e-01 -3.00691277e-01
6.77677542e-02 6.87697828e-01 -1.74356461e+00 1.74590081e-01
1.06531560e+00 8.78431797e-01 3.15748304e-01 2.66196728e-01
1.07550465e-01 5.07053256e-01 -1.89565703e-01 1.73337191e-01
5.97864270e-01 -3.32190543e-01 -4.54798192e-01 6.38738811e-01
7.17672348e-01 -2.25021645e-01 -4.15113777e-01 1.43762016e+00
1.81581184e-01 1.19934008e-01 7.00933456e-01 -9.25470591e-01
-2.05245748e-01 2.74053246e-01 -9.93209064e-01 1.47477649e-02
-9.47727859e-02 -8.31542313e-02 1.21962154e+00 -9.74801362e-01
3.62308115e-01 9.59441364e-01 5.25965512e-01 -5.53733595e-02
-1.44414186e+00 -3.34626913e-01 -1.31283164e-01 -2.18397635e-03
-1.53214288e+00 -2.78045982e-01 1.15933383e+00 -7.59151280e-01
3.45481366e-01 7.30677307e-01 6.53515995e-01 4.92124349e-01
1.45071966e-03 4.62107450e-01 1.34186125e+00 -4.22650158e-01
-2.38800477e-02 -2.16764912e-01 4.59085107e-01 5.52786052e-01
8.79321933e-01 4.68910150e-02 -4.27692086e-01 -7.02771902e-01
5.70321679e-01 -2.96888836e-02 -6.23551190e-01 -5.48769236e-01
-1.14457202e+00 9.02243614e-01 4.06832784e-01 4.13609385e-01
-6.15332127e-01 -2.57626414e-01 1.50564626e-01 6.01569861e-02
7.12881804e-01 6.84155405e-01 1.24240480e-02 4.77567554e-01
-1.00551903e+00 2.84961481e-02 2.08970949e-01 3.82823825e-01
1.08975995e+00 5.70682943e-01 7.27070123e-02 9.09897625e-01
3.99214804e-01 7.74129331e-01 2.78446585e-01 -9.94302869e-01
2.80029207e-01 6.93856657e-01 3.82671028e-01 -1.26263189e+00
-4.00112480e-01 -7.74873316e-01 -1.26842523e+00 2.33536616e-01
3.74746770e-01 -7.68330768e-02 -7.12413430e-01 1.56888390e+00
1.07054092e-01 1.27360165e-01 8.07025880e-02 1.19844759e+00
4.18845564e-01 8.17367554e-01 -1.54196963e-01 -5.82176387e-01
1.01768494e+00 -5.36625445e-01 -1.00891864e+00 -3.35611522e-01
3.98939312e-01 -9.18640018e-01 8.31076682e-01 3.69558156e-01
-7.12341726e-01 -9.01023373e-02 -1.22832346e+00 2.75832117e-01
-8.99234340e-02 3.47805351e-01 9.97340500e-01 5.66233218e-01
-5.84024966e-01 5.74522793e-01 -6.73493326e-01 -2.21358672e-01
-1.29631430e-01 2.56920695e-01 -5.30873477e-01 -2.99394429e-01
-9.66311097e-01 5.09131908e-01 3.39498311e-01 7.38378704e-01
-2.96843171e-01 -3.61475170e-01 -6.87085152e-01 2.72243135e-02
1.85747683e-01 -4.71650273e-01 4.43098336e-01 -9.06372428e-01
-1.20981622e+00 4.26278234e-01 -1.94471136e-01 -1.69260781e-02
2.07289159e-01 4.37908061e-02 -3.25357109e-01 5.34772933e-01
-6.06778860e-02 3.03217679e-01 1.15121603e+00 -1.32007968e+00
-1.27755314e-01 -4.62745368e-01 -1.43866315e-01 2.37821653e-01
-5.59132516e-01 -2.46832013e-01 1.42443806e-01 -8.93710554e-01
9.74832475e-01 -1.19225645e+00 -2.01474518e-01 -1.75572306e-01
-2.49171972e-01 5.00842869e-01 8.24834704e-01 -6.79423571e-01
1.12381291e+00 -2.19139051e+00 4.93796229e-01 4.44106966e-01
1.59874246e-01 1.04373112e-01 -2.70285130e-01 4.46517378e-01
-3.34516883e-01 -4.18265872e-02 -7.92034268e-01 -1.20981438e-02
-2.50808895e-01 3.58926415e-01 -1.78704545e-01 7.84229815e-01
2.61368811e-01 2.80560642e-01 -8.07047963e-01 1.22004569e-01
3.49915117e-01 4.85168308e-01 -3.89270663e-01 7.79917017e-02
-2.44850535e-02 5.42508304e-01 -2.78015673e-01 5.09651363e-01
1.11829925e+00 -2.89779961e-01 3.76019537e-01 -7.24137664e-01
-2.13763848e-01 -2.95038521e-01 -1.47492921e+00 1.20240998e+00
8.95349458e-02 3.37138116e-01 6.40597403e-01 -1.10331821e+00
5.64433634e-01 3.17347765e-01 1.01698232e+00 -1.78852797e-01
-1.43124521e-01 3.98192137e-01 3.68904620e-01 -4.57787335e-01
5.90967357e-01 -6.12786531e-01 3.52315784e-01 1.61133677e-01
-3.19432914e-01 -2.23911911e-01 2.95443326e-01 -3.67542692e-02
4.64161545e-01 -1.02246501e-01 1.17486879e-01 -7.54461944e-01
8.62652540e-01 1.91814512e-01 5.79286575e-01 4.14611727e-01
1.26899138e-01 5.13837516e-01 8.69779140e-02 -3.43634248e-01
-1.05767965e+00 -5.84760308e-01 -4.14342076e-01 5.16363978e-01
-6.90784529e-02 -5.11370786e-02 -2.96471059e-01 -1.37088224e-01
-6.51171207e-02 1.34666905e-01 -3.76057446e-01 2.64066197e-02
-1.51365429e-01 -1.74537992e+00 2.84988642e-01 -9.74447429e-02
5.33887327e-01 -2.56894380e-01 -2.54595250e-01 1.78263292e-01
-5.87926328e-01 -1.19642484e+00 -2.32480958e-01 2.45338917e-01
-1.17311466e+00 -8.99126053e-01 -7.15937912e-01 -1.24558181e-01
7.67057598e-01 8.71681988e-01 4.96385932e-01 -2.03225389e-01
-2.80987859e-01 1.51757166e-01 -3.10830116e-01 6.23389632e-02
-1.84545800e-01 -2.92086244e-01 2.10560456e-01 6.46847427e-01
9.24980864e-02 -5.11264503e-01 -2.87855327e-01 3.44602168e-01
-1.35746431e+00 3.39190871e-03 4.21919942e-01 1.05445611e+00
4.18014616e-01 5.16634643e-01 2.77066976e-01 -6.18820667e-01
3.52081925e-01 -2.94271678e-01 -7.07613766e-01 1.85907021e-01
-5.57577789e-01 2.32247844e-01 4.86584723e-01 -4.12879169e-01
-1.02826130e+00 2.53440887e-01 3.26430202e-01 -5.39691150e-01
1.08224340e-01 9.45592344e-01 -3.38198841e-02 -7.45124817e-01
5.48433065e-01 2.64364064e-01 1.75814018e-01 -7.36845553e-01
8.43493938e-02 5.35364449e-01 2.69656837e-01 -6.66829526e-01
1.08131099e+00 7.81545639e-01 7.82995999e-01 -1.60084498e+00
-9.78360891e-01 -8.90870512e-01 -6.29431784e-01 7.05455244e-02
6.62628114e-01 -1.04156888e+00 -4.31072414e-01 5.46096325e-01
-6.95315182e-01 1.42554119e-01 -3.64168547e-02 8.31724942e-01
-1.40102670e-01 1.02191508e+00 -5.22182524e-01 -1.00669897e+00
-1.18722700e-01 -1.11781621e+00 6.70504749e-01 -2.31291085e-01
1.94409356e-01 -8.93257499e-01 -1.60131454e-01 5.15804529e-01
4.37548250e-01 4.66689497e-01 1.00017309e+00 9.31229144e-02
-4.54980016e-01 -2.46617332e-01 -2.92913109e-01 4.43805397e-01
3.20872426e-01 1.40194535e-01 -1.02053809e+00 -3.97862554e-01
3.46532077e-01 7.81779177e-03 8.40464532e-01 5.40177882e-01
5.95977724e-01 -2.70538658e-01 1.25866994e-01 7.24464059e-01
1.59086001e+00 -2.14343295e-01 4.31615412e-01 1.38203561e-01
9.28748488e-01 9.13706541e-01 4.42416370e-01 5.83737135e-01
-2.37355947e-01 6.56128466e-01 6.04095459e-01 -3.10970545e-01
1.81265503e-01 2.18048453e-01 1.72329187e-01 1.08433807e+00
-3.46735746e-01 -1.81548949e-02 -7.56494164e-01 2.17655659e-01
-1.93116915e+00 -1.08245862e+00 -8.92390788e-01 2.33908820e+00
3.50868016e-01 -4.47780371e-01 -7.25704506e-02 4.20836389e-01
6.46603107e-01 4.49007630e-01 -3.07435662e-01 1.91587761e-01
-7.96717167e-01 -8.49392340e-02 6.90775037e-01 7.80273259e-01
-1.12598288e+00 5.32797754e-01 7.03055334e+00 4.36664909e-01
-1.29431736e+00 -1.32855311e-01 -6.96694851e-03 2.44748250e-01
-3.91791970e-01 -1.99762788e-02 -2.70565361e-01 1.23511039e-01
5.57760596e-01 -1.51184313e-02 4.86172348e-01 3.02701235e-01
6.17962420e-01 -2.39139408e-01 -4.88922834e-01 1.01145148e+00
2.77444776e-02 -9.46669281e-01 4.96273756e-01 4.28744048e-01
8.52005363e-01 -4.44929972e-02 1.26319274e-01 -4.59755808e-01
-2.86047548e-01 -7.08678722e-01 4.48541075e-01 5.58556974e-01
5.47003210e-01 -5.66054642e-01 7.91414797e-01 3.42236042e-01
-1.11980391e+00 -1.40016481e-01 -7.67582953e-01 -2.96137035e-01
3.80784422e-02 1.05879891e+00 -3.11808825e-01 9.22127903e-01
2.24611133e-01 8.50938439e-01 -5.07248878e-01 9.85624313e-01
8.91787698e-04 4.81628507e-01 -5.43982267e-01 5.72602808e-01
5.47421157e-01 -1.10215271e+00 9.56301749e-01 9.09162700e-01
4.99594778e-01 4.66934025e-01 3.03793609e-01 6.20537698e-01
4.48694438e-01 3.04221451e-01 -7.39472389e-01 -6.39541507e-01
-2.75677174e-01 1.30864894e+00 -5.41105449e-01 -1.32144600e-01
-4.16347355e-01 7.53851116e-01 -2.72725910e-01 6.27780735e-01
-2.64183700e-01 1.53531164e-01 9.10043716e-01 2.74472505e-01
1.24679528e-01 -6.39291525e-01 -2.50285774e-01 -1.61016262e+00
-9.37350988e-02 -1.03049433e+00 3.99220735e-01 -7.68740416e-01
-1.33196092e+00 4.93166864e-01 3.15460702e-03 -1.54699123e+00
3.61688691e-03 -8.85092437e-01 -5.11537939e-02 1.07962775e+00
-1.57147992e+00 -1.12366796e+00 -3.98743391e-01 4.53158319e-01
7.11144507e-02 -2.97734458e-02 8.76747429e-01 4.04763132e-01
-6.82941198e-01 -1.93739101e-01 4.32502449e-01 -3.89612883e-01
3.72193068e-01 -1.08690774e+00 -6.90837502e-01 1.17248297e+00
-3.38918641e-02 8.51960361e-01 1.03976202e+00 -7.14032114e-01
-1.61258614e+00 -8.36513281e-01 3.34801197e-01 8.02077651e-02
9.07998264e-01 9.20231864e-02 -1.13836491e+00 3.51228893e-01
4.61576246e-02 1.12629637e-01 9.35523987e-01 -1.71462461e-01
-4.67686713e-01 -2.36454248e-01 -1.04959595e+00 3.51123899e-01
6.15520358e-01 -5.57453036e-01 -2.89895952e-01 5.98493814e-01
1.06423810e-01 1.75231650e-01 -9.16653574e-01 7.07329869e-01
4.35896724e-01 -8.26524734e-01 1.04217541e+00 -4.18757528e-01
1.16479315e-01 -8.60863030e-01 -5.46159804e-01 -1.18497396e+00
-8.16309512e-01 -5.79677045e-01 9.29187238e-02 6.79275036e-01
3.21010113e-01 -6.94171786e-01 6.52698815e-01 4.62413460e-01
1.03236607e-03 -1.55811653e-01 -6.65818930e-01 -8.83830786e-01
-1.28606692e-01 -1.26805753e-01 3.11913759e-01 1.39022481e+00
-1.51158884e-01 4.02725786e-01 -7.12767482e-01 8.11437666e-01
1.18900955e+00 1.21118717e-01 3.30243021e-01 -1.70478511e+00
-2.13766366e-01 -3.69596362e-01 -2.79607743e-01 -6.22295022e-01
2.20024571e-01 -8.63111258e-01 -1.87968865e-01 -1.26288891e+00
1.93385795e-01 -2.52502680e-01 -2.37917066e-01 3.09608877e-01
-1.16360240e-01 5.85894108e-01 8.70900005e-02 6.82475209e-01
3.89074355e-01 6.14296019e-01 1.15270364e+00 -5.05148470e-01
-8.44388157e-02 -1.38435140e-01 -3.97311687e-01 7.34484613e-01
5.90028346e-01 -2.68252879e-01 -4.90473777e-01 -2.74075180e-01
4.48801547e-01 3.60022523e-02 6.53199703e-02 -9.52979743e-01
-1.56843618e-01 -3.98923814e-01 1.95721790e-01 -3.63233179e-01
6.65020704e-01 -1.13873506e+00 7.00579941e-01 3.21204960e-01
5.07035665e-02 -2.62313664e-01 1.91292971e-01 4.50355142e-01
-5.09190559e-01 -4.86097395e-01 9.57656264e-01 -1.70043021e-01
-4.93910670e-01 2.76567429e-01 -3.52834672e-01 -6.23976707e-01
5.82896054e-01 -1.43511936e-01 -1.15694433e-01 -2.75740355e-01
-8.21322739e-01 -2.06370771e-01 6.00170016e-01 -9.05747116e-02
3.55559111e-01 -1.22766829e+00 -7.78585970e-01 3.46954107e-01
2.91089535e-01 -4.33619350e-01 3.14411044e-01 1.04791045e+00
-6.48098528e-01 3.67191225e-01 -1.97899029e-01 -7.26478159e-01
-1.18006158e+00 4.79765773e-01 4.93346095e-01 -1.67569950e-01
-5.29999852e-01 5.61964273e-01 3.23231280e-01 -3.58269542e-01
-3.81061316e-01 -3.02321225e-01 -3.62326652e-01 3.17585826e-01
5.27844667e-01 5.14340103e-01 5.50898863e-03 -1.25761592e+00
-2.06444994e-01 8.65662754e-01 4.74577904e-01 -1.51669309e-01
1.46651101e+00 -3.22196335e-01 -8.00193965e-01 5.65266788e-01
9.55477774e-01 1.18480317e-01 -9.99168694e-01 -2.11334497e-01
7.93849751e-02 -6.17622972e-01 6.41398251e-01 -3.82433116e-01
-8.22694600e-01 9.50197637e-01 4.45107609e-01 4.54451501e-01
1.22695267e+00 -8.18796158e-01 2.36667857e-01 5.30263007e-01
3.05209547e-01 -8.02217126e-01 -1.72791839e-01 4.42958742e-01
1.01530838e+00 -1.18963754e+00 4.57824796e-01 -8.74234140e-01
-3.71102601e-01 1.32504928e+00 1.45330757e-01 1.26774415e-01
5.72047472e-01 -1.55509055e-01 9.51087773e-02 -2.35431239e-01
-1.33148849e-01 -3.49603087e-01 6.05675519e-01 3.57835591e-01
4.54502940e-01 2.93984562e-01 -4.58690166e-01 -2.61341721e-01
2.32262447e-01 -4.42707777e-01 7.93642819e-01 5.98702073e-01
-5.10194242e-01 -1.00159252e+00 -1.04896247e+00 4.80143249e-01
-3.93190265e-01 -3.04285716e-02 -3.35381150e-01 3.82723272e-01
8.62725526e-02 1.02625656e+00 -4.21909392e-01 -1.06196575e-01
6.12377748e-02 2.74854928e-01 4.15661693e-01 -5.51301956e-01
-8.99797156e-02 6.38154626e-01 1.66686494e-02 -2.19020605e-01
-8.78343999e-01 -5.77571869e-01 -8.11233163e-01 -1.95895031e-01
-4.23524678e-01 4.27452415e-01 6.46427095e-01 7.63720810e-01
3.58645478e-03 1.26071468e-01 7.71363199e-01 -9.11046267e-01
-7.01317728e-01 -1.13756585e+00 -1.37421155e+00 4.46838200e-01
6.48165643e-01 -8.03900540e-01 -9.73534763e-01 -1.31771713e-02] | [10.080864906311035, -2.025794506072998] |
ca6bea22-8352-4f40-8779-435136cd427a | efficient-relation-aware-neighborhood | 2212.05581 | null | https://arxiv.org/abs/2212.05581v3 | https://arxiv.org/pdf/2212.05581v3.pdf | Efficient Relation-aware Neighborhood Aggregation in Graph Neural Networks via Tensor Decomposition | Many Graph Neural Networks (GNNs) are proposed for Knowledge Graph Embedding (KGE). However, lots of these methods neglect the importance of the information of relations and combine it with the information of entities inefficiently, leading to low expressiveness. To address this issue, we introduce a general knowledge graph encoder incorporating tensor decomposition in the aggregation function of Relational Graph Convolutional Network (R-GCN). In our model, neighbor entities are transformed using projection matrices of a low-rank tensor which are defined by relation types to benefit from multi-task learning and produce expressive relation-aware representations. Besides, we propose a low-rank estimation of the core tensor using CP decomposition to compress and regularize our model. We use a training method inspired by contrastive learning, which relieves the training limitation of the 1-N method on huge graphs. We achieve favorably competitive results on FB15k-237 and WN18RR with embeddings in comparably lower dimensions. | ['Hadi Moradi', 'Reshad Hosseini', 'Peyman Baghershahi'] | 2022-12-11 | null | null | null | null | ['knowledge-graph-embedding', 'general-knowledge'] | ['graphs', 'miscellaneous'] | [-3.30801785e-01 4.21809137e-01 -3.60301673e-01 -2.06825018e-01
4.02002595e-02 -5.31289220e-01 3.19600403e-01 9.86411050e-02
-4.12021339e-01 5.17664015e-01 5.06984413e-01 -4.24847901e-01
-4.57118690e-01 -1.25505972e+00 -8.35522115e-01 -4.57402468e-01
-3.86462927e-01 4.39934283e-01 7.49744335e-03 -5.15119851e-01
-4.19680297e-01 4.10631150e-01 -1.10506558e+00 4.15600598e-01
6.61920965e-01 9.34277773e-01 -2.00750902e-01 3.58413219e-01
-2.64266729e-01 1.19369054e+00 -3.16564649e-01 -1.04145992e+00
2.12194309e-01 5.36948219e-02 -1.11571908e+00 -2.55401641e-01
3.39823872e-01 -3.50763559e-01 -1.19775856e+00 9.48875666e-01
3.76563877e-01 2.63472348e-01 5.11737466e-01 -1.31546950e+00
-1.26347053e+00 1.11821842e+00 -4.45501745e-01 1.05807021e-01
1.28162071e-01 -2.75476575e-01 1.64056408e+00 -7.67355800e-01
8.35132062e-01 1.20534229e+00 6.12740338e-01 1.98693097e-01
-1.13102710e+00 -5.49758434e-01 2.54584610e-01 5.35809159e-01
-1.49221551e+00 -1.51272982e-01 8.64298046e-01 -1.99809462e-01
1.26689923e+00 1.31088585e-01 6.95995867e-01 1.04115772e+00
-2.87631392e-01 6.43536329e-01 2.97137439e-01 -4.95200269e-02
-2.55591452e-01 -1.44260317e-01 2.80315995e-01 1.15238857e+00
7.06980050e-01 -1.85497090e-01 -5.02909005e-01 -9.62397605e-02
6.96672857e-01 1.57288417e-01 -4.37072128e-01 -6.19355619e-01
-1.15153408e+00 8.72968376e-01 1.10683429e+00 3.69262993e-01
-2.59740978e-01 5.14701307e-01 7.28581488e-01 5.12296617e-01
3.32034588e-01 4.63541955e-01 -5.42899489e-01 2.52153665e-01
-1.05795786e-01 -3.09005529e-02 1.01395500e+00 1.07876682e+00
7.79858351e-01 7.18332678e-02 -2.07875967e-01 8.04807246e-01
1.88940436e-01 2.38745183e-01 2.83550054e-01 -6.70257747e-01
8.37595880e-01 1.09559739e+00 -4.73712265e-01 -1.46880281e+00
-4.26566660e-01 -7.34389961e-01 -1.30179179e+00 -5.45668960e-01
-1.24027897e-02 6.99603707e-02 -6.34848714e-01 1.52264917e+00
2.76777148e-01 1.50631353e-01 2.28495106e-01 8.29715490e-01
1.15842295e+00 5.00414848e-01 -1.17146932e-01 2.08273008e-01
1.46667182e+00 -1.07792521e+00 -8.07564735e-01 1.01904295e-01
1.14327860e+00 -8.67179781e-03 9.22900736e-01 4.46605496e-02
-6.97252095e-01 -2.63924628e-01 -1.07795370e+00 -6.00047648e-01
-9.07447517e-01 2.28552014e-01 1.48085332e+00 4.34007287e-01
-9.51375544e-01 6.68579817e-01 -6.51063621e-01 -4.13178131e-02
5.66661417e-01 4.21448350e-01 -8.67644787e-01 -3.08683366e-01
-1.71009254e+00 7.15126097e-01 8.22667181e-01 3.92843872e-01
-4.05405939e-01 -7.22644746e-01 -1.15287483e+00 4.49328631e-01
5.88188350e-01 -8.98395121e-01 4.02799189e-01 -3.13122511e-01
-1.21467209e+00 5.25455713e-01 3.09537292e-01 -4.62109089e-01
-1.01098433e-01 -2.38436103e-01 -6.05076671e-01 2.66086727e-01
-1.68958902e-01 2.39222854e-01 4.20180500e-01 -9.05347526e-01
-3.95359397e-02 -3.08051765e-01 7.80654728e-01 9.78711694e-02
-7.69960225e-01 -3.31771761e-01 -5.49632609e-01 -5.71924329e-01
4.58429195e-02 -6.87281728e-01 -1.51385382e-01 -2.37718001e-01
-5.94790459e-01 -3.31708014e-01 6.51302874e-01 -6.97413921e-01
1.49622428e+00 -2.16174293e+00 4.08892959e-01 3.54778498e-01
8.59749436e-01 4.48150009e-01 -3.82600546e-01 6.00499392e-01
-2.42958710e-01 1.69085369e-01 6.24592938e-02 -1.71483815e-01
2.65476853e-01 6.72409654e-01 -2.87793577e-01 1.69646367e-01
3.61275494e-01 1.31447041e+00 -1.03452206e+00 -4.35627609e-01
-1.70605600e-01 6.48849547e-01 -7.88278639e-01 1.27078071e-01
-8.75092298e-02 -3.30095798e-01 -5.25321424e-01 5.30244112e-01
6.54015362e-01 -7.98930287e-01 6.14003479e-01 -9.25898671e-01
5.40608108e-01 3.47789884e-01 -1.10983789e+00 1.73534918e+00
-4.22628760e-01 1.58401519e-01 -2.70298272e-01 -1.25594735e+00
7.53155470e-01 1.62205994e-01 4.09927964e-01 -4.29024756e-01
6.50121272e-02 6.28712997e-02 1.34555027e-01 -3.70778292e-01
6.31172776e-01 2.64088482e-01 1.94533750e-01 2.27455989e-01
4.87892807e-01 3.97882670e-01 4.36725020e-01 8.02860737e-01
1.47093391e+00 7.25198016e-02 1.34533718e-01 8.69962275e-02
4.04939532e-01 -3.52258891e-01 3.71092588e-01 3.00669193e-01
2.81651527e-01 9.66259092e-02 9.63512242e-01 -7.35097766e-01
-7.19344020e-01 -8.81528497e-01 2.24587828e-01 1.06249714e+00
-1.47985220e-01 -1.09111941e+00 -1.49752662e-01 -9.37829614e-01
2.40796685e-01 2.78998077e-01 -6.79274678e-01 -6.05339527e-01
-5.50530732e-01 -9.10991132e-01 7.20512152e-01 5.47921360e-01
4.80856597e-01 -6.38370216e-01 2.66189426e-01 1.54442161e-01
-2.02391475e-01 -1.52448285e+00 -3.08054000e-01 2.63202429e-01
-7.87821770e-01 -1.19047880e+00 -2.70743459e-01 -6.99264705e-01
7.45085716e-01 1.82037368e-01 1.12275553e+00 1.91398576e-01
-2.23789401e-02 1.68426812e-01 -6.01916015e-01 2.38800794e-01
5.40184304e-02 3.86888713e-01 8.27357844e-02 -1.47107905e-02
3.45384330e-01 -1.00469160e+00 -3.69713843e-01 -6.00620955e-02
-9.06214416e-01 7.64948130e-02 8.28384399e-01 9.77347493e-01
4.24182802e-01 2.98928291e-01 3.35029960e-01 -1.23652947e+00
6.61170125e-01 -4.45895433e-01 -4.39703256e-01 5.07379293e-01
-6.70638084e-01 5.85486650e-01 8.54948759e-01 -3.69195968e-01
-5.73635161e-01 -2.40694597e-01 2.76501596e-01 -7.69696712e-01
6.68660820e-01 9.98211145e-01 -3.11680377e-01 -3.59655589e-01
5.34289896e-01 5.39361350e-02 -2.11755201e-01 -5.01370132e-01
8.45063329e-01 1.14599094e-01 2.75186896e-01 -7.57384837e-01
9.91638660e-01 3.35375577e-01 4.71298337e-01 -3.98585498e-01
-1.04321182e+00 -1.96679160e-01 -5.38363338e-01 3.11345398e-01
5.75549841e-01 -1.09261358e+00 -1.03659666e+00 -5.12254275e-02
-1.24811971e+00 2.94289887e-02 -3.02761078e-01 6.66846395e-01
-4.60770316e-02 5.17781615e-01 -1.04129136e+00 -3.12459528e-01
-4.41879392e-01 -7.89154470e-01 7.83513188e-01 -2.43699774e-01
4.36608613e-01 -9.68427241e-01 1.32470712e-04 4.69676673e-01
3.93249094e-01 1.93797708e-01 1.32768857e+00 -7.39629805e-01
-8.87990057e-01 -1.03242114e-01 -8.10698986e-01 4.99197483e-01
-9.09617729e-03 -3.05684298e-01 -6.84228182e-01 -1.79077849e-01
-6.71465099e-01 -3.87121081e-01 1.16632891e+00 -1.45989463e-01
1.21522498e+00 -6.17954671e-01 -3.78579974e-01 9.55521643e-01
1.50321698e+00 -4.70826596e-01 5.19534647e-01 1.00660093e-01
1.62564456e+00 3.77895325e-01 2.65021492e-02 2.08364636e-01
9.55990851e-01 4.58677322e-01 4.29453015e-01 -1.08382637e-02
-2.41163909e-01 -4.73657131e-01 3.02221209e-01 1.39196610e+00
-6.46797538e-01 -1.14425249e-01 -7.80653477e-01 4.27361697e-01
-1.89708197e+00 -7.20126390e-01 -1.95180207e-01 1.60623825e+00
8.58079314e-01 4.21546623e-02 -1.61910892e-01 -3.70875411e-02
4.73254293e-01 4.65733767e-01 -1.22716300e-01 -1.74019173e-01
-3.59864444e-01 3.27870220e-01 8.05310905e-01 3.85023475e-01
-9.85863507e-01 1.05560946e+00 5.11038446e+00 7.51329541e-01
-7.08035052e-01 2.07325339e-01 1.62721649e-01 4.61659171e-02
-6.08777702e-01 3.27837430e-02 -5.73661506e-01 -6.67006942e-03
9.04103339e-01 -1.20919190e-01 7.03059912e-01 7.38462329e-01
-6.51097536e-01 6.29337490e-01 -1.13028824e+00 1.07949626e+00
-5.97760528e-02 -1.39248550e+00 3.97000909e-01 9.88192931e-02
5.47873855e-01 1.02551110e-01 -1.62195504e-01 8.47041070e-01
5.09509742e-01 -1.09655166e+00 1.39974477e-02 4.96460766e-01
7.83707440e-01 -8.08358490e-01 8.92093897e-01 -2.42400855e-01
-1.43999481e+00 4.86911498e-02 -8.42601955e-01 -1.00311236e-02
-9.90564302e-02 8.84636760e-01 -7.11175561e-01 1.31608832e+00
4.68161285e-01 9.32867110e-01 -6.05145812e-01 3.70870709e-01
-4.32351559e-01 4.16052610e-01 -3.07628751e-01 5.78597859e-02
1.84813932e-01 -3.19650888e-01 2.43537858e-01 1.06661952e+00
7.63102472e-02 1.17005058e-01 1.75710823e-02 7.96790123e-01
-6.49326086e-01 1.90160230e-01 -7.84048557e-01 -6.36966825e-01
2.27018163e-01 1.37193418e+00 -3.03507954e-01 -2.50054896e-01
-6.04927599e-01 8.88155162e-01 1.06596076e+00 6.40574872e-01
-6.88584983e-01 -6.49747372e-01 5.63568950e-01 -2.36372933e-01
6.34433508e-01 -2.64166862e-01 2.97586322e-01 -1.61161244e+00
3.59207690e-01 -5.88320494e-01 6.57229125e-01 -5.08147299e-01
-1.47977006e+00 6.57491088e-01 9.32203513e-03 -8.01921606e-01
8.03928748e-02 -8.98508728e-01 -3.79348099e-02 5.77477455e-01
-1.82018244e+00 -1.58809912e+00 -8.84189010e-02 7.37049937e-01
-6.32502317e-01 -1.54962346e-01 9.61322606e-01 7.94416308e-01
-6.33832037e-01 8.98258507e-01 -1.02791026e-01 7.81645775e-01
3.65877390e-01 -1.37807345e+00 4.11742806e-01 4.72831577e-01
3.64738822e-01 8.48073840e-01 1.19457291e-02 -4.92229491e-01
-1.86558688e+00 -1.30587673e+00 9.87919450e-01 -3.32008213e-01
1.15494442e+00 -5.48151493e-01 -8.90293062e-01 1.01662147e+00
-2.04399660e-01 7.80933440e-01 7.99268603e-01 8.25770259e-01
-1.07021856e+00 -4.47807044e-01 -7.24086344e-01 6.41135216e-01
1.58773446e+00 -9.18915808e-01 -4.23396587e-01 4.07571375e-01
1.39137888e+00 -3.89735311e-01 -1.52342999e+00 5.14568508e-01
4.12520826e-01 -4.94903922e-01 1.15108764e+00 -1.01560736e+00
5.16526699e-01 -3.07137638e-01 -2.56592005e-01 -1.26355219e+00
-5.81156969e-01 -3.43205929e-01 -8.47629309e-01 1.03739679e+00
4.56503063e-01 -7.84634650e-01 7.14030981e-01 1.81247473e-01
-2.16561183e-03 -9.13079381e-01 -7.19477177e-01 -8.60329151e-01
-2.92946577e-01 -1.39881179e-01 8.98891389e-01 1.44606113e+00
2.77800977e-01 8.03293586e-01 -3.07778656e-01 4.05959845e-01
5.77275276e-01 2.81050146e-01 6.68864965e-01 -1.19916594e+00
-4.26871091e-01 -2.22850844e-01 -8.23835433e-01 -8.65610421e-01
3.96380782e-01 -1.47655952e+00 -7.59000063e-01 -1.70428872e+00
2.11360082e-01 -3.40954751e-01 -6.82188094e-01 7.87690759e-01
-1.35610715e-01 -1.42747417e-01 2.23020967e-02 1.34590771e-02
-8.10421705e-01 8.14947963e-01 1.48201668e+00 -3.50304365e-01
2.32651606e-01 -5.96177459e-01 -7.68671870e-01 2.71486133e-01
4.16072994e-01 -3.36863160e-01 -7.55081952e-01 -6.36179328e-01
9.09768343e-01 -6.02715798e-02 4.10227299e-01 -6.98340178e-01
4.81084585e-01 1.08855672e-01 1.33117726e-02 -2.64837533e-01
3.21525693e-01 -9.75040019e-01 1.63557872e-01 1.53764531e-01
-1.07837811e-01 4.72110277e-03 -1.05823286e-01 7.48218477e-01
-3.87253314e-01 1.23145290e-01 5.02598919e-02 -4.50270027e-02
-6.90966249e-01 8.62773180e-01 5.44694483e-01 7.27619752e-02
4.20948327e-01 2.24304467e-01 -7.63464570e-01 -1.14583723e-01
-6.79259837e-01 2.71132112e-01 3.74380648e-02 3.02629441e-01
6.01172268e-01 -1.81528211e+00 -5.66261351e-01 3.28749791e-02
4.29336786e-01 3.05360198e-01 3.75316471e-01 9.05365527e-01
-4.55434591e-01 4.36186135e-01 -5.68948388e-02 6.83795661e-02
-6.64068282e-01 9.49792981e-01 1.86185181e-01 -8.93550813e-01
-7.86799550e-01 9.49054480e-01 1.85112625e-01 -6.84471965e-01
8.92161131e-02 -4.99627203e-01 -3.91837299e-01 8.42595175e-02
2.08751544e-01 2.36382276e-01 1.81364492e-01 -4.27631527e-01
-3.83312076e-01 2.43960246e-01 -2.36226737e-01 4.74608451e-01
1.54075098e+00 2.85570621e-01 -6.07818067e-01 1.05599090e-01
1.53834248e+00 3.16365585e-02 -5.79062700e-01 -6.01449847e-01
7.30177313e-02 -1.81988508e-01 1.26207277e-01 -3.95365119e-01
-1.48568714e+00 6.53886437e-01 -5.10277562e-02 1.42645732e-01
8.90969098e-01 1.06457300e-01 9.20973480e-01 1.11186516e+00
3.56058151e-01 -9.23457265e-01 -3.06895711e-02 6.83653533e-01
8.02700043e-01 -9.99574184e-01 3.65683794e-01 -6.64616823e-01
-4.78305101e-01 1.14302087e+00 5.42041183e-01 -1.40705347e-01
8.30832601e-01 -4.70112115e-02 -4.67838436e-01 -7.24377453e-01
-8.61636102e-01 -4.78330463e-01 5.15350401e-01 6.48705006e-01
2.47064650e-01 2.96033949e-01 -2.02908725e-01 8.55994642e-01
-2.49257803e-01 -1.29605860e-01 2.52971441e-01 4.60708320e-01
1.09490551e-01 -1.15619504e+00 4.04596955e-01 5.60618818e-01
-3.77836823e-01 -5.29473782e-01 -2.09582075e-01 8.22061062e-01
2.86336951e-02 5.03163576e-01 -2.28960931e-01 -8.72987628e-01
3.22313368e-01 -1.07773140e-01 5.04032195e-01 -6.34240031e-01
-3.52836609e-01 -5.89361131e-01 5.54472804e-01 -6.81884587e-01
-4.16362464e-01 2.59555895e-02 -1.12996221e+00 -5.69916189e-01
-3.11357588e-01 2.46536180e-01 2.81989008e-01 6.41487718e-01
6.06973350e-01 8.26631963e-01 4.07705069e-01 -1.83622420e-01
-4.62613255e-01 -8.11438501e-01 -1.03186762e+00 5.29666185e-01
1.04312368e-01 -7.26140618e-01 -3.63597095e-01 -4.02158141e-01] | [8.741929054260254, 7.870265960693359] |
92e10089-6ad9-422c-a6e3-522ee65b7293 | training-custom-modality-specific-u-net | 2102.10607 | null | https://arxiv.org/abs/2102.10607v3 | https://arxiv.org/pdf/2102.10607v3.pdf | Improved Semantic Segmentation of Tuberculosis-consistent findings in Chest X-rays Using Augmented Training of Modality-specific U-Net Models with Weak Localizations | Deep learning (DL) has drawn tremendous attention in object localization and recognition for both natural and medical images. U-Net segmentation models have demonstrated superior performance compared to conventional handcrafted feature-based methods. Medical image modality-specific DL models are better at transferring domain knowledge to a relevant target task than those that are pretrained on stock photography images. This helps improve model adaptation, generalization, and class-specific region of interest (ROI) localization. In this study, we train chest X-ray (CXR) modality-specific U-Nets and other state-of-the-art U-Net models for semantic segmentation of tuberculosis (TB)-consistent findings. Automated segmentation of such manifestations could help radiologists reduce errors and supplement decision-making while improving patient care and productivity. Our approach uses the publicly available TBX11K CXR dataset with weak TB annotations, typically provided as bounding boxes, to train a set of U-Net models. Next, we improve the results by augmenting the training data with weak localizations, post-processed into an ROI mask, from a DL classifier that is trained to classify CXRs as showing normal lungs or suspected TB manifestations. Test data are individually derived from the TBX11K CXR training distribution and other cross-institutional collections including the Shenzhen TB and Montgomery TB CXR datasets. We observe that our augmented training strategy helped the CXR modality-specific U-Net models achieve superior performance with test data derived from the TBX11K CXR training distribution as well as from cross-institutional collections (p < 0.05). | ['Sameer Antani', 'Philip Alderson', 'Jane Dimperio', 'Les Folio', 'Sivaramakrishnan Rajaraman'] | 2021-02-21 | null | null | null | null | ['unet-segmentation'] | ['computer-vision'] | [ 6.34393394e-01 -1.97600976e-01 -5.09015679e-01 -4.81090486e-01
-1.27752709e+00 -5.47021329e-01 3.37836623e-01 1.60640150e-01
-5.65751076e-01 8.41136515e-01 1.03384525e-01 -8.41890037e-01
-2.91544586e-01 -8.67195070e-01 -8.24702919e-01 -5.05907953e-01
2.16520071e-01 7.54266620e-01 3.43015254e-01 4.76615518e-01
-1.46018475e-01 6.07399046e-01 -6.42496228e-01 7.99202740e-01
6.56368673e-01 1.31182623e+00 5.31892478e-01 1.11629450e+00
6.81149811e-02 1.06298733e+00 -4.26659644e-01 1.54355139e-01
2.61614889e-01 -5.04915476e-01 -1.15797424e+00 1.56480402e-01
6.10621154e-01 -5.41377902e-01 -4.74936306e-01 3.96944940e-01
6.70854390e-01 -4.58925478e-02 8.21345448e-01 -6.25533760e-01
-9.04561281e-01 2.04020888e-01 -2.71223009e-01 6.80445671e-01
-7.06064031e-02 4.57877070e-01 7.52597988e-01 -4.92150456e-01
8.75487506e-01 8.73080730e-01 9.73341703e-01 8.85430872e-01
-1.03328741e+00 -4.90935892e-01 -4.20119017e-01 -1.94286928e-02
-1.05228949e+00 2.39223376e-01 2.20712081e-01 -5.86185455e-01
1.09717858e+00 5.07479727e-01 4.01894093e-01 1.24484491e+00
1.00564055e-01 1.02582741e+00 1.16905868e+00 -2.17956290e-01
-3.81737761e-02 -1.04312107e-01 1.68586224e-01 9.30035233e-01
-2.61648297e-02 -1.18709087e-01 8.56193602e-02 -4.24305618e-01
1.41492403e+00 7.23653257e-01 -5.15088558e-01 -1.66576251e-01
-1.48650587e+00 9.08175528e-01 1.02087080e+00 5.52007854e-01
-4.66689467e-01 3.41386110e-01 3.21825176e-01 -1.18791051e-01
3.50755125e-01 6.07056141e-01 -7.87898004e-01 1.79101080e-01
-9.09552991e-01 -1.55741423e-01 2.42997855e-01 6.14720643e-01
4.69140947e-01 -3.21314037e-01 -6.37496352e-01 1.09037459e+00
-1.56134248e-01 7.04500318e-01 9.01834726e-01 -7.07314849e-01
5.00041783e-01 7.23494112e-01 -3.73941451e-01 -3.25096399e-01
-6.87261164e-01 -4.69463855e-01 -8.73740673e-01 -3.42788935e-01
4.25786108e-01 -2.42718682e-01 -1.77558434e+00 1.29857111e+00
1.82923719e-01 1.98018461e-01 -1.11536710e-02 7.95522511e-01
9.54668224e-01 4.73984182e-01 6.72968477e-02 1.34903237e-01
1.45667255e+00 -9.82066870e-01 -2.26511970e-01 -7.16565130e-03
9.19299781e-01 -5.02415776e-01 1.29463196e+00 -2.53949929e-02
-6.25764132e-01 -4.67359394e-01 -5.69388092e-01 -5.29474346e-03
-3.52578431e-01 1.62706703e-01 4.73049432e-01 4.76505280e-01
-9.15731907e-01 4.85495418e-01 -1.03137970e+00 -6.81366444e-01
1.17826068e+00 4.59975272e-01 -3.16392779e-01 -5.26920676e-01
-9.99632478e-01 9.07169282e-01 4.20308620e-01 -4.39721107e-01
-1.26337302e+00 -1.14396310e+00 -6.92653418e-01 -4.74995300e-02
6.12232268e-01 -8.88894439e-01 1.35770273e+00 -4.69303280e-01
-7.96418250e-01 9.84518886e-01 2.38014549e-01 -7.12672591e-01
6.74471796e-01 1.15340367e-01 -2.30896212e-02 6.74400330e-01
2.49798119e-01 9.19186294e-01 6.97166204e-01 -1.11480176e+00
-6.74761176e-01 -3.36023301e-01 -2.70639032e-01 -2.26426199e-01
-8.58889818e-02 -1.18633829e-01 -4.61733669e-01 -7.75542021e-01
-7.28986263e-02 -8.49606931e-01 -2.73944348e-01 3.90476361e-02
-4.18555856e-01 -2.59645462e-01 1.13790154e+00 -8.10613155e-01
8.53987873e-01 -1.64936185e+00 -4.77493882e-01 1.52317971e-01
2.17426494e-01 4.18159008e-01 -3.20911109e-02 -1.54844642e-01
-8.24197158e-02 3.61246228e-01 -5.53705394e-01 2.90993806e-02
-5.18252432e-01 5.07571340e-01 7.96047449e-02 3.66677105e-01
5.56613624e-01 1.25658941e+00 -9.44761693e-01 -8.84086370e-01
5.03201544e-01 4.54813927e-01 -6.53049588e-01 3.14088792e-01
-4.54870671e-01 7.72395968e-01 -6.90452635e-01 1.03764963e+00
2.22404510e-01 -8.53213072e-01 -6.20653443e-02 -2.13313296e-01
3.85893852e-01 -2.66683158e-02 -3.96225631e-01 1.52594924e+00
-7.12251365e-01 6.05097771e-01 -2.44245574e-01 -8.92055333e-01
5.69455862e-01 4.84949648e-01 7.61419594e-01 -6.66260064e-01
2.47255191e-01 2.52358437e-01 1.08596511e-01 -6.14081323e-01
-1.87854879e-02 -2.90549755e-01 1.68832764e-01 5.82502007e-01
1.74190596e-01 -3.80754799e-01 -5.35283610e-02 2.66169328e-02
1.42084372e+00 -2.54110694e-01 3.86735767e-01 6.97718794e-03
3.17927152e-01 4.68199998e-01 1.58494309e-01 1.21935022e+00
-3.65077436e-01 1.21228170e+00 2.33425215e-01 -5.01482368e-01
-1.05681992e+00 -1.25993609e+00 -7.86055565e-01 8.20884883e-01
-4.79696631e-01 8.37721601e-02 -5.75265229e-01 -1.34119463e+00
6.51305541e-02 4.45659846e-01 -1.03561974e+00 1.25833407e-01
-7.64158070e-01 -7.42660224e-01 8.62730801e-01 1.01973271e+00
5.90166450e-01 -1.39680409e+00 -8.31348121e-01 1.82893246e-01
-2.26718336e-01 -1.01665294e+00 -4.31737363e-01 5.57962656e-01
-9.74205732e-01 -1.47095048e+00 -1.45845377e+00 -7.64299512e-01
9.41137493e-01 -6.01740964e-02 1.07183945e+00 2.45881811e-01
-8.83384585e-01 7.80881524e-01 -2.71879137e-01 -3.47155571e-01
-5.25070786e-01 5.94228916e-02 -1.93177104e-01 -4.24006850e-01
1.62756145e-01 1.04548417e-01 -8.28952134e-01 3.25624645e-01
-1.18053877e+00 -1.07628582e-02 6.66196644e-01 1.13069284e+00
1.14299405e+00 -2.42435798e-01 4.55820173e-01 -1.12314939e+00
4.07868654e-01 -4.55262899e-01 -1.34137124e-01 5.20916164e-01
-3.52289528e-01 -3.43330234e-01 5.91266394e-01 -4.12262887e-01
-1.00755620e+00 -4.87904362e-02 -1.37776598e-01 -7.20720410e-01
-3.11750561e-01 1.64766043e-01 4.58385676e-01 -8.38247985e-02
8.47774565e-01 2.63261646e-01 -2.80967981e-01 -4.17291015e-01
1.54791966e-01 9.72598493e-01 7.98666298e-01 -6.79953933e-01
3.40198308e-01 6.21677756e-01 -6.65119886e-02 -7.00005949e-01
-1.03965890e+00 -7.96822190e-01 -8.39825451e-01 6.66625500e-02
1.47528625e+00 -4.66890901e-01 -2.43297562e-01 1.88701227e-01
-8.93801451e-01 -7.16684163e-01 -4.62943733e-01 6.32967889e-01
-7.48733103e-01 -7.76717365e-02 -8.50795269e-01 -2.57065147e-01
-5.28600454e-01 -1.33042121e+00 1.26126873e+00 1.97448969e-01
-1.36310726e-01 -1.14012980e+00 2.28772126e-02 6.84618771e-01
3.15215796e-01 3.26400846e-01 1.13569582e+00 -1.06722617e+00
-5.69723904e-01 -3.02525461e-01 -7.25644052e-01 6.56438231e-01
5.71219206e-01 -3.02882344e-01 -8.50192368e-01 -6.08763173e-02
1.04705095e-01 -6.13718212e-01 1.11430192e+00 7.91466475e-01
1.82961655e+00 6.98170289e-02 -5.38520813e-01 8.78529966e-01
1.41043282e+00 5.71521461e-01 2.77951300e-01 3.15139711e-01
9.41134870e-01 4.43148948e-02 2.97999024e-01 6.61965311e-02
1.13868816e-02 1.28706202e-01 3.05084705e-01 -5.65915525e-01
-2.89582103e-01 -1.08665347e-01 -4.92771119e-01 2.22207263e-01
2.17542388e-02 -9.91970599e-02 -1.58880186e+00 7.24423289e-01
-1.54005134e+00 -5.11405706e-01 1.29948676e-01 1.65654075e+00
1.00851107e+00 -5.09307683e-02 -1.46977931e-01 -3.14415932e-01
5.35731494e-01 -1.13686740e-01 -5.68388402e-01 -4.78165597e-02
8.25352296e-02 6.47781849e-01 7.16581762e-01 1.53007001e-01
-1.28015983e+00 7.16981649e-01 6.19860172e+00 9.16925907e-01
-1.53467119e+00 4.73437756e-01 1.17871523e+00 -1.38904020e-01
4.20656018e-02 -6.11981809e-01 -4.98575300e-01 2.76241750e-01
6.04962945e-01 4.16881651e-01 -3.62243727e-02 8.32887411e-01
-8.58502910e-02 -1.44449174e-01 -1.36535239e+00 9.12628055e-01
1.11337923e-01 -2.00083208e+00 -1.66181549e-02 -2.13797390e-02
1.10867941e+00 5.25148094e-01 1.53312892e-01 2.50559479e-01
2.32841894e-01 -1.28094959e+00 -1.45084679e-01 2.27316901e-01
1.23937297e+00 -3.63022625e-01 9.86283302e-01 1.52479336e-01
-8.01988244e-01 1.83351353e-01 -3.58498901e-01 5.20837009e-01
7.60063622e-03 9.36631709e-02 -1.56302369e+00 4.55544442e-01
7.76705563e-01 3.41960579e-01 -6.84328020e-01 8.27767015e-01
-4.70576286e-02 8.63932133e-01 -3.95765007e-01 2.47366533e-01
8.34411979e-01 2.06744269e-01 1.23827055e-01 1.48693907e+00
1.32232472e-01 4.01221514e-01 1.88819364e-01 9.30444181e-01
-4.42373306e-01 -1.71690318e-03 -5.78890443e-01 -1.29035311e-02
4.87516150e-02 1.13376403e+00 -1.14145148e+00 -8.28855813e-01
-4.55145240e-01 7.01315165e-01 -4.36251191e-03 3.09139937e-01
-9.06702816e-01 8.64085108e-02 1.03121325e-01 1.96097001e-01
4.30550575e-01 3.99040937e-01 -4.04651701e-01 -9.77899671e-01
-4.95746195e-01 -7.28723705e-01 7.45851755e-01 -8.62926424e-01
-1.46396613e+00 7.35713422e-01 3.10976226e-02 -9.55679119e-01
-1.01202294e-01 -9.17556226e-01 -6.35800064e-01 7.34652281e-01
-1.43877411e+00 -1.31167662e+00 -3.33611310e-01 7.50020325e-01
5.01599371e-01 -1.37013942e-01 6.64551854e-01 2.08503753e-01
-3.84232849e-01 3.94504100e-01 2.21135274e-01 5.81861198e-01
6.53760552e-01 -1.30693138e+00 4.07222249e-02 5.25240481e-01
-5.13346381e-02 5.96815288e-01 -1.70258686e-01 -8.91433597e-01
-7.86661983e-01 -1.68027771e+00 3.75465840e-01 -9.08030212e-01
5.84878922e-01 5.15550040e-02 -8.49586964e-01 9.55390096e-01
-2.02278256e-01 6.60830081e-01 7.88700581e-01 -3.63135666e-01
-7.02996105e-02 3.50035727e-01 -1.61366701e+00 2.72819072e-01
8.23597789e-01 -7.85599530e-01 -8.16574216e-01 8.31423998e-01
7.93045998e-01 -5.82588017e-01 -1.12663281e+00 5.92168152e-01
2.39402190e-01 -5.33132195e-01 1.30669510e+00 -9.84360933e-01
6.79404080e-01 1.37451038e-01 -3.17683518e-01 -9.66107368e-01
-1.39285788e-01 2.20863670e-01 6.07995242e-02 7.40424812e-01
3.47904176e-01 -5.65118730e-01 1.03513014e+00 3.50291967e-01
-2.04404309e-01 -1.28153324e+00 -8.86366367e-01 -6.30854905e-01
1.83910668e-01 -6.77476525e-01 2.52533704e-01 1.09278977e+00
-6.71092093e-01 -9.52366218e-02 6.06040135e-02 -1.36536062e-01
4.89366531e-01 1.44713283e-01 4.25233245e-01 -6.77762270e-01
-4.54977572e-01 -3.97461116e-01 -1.12650178e-01 -6.47208035e-01
-1.65734887e-01 -1.18717909e+00 -8.91520604e-02 -2.05859184e+00
5.92209995e-01 -7.75133669e-01 -5.44490993e-01 7.22137153e-01
-4.97258693e-01 6.28089666e-01 2.42928877e-01 3.48977268e-01
-3.69384825e-01 -5.88314869e-02 1.85536122e+00 -3.76918256e-01
-1.37301728e-01 2.19752386e-01 -2.24296778e-01 7.45329440e-01
6.84315681e-01 -6.04539692e-01 -2.87940502e-01 -4.60921854e-01
-5.74554324e-01 3.22544634e-01 6.02889299e-01 -1.06773186e+00
-9.54090059e-02 -9.04330462e-02 9.91112411e-01 -1.00222564e+00
1.02793537e-01 -9.72959399e-01 -3.24200124e-01 9.69473302e-01
-3.00585598e-01 -2.90363520e-01 1.95873067e-01 3.78079861e-01
-6.83221966e-02 -1.33801937e-01 1.00118840e+00 -6.83828175e-01
-4.87062305e-01 6.91795647e-01 -2.27491707e-01 2.46335045e-01
1.04823387e+00 -2.88035393e-01 -4.21631038e-01 -1.26301751e-01
-8.12853217e-01 2.93787181e-01 3.00690442e-01 1.57350734e-01
6.08981729e-01 -1.09908891e+00 -5.84753633e-01 2.01571047e-01
2.08283827e-01 5.64254403e-01 3.51477891e-01 9.83114183e-01
-9.91559446e-01 1.03496122e+00 -2.25077689e-01 -1.16483343e+00
-1.06110919e+00 5.19651711e-01 5.17052770e-01 -7.24188745e-01
-6.72081709e-01 1.23942399e+00 7.96244144e-01 -7.86497176e-01
8.06822255e-02 -8.95913243e-01 3.40470344e-01 -1.54730305e-01
3.79916131e-01 2.23774925e-01 1.53480440e-01 -3.28523636e-01
-6.26483977e-01 4.94535208e-01 -2.31649652e-01 2.66004592e-01
1.36661243e+00 3.34609300e-01 2.36333579e-01 8.55811834e-02
1.47998238e+00 -4.44855958e-01 -1.17102873e+00 -4.52391118e-01
-1.11632414e-01 -2.80362993e-01 1.79871172e-02 -1.27292490e+00
-1.15348887e+00 9.23172712e-01 8.60951543e-01 -1.70756117e-01
9.33181167e-01 5.49281776e-01 9.41197872e-01 4.69797403e-01
4.66200411e-02 -7.43633449e-01 3.94826621e-01 3.97595733e-01
5.20768464e-01 -1.57769120e+00 -1.58280373e-01 -5.23121804e-02
-5.25471747e-01 1.04575479e+00 7.69624949e-01 -6.36170283e-02
3.76100183e-01 1.30908534e-01 3.73692930e-01 -3.80845636e-01
-4.18086618e-01 -2.69640446e-01 4.58771974e-01 1.00854564e+00
4.17817175e-01 3.22731048e-01 2.11196855e-01 6.25966847e-01
1.20711327e-01 1.25350803e-01 1.60805866e-01 1.10683894e+00
-3.38791579e-01 -8.73421192e-01 -7.72456527e-01 1.16730034e+00
-7.63893187e-01 -3.12210023e-01 -4.03858572e-01 1.21468318e+00
4.16284502e-01 3.90387535e-01 2.89178252e-01 -1.56716909e-02
1.35519564e-01 5.31451069e-02 6.29902661e-01 -9.44679558e-01
-8.62556040e-01 8.18272606e-02 -1.92956135e-01 -3.75347972e-01
-1.05848305e-01 -3.98729563e-01 -1.46355617e+00 2.13498473e-01
-1.66773900e-01 -2.07426608e-01 3.89369309e-01 9.63053226e-01
-1.12763278e-01 1.11767638e+00 2.32051507e-01 -5.27996838e-01
-4.30064589e-01 -9.63662267e-01 -2.76447624e-01 6.08125985e-01
5.41238308e-01 -3.56652826e-01 4.49865311e-02 8.66601840e-02] | [15.171575546264648, -2.0236711502075195] |
305de6ea-730b-4086-b270-7f11855d036f | deep-neural-models-for-medical-concept | 1907.07972 | null | https://arxiv.org/abs/1907.07972v1 | https://arxiv.org/pdf/1907.07972v1.pdf | Deep Neural Models for Medical Concept Normalization in User-Generated Texts | In this work, we consider the medical concept normalization problem, i.e., the problem of mapping a health-related entity mention in a free-form text to a concept in a controlled vocabulary, usually to the standard thesaurus in the Unified Medical Language System (UMLS). This is a challenging task since medical terminology is very different when coming from health care professionals or from the general public in the form of social media texts. We approach it as a sequence learning problem with powerful neural networks such as recurrent neural networks and contextualized word representation models trained to obtain semantic representations of social media expressions. Our experimental evaluation over three different benchmarks shows that neural architectures leverage the semantic meaning of the entity mention and significantly outperform an existing state of the art models. | ['Elena Tutubalina', 'Zulfat Miftahutdinov'] | 2019-07-18 | deep-neural-models-for-medical-concept-1 | https://aclanthology.org/P19-2055 | https://aclanthology.org/P19-2055.pdf | acl-2019-7 | ['medical-concept-normalization'] | ['medical'] | [ 7.95039654e-01 5.17133057e-01 -5.28756022e-01 -2.55207717e-01
-6.09798551e-01 -3.77336890e-02 3.19003075e-01 8.65367055e-01
-1.06643856e+00 7.36513674e-01 7.95169115e-01 -3.55960935e-01
-1.44844074e-02 -8.94567728e-01 -3.27145427e-01 -4.16252226e-01
1.36307091e-01 5.83458364e-01 3.78441502e-04 -7.02914953e-01
-1.16298847e-01 1.29328910e-02 -1.10386550e+00 2.37629637e-01
5.47411323e-01 6.28369510e-01 -1.32209674e-01 3.91330481e-01
-7.22238123e-01 1.06663513e+00 -7.06449449e-01 -4.71982777e-01
-2.67098725e-01 -4.76296872e-01 -1.22177804e+00 -4.00684118e-01
-1.12966262e-01 4.46839362e-01 -1.11717572e-02 1.53733623e+00
4.51803833e-01 3.48621696e-01 6.92167401e-01 -6.72449768e-01
-9.15820658e-01 7.94491053e-01 -3.62342745e-01 2.11279213e-01
4.38137889e-01 -7.39726186e-01 1.03144574e+00 -4.64089185e-01
1.20117629e+00 1.32663703e+00 7.38857508e-01 7.88561761e-01
-9.95072603e-01 -4.92080182e-01 2.10421249e-01 -1.35865146e-02
-1.48113060e+00 -2.56920606e-01 1.64981097e-01 -6.06295884e-01
1.25410140e+00 4.77833450e-02 1.23407677e-01 1.40602469e+00
4.30056870e-01 3.50778162e-01 3.21775228e-01 -5.75468183e-01
2.27764577e-01 -4.15198244e-02 5.67037642e-01 4.99396384e-01
5.71861684e-01 -5.06501138e-01 -1.14325263e-01 -4.70461071e-01
3.11770052e-01 4.94304866e-01 -2.27272287e-01 -1.05040417e-04
-1.14102101e+00 1.11862338e+00 5.06655216e-01 8.51659775e-01
-5.31374156e-01 1.35842856e-04 8.14681053e-01 2.84711272e-01
7.70716786e-01 7.09944487e-01 -7.34671950e-01 4.99075562e-01
-5.10619700e-01 1.20395079e-01 9.94076431e-01 9.27910268e-01
4.00369853e-01 -3.85347873e-01 -7.65825212e-02 9.39490259e-01
2.05193266e-01 1.12803236e-01 1.10834765e+00 -2.09775746e-01
2.93327123e-01 9.51182008e-01 -5.29103838e-02 -9.34007108e-01
-8.09960485e-01 -4.64189261e-01 -1.02160168e+00 -5.40419757e-01
-2.00939048e-02 -3.69096249e-01 -1.11229455e+00 1.81783962e+00
3.41061383e-01 6.09542429e-01 6.21311426e-01 4.52666938e-01
1.41914868e+00 4.76726890e-01 8.05025995e-01 -3.66697729e-01
1.81596529e+00 -8.25580478e-01 -1.20467997e+00 -4.70660210e-01
1.04320610e+00 -6.44800842e-01 4.31864858e-01 -3.77489567e-01
-5.61473846e-01 -9.25416052e-02 -1.01423955e+00 -2.45990261e-01
-1.02430856e+00 -4.42261934e-01 3.26747656e-01 3.88784826e-01
-7.31914878e-01 5.65209925e-01 -8.79861593e-01 -8.54091287e-01
3.02724779e-01 1.79051965e-01 -5.02654135e-01 -1.01108313e-01
-1.79086149e+00 1.00342464e+00 8.19592118e-01 -4.01940465e-01
-3.78771871e-02 -8.87030244e-01 -1.32843745e+00 5.74894436e-02
7.45035768e-01 -1.09894931e+00 1.21371317e+00 -1.07459593e+00
-9.74944353e-01 1.34385777e+00 -1.57481819e-01 -7.38963187e-01
-2.11229175e-01 -2.44570553e-01 -8.78984928e-01 -1.23482212e-01
4.90763873e-01 2.10072309e-01 4.58270073e-01 -4.81259882e-01
-7.38796532e-01 -3.65034282e-01 -7.10145012e-02 -9.60858539e-02
-3.29180241e-01 5.94040692e-01 -2.83600092e-01 -9.55008090e-01
-1.37658328e-01 -9.63964283e-01 -9.56240594e-01 -4.99231368e-01
-5.58495045e-01 -3.96800935e-01 6.06962927e-02 -6.54302001e-01
1.46002162e+00 -2.03912067e+00 1.30604357e-01 2.44493410e-01
4.04147595e-01 2.58769840e-01 -3.87436934e-02 3.19729686e-01
-6.32352233e-01 3.48508567e-01 -4.91790622e-01 -5.17941751e-02
-3.02738726e-01 3.97738367e-01 -1.78005263e-01 2.62944967e-01
1.67729586e-01 9.94664252e-01 -1.20722866e+00 -4.14595217e-01
-3.12526345e-01 5.86222053e-01 -4.26050901e-01 6.66452572e-02
-3.11083525e-01 2.51393616e-01 -7.32312679e-01 4.22551155e-01
1.36609048e-01 -8.41961563e-01 5.51718950e-01 -8.47322866e-02
3.67022276e-01 5.56788087e-01 -7.60796905e-01 2.14171481e+00
-4.64860260e-01 1.84093993e-02 -3.40124756e-01 -1.14355969e+00
7.62834847e-01 7.31891513e-01 8.10891092e-01 -4.20288533e-01
5.57553589e-01 7.70467147e-02 -1.55830458e-01 -6.60325110e-01
5.35209358e-01 -5.26179850e-01 -3.79765332e-01 2.27259398e-01
4.23871726e-01 5.63089132e-01 2.23239124e-01 1.40459850e-01
1.21322656e+00 -1.94095045e-01 1.26810956e+00 -2.68354207e-01
6.54516339e-01 -3.22699361e-02 8.08096707e-01 6.11072123e-01
2.61325330e-01 5.04898012e-01 2.78272748e-01 -4.94637579e-01
-6.92300558e-01 -6.03976786e-01 -2.20488012e-01 1.35937679e+00
-1.93786874e-01 -7.47490644e-01 -7.03177273e-01 -7.56540537e-01
-1.03491172e-01 5.96599698e-01 -1.10050106e+00 -4.45148408e-01
-5.45034945e-01 -1.14040411e+00 3.51260126e-01 5.67921340e-01
-1.82352126e-01 -1.17060924e+00 -3.71840805e-01 6.69027865e-01
-1.55822054e-01 -1.36131966e+00 -5.40092051e-01 2.60370076e-01
-4.57784474e-01 -1.21182549e+00 -7.65105009e-01 -9.66391802e-01
6.59454167e-01 -3.41291398e-01 1.43801045e+00 1.46909460e-01
-4.99029785e-01 2.43537977e-01 -5.02402663e-01 -8.06845546e-01
-6.81364894e-01 5.76907098e-01 -1.41832903e-01 9.30631906e-02
9.70641017e-01 -2.87226588e-01 -4.16752309e-01 -1.63222179e-01
-1.24949253e+00 -7.49656633e-02 2.89413840e-01 8.79545033e-01
6.23934984e-01 -5.18743217e-01 8.18245649e-01 -1.60518754e+00
6.51416242e-01 -9.79200900e-01 -2.16484040e-01 4.57608700e-01
-6.62921250e-01 3.34797651e-01 2.14970723e-01 -3.59497875e-01
-8.85028899e-01 1.57939121e-01 -5.25560677e-01 8.85503218e-02
-1.98853746e-01 1.06540155e+00 1.24157742e-01 3.76666516e-01
1.05623138e+00 -1.19388446e-01 -1.67930350e-01 -5.28025031e-01
5.35850167e-01 7.08182991e-01 7.11628258e-01 -1.67295352e-01
2.93953091e-01 3.31984341e-01 -1.15488842e-01 -7.13141620e-01
-1.50720930e+00 -1.05716383e+00 -5.35163879e-01 5.15741229e-01
1.49526930e+00 -9.86810863e-01 -5.19647956e-01 -2.62365401e-01
-1.26987302e+00 4.80582088e-01 -3.82314473e-01 4.69173878e-01
-1.33642539e-01 -3.53608429e-02 -5.48294187e-01 -3.48639637e-01
-7.57813334e-01 -7.61908472e-01 9.30879772e-01 2.22201377e-01
-7.25637674e-01 -1.30637622e+00 4.89081502e-01 1.24842212e-01
4.20051962e-01 5.77123821e-01 1.14899683e+00 -1.45541942e+00
3.51822168e-01 -4.80427921e-01 -6.78659827e-02 8.90384540e-02
6.23709738e-01 -4.76389706e-01 -6.35248065e-01 -1.25750005e-01
-7.20117847e-03 1.14549827e-02 1.03225505e+00 2.62868553e-01
7.62379110e-01 -4.86968338e-01 -6.82326794e-01 5.44050217e-01
1.35734665e+00 2.32235521e-01 3.98646325e-01 4.56429332e-01
7.62775064e-01 6.24162614e-01 2.29617968e-01 2.28185758e-01
2.12924615e-01 3.85072291e-01 -1.29992306e-01 -2.71160185e-01
1.55027896e-01 -3.85760032e-02 -2.40324885e-01 9.78023887e-01
1.57956645e-01 -1.45549238e-01 -1.23158884e+00 6.57484293e-01
-1.97186518e+00 -5.75265765e-01 1.64058805e-01 1.78055131e+00
1.27264440e+00 -1.87305197e-01 -3.88303250e-01 -4.26550776e-01
8.41201365e-01 -2.05328781e-02 -4.63213742e-01 -2.04412565e-01
-7.27076605e-02 5.54409742e-01 5.96702456e-01 3.03112000e-01
-1.32091320e+00 8.93777907e-01 5.80673122e+00 6.73383415e-01
-9.48811114e-01 4.54042107e-01 5.20746708e-01 2.77472846e-02
1.06991678e-01 -4.74974781e-01 -8.51691723e-01 3.04563731e-01
1.30244362e+00 -7.06464112e-01 -2.73448944e-01 8.19067001e-01
-2.88077950e-01 4.64275420e-01 -1.09428620e+00 9.65448678e-01
3.73854429e-01 -1.53865886e+00 3.24463427e-01 -2.99407959e-01
8.14588726e-01 3.27532500e-01 -3.13974500e-01 2.96565503e-01
7.02208221e-01 -1.21666515e+00 7.12486682e-03 6.65244341e-01
8.55230153e-01 -5.52877367e-01 1.32421315e+00 -1.00402288e-01
-1.13111436e+00 2.50533253e-01 -2.23669976e-01 3.37975353e-01
2.52449661e-01 3.67416024e-01 -9.71269906e-01 8.80038798e-01
5.72453797e-01 1.15555489e+00 -2.86636442e-01 7.49775946e-01
-2.28311718e-01 4.33200389e-01 -7.87483677e-02 9.45163295e-02
3.82453620e-01 1.23604029e-01 2.94580489e-01 1.66429913e+00
1.79228500e-01 2.32222274e-01 1.84457600e-01 6.27492666e-01
-6.51488721e-01 8.62783432e-01 -6.73843265e-01 -1.61796004e-01
-1.29307538e-01 1.15918469e+00 -8.23794484e-01 -5.99931896e-01
-7.01548576e-01 5.71563482e-01 1.76472127e-01 3.95530343e-01
-2.83568293e-01 -4.37449455e-01 9.64594841e-01 -1.90084626e-03
5.51644228e-02 6.18519068e-01 1.62419349e-01 -1.33968914e+00
-3.63301605e-01 -6.27707422e-01 1.01648092e+00 -4.74454314e-01
-1.70506668e+00 8.80506516e-01 -2.59899676e-01 -1.08616996e+00
-5.09607792e-01 -7.57095158e-01 -1.90863103e-01 7.06868052e-01
-1.44965065e+00 -8.76189590e-01 1.56773552e-01 6.66197360e-01
3.24221849e-01 -3.77803862e-01 1.41262782e+00 5.09258986e-01
-4.83374566e-01 3.53086054e-01 9.82542634e-02 6.60618961e-01
9.37378347e-01 -1.10924423e+00 7.76237607e-01 5.63448906e-01
1.49608711e-02 1.02603483e+00 6.27531111e-01 -8.67867589e-01
-5.81508756e-01 -1.51893640e+00 1.48097491e+00 -4.30719435e-01
9.30889070e-01 -2.08337381e-01 -1.27374351e+00 9.07012165e-01
1.98207930e-01 1.31280482e-01 1.43913412e+00 1.82312012e-01
-4.58584428e-01 4.24911886e-01 -8.42436373e-01 4.95768666e-01
1.00827110e+00 -6.20490968e-01 -1.22743511e+00 6.47509217e-01
1.38339412e+00 -4.34772432e-01 -1.02425086e+00 3.56113613e-01
2.97413431e-02 2.31035382e-01 1.29297698e+00 -1.60969651e+00
4.84468639e-01 -3.43159325e-02 -9.02125388e-02 -1.23170352e+00
-1.55481339e-01 -5.67711055e-01 2.12473243e-01 7.46433973e-01
6.91489279e-01 -5.94720542e-01 4.40642953e-01 5.48604667e-01
1.30249724e-01 -5.42824507e-01 -9.39122200e-01 -4.08813685e-01
1.81514978e-01 -2.73138374e-01 5.94330788e-01 1.59333622e+00
3.22245717e-01 8.89224589e-01 -2.99754858e-01 -5.88275753e-02
1.64910197e-01 -9.29494575e-02 -4.18939702e-02 -1.58792961e+00
1.01668455e-01 -3.00553620e-01 -6.19987905e-01 -3.66084963e-01
5.70700705e-01 -1.34930384e+00 -1.21508092e-01 -1.62240243e+00
2.02402681e-01 7.54549056e-02 -7.47269869e-01 6.62556350e-01
-4.85209167e-01 -1.30393058e-02 -2.25124210e-01 -2.62767196e-01
-8.11080039e-01 2.26970330e-01 6.45291567e-01 -5.30387580e-01
-1.89505324e-01 -1.00724421e-01 -1.16212726e+00 1.11869109e+00
4.66589004e-01 -1.25925183e+00 -1.72777474e-01 -2.71243602e-01
8.00004959e-01 3.09893116e-02 -1.37371182e-01 -4.30817783e-01
5.09003401e-01 -9.86370444e-02 -1.89520955e-01 4.34987620e-02
-1.95189938e-01 -8.04737389e-01 -1.15512395e-02 4.98998672e-01
-7.21071601e-01 -8.23555365e-02 1.28747940e-01 6.87505722e-01
-4.30168450e-01 -4.30257589e-01 5.75397789e-01 -3.24252576e-01
-6.05046988e-01 2.91613340e-01 -4.37625825e-01 4.99201000e-01
6.16288841e-01 4.12178934e-01 -1.18557893e-01 -4.03835112e-03
-1.21660912e+00 1.29232854e-01 -1.05899885e-01 7.84324110e-01
4.21969414e-01 -1.26681983e+00 -9.94704783e-01 -1.92415714e-01
6.41972005e-01 -1.22708768e-01 1.09062023e-01 5.69721103e-01
-1.75603867e-01 5.07682025e-01 3.89126949e-02 -1.91664115e-01
-1.24794090e+00 8.72317910e-01 4.53081250e-01 -6.42505825e-01
-7.72332549e-01 8.03045154e-01 4.14778531e-01 -6.61145210e-01
2.05515474e-01 -5.70974290e-01 -9.19602036e-01 3.01790386e-01
9.15688634e-01 -2.11032674e-01 3.40400457e-01 -9.48746741e-01
-5.08360445e-01 4.90115672e-01 -3.08616370e-01 4.04850513e-01
1.53148293e+00 1.40127316e-01 -4.82781798e-01 4.18401927e-01
1.60962605e+00 -4.48938251e-01 1.38983667e-01 -9.63450074e-01
7.03928947e-01 2.98750490e-01 -7.08939806e-02 -5.40159822e-01
-1.08599079e+00 3.20905209e-01 5.42096496e-01 -1.73293337e-01
8.10037315e-01 2.81232893e-01 7.00349510e-01 9.91064310e-01
-1.30459550e-03 -1.01187885e+00 -3.69341314e-01 6.82633817e-01
6.92841649e-01 -1.19125485e+00 -1.22444749e-01 -4.81626451e-01
-5.69510400e-01 9.91684377e-01 4.77323420e-02 -2.24084575e-02
1.05359185e+00 4.77975726e-01 3.67877156e-01 -4.93365854e-01
-5.96918583e-01 -4.22800392e-01 4.23811764e-01 2.24314600e-01
8.58108521e-01 -1.22743532e-01 -4.32614326e-01 1.14428329e+00
-1.35942698e-01 2.25699678e-01 3.68150383e-01 1.00328004e+00
-5.72225638e-02 -1.17034674e+00 -4.59067523e-02 6.35681748e-01
-1.24944746e+00 -5.74867427e-01 -1.98271170e-01 3.38135272e-01
1.58195093e-01 7.63425171e-01 6.67741243e-03 5.60152456e-02
5.84211767e-01 4.43493038e-01 -3.02609026e-01 -1.31112790e+00
-1.01205897e+00 -8.97068437e-03 3.00319791e-02 -5.45248628e-01
-7.85556018e-01 -3.17353547e-01 -1.69140828e+00 3.97106379e-01
-1.00233354e-01 3.46801579e-01 4.64581370e-01 1.19921410e+00
3.35154742e-01 1.04424429e+00 -8.27993006e-02 1.47643492e-01
2.00130828e-02 -9.22537863e-01 -3.15585107e-01 9.06121194e-01
4.73905981e-01 -4.78229582e-01 -1.09089846e-02 3.57945532e-01] | [8.521759033203125, 8.659845352172852] |
8feabe72-526e-404f-bd65-5283bc98e756 | improving-replay-based-continual-semantic | 2209.09839 | null | https://arxiv.org/abs/2209.09839v1 | https://arxiv.org/pdf/2209.09839v1.pdf | Improving Replay-Based Continual Semantic Segmentation with Smart Data Selection | Continual learning for Semantic Segmentation (CSS) is a rapidly emerging field, in which the capabilities of the segmentation model are incrementally improved by learning new classes or new domains. A central challenge in Continual Learning is overcoming the effects of catastrophic forgetting, which refers to the sudden drop in accuracy on previously learned tasks after the model is trained on new classes or domains. In continual classification this challenge is often overcome by replaying a small selection of samples from previous tasks, however replay is rarely considered in CSS. Therefore, we investigate the influences of various replay strategies for semantic segmentation and evaluate them in class- and domain-incremental settings. Our findings suggest that in a class-incremental setting, it is critical to achieve a uniform distribution for the different classes in the buffer to avoid a bias towards newly learned classes. In the domain-incremental setting, it is most effective to select buffer samples by uniformly sampling from the distribution of learned feature representations or by choosing samples with median entropy. Finally, we observe that the effective sampling methods help to decrease the representation shift significantly in early layers, which is a major cause of forgetting in domain-incremental learning. | ['Jürgen Beyerer', 'Björn Mauthe', 'Tobias Kalb'] | 2022-09-20 | null | null | null | null | ['continual-semantic-segmentation'] | ['computer-vision'] | [ 5.62078297e-01 -8.68523270e-02 -8.44886526e-02 -2.90567160e-01
-6.11353040e-01 -6.25240386e-01 5.44835091e-01 4.26516622e-01
-9.58918273e-01 9.71032977e-01 1.18964417e-02 -1.49750160e-02
-1.42022669e-01 -6.63298011e-01 -8.72411966e-01 -7.45037436e-01
2.40148395e-01 5.84748864e-01 6.90759420e-01 3.15720178e-02
4.27028358e-01 3.98730844e-01 -1.81343555e+00 3.38732690e-01
9.82399404e-01 6.54927373e-01 5.53486824e-01 5.19466519e-01
-4.12087739e-01 6.42315686e-01 -8.39610696e-01 -1.02139875e-01
2.67145842e-01 -5.68070590e-01 -8.03055108e-01 2.38700122e-01
4.96688992e-01 -3.96816224e-01 5.03989160e-02 1.01682687e+00
3.68771613e-01 4.11412537e-01 6.95545971e-01 -1.00365341e+00
-3.32882106e-01 8.08259428e-01 -5.81259012e-01 4.39858586e-01
2.69574523e-02 1.69038162e-01 7.24243701e-01 -7.00832665e-01
7.11143136e-01 1.05774117e+00 6.93332613e-01 6.52178288e-01
-1.51950371e+00 -6.04502320e-01 6.27624929e-01 6.46716654e-02
-1.10309112e+00 -4.99388069e-01 6.59302533e-01 -3.11324656e-01
7.04556644e-01 4.28660102e-02 7.90985048e-01 1.04743123e+00
6.05216548e-02 9.63052511e-01 9.45961654e-01 -5.65772891e-01
8.06598306e-01 3.61842364e-01 2.86452472e-01 2.08991066e-01
5.33222497e-01 -2.48698711e-01 -8.76887918e-01 -2.17940241e-01
5.45526147e-01 1.71150967e-01 -1.68364674e-01 -4.36756164e-01
-8.02995265e-01 6.77380979e-01 2.07184255e-01 2.97675997e-01
-4.20493990e-01 1.37790307e-01 5.26454985e-01 5.22651017e-01
5.63063741e-01 7.27421165e-01 -7.06239223e-01 -3.05398464e-01
-1.13315380e+00 4.01022375e-01 4.41933334e-01 7.27000594e-01
9.14666831e-01 -8.84049833e-02 -1.18027091e-01 9.48358178e-01
-3.36789459e-01 2.69105732e-01 8.49963903e-01 -9.83191431e-01
2.81154215e-01 5.99838793e-01 1.58537194e-01 -3.46277803e-01
-1.43454269e-01 -6.64756835e-01 -2.53248632e-01 1.27177879e-01
7.90397227e-01 -2.09141672e-01 -1.03873968e+00 1.97823715e+00
3.09334040e-01 3.29449549e-02 -1.10088170e-01 5.90043843e-01
5.91953024e-02 2.60624498e-01 4.76342976e-01 -4.09865171e-01
9.11999643e-01 -6.77096605e-01 -3.89338136e-01 -6.60325050e-01
4.73882794e-01 -5.73619008e-01 1.50892484e+00 4.87278730e-01
-8.35081041e-01 -5.78198254e-01 -9.50231969e-01 1.55963093e-01
-2.38560200e-01 -2.14049250e-01 3.80014807e-01 4.10631329e-01
-8.08262467e-01 9.58212137e-01 -9.24493432e-01 -3.19610715e-01
7.49646604e-01 1.52296707e-01 -8.33732411e-02 -2.23488018e-01
-8.78374875e-01 5.88931382e-01 4.72693712e-01 -4.55512196e-01
-8.15694451e-01 -8.85891676e-01 -4.28698003e-01 1.49545386e-01
4.25629675e-01 -4.75476593e-01 1.33341217e+00 -1.47959733e+00
-1.14164853e+00 5.75630248e-01 -3.05912971e-01 -7.30465889e-01
8.05910647e-01 -4.64644969e-01 3.32473665e-01 5.14301285e-02
3.17084491e-02 9.88977432e-01 1.20980608e+00 -1.22305048e+00
-6.12795055e-01 -4.62249637e-01 -1.14303149e-01 4.89805579e-01
-5.35167038e-01 -6.94251060e-01 -8.16564709e-02 -4.80775714e-01
3.39314908e-01 -1.02585840e+00 -9.85225290e-02 -9.43754986e-02
6.12150319e-02 -9.89016742e-02 6.86647058e-01 -3.88335407e-01
9.47442472e-01 -2.44042683e+00 -6.20818995e-02 -1.45542443e-01
7.83801600e-02 1.58695474e-01 -8.59882310e-02 1.54392913e-01
1.30391791e-01 -3.66306491e-02 -3.11624587e-01 -5.80208659e-01
-3.94948483e-01 3.78614962e-01 -4.93037850e-01 1.49881735e-01
1.84941813e-01 6.25452459e-01 -1.09713447e+00 -2.02015489e-01
-1.37850672e-01 2.20709383e-01 -6.42888606e-01 -5.87060899e-02
-6.68978751e-01 3.62455487e-01 -2.05548912e-01 2.51206458e-01
7.78452158e-01 -3.28418821e-01 1.76436707e-01 2.67547220e-01
9.36174244e-02 2.47508600e-01 -9.83591676e-01 1.70400941e+00
-3.53862703e-01 6.34845853e-01 -3.35737109e-01 -9.87428427e-01
7.18757808e-01 5.84907923e-03 3.10501009e-01 -8.48715782e-01
-1.62391454e-01 1.56589448e-01 -9.83512681e-03 -7.61905089e-02
6.09963536e-01 -3.14171791e-01 8.33934695e-02 6.15008533e-01
1.64769664e-02 -2.00038791e-01 1.28292516e-01 2.34195173e-01
1.16907430e+00 -9.08304080e-02 2.34229583e-02 -1.61468998e-01
-5.27474545e-02 2.51769543e-01 8.32958102e-01 1.10294473e+00
-4.02799428e-01 6.74886942e-01 6.09237969e-01 -3.60574335e-01
-1.05752981e+00 -1.15575480e+00 -1.21203288e-01 1.40165484e+00
-1.17060132e-02 -9.60128978e-02 -7.96760321e-01 -1.03452432e+00
1.94070563e-01 1.01858783e+00 -6.14842951e-01 -7.10521400e-01
-5.24710417e-01 -7.23924816e-01 9.26399883e-03 4.89746660e-01
6.40624225e-01 -1.00880837e+00 -1.01991379e+00 3.51731569e-01
-3.28148715e-02 -7.78366268e-01 -3.26601684e-01 5.22829294e-01
-1.44142032e+00 -9.98091817e-01 -9.93178427e-01 -5.74971676e-01
9.61911201e-01 5.49353480e-01 1.02328670e+00 -3.83596458e-02
-1.32410154e-01 4.21185076e-01 -3.87758404e-01 -3.50899041e-01
-3.61231804e-01 5.45767128e-01 -7.02746436e-02 -2.16990098e-01
2.24515304e-01 -4.62698698e-01 -7.78679550e-01 1.92512378e-01
-9.34595227e-01 6.11782148e-02 4.17777449e-01 8.98497224e-01
6.29121423e-01 1.49367616e-01 9.60041106e-01 -1.30075192e+00
6.47462487e-01 -4.82305050e-01 -3.72304380e-01 2.06652924e-01
-7.14138985e-01 2.08476484e-01 7.80147970e-01 -8.70181620e-01
-1.11669290e+00 9.47430879e-02 1.66249275e-03 -2.78568745e-01
-6.83793202e-02 2.08939359e-01 2.55071461e-01 1.36174157e-01
1.01090324e+00 3.72934580e-01 1.45632803e-01 -4.58235234e-01
2.76288688e-01 3.60107064e-01 7.10090771e-02 -6.83299243e-01
2.28024065e-01 4.25471187e-01 -5.20434320e-01 -8.34750235e-01
-9.97048736e-01 -2.12058350e-01 -6.48698270e-01 -2.94924349e-01
4.08378571e-01 -8.50768507e-01 -2.21423898e-03 7.05263913e-01
-7.89829969e-01 -8.41348886e-01 -8.92380416e-01 2.49040112e-01
-4.38079178e-01 6.76531121e-02 -2.89911270e-01 -6.20568156e-01
-1.48935691e-01 -1.02606738e+00 9.41209376e-01 5.81778169e-01
-4.03313309e-01 -8.85456741e-01 -2.14177713e-01 5.64094707e-02
6.25861764e-01 -7.83399567e-02 1.12492442e+00 -8.17384541e-01
-2.88888544e-01 -6.18774518e-02 -9.46613774e-03 4.50519592e-01
2.69590497e-01 -3.87228966e-01 -9.86793816e-01 -6.74424708e-01
-4.05804515e-02 -4.91392672e-01 1.26073408e+00 3.30960542e-01
1.16030657e+00 -5.97621873e-02 -4.19879079e-01 9.44365636e-02
1.24950635e+00 4.53468621e-01 2.56907731e-01 3.78795534e-01
1.20513745e-01 4.20057744e-01 7.05006897e-01 5.11934638e-01
1.61697701e-01 2.53038198e-01 3.22381333e-02 3.57908607e-01
-2.93943375e-01 -4.13862526e-01 8.94472823e-02 2.56946623e-01
4.50568289e-01 2.40450744e-02 -1.01842034e+00 6.29167080e-01
-1.70187724e+00 -6.60096705e-01 6.49117589e-01 2.62851310e+00
1.28724349e+00 6.57626510e-01 1.22925162e-01 2.41048232e-01
6.80256546e-01 -3.22084837e-02 -1.14014673e+00 2.07544398e-03
4.12795842e-02 1.60250291e-02 4.23302293e-01 4.91853893e-01
-7.70645738e-01 1.22916675e+00 6.76857758e+00 8.32933784e-01
-1.38546014e+00 2.25851431e-01 9.68352139e-01 -4.84178960e-01
-3.22009742e-01 7.14450032e-02 -9.98672307e-01 6.45082176e-01
9.32901442e-01 -2.58907914e-01 4.18284804e-01 9.35409784e-01
-4.76847440e-02 -7.66460121e-01 -9.92814600e-01 6.51065111e-01
-1.39313579e-01 -1.21191168e+00 -3.03131342e-02 -2.52109766e-01
7.82109320e-01 8.57157558e-02 2.20428213e-01 5.03098309e-01
2.90358186e-01 -4.41965699e-01 7.55153418e-01 4.16323721e-01
6.91929877e-01 -6.79177105e-01 3.59565735e-01 5.66538036e-01
-5.63923657e-01 -4.23149973e-01 -6.03334546e-01 6.82862923e-02
-9.11891386e-02 1.01722264e+00 -1.18042088e+00 -3.46119910e-01
6.21348798e-01 3.62979978e-01 -8.09527218e-01 1.12666953e+00
5.33687249e-02 9.53782678e-01 -2.95719028e-01 6.53572008e-02
3.93072404e-02 1.26050636e-01 3.42763424e-01 8.87357771e-01
2.41460741e-01 -3.67654562e-01 -1.81151628e-01 5.86385131e-01
-3.93463811e-03 -2.28412569e-01 -4.44161475e-01 -6.02893680e-02
8.18590403e-01 5.82239985e-01 -1.16898739e+00 -3.97285104e-01
1.07330298e-02 1.06269252e+00 4.59612459e-01 4.56798404e-01
-6.60480797e-01 -1.59995079e-01 3.76664370e-01 3.83872747e-01
4.05350178e-01 -3.19577605e-01 -5.20162821e-01 -8.66419256e-01
-1.94068737e-02 -6.81308329e-01 4.33544189e-01 -5.31135142e-01
-9.63563442e-01 3.80502850e-01 1.44733358e-02 -7.90856898e-01
-1.57557845e-01 1.68505292e-02 -3.61709148e-01 4.42345530e-01
-1.39653790e+00 -4.32913989e-01 -2.87050396e-01 3.29158634e-01
9.82722521e-01 -1.08053774e-01 4.45560843e-01 1.84565976e-01
-3.93201917e-01 7.29045868e-01 3.12477440e-01 -3.88497025e-01
7.94260800e-01 -1.22786260e+00 4.71415520e-01 5.70347309e-01
1.91823006e-01 6.78137422e-01 8.62153232e-01 -8.25658977e-01
-9.65843678e-01 -1.05946004e+00 5.50906897e-01 -1.58946484e-01
2.24148836e-02 -5.88869929e-01 -1.37427175e+00 6.83027983e-01
-2.59978503e-01 -2.05517299e-02 4.93304759e-01 1.33580744e-01
-2.84672201e-01 -3.48080814e-01 -1.36052608e+00 5.47142863e-01
1.12073076e+00 -3.27356756e-01 -4.05057311e-01 3.14130932e-01
9.20849741e-01 -1.86146334e-01 -2.17915475e-01 1.60029128e-01
4.25451607e-01 -9.91232514e-01 6.59677684e-01 -4.31852937e-01
3.19363363e-02 9.41954274e-03 6.79097548e-02 -1.63219786e+00
-1.23028882e-01 -2.86194593e-01 1.08078914e-02 1.11893475e+00
5.09904444e-01 -8.26411128e-01 1.11234415e+00 5.73048949e-01
2.05515236e-01 -5.64837813e-01 -1.09903646e+00 -7.98976898e-01
2.94700146e-01 -2.62448937e-01 4.78843451e-01 6.85272098e-01
-3.72891784e-01 1.56053618e-01 9.32279676e-02 -2.83990920e-01
4.95285481e-01 -3.50515470e-02 5.74248075e-01 -1.24225295e+00
-2.72979081e-01 -2.02809080e-01 -5.22814244e-02 -1.07992530e+00
7.86952954e-03 -5.83898842e-01 7.04152882e-02 -1.33065832e+00
1.86537400e-01 -8.44309092e-01 -4.01029795e-01 3.95146906e-01
-2.57670790e-01 -2.26675078e-01 2.62424052e-01 3.22119325e-01
-7.48222053e-01 5.57533383e-01 1.27299523e+00 5.07265590e-02
-5.38371027e-01 2.64245003e-01 -8.64987493e-01 4.78084296e-01
7.41706789e-01 -6.98230982e-01 -8.90529692e-01 -4.00992751e-01
4.42875117e-01 -1.03097975e-01 1.16389543e-02 -1.30660439e+00
2.40672156e-01 -1.90919399e-01 5.11760175e-01 -4.92455900e-01
1.52524978e-01 -5.64019084e-01 -1.19962841e-01 5.62986016e-01
-5.60725152e-01 -1.31092966e-01 4.86487001e-01 8.23836446e-01
3.64425629e-02 -4.01085377e-01 1.08206308e+00 -4.40898418e-01
-7.19909906e-01 -1.37031689e-01 -4.35964942e-01 4.26794708e-01
1.01519370e+00 -3.38308841e-01 -2.92834818e-01 -1.35129914e-01
-8.67394626e-01 6.18135221e-02 6.03982389e-01 4.64805961e-01
5.66260517e-01 -8.91280532e-01 -3.62270594e-01 3.85490566e-01
-5.57948165e-02 3.94853890e-01 2.75114387e-01 5.45817554e-01
-3.38859528e-01 3.46627906e-02 -1.72223002e-01 -6.32084846e-01
-9.98178482e-01 2.37071127e-01 2.80094028e-01 -3.58472392e-02
-4.91114885e-01 1.16116512e+00 5.10020740e-02 -5.30866981e-02
4.27070767e-01 -3.00495386e-01 -3.36693935e-02 3.97381455e-01
5.00043154e-01 3.73688430e-01 3.02050322e-01 1.90154061e-01
-1.65238440e-01 6.58396482e-02 -8.15151572e-01 -3.10137808e-01
1.34808171e+00 -1.83336124e-01 2.41038203e-01 8.75622213e-01
7.98231125e-01 -3.07157516e-01 -1.99645209e+00 -3.74147773e-01
5.33350036e-02 -6.09113991e-01 -5.94300330e-02 -8.93218100e-01
-8.71966302e-01 7.85975575e-01 7.13630855e-01 1.25406921e-01
1.05519223e+00 4.03227620e-02 8.80486012e-01 3.36535901e-01
6.01895750e-01 -1.43895757e+00 5.59838593e-01 6.14627004e-01
6.63274765e-01 -1.08252180e+00 3.14496867e-02 1.04680292e-01
-7.89343417e-01 9.15094793e-01 7.90502846e-01 -6.29204512e-02
5.15602529e-01 6.62619770e-02 -9.16274861e-02 1.68530166e-01
-8.42854738e-01 5.92105761e-02 -2.69733936e-01 4.68878120e-01
2.62932628e-01 -1.21982701e-01 -1.92107230e-01 3.73893976e-01
-2.00823456e-01 3.51889096e-02 5.73754132e-01 1.27532506e+00
-8.04277241e-01 -9.31672573e-01 -1.44063726e-01 6.65442586e-01
-1.49485558e-01 -3.42959873e-02 -3.51560414e-01 4.46381211e-01
1.22948341e-01 6.17571473e-01 4.11475003e-01 -1.07072517e-01
2.08728388e-01 5.32537401e-01 5.20155907e-01 -8.39670658e-01
-3.93865913e-01 -1.93465993e-01 -3.42626005e-01 -1.51320368e-01
1.99382588e-01 -1.17961895e+00 -1.43834293e+00 9.97666921e-03
-3.77368420e-01 7.62210786e-02 6.55970216e-01 9.38957870e-01
5.18518746e-01 5.38079441e-01 4.41410452e-01 -5.04829645e-01
-7.41201222e-01 -8.21706355e-01 -5.62303007e-01 4.35444534e-01
4.66751099e-01 -9.04304683e-01 -6.59339428e-01 -5.32231927e-02] | [9.757970809936523, 3.2733848094940186] |
cb8b4723-ef51-4d9d-8370-63f3041203aa | clinet-joint-detection-of-road-network | 2302.02259 | null | https://arxiv.org/abs/2302.02259v1 | https://arxiv.org/pdf/2302.02259v1.pdf | CLiNet: Joint Detection of Road Network Centerlines in 2D and 3D | This work introduces a new approach for joint detection of centerlines based on image data by localizing the features jointly in 2D and 3D. In contrast to existing work that focuses on detection of visual cues, we explore feature extraction methods that are directly amenable to the urban driving task. To develop and evaluate our approach, a large urban driving dataset dubbed AV Breadcrumbs is automatically labeled by leveraging vector map representations and projective geometry to annotate over 900,000 images. Our results demonstrate potential for dynamic scene modeling across various urban driving scenarios. Our model achieves an F1 score of 0.684 and an average normalized depth error of 2.083. The code and data annotations are publicly available. | ['Henrik I. Christensen', 'Yunchao Yao', 'Srinidhi Kalgundi Srinivas', 'David Paz'] | 2023-02-04 | null | null | null | null | ['3d-depth-estimation'] | ['computer-vision'] | [-2.37089366e-01 2.79091001e-02 -1.71113923e-01 -6.97918534e-01
-8.84897947e-01 -7.81978548e-01 9.03953135e-01 1.32297024e-01
-3.79722893e-01 2.74422854e-01 1.17954753e-01 -5.90087771e-01
2.73691088e-01 -8.14085603e-01 -5.31174064e-01 -2.10869804e-01
-8.10981467e-02 1.50615320e-01 5.32280624e-01 -3.02688509e-01
5.80327868e-01 7.76310742e-01 -1.71241498e+00 2.03394219e-02
7.75446713e-01 8.24045897e-01 1.16320178e-01 9.28744495e-01
7.69482031e-02 6.85797393e-01 -2.71052510e-01 -4.99699622e-01
5.76630056e-01 1.75551727e-01 -2.88288385e-01 3.89537454e-01
1.19859040e+00 -5.43369234e-01 -7.55927205e-01 9.91173506e-01
1.94146976e-01 1.20441683e-01 7.65874445e-01 -1.42088675e+00
-4.50839221e-01 -1.06785208e-01 -7.39684403e-01 4.47545499e-01
2.56773651e-01 4.07823026e-01 1.14929247e+00 -1.28474641e+00
7.89800644e-01 1.13548756e+00 5.73556066e-01 2.70983968e-02
-1.12932384e+00 -6.55422568e-01 2.73889780e-01 2.85136312e-01
-1.61040115e+00 -6.46414101e-01 9.19734776e-01 -9.06437099e-01
1.02327240e+00 -1.40918583e-01 6.39446557e-01 6.13158464e-01
2.59044290e-01 8.97428334e-01 7.85479307e-01 -2.23476619e-01
-1.20618269e-01 2.57997841e-01 2.64165163e-01 9.16175425e-01
3.48213196e-01 5.23915112e-01 -5.39724767e-01 1.61351264e-01
8.07245910e-01 -4.07393485e-01 3.47663581e-01 -8.19584072e-01
-1.19150019e+00 1.08342648e+00 5.00614285e-01 -3.56347114e-01
1.24003552e-01 4.39570904e-01 2.21409649e-01 -8.11254904e-02
4.75916922e-01 4.58464205e-01 -1.91038065e-02 -2.07107827e-01
-7.80461788e-01 6.81835651e-01 3.62606794e-01 1.32107592e+00
1.14320624e+00 6.33430555e-02 1.58759639e-01 7.19609559e-01
3.21192443e-01 8.30354154e-01 -1.72412410e-01 -1.28517962e+00
5.97259402e-01 5.84100366e-01 3.20520878e-01 -1.39906287e+00
-5.71308374e-01 -3.22815597e-01 -1.10486746e-01 4.80726987e-01
2.68122673e-01 -1.08961323e-02 -9.18553472e-01 1.28435135e+00
2.59771675e-01 -4.57530618e-02 -3.40165757e-02 8.77584696e-01
9.86928880e-01 4.10826057e-01 -1.04751781e-01 5.83424807e-01
1.02054381e+00 -1.10782826e+00 -4.45191115e-01 -6.02366328e-01
7.85840571e-01 -9.31677520e-01 7.20538855e-01 2.20893413e-01
-7.37577438e-01 -7.13049889e-01 -1.30778420e+00 -4.42332178e-01
-4.81481373e-01 1.84799537e-01 7.85287082e-01 5.37980139e-01
-1.14465356e+00 -2.14267775e-01 -7.61737168e-01 -4.82536167e-01
5.35216033e-01 -9.44338739e-02 -4.74582613e-01 -2.19419241e-01
-5.96964061e-01 9.90314841e-01 1.63097903e-02 -1.94861427e-01
-9.41107750e-01 -5.57737172e-01 -1.36039519e+00 -5.60287297e-01
-2.52830125e-02 -4.47909057e-01 1.26609647e+00 -3.47265065e-01
-1.02068186e+00 1.01268113e+00 -3.85149091e-01 -5.19184709e-01
7.77182996e-01 -2.84057230e-01 -4.87981975e-01 1.71457738e-01
6.53626144e-01 1.26828992e+00 3.47685575e-01 -1.35958374e+00
-1.08354545e+00 -9.22525078e-02 2.19801649e-01 2.49771908e-01
2.89705843e-02 -1.97752461e-01 -8.06300104e-01 -3.44288826e-01
3.18053931e-01 -9.16903794e-01 -4.57545251e-01 3.56328517e-01
-4.36159581e-01 -3.71902762e-03 9.18649971e-01 -2.32207522e-01
8.72313499e-01 -2.08750653e+00 -4.25418377e-01 2.30208203e-01
4.07944083e-01 -2.20654011e-01 -1.98380977e-01 2.43114501e-01
3.91264498e-01 -5.12174377e-03 -5.25504462e-02 -3.84846509e-01
-3.94515917e-02 6.58181757e-02 -3.10328692e-01 7.54209101e-01
3.31365466e-01 1.04955304e+00 -9.05207396e-01 -6.03714287e-01
8.37562621e-01 2.58225620e-01 -6.71295464e-01 -1.00973681e-01
3.39664459e-01 2.00373963e-01 -3.88164461e-01 7.58964777e-01
9.51728284e-01 7.22426176e-02 -4.52360243e-01 -8.36051255e-02
-5.92395186e-01 1.82803214e-01 -1.03492093e+00 1.64667106e+00
-1.63977459e-01 1.46458483e+00 -2.91169614e-01 -5.65927684e-01
1.29720747e+00 -3.34331661e-01 5.15152335e-01 -9.31268990e-01
-9.89935994e-02 8.14062506e-02 -3.31825316e-01 -4.35176969e-01
1.03899407e+00 3.74255449e-01 -3.77512425e-01 -7.34014288e-02
-1.31155893e-01 -6.35070682e-01 3.50230187e-01 3.81454468e-01
1.07724547e+00 1.83894530e-01 1.89022005e-01 -3.63986135e-01
2.14029893e-01 7.05092132e-01 3.77707452e-01 8.19042921e-01
-6.52330399e-01 7.16667473e-01 1.65357411e-01 -6.93773389e-01
-1.37981606e+00 -1.25050247e+00 -5.98266363e-01 6.54942572e-01
6.90810740e-01 -7.22205400e-01 -3.03151578e-01 -5.40772140e-01
4.37720299e-01 6.84411645e-01 -5.79714000e-01 2.21822143e-01
-4.99731451e-01 -3.12606096e-01 5.25575697e-01 6.57609284e-01
6.96014106e-01 -3.56770903e-01 -8.30290258e-01 5.81016988e-02
-5.22650704e-02 -1.61618853e+00 -3.04366708e-01 -4.99390736e-02
-4.52878237e-01 -1.23256230e+00 -2.29962751e-01 -6.08438909e-01
5.26952744e-01 8.63587260e-01 1.15670562e+00 -2.85526544e-01
-5.73948085e-01 5.46873987e-01 -5.68819046e-02 -5.13705254e-01
-3.20283845e-02 4.73749153e-02 -1.71861708e-01 -3.19606096e-01
7.47420132e-01 -1.09900907e-01 -7.34485626e-01 4.62477744e-01
-3.07944983e-01 4.76260930e-01 3.33692014e-01 4.22274202e-01
5.78399301e-01 -4.53100711e-01 7.90519342e-02 -5.73176980e-01
1.63014784e-01 -4.12420034e-01 -9.70724046e-01 -2.88462013e-01
-6.05126202e-01 -1.71262294e-01 3.40381637e-02 3.42954956e-02
-9.25811112e-01 5.43706179e-01 -2.97280885e-02 -3.29187989e-01
-4.26999450e-01 2.22766325e-01 2.18435913e-01 -2.42705777e-01
8.79852593e-01 -1.81077514e-02 -2.28302270e-01 -1.81640091e-03
6.68359220e-01 4.61621165e-01 8.02818596e-01 -1.99414089e-01
1.16079986e+00 8.32449079e-01 7.65586868e-02 -1.04159081e+00
-7.80552328e-01 -8.42907548e-01 -9.95085835e-01 -5.17736912e-01
9.42875266e-01 -1.36013126e+00 -3.60746622e-01 2.30817094e-01
-9.65301633e-01 -2.32334167e-01 -9.08984244e-03 6.96584284e-01
-7.20768869e-01 1.87502384e-01 -1.68330908e-01 -6.55036747e-01
3.09881717e-01 -1.18321097e+00 1.27499568e+00 -1.47234807e-02
-2.01760516e-01 -8.67505074e-01 1.82037383e-01 3.99585038e-01
3.32060486e-01 5.06911159e-01 4.27319109e-01 -4.72953171e-02
-9.52196956e-01 -3.30253541e-01 -5.71524441e-01 -3.00694518e-02
-1.22967266e-01 2.14018285e-01 -1.14165747e+00 1.28582437e-02
-7.20407665e-01 -1.58151686e-01 1.09395361e+00 4.92500633e-01
7.54881322e-01 2.59527802e-01 -5.67204535e-01 7.93901622e-01
1.37867177e+00 6.34659529e-02 3.85085106e-01 7.89375961e-01
8.30168664e-01 6.49389148e-01 9.42082763e-01 4.36241984e-01
1.07384789e+00 6.71928167e-01 5.23217082e-01 -2.72089511e-01
-4.23089445e-01 -4.94597137e-01 1.67320788e-01 1.71934396e-01
2.13403568e-01 8.70176032e-03 -1.28521669e+00 9.29724097e-01
-1.93561423e+00 -8.61206710e-01 -5.15013456e-01 1.75911784e+00
1.19976074e-01 4.15782571e-01 2.54183505e-02 -1.34019628e-01
4.96513039e-01 2.23942488e-01 -6.21702373e-01 -2.71960974e-01
-3.37396801e-01 -4.16970164e-01 1.11967957e+00 7.47940302e-01
-1.49986446e+00 1.23451459e+00 7.63813496e+00 2.72021770e-01
-8.51781428e-01 -2.11058080e-01 5.59119225e-01 1.29716899e-02
-4.55529302e-01 1.76862299e-01 -1.17224848e+00 -1.11856490e-01
6.54131949e-01 -2.11539418e-01 -8.34629461e-02 1.14278352e+00
4.20871168e-01 -3.94720167e-01 -8.83747995e-01 1.15261614e+00
1.54326871e-01 -1.59690797e+00 -1.23553470e-01 3.24342877e-01
1.02695870e+00 5.67942917e-01 2.00011030e-01 1.05863988e-01
7.65346766e-01 -9.23608422e-01 1.16659856e+00 4.14770097e-01
8.01002085e-01 -8.28046501e-01 3.99565518e-01 1.04837544e-01
-1.50440001e+00 -6.38213754e-02 -3.77505064e-01 -2.39327550e-01
1.94148242e-01 3.96048367e-01 -1.08168662e+00 1.20806418e-01
7.43766129e-01 1.34131777e+00 -1.10389912e+00 1.27801096e+00
-2.07256183e-01 3.91646832e-01 -3.35488647e-01 1.53669596e-01
4.62049037e-01 5.63443522e-04 5.41642785e-01 1.46060014e+00
2.96408296e-01 -3.62278223e-01 3.65486085e-01 7.93766797e-01
3.05824816e-01 7.00250939e-02 -1.26814997e+00 4.50839430e-01
5.31686842e-01 1.32783890e+00 -6.20376170e-01 -2.69645542e-01
-5.98818243e-01 6.04110420e-01 3.23818952e-01 5.25848389e-01
-8.55765641e-01 -4.40423638e-01 9.90022242e-01 2.56809026e-01
3.77220839e-01 -9.16275442e-01 -6.37409031e-01 -1.13049781e+00
-2.07566619e-02 -1.05420791e-01 -6.45977817e-03 -7.85571635e-01
-1.11781228e+00 4.62024212e-01 2.73931682e-01 -1.48084462e+00
-3.33282799e-01 -7.81197965e-01 -4.67813581e-01 6.28898919e-01
-1.92785263e+00 -1.36930072e+00 -8.13508987e-01 5.54655075e-01
6.20619655e-01 -1.77498549e-01 4.48343784e-01 9.74190980e-02
-3.47696781e-01 4.42039609e-01 2.54257545e-02 1.48441300e-01
6.80039525e-01 -1.19270682e+00 9.41075444e-01 1.07940984e+00
2.61078298e-01 2.18220800e-01 7.89808631e-01 -4.18087274e-01
-1.19719481e+00 -1.35969698e+00 8.40852082e-01 -7.73430109e-01
7.16463685e-01 -6.51271999e-01 -3.59627157e-01 7.26663709e-01
1.07647978e-01 2.64957100e-01 3.30305606e-01 7.95125589e-03
-4.95595962e-01 -1.42836764e-01 -9.17417765e-01 5.63700855e-01
1.33812034e+00 -5.69625199e-01 -2.79848099e-01 2.38179088e-01
3.43841195e-01 -5.84128499e-01 -5.44779003e-01 3.75549734e-01
3.79798591e-01 -1.04265010e+00 1.01806831e+00 -9.58503336e-02
3.35392386e-01 -5.97715378e-01 -4.91465211e-01 -9.81342256e-01
-4.78631854e-01 -2.40238667e-01 1.74980342e-01 7.85792947e-01
5.55324256e-01 -4.75842297e-01 8.24542820e-01 5.27902603e-01
-5.12139142e-01 -3.40717196e-01 -9.48025823e-01 -5.84791303e-01
1.16768174e-01 -1.08385336e+00 3.81168485e-01 6.11334682e-01
-2.03758672e-01 2.49022603e-01 -1.54345512e-01 2.95215189e-01
7.36293912e-01 1.84764102e-01 1.38902390e+00 -1.19932604e+00
2.55505979e-01 -5.50753534e-01 -1.08638632e+00 -1.46225691e+00
1.89442143e-01 -9.55561399e-01 1.32267982e-01 -1.67000151e+00
5.19579612e-02 -6.65087342e-01 5.70422411e-02 2.61740625e-01
1.09429345e-01 6.45447969e-01 -2.88552456e-02 1.67491078e-01
-6.96377814e-01 5.06585896e-01 1.10558510e+00 -2.71971911e-01
4.23510596e-02 -3.37876737e-01 -5.92716992e-01 8.03185165e-01
7.98443198e-01 -4.83218282e-02 -4.41254079e-01 -6.26543462e-01
4.73053344e-02 -3.73007774e-01 6.38795018e-01 -1.23647928e+00
4.22615200e-01 -3.74504626e-01 5.02869904e-01 -1.22892129e+00
5.36034405e-01 -5.46569586e-01 -2.98243374e-01 2.12737136e-02
-1.94738135e-01 3.66323799e-01 5.15099227e-01 6.93842947e-01
-2.93636978e-01 1.81218654e-01 6.72548056e-01 8.52406919e-02
-1.41221130e+00 2.58674085e-01 -5.62708914e-01 -2.98286360e-02
1.42261076e+00 -4.96183932e-01 -4.97942924e-01 -5.17524481e-01
-2.73252040e-01 4.63911593e-01 6.40645146e-01 7.86970556e-01
9.29414332e-01 -1.45402217e+00 -7.95182109e-01 4.97100621e-01
8.77631843e-01 -1.73444852e-01 1.30834449e-02 4.25468892e-01
-7.79751480e-01 6.98676229e-01 -2.28044480e-01 -1.08555686e+00
-1.10701287e+00 2.91428655e-01 4.62252110e-01 3.62930715e-01
-8.01697493e-01 6.78849936e-01 4.48798776e-01 -4.28634852e-01
-1.24858007e-01 -2.11446553e-01 -1.33064151e-01 -1.20302439e-01
3.52252066e-01 3.00606936e-01 1.93870366e-02 -1.21253693e+00
-4.11309540e-01 7.62296021e-01 -1.37495128e-02 -3.49033624e-01
1.13140202e+00 -4.34192747e-01 4.20882136e-01 4.11123604e-01
1.39560294e+00 8.83930773e-02 -1.77102685e+00 -1.68856949e-01
-1.55599430e-01 -9.07862425e-01 3.03189754e-01 -3.15605432e-01
-8.36217463e-01 8.35653663e-01 8.27955186e-01 -9.58338752e-02
4.94961530e-01 2.15988606e-01 3.15912753e-01 4.60400879e-01
3.38663042e-01 -1.06892776e+00 4.84896302e-02 7.88174093e-01
7.02013016e-01 -1.78461277e+00 -9.93002951e-02 -5.00167608e-01
-7.35705256e-01 1.24725807e+00 7.53753781e-01 -3.18233848e-01
8.42333078e-01 4.20039475e-01 4.23582822e-01 -5.10154426e-01
-5.64852893e-01 -4.52674180e-01 4.37288463e-01 7.21138000e-01
3.60698789e-01 5.32008037e-02 1.81578711e-01 -1.46057636e-01
-6.80125117e-01 -3.58489245e-01 6.26190066e-01 8.77571821e-01
-7.78169572e-01 -7.07265794e-01 -2.09335804e-01 2.80549526e-01
2.16855362e-01 6.55670511e-03 -2.21777484e-01 9.64922965e-01
1.37921393e-01 1.22982764e+00 5.31675756e-01 -6.01665616e-01
4.45124418e-01 -3.63047183e-01 1.21957049e-01 -4.72695649e-01
1.50215223e-01 -1.00062340e-01 3.11770678e-01 -6.93453252e-01
-4.36555117e-01 -8.11156988e-01 -1.16949201e+00 -2.59525776e-01
-6.93492517e-02 -4.01188582e-01 8.39432895e-01 6.29417658e-01
4.44244802e-01 1.42601907e-01 7.66701996e-01 -9.43808854e-01
2.50979096e-01 -5.85103810e-01 -3.26251060e-01 3.20699990e-01
6.00567520e-01 -9.87278461e-01 -2.91822493e-01 1.20694816e-01] | [7.940277099609375, -1.9386234283447266] |
f1e8ca11-1676-42ee-bd27-e6721fa323b3 | ns3d-neuro-symbolic-grounding-of-3d-objects | 2303.13483 | null | https://arxiv.org/abs/2303.13483v1 | https://arxiv.org/pdf/2303.13483v1.pdf | NS3D: Neuro-Symbolic Grounding of 3D Objects and Relations | Grounding object properties and relations in 3D scenes is a prerequisite for a wide range of artificial intelligence tasks, such as visually grounded dialogues and embodied manipulation. However, the variability of the 3D domain induces two fundamental challenges: 1) the expense of labeling and 2) the complexity of 3D grounded language. Hence, essential desiderata for models are to be data-efficient, generalize to different data distributions and tasks with unseen semantic forms, as well as ground complex language semantics (e.g., view-point anchoring and multi-object reference). To address these challenges, we propose NS3D, a neuro-symbolic framework for 3D grounding. NS3D translates language into programs with hierarchical structures by leveraging large language-to-code models. Different functional modules in the programs are implemented as neural networks. Notably, NS3D extends prior neuro-symbolic visual reasoning methods by introducing functional modules that effectively reason about high-arity relations (i.e., relations among more than two objects), key in disambiguating objects in complex 3D scenes. Modular and compositional architecture enables NS3D to achieve state-of-the-art results on the ReferIt3D view-dependence task, a 3D referring expression comprehension benchmark. Importantly, NS3D shows significantly improved performance on settings of data-efficiency and generalization, and demonstrate zero-shot transfer to an unseen 3D question-answering task. | ['Jiajun Wu', 'Jiayuan Mao', 'Joy Hsu'] | 2023-03-23 | null | http://openaccess.thecvf.com//content/CVPR2023/html/Hsu_NS3D_Neuro-Symbolic_Grounding_of_3D_Objects_and_Relations_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Hsu_NS3D_Neuro-Symbolic_Grounding_of_3D_Objects_and_Relations_CVPR_2023_paper.pdf | cvpr-2023-1 | ['referring-expression', 'visual-reasoning', 'visual-reasoning'] | ['computer-vision', 'computer-vision', 'reasoning'] | [-3.17863747e-02 3.50835323e-01 -1.48938164e-01 -4.52192456e-01
-3.96982819e-01 -8.64073753e-01 6.75868273e-01 2.36680180e-01
9.32748020e-02 -3.17821242e-02 3.05984199e-01 -5.78970551e-01
-7.80809000e-02 -1.07812083e+00 -8.81997168e-01 -1.46326557e-01
-3.43742184e-02 6.50213420e-01 1.30171776e-01 -6.04839444e-01
4.71992940e-02 6.52223527e-01 -1.69601381e+00 6.38104737e-01
6.64286971e-01 1.10701144e+00 2.68150181e-01 2.33756840e-01
-6.08574688e-01 9.88160014e-01 -6.06707692e-01 -3.76521975e-01
9.87544805e-02 -2.10108131e-01 -1.12300622e+00 6.38134917e-03
8.01898777e-01 -3.23996902e-01 -2.12352753e-01 1.14034390e+00
2.86707073e-01 2.43308559e-01 4.82015133e-01 -1.52017677e+00
-1.33341670e+00 6.58401847e-01 -2.53177434e-01 -5.68664521e-02
7.98295796e-01 3.46782148e-01 1.15266788e+00 -1.01057208e+00
8.22958469e-01 1.90891862e+00 4.62997019e-01 7.22523928e-01
-1.50223434e+00 -3.56237531e-01 3.84429783e-01 1.17113113e-01
-1.28214979e+00 -3.68288696e-01 4.98088926e-01 -6.01768911e-01
1.56157804e+00 2.53622293e-01 7.38788426e-01 1.15313053e+00
-1.63831115e-01 8.48944426e-01 9.50377882e-01 -3.46195132e-01
3.05119991e-01 -2.60790020e-01 3.56918424e-01 1.04686296e+00
2.42543086e-01 -1.45675331e-01 -8.31173241e-01 9.92866978e-02
8.65421832e-01 -1.76888347e-01 -7.26925209e-02 -8.77072692e-01
-1.52037132e+00 6.53065920e-01 8.63401294e-01 8.87187868e-02
-2.43516460e-01 3.80613774e-01 4.34511662e-01 2.24206299e-01
1.90719783e-01 7.29494989e-01 -2.43031889e-01 9.69972610e-02
-3.15369636e-01 6.62884355e-01 7.84450531e-01 1.57530844e+00
7.01400399e-01 3.94359678e-02 -3.54904085e-01 4.54036862e-01
2.42729142e-01 8.24243248e-01 -1.23097807e-01 -1.08964372e+00
7.56606936e-01 1.18711746e+00 -2.35876605e-01 -1.18409705e+00
-7.01145172e-01 -2.09497869e-01 -7.87395597e-01 2.97817200e-01
2.70680726e-01 4.83096451e-01 -7.77134955e-01 1.94239914e+00
3.72278601e-01 -4.02152747e-01 2.64628440e-01 1.09213603e+00
1.50682974e+00 3.22198361e-01 2.55119830e-01 5.23284972e-01
1.57557714e+00 -6.34773672e-01 -5.43099701e-01 -4.27691996e-01
8.91720653e-01 -4.32339236e-02 1.75004208e+00 3.95643078e-02
-1.21379876e+00 -6.26995027e-01 -8.91546726e-01 -8.15246403e-01
-8.76796603e-01 -2.95182705e-01 9.53215957e-01 3.28871936e-01
-1.10672915e+00 4.36766557e-02 -6.86017632e-01 -5.70371330e-01
7.34095275e-01 2.61740863e-01 -5.28524458e-01 -1.12409241e-01
-9.94035661e-01 1.08505213e+00 6.47613347e-01 -3.40897503e-04
-8.44453335e-01 -7.90494144e-01 -1.40892088e+00 5.31409942e-02
6.27029300e-01 -1.22245765e+00 1.19015980e+00 -3.77504975e-01
-1.03934276e+00 1.69061220e+00 -7.16746449e-02 -4.41473514e-01
1.76454693e-01 -3.56129736e-01 -2.15200424e-01 2.51403093e-01
2.51331955e-01 1.02395892e+00 3.54561120e-01 -1.22999656e+00
-2.10542008e-01 -5.75916708e-01 9.38651085e-01 4.00743693e-01
2.23145843e-01 -3.93835038e-01 -2.93597132e-01 -3.03614169e-01
4.78348613e-01 -8.28071654e-01 2.89299101e-01 4.00682867e-01
-4.98306930e-01 -4.46513087e-01 6.69063687e-01 -3.70956957e-01
5.24462998e-01 -2.27541399e+00 7.50827014e-01 -1.39952479e-02
6.14584267e-01 -1.49319336e-01 -9.00041908e-02 2.27094755e-01
5.45847230e-04 2.36684382e-01 4.91771251e-02 -8.78360271e-02
5.78104973e-01 5.04723191e-01 -5.33398271e-01 1.03111118e-01
5.45034647e-01 1.51217842e+00 -1.09609413e+00 -5.59196889e-01
3.00949514e-01 1.63806409e-01 -9.16805148e-01 3.40084165e-01
-7.94358909e-01 2.11274788e-01 -4.19651091e-01 8.14453781e-01
3.63670290e-01 -5.78964651e-01 -8.37270468e-02 -5.17489135e-01
1.72599658e-01 4.42415297e-01 -9.28127468e-01 2.53584218e+00
-5.33834875e-01 4.35606569e-01 -1.79524943e-01 -8.22010994e-01
1.00517690e+00 3.08894785e-03 -1.33083090e-01 -9.20849144e-01
1.79317612e-02 -2.50984877e-02 -2.49613792e-01 -8.00565660e-01
6.46043718e-01 -5.36511699e-03 -5.40663362e-01 2.00043276e-01
3.50526959e-01 -9.27536190e-01 -4.72519659e-02 5.65279663e-01
8.22985053e-01 6.62210703e-01 4.29323226e-01 -3.74621123e-01
7.58913234e-02 3.37884039e-01 -1.06944427e-01 8.51151347e-01
1.10766925e-01 1.97274730e-01 8.67649257e-01 -4.41319376e-01
-6.30231678e-01 -1.30630183e+00 1.18290350e-01 1.24877512e+00
6.92919970e-01 -3.69422197e-01 -5.89036167e-01 -5.94221652e-01
9.58537981e-02 1.09144962e+00 -7.73842156e-01 -3.39925498e-01
-4.15393114e-01 8.63909200e-02 6.94157600e-01 5.86006761e-01
6.18038833e-01 -1.12014186e+00 -1.23178101e+00 -2.37757936e-01
-2.23347977e-01 -1.49383652e+00 1.42103225e-01 3.90051305e-01
-7.17959762e-01 -1.02102280e+00 -1.69893533e-01 -7.80208707e-01
6.29404306e-01 3.67600620e-01 1.89817107e+00 5.15303239e-02
8.09232891e-02 7.79147685e-01 -3.77393246e-01 -3.80071282e-01
-4.59679157e-01 8.93283039e-02 -2.08763823e-01 -6.68885052e-01
4.67730910e-01 -4.06457961e-01 -2.38182813e-01 1.62553787e-01
-8.90612960e-01 5.76383412e-01 3.31834346e-01 5.70158601e-01
7.02003717e-01 -4.56911027e-01 2.71371901e-01 -7.15457439e-01
5.31683624e-01 -3.95300537e-01 -6.81657970e-01 4.07501519e-01
6.15751818e-02 3.28385234e-01 2.14992374e-01 -4.36754495e-01
-8.77391279e-01 -4.01638299e-01 1.88717589e-01 -4.49958533e-01
-4.01340634e-01 5.01769483e-01 -5.53944767e-01 1.91200018e-01
1.02486873e+00 -1.49185598e-01 -6.46654814e-02 -1.21895954e-01
1.12239754e+00 5.27589731e-02 7.82040656e-01 -1.24112964e+00
7.19654500e-01 5.68866014e-01 4.96769458e-01 -6.59242928e-01
-1.24193239e+00 -1.21754147e-01 -7.38026798e-01 -2.60445848e-03
1.19350302e+00 -9.70376909e-01 -1.05081010e+00 1.27273023e-01
-1.53666258e+00 -5.92082262e-01 -4.36964810e-01 -2.88703926e-02
-8.38754833e-01 -1.38239071e-01 -3.61730844e-01 -3.54703635e-01
-9.60155725e-02 -1.09954786e+00 1.39096951e+00 6.91220583e-03
-6.60550654e-01 -7.50721574e-01 -4.03132081e-01 1.51497141e-01
1.32631525e-01 6.21941566e-01 1.82680738e+00 -6.07584238e-01
-8.23078334e-01 2.20673278e-01 -5.66912174e-01 3.10306605e-02
-9.97519717e-02 -5.77297807e-01 -9.23805058e-01 1.50985196e-01
-2.30189502e-01 -9.07375336e-01 3.70565385e-01 -4.92252000e-02
1.19334376e+00 -1.05984069e-01 -2.29163915e-01 7.16179609e-01
1.06711829e+00 3.53356712e-02 4.80604321e-01 1.96361154e-01
1.02750993e+00 7.96396077e-01 4.78249103e-01 1.09806754e-01
8.05958211e-01 7.01980174e-01 9.62586880e-01 -1.21093675e-01
-3.82299125e-01 -5.36668181e-01 -7.32149556e-02 4.27958697e-01
1.51532754e-01 -2.00567111e-01 -1.37201500e+00 3.34481180e-01
-1.67624140e+00 -9.82490957e-01 -6.97657317e-02 1.75114155e+00
8.26488316e-01 1.41174987e-01 -3.67877856e-02 -1.33142546e-01
3.29200029e-01 2.42674544e-01 -7.67507792e-01 -2.04008207e-01
-4.17967319e-01 1.87150463e-01 -2.01946512e-01 2.82215774e-01
-8.12700450e-01 1.24709964e+00 5.31902742e+00 4.37638462e-01
-8.92086983e-01 -5.72318248e-02 2.00799718e-01 -9.98307392e-02
-5.47881663e-01 -1.30439132e-01 -6.88297868e-01 -3.80114406e-01
3.21929038e-01 3.99620272e-02 6.58857167e-01 7.78106153e-01
-3.11886072e-01 5.81201017e-02 -1.81313014e+00 1.34422886e+00
2.39300102e-01 -1.56917524e+00 5.45277357e-01 -1.69455558e-01
4.26027954e-01 -1.27742171e-01 8.19075182e-02 6.45282447e-01
3.74445140e-01 -1.30989587e+00 1.38793528e+00 4.28125352e-01
9.58072364e-01 -3.75733912e-01 2.60099083e-01 2.23195568e-01
-1.02673781e+00 1.30034968e-01 -1.19187973e-01 -8.80418718e-02
9.13201049e-02 1.65981814e-01 -4.35566664e-01 5.98314822e-01
7.88499892e-01 7.44454622e-01 -4.60120440e-01 3.27534705e-01
-4.44102526e-01 -1.44996285e-01 -9.51518714e-02 -2.38840386e-01
2.41983175e-01 1.25373945e-01 4.83611226e-01 9.29837525e-01
1.32044747e-01 3.29107702e-01 1.02497332e-01 1.58265686e+00
-1.31774798e-01 -3.52714270e-01 -9.76990998e-01 -6.00592494e-02
5.29563725e-01 8.57706666e-01 -5.86164355e-01 -2.40110084e-01
-4.34343994e-01 7.61524081e-01 5.95232248e-01 6.35506511e-01
-8.38148057e-01 -2.62503237e-01 6.39985144e-01 1.92457870e-01
1.75905660e-01 -7.08055913e-01 -4.58251029e-01 -1.06417131e+00
3.48044485e-02 -1.18807721e+00 3.72233152e-01 -1.42595029e+00
-1.10685205e+00 6.57579899e-01 4.95603263e-01 -9.77197587e-01
-1.61000878e-01 -1.06576169e+00 5.21007292e-02 8.14759612e-01
-1.15080154e+00 -1.64504957e+00 -8.19764853e-01 7.14048982e-01
2.82512099e-01 3.21485219e-03 1.15469754e+00 -1.36856541e-01
-4.56175357e-02 2.04219922e-01 -9.76436019e-01 1.16120018e-01
1.46447778e-01 -1.28497100e+00 7.36510932e-01 4.85556215e-01
4.13827002e-01 8.97803307e-01 4.62773204e-01 -4.07687098e-01
-1.83741057e+00 -8.87995660e-01 5.41181386e-01 -1.00008678e+00
6.54014289e-01 -8.87704074e-01 -9.22082305e-01 8.22925329e-01
-8.67136195e-03 1.99018106e-01 4.82061028e-01 4.00093794e-01
-1.05028629e+00 3.33367676e-01 -1.00221753e+00 1.02516282e+00
1.95161188e+00 -1.10664248e+00 -1.09151125e+00 2.47122481e-01
1.30960906e+00 -1.14143252e+00 -7.89921522e-01 3.36568594e-01
3.74915689e-01 -9.96177256e-01 1.29609454e+00 -9.85843778e-01
6.47727787e-01 -3.90209824e-01 -8.42756927e-01 -1.05706739e+00
-7.19594434e-02 -4.06786621e-01 -4.35541660e-01 1.04880512e+00
1.01066448e-01 -3.93849194e-01 3.55031133e-01 6.34074032e-01
-3.25848997e-01 -6.90980315e-01 -7.65453756e-01 -7.91708469e-01
-1.56752896e-02 -6.69455767e-01 9.90300059e-01 9.56379235e-01
-4.03587818e-02 6.37261510e-01 4.00230706e-01 3.76230896e-01
4.66846734e-01 5.36011934e-01 9.97506142e-01 -1.20204091e+00
-1.83478713e-01 -5.22688091e-01 -6.14140689e-01 -1.55052233e+00
7.21273839e-01 -1.34577465e+00 -1.58677518e-01 -1.79223061e+00
-8.74355808e-02 -5.50586104e-01 1.20527193e-01 7.94614553e-01
2.39994258e-01 -1.79457292e-01 3.70691955e-01 1.96825322e-02
-8.20210814e-01 4.87502009e-01 1.41460311e+00 -4.25359994e-01
-1.43524587e-01 -6.72578812e-01 -7.45270133e-01 7.69406021e-01
4.96653438e-01 -1.51728600e-01 -6.95546448e-01 -1.07399487e+00
7.52882421e-01 1.68336749e-01 1.18509281e+00 -6.68525815e-01
9.67384875e-03 -2.42984250e-01 1.91072285e-01 -8.02310407e-01
5.24733245e-01 -8.81699204e-01 -9.12562311e-02 9.89947990e-02
-5.60397089e-01 2.48559907e-01 5.87190390e-01 2.77982652e-01
-2.26679593e-02 -1.92292109e-02 2.86950648e-01 -3.65973294e-01
-1.19187009e+00 5.25350757e-02 2.59720027e-01 6.82066381e-01
6.70172095e-01 -3.10490489e-01 -9.58699226e-01 -1.84765443e-01
-5.65676689e-01 1.55322343e-01 5.86405635e-01 7.33554721e-01
6.43148005e-01 -1.42346978e+00 -2.41883248e-01 6.84146434e-02
7.49642074e-01 6.53057218e-01 1.76661909e-01 4.66197044e-01
-5.33116102e-01 3.72562706e-01 -3.46437961e-01 -1.06893241e+00
-8.32018137e-01 7.39209056e-01 4.83559996e-01 3.03317189e-01
-7.12473571e-01 9.54539001e-01 5.66408753e-01 -7.31471896e-01
2.57903993e-01 -9.52885985e-01 1.30565956e-01 -8.51760656e-02
2.21148252e-01 -8.07712823e-02 8.43615457e-03 -6.68326735e-01
-4.63941008e-01 7.70693779e-01 3.79117131e-01 2.74248067e-02
1.05316865e+00 1.14801422e-01 -3.12258780e-01 6.85534894e-01
9.39357936e-01 -3.67250144e-01 -1.03723800e+00 -4.17279124e-01
8.25730115e-02 -2.34949365e-01 -1.44915789e-01 -8.39924037e-01
-5.42232931e-01 1.05698478e+00 1.88824609e-01 2.16725782e-01
7.64749765e-01 6.28238082e-01 2.07554132e-01 9.21222806e-01
7.35326350e-01 -4.00586903e-01 4.37638313e-01 6.87063992e-01
1.40048075e+00 -1.10314941e+00 -6.99109659e-02 -4.02856022e-01
-5.15695274e-01 8.99316311e-01 8.67830634e-01 2.77118683e-01
6.98809996e-02 3.44353318e-02 -4.32463773e-02 -7.80949056e-01
-5.18489301e-01 -2.94954151e-01 5.89233994e-01 1.00780225e+00
1.60592154e-01 3.95707376e-02 7.32894361e-01 5.48019290e-01
-4.21251357e-01 -3.43914390e-01 -2.20097825e-02 8.27094674e-01
-6.70913160e-02 -4.09617901e-01 -1.58336774e-01 1.18459582e-01
2.80026138e-01 -2.38465488e-01 -3.81763935e-01 1.17005503e+00
2.03802139e-01 8.09050560e-01 2.60629028e-01 -1.07366920e-01
7.44153917e-01 -1.57006197e-02 9.04489279e-01 -8.36727679e-01
-4.16469038e-01 -6.18938982e-01 1.84785664e-01 -8.91619325e-01
-6.12102389e-01 -2.57679939e-01 -1.75713801e+00 -2.40585953e-01
-2.20568534e-02 -4.71644849e-01 4.61837858e-01 9.60091770e-01
6.56216085e-01 6.85714602e-01 -2.88714439e-01 -7.51744986e-01
-5.01526594e-01 -4.53689873e-01 -2.22940400e-01 8.07242155e-01
2.48295814e-01 -9.91880476e-01 -5.89127727e-02 2.54625026e-02] | [10.533061981201172, 1.8335076570510864] |
d0e695aa-2aa1-4475-b834-cf799cb37166 | intel-tut-dataset-for-camera-invariant-color | 1703.09778 | null | http://arxiv.org/abs/1703.09778v2 | http://arxiv.org/pdf/1703.09778v2.pdf | INTEL-TUT Dataset for Camera Invariant Color Constancy Research | In this paper, we provide a novel dataset designed for camera invariant color
constancy research. Camera invariance corresponds to the robustness of an
algorithm's performance when run on images of the same scene taken by different
cameras. Accordingly, images in the database correspond to several lab and
field scenes each of which are captured by three different cameras with minimal
registration errors. The lab scenes are also captured under five different
illuminations. The spectral responses of cameras and the spectral power
distributions of the lab light sources are also provided, as they may prove
beneficial for training future algorithms to achieve color constancy. For a
fair evaluation of future methods, we provide guidelines for supervised methods
with indicated training, validation and testing partitions. Accordingly, we
evaluate a recently proposed convolutional neural network based color constancy
algorithm as a baseline for future research. As a side contribution, this
dataset also includes images taken by a mobile camera with color shading
corrected and uncorrected results. This allows research on the effect of color
shading as well. | ['Moncef Gabbouj', 'Jarno Nikkanen', 'Caglar Aytekin'] | 2017-03-21 | null | null | null | null | ['color-constancy'] | ['computer-vision'] | [ 4.38910663e-01 -7.24628389e-01 1.57780394e-01 -5.84164798e-01
-1.81366578e-01 -8.62986684e-01 2.96498865e-01 -1.60476208e-01
-3.23616743e-01 5.38441956e-01 -2.08831310e-01 -2.08231747e-01
3.99469197e-01 -4.06247765e-01 -6.39069915e-01 -7.68171430e-01
2.42677078e-01 -3.50180238e-01 7.68195763e-02 -2.11636890e-02
4.10873502e-01 6.97948217e-01 -1.72272086e+00 1.94068760e-01
6.83333814e-01 8.55611801e-01 3.53152663e-01 9.19362128e-01
3.30252796e-01 6.98059082e-01 -5.75433731e-01 -1.49564296e-01
6.88428164e-01 -5.03434062e-01 -4.02640581e-01 5.85176647e-01
1.29344881e+00 -5.76266110e-01 -5.72195202e-02 9.63784158e-01
5.15208781e-01 2.56034553e-01 1.78546116e-01 -1.19686902e+00
-8.52167428e-01 -1.65648952e-01 -4.85313296e-01 1.98898409e-02
4.54110503e-01 4.61219817e-01 7.63245165e-01 -6.53869569e-01
3.33771527e-01 8.03875864e-01 5.00013173e-01 3.68666798e-01
-1.34552169e+00 -4.91183877e-01 -8.47406760e-02 1.23057142e-01
-9.75222051e-01 -7.52872646e-01 9.06310439e-01 -1.35930389e-01
6.38068974e-01 3.81302565e-01 8.02675128e-01 9.12149549e-01
1.01920851e-01 3.43329489e-01 1.75315011e+00 -6.56992674e-01
4.16738242e-01 3.87287378e-01 -3.68333161e-02 6.95502937e-01
6.30589128e-01 1.30860791e-01 -4.54595238e-01 1.04476213e-01
8.62503350e-01 -2.13938534e-01 -6.63088679e-01 -5.40184677e-01
-1.06330729e+00 4.63218868e-01 5.71238279e-01 1.89653978e-01
2.02754959e-01 7.80637190e-02 7.03109875e-02 2.70835608e-01
2.14113027e-01 5.74282289e-01 -6.26971126e-01 2.93522388e-01
-6.97347820e-01 -2.02487886e-01 6.19747818e-01 1.08495092e+00
9.52094316e-01 3.33403051e-01 1.17189817e-01 8.48434091e-01
2.01486439e-01 6.76663578e-01 3.56714219e-01 -1.42802036e+00
3.98200471e-03 4.94359881e-01 3.57862353e-01 -1.06512165e+00
-4.72478181e-01 -2.72468594e-03 -3.74955744e-01 5.41976392e-01
5.29894412e-01 -1.64937735e-01 -9.43067014e-01 1.50672770e+00
1.94272064e-02 8.08447450e-02 -4.31519225e-02 1.07520044e+00
6.51535273e-01 4.55745071e-01 -2.94170558e-01 -2.72630960e-01
1.14112890e+00 -8.56251180e-01 -5.87457299e-01 -4.00603741e-01
1.23963051e-01 -1.11492288e+00 1.33147490e+00 4.65371758e-01
-1.05239689e+00 -7.10679531e-01 -1.16011333e+00 -1.98848516e-01
-5.77841461e-01 4.69165057e-01 8.34721386e-01 1.22302210e+00
-1.37674546e+00 3.20950985e-01 -5.67218721e-01 -5.80361307e-01
8.13906491e-02 6.11028299e-02 -2.98086852e-01 -3.92963350e-01
-6.55160129e-01 8.48554313e-01 7.98881054e-02 1.40957966e-01
-5.62611699e-01 -5.38650692e-01 -8.71118605e-01 -2.84608185e-01
-6.67265058e-02 -2.23731592e-01 1.04263365e+00 -1.59198046e+00
-1.65773141e+00 1.18790901e+00 -2.64406830e-01 8.85952339e-02
2.70675242e-01 -1.16772270e-02 -6.25404954e-01 3.01703721e-01
2.95717772e-02 4.40163344e-01 7.74485290e-01 -1.65625930e+00
-3.94322008e-01 -2.92296737e-01 1.24720752e-01 2.04680234e-01
-1.76182851e-01 1.09813042e-01 -7.32388318e-01 -2.44530797e-01
3.30634229e-02 -1.02210367e+00 1.31747171e-01 2.62251765e-01
-1.97743759e-01 6.68884754e-01 7.14372158e-01 -5.91837227e-01
5.74815154e-01 -2.25630426e+00 -4.25439984e-01 1.06992818e-01
-1.65353745e-01 2.16879383e-01 -3.97283405e-01 2.76851475e-01
-4.09661978e-01 -2.01937646e-01 -1.99268669e-01 -2.26752475e-01
-3.65909904e-01 8.05516392e-02 7.68216774e-02 8.22815657e-01
-3.70954722e-02 4.86860126e-01 -6.66232169e-01 -1.62349984e-01
5.15014470e-01 3.66382301e-01 -2.48574957e-01 3.29758078e-01
1.29950404e-01 3.87606323e-01 3.51099521e-01 9.19877350e-01
1.19825256e+00 -1.97756048e-02 2.54359514e-01 -5.55002451e-01
-4.15493727e-01 -3.10173273e-01 -1.15690589e+00 1.52835405e+00
-4.05050308e-01 1.26791906e+00 1.44566655e-01 -4.78124142e-01
7.79695690e-01 -9.33298245e-02 3.37292552e-01 -8.67074192e-01
1.32325098e-01 1.63030386e-01 -9.92120504e-02 -4.94236410e-01
7.13790357e-01 1.80422530e-01 5.62596142e-01 3.77119213e-01
-1.77618921e-01 -4.72587466e-01 2.52306104e-01 -6.21302947e-02
4.13354009e-01 3.53303462e-01 2.32944055e-03 -2.57061571e-01
3.90061378e-01 4.63567339e-02 3.11174721e-01 6.70632303e-01
-5.19541442e-01 9.64923322e-01 -8.35173503e-02 -5.12931526e-01
-1.11958492e+00 -9.11539793e-01 -4.38623309e-01 1.07499123e+00
4.75049347e-01 1.00669384e-01 -7.07341611e-01 1.11489937e-01
-1.64769769e-01 7.22950518e-01 -6.30785406e-01 5.66535257e-02
-2.87757963e-01 -8.21503401e-01 2.50698954e-01 3.73118132e-01
8.32114756e-01 -6.54488087e-01 -1.00018144e+00 -3.76302183e-01
-1.10105582e-01 -1.21468687e+00 -3.86684388e-01 3.94743413e-01
-6.84519708e-01 -1.63023579e+00 -5.72885215e-01 -7.45607138e-01
7.38343060e-01 1.16925538e+00 1.04820085e+00 1.13539353e-01
-4.21920925e-01 9.10984457e-01 -3.89217973e-01 -2.63632774e-01
-5.98098040e-02 -5.39197981e-01 2.30931286e-02 6.77981526e-02
2.83641785e-01 -4.91457209e-02 -8.76714051e-01 4.30476964e-01
-1.09611690e+00 2.21947189e-02 1.45633250e-01 6.85040474e-01
4.50914085e-01 6.33340776e-02 -4.71141577e-01 -6.71490848e-01
4.20121670e-01 -2.74642394e-03 -9.69724357e-01 4.34906155e-01
-6.08942568e-01 -3.37826818e-01 7.06910968e-01 -2.52644688e-01
-1.39467084e+00 1.67869657e-01 6.68105543e-01 -1.69250637e-01
-4.92334723e-01 1.48614207e-02 -1.06296867e-01 -5.71586132e-01
9.64020550e-01 3.91538814e-02 -1.87011585e-01 -1.06117375e-01
3.62720579e-01 4.99575436e-01 6.88267231e-01 -4.45249766e-01
7.67330587e-01 7.26939142e-01 1.36438748e-02 -1.12736523e+00
-5.92177987e-01 -4.84212458e-01 -6.57796144e-01 -4.50446784e-01
7.13695884e-01 -1.09173226e+00 -5.94573796e-01 7.96796322e-01
-9.30477262e-01 -5.38791120e-01 2.17489034e-01 4.03403133e-01
-3.39415729e-01 3.03484917e-01 -3.49202603e-01 -8.00976694e-01
1.69419721e-02 -1.05309522e+00 9.71913159e-01 8.00015390e-01
2.27728650e-01 -1.26384413e+00 9.76518914e-02 4.72566873e-01
5.06445467e-01 3.49852532e-01 5.61444402e-01 1.47658706e-01
-5.65262139e-01 -2.98565328e-01 -4.82817978e-01 4.50751632e-01
5.16073227e-01 5.72436154e-01 -1.55147183e+00 -5.60255170e-01
-8.70362297e-02 -3.23427975e-01 7.40277767e-01 6.94748938e-01
1.07578111e+00 1.82382300e-01 1.46209657e-01 1.00754464e+00
1.97640634e+00 3.03824812e-01 7.35853553e-01 6.10669196e-01
7.50092685e-01 6.06930971e-01 3.46550494e-01 2.88908124e-01
1.12717517e-01 3.69392008e-01 6.55443788e-01 -7.99414217e-01
-1.78699940e-01 2.79367447e-01 4.39954430e-01 2.17366889e-01
-3.64343762e-01 -2.97431558e-01 -5.69078863e-01 2.66662270e-01
-1.15021408e+00 -9.18184876e-01 -6.94167912e-01 2.43618512e+00
6.40384614e-01 -4.67692167e-01 -2.09405106e-02 -2.08482798e-02
7.84331679e-01 8.70677531e-02 -5.82972646e-01 -4.69235837e-01
-6.93575382e-01 2.20114544e-01 8.11848760e-01 4.56687123e-01
-1.07169402e+00 7.27793396e-01 7.22465372e+00 -1.05918594e-01
-1.52268112e+00 -3.74988914e-01 8.42472255e-01 7.91794285e-02
-1.30419388e-01 1.52213961e-01 -1.61608040e-01 3.08885127e-01
7.38319457e-01 1.88190684e-01 9.37793851e-01 7.49244392e-01
4.97810185e-01 -9.53263760e-01 -9.97343898e-01 1.13844681e+00
4.81942177e-01 -9.18967366e-01 -3.79175335e-01 -1.96470439e-01
1.09104633e+00 1.37444763e-02 3.60685557e-01 -5.00567257e-01
1.61862209e-01 -7.52055109e-01 5.29612720e-01 5.02254307e-01
9.43237484e-01 -3.93595010e-01 6.19807780e-01 -4.02354032e-01
-9.50940490e-01 -5.72412871e-02 -7.03317642e-01 -5.49224578e-02
-4.10948873e-01 2.87728071e-01 -5.53758383e-01 4.57022041e-01
9.36129332e-01 7.23245382e-01 -1.23114133e+00 1.17054749e+00
-1.72248662e-01 4.99405444e-01 -8.44538733e-02 9.31509286e-02
-1.30022004e-01 -5.75062215e-01 -5.74269928e-02 1.18384850e+00
1.17937654e-01 -1.21195368e-01 -1.93084180e-02 8.86960149e-01
9.26471874e-02 -7.24272132e-02 -6.73103213e-01 8.71077031e-02
1.90675378e-01 1.47910178e+00 -9.09951746e-01 1.31977722e-02
-7.09235132e-01 1.41208518e+00 -8.43724012e-02 8.92181754e-01
-6.77646339e-01 -4.02755827e-01 6.30336404e-01 -9.42550898e-02
-1.60547540e-01 -3.57310653e-01 -4.25924182e-01 -1.37391639e+00
-1.24249108e-01 -7.60498345e-01 1.81256637e-01 -1.60187018e+00
-1.10733581e+00 2.53708482e-01 -2.70154458e-02 -1.40167487e+00
3.79498273e-01 -1.11326528e+00 -5.53676665e-01 1.06744373e+00
-1.84865618e+00 -1.19596791e+00 -1.12521505e+00 8.99419069e-01
3.25327963e-01 -1.80141240e-01 9.01688933e-01 -3.82127911e-02
-6.78242743e-01 3.50194335e-01 5.29960454e-01 4.33134437e-02
1.21405625e+00 -1.32505858e+00 1.36477817e-02 1.28476524e+00
-2.15304317e-03 7.89128602e-01 6.72219217e-01 -2.57777184e-01
-1.61724055e+00 -9.42567766e-01 1.40956879e-01 -3.25676113e-01
3.50127399e-01 -8.61647651e-02 -6.39056087e-01 6.06629014e-01
6.38679087e-01 -1.19938888e-02 8.47374558e-01 -1.68894365e-01
-2.62279332e-01 -4.07128066e-01 -1.00174844e+00 6.55480325e-01
5.18392801e-01 -5.15307426e-01 1.02676503e-01 3.78029287e-01
2.73955017e-01 -5.91380239e-01 -3.98445547e-01 -1.23866923e-01
6.66074514e-01 -1.57948804e+00 6.48496568e-01 -1.84890121e-01
4.54369307e-01 -5.92035174e-01 -4.95135427e-01 -1.32101977e+00
-3.96038413e-01 -2.90541321e-01 6.47153318e-01 1.08880401e+00
1.68677732e-01 -5.92995703e-01 4.60165054e-01 9.93257046e-01
4.77613546e-02 5.69121391e-02 -2.48666540e-01 -5.91360271e-01
-2.25419745e-01 -4.21729535e-01 2.26897255e-01 1.03954911e+00
-5.67749918e-01 -6.49544671e-02 -4.64582354e-01 2.52779007e-01
5.68079650e-01 3.99524003e-01 1.00633466e+00 -1.00660813e+00
-6.15950115e-02 -2.71374702e-01 -2.09766254e-01 -4.31046873e-01
-2.05530189e-02 -4.68832046e-01 -6.66744858e-02 -1.23511028e+00
2.94895530e-01 -1.21382318e-01 -5.65747404e-03 3.35354716e-01
-2.35063478e-01 6.37734592e-01 1.31745309e-01 1.10009886e-01
-2.56163031e-01 1.12378798e-01 1.29052460e+00 -9.26022232e-02
-2.39420831e-01 -9.44488198e-02 -6.45006359e-01 5.36070287e-01
9.88392830e-01 1.53307438e-01 -4.72334355e-01 -7.09855258e-01
4.82669426e-03 -3.15136135e-01 4.47953373e-01 -1.02435577e+00
8.58794153e-02 -5.83278775e-01 1.02658248e+00 -2.79206373e-02
3.45460415e-01 -1.10551417e+00 1.58644438e-01 2.55930662e-01
-1.47871390e-01 1.79955453e-01 4.40043092e-01 3.14153612e-01
1.08756624e-01 -7.80907944e-02 1.25565279e+00 -3.92021298e-01
-9.20861781e-01 9.21073370e-03 -3.00393701e-01 -2.12151989e-01
9.56822693e-01 -7.38120377e-01 -5.41171670e-01 -6.01060331e-01
-1.01403259e-01 -2.08081007e-01 1.17380643e+00 7.67932609e-02
4.92544115e-01 -1.00367320e+00 -3.29953551e-01 3.86844307e-01
3.49055141e-01 -4.75344092e-01 1.40669689e-01 5.48685253e-01
-1.13616800e+00 1.28279999e-01 -7.13441610e-01 -5.87674558e-01
-1.39741647e+00 3.86088312e-01 6.98473930e-01 7.05487430e-01
-2.35208478e-02 6.15253210e-01 -1.04871348e-01 -1.78872034e-01
6.08638860e-02 -3.72143239e-01 1.31108304e-02 -2.12631613e-01
4.55940217e-01 4.35166568e-01 2.01877043e-01 -6.47060394e-01
-3.15073907e-01 6.45451665e-01 4.27609533e-01 1.87263153e-02
1.22021246e+00 -3.24416280e-01 -5.03920555e-01 6.61592245e-01
1.05460703e+00 3.72014344e-01 -1.44201016e+00 1.81162268e-01
-4.74456787e-01 -9.98998106e-01 1.06701262e-01 -9.72691834e-01
-1.33592618e+00 5.85999787e-01 1.14217877e+00 1.31759495e-01
1.66452467e+00 -5.40229738e-01 -7.88674876e-02 3.08055341e-01
1.97322592e-01 -1.31237948e+00 1.59234583e-01 2.40406558e-01
5.21459401e-01 -1.65157163e+00 2.60629117e-01 -2.18825758e-01
-6.72270656e-01 1.63131762e+00 7.69555271e-01 3.00521273e-02
9.51945633e-02 1.41823990e-02 5.74299097e-01 1.01552367e-01
-1.63967758e-01 -3.47357929e-01 2.37035975e-01 1.06829345e+00
8.70473504e-01 -6.27063736e-02 6.12081699e-02 -3.98120314e-01
1.98954083e-02 -2.51831204e-01 9.72040176e-01 6.74849868e-01
-3.13439578e-01 -8.56935918e-01 -7.22521305e-01 1.18743323e-01
2.70518400e-02 -1.63894072e-01 -7.83363700e-01 8.07103932e-01
2.40109023e-02 1.41696072e+00 5.98015822e-02 -1.84803024e-01
1.65564731e-01 -1.35132745e-01 5.86802781e-01 -3.08544874e-01
-3.42096001e-01 2.45287232e-02 -1.62715197e-01 -7.80157447e-01
-8.43959033e-01 -6.28079236e-01 -7.17082560e-01 -5.47932148e-01
-3.14045250e-01 -4.01842356e-01 8.26101542e-01 4.43536431e-01
-4.35545854e-02 2.85722256e-01 9.37572718e-01 -1.06622005e+00
2.57782370e-01 -8.04870307e-01 -8.95505846e-01 6.43214285e-01
4.51064140e-01 -2.80231982e-01 -4.94411051e-01 6.98050618e-01] | [10.387214660644531, -2.530217170715332] |
3bc0d6d3-ac55-460d-bc28-800e2c3c7f6b | instance-conditioned-gan | 2109.0507 | null | https://arxiv.org/abs/2109.05070v2 | https://arxiv.org/pdf/2109.05070v2.pdf | Instance-Conditioned GAN | Generative Adversarial Networks (GANs) can generate near photo realistic images in narrow domains such as human faces. Yet, modeling complex distributions of datasets such as ImageNet and COCO-Stuff remains challenging in unconditional settings. In this paper, we take inspiration from kernel density estimation techniques and introduce a non-parametric approach to modeling distributions of complex datasets. We partition the data manifold into a mixture of overlapping neighborhoods described by a datapoint and its nearest neighbors, and introduce a model, called instance-conditioned GAN (IC-GAN), which learns the distribution around each datapoint. Experimental results on ImageNet and COCO-Stuff show that IC-GAN significantly improves over unconditional models and unsupervised data partitioning baselines. Moreover, we show that IC-GAN can effortlessly transfer to datasets not seen during training by simply changing the conditioning instances, and still generate realistic images. Finally, we extend IC-GAN to the class-conditional case and show semantically controllable generation and competitive quantitative results on ImageNet; while improving over BigGAN on ImageNet-LT. Code and trained models to reproduce the reported results are available at https://github.com/facebookresearch/ic_gan. | ['Adriana Romero-Soriano', 'Michal Drozdzal', 'Jakob Verbeek', 'Marlène Careil', 'Arantxa Casanova'] | 2021-09-10 | null | http://proceedings.neurips.cc/paper/2021/hash/e7ac288b0f2d41445904d071ba37aaff-Abstract.html | http://proceedings.neurips.cc/paper/2021/file/e7ac288b0f2d41445904d071ba37aaff-Paper.pdf | neurips-2021-12 | ['conditional-image-generation'] | ['computer-vision'] | [ 8.40327740e-02 3.97200376e-01 -9.83319804e-02 -3.75064135e-01
-9.59577084e-01 -6.82710588e-01 7.19083011e-01 -7.89331734e-01
2.77963467e-02 9.36774313e-01 2.14867219e-01 -1.22517638e-01
3.56125683e-01 -9.03158247e-01 -1.14240503e+00 -7.49506116e-01
3.83626759e-01 8.84453118e-01 -5.13927698e-01 2.27005988e-01
-4.36802447e-01 3.22964132e-01 -1.13341403e+00 2.12801009e-01
9.19903457e-01 8.06493282e-01 6.75388873e-02 6.97888851e-01
1.75914362e-01 9.21318293e-01 -6.22626483e-01 -5.33016264e-01
3.46158504e-01 -7.92827725e-01 -5.80555856e-01 2.38461420e-01
7.41114259e-01 -6.75176978e-01 -5.64709783e-01 9.90742326e-01
4.98370856e-01 2.72895433e-02 1.12545061e+00 -1.60828185e+00
-1.14604735e+00 4.05484945e-01 -6.07187808e-01 -3.94993186e-01
3.34949419e-02 3.51970285e-01 4.59574908e-01 -1.00836396e+00
6.72532558e-01 1.38403952e+00 6.73974991e-01 1.11478829e+00
-1.60357630e+00 -8.08019280e-01 -1.09927662e-01 -1.09770872e-01
-1.34815490e+00 -4.29927289e-01 7.30662823e-01 -6.02520823e-01
3.13431650e-01 -7.86841288e-03 4.25049007e-01 1.74776268e+00
-2.37232119e-01 9.42385256e-01 1.19024682e+00 -2.03931406e-01
3.13569099e-01 1.68227747e-01 -5.20681798e-01 4.14013565e-01
4.11861502e-02 2.14942157e-01 -1.50789663e-01 -8.27616155e-02
1.13089943e+00 -2.24347059e-02 -3.06072682e-01 -4.49106574e-01
-1.08571386e+00 9.94808793e-01 5.12022078e-01 -1.04547739e-01
-4.00389135e-01 5.89498341e-01 4.73431610e-02 4.53038849e-02
7.02075899e-01 9.71830040e-02 -1.78951353e-01 -1.02091841e-01
-9.31297719e-01 3.51116002e-01 7.62716711e-01 1.50177550e+00
9.37469482e-01 3.80562603e-01 -2.02638611e-01 8.12814951e-01
-2.15640943e-02 8.52898240e-01 2.45477170e-01 -1.08640158e+00
3.25736731e-01 -3.23751010e-03 6.49234653e-02 -5.63440382e-01
2.60147512e-01 -2.88667321e-01 -1.21814990e+00 2.23001540e-01
5.76907098e-01 -5.32916963e-01 -1.43720782e+00 1.96468461e+00
2.79354334e-01 5.70124805e-01 -6.00448549e-02 7.34189928e-01
8.19023252e-01 7.51674294e-01 1.56572580e-01 2.73641557e-01
9.13833439e-01 -8.79025221e-01 -5.49795568e-01 -1.87636733e-01
2.78263867e-01 -6.05313897e-01 1.29392862e+00 1.68005034e-01
-1.16062558e+00 -6.70356214e-01 -5.97002923e-01 -1.36867628e-01
-2.44489864e-01 2.61798918e-01 4.47177857e-01 5.25571942e-01
-1.18966985e+00 4.10717726e-01 -9.82971609e-01 -1.85275123e-01
1.15565610e+00 -9.07586981e-03 -4.08346534e-01 -4.87850517e-01
-9.29189980e-01 5.27103662e-01 1.66084483e-01 -1.51755631e-01
-1.65180933e+00 -1.24873316e+00 -1.07792246e+00 -1.35319918e-01
7.62113854e-02 -9.95711088e-01 1.15153003e+00 -1.25881112e+00
-1.47464001e+00 8.97633076e-01 -1.12201877e-01 -5.16867816e-01
7.71311998e-01 -1.79531083e-01 -1.55266181e-01 1.85714662e-01
9.73942578e-02 1.37231266e+00 1.20118964e+00 -1.60000205e+00
-6.35717064e-02 -3.29472274e-02 3.97210009e-02 9.41750035e-02
-1.48391038e-01 -4.47991073e-01 -3.86647224e-01 -7.25245059e-01
-5.76711714e-01 -1.03146601e+00 -2.97262758e-01 -5.89262247e-02
-7.84560502e-01 2.33806074e-02 8.66230667e-01 -6.93991125e-01
5.28059959e-01 -2.19675183e+00 2.03177065e-01 1.10858874e-02
3.08180779e-01 1.92763999e-01 -3.49533886e-01 3.18214864e-01
-2.61079311e-01 2.27459401e-01 -4.38368767e-01 -7.32226193e-01
2.34855622e-01 3.42045218e-01 -5.49019814e-01 4.69358534e-01
2.94327855e-01 1.48700356e+00 -6.97355330e-01 -2.03220382e-01
4.61447567e-01 8.97171795e-01 -6.99355543e-01 3.83264542e-01
-5.86610138e-01 7.70549417e-01 -6.45294860e-02 5.10751367e-01
1.00238740e+00 -3.63914758e-01 -1.58363938e-01 -2.13071257e-01
6.32610977e-01 -1.77591696e-01 -6.62058175e-01 1.83293521e+00
-5.90553463e-01 6.55222118e-01 -6.98000714e-02 -8.47934544e-01
7.43185639e-01 2.87353516e-01 1.23133093e-01 -3.65198880e-01
3.81511562e-02 -1.02039538e-01 -2.76343524e-01 -1.11321248e-01
1.22529253e-01 -3.43908072e-01 5.38603701e-02 2.85977632e-01
5.09076893e-01 -3.93949598e-01 -5.43159097e-02 3.54739308e-01
7.74389207e-01 4.74545896e-01 2.11810879e-02 -2.20270082e-01
-9.72595531e-04 -1.75710440e-01 3.03280622e-01 6.58836126e-01
8.77910554e-02 1.20085633e+00 5.75161517e-01 -2.53845334e-01
-1.29056275e+00 -1.61240351e+00 -9.29838046e-02 6.40823066e-01
-4.12494615e-02 -2.67022133e-01 -1.22958636e+00 -9.61511493e-01
3.87921669e-02 9.96534944e-01 -1.04532015e+00 -9.75060463e-02
-2.82080799e-01 -5.08994579e-01 6.14337206e-01 7.10027575e-01
5.99296689e-01 -1.11923242e+00 2.24340349e-01 -1.61852986e-01
-2.45981738e-01 -1.18348742e+00 -7.59133220e-01 -2.96804696e-01
-5.46830893e-01 -9.04494047e-01 -1.00296032e+00 -7.30088770e-01
1.04601109e+00 -1.33964688e-01 1.45561445e+00 -4.08149511e-01
-3.81475508e-01 6.94321334e-01 -1.04897358e-01 -4.80925888e-01
-5.63407660e-01 6.55209273e-02 -3.10403675e-01 1.31076902e-01
2.42354512e-01 -9.52180684e-01 -8.69377375e-01 3.19546491e-01
-9.47879076e-01 1.90754518e-01 5.35193503e-01 8.61333609e-01
8.11753750e-01 -2.03397021e-01 7.30417311e-01 -1.27839911e+00
2.69727439e-01 -8.86349678e-01 -4.48032349e-01 -6.11266121e-02
-2.27073073e-01 -2.55970120e-01 7.86940217e-01 -6.04581714e-01
-1.17188263e+00 7.34223798e-02 7.34189991e-03 -1.05669737e+00
-6.50744736e-01 6.41264766e-02 -6.13461316e-01 2.42546618e-01
8.33932579e-01 3.63838166e-01 1.69474915e-01 -2.76141226e-01
9.23139095e-01 3.08433414e-01 7.23554790e-01 -8.44925821e-01
1.06657386e+00 7.66159892e-01 -1.75271943e-01 -8.08181584e-01
-7.91734457e-01 5.10865636e-02 -4.02668595e-01 -1.27454698e-01
1.03371692e+00 -1.25870132e+00 -2.90729761e-01 6.43989027e-01
-1.03415990e+00 -9.85649645e-01 -8.33780468e-01 2.27813557e-01
-9.48908448e-01 -1.92600667e-01 -5.36590278e-01 -4.70511973e-01
-1.32137507e-01 -7.96081781e-01 1.19378889e+00 2.82508761e-01
-1.14370979e-01 -1.43926442e+00 1.94533132e-02 3.85966599e-01
4.80935603e-01 7.58310616e-01 5.71624219e-01 -3.96060109e-01
-7.47213185e-01 -1.41271845e-01 -2.54136354e-01 8.91725540e-01
2.63620138e-01 -1.87611535e-01 -1.15443039e+00 -3.87738049e-01
-2.07096398e-01 -7.64446914e-01 9.36835468e-01 6.06801927e-01
1.67904174e+00 -4.03572679e-01 -2.95992494e-01 1.06927824e+00
1.38101137e+00 -1.56896338e-01 1.11834216e+00 -4.26218510e-01
1.13413584e+00 3.87208819e-01 2.26377025e-01 2.75303364e-01
3.85414332e-01 2.43834987e-01 5.84423125e-01 -4.21497077e-01
-5.60051739e-01 -8.60505641e-01 2.98507661e-01 2.33415797e-01
3.37665714e-02 -5.42415500e-01 -5.97523868e-01 7.45152175e-01
-1.52698135e+00 -9.87254977e-01 1.64782181e-01 1.86176026e+00
9.07229543e-01 -2.93051720e-01 1.98068738e-01 -4.23248231e-01
7.75751710e-01 6.42794520e-02 -7.33582914e-01 1.06101349e-01
-2.17098072e-01 6.10090911e-01 4.37575102e-01 5.53489745e-01
-1.05173659e+00 9.96064961e-01 6.03540802e+00 1.26548505e+00
-9.26102281e-01 3.36083144e-01 1.27390909e+00 -1.66202560e-01
-5.43733716e-01 -1.35259733e-01 -5.58111191e-01 6.50900781e-01
7.88733661e-01 -1.51674047e-01 6.43888414e-01 1.07043171e+00
-8.78121853e-02 2.05295458e-01 -1.33241463e+00 1.07318604e+00
1.75188228e-01 -1.46818304e+00 3.97004306e-01 4.19886351e-01
1.34843969e+00 -5.36212288e-02 5.54985106e-01 2.88698077e-01
8.37961674e-01 -1.63702047e+00 5.43748260e-01 5.95504403e-01
1.41725600e+00 -7.66026437e-01 4.24431860e-01 3.08796525e-01
-6.90329015e-01 4.42298800e-01 -5.21397591e-01 2.45022371e-01
5.17293252e-02 6.76604629e-01 -9.17761803e-01 4.66456264e-01
4.78874236e-01 9.96648550e-01 -2.92052418e-01 6.01423740e-01
-4.77442861e-01 9.34690595e-01 -2.77547657e-01 4.86110151e-01
3.33000720e-02 -3.31397831e-01 3.39372724e-01 1.02328217e+00
5.37198365e-01 -1.83272198e-01 -1.45403713e-01 1.48087561e+00
-5.83203852e-01 -3.40541035e-01 -8.63520086e-01 -3.80735798e-03
4.85403508e-01 1.31642652e+00 -3.36848706e-01 -4.21639711e-01
-2.34454513e-01 1.21460485e+00 4.04940069e-01 7.94843554e-01
-1.05378115e+00 -7.29687810e-02 8.22702110e-01 3.58258337e-01
4.91284043e-01 -1.36215091e-02 -2.14173302e-01 -1.23981512e+00
-8.88786688e-02 -8.46547306e-01 1.60407960e-01 -9.84931886e-01
-1.71379530e+00 6.69835389e-01 1.86096847e-01 -1.20955944e+00
-4.87329066e-01 -4.92672533e-01 -7.84586608e-01 9.53519046e-01
-1.16964066e+00 -1.59793603e+00 -6.23526990e-01 9.21547532e-01
3.64033550e-01 -1.42667338e-01 9.22620118e-01 1.84681609e-01
-2.27677330e-01 8.06269825e-01 1.92063853e-01 3.25954527e-01
7.22257555e-01 -1.54692817e+00 6.44878030e-01 7.18959987e-01
3.66862267e-01 3.60427111e-01 4.26813126e-01 -5.65364480e-01
-9.58200157e-01 -1.64113653e+00 1.14746377e-01 -7.19461143e-01
2.91646302e-01 -7.42454708e-01 -6.79291248e-01 1.13101125e+00
6.10592723e-01 3.38608176e-01 6.57474458e-01 -2.63108045e-01
-5.44307947e-01 -5.32549471e-02 -1.41838157e+00 6.07277513e-01
1.18750918e+00 -5.12143731e-01 -3.30202393e-02 4.52186614e-01
6.66391194e-01 -5.57283640e-01 -7.82396317e-01 2.77378201e-01
1.52671561e-01 -1.00579655e+00 1.02815998e+00 -6.16070211e-01
7.87028015e-01 -1.93981618e-01 -1.32251471e-01 -1.78783727e+00
-4.17340845e-02 -8.15414488e-01 -1.38661474e-01 1.43676043e+00
2.78776020e-01 -6.65840030e-01 1.00738931e+00 4.08625811e-01
-1.89382471e-02 -5.78963459e-01 -7.30513513e-01 -7.85338223e-01
6.16284311e-01 -4.74218994e-01 8.36932719e-01 9.22947824e-01
-7.34691858e-01 1.13187283e-02 -6.63661480e-01 -2.52187699e-02
1.00349307e+00 -1.31011292e-01 1.25504398e+00 -5.98825276e-01
-5.06060004e-01 -9.88956392e-02 -3.18954796e-01 -1.25295627e+00
4.11160409e-01 -8.83752465e-01 -2.32825074e-02 -1.38851869e+00
8.48530903e-02 -4.83368665e-01 1.68244809e-01 3.17755312e-01
-1.22722894e-01 7.76869178e-01 6.83498755e-02 5.89337945e-02
-3.09583336e-01 9.00289297e-01 1.63787997e+00 -1.26101568e-01
2.48253673e-01 -1.09321408e-01 -7.68208444e-01 6.13525391e-01
8.42802823e-01 -3.09558928e-01 -9.50733066e-01 -4.12622750e-01
-2.15248734e-01 -1.44524081e-02 7.74871230e-01 -9.60879505e-01
-1.33303314e-01 -1.05053857e-01 8.18694472e-01 -4.00449187e-01
4.34323579e-01 -6.26846671e-01 5.07975399e-01 -1.27899781e-01
-3.10421288e-01 -4.69280958e-01 2.95010477e-01 6.43707514e-01
-2.22031921e-01 1.49571791e-01 9.39180732e-01 -1.23135671e-01
-2.31793150e-01 8.81288767e-01 9.74026322e-03 5.21744668e-01
1.16519606e+00 1.56743638e-02 -4.20840830e-01 -9.17926610e-01
-9.59280431e-01 7.30579421e-02 7.49304831e-01 2.26192132e-01
6.77931905e-01 -1.73364687e+00 -9.42075431e-01 3.08096498e-01
3.41368304e-03 5.83741724e-01 5.32951772e-01 4.24256593e-01
-5.19707084e-01 3.00999191e-02 -1.65426359e-01 -6.84142530e-01
-7.45103300e-01 5.30392826e-01 5.01163125e-01 -5.16462140e-02
-3.94658923e-01 9.33764756e-01 1.06819320e+00 -5.50136328e-01
-4.13904600e-02 -9.84880477e-02 3.52143764e-01 -3.28925520e-01
5.13251841e-01 1.48844823e-01 -4.63269770e-01 -4.95675415e-01
1.01106660e-02 2.27046624e-01 8.80772527e-03 -6.27131686e-02
1.22008407e+00 7.63113648e-02 2.78555583e-02 1.70402721e-01
1.33164597e+00 -6.49299696e-02 -1.97718883e+00 -3.59104127e-02
-7.69441247e-01 -5.65078259e-01 -3.86529803e-01 -8.72339249e-01
-1.38331366e+00 9.31663573e-01 2.98981190e-01 -2.87945457e-02
1.15234447e+00 3.55506241e-01 6.55323148e-01 -1.99379921e-01
1.67065620e-01 -4.83263463e-01 2.90442258e-01 2.93256026e-02
1.17937696e+00 -1.16780329e+00 -5.13135791e-01 -4.66607422e-01
-7.77428508e-01 7.54763246e-01 8.81006002e-01 -6.48140728e-01
8.30172896e-01 3.95293921e-01 7.10463673e-02 6.64914176e-02
-6.58038497e-01 2.73596700e-02 1.88419014e-01 1.21593463e+00
1.38020858e-01 2.96115100e-01 4.91246313e-01 4.89487261e-01
-4.86874819e-01 8.44003633e-02 4.96201068e-01 2.64460176e-01
3.23198467e-01 -9.66167212e-01 -1.82555035e-01 4.63602543e-01
-2.84197062e-01 -2.95207590e-01 -2.47504041e-01 1.06311107e+00
2.37838015e-01 6.40993357e-01 4.27952856e-01 -2.74732500e-01
-6.18761312e-03 4.59413938e-02 7.71723151e-01 -5.41984081e-01
5.66408597e-02 -1.01969512e-02 -3.85514647e-02 -4.79130149e-01
-3.18358064e-01 -6.51495337e-01 -8.64818811e-01 -5.93181431e-01
7.91332647e-02 8.04797560e-02 4.91743505e-01 6.15991354e-01
5.16049623e-01 4.75251555e-01 5.68149090e-01 -9.99624550e-01
-4.37819004e-01 -1.23549259e+00 -5.28319836e-01 7.28287399e-01
2.62771606e-01 -4.07865494e-01 -5.29674292e-01 5.18123150e-01] | [11.629429817199707, -0.2803264558315277] |
6beff70c-d996-4d86-bb46-8722297f7969 | differentiating-concepts-and-instances-for | 1811.04588 | null | http://arxiv.org/abs/1811.04588v1 | http://arxiv.org/pdf/1811.04588v1.pdf | Differentiating Concepts and Instances for Knowledge Graph Embedding | Concepts, which represent a group of different instances sharing common
properties, are essential information in knowledge representation. Most
conventional knowledge embedding methods encode both entities (concepts and
instances) and relations as vectors in a low dimensional semantic space
equally, ignoring the difference between concepts and instances. In this paper,
we propose a novel knowledge graph embedding model named TransC by
differentiating concepts and instances. Specifically, TransC encodes each
concept in knowledge graph as a sphere and each instance as a vector in the
same semantic space. We use the relative positions to model the relations
between concepts and instances (i.e., instanceOf), and the relations between
concepts and sub-concepts (i.e., subClassOf). We evaluate our model on both
link prediction and triple classification tasks on the dataset based on YAGO.
Experimental results show that TransC outperforms state-of-the-art methods, and
captures the semantic transitivity for instanceOf and subClassOf relation. Our
codes and datasets can be obtained from https:// github.com/davidlvxin/TransC. | ['Zhiyuan Liu', 'Xin Lv', 'Lei Hou', 'Juanzi Li'] | 2018-11-12 | differentiating-concepts-and-instances-for-1 | https://aclanthology.org/D18-1222 | https://aclanthology.org/D18-1222.pdf | emnlp-2018-10 | ['triple-classification'] | ['graphs'] | [-4.56304818e-01 1.79212511e-01 -6.02238894e-01 -2.99338877e-01
2.54267812e-01 -6.09433234e-01 5.97863972e-01 5.45683622e-01
-1.55316219e-01 6.18357956e-01 3.92302364e-01 -1.59603357e-03
-5.36905885e-01 -1.34863949e+00 -4.83726740e-01 -5.12518108e-01
-1.70103595e-01 5.12240827e-01 2.57461518e-01 -3.75818521e-01
-1.11741647e-01 6.30895868e-02 -1.48791969e+00 2.91212112e-01
7.14927316e-01 1.04707861e+00 -1.12806126e-01 -1.46723241e-01
-6.99653387e-01 7.76358366e-01 -4.86105978e-01 -7.31498837e-01
-1.53006613e-01 -2.77152538e-01 -1.12267292e+00 -3.17898184e-01
1.44679755e-01 2.67303824e-01 -7.12317705e-01 1.13842440e+00
8.14043581e-02 1.00496843e-01 7.07603693e-01 -1.76333904e+00
-1.60051155e+00 7.00118303e-01 -3.60437721e-01 1.63038597e-01
4.44212377e-01 -6.35339737e-01 1.46735847e+00 -9.49534893e-01
6.03218913e-01 1.17414904e+00 4.57889080e-01 2.20467418e-01
-9.65806186e-01 -6.67400241e-01 2.53285736e-01 9.28428948e-01
-1.80475354e+00 4.66699600e-02 7.46016324e-01 -5.40606737e-01
9.12377238e-01 2.59543955e-01 9.88618672e-01 7.79562116e-01
-1.46449894e-01 5.20842850e-01 4.75396067e-01 -2.82722473e-01
-2.38923319e-02 3.52816999e-01 5.85761487e-01 6.62468612e-01
6.43818378e-01 -8.45042765e-02 -3.28442514e-01 -1.59049690e-01
5.34759223e-01 3.41561615e-01 -7.17812777e-01 -7.39912271e-01
-1.30155873e+00 8.99397969e-01 8.85339022e-01 5.52952230e-01
-2.51240462e-01 9.39847976e-02 3.59569222e-01 2.52062976e-01
4.81143922e-01 1.35499418e-01 -5.22081733e-01 3.24478298e-01
-1.12880915e-01 -6.48155659e-02 9.14853156e-01 1.22345746e+00
9.62594748e-01 -3.89637738e-01 1.09933048e-01 9.92106378e-01
4.84340817e-01 2.26151064e-01 7.46868014e-01 -2.29761645e-01
4.08909589e-01 1.23264444e+00 -1.78963602e-01 -1.54136074e+00
-2.56124884e-01 -4.21943873e-01 -5.03021717e-01 -4.51609612e-01
-1.57158434e-01 2.30591670e-01 -6.19372666e-01 1.56306326e+00
5.87211967e-01 7.53711998e-01 3.60920697e-01 8.01149011e-01
1.56453550e+00 7.32418895e-01 1.31704763e-01 1.04722053e-01
1.60425377e+00 -9.63987529e-01 -7.69946635e-01 3.94887887e-02
9.09980714e-01 -2.80730784e-01 7.88832247e-01 -3.94045532e-01
-5.20644546e-01 -3.18686783e-01 -9.89319205e-01 -1.90574020e-01
-1.22292125e+00 -5.93890622e-02 7.87502527e-01 2.28361472e-01
-6.51239276e-01 3.83719623e-01 -4.72583354e-01 -5.44650435e-01
4.67893660e-01 7.40475953e-02 -7.39440560e-01 -1.38614118e-01
-1.76927483e+00 7.84274936e-01 9.82491851e-01 -1.92605615e-01
-2.88509220e-01 -8.88593316e-01 -1.20538092e+00 4.33053643e-01
4.59558219e-01 -6.93868041e-01 4.06272769e-01 -4.95161116e-01
-6.87340021e-01 8.85745347e-01 -2.26990227e-02 -5.49333468e-02
-2.44458064e-01 4.83975671e-02 -1.02748668e+00 -8.28004628e-02
1.90558106e-01 2.16174826e-01 3.59794319e-01 -1.56633639e+00
-7.06696272e-01 -5.06892323e-01 4.88000661e-01 2.52155513e-01
-7.43201077e-01 -3.93298149e-01 -5.57557940e-01 -3.40204656e-01
3.58820051e-01 -6.52970731e-01 4.02686566e-01 -5.76958247e-02
-6.26068234e-01 -5.51999629e-01 9.74415421e-01 -5.14826417e-01
1.51360261e+00 -2.10021996e+00 3.31220597e-01 3.93573344e-01
5.26142299e-01 1.73635319e-01 3.59585229e-03 5.81434309e-01
-4.58872229e-01 3.20973128e-01 -1.16977960e-01 3.10175419e-01
1.18648835e-01 5.68095386e-01 -9.52160209e-02 2.70422876e-01
-9.39377099e-02 1.19130373e+00 -1.37455559e+00 -4.82496560e-01
1.43641680e-01 7.82513618e-01 -1.74525544e-01 -1.04398765e-01
-2.40963567e-02 -1.46125123e-01 -7.78051198e-01 7.42181957e-01
4.63185519e-01 -4.77427036e-01 5.37382543e-01 -6.31765485e-01
3.29169393e-01 2.90821940e-01 -1.07693458e+00 1.47273755e+00
-4.79235858e-01 5.03874242e-01 -6.13430977e-01 -1.27378058e+00
9.17581439e-01 3.48362327e-01 4.41103280e-01 -5.88597775e-01
2.98138615e-02 6.57645836e-02 -2.32712418e-01 -5.33438146e-01
4.54412729e-01 -9.22032297e-02 3.29500586e-02 2.18195334e-01
3.85698467e-01 2.76589394e-01 2.01458961e-01 4.91258502e-01
7.41201818e-01 9.77339149e-02 5.44096470e-01 -2.66801685e-01
5.39639652e-01 -2.16294974e-01 5.69060802e-01 7.80593604e-02
2.89050248e-02 1.06804788e-01 6.23605013e-01 -2.95699179e-01
-5.58331311e-01 -1.35890806e+00 -3.27841133e-01 7.34144986e-01
6.61211073e-01 -9.14398909e-01 -9.71872061e-02 -9.75680649e-01
5.79115987e-01 6.35187745e-01 -9.44483519e-01 -3.92085075e-01
-3.17833275e-02 -5.55962443e-01 2.67758667e-01 6.38938248e-01
2.84169376e-01 -7.50737250e-01 1.32987946e-01 1.02538005e-01
-2.70565093e-01 -9.14875507e-01 -2.03975737e-01 -1.18000090e-01
-5.21910846e-01 -1.46540880e+00 -2.99001932e-01 -1.08612216e+00
6.63717985e-01 3.35460484e-01 1.37299955e+00 4.34888899e-01
-2.78649151e-01 5.51812828e-01 -7.33884156e-01 -2.71797419e-01
3.20881546e-01 -2.30795890e-01 6.83193132e-02 1.29364192e-01
8.37330043e-01 -6.33253276e-01 -5.35190046e-01 3.33118260e-01
-9.57042038e-01 -1.81152925e-01 -3.97938378e-02 1.03551292e+00
7.89161801e-01 3.09567451e-01 5.18029928e-01 -8.83274913e-01
5.78682423e-01 -1.10204875e+00 -2.02393010e-01 6.65943801e-01
-6.56410873e-01 -6.33627772e-02 2.91510403e-01 -1.94267944e-01
-6.96454823e-01 -5.12497246e-01 2.88465410e-01 -3.43570054e-01
1.45498112e-01 1.05730653e+00 -3.26396555e-01 -3.91820893e-02
3.94862950e-01 2.03408360e-01 -3.94700587e-01 -4.13506329e-01
8.01170945e-01 5.44365227e-01 8.00775513e-02 -5.84079444e-01
6.95256293e-01 5.10488868e-01 -6.88369200e-02 -6.38872325e-01
-1.03680575e+00 -6.39516830e-01 -6.24287665e-01 7.69412518e-02
7.49210596e-01 -8.88969541e-01 -5.91764033e-01 -1.49366826e-01
-9.31493819e-01 3.52313399e-01 -3.97277117e-01 6.03608489e-01
-1.21378034e-01 2.91012168e-01 -3.21633726e-01 -2.20591784e-01
-8.62775818e-02 -5.21098673e-01 6.01801097e-01 3.50916505e-01
6.60125688e-02 -1.57292151e+00 8.29047710e-02 2.63354599e-01
3.09287552e-02 2.57936597e-01 1.17778933e+00 -7.88996696e-01
-4.14783865e-01 -2.62582064e-01 -4.97519791e-01 1.41612425e-01
5.20801485e-01 -8.77091140e-02 -4.47669864e-01 -1.40262663e-01
-5.48990130e-01 -9.47123170e-02 9.24709499e-01 -1.04621172e-01
1.17908382e+00 -3.79148006e-01 -9.09230053e-01 6.61667585e-01
1.65964925e+00 1.22002631e-01 6.49571419e-01 3.27765822e-01
1.12693858e+00 6.00957811e-01 4.62736964e-01 3.01995307e-01
7.95965016e-01 7.06831753e-01 4.27543104e-01 2.81862289e-01
-4.94021699e-02 -4.03681725e-01 -1.80489585e-01 9.69268203e-01
-2.50334233e-01 -3.86470765e-01 -1.06552458e+00 9.48922575e-01
-1.97858012e+00 -1.20308161e+00 -2.67668515e-01 2.00155973e+00
8.82183313e-01 -3.67695391e-01 -2.15416849e-01 -1.21959550e-02
8.86836708e-01 1.42885059e-01 -1.94185883e-01 5.85982464e-02
-1.20598987e-01 9.46206301e-02 1.84325799e-01 5.47776580e-01
-8.50446165e-01 1.00280094e+00 4.62784481e+00 7.54383862e-01
-6.26042008e-01 3.50051135e-01 2.53188144e-02 -6.72874004e-02
-7.31912374e-01 1.62394851e-01 -5.04817903e-01 6.16645396e-01
4.43256259e-01 -6.59365475e-01 2.43114397e-01 6.77469134e-01
-6.97627246e-01 4.17290837e-01 -1.12567008e+00 1.02427292e+00
2.64860630e-01 -1.41493976e+00 4.48549479e-01 -1.85684025e-01
5.94243705e-01 -3.18894506e-01 -1.24200694e-01 6.38506174e-01
1.68055743e-01 -1.11743605e+00 3.92688364e-01 6.51486576e-01
6.74126148e-01 -7.85402536e-01 8.89977694e-01 -2.16732502e-01
-1.75973070e+00 8.08370858e-02 -6.33381367e-01 1.35690421e-01
2.45169457e-03 5.66517889e-01 -3.42039943e-01 1.15757370e+00
8.67299736e-01 1.41332495e+00 -3.56285512e-01 8.20209205e-01
-5.37300229e-01 3.29549134e-01 5.12684546e-02 -2.98410170e-02
4.91744429e-02 -4.90649700e-01 3.18146408e-01 1.07526720e+00
3.84117126e-01 3.80430073e-01 3.95928733e-02 9.42948937e-01
-3.54829520e-01 1.81079835e-01 -5.42924404e-01 -2.72671968e-01
8.63819182e-01 1.08233654e+00 -3.20019245e-01 -4.63780135e-01
-7.79908776e-01 9.07342792e-01 6.59925699e-01 6.09408319e-01
-8.90341580e-01 -8.04330289e-01 1.24043286e+00 -8.16274807e-02
3.71292830e-01 4.18733135e-02 1.57327890e-01 -1.40213943e+00
2.88959831e-01 2.59753894e-02 7.64657617e-01 -7.75502563e-01
-1.57804787e+00 4.83858556e-01 3.43144760e-02 -1.24037361e+00
3.57566595e-01 -6.54292047e-01 -5.13134658e-01 9.01091933e-01
-1.75725949e+00 -1.16994548e+00 -5.85610390e-01 8.74580979e-01
-3.14754725e-01 -1.66632250e-01 1.02546561e+00 4.72059220e-01
-4.49738324e-01 6.19419217e-01 3.03353846e-01 4.68373626e-01
3.49765897e-01 -1.14899242e+00 9.14401934e-02 1.39934614e-01
4.77837026e-01 8.49258482e-01 1.96752459e-01 -6.12527132e-01
-1.16394722e+00 -1.14233863e+00 1.23235738e+00 -6.03104413e-01
1.07187152e+00 -1.18650600e-01 -1.12766302e+00 1.06703615e+00
9.28336289e-03 3.64834368e-01 1.30843389e+00 6.17964208e-01
-7.56372809e-01 9.44442954e-03 -1.01945210e+00 4.85232264e-01
1.44899356e+00 -7.61179566e-01 -1.01314509e+00 4.23360407e-01
9.56949890e-01 -7.32796118e-02 -1.30337226e+00 2.53333509e-01
4.63530421e-01 -6.45438850e-01 1.34646463e+00 -1.08423674e+00
5.61787307e-01 -5.89539051e-01 -3.38319510e-01 -1.76525939e+00
-6.92209542e-01 3.75001341e-01 -6.96479380e-01 1.19839692e+00
4.98415560e-01 -9.62137222e-01 5.84519029e-01 7.91985765e-02
5.06624766e-02 -9.83414710e-01 -1.01898777e+00 -1.05344296e+00
-1.96357612e-02 -7.39474520e-02 1.09283280e+00 1.77374899e+00
5.85228741e-01 4.16779697e-01 -6.48048194e-03 3.32194507e-01
5.59627712e-01 5.08496583e-01 9.03131515e-02 -1.65289831e+00
3.97846550e-02 -3.42087954e-01 -1.36273217e+00 -5.56681335e-01
4.49111640e-01 -1.56182134e+00 -7.94912338e-01 -2.02344537e+00
2.52422124e-01 -6.72180891e-01 -7.31773734e-01 8.76153231e-01
-2.45234877e-01 1.27763897e-01 3.64381820e-02 2.12949827e-01
-5.45339286e-01 9.54105973e-01 1.10709321e+00 -4.47279185e-01
3.97248641e-02 -7.53736556e-01 -8.90525401e-01 4.29809570e-01
8.61243546e-01 -3.79465133e-01 -6.69668972e-01 -5.74394882e-01
4.98514205e-01 -3.00941676e-01 5.96395731e-01 -7.46343315e-01
1.25731647e-01 -1.35793954e-01 2.94555098e-01 -1.09834209e-01
4.34759229e-01 -1.10131681e+00 3.65401864e-01 1.84735671e-01
-1.45008653e-01 -4.06866878e-01 3.67890149e-02 9.07504082e-01
-6.28499687e-01 -7.21839294e-02 2.36631840e-01 8.41959119e-02
-1.22399437e+00 6.33350432e-01 6.31463408e-01 2.01165900e-01
1.37022090e+00 -2.20976114e-01 -7.93703437e-01 -7.17708841e-02
-9.82603967e-01 4.70642328e-01 3.01639438e-01 8.90744090e-01
8.36193621e-01 -2.11888957e+00 -6.32296145e-01 -6.36494607e-02
8.87359142e-01 -3.10238361e-01 3.45134199e-01 4.86753881e-01
-2.42139325e-01 4.77461427e-01 -1.73166931e-01 -9.31117088e-02
-1.20417297e+00 8.24364901e-01 3.43037516e-01 1.58750057e-01
-5.86231112e-01 1.09318447e+00 2.94206679e-01 -7.34657943e-01
-2.44155824e-02 4.64662388e-02 -7.06380427e-01 3.97836745e-01
5.07522702e-01 3.13438416e-01 -1.28159001e-01 -8.85286212e-01
-6.81399345e-01 7.14561939e-01 -6.81235120e-02 5.24681747e-01
1.22740185e+00 9.34621543e-02 -5.77162206e-01 5.55322111e-01
1.59769547e+00 -1.42303362e-01 -4.05133784e-01 -6.24530137e-01
-1.98109925e-01 -8.30490768e-01 -2.87476573e-02 -6.30800188e-01
-1.38886893e+00 5.82389057e-01 3.16019922e-01 4.61851031e-01
7.22625315e-01 6.02919817e-01 6.11696899e-01 1.71814784e-01
5.96037507e-01 -8.08165133e-01 -1.70951873e-01 4.91048217e-01
8.30918789e-01 -1.02602684e+00 1.05973624e-01 -8.20770264e-01
-5.69001973e-01 9.51684415e-01 5.91968417e-01 6.77365884e-02
1.11396205e+00 -4.38979745e-01 -1.15396552e-01 -7.80094743e-01
-5.99452734e-01 -4.24188286e-01 5.97765028e-01 7.31623054e-01
6.10710859e-01 5.41489482e-01 -5.85528731e-01 8.05312037e-01
-1.27623498e-01 -2.89513230e-01 1.75845549e-01 9.23295200e-01
-2.82599092e-01 -1.03208399e+00 7.19303787e-02 7.11335778e-01
4.64674346e-02 -3.26986462e-01 -3.87627959e-01 7.64388680e-01
4.86268520e-01 8.21869373e-01 2.19664618e-01 -6.99454784e-01
3.90630484e-01 2.20340148e-01 2.03716815e-01 -6.86790049e-01
-1.31177083e-01 -1.00132740e+00 4.22183909e-02 -5.40910304e-01
-3.38940829e-01 -2.78554827e-01 -1.50086391e+00 -3.96362364e-01
-4.75964189e-01 4.25509304e-01 4.55129325e-01 7.30761945e-01
5.31771719e-01 8.09199095e-01 3.23974758e-01 -1.75845221e-01
-3.43695357e-02 -5.94391525e-01 -1.02901793e+00 7.88985610e-01
-7.53253745e-03 -1.18841791e+00 -3.98543239e-01 -1.13406762e-01] | [8.729610443115234, 7.91467809677124] |
0d16c622-82fd-42d8-9c51-e4ce6781920f | assessing-neural-referential-form-selectors | 2210.04828 | null | https://arxiv.org/abs/2210.04828v2 | https://arxiv.org/pdf/2210.04828v2.pdf | Assessing Neural Referential Form Selectors on a Realistic Multilingual Dataset | Previous work on Neural Referring Expression Generation (REG) all uses WebNLG, an English dataset that has been shown to reflect a very limited range of referring expression (RE) use. To tackle this issue, we build a dataset based on the OntoNotes corpus that contains a broader range of RE use in both English and Chinese (a language that uses zero pronouns). We build neural Referential Form Selection (RFS) models accordingly, assess them on the dataset and conduct probing experiments. The experiments suggest that, compared to WebNLG, OntoNotes is better for assessing REG/RFS models. We compare English and Chinese RFS and confirm that, in line with linguistic theories, Chinese RFS depends more on discourse context than English. | ['Kees Van Deemter', 'Fahime Same', 'Guanyi Chen'] | 2022-10-10 | null | null | null | null | ['referring-expression-generation', 'referring-expression'] | ['computer-vision', 'computer-vision'] | [ 1.74189970e-01 4.35044616e-01 -5.50625920e-01 -4.07578617e-01
-9.18646276e-01 -8.87382984e-01 9.98807609e-01 -1.05978534e-01
-6.53959095e-01 1.10636163e+00 1.27990365e+00 -4.97385204e-01
1.68489423e-02 -9.41282392e-01 -5.08231401e-01 6.05173036e-02
4.62764293e-01 2.63089240e-01 -2.47586712e-01 -6.39049530e-01
4.96927321e-01 1.37165695e-01 -1.09475470e+00 6.49650276e-01
7.16726303e-01 3.86844635e-01 4.71659750e-02 2.29393855e-01
-3.95239711e-01 1.15609741e+00 -1.05351913e+00 -5.44951379e-01
-1.72865391e-01 -5.32637298e-01 -1.31490910e+00 -6.26305342e-01
5.37435353e-01 -4.85046133e-02 -1.90652519e-01 7.48268604e-01
7.25945532e-01 4.80034232e-01 6.91550195e-01 -6.62954628e-01
-1.40836918e+00 1.36391473e+00 5.85974269e-02 5.00098705e-01
6.77327752e-01 -1.93891302e-01 1.33077776e+00 -8.25002015e-01
1.40432775e+00 1.41273737e+00 6.61753774e-01 1.24673760e+00
-1.17007947e+00 -6.19795680e-01 2.10771084e-01 -7.17301294e-02
-1.19407797e+00 -6.01657808e-01 5.69294333e-01 3.21223885e-02
1.52680802e+00 2.93240607e-01 5.86209059e-01 1.64611554e+00
-2.40939602e-01 9.29256976e-01 1.39030159e+00 -8.42727244e-01
1.76834568e-01 -5.07878438e-02 3.09358656e-01 9.83134583e-02
-9.43896696e-02 1.97180975e-02 -9.11648750e-01 -1.50303300e-02
7.16714144e-01 -9.51555729e-01 -5.90865135e-01 7.75522232e-01
-1.18383276e+00 8.31767917e-01 3.71710986e-01 7.97709703e-01
-3.30379635e-01 4.75174546e-01 4.01702970e-01 3.46100211e-01
3.85335416e-01 1.03851020e+00 -6.05645895e-01 -4.75465268e-01
-5.30141711e-01 3.86529952e-01 9.12251472e-01 1.23773706e+00
3.89918834e-01 5.24169803e-02 -4.82754886e-01 1.29154122e+00
9.46934968e-02 1.87623903e-01 8.88280511e-01 -1.22485554e+00
7.33175695e-01 4.65302765e-01 -4.64510843e-02 -5.64700127e-01
-2.69384384e-01 -6.94210008e-02 -1.22140750e-01 -3.36151153e-01
5.57520926e-01 -3.15636933e-01 -3.40069354e-01 2.34459686e+00
-2.58543551e-01 -4.76118863e-01 5.14116168e-01 5.84857702e-01
1.21901906e+00 6.40673578e-01 7.89473116e-01 -6.65835105e-03
1.55432808e+00 -2.53787011e-01 -8.55514526e-01 -4.01872367e-01
1.25811851e+00 -4.51559544e-01 1.74661791e+00 6.05506413e-02
-1.22066391e+00 -1.66313201e-01 -9.60184872e-01 -5.78250110e-01
-6.17268205e-01 5.33595197e-02 1.04007983e+00 6.66532040e-01
-1.13596630e+00 4.39495832e-01 -4.94206458e-01 -5.65990865e-01
1.93417802e-01 1.11600854e-01 -3.59553337e-01 3.39198858e-02
-1.76167440e+00 1.37996221e+00 5.67227423e-01 -5.57053015e-02
-2.48915628e-02 -6.14596784e-01 -9.75252509e-01 -2.96715468e-01
-2.03275271e-02 -7.56337404e-01 1.27014840e+00 -1.18824589e+00
-1.51232505e+00 1.34740794e+00 -4.19030786e-01 -3.72209728e-01
3.54227377e-03 -4.48530674e-01 -3.55539501e-01 -1.37103692e-01
9.60062593e-02 8.81011069e-01 -1.78004742e-01 -9.40268457e-01
-4.20801431e-01 -4.49450195e-01 5.24267018e-01 4.97746348e-01
-1.84392959e-01 6.36653960e-01 -1.00239106e-01 -9.08168912e-01
7.43634030e-02 -8.96782041e-01 2.96657175e-01 -4.46413517e-01
-5.63826501e-01 -1.00571871e+00 1.49666160e-01 -4.50663865e-01
1.49814010e+00 -1.67575312e+00 -1.71463052e-03 9.15069506e-03
-3.67296994e-01 -2.24219874e-01 -7.03340098e-02 4.63543981e-01
-2.24915177e-01 8.33090246e-01 -8.00857618e-02 -1.03786521e-01
1.84704423e-01 3.73156756e-01 -3.58602256e-01 1.26591668e-01
3.71447027e-01 1.30550003e+00 -7.54303455e-01 -4.91027594e-01
-2.03089625e-01 3.40025902e-01 -5.79619229e-01 -1.13982558e-01
-1.95410624e-01 1.50916517e-01 -4.70136464e-01 6.62411869e-01
-2.32247952e-02 1.85203686e-01 2.50355721e-01 -6.04516491e-02
-2.99345732e-01 1.13298631e+00 -6.89651906e-01 1.64709210e+00
-9.39328492e-01 8.77347291e-01 -5.44075429e-01 -2.77550876e-01
8.53227913e-01 6.24019742e-01 -2.44884595e-01 -9.02572811e-01
1.61307856e-01 4.10185516e-01 2.47754350e-01 -3.90906394e-01
7.56450951e-01 -3.95519197e-01 -3.53067249e-01 5.34058630e-01
1.23789601e-01 -2.71505088e-01 2.09381297e-01 1.50103897e-01
1.33246744e+00 6.41580045e-01 6.88706338e-01 -5.81934154e-01
2.82098114e-01 5.16608991e-02 5.22873700e-01 5.41033864e-01
2.29159102e-01 5.63085556e-01 5.64797401e-01 -6.36894926e-02
-7.14159608e-01 -8.76659632e-01 -5.20661116e-01 1.34011447e+00
-9.59123299e-02 -5.07796228e-01 -8.48760009e-01 -5.35900652e-01
-5.80236852e-01 1.81013227e+00 -7.50120401e-01 6.29186854e-02
-1.20746231e+00 -8.36422205e-01 1.14357340e+00 7.37830997e-01
2.06544191e-01 -1.92268908e+00 -5.98759651e-01 4.42552149e-01
-3.33408326e-01 -1.10943699e+00 -1.29699454e-01 3.88034061e-02
-6.19202137e-01 -8.60405385e-01 -6.13618255e-01 -7.74534285e-01
2.36273900e-01 -4.22585487e-01 1.75558031e+00 3.10114086e-01
4.45024371e-01 3.30250323e-01 -6.31449521e-01 -5.73801637e-01
-4.88084465e-01 4.10795718e-01 -3.61857146e-01 -8.89729798e-01
8.12773347e-01 -4.96212751e-01 -5.56918308e-02 -1.89533636e-01
-6.75937533e-01 -2.67542470e-02 1.58672526e-01 8.07752252e-01
2.96190590e-01 -8.48316908e-01 9.21447933e-01 -1.37005711e+00
1.09094810e+00 -6.12127423e-01 -2.16639623e-01 2.42820516e-01
-2.27177948e-01 6.46737963e-02 2.19820768e-01 -2.64030248e-01
-1.45763540e+00 -4.14142489e-01 -3.98351550e-01 4.17934477e-01
-1.70010880e-01 6.45334423e-01 -3.95233124e-01 5.53326726e-01
1.02298796e+00 -2.52815723e-01 -4.07650918e-01 -2.63530523e-01
6.13162339e-01 6.04731858e-01 6.12269104e-01 -1.32079542e+00
2.46451288e-01 -7.77072012e-02 -4.33410436e-01 -9.20144320e-01
-9.92958784e-01 3.99348475e-02 -4.46504623e-01 -1.04386033e-02
1.01467371e+00 -8.66300523e-01 -5.37344873e-01 3.67104188e-02
-1.70457792e+00 -7.19462037e-01 -6.19662166e-01 4.61497575e-01
-7.47501433e-01 -1.60987064e-01 -1.13285291e+00 -7.36198306e-01
-4.91072804e-01 -5.74114025e-01 1.05177903e+00 1.10993162e-01
-1.20033598e+00 -1.28339589e+00 -5.64232543e-02 -1.58066317e-01
4.19661492e-01 3.54354858e-01 1.33000267e+00 -8.96221399e-01
-2.30849966e-01 3.28550905e-01 -2.28525937e-01 -6.63121343e-02
2.92179547e-02 -1.29730806e-01 -9.34079468e-01 4.78621781e-01
-1.58525407e-02 -7.00186908e-01 5.18317759e-01 9.70413685e-02
8.37572396e-01 -5.64159513e-01 5.09546436e-02 5.36637664e-01
1.38676572e+00 1.90407664e-01 1.03181136e+00 8.38760257e-01
4.50445116e-01 1.07345879e+00 6.41220868e-01 4.27422002e-02
7.06506491e-01 6.97496891e-01 2.09912471e-02 2.20201567e-01
-3.89443099e-01 -3.96726131e-01 7.11168170e-01 6.90659285e-01
-2.38886699e-01 -5.03240287e-01 -8.15243423e-01 7.62323499e-01
-1.52414572e+00 -8.88100147e-01 -2.52925277e-01 1.76905584e+00
1.53474772e+00 -1.64337486e-01 -2.17896998e-01 -1.99015945e-01
4.92400974e-01 1.96271598e-01 -3.90381776e-02 -6.78983390e-01
-8.41416597e-01 7.30234087e-01 1.87175900e-01 5.51412523e-01
-5.80713332e-01 1.58915579e+00 6.72230577e+00 7.16496170e-01
-9.40770328e-01 6.75609037e-02 4.51288044e-01 1.48858652e-01
-9.35788929e-01 1.85487457e-02 -9.09636676e-01 2.84078091e-01
1.07142460e+00 -3.53488028e-01 4.07815665e-01 6.48522198e-01
-5.58421463e-02 2.22144146e-02 -1.46816576e+00 5.89851558e-01
1.48974106e-01 -1.31848109e+00 1.95661068e-01 -2.61124521e-01
5.07202268e-01 2.06424117e-01 -3.07338566e-01 4.77480739e-01
6.56728506e-01 -1.25194943e+00 1.04159212e+00 4.13878739e-01
8.72642398e-01 -5.85062087e-01 9.11252201e-01 7.19692335e-02
-6.18351936e-01 2.97842890e-01 -3.90978515e-01 -7.15116933e-02
4.47749645e-01 -1.32316619e-01 -5.54186523e-01 5.89046367e-02
6.40657604e-01 4.55262929e-01 -7.09344029e-01 3.23330283e-01
-9.27157521e-01 8.81113827e-01 -3.59433979e-01 -4.50396359e-01
1.77767441e-01 -3.40818502e-02 6.51177466e-01 1.67739594e+00
4.38210636e-01 5.69440782e-01 -3.82807136e-01 1.23079073e+00
-2.23311260e-01 5.14062524e-01 -7.84887850e-01 9.49284341e-03
1.04060996e+00 1.01857805e+00 -4.61728483e-01 -3.18158090e-01
-2.56885082e-01 8.45843434e-01 6.46536708e-01 3.97851229e-01
-5.37414610e-01 -3.36010665e-01 4.05915558e-01 1.41291460e-02
-2.24958792e-01 -1.26340717e-01 -4.17834997e-01 -8.83656204e-01
-1.98701441e-01 -8.13750207e-01 3.70395452e-01 -1.24829245e+00
-1.58257782e+00 8.25328946e-01 1.30890265e-01 -7.43532777e-01
-7.00199187e-01 -8.85694146e-01 -6.68735921e-01 1.15380299e+00
-1.44125271e+00 -1.41254568e+00 1.42212315e-02 5.37409484e-01
5.33899605e-01 -5.75126112e-02 1.31395352e+00 -2.44747824e-03
-3.60170186e-01 7.38679171e-01 -7.84376740e-01 3.06033611e-01
6.97646916e-01 -1.56911349e+00 5.28239131e-01 4.75034237e-01
2.29948118e-01 1.39998877e+00 5.37567794e-01 -6.00819349e-01
-9.31872070e-01 -8.25313985e-01 1.39987743e+00 -8.31966639e-01
7.33321667e-01 -5.12613766e-02 -9.38463092e-01 1.11458385e+00
7.63733923e-01 -1.99172407e-01 1.00052452e+00 6.62670255e-01
-2.90386945e-01 6.02988482e-01 -1.04863644e+00 9.55828011e-01
1.56652963e+00 -7.82734752e-01 -1.33913541e+00 1.16767861e-01
8.94889057e-01 -4.84677643e-01 -1.02867424e+00 1.89452067e-01
3.54984581e-01 -7.05127001e-01 4.30753291e-01 -9.48657751e-01
6.85047686e-01 -1.80389434e-01 -5.82415998e-01 -1.49820685e+00
-1.62121788e-01 -5.50726771e-01 1.09812699e-01 1.85944891e+00
7.80632973e-01 -5.64851642e-01 5.18642187e-01 9.97639537e-01
-4.20787305e-01 -5.80060244e-01 -1.16011703e+00 -5.15342236e-01
6.46018744e-01 -7.71127045e-01 5.69425404e-01 1.24693274e+00
3.62558633e-01 9.43010211e-01 3.66447389e-01 -5.85176170e-01
-9.52881351e-02 -3.51969272e-01 2.93526530e-01 -1.02868974e+00
-1.37043521e-01 -3.79234225e-01 -1.74413487e-01 -8.77293766e-01
8.48296523e-01 -1.28309119e+00 -2.89604105e-02 -1.50759470e+00
-2.45880723e-01 -7.57851899e-01 5.89758297e-03 8.47103834e-01
-1.27905294e-01 4.56164360e-01 3.90054911e-01 -7.75388479e-02
-2.32803121e-01 4.96316403e-01 8.50554049e-01 3.38034749e-01
-2.38597646e-01 -4.11254942e-01 -1.14734340e+00 1.09568214e+00
7.12091625e-01 -3.05998474e-01 -8.72793943e-02 -7.73599327e-01
6.62703514e-01 -2.07131743e-01 6.16390929e-02 -4.45131481e-01
-7.95449615e-02 -1.22002922e-01 3.75048846e-01 -2.03585595e-01
2.81852186e-01 -2.61598945e-01 -4.45496708e-01 -2.03147843e-01
-7.88104951e-01 5.45508504e-01 4.48626727e-01 -2.86752194e-01
-1.65987894e-01 -5.71549594e-01 3.19439441e-01 -5.03940701e-01
-7.85942078e-01 -3.83920193e-01 -7.16155887e-01 8.11299622e-01
2.10099429e-01 -4.43831354e-01 -6.03340566e-01 -5.28810084e-01
-5.04215598e-01 -8.21454301e-02 4.50724572e-01 5.94054282e-01
4.67007428e-01 -1.46702373e+00 -7.78655410e-01 -3.74595433e-01
3.62938195e-01 -4.42147218e-02 -3.15659344e-01 3.07507336e-01
-3.00382107e-01 2.50759780e-01 -7.21049607e-02 4.46215160e-02
-8.49530876e-01 3.52984481e-02 3.18097860e-01 -1.03332199e-01
-4.46834922e-01 9.41772878e-01 -2.69504245e-02 -7.89522469e-01
-2.78293699e-01 -3.47380042e-01 -7.14967608e-01 2.41921633e-01
4.27664518e-01 3.27819109e-01 -1.16560578e-01 -9.33550179e-01
-8.38913098e-02 3.38807046e-01 1.24500796e-01 -6.94256842e-01
1.27763581e+00 2.19972767e-02 -4.87755805e-01 7.49189794e-01
9.36223805e-01 7.64653742e-01 -4.53584045e-01 1.83207821e-02
6.89686716e-01 1.20179839e-02 -2.30911210e-01 -9.50568855e-01
-4.29792732e-01 4.31111127e-01 8.22942927e-02 -5.86071871e-02
8.20765436e-01 2.04690009e-01 5.26703179e-01 6.54793382e-01
4.00508523e-01 -1.45994806e+00 -4.72348899e-01 1.05971217e+00
1.38967156e+00 -6.01426840e-01 -1.90325826e-01 -4.87764239e-01
-7.58977771e-01 1.10907221e+00 9.66715157e-01 -2.84006059e-01
2.88324475e-01 2.85237104e-01 2.54698962e-01 -3.59718472e-01
-9.65204120e-01 -1.52469158e-01 9.33154207e-03 7.14589953e-01
1.50397694e+00 -1.87977348e-02 -8.70037317e-01 1.00444269e+00
-1.09393108e+00 -1.77146364e-02 6.80674195e-01 5.63632905e-01
1.92379296e-01 -1.32636070e+00 -5.32935672e-02 3.51331264e-01
-9.49673951e-01 -7.97108531e-01 -8.02896738e-01 1.29218423e+00
9.01805121e-04 8.12372625e-01 3.94840389e-01 1.89183712e-01
5.40495634e-01 2.20737427e-01 5.18671930e-01 -1.03981042e+00
-9.83176291e-01 -3.72366428e-01 1.03502095e+00 -6.39362097e-01
-6.07099771e-01 -6.86890066e-01 -1.68148685e+00 -2.33930964e-02
-5.34867048e-01 4.07349169e-02 4.90431011e-01 1.11415577e+00
1.16656326e-01 5.40598631e-01 -1.97528064e-01 -5.85060239e-01
-2.75911152e-01 -1.28894794e+00 -4.61895823e-01 6.05001271e-01
-3.37155640e-01 -3.90521824e-01 -2.59891421e-01 -2.10823700e-01] | [10.762638092041016, 9.196441650390625] |
c819865b-6571-4548-8730-c9c35bf3f39a | tsrformer-table-structure-recognition-with | 2208.04921 | null | https://arxiv.org/abs/2208.04921v1 | https://arxiv.org/pdf/2208.04921v1.pdf | TSRFormer: Table Structure Recognition with Transformers | We present a new table structure recognition (TSR) approach, called TSRFormer, to robustly recognizing the structures of complex tables with geometrical distortions from various table images. Unlike previous methods, we formulate table separation line prediction as a line regression problem instead of an image segmentation problem and propose a new two-stage DETR based separator prediction approach, dubbed \textbf{Sep}arator \textbf{RE}gression \textbf{TR}ansformer (SepRETR), to predict separation lines from table images directly. To make the two-stage DETR framework work efficiently and effectively for the separation line prediction task, we propose two improvements: 1) A prior-enhanced matching strategy to solve the slow convergence issue of DETR; 2) A new cross attention module to sample features from a high-resolution convolutional feature map directly so that high localization accuracy is achieved with low computational cost. After separation line prediction, a simple relation network based cell merging module is used to recover spanning cells. With these new techniques, our TSRFormer achieves state-of-the-art performance on several benchmark datasets, including SciTSR, PubTabNet and WTW. Furthermore, we have validated the robustness of our approach to tables with complex structures, borderless cells, large blank spaces, empty or spanning cells as well as distorted or even curved shapes on a more challenging real-world in-house dataset. | ['Qiang Huo', 'Lei Sun', 'Jiawei Wang', 'Mingze Li', 'Chixiang Ma', 'Zheng Sun', 'WeiHong Lin'] | 2022-08-09 | null | null | null | null | ['table-recognition'] | ['computer-vision'] | [ 2.69103885e-01 -9.57971066e-02 -5.18529527e-02 -3.31165940e-01
-1.06644571e+00 -8.21741402e-01 3.41356546e-01 4.96511728e-01
-9.25173908e-02 7.56480098e-01 -2.25278035e-01 -3.75053495e-01
4.29328904e-02 -9.10238802e-01 -1.18583059e+00 -3.20822954e-01
2.94803381e-01 9.51106966e-01 3.54167223e-01 -2.63402551e-01
5.64545870e-01 9.09466207e-01 -1.21043444e+00 6.38223767e-01
1.18871498e+00 1.41259158e+00 -6.71150237e-02 5.53684592e-01
-4.49198604e-01 8.49153519e-01 -5.21218359e-01 -6.90137565e-01
4.06577855e-01 4.75184321e-02 -8.11228573e-01 3.63869011e-01
6.51746690e-01 -6.02983683e-02 -3.56321037e-01 7.63666928e-01
4.25332427e-01 -9.64599028e-02 8.21452141e-01 -8.29881072e-01
-5.99491179e-01 5.37432313e-01 -1.08698630e+00 3.47941667e-02
4.93372560e-01 -2.16145113e-01 8.27761531e-01 -1.29155302e+00
6.38747573e-01 1.18824208e+00 8.77272427e-01 -8.79534185e-02
-1.32531691e+00 -6.94317818e-01 2.65354902e-01 1.56344146e-01
-1.70561969e+00 -4.24318463e-01 6.11934304e-01 -3.91352922e-01
1.18475783e+00 5.46967685e-01 1.96409777e-01 5.88940561e-01
4.26508158e-01 1.10715890e+00 7.20665157e-01 -1.56616092e-01
-8.85874406e-02 2.35917553e-01 1.98632274e-02 7.79239535e-01
4.73848641e-01 -5.88165283e-01 -4.28964257e-01 1.82988718e-01
9.96892154e-01 -1.16944537e-01 -3.06306273e-01 -5.76122999e-01
-1.33366263e+00 5.03794253e-01 6.17212951e-01 2.67771363e-01
-1.60891667e-01 -2.47858107e-01 3.55965674e-01 -8.47354010e-02
2.36681804e-01 4.90354031e-01 -5.50326109e-01 2.66029745e-01
-9.37736392e-01 2.66469538e-01 7.60235548e-01 1.45354402e+00
7.94010699e-01 -2.50487447e-01 -3.68768990e-01 8.90934050e-01
6.82300031e-02 3.75767410e-01 2.32636750e-01 -2.71762431e-01
1.19169152e+00 1.11800969e+00 8.53482112e-02 -1.26772642e+00
-5.79336345e-01 -5.97036958e-01 -1.23110044e+00 -3.22758794e-01
6.97861910e-01 2.56417841e-01 -9.88068581e-01 7.74399817e-01
2.75045812e-01 -1.52709320e-01 7.10157165e-03 6.24191344e-01
1.09297550e+00 7.49853969e-01 -6.02882743e-01 4.95357849e-02
1.51208246e+00 -1.24400938e+00 -6.20639086e-01 -2.86056668e-01
8.37837636e-01 -9.54740644e-01 7.91895092e-01 7.38028109e-01
-1.17680228e+00 -6.17906690e-01 -1.40642262e+00 -5.36933184e-01
-7.66200125e-01 6.01556182e-01 6.80614531e-01 3.62109244e-01
-6.79032266e-01 4.98341620e-01 -5.26837707e-01 -3.02137971e-01
7.41601646e-01 8.02489996e-01 -6.64141238e-01 -2.15673223e-01
-6.23125136e-01 6.24324322e-01 3.62975389e-01 5.33345759e-01
-2.14959428e-01 -7.10179090e-01 -1.10664284e+00 1.02283664e-01
7.58283794e-01 -3.87080491e-01 5.89041114e-01 -5.61039746e-01
-1.20433247e+00 1.03208876e+00 -3.68291050e-01 -4.91148114e-01
6.99096441e-01 -2.41954952e-01 -2.22044721e-01 -1.73210546e-01
6.57674521e-02 4.92749184e-01 3.88198167e-01 -1.59768593e+00
-5.66545010e-01 -4.60039705e-01 -3.51593494e-01 2.56138653e-01
2.00937033e-01 -3.65952075e-01 -1.03287399e+00 -8.57584298e-01
5.69841027e-01 -4.98846143e-01 -1.14888184e-01 -2.18749747e-01
-8.43542874e-01 -1.41761359e-02 6.62107468e-01 -7.74680018e-01
1.21987069e+00 -1.88099027e+00 -7.98565820e-02 6.16129518e-01
2.93287516e-01 2.21989289e-01 -1.50867524e-02 1.21542588e-01
-1.31530195e-01 -1.11531336e-02 -3.02800566e-01 -2.92718679e-01
-1.73680082e-01 -1.17518157e-01 -2.81663239e-01 4.33155924e-01
3.12535286e-01 1.14804506e+00 -3.06056917e-01 -6.25999212e-01
1.51084721e-01 2.53009439e-01 -4.68873650e-01 -3.40090021e-02
-4.65189256e-02 1.09536313e-01 -2.31473103e-01 1.08716595e+00
1.23584962e+00 -3.22840720e-01 9.99434218e-02 -5.48298299e-01
-7.70389214e-02 -4.90798131e-02 -1.58865798e+00 1.60290551e+00
-1.29492074e-01 2.97080189e-01 -3.22827473e-02 -9.04528439e-01
1.54853237e+00 -2.42223576e-01 4.58736211e-01 -8.94160450e-01
3.71201187e-01 4.02913511e-01 -1.55403540e-01 -6.00934103e-02
7.44522333e-01 5.27735949e-01 -1.35976419e-01 -1.27481952e-01
6.00366034e-02 -2.01810047e-01 3.14039975e-01 1.56409413e-01
8.13495517e-01 3.22970003e-01 1.31661117e-01 -5.84121704e-01
1.08641315e+00 6.46071509e-02 7.10631073e-01 5.68306148e-01
7.98842683e-02 1.14059520e+00 5.43679774e-01 -6.54947996e-01
-8.39158535e-01 -8.67364407e-01 -3.02273005e-01 6.00537062e-01
5.25844514e-01 -5.62638938e-01 -7.77155519e-01 -8.56906772e-01
2.41841629e-01 3.39792281e-01 -6.89366102e-01 2.93690294e-01
-8.61164510e-01 -8.95900011e-01 4.82644111e-01 9.36181545e-01
7.96951532e-01 -8.22685838e-01 -2.49830186e-02 2.86638379e-01
-2.33423784e-01 -1.30277860e+00 -8.04511428e-01 7.62580514e-01
-6.13662541e-01 -1.02534401e+00 -6.17706776e-01 -1.09749079e+00
9.25065160e-01 -2.59671807e-02 1.18835294e+00 1.80363208e-01
-3.38155895e-01 -1.52542323e-01 3.51497084e-02 -2.28340879e-01
2.57867813e-01 3.50657344e-01 -3.81333709e-01 2.09485531e-01
3.06271374e-01 -4.15426418e-02 -4.63680565e-01 6.87056124e-01
-6.88303709e-01 2.93246746e-01 7.05821991e-01 8.40990186e-01
1.16530812e+00 1.49870038e-01 3.41257244e-01 -1.16507864e+00
4.17140901e-01 -4.97757196e-02 -8.25967968e-01 5.91307104e-01
-5.69605172e-01 2.26575553e-01 9.78744864e-01 -2.27981299e-01
-9.54525232e-01 3.24799448e-01 -1.50762498e-01 -2.45056316e-01
-1.42524540e-01 2.43017346e-01 -6.94019377e-01 -3.44753936e-02
3.74691516e-01 5.57111382e-01 -2.48998553e-01 -3.98955673e-01
3.15710232e-02 5.86505175e-01 8.58486950e-01 -6.01225734e-01
9.51012671e-01 5.16202092e-01 5.54538220e-02 -4.44519579e-01
-5.05659580e-01 -3.37352365e-01 -1.12577510e+00 2.03476265e-01
7.20702052e-01 -9.58273530e-01 -8.85243833e-01 6.59690499e-01
-8.62753928e-01 -3.35506886e-01 -1.07576989e-01 5.91236651e-02
-4.83250767e-01 2.73618311e-01 -7.13237762e-01 -4.50999767e-01
-4.50284779e-01 -1.35969377e+00 1.18604171e+00 4.30915505e-01
1.04974499e-02 -7.71872163e-01 -4.96778876e-01 6.92366004e-01
2.49068737e-02 2.73446262e-01 9.25646722e-01 -9.00668740e-01
-1.16416836e+00 -2.92987108e-01 -6.60587668e-01 -2.41055146e-01
5.98096810e-02 1.73237070e-01 -7.30376542e-01 -9.93819386e-02
-4.36831236e-01 -2.50844181e-01 9.62578118e-01 2.20436335e-01
1.39264572e+00 -1.31747290e-01 -6.41290784e-01 1.07656264e+00
1.53821957e+00 4.55282986e-01 1.00628567e+00 4.38646257e-01
1.08930552e+00 4.49335575e-01 8.77644420e-01 2.61516124e-01
6.24643326e-01 5.22010565e-01 8.20831507e-02 -5.44244289e-01
-2.46867090e-02 -2.56882310e-01 -1.01821654e-01 5.57757497e-01
1.26363099e-01 -4.65972841e-01 -9.48788226e-01 3.37101251e-01
-1.83119357e+00 -3.28441620e-01 -4.23740715e-01 2.17961740e+00
5.85367739e-01 5.93429089e-01 -9.61553752e-02 2.28727385e-01
6.04517519e-01 -1.52804896e-01 -6.77893698e-01 -4.78561044e-01
-4.50047553e-01 1.22343503e-01 7.56955683e-01 3.28546107e-01
-1.36961329e+00 1.16429007e+00 5.09687090e+00 1.30532300e+00
-1.03936541e+00 -7.19809830e-01 1.37254941e+00 5.23506939e-01
-1.39818743e-01 -3.68486673e-01 -1.14833617e+00 8.60951096e-02
1.52065158e-01 2.10902646e-01 4.52851027e-01 5.85276484e-01
-3.66103560e-01 -3.47107708e-01 -1.22941208e+00 1.30277634e+00
3.73175412e-01 -1.61191535e+00 1.59551382e-01 2.48322915e-02
5.21074951e-01 -4.92406249e-01 4.28668857e-02 2.83033818e-01
5.72063401e-02 -1.40005493e+00 7.50321865e-01 5.21941483e-01
1.09465849e+00 -9.99857366e-01 9.30782378e-01 6.65712878e-02
-1.84245884e+00 1.47904858e-01 -3.52873683e-01 5.34627438e-01
-3.28926474e-01 4.43464935e-01 -8.25598121e-01 1.04944444e+00
7.24509954e-01 8.04976225e-01 -1.20588815e+00 1.02772987e+00
2.41530329e-01 8.25897679e-02 -5.22297680e-01 1.92848861e-01
-4.40057786e-03 -2.13062808e-01 6.17410466e-02 1.34143817e+00
1.71327829e-01 -6.87008351e-02 4.02226899e-04 9.57234681e-01
-2.82468498e-01 4.01633978e-01 -4.06427860e-01 2.56925136e-01
3.92548800e-01 1.52921867e+00 -1.63538074e+00 -2.30061769e-01
-2.14858353e-01 9.28846002e-01 2.87132084e-01 1.50680646e-01
-8.96284938e-01 -6.28201485e-01 4.93541136e-02 2.01860517e-01
7.14555204e-01 1.35171777e-02 -1.02281332e+00 -1.29882729e+00
2.53426582e-01 -1.00376809e+00 4.43960905e-01 -6.68487012e-01
-1.05816817e+00 8.46772373e-01 -3.46183747e-01 -1.16114771e+00
2.54804224e-01 -7.48006701e-01 -4.91194844e-01 7.98591733e-01
-1.44828832e+00 -1.29770350e+00 -4.61127847e-01 7.14220822e-01
6.48741841e-01 -2.26438567e-01 6.39211297e-01 2.69670367e-01
-8.22067857e-01 1.14835942e+00 1.79921910e-01 4.29311037e-01
6.99177504e-01 -1.57408845e+00 5.63623071e-01 6.92262709e-01
8.47555697e-03 4.13152277e-01 2.93067157e-01 -6.53833687e-01
-1.66789532e+00 -1.28205168e+00 6.47163630e-01 -4.01453167e-01
1.99993521e-01 -1.07581091e+00 -1.14553523e+00 8.21603894e-01
-9.22244415e-02 1.43332705e-01 4.04053867e-01 -2.41517723e-02
-3.10968161e-01 -5.21846831e-01 -1.32640135e+00 5.57200730e-01
9.16335702e-01 1.62228905e-02 -2.08910376e-01 1.71235800e-01
3.19785297e-01 -8.32097292e-01 -1.01392961e+00 7.22635150e-01
5.86300015e-01 -9.28004324e-01 1.13727820e+00 2.18474239e-01
3.61203700e-01 -5.27277052e-01 -7.38758966e-02 -7.05210507e-01
-4.08826739e-01 -5.51431119e-01 -9.26065966e-02 1.48291564e+00
7.16715574e-01 -5.64806879e-01 1.12731385e+00 3.61026525e-01
-1.10878833e-01 -1.22972417e+00 -5.75175047e-01 -4.09660995e-01
1.11702606e-01 -3.12566534e-02 9.04397786e-01 8.04949284e-01
-3.43351275e-01 4.14776534e-01 -6.91143004e-03 1.72290176e-01
4.16182250e-01 4.62920606e-01 9.87559736e-01 -1.15918994e+00
-2.42647622e-02 -3.70643079e-01 -2.50002682e-01 -1.52892339e+00
-2.05202714e-01 -8.98106337e-01 7.70450309e-02 -1.66417420e+00
7.11959600e-02 -4.94246662e-01 -4.93840501e-02 3.26826066e-01
-1.26939222e-01 4.74045366e-01 1.56334653e-01 1.42385125e-01
-7.73357809e-01 4.11455095e-01 1.37641013e+00 -3.36754054e-01
-2.85595030e-01 -1.44101158e-01 -8.56845319e-01 6.49727523e-01
4.27857012e-01 -9.80311781e-02 -1.44799247e-01 -2.48615012e-01
1.53598621e-01 1.74984172e-01 -2.78378069e-01 -1.22064173e+00
3.88133347e-01 1.32110894e-01 1.22902465e+00 -1.58520961e+00
1.26434296e-01 -7.87814915e-01 -1.76540464e-01 9.86533910e-02
-2.20654570e-02 2.42051169e-01 5.36363721e-01 2.17691258e-01
-1.81451499e-01 1.22523278e-01 6.89044416e-01 6.88107982e-02
-4.69601601e-01 3.04614365e-01 -2.71450281e-01 -1.88489407e-01
1.07469964e+00 -7.77613819e-01 -3.60228717e-01 5.42716458e-02
-4.89864141e-01 7.33534217e-01 4.51503754e-01 2.82312363e-01
7.51733541e-01 -1.21256065e+00 -5.08725166e-01 5.84269285e-01
2.37882629e-01 8.18224370e-01 2.28487149e-01 8.45499694e-01
-1.05853832e+00 7.05648839e-01 -9.32322722e-03 -7.45187223e-01
-1.10387385e+00 7.16594517e-01 4.36419904e-01 -8.23424160e-01
-5.99892318e-01 1.06625211e+00 4.15301561e-01 -7.00051308e-01
2.95579433e-01 -7.29625285e-01 -3.90037298e-01 1.31710902e-01
3.04521322e-01 2.14855839e-02 6.54967368e-01 -7.21213222e-01
-5.32675862e-01 7.44288504e-01 -6.03779137e-01 4.67631638e-01
1.15137601e+00 -8.75340328e-02 6.08457066e-02 1.77443117e-01
9.27876770e-01 2.53764153e-01 -1.36962354e+00 -9.09190848e-02
1.09557427e-01 -3.49718332e-01 -3.11623812e-01 -1.00181770e+00
-1.18319929e+00 5.80185950e-01 3.67171168e-01 -3.71417515e-02
1.10701859e+00 -2.61407822e-01 8.85789394e-01 3.42649251e-01
2.65650541e-01 -1.00985289e+00 5.65198325e-02 6.01315618e-01
1.06353760e+00 -1.19524729e+00 1.99052870e-01 -9.80038226e-01
-6.78763390e-01 1.41562450e+00 9.80254173e-01 -2.27929547e-01
4.74333078e-01 7.33743072e-01 -1.40039235e-01 5.29579585e-03
-6.08650744e-01 -1.05346851e-01 4.68100011e-01 5.01512766e-01
4.76087332e-01 -2.37453818e-01 1.20394453e-02 8.87664080e-01
-4.12071943e-01 -2.05571931e-02 4.17963356e-01 9.50320542e-01
-3.77369262e-02 -9.18832242e-01 -7.38350332e-01 6.79655433e-01
-3.85329455e-01 -1.05673514e-01 -4.71293300e-01 9.33670521e-01
2.60007977e-01 5.02563059e-01 5.40949941e-01 -6.22357726e-01
4.92645741e-01 -2.11791173e-01 5.61883509e-01 -3.82836133e-01
-8.47351909e-01 4.78620023e-01 -6.89457208e-02 -4.55557555e-01
2.42450312e-01 -5.61126947e-01 -1.48403680e+00 -3.06024224e-01
-5.33658803e-01 -3.30236070e-02 2.26925701e-01 8.10475647e-01
4.46781427e-01 7.07067132e-01 4.28891361e-01 -6.10554814e-01
4.57463339e-02 -7.84611940e-01 -6.87889755e-01 3.02061558e-01
4.77138497e-02 -6.25382662e-01 2.36610234e-01 2.82372870e-02] | [11.711536407470703, 3.0497686862945557] |
5a9c0049-d665-4eaa-b86e-5497220c05f0 | nicer-slam-neural-implicit-scene-encoding-for | 2302.03594 | null | https://arxiv.org/abs/2302.03594v1 | https://arxiv.org/pdf/2302.03594v1.pdf | NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM | Neural implicit representations have recently become popular in simultaneous localization and mapping (SLAM), especially in dense visual SLAM. However, previous works in this direction either rely on RGB-D sensors, or require a separate monocular SLAM approach for camera tracking and do not produce high-fidelity dense 3D scene reconstruction. In this paper, we present NICER-SLAM, a dense RGB SLAM system that simultaneously optimizes for camera poses and a hierarchical neural implicit map representation, which also allows for high-quality novel view synthesis. To facilitate the optimization process for mapping, we integrate additional supervision signals including easy-to-obtain monocular geometric cues and optical flow, and also introduce a simple warping loss to further enforce geometry consistency. Moreover, to further boost performance in complicated indoor scenes, we also propose a local adaptive transformation from signed distance functions (SDFs) to density in the volume rendering equation. On both synthetic and real-world datasets we demonstrate strong performance in dense mapping, tracking, and novel view synthesis, even competitive with recent RGB-D SLAM systems. | ['Marc Pollefeys', 'Andreas Geiger', 'Martin R. Oswald', 'Zhaopeng Cui', 'Viktor Larsson', 'Songyou Peng', 'Zihan Zhu'] | 2023-02-07 | null | null | null | null | ['simultaneous-localization-and-mapping', '3d-scene-reconstruction'] | ['computer-vision', 'computer-vision'] | [ 7.48516470e-02 -2.50138193e-01 -2.77160201e-02 -5.63012958e-01
-5.25020242e-01 -6.10484898e-01 6.70324624e-01 -1.83349580e-01
-3.29981267e-01 7.57044971e-01 7.75873438e-02 -7.77267590e-02
-2.43546683e-02 -7.74905562e-01 -8.98553014e-01 -3.60660642e-01
3.21699947e-01 6.33993506e-01 -2.99039427e-02 -9.48206708e-02
1.08072966e-01 7.91025817e-01 -1.41544557e+00 -3.34588498e-01
9.07531857e-01 8.52923095e-01 5.08853734e-01 5.39990902e-01
6.58945693e-03 7.96644807e-01 -9.50715542e-02 -9.64057297e-02
5.12396991e-01 -2.48761371e-01 -4.79300469e-01 2.21258119e-01
1.00007415e+00 -5.28344274e-01 -7.19610155e-01 9.60481942e-01
5.18953502e-01 2.34279647e-01 3.17623675e-01 -1.27777851e+00
-5.97357094e-01 -1.67919278e-01 -5.36423802e-01 -4.47880059e-01
6.28484190e-01 6.24607280e-02 8.26110423e-01 -1.10970461e+00
8.50863934e-01 1.13288021e+00 8.71448517e-01 3.70065004e-01
-1.34496403e+00 -6.17204368e-01 9.58209112e-02 -5.54284304e-02
-1.62838721e+00 -6.83687508e-01 7.71268427e-01 -3.51024747e-01
9.88764524e-01 2.09154144e-01 7.64512837e-01 1.08219957e+00
1.39619038e-01 4.67992604e-01 1.08032203e+00 -1.40714034e-01
2.09923491e-01 6.07911646e-02 -4.86875772e-01 9.39240217e-01
2.85843283e-01 2.69066751e-01 -8.84120703e-01 1.03153415e-01
1.43402541e+00 3.17321301e-01 -5.79255283e-01 -1.22438276e+00
-1.44391680e+00 8.91760051e-01 9.89113569e-01 -1.48188069e-01
-3.29147398e-01 5.66226959e-01 -4.27791663e-02 8.15738514e-02
3.56917918e-01 4.59815621e-01 -1.31894350e-01 -1.29526749e-01
-9.09635067e-01 8.78442451e-02 5.43961048e-01 1.30732453e+00
1.22955155e+00 1.31610706e-01 3.29875916e-01 3.95966738e-01
4.75212693e-01 1.00304794e+00 6.43010512e-02 -1.43523371e+00
4.93110687e-01 5.36387265e-01 3.43257755e-01 -1.20504260e+00
-4.56201226e-01 -5.21502256e-01 -1.00095189e+00 2.79798687e-01
5.75282015e-02 4.34836328e-01 -9.00281370e-01 1.62415755e+00
3.99854571e-01 4.09388393e-01 -1.73971161e-01 1.22969818e+00
5.57810843e-01 2.89479584e-01 -6.57902658e-01 8.47911239e-02
8.20885360e-01 -8.03168237e-01 -5.88873327e-01 -4.39996809e-01
4.53290969e-01 -5.92865288e-01 1.01598430e+00 1.43504739e-01
-8.64553332e-01 -2.95739442e-01 -1.16629517e+00 -6.68618679e-01
-8.72647464e-02 -6.62612244e-02 9.36275005e-01 2.67212361e-01
-1.28989470e+00 3.35015386e-01 -1.11118066e+00 -3.76453906e-01
1.42720670e-01 3.61989349e-01 -7.72233784e-01 -3.46124023e-01
-8.10878992e-01 9.69253480e-01 -9.15428773e-02 1.86554357e-01
-8.46547306e-01 -5.55766582e-01 -1.43991554e+00 -3.48874718e-01
2.16261789e-01 -1.15009272e+00 7.63216734e-01 -5.22471845e-01
-1.70289207e+00 1.01537180e+00 -2.93853909e-01 -3.37277621e-01
6.08904481e-01 -5.26022136e-01 2.94605613e-01 -3.27071212e-02
2.84433991e-01 9.04244065e-01 6.25380635e-01 -1.50433755e+00
-1.63439602e-01 -4.13552910e-01 2.32923567e-01 5.16260207e-01
2.16657087e-01 -7.21775115e-01 -6.32830739e-01 -1.93673745e-01
7.94573367e-01 -1.03153098e+00 -3.94001991e-01 5.31125188e-01
-3.48770380e-01 6.38967633e-01 6.15891635e-01 -6.06630385e-01
5.29617965e-01 -1.98964572e+00 5.99011421e-01 1.24119334e-01
2.84747005e-01 -4.24084306e-01 7.22747669e-02 5.07290624e-02
4.66659606e-01 -3.87188971e-01 -2.93144852e-01 -1.07947612e+00
1.65754646e-01 7.09722817e-01 -3.30777526e-01 9.83427703e-01
-3.74781825e-02 9.61752415e-01 -1.01460338e+00 -2.60895312e-01
6.62415802e-01 9.28954959e-01 -6.92121685e-01 1.68273523e-01
-1.40970023e-02 1.02624786e+00 -1.26291707e-01 7.00885355e-01
8.01224947e-01 -4.39917505e-01 1.85536873e-02 -1.31247327e-01
-2.58778006e-01 4.66297626e-01 -1.19201744e+00 2.78016591e+00
-8.91896307e-01 7.47965097e-01 4.10655469e-01 -4.21364844e-01
9.38507795e-01 -1.66714042e-01 3.97487909e-01 -8.63818049e-01
1.57336786e-01 3.31977040e-01 -6.04551494e-01 2.86457151e-01
9.64003444e-01 -4.22833078e-02 1.10906750e-01 1.16229124e-01
-4.72332500e-02 -7.01132715e-01 -3.76274705e-01 2.82410473e-01
9.23067093e-01 6.97366238e-01 3.02607685e-01 -1.61965385e-01
4.31725800e-01 -7.48322979e-02 6.52494788e-01 4.94141072e-01
1.32832363e-01 9.18658972e-01 -6.23968020e-02 -4.05279428e-01
-1.12085044e+00 -1.27465379e+00 -9.07485560e-02 2.39260733e-01
7.72866845e-01 -2.93797761e-01 -1.76088899e-01 -3.16734463e-01
3.60670537e-01 4.10700023e-01 -4.01038796e-01 6.76506311e-02
-6.25191927e-01 -2.45726675e-01 2.12042794e-01 4.37456518e-01
5.10649502e-01 -5.06632268e-01 -6.99168026e-01 1.82331920e-01
-1.86497852e-01 -1.35956252e+00 -4.03943479e-01 2.92385340e-01
-8.46694589e-01 -9.09488678e-01 -5.78039885e-01 -4.94920343e-01
8.07105958e-01 5.82647383e-01 1.04424834e+00 -3.99777144e-02
-2.06675977e-01 4.42315668e-01 -1.03893735e-01 1.30671501e-01
-1.26519963e-01 9.84080252e-04 3.66454899e-01 -1.38071910e-01
-1.41027778e-01 -7.90511668e-01 -5.13754189e-01 5.37970543e-01
-3.37570041e-01 5.11241555e-01 3.25854778e-01 7.92433202e-01
9.13186550e-01 -7.25847304e-01 -1.52552184e-02 -4.48863536e-01
-1.60019159e-01 -5.76905534e-02 -1.09824598e+00 -1.16194017e-01
-6.81648493e-01 7.66473860e-02 3.05712581e-01 -9.72412825e-02
-6.61400080e-01 4.35536563e-01 -1.46206751e-01 -9.39865589e-01
1.69512078e-01 2.24665359e-01 -1.70717388e-01 -6.04459703e-01
5.38622558e-01 3.69402528e-01 9.70126465e-02 -4.14448351e-01
6.57638669e-01 2.16816351e-01 7.33037949e-01 -3.32822084e-01
1.22919619e+00 8.91713738e-01 2.66128123e-01 -6.79950178e-01
-7.19136298e-01 -4.88566548e-01 -9.58662450e-01 1.66012794e-02
8.35134149e-01 -1.35925043e+00 -7.08204210e-01 3.22507143e-01
-1.16143775e+00 -5.57541966e-01 -2.48483509e-01 7.44069934e-01
-8.49801242e-01 4.45108145e-01 -5.46412170e-01 -6.81620657e-01
-1.59423426e-02 -1.37762642e+00 1.62486744e+00 3.56459171e-02
-9.82346013e-03 -9.32493389e-01 1.03943147e-01 7.62938410e-02
3.88884813e-01 5.60257733e-01 1.96606979e-01 4.34564143e-01
-1.43112242e+00 1.59508120e-02 -4.81778413e-01 1.03880204e-02
2.54533857e-01 -5.50457180e-01 -9.89359796e-01 -6.34655416e-01
-1.16105080e-02 -1.68331623e-01 7.68532813e-01 2.63469219e-01
5.75451195e-01 1.67880161e-03 -3.26718509e-01 1.73819876e+00
1.49955273e+00 -2.04218924e-01 4.83597696e-01 4.71105456e-01
1.30610764e+00 2.86559314e-01 5.86495578e-01 4.58157241e-01
7.49547124e-01 9.06334996e-01 8.56156886e-01 -2.86397994e-01
-1.79311812e-01 -5.58640480e-01 3.45872164e-01 1.00199771e+00
3.29620540e-02 4.22386304e-02 -6.81969643e-01 2.24100754e-01
-1.82702982e+00 -4.39898521e-01 3.76056395e-02 2.41956687e+00
5.85497022e-01 -9.02060792e-02 -5.19032300e-01 -1.13611907e-01
2.45380938e-01 4.09150422e-01 -6.97131455e-01 1.39149502e-01
-3.55428308e-01 1.02118798e-01 8.91958714e-01 1.07691228e+00
-8.72621775e-01 1.11765373e+00 5.32411098e+00 1.15167782e-01
-1.24860990e+00 2.15394393e-01 -8.81743953e-02 -2.57035196e-01
-7.45791078e-01 2.25344509e-01 -6.79070234e-01 2.75651067e-02
4.34955686e-01 8.49922597e-02 7.48529792e-01 7.91594505e-01
-8.08809511e-03 -1.56243801e-01 -1.19383872e+00 1.54794455e+00
2.26609424e-01 -1.50657105e+00 -5.50287515e-02 5.11888325e-01
7.80297935e-01 4.34544474e-01 -1.57300979e-01 -3.76443123e-03
2.78809756e-01 -9.14026082e-01 8.89727235e-01 5.31185985e-01
1.09652495e+00 -6.13139808e-01 4.65953737e-01 3.70915174e-01
-1.36382675e+00 3.80193621e-01 -4.99070406e-01 -1.14742659e-01
5.04235089e-01 5.23373961e-01 -8.44051301e-01 8.48561823e-01
5.09470224e-01 1.15728116e+00 -4.88761693e-01 9.32824790e-01
-4.69917119e-01 -3.76043200e-01 -5.72935045e-01 2.71166563e-01
1.04014166e-01 -3.76830429e-01 6.15148842e-01 7.53727138e-01
4.58443969e-01 -3.37251633e-01 2.87615031e-01 1.09514773e+00
-1.13403536e-01 -2.04885751e-01 -8.79715621e-01 3.53615463e-01
4.81583178e-01 1.08131349e+00 -6.03386283e-01 -6.81078359e-02
-2.19823405e-01 1.47189641e+00 4.20789599e-01 3.72091621e-01
-8.63857090e-01 -1.50486957e-02 1.05718064e+00 1.08769216e-01
-2.15943009e-02 -9.66236293e-01 -3.08492154e-01 -1.59926105e+00
4.49729972e-02 -3.08149040e-01 -3.36475521e-01 -1.05264783e+00
-8.73481631e-01 5.36190391e-01 -3.86033624e-01 -1.29163921e+00
-3.54154646e-01 -5.18128157e-01 3.65924425e-02 1.03791738e+00
-1.85434616e+00 -1.30782521e+00 -9.23847377e-01 7.57762253e-01
1.96276665e-01 2.24149466e-01 7.14661777e-01 4.62930202e-01
-4.69426252e-02 2.01586857e-01 3.89338844e-03 -7.00294599e-02
8.94958794e-01 -1.26008892e+00 7.51390219e-01 8.59289885e-01
4.71155465e-01 7.75670290e-01 4.80791688e-01 -6.31118357e-01
-1.97260332e+00 -1.12807417e+00 5.09055138e-01 -7.97392428e-01
2.69123346e-01 -8.43132913e-01 -6.75264657e-01 9.24190164e-01
-2.62449533e-01 2.85082757e-01 1.42529562e-01 -1.12885619e-02
-4.37981606e-01 -6.31886199e-02 -9.57577348e-01 3.12898189e-01
1.47356451e+00 -9.85298693e-01 -8.52104947e-02 3.11665237e-01
9.81392860e-01 -1.06733632e+00 -6.47486866e-01 3.69370699e-01
6.15640879e-01 -1.19941688e+00 1.21612120e+00 4.96079884e-02
-9.12926048e-02 -7.46786594e-01 -7.25243270e-01 -1.11497879e+00
-2.70268053e-01 -6.36458278e-01 -2.46041179e-01 9.11943316e-01
-3.91409360e-02 -8.42854142e-01 9.70681190e-01 2.59317189e-01
-3.21960449e-01 -4.07736093e-01 -1.12675107e+00 -8.24091196e-01
-5.06518662e-01 -5.29603541e-01 6.80595100e-01 1.03376877e+00
-6.68576479e-01 1.95099205e-01 -7.21406639e-01 5.41691601e-01
9.57958758e-01 1.99650228e-01 1.23444402e+00 -1.18712604e+00
-2.83496618e-01 -2.03963801e-01 -6.95987105e-01 -1.72385550e+00
1.00155979e-01 -9.65512991e-01 2.30065048e-01 -1.73290002e+00
-1.84991851e-01 -7.14775443e-01 4.39220220e-02 1.98220000e-01
3.11900735e-01 4.44972336e-01 1.96846291e-01 4.37155217e-01
-5.70515335e-01 9.34559047e-01 1.20840812e+00 1.11705877e-01
-2.42628783e-01 -3.45843375e-01 -3.00123841e-01 6.38768435e-01
2.49629855e-01 -2.82727897e-01 -3.48682225e-01 -9.40019786e-01
4.52593863e-01 2.64825642e-01 6.44565940e-01 -1.10407352e+00
2.61155397e-01 -1.54609337e-01 4.51297373e-01 -7.16747701e-01
9.44740891e-01 -8.91447186e-01 3.59718770e-01 2.87094057e-01
1.59579620e-01 2.22391590e-01 -7.29869977e-02 6.72663450e-01
-1.35346755e-01 3.15249383e-01 6.25600278e-01 -1.65114313e-01
-8.41153860e-01 8.13459814e-01 4.59374636e-01 -1.51946008e-01
6.89731658e-01 -2.22469628e-01 -1.55643836e-01 -5.81433237e-01
-3.45572412e-01 2.23272443e-01 1.37420678e+00 4.73923177e-01
8.86141658e-01 -1.60782719e+00 -3.84173274e-01 6.39723420e-01
1.36728510e-01 6.38023078e-01 1.26171023e-01 1.04206145e+00
-1.15415502e+00 3.26913089e-01 -1.83334112e-01 -1.12510848e+00
-8.20837438e-01 3.75284731e-01 4.10868615e-01 1.12220049e-01
-8.53505850e-01 8.67739141e-01 4.36846465e-01 -8.20569277e-01
2.50583917e-01 -4.27586049e-01 5.20383716e-01 -3.07950854e-01
3.47145051e-01 1.51395619e-01 -7.16227517e-02 -9.98037279e-01
-7.32158899e-01 9.45019722e-01 5.79209208e-01 -2.48660401e-01
1.21210635e+00 -5.68297625e-01 -1.44332886e-01 5.77451348e-01
1.17183185e+00 2.60779738e-01 -1.68442667e+00 -2.98133373e-01
-2.65509099e-01 -9.39019740e-01 1.31037146e-01 -2.75372863e-01
-9.59183216e-01 9.85385656e-01 4.12840098e-01 -3.21864545e-01
7.63564289e-01 -1.73489556e-01 7.16740847e-01 4.30734754e-01
1.11909842e+00 -5.00309646e-01 -1.38173625e-01 7.89690912e-01
9.76800323e-01 -1.41556716e+00 4.02736306e-01 -4.26158547e-01
-3.08189213e-01 9.06623304e-01 5.23862422e-01 -2.28117675e-01
3.18552732e-01 1.87161669e-01 1.14607394e-01 -7.76068270e-02
-2.99605250e-01 -1.19807005e-01 2.72346675e-01 6.88063800e-01
1.29324242e-01 -3.82255856e-03 5.66904545e-01 -2.74301469e-01
-3.63468111e-01 -1.98459119e-01 3.71952146e-01 8.27392817e-01
-3.03419292e-01 -9.86589491e-01 -2.37422720e-01 -8.30294117e-02
4.21401083e-01 -1.15084037e-01 -2.45529458e-01 9.20349658e-01
-6.16457500e-02 3.67189497e-01 1.77232772e-01 -5.11293530e-01
2.73247391e-01 -3.92302215e-01 9.02722180e-01 -5.69013178e-01
-1.19499758e-01 9.72161815e-02 -1.00578375e-01 -1.16464341e+00
-3.60503376e-01 -5.54864407e-01 -1.36414754e+00 -4.86046016e-01
-2.78069437e-01 -1.69076681e-01 1.08853424e+00 7.21639395e-01
4.99228984e-01 3.38891983e-01 4.59585905e-01 -1.40671158e+00
-9.08620059e-02 -6.02786660e-01 -6.62309766e-01 1.82746708e-01
7.20889628e-01 -9.85870063e-01 -4.00409013e-01 -3.08166564e-01] | [8.03956127166748, -2.423236131668091] |
d16340a4-3f90-47b9-975e-ce8faf2d1a61 | exploiting-class-activation-value-for-partial | null | null | https://openreview.net/forum?id=qqdXHUGec9h | https://openreview.net/pdf?id=qqdXHUGec9h | Exploiting Class Activation Value for Partial-Label Learning | Partial-label learning (PLL) solves the multi-class classification problem, where each training instance is assigned a set of candidate labels that include the true label. Recent advances showed that PLL can be compatible with deep neural networks, which achieved state-of-the-art performance. However, most of the existing deep PLL methods focus on designing proper training objectives under various assumptions on the collected data, which may limit their performance when the collected data cannot satisfy the adopted assumptions. In this paper, we propose to exploit the learned intrinsic representation of the model to identify the true label in the training process, which does not rely on any assumptions on the collected data. We make two key contributions. As the first contribution, we empirically show that the class activation map (CAM), a simple technique for discriminating the learning patterns of each class in images, is surprisingly better at making accurate predictions than the model itself on selecting the true label from candidate labels. Unfortunately, as CAM is confined to image inputs with convolutional neural networks, we are yet unable to directly leverage CAM to address the PLL problem with general inputs and models. Thus, as the second contribution, we propose the class activation value (CAV), which owns similar properties of CAM, while CAV is versatile in various types of inputs and models. Building upon CAV, we propose a novel method named CAV Learning (CAVL) that selects the true label by the class with the maximum CAV for model training. Extensive experiments on various datasets demonstrate that our proposed CAVL method achieves state-of-the-art performance. | ['Masashi Sugiyama', 'Tao Qin', 'Gang Niu', 'Tongliang Liu', 'Bo Han', 'Lei Feng', 'Fei Zhang'] | 2021-09-29 | null | null | null | iclr-2022-4 | ['partial-label-learning'] | ['methodology'] | [ 4.56629753e-01 -1.28132086e-02 -6.08835697e-01 -4.71776187e-01
-6.44563198e-01 -6.10533237e-01 5.15241683e-01 3.31375152e-02
-3.54457587e-01 4.79585826e-01 -4.91248161e-01 -2.92565465e-01
-2.27715313e-01 -6.90896392e-01 -6.64398849e-01 -8.43291581e-01
2.70411253e-01 2.90282339e-01 2.15197101e-01 2.07083538e-01
2.84738809e-01 4.90796238e-01 -1.81338620e+00 5.07408977e-01
5.97380996e-01 1.49285948e+00 9.71201360e-02 2.76988417e-01
-2.16175050e-01 9.33056653e-01 -5.70134521e-01 -1.13372557e-01
2.93411553e-01 -5.52453637e-01 -7.64646173e-01 1.01745874e-01
4.50967669e-01 3.47712240e-03 1.28595784e-01 9.80174482e-01
3.62769425e-01 -1.33118570e-01 9.40125287e-01 -1.46692896e+00
-3.42570335e-01 3.24520022e-01 -4.63561147e-01 1.80927143e-02
-1.59685224e-01 5.49829099e-03 1.17405307e+00 -9.62749243e-01
3.42389971e-01 8.54882181e-01 7.82746255e-01 7.37428188e-01
-1.24629998e+00 -7.87682116e-01 4.28133816e-01 9.18487012e-02
-1.43624067e+00 -1.35481626e-01 9.78286743e-01 -5.34470260e-01
3.93040836e-01 2.67374396e-01 4.31157798e-01 9.78821993e-01
-6.36574477e-02 1.04145575e+00 1.46908939e+00 -5.11424243e-01
3.61198843e-01 3.87500942e-01 3.75692666e-01 7.12061763e-01
-1.12143373e-02 1.82384290e-02 -4.10908103e-01 -6.60263076e-02
6.24500811e-01 -2.47884039e-02 -3.00905406e-01 -4.89712566e-01
-1.05672669e+00 7.37968147e-01 4.53700364e-01 3.17758024e-01
-1.27688468e-01 4.07870077e-02 1.83309644e-01 2.36352012e-01
3.06571513e-01 5.62327504e-01 -6.49794757e-01 4.34051454e-01
-9.50615764e-01 -1.22466505e-01 5.64971745e-01 7.51869559e-01
1.05365908e+00 -2.15550661e-01 -3.56582046e-01 8.79767358e-01
2.84965962e-01 2.68700570e-01 5.42406797e-01 -7.97463894e-01
-9.60404705e-03 8.17417800e-01 -6.77772313e-02 -8.53216588e-01
-5.27656078e-01 -8.82279515e-01 -8.07594180e-01 3.23010087e-01
5.14863610e-01 4.09447290e-02 -8.56226027e-01 1.90577102e+00
2.66420990e-01 3.47028792e-01 2.30678208e-02 6.91331685e-01
8.49072218e-01 3.93156707e-01 1.82611242e-01 -2.55267888e-01
1.24893129e+00 -9.64511573e-01 -4.17773932e-01 -3.52078378e-01
7.44418204e-01 -3.89487892e-01 1.08088696e+00 4.85090911e-01
-5.37256420e-01 -7.22981274e-01 -1.02954412e+00 3.78639400e-01
-3.80847722e-01 5.00900567e-01 7.78833747e-01 5.41059732e-01
-9.34746027e-01 4.83359069e-01 -5.47899425e-01 -2.08847344e-01
5.30255973e-01 4.94082808e-01 -2.73689032e-01 6.13897108e-02
-1.00636613e+00 6.05582178e-01 4.46057707e-01 1.67537481e-01
-1.01787090e+00 -5.59258819e-01 -5.90395868e-01 8.26335177e-02
5.71258783e-01 -3.62520456e-01 1.20750773e+00 -1.53978753e+00
-1.32720363e+00 1.03221273e+00 -8.19023922e-02 -3.13158423e-01
5.20768523e-01 1.71742961e-01 -1.75821751e-01 7.14188963e-02
4.94798720e-02 9.12643909e-01 8.44959021e-01 -1.66021073e+00
-8.11894834e-01 -5.50752878e-02 1.00554451e-01 -1.58108562e-01
-4.93337214e-01 -2.86191851e-01 -3.76142770e-01 -4.60864156e-01
2.64000177e-01 -9.31411326e-01 -5.57904281e-02 6.54750094e-02
-3.40754956e-01 -6.02503300e-01 7.64954627e-01 7.48739690e-02
1.23012960e+00 -2.18702602e+00 -2.64786631e-01 1.67003199e-01
2.74965167e-01 4.28787827e-01 -1.38485953e-01 2.51193315e-01
-6.53211474e-02 2.65044093e-01 -1.67187423e-01 -3.91304225e-01
-1.65696088e-02 3.25868696e-01 -3.83772433e-01 4.20054138e-01
4.87966657e-01 8.12524259e-01 -7.68455088e-01 -4.90421176e-01
4.28260863e-02 3.48125219e-01 -2.60475069e-01 3.49333495e-01
-3.57444048e-01 5.53653359e-01 -5.44240475e-01 6.61098599e-01
6.31854892e-01 -6.78752482e-01 3.44726384e-01 -3.04263175e-01
7.94496089e-02 6.99334685e-03 -1.12176418e+00 1.12987208e+00
-4.37996745e-01 3.77903938e-01 -1.66752785e-01 -1.23169196e+00
1.09749496e+00 2.58429825e-01 5.82097292e-01 -5.58925867e-01
2.31201276e-01 4.01117772e-01 -5.65785803e-02 -4.35766220e-01
-1.72414720e-01 -1.58027694e-01 3.49962749e-02 4.87409651e-01
1.67391717e-01 3.90464604e-01 8.88832510e-02 -1.29552409e-01
9.28965569e-01 1.39276147e-01 3.73594254e-01 -2.93624669e-01
6.59466565e-01 -1.51187062e-01 7.61125922e-01 9.06721830e-01
-3.05988044e-01 6.21808410e-01 6.91842258e-01 -6.59784257e-01
-7.39612281e-01 -7.52130926e-01 -4.10898089e-01 1.15519249e+00
3.06475610e-01 -7.93136507e-02 -7.39052713e-01 -1.18553412e+00
-9.83839184e-02 4.04249221e-01 -8.25448215e-01 -1.21385030e-01
-4.34163630e-01 -8.38097155e-01 5.34516990e-01 5.43011129e-01
5.17018020e-01 -1.24398088e+00 -6.25836194e-01 2.65024416e-03
-1.54511454e-02 -1.00840104e+00 -1.45501032e-01 5.46564162e-01
-6.54801071e-01 -1.40557075e+00 -3.81772935e-01 -9.58730996e-01
9.97174501e-01 1.98968455e-01 9.88401592e-01 3.91184777e-01
3.77761498e-02 2.26977721e-01 -3.23160440e-01 -3.06495726e-01
-3.73524219e-01 2.02457532e-01 -1.36211023e-01 5.53735256e-01
4.12133873e-01 -3.94075036e-01 -5.10018170e-01 5.76988876e-01
-9.67605472e-01 2.61693299e-01 8.38496804e-01 9.69916761e-01
8.18145633e-01 1.76534370e-01 1.05866909e+00 -1.19197166e+00
2.37510383e-01 -5.28345287e-01 -4.70718443e-01 4.52258080e-01
-9.30090129e-01 1.33092433e-01 7.40341961e-01 -6.71056092e-01
-6.93727851e-01 2.38796398e-01 -1.67229965e-01 -4.43778694e-01
-4.52709526e-01 5.03423691e-01 -1.30698338e-01 -1.31986320e-01
5.50812244e-01 2.01671898e-01 -1.02286808e-01 -5.64063430e-01
-4.36474681e-02 6.97325706e-01 2.94770002e-01 -6.41611457e-01
2.87906229e-01 3.47914666e-01 1.64546669e-01 -3.31667215e-01
-1.51040852e+00 -5.30616224e-01 -9.02366400e-01 -2.69753218e-01
7.83565104e-01 -7.55867541e-01 -7.68897474e-01 6.07047975e-01
-8.74719143e-01 -5.30820489e-01 -1.17671430e-01 2.58329213e-01
-4.48735714e-01 5.08313589e-02 -4.22763556e-01 -8.02415490e-01
-9.59747210e-02 -1.22982502e+00 9.71892536e-01 1.83589503e-01
4.91186418e-02 -1.00505173e+00 -2.35479951e-01 2.53298074e-01
2.59038717e-01 3.08483064e-01 1.06059062e+00 -9.59439814e-01
-5.05227864e-01 -3.18067998e-01 -2.70546257e-01 5.53899050e-01
1.17812239e-01 -7.84044340e-02 -1.34847200e+00 -3.96602452e-01
-4.19446640e-03 -6.37157321e-01 9.85062122e-01 2.98223972e-01
1.52493906e+00 -1.09006226e-01 -3.95669103e-01 5.97748995e-01
1.52384615e+00 2.46285379e-01 4.78156745e-01 3.86661798e-01
7.06337452e-01 5.41054547e-01 6.28814518e-01 1.65580288e-01
2.42962390e-01 6.75226510e-01 6.92583442e-01 -2.60750979e-01
-2.22720563e-01 -2.01593384e-01 2.32149988e-01 6.48727655e-01
2.26866782e-01 -3.40088755e-01 -8.78029108e-01 4.38555002e-01
-1.92724979e+00 -5.96715152e-01 1.68491621e-03 2.31670403e+00
7.91650593e-01 1.92826599e-01 -4.18949910e-02 2.84078747e-01
7.23390460e-01 7.56710116e-03 -7.05377281e-01 3.76370922e-02
-1.53935999e-01 1.81616515e-01 3.76232177e-01 2.30600268e-01
-1.46838284e+00 7.43432462e-01 6.12932348e+00 1.05963159e+00
-1.37348092e+00 1.84695587e-01 8.87697637e-01 1.66856796e-01
-1.12200208e-01 -8.77514109e-02 -1.07618701e+00 4.26336199e-01
7.29462266e-01 3.19596469e-01 6.57360926e-02 9.82581437e-01
-1.47795588e-01 7.76098073e-02 -1.36877406e+00 8.17885458e-01
4.49346751e-02 -1.12876284e+00 -5.08929836e-03 6.73389211e-02
8.11232388e-01 -2.31004462e-01 1.97837561e-01 3.86962444e-01
5.02355285e-02 -1.09103942e+00 8.17429185e-01 3.09362292e-01
9.21329200e-01 -6.62696719e-01 9.25791860e-01 6.49666071e-01
-1.02157474e+00 -3.77234370e-01 -3.85598987e-01 -1.82711408e-02
-3.81171405e-01 6.44579291e-01 -8.31237197e-01 3.50026309e-01
4.08304214e-01 7.54917920e-01 -7.34373033e-01 8.87979507e-01
-3.68094414e-01 9.70149934e-01 -1.34726018e-01 1.00078739e-01
3.74298573e-01 1.76941425e-01 -5.08006550e-02 1.22671199e+00
2.17398986e-01 -1.88474685e-01 5.99738359e-01 7.63822973e-01
-1.91477045e-01 2.47124940e-01 -4.88380343e-01 1.27835006e-01
4.32468683e-01 1.27349329e+00 -9.75175619e-01 -1.89028651e-01
-3.94310892e-01 4.84834313e-01 6.02803886e-01 3.04960191e-01
-6.54303789e-01 -3.99878658e-02 3.48129779e-01 -3.35165579e-03
3.23279858e-01 1.50105834e-01 -4.12714392e-01 -9.57078576e-01
-2.04913481e-03 -8.03335130e-01 4.30040359e-01 -3.84962499e-01
-1.42076290e+00 6.35034621e-01 -1.22201398e-01 -1.39597011e+00
1.47668263e-02 -8.76063824e-01 -4.14798796e-01 7.04262078e-01
-1.73993480e+00 -1.37964356e+00 -3.68511617e-01 3.15970302e-01
4.05147552e-01 -1.11977011e-01 8.82526755e-01 2.75619656e-01
-5.54009676e-01 7.38339484e-01 1.16783507e-01 1.64255396e-01
7.15221941e-01 -1.18715978e+00 -1.84945151e-01 5.87018490e-01
2.23483115e-01 3.93167406e-01 3.37968946e-01 -3.07379216e-01
-9.35974538e-01 -1.22252321e+00 7.46701479e-01 -2.70274162e-01
3.85634303e-01 -3.88283819e-01 -9.95977700e-01 6.01955950e-01
-1.26019806e-01 4.45405126e-01 9.17634487e-01 -5.87663725e-02
-4.05927181e-01 -2.79982686e-01 -1.07720399e+00 1.91479281e-01
8.26780260e-01 -3.88675481e-01 -1.15664825e-01 3.28933865e-01
5.65331221e-01 -1.34219721e-01 -7.65159369e-01 6.98826373e-01
5.29825270e-01 -9.68679607e-01 8.20099950e-01 -4.91419405e-01
3.60234201e-01 -5.01592755e-01 -1.69527024e-01 -1.07129717e+00
-4.24591929e-01 7.87834898e-02 -9.95532572e-02 1.25681984e+00
4.89117563e-01 -6.96749330e-01 7.96802640e-01 3.70034635e-01
-4.37771454e-02 -1.35261428e+00 -7.71700263e-01 -6.76733792e-01
2.94785053e-02 -4.99232739e-01 6.14787698e-01 1.15218544e+00
-5.15518308e-01 2.08366156e-01 -4.50050682e-01 2.68880755e-01
4.57113266e-01 2.82249510e-01 5.19084394e-01 -1.47757649e+00
-4.59475219e-01 -4.74370569e-01 -3.76665682e-01 -1.09058595e+00
4.81345892e-01 -1.04687989e+00 1.48388937e-01 -1.40428030e+00
3.33864480e-01 -1.05389917e+00 -8.89085889e-01 8.55417609e-01
-2.50277013e-01 5.13149798e-01 2.04527542e-01 5.78892708e-01
-6.02813900e-01 3.17817748e-01 1.29728746e+00 -2.61654794e-01
7.12114759e-03 3.13206106e-01 -7.84514785e-01 6.74790204e-01
7.08956003e-01 -5.67488253e-01 -5.94020784e-01 -3.03054035e-01
2.70789564e-01 -2.27906540e-01 3.22202444e-01 -1.00547314e+00
2.15635076e-01 -3.03966016e-01 3.46708626e-01 -2.80113935e-01
1.65231332e-01 -8.65727127e-01 1.42441913e-01 4.03474271e-01
-7.47232080e-01 -3.64140600e-01 -2.18953844e-02 5.31739831e-01
-2.41067663e-01 -5.29475629e-01 9.16331410e-01 -1.09479330e-01
-8.08831155e-01 3.46600503e-01 -1.30723268e-01 -1.30948305e-01
1.11382174e+00 -1.02863461e-01 -3.73363167e-01 -1.65578797e-01
-5.95334291e-01 2.73045897e-01 4.30179775e-01 2.08718270e-01
3.77595216e-01 -1.40598512e+00 -4.57546264e-01 3.84570479e-01
2.98140377e-01 1.12424672e-01 -1.33058280e-02 7.78822422e-01
-1.21797256e-01 3.53015631e-01 -6.02070987e-03 -7.82802582e-01
-1.13316786e+00 8.04361463e-01 4.91757721e-01 -4.31440115e-01
-3.40011835e-01 7.72929370e-01 6.09654248e-01 -6.44015312e-01
2.88329750e-01 -8.38593915e-02 -5.55255055e-01 1.03649259e-01
4.75169092e-01 -1.28639877e-01 1.72759250e-01 -6.34677887e-01
-2.13207349e-01 7.00917661e-01 -1.99089982e-02 3.29371035e-01
1.16440523e+00 6.33916035e-02 -1.47908339e-02 6.71887457e-01
1.26968455e+00 -3.05542827e-01 -1.39849508e+00 -3.75317007e-01
8.86642840e-03 -3.30935180e-01 1.04229458e-01 -9.03621435e-01
-1.29447269e+00 1.06881881e+00 6.60781562e-01 3.13404024e-01
1.28325963e+00 -6.97823092e-02 4.67352420e-01 3.47808540e-01
5.13984740e-01 -8.13807428e-01 2.67793387e-01 3.34199578e-01
4.67042625e-01 -1.41729188e+00 -2.46741235e-01 -4.75714505e-01
-6.65569305e-01 1.17522573e+00 8.67847979e-01 9.05058458e-02
7.50178814e-01 8.50126985e-03 3.50201130e-01 -2.05677003e-01
-7.96488523e-01 -2.73672223e-01 3.63380224e-01 4.43822056e-01
3.91488433e-01 5.19353040e-02 -2.31084734e-01 6.08650386e-01
2.78861523e-01 -2.68286932e-02 2.88972914e-01 8.67976904e-01
-5.78832924e-01 -1.28138030e+00 -1.68370724e-01 6.10664248e-01
-5.53521633e-01 8.87243897e-02 -2.86036462e-01 6.36900187e-01
5.66749454e-01 7.86649644e-01 3.33969742e-02 -5.27138472e-01
1.76869854e-01 2.53532201e-01 3.06984723e-01 -7.14610338e-01
-5.94179213e-01 -1.54537484e-02 -2.20133781e-01 -3.15729678e-01
-6.76166177e-01 -4.65815842e-01 -1.15811765e+00 1.69342637e-01
-5.10261476e-01 6.94492683e-02 5.93311191e-01 1.09110618e+00
2.69101024e-01 4.90445763e-01 7.48174965e-01 -7.54370987e-01
-5.61851263e-01 -8.60259712e-01 -6.45911038e-01 4.47546452e-01
3.62466305e-01 -9.86381948e-01 -5.01332223e-01 2.71892734e-02] | [9.50214672088623, 3.3253560066223145] |
ed2e50ed-5bc0-452e-9434-3866f26efabd | representing-videos-as-discriminative-sub-1 | 2201.04027 | null | https://arxiv.org/abs/2201.04027v1 | https://arxiv.org/pdf/2201.04027v1.pdf | Representing Videos as Discriminative Sub-graphs for Action Recognition | Human actions are typically of combinatorial structures or patterns, i.e., subjects, objects, plus spatio-temporal interactions in between. Discovering such structures is therefore a rewarding way to reason about the dynamics of interactions and recognize the actions. In this paper, we introduce a new design of sub-graphs to represent and encode the discriminative patterns of each action in the videos. Specifically, we present MUlti-scale Sub-graph LEarning (MUSLE) framework that novelly builds space-time graphs and clusters the graphs into compact sub-graphs on each scale with respect to the number of nodes. Technically, MUSLE produces 3D bounding boxes, i.e., tubelets, in each video clip, as graph nodes and takes dense connectivity as graph edges between tubelets. For each action category, we execute online clustering to decompose the graph into sub-graphs on each scale through learning Gaussian Mixture Layer and select the discriminative sub-graphs as action prototypes for recognition. Extensive experiments are conducted on both Something-Something V1 & V2 and Kinetics-400 datasets, and superior results are reported when comparing to state-of-the-art methods. More remarkably, our MUSLE achieves to-date the best reported accuracy of 65.0% on Something-Something V2 validation set. | ['Tao Mei', 'Houqiang Li', 'Ting Yao', 'Yingwei Pan', 'Zhaofan Qiu', 'Dong Li'] | 2022-01-11 | representing-videos-as-discriminative-sub | http://openaccess.thecvf.com//content/CVPR2021/html/Li_Representing_Videos_As_Discriminative_Sub-Graphs_for_Action_Recognition_CVPR_2021_paper.html | http://openaccess.thecvf.com//content/CVPR2021/papers/Li_Representing_Videos_As_Discriminative_Sub-Graphs_for_Action_Recognition_CVPR_2021_paper.pdf | cvpr-2021-1 | ['online-clustering'] | ['computer-vision'] | [-2.34292746e-01 -1.03313506e-01 -3.56103778e-01 -6.42632693e-02
-1.68809414e-01 -5.30231297e-01 6.20779812e-01 1.41854554e-01
6.88276961e-02 1.20313451e-01 3.74722272e-01 2.23942176e-01
-2.75333107e-01 -4.13789898e-01 -6.70710862e-01 -6.66319013e-01
-5.86605728e-01 5.43694854e-01 5.37955344e-01 2.62296647e-01
9.21931416e-02 4.91152197e-01 -1.45082152e+00 5.09585798e-01
4.13560957e-01 9.66208756e-01 6.25340864e-02 6.54040098e-01
-7.93152023e-03 1.16600204e+00 -4.09423083e-01 -2.60116458e-01
1.91068858e-01 -5.61681092e-01 -6.22096300e-01 8.65142465e-01
4.17644441e-01 9.45387781e-02 -8.93016517e-01 8.45060945e-01
-1.23091631e-01 4.57576543e-01 9.28983092e-01 -1.50827515e+00
-6.01328552e-01 5.32373846e-01 -8.65754783e-01 3.01738352e-01
3.65799993e-01 2.00934365e-01 9.60724533e-01 -7.70731330e-01
7.77652442e-01 1.59446204e+00 4.99787658e-01 4.51213181e-01
-1.16497862e+00 -3.47596496e-01 5.31426430e-01 5.11192739e-01
-1.50111067e+00 -1.14483468e-01 9.31588233e-01 -8.81028652e-01
8.79608989e-01 1.49613887e-01 9.85795319e-01 1.18421626e+00
3.82560968e-01 1.01524580e+00 6.67385042e-01 1.35723040e-01
4.18202609e-01 -4.23921496e-01 2.20219135e-01 9.19715405e-01
8.61451626e-02 -4.82748210e-01 -5.76667845e-01 -6.69475123e-02
9.19155657e-01 3.69950593e-01 -3.37000825e-02 -7.24502742e-01
-1.17553985e+00 4.66184795e-01 4.43819791e-01 2.54849792e-01
-5.79568446e-01 3.40524763e-01 5.98804951e-01 -3.40463780e-02
3.81032139e-01 -3.97116765e-02 -1.36939645e-01 -2.14177430e-01
-5.85596383e-01 -9.87492129e-02 4.91628826e-01 1.11059785e+00
5.57285964e-01 -9.83835980e-02 -2.92812765e-01 7.19349265e-01
3.22146267e-01 2.87335783e-01 4.34070617e-01 -7.06975698e-01
5.52747071e-01 1.13520491e+00 -1.69402197e-01 -1.55365181e+00
-5.62370121e-01 -2.43143991e-01 -1.08469081e+00 -3.95628244e-01
3.51173669e-01 2.20353082e-01 -8.82250547e-01 1.42816114e+00
5.38443863e-01 7.05788016e-01 -2.10664883e-01 8.56673181e-01
8.08145821e-01 6.44762516e-01 1.78996012e-01 -1.15269266e-01
1.39039671e+00 -1.13526070e+00 -5.60837507e-01 -1.53245851e-01
5.56568027e-01 -1.25052914e-01 9.60154355e-01 3.11926991e-01
-8.24219763e-01 -8.65070105e-01 -6.02827191e-01 2.96632558e-01
-2.25145072e-01 5.10837853e-01 7.67407656e-01 1.67670876e-01
-8.22520435e-01 6.54989481e-01 -1.16724372e+00 -4.45506245e-01
5.45175195e-01 3.21864709e-03 -6.07302725e-01 5.84017932e-02
-5.92977047e-01 2.08742261e-01 4.16314781e-01 3.18376906e-02
-1.08303273e+00 -2.08576128e-01 -1.04345286e+00 -1.27416283e-01
6.93964660e-01 -2.36038089e-01 5.43948054e-01 -7.47799337e-01
-1.01805329e+00 8.08252573e-01 -9.20050293e-02 -4.40444618e-01
2.85312742e-01 -4.60932814e-02 -3.75049114e-01 3.11462164e-01
1.44779935e-01 4.66488928e-01 9.81119335e-01 -1.14616966e+00
-5.11437774e-01 -4.79332030e-01 -4.90642488e-02 1.87684670e-02
-2.43692547e-01 -1.72006488e-01 -1.03588533e+00 -6.48818612e-01
2.05852076e-01 -1.29460800e+00 -1.46332964e-01 -1.52965203e-01
-5.04078388e-01 -6.76138401e-01 8.57971370e-01 -7.43680656e-01
1.60172105e+00 -2.46064711e+00 6.72138095e-01 2.45290533e-01
5.59868336e-01 -7.74947330e-02 -1.25259861e-01 4.89691406e-01
-1.26542687e-01 -1.16135098e-01 6.34512305e-02 -3.40554833e-01
2.08924208e-02 3.75743300e-01 1.08378515e-01 8.81248891e-01
-2.37537492e-02 1.05322909e+00 -9.45127785e-01 -6.03045404e-01
3.66308570e-01 3.29483896e-01 -4.44065839e-01 1.72689959e-01
-2.67922878e-01 4.48306292e-01 -7.04543769e-01 7.07192004e-01
3.47151220e-01 -6.84670627e-01 4.52545971e-01 -2.63812095e-01
3.14595312e-01 -2.67966032e-01 -1.23212063e+00 1.66328561e+00
1.75154552e-01 4.11650330e-01 -4.01167609e-02 -1.28654277e+00
8.80300224e-01 8.43084604e-02 9.63444591e-01 -2.21796200e-01
2.39351571e-01 -2.04323962e-01 -1.27815515e-01 -6.62565947e-01
6.83366284e-02 3.74266446e-01 -2.97886223e-01 1.59525380e-01
3.22729409e-01 3.49363089e-01 5.44920921e-01 3.82976085e-01
1.40680659e+00 1.72723934e-01 3.59126836e-01 -1.09473631e-01
5.60485840e-01 -7.80365914e-02 5.96093118e-01 3.76771301e-01
-4.11403835e-01 3.50936472e-01 7.26158619e-01 -5.48331678e-01
-6.93541825e-01 -1.01335871e+00 5.29401004e-01 9.93233740e-01
3.30604643e-01 -9.00766551e-01 -7.57877171e-01 -1.05350637e+00
1.82690963e-01 2.83870429e-01 -8.40712249e-01 -2.47140527e-01
-5.90802252e-01 -1.84677795e-01 1.13364697e-01 7.86961138e-01
4.55807477e-01 -1.30533409e+00 -3.46362025e-01 8.10935423e-02
-1.17685825e-01 -1.40563655e+00 -8.66534591e-01 -1.87459841e-01
-7.64592707e-01 -1.56645751e+00 -3.84515464e-01 -8.02369356e-01
7.90399671e-01 5.91518939e-01 1.04749739e+00 -6.31236583e-02
-4.39460188e-01 8.93119812e-01 -5.96455097e-01 1.63577318e-01
-5.98324761e-02 -3.89621943e-01 1.85806200e-01 6.22961640e-01
4.38969970e-01 -7.15005040e-01 -6.56366408e-01 5.13620973e-01
-5.87253392e-01 4.93288785e-02 6.31729126e-01 4.68268871e-01
9.59207535e-01 3.21667016e-01 6.19900152e-02 -5.71043968e-01
2.76451200e-01 -7.86141515e-01 -4.04340923e-01 4.03880924e-01
-2.47608963e-02 -9.51309055e-02 6.56450391e-01 -7.00883448e-01
-4.12279814e-01 3.94498050e-01 6.65637732e-01 -1.18216884e+00
-2.97000229e-01 4.33372289e-01 -2.17588291e-01 2.30066851e-01
4.42927450e-01 4.48440164e-01 -6.62912279e-02 -4.28269416e-01
5.35345435e-01 3.61119837e-01 4.85805362e-01 -5.44453442e-01
6.03631496e-01 5.16427338e-01 1.55826062e-01 -8.98269951e-01
-5.52684188e-01 -8.94622207e-01 -9.90532517e-01 -8.30317199e-01
1.27787769e+00 -8.73543024e-01 -8.47085774e-01 4.31284249e-01
-7.59433091e-01 -4.49826241e-01 -1.68005407e-01 5.00084877e-01
-7.67322242e-01 5.67348063e-01 -5.65050066e-01 -7.49405921e-01
1.32047653e-01 -9.75664377e-01 1.38401520e+00 9.15178508e-02
-2.91687131e-01 -9.94866252e-01 6.97143748e-02 4.57849234e-01
-3.31924796e-01 6.14297330e-01 6.09257817e-01 -6.60069346e-01
-5.23453116e-01 -3.72328371e-01 -6.89314306e-02 2.93267995e-01
3.21882933e-01 -3.65614612e-03 -3.80818635e-01 -3.47831994e-01
-3.38028997e-01 -1.97183713e-01 8.08462858e-01 4.74444479e-01
1.47683787e+00 -2.53291279e-01 -6.76198304e-01 3.51619631e-01
9.10367072e-01 3.69561106e-01 3.73364806e-01 -1.04241788e-01
1.19850838e+00 5.10820389e-01 6.24557436e-01 7.40036666e-01
4.06891972e-01 7.71933258e-01 3.00459653e-01 2.18577370e-01
-2.44087607e-01 -3.83656651e-01 5.70066690e-01 8.62290978e-01
-3.94384444e-01 -3.18837374e-01 -8.26747358e-01 4.95494962e-01
-2.31416464e+00 -1.19703102e+00 -2.57371455e-01 1.91916299e+00
2.12820619e-01 1.86188132e-01 6.44289374e-01 -1.05539076e-01
9.90972161e-01 3.84560019e-01 -5.58744133e-01 2.58391291e-01
1.09802075e-01 -2.17489675e-01 2.45593950e-01 8.89410228e-02
-1.42642808e+00 9.72390354e-01 5.36539078e+00 9.76080894e-01
-7.12914169e-01 -6.52736500e-02 4.61911559e-01 -8.24630409e-02
3.63726795e-01 -1.99496239e-01 -4.57935750e-01 5.42199016e-01
7.11436987e-01 -8.55427980e-03 4.95773196e-01 1.09097934e+00
2.57206380e-01 1.43756270e-01 -1.14338815e+00 1.31632650e+00
1.83693603e-01 -1.17107034e+00 1.19092740e-01 9.14884079e-03
5.87549925e-01 -2.17081562e-01 -3.05420250e-01 4.21187043e-01
4.37561721e-01 -7.70115197e-01 7.69328296e-01 6.03803933e-01
5.37662327e-01 -5.69361329e-01 1.70952469e-01 4.13117260e-01
-1.99851298e+00 -1.76079631e-01 -2.85094440e-01 1.05542578e-01
5.09754121e-02 2.23824978e-01 -3.04527640e-01 6.90025687e-01
8.06215703e-01 1.52080572e+00 -7.53596485e-01 8.31565499e-01
-1.61678508e-01 6.42858982e-01 -4.95536439e-02 -9.25030112e-02
4.03917462e-01 -5.78167319e-01 4.61510718e-01 1.31304514e+00
1.90757990e-01 3.12411129e-01 8.04101348e-01 5.00240505e-01
4.40140808e-04 -5.69485649e-02 -6.50316060e-01 -4.59678859e-01
2.49206781e-01 1.28396761e+00 -1.12053525e+00 -4.88675982e-01
-5.42965710e-01 1.01207411e+00 5.49981594e-01 2.55942166e-01
-1.05491269e+00 1.79904625e-01 6.52322590e-01 2.59195775e-01
5.02453089e-01 -5.74371338e-01 4.37677026e-01 -1.27177358e+00
2.61448592e-01 -8.49259913e-01 7.56709039e-01 -5.32154083e-01
-1.38583732e+00 4.10395592e-01 1.38137177e-01 -1.52716720e+00
3.95938605e-02 -6.29343867e-01 -4.01647776e-01 1.28044456e-01
-4.75441754e-01 -1.19549024e+00 -5.67710221e-01 9.97112632e-01
7.44187474e-01 -2.98384070e-01 4.71329063e-01 1.59381032e-01
-7.72242606e-01 2.25026444e-01 -3.17125879e-02 4.82782364e-01
1.90570772e-01 -1.19686854e+00 3.64535689e-01 7.11472213e-01
7.11288273e-01 3.48948628e-01 3.06621045e-01 -1.02037895e+00
-1.77472532e+00 -1.29310536e+00 2.72239357e-01 -5.03837287e-01
1.05214417e+00 -6.94725394e-01 -8.15938890e-01 8.79410326e-01
-1.74608782e-01 4.35849547e-01 5.75731754e-01 5.72081134e-02
-3.92870337e-01 4.98531982e-02 -7.50455916e-01 5.63599765e-01
1.68697083e+00 -5.31252325e-01 -3.78222704e-01 6.57273829e-01
4.99403208e-01 -3.14179629e-01 -8.79095554e-01 2.84493029e-01
4.02534217e-01 -9.40484643e-01 9.70250785e-01 -9.02727246e-01
2.30680078e-01 -4.89257455e-01 -2.07212284e-01 -1.14038408e+00
-7.14440644e-01 -7.19616055e-01 -6.18995309e-01 1.01123726e+00
-4.34480645e-02 -2.37487391e-01 9.23054039e-01 1.55064374e-01
-2.62133062e-01 -9.16493237e-01 -9.05822396e-01 -1.01171994e+00
-6.09311163e-01 -4.86978471e-01 2.27439687e-01 8.72254610e-01
1.45186350e-01 3.06746900e-01 -5.54921269e-01 1.26286045e-01
7.75064707e-01 2.02494651e-01 1.17294109e+00 -1.09020352e+00
-4.99898404e-01 -5.46680689e-01 -1.12201643e+00 -1.28996801e+00
2.87586182e-01 -9.47086811e-01 -7.24789426e-02 -1.63035679e+00
4.60974336e-01 -5.00880666e-02 -2.74711281e-01 4.77745622e-01
-1.04733735e-01 1.31601775e-02 2.06330463e-01 3.59028369e-01
-1.28807044e+00 7.23671317e-01 1.31500852e+00 -4.89846915e-01
-2.81676531e-01 -7.87836462e-02 -2.03820124e-01 7.65553653e-01
4.91929203e-01 -2.16101065e-01 -6.76853418e-01 1.67416390e-02
-2.98448414e-01 2.09829926e-01 4.89997357e-01 -1.25463748e+00
9.12257060e-02 -3.75308007e-01 2.64434814e-01 -7.54442334e-01
3.87461543e-01 -8.81087363e-01 4.87334162e-01 3.69410604e-01
-2.48467252e-01 -9.58216116e-02 -2.44833510e-02 1.19473326e+00
-2.20094025e-01 5.04568160e-01 4.74213481e-01 -1.22966766e-01
-9.24817204e-01 7.15765953e-01 -2.53062248e-01 7.70938843e-02
1.47671998e+00 -2.61215180e-01 -4.86392230e-02 -2.99125582e-01
-1.22799027e+00 3.85139197e-01 2.65796304e-01 7.61027277e-01
7.24230170e-01 -1.68311274e+00 -5.35595298e-01 -6.76477775e-02
3.47417593e-01 -2.06932724e-01 6.32684231e-01 9.37226176e-01
-1.88884422e-01 2.25405186e-01 -1.79263011e-01 -8.68240416e-01
-1.61003041e+00 9.05499339e-01 1.81897581e-01 -3.23089659e-01
-1.09570479e+00 8.32426548e-01 4.99187529e-01 2.93554794e-02
3.34468633e-01 -4.94091988e-01 -4.14022058e-01 1.42108321e-01
4.19269323e-01 5.40983498e-01 -4.70439404e-01 -1.04594254e+00
-6.42146707e-01 8.19447219e-01 2.44470641e-01 3.81600738e-01
1.26610970e+00 8.07222649e-02 -6.11310266e-02 6.63666368e-01
1.11961913e+00 -1.97708428e-01 -1.57718050e+00 -1.78840756e-01
6.75045103e-02 -5.49598932e-01 -5.00099182e-01 -1.02639459e-01
-1.38601768e+00 5.53385675e-01 1.63395122e-01 3.44256133e-01
9.40902531e-01 6.11021399e-01 5.00331044e-01 2.79937297e-01
5.02017558e-01 -9.20179784e-01 7.29051292e-01 2.47439802e-01
1.06190324e+00 -9.67398465e-01 4.42047417e-02 -5.14259875e-01
-9.27370489e-01 8.91242862e-01 5.70032537e-01 -5.30045688e-01
8.01633418e-01 -1.25189319e-01 -4.02728796e-01 -8.20697844e-01
-6.90763056e-01 -1.93543985e-01 7.20189631e-01 5.45688987e-01
9.26304832e-02 5.19617498e-01 -1.04189869e-02 7.23502457e-01
1.56543583e-01 -3.08072716e-01 4.94413413e-02 7.29736507e-01
-3.30858201e-01 -5.70371568e-01 -2.18943343e-01 5.09294868e-01
1.25462070e-01 4.86461699e-01 -7.47389317e-01 9.12139058e-01
1.49921894e-01 1.02267981e+00 5.71265370e-02 -9.89765406e-01
5.04687846e-01 -1.14602014e-01 5.55672407e-01 -6.16655529e-01
-2.54915953e-01 1.45302430e-01 -6.93219677e-02 -1.12630165e+00
-4.73554581e-01 -9.25687790e-01 -1.40976858e+00 -1.84022546e-01
-1.48469917e-04 1.08652160e-01 8.04905072e-02 8.56279314e-01
6.41995132e-01 6.37556553e-01 5.88660479e-01 -9.83688056e-01
-1.88036948e-01 -9.55664992e-01 -9.25111830e-01 8.98104310e-01
-1.58633292e-01 -1.17536974e+00 -3.74365091e-01 2.96935111e-01] | [8.248259544372559, 0.5519829988479614] |
bc52332a-d884-4409-8844-52122253890b | assemblyhands-towards-egocentric-activity | 2304.12301 | null | https://arxiv.org/abs/2304.12301v1 | https://arxiv.org/pdf/2304.12301v1.pdf | AssemblyHands: Towards Egocentric Activity Understanding via 3D Hand Pose Estimation | We present AssemblyHands, a large-scale benchmark dataset with accurate 3D hand pose annotations, to facilitate the study of egocentric activities with challenging hand-object interactions. The dataset includes synchronized egocentric and exocentric images sampled from the recent Assembly101 dataset, in which participants assemble and disassemble take-apart toys. To obtain high-quality 3D hand pose annotations for the egocentric images, we develop an efficient pipeline, where we use an initial set of manual annotations to train a model to automatically annotate a much larger dataset. Our annotation model uses multi-view feature fusion and an iterative refinement scheme, and achieves an average keypoint error of 4.20 mm, which is 85% lower than the error of the original annotations in Assembly101. AssemblyHands provides 3.0M annotated images, including 490K egocentric images, making it the largest existing benchmark dataset for egocentric 3D hand pose estimation. Using this data, we develop a strong single-view baseline of 3D hand pose estimation from egocentric images. Furthermore, we design a novel action classification task to evaluate predicted 3D hand poses. Our study shows that having higher-quality hand poses directly improves the ability to recognize actions. | ['Cem Keskin', 'Luan Tran', 'Tomas Hodan', 'Fadime Sener', 'Kun He', 'Takehiko Ohkawa'] | 2023-04-24 | null | http://openaccess.thecvf.com//content/CVPR2023/html/Ohkawa_AssemblyHands_Towards_Egocentric_Activity_Understanding_via_3D_Hand_Pose_Estimation_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Ohkawa_AssemblyHands_Towards_Egocentric_Activity_Understanding_via_3D_Hand_Pose_Estimation_CVPR_2023_paper.pdf | cvpr-2023-1 | ['3d-hand-pose-estimation', 'action-classification', 'hand-pose-estimation', '3d-hand-pose-estimation'] | ['computer-vision', 'computer-vision', 'computer-vision', 'graphs'] | [-1.53434828e-01 -1.85947210e-01 -2.05486804e-01 -9.81194079e-02
-8.27771544e-01 -9.31123674e-01 4.77573901e-01 -5.74007750e-01
-4.44553971e-01 4.32820559e-01 7.19246924e-01 3.44825625e-01
1.72799528e-01 5.96890040e-02 -7.79967606e-01 -5.61613500e-01
8.36112499e-02 1.01284909e+00 1.81907550e-01 -2.75699422e-02
3.94978017e-01 6.66590393e-01 -1.36677444e+00 3.29561889e-01
2.20325097e-01 5.57499886e-01 3.59282643e-01 1.24300337e+00
6.80128157e-01 8.55566800e-01 -6.74310803e-01 -3.26159835e-01
3.61349672e-01 -6.62632957e-02 -1.32864678e+00 1.45538971e-01
8.16822708e-01 -1.13138914e+00 -4.56043333e-01 5.33967197e-01
1.01134384e+00 2.36922622e-01 7.39091873e-01 -1.31921327e+00
-2.22821161e-01 3.05050910e-01 -7.46597171e-01 2.01723352e-01
1.02669704e+00 5.38902342e-01 9.65824604e-01 -8.74967933e-01
1.11143994e+00 1.29393387e+00 5.02052248e-01 6.17331564e-01
-1.10118210e+00 -6.05811238e-01 2.77475625e-01 1.30201474e-01
-1.44438064e+00 -4.35265839e-01 5.24497449e-01 -8.16507757e-01
1.50096512e+00 3.90724540e-02 1.02730930e+00 1.80732250e+00
6.99088275e-02 1.31673849e+00 6.73359632e-01 -3.32780898e-01
-3.75221930e-02 -4.58620369e-01 -1.50047779e-01 5.38446307e-01
1.08088618e-02 -3.26753765e-01 -6.61910415e-01 -1.86379477e-02
1.19597089e+00 6.94465190e-02 -3.44338000e-01 -9.57753360e-01
-1.69856548e+00 1.69460669e-01 2.93065757e-01 -9.90631711e-03
-4.71223027e-01 3.94953221e-01 4.45328593e-01 -9.17347670e-02
3.67180556e-01 5.62223375e-01 -7.18278110e-01 -7.81861305e-01
-2.05279693e-01 7.64389634e-01 6.33234143e-01 1.36626685e+00
-1.35181041e-03 -4.21216786e-01 -3.92796338e-01 5.01233518e-01
-6.92519844e-02 5.53708494e-01 4.96776588e-02 -1.46082199e+00
9.37714219e-01 5.36556363e-01 5.11044800e-01 -5.69254458e-01
-6.01635158e-01 -2.43578732e-01 -1.06295452e-01 6.69451430e-02
8.62378657e-01 6.44985363e-02 -7.80191660e-01 1.63735569e+00
5.22192836e-01 -2.98990011e-01 -3.61234069e-01 1.17283559e+00
4.76590574e-01 -1.63059533e-01 -2.10418105e-02 2.14245483e-01
1.45484328e+00 -1.18185246e+00 -6.61836267e-01 4.03524516e-03
8.23404193e-01 -6.45014405e-01 1.40667844e+00 7.17555285e-01
-1.02688503e+00 -3.68118256e-01 -6.30375504e-01 -1.82856694e-01
-7.40968138e-02 3.30313891e-01 8.26234043e-01 4.09421325e-01
-7.05894053e-01 4.04082924e-01 -1.03233838e+00 -4.54181492e-01
4.55418229e-01 2.12951511e-01 -9.20775712e-01 2.64798522e-01
-5.07811189e-01 9.30884361e-01 3.53824943e-01 -1.18588686e-01
-1.17701828e+00 -5.95668077e-01 -8.27381968e-01 -3.50425959e-01
6.84379220e-01 -6.67628884e-01 1.65045202e+00 -1.97705328e-01
-1.41831279e+00 1.09450877e+00 -1.09871350e-01 1.27404898e-01
9.45484459e-01 -7.65277803e-01 2.98031509e-01 3.69164735e-01
2.59960532e-01 7.10024476e-01 7.56858170e-01 -1.01503575e+00
-3.96532357e-01 -9.17784691e-01 2.88456619e-01 5.10035872e-01
-2.62635425e-02 2.61289794e-02 -7.81152368e-01 -9.05689001e-01
6.80229217e-02 -1.26187694e+00 2.30273992e-01 -2.23717809e-01
-4.53297436e-01 -5.14046609e-01 6.45248413e-01 -8.07869196e-01
7.29926229e-01 -1.80829167e+00 7.72939324e-01 -1.39093533e-01
4.59060788e-01 -1.21888526e-01 -3.73275913e-02 2.72790611e-01
-1.43334627e-01 -3.00372124e-01 3.74799699e-01 -7.26418853e-01
-1.01354197e-02 -7.92269930e-02 -3.86968553e-02 4.90001082e-01
-1.61097944e-01 1.19396472e+00 -1.09818506e+00 -4.57717657e-01
2.23260790e-01 3.91615599e-01 -9.40268397e-01 4.42653894e-01
-1.83694154e-01 9.72919703e-01 -3.38514477e-01 8.20268452e-01
2.71395564e-01 -3.27341706e-01 7.57806227e-02 -2.73014933e-01
2.88739979e-01 2.42022395e-01 -1.09044898e+00 2.48350692e+00
-2.68112868e-01 5.18126488e-01 -1.91782832e-01 -1.99460566e-01
1.91057682e-01 5.82945347e-01 7.63742805e-01 -7.64908222e-03
5.88475883e-01 -1.67302221e-01 -1.78070828e-01 -6.86771691e-01
3.78941774e-01 4.53543693e-01 -8.75212252e-02 7.79955685e-01
2.97875255e-01 -5.40793240e-01 5.91798872e-02 3.44428509e-01
1.14973760e+00 7.35293150e-01 3.10856223e-01 1.39087886e-01
2.47180253e-01 -8.68236125e-02 1.41958460e-01 5.87773204e-01
-4.59152907e-01 8.71505499e-01 6.18154287e-01 -5.45453012e-01
-1.31090629e+00 -1.18616879e+00 2.19260067e-01 1.24944985e+00
-9.36658308e-02 -6.74316883e-01 -1.10555458e+00 -1.02371526e+00
6.10760488e-02 3.28120857e-01 -7.67001748e-01 2.69069791e-01
-6.71403170e-01 -1.56460434e-01 5.16372085e-01 1.30735564e+00
3.75829577e-01 -1.18339443e+00 -7.11746156e-01 -2.73461282e-01
-5.49114466e-01 -1.23746681e+00 -1.00094080e+00 -2.69220889e-01
-5.03779769e-01 -1.56903744e+00 -1.10141850e+00 -5.73863447e-01
7.08484709e-01 2.87526220e-01 1.12776756e+00 -4.68596518e-01
-3.91453087e-01 9.56678331e-01 -4.94116992e-01 -3.97830635e-01
7.91671425e-02 3.29565585e-01 6.22054100e-01 -4.22243774e-01
3.84498656e-01 -5.83071947e-01 -8.11740577e-01 5.40554106e-01
9.20961946e-02 1.04942091e-01 4.47494388e-01 7.34412730e-01
3.84570926e-01 -9.18912590e-01 2.17267275e-01 -2.59027898e-01
3.84909779e-01 1.73721731e-01 -3.05393279e-01 1.22186586e-01
-2.34189872e-02 -1.28911316e-01 -4.02086414e-02 -5.67991316e-01
-1.09836900e+00 5.67514420e-01 -2.72903983e-02 -7.06378877e-01
-1.83445886e-01 -4.22967494e-01 -3.35027605e-01 2.42990647e-02
7.45350301e-01 4.34888937e-02 -9.98557732e-02 -6.26843512e-01
5.43765604e-01 7.88787127e-01 8.30588281e-01 -7.03705847e-01
3.45181376e-01 5.60855448e-01 -2.49268308e-01 -3.83400023e-01
-8.15910161e-01 -6.38412714e-01 -1.46627021e+00 -3.05475533e-01
1.22214055e+00 -1.08183801e+00 -1.49399042e+00 8.33401978e-01
-1.44949889e+00 -6.82682693e-01 -3.33559401e-02 7.78098285e-01
-1.40857494e+00 3.68385196e-01 -5.62688470e-01 -7.63299942e-01
-3.78906608e-01 -1.28451514e+00 1.82609940e+00 -4.27307546e-01
-9.06273067e-01 -3.35461825e-01 5.48053905e-02 8.31280053e-01
-3.92850101e-01 2.00697139e-01 2.62548059e-01 -4.77279454e-01
-4.44970042e-01 -2.93935835e-01 -3.16167884e-02 1.51934355e-01
2.21394211e-01 -4.16417480e-01 -9.31952298e-01 -5.22592187e-01
-3.14897388e-01 -7.57094681e-01 4.22554523e-01 3.30765933e-01
1.22207987e+00 3.97533253e-02 -3.98925751e-01 5.64614356e-01
2.81556547e-01 4.02838960e-02 4.07913804e-01 1.94660097e-01
1.11286223e+00 4.32828605e-01 8.30468774e-01 7.03758895e-01
5.50374627e-01 1.08516777e+00 4.34920758e-01 5.25434911e-01
-8.83782059e-02 -3.91323477e-01 4.82930727e-02 3.60361874e-01
-8.77280831e-01 -6.13058545e-02 -1.00142670e+00 5.17871797e-01
-1.71781230e+00 -1.02353275e+00 2.41668314e-01 2.01464200e+00
7.77963877e-01 -8.80579203e-02 6.64060771e-01 1.64591521e-01
2.92917788e-01 1.06544010e-01 -7.66630352e-01 2.36714289e-01
3.89210582e-01 -1.34842191e-02 2.98066616e-01 3.58096570e-01
-1.38019896e+00 1.21299899e+00 6.66132927e+00 2.29509726e-01
-5.77290297e-01 1.66709408e-01 -7.80164823e-02 -6.24767065e-01
4.36676621e-01 -4.16809678e-01 -6.92793190e-01 1.79922804e-01
4.20070663e-02 4.54720527e-01 6.43836796e-01 1.15300536e+00
7.39547014e-02 -1.08148128e-01 -1.56024826e+00 1.43306744e+00
4.68471587e-01 -8.40871334e-01 -1.19473733e-01 7.27671534e-02
8.57584596e-01 5.76595739e-02 -1.01114780e-01 9.92870331e-02
2.76285350e-01 -9.23472166e-01 8.07098866e-01 4.72547710e-01
8.52676749e-01 -6.75364375e-01 5.12256086e-01 5.13714790e-01
-1.32412219e+00 -5.44391014e-02 3.05229366e-01 -2.71045268e-01
3.33467513e-01 -4.20166254e-01 -1.03008759e+00 1.49536684e-01
1.10888302e+00 8.42174351e-01 -6.26776636e-01 4.50622976e-01
-4.49945003e-01 -2.54585087e-01 -2.35418186e-01 1.46850839e-01
-1.37180209e-01 2.71184117e-01 8.10821652e-01 8.07719529e-01
-1.20282747e-01 3.04285288e-01 8.07463005e-02 5.31300187e-01
-7.63940141e-02 -1.89599350e-01 -7.40580380e-01 -1.06742280e-02
3.73417288e-01 9.87508059e-01 -5.91544688e-01 -4.62940425e-01
-3.89797539e-02 1.55176997e+00 4.68240172e-01 1.49748012e-01
-8.07049870e-01 -3.66087079e-01 1.04520953e+00 -2.10325606e-02
1.99270710e-01 -7.04500318e-01 -3.29585336e-02 -1.47844350e+00
2.99067944e-01 -1.06684852e+00 2.24000782e-01 -1.23741865e+00
-8.74012947e-01 3.58980477e-01 3.30993980e-01 -1.26276565e+00
-8.01081061e-01 -8.57086480e-01 -1.30564526e-01 7.48370111e-01
-4.07295465e-01 -1.43933105e+00 -9.61060584e-01 6.98574960e-01
9.09655511e-01 -2.33883828e-01 8.22354436e-01 -1.08539656e-01
-3.38815928e-01 6.74980640e-01 -5.55445194e-01 3.51409823e-01
1.06014287e+00 -1.46500313e+00 8.65254521e-01 2.38439336e-01
3.03063512e-01 9.05674100e-01 4.75418150e-01 -7.53781021e-01
-1.57096469e+00 -6.14611626e-01 4.00912255e-01 -1.95576549e+00
3.59453171e-01 -7.37743437e-01 -2.50349045e-01 1.35159695e+00
-1.12834603e-01 5.30827269e-02 3.49195987e-01 2.76090950e-01
-5.45420885e-01 4.34492737e-01 -9.41072822e-01 7.71286726e-01
2.19208407e+00 -6.88419223e-01 -8.02049458e-01 6.40490890e-01
4.41616029e-01 -1.00634146e+00 -9.68029082e-01 4.00600791e-01
1.37885177e+00 -7.91070879e-01 1.13589501e+00 -1.04404104e+00
3.12001854e-01 -2.04557881e-01 -1.81959048e-01 -1.29536867e+00
-2.62099296e-01 -5.43295920e-01 -4.85168785e-01 7.76777565e-01
-1.16750285e-01 -2.40519598e-01 1.08199060e+00 3.33714485e-01
2.34168351e-01 -6.06405735e-01 -7.33274519e-01 -8.98618519e-01
-3.01485121e-01 -5.64153314e-01 5.83500624e-01 5.44908226e-01
3.29771489e-01 1.66509852e-01 -3.73073667e-01 -8.77902061e-02
6.24292374e-01 -8.86702240e-02 1.65874910e+00 -1.14880264e+00
-2.08180144e-01 -2.98781544e-01 -6.07929051e-01 -1.46283126e+00
4.68819022e-01 -6.23933613e-01 -8.49815309e-02 -1.28214252e+00
6.33932889e-01 2.09940914e-02 1.47459865e-01 5.47434449e-01
-1.16713323e-01 5.82373798e-01 2.58684397e-01 3.57071400e-01
-6.67452037e-01 4.75440621e-01 1.71830833e+00 -1.67336389e-02
-2.39665434e-01 -2.95574702e-02 -1.76092282e-01 1.00728512e+00
4.92520332e-01 -1.04083650e-01 -4.71110284e-01 -4.37080383e-01
1.78044802e-03 -1.58562839e-01 6.77490950e-01 -7.70402610e-01
-2.30358765e-02 -1.97603613e-01 7.06604362e-01 -1.04510510e+00
7.02422082e-01 -6.44496441e-01 -4.70724963e-02 3.40541929e-01
-1.98394865e-01 1.04638502e-01 -4.29174788e-02 5.67961931e-01
3.36089790e-01 3.10339391e-01 2.29621306e-01 -4.11858290e-01
-7.07389534e-01 3.42255801e-01 -7.59568661e-02 1.99312925e-01
1.24061501e+00 -2.87739068e-01 -1.94520012e-01 -6.82504714e-01
-9.08459723e-01 2.18538195e-01 5.88976443e-01 7.80706525e-01
3.13782603e-01 -1.31005418e+00 -4.02402341e-01 2.14625925e-01
3.66970092e-01 2.09479302e-01 2.15274006e-01 1.08908772e+00
-5.88589728e-01 6.14558041e-01 -3.53208095e-01 -9.47031021e-01
-1.50128627e+00 4.90175426e-01 2.28605002e-01 1.50622785e-01
-8.00588608e-01 1.00714529e+00 2.83784181e-01 -7.52139330e-01
4.38954473e-01 -5.07578969e-01 -5.09017780e-02 7.07722874e-03
7.02178359e-01 7.11829960e-01 -9.67146680e-02 -7.58441031e-01
-5.88222146e-01 8.16731691e-01 -1.28829733e-01 -2.02178523e-01
1.18328559e+00 1.69186279e-01 1.98131740e-01 2.94694394e-01
1.03103781e+00 4.33156751e-02 -1.70671129e+00 9.38882604e-02
-3.77816707e-01 -9.60002959e-01 -3.78822982e-01 -7.60049224e-01
-7.39606142e-01 7.94927359e-01 3.73367488e-01 -5.51666021e-01
6.30917788e-01 5.63176513e-01 5.89153707e-01 8.46205354e-01
8.71268570e-01 -1.17566311e+00 8.16633821e-01 7.49209344e-01
1.60486901e+00 -1.32788432e+00 1.01452745e-01 -4.16804820e-01
-8.81643534e-01 7.40613163e-01 1.10540533e+00 3.68609140e-03
1.67864650e-01 2.40518272e-01 -1.26025409e-01 -2.80574322e-01
-3.94462764e-01 -1.35190943e-02 4.29401189e-01 6.33782566e-01
2.96037585e-01 1.90291956e-01 1.45470724e-01 7.28064477e-01
-4.97366816e-01 9.82109737e-03 -8.77043884e-03 1.04098749e+00
1.72921374e-01 -7.29482472e-01 -3.92316103e-01 2.41274744e-01
-1.68751925e-01 5.16365111e-01 -7.88925290e-01 8.97201657e-01
-1.32806063e-01 5.99557102e-01 2.81293899e-01 -6.08134389e-01
7.75988102e-01 1.77396312e-01 1.32888699e+00 -7.15457261e-01
-3.03868175e-01 -9.19766352e-02 -6.46301499e-03 -1.11635125e+00
-3.02784979e-01 -8.49495709e-01 -1.05319238e+00 -3.13588023e-01
-2.99745917e-01 -4.78784621e-01 4.45105076e-01 9.93403912e-01
4.27478969e-01 4.63365912e-01 1.66730806e-01 -1.89232981e+00
-7.45666504e-01 -1.40221751e+00 -4.77120340e-01 6.11442506e-01
1.51216179e-01 -1.37630558e+00 -1.15317859e-01 -5.28675094e-02] | [6.649822235107422, -0.8266847729682922] |
8406554a-1ba4-4a57-96dc-a895db6a7929 | dual-networks-based-3d-multi-person-pose | 2205.00748 | null | https://arxiv.org/abs/2205.00748v3 | https://arxiv.org/pdf/2205.00748v3.pdf | Dual networks based 3D Multi-Person Pose Estimation from Monocular Video | Monocular 3D human pose estimation has made progress in recent years. Most of the methods focus on single persons, which estimate the poses in the person-centric coordinates, i.e., the coordinates based on the center of the target person. Hence, these methods are inapplicable for multi-person 3D pose estimation, where the absolute coordinates (e.g., the camera coordinates) are required. Moreover, multi-person pose estimation is more challenging than single pose estimation, due to inter-person occlusion and close human interactions. Existing top-down multi-person methods rely on human detection (i.e., top-down approach), and thus suffer from the detection errors and cannot produce reliable pose estimation in multi-person scenes. Meanwhile, existing bottom-up methods that do not use human detection are not affected by detection errors, but since they process all persons in a scene at once, they are prone to errors, particularly for persons in small scales. To address all these challenges, we propose the integration of top-down and bottom-up approaches to exploit their strengths. Our top-down network estimates human joints from all persons instead of one in an image patch, making it robust to possible erroneous bounding boxes. Our bottom-up network incorporates human-detection based normalized heatmaps, allowing the network to be more robust in handling scale variations. Finally, the estimated 3D poses from the top-down and bottom-up networks are fed into our integration network for final 3D poses. To address the common gaps between training and testing data, we do optimization during the test time, by refining the estimated 3D human poses using high-order temporal constraint, re-projection loss, and bone length regularizations. Our evaluations demonstrate the effectiveness of the proposed method. Code and models are available: https://github.com/3dpose/3D-Multi-Person-Pose. | ['Robby T. Tan', 'Bo wang', 'Yu Cheng'] | 2022-05-02 | null | null | null | null | ['3d-pose-estimation', '3d-multi-person-pose-estimation-absolute', '3d-multi-person-pose-estimation-root-relative', 'monocular-3d-human-pose-estimation', '3d-multi-person-pose-estimation', 'multi-person-pose-estimation'] | ['computer-vision', 'computer-vision', 'computer-vision', 'computer-vision', 'computer-vision', 'computer-vision'] | [-2.87128329e-01 -2.16045752e-01 1.07514165e-01 -7.87975788e-02
-5.43746471e-01 -3.05522084e-01 1.62593752e-01 -2.03922868e-01
-6.10715687e-01 5.14394760e-01 2.26713538e-01 4.81739670e-01
1.55091956e-01 -7.16225326e-01 -6.60199761e-01 -5.70474684e-01
8.45975429e-02 6.77403152e-01 4.80145723e-01 -1.72088534e-01
-3.12740177e-01 4.63835210e-01 -1.30434370e+00 -1.56321138e-01
6.27768338e-01 5.43045759e-01 -1.27814680e-01 5.40850043e-01
6.05237186e-01 -1.33889779e-01 -6.72648489e-01 -4.10485893e-01
4.70428944e-01 -2.65762866e-01 -1.29072696e-01 2.05412999e-01
7.24972963e-01 -5.60558558e-01 -4.54956442e-01 9.63414252e-01
7.57942021e-01 2.74638534e-01 2.64733672e-01 -1.35966349e+00
-1.58083454e-01 -8.14911798e-02 -9.96310472e-01 -2.42698342e-01
8.01663458e-01 1.56515047e-01 5.75173497e-01 -1.19714880e+00
5.70116639e-01 1.59959543e+00 9.71457481e-01 6.03581905e-01
-1.02197516e+00 -7.78952301e-01 3.77526075e-01 -5.33971936e-02
-1.75274503e+00 -2.37633914e-01 6.97543681e-01 -4.44433063e-01
6.22142673e-01 1.63603500e-01 1.12909627e+00 1.23023140e+00
1.19506523e-01 7.49684811e-01 7.86100149e-01 -3.16080689e-01
-1.97840303e-01 -1.14924759e-01 -2.91676540e-02 8.16943467e-01
7.86572993e-01 7.92050809e-02 -5.96936703e-01 -8.63354504e-02
1.17757654e+00 3.91395748e-01 -1.90788552e-01 -7.61531770e-01
-1.44921517e+00 6.81743383e-01 5.87660730e-01 4.11670841e-02
-4.11941439e-01 8.88270065e-02 2.40494788e-01 -2.64522314e-01
3.34685355e-01 -2.47460324e-02 -2.74814188e-01 4.60956916e-02
-8.60911191e-01 6.97519243e-01 4.99083400e-01 1.05860138e+00
5.73720038e-01 -3.03120911e-01 -1.02474332e-01 7.39432871e-01
4.34731275e-01 5.06074429e-01 1.09373927e-01 -6.75490975e-01
6.77399933e-01 7.19830811e-01 3.01053405e-01 -1.29997063e+00
-8.04299295e-01 -4.87888783e-01 -9.70138848e-01 1.33604005e-01
8.18362057e-01 -2.97649086e-01 -9.91044581e-01 1.86545098e+00
8.44478846e-01 -1.96599811e-01 -3.88855070e-01 1.37507093e+00
5.49367785e-01 3.18796694e-01 -9.88590866e-02 9.80574116e-02
1.60166597e+00 -1.23340309e+00 -5.57788193e-01 -5.64377308e-01
2.36247361e-01 -5.81809044e-01 9.02127802e-01 3.37328136e-01
-1.05130327e+00 -7.97398746e-01 -9.80819166e-01 1.63808390e-02
-1.68407530e-01 4.54574883e-01 3.36496890e-01 5.93345940e-01
-6.00877464e-01 3.83935213e-01 -9.87169623e-01 -6.29031599e-01
-1.05700484e-02 4.07720029e-01 -5.77922463e-01 -6.26815781e-02
-1.19933474e+00 9.28041577e-01 2.80588776e-01 6.23603344e-01
-5.64690173e-01 -1.97814867e-01 -8.94603074e-01 -2.49984935e-01
8.06421101e-01 -1.08141220e+00 8.57441783e-01 -4.79116261e-01
-1.25805342e+00 6.04763746e-01 -1.60011038e-01 1.22391544e-02
1.13274837e+00 -8.62450242e-01 -3.57147567e-02 8.56624618e-02
1.80729508e-01 6.59791410e-01 7.20319569e-01 -1.21533573e+00
-4.79065597e-01 -7.43301630e-01 4.75833900e-02 5.77697396e-01
-3.00320029e-01 -1.09844282e-01 -1.23616743e+00 -7.07456708e-01
5.16161859e-01 -1.30751789e+00 -3.28298926e-01 3.62285465e-01
-7.51702309e-01 -4.85613868e-02 5.77088356e-01 -8.99956822e-01
9.80016589e-01 -1.93838954e+00 3.63999724e-01 2.49612376e-01
1.75244391e-01 3.40055265e-02 4.65468206e-02 2.59824395e-01
1.42174676e-01 -1.43108189e-01 1.07499599e-01 -6.37103021e-01
-1.58368852e-02 -7.18965456e-02 5.09652615e-01 7.24043787e-01
-8.00490975e-02 6.42753661e-01 -6.17744267e-01 -6.73137367e-01
3.86453062e-01 7.89921939e-01 -5.29152751e-01 5.36603294e-02
2.44499639e-01 6.03725672e-01 -5.01251459e-01 7.40569592e-01
5.98423421e-01 -1.50047183e-01 4.14294042e-02 -4.67697382e-01
4.66041677e-02 -2.11653516e-01 -1.81477475e+00 1.75131059e+00
-1.59417927e-01 1.91032141e-02 9.93366539e-02 -3.72092783e-01
5.52848637e-01 4.05099154e-01 5.09423435e-01 -1.91193610e-01
1.15990050e-01 1.25674531e-01 -1.05461337e-01 -7.39564374e-02
3.85180473e-01 4.72683460e-02 -2.21685231e-01 1.63901657e-01
-2.35484838e-01 3.21480662e-01 3.28690737e-01 -1.86546650e-02
5.64181864e-01 6.03962004e-01 4.72199380e-01 2.92513996e-01
4.35828656e-01 -2.49136895e-01 9.94990110e-01 5.91497600e-01
-4.65997607e-01 9.14959610e-01 1.26432404e-01 -5.81575751e-01
-1.08211708e+00 -1.12834942e+00 1.07100852e-01 7.79963613e-01
3.83983672e-01 -5.30967772e-01 -9.31160867e-01 -5.39497018e-01
1.54824555e-01 -7.42691457e-02 -4.86690372e-01 2.13489798e-03
-9.12828803e-01 -6.94159985e-01 5.29734254e-01 7.17438877e-01
6.44850373e-01 -6.04334474e-01 -7.34907568e-01 1.95334941e-01
-5.00165284e-01 -1.28938901e+00 -7.57030845e-01 -5.67793310e-01
-7.40308762e-01 -1.20932651e+00 -1.24670053e+00 -5.53075433e-01
9.18844104e-01 2.65744716e-01 6.60664201e-01 1.40725493e-01
-1.72581360e-01 3.00432652e-01 -1.11852556e-01 -1.78482249e-01
1.34399176e-01 -3.71467392e-03 6.83080316e-01 -3.61360237e-02
3.02980900e-01 -4.15493190e-01 -9.29155946e-01 7.19730496e-01
-2.32081309e-01 2.90076524e-01 5.56129813e-01 7.26198673e-01
5.71915388e-01 -7.14933919e-03 1.62741631e-01 -3.02580535e-01
3.05863857e-01 1.79819778e-01 -4.50966001e-01 2.04471022e-01
-1.09526932e-01 -5.77382445e-01 3.56875658e-01 -5.42885482e-01
-8.32562447e-01 4.96209383e-01 -6.09030128e-02 -4.90548491e-01
-2.28313908e-01 9.61357281e-02 -3.67976069e-01 -4.26002331e-02
6.92108095e-01 -1.49255693e-02 1.27459061e-03 -4.05154556e-01
1.69855937e-01 3.45289111e-01 4.96891320e-01 -5.39480090e-01
1.09561336e+00 5.06796122e-01 -5.90525679e-02 -6.00978315e-01
-8.47566009e-01 -5.67607522e-01 -1.02816021e+00 -5.71219206e-01
1.03712285e+00 -1.23970759e+00 -8.39261115e-01 7.73151696e-01
-1.25116825e+00 1.55516043e-01 8.83545056e-02 7.91983068e-01
-3.69719446e-01 5.45634568e-01 -7.03459322e-01 -9.57491636e-01
-4.08992618e-01 -1.13734400e+00 1.33454514e+00 2.92593390e-01
-4.23712611e-01 -5.60278356e-01 -8.97733122e-02 5.02132654e-01
-1.59306049e-01 6.73257768e-01 2.21208408e-01 -3.13944072e-01
-4.74538088e-01 -6.66266561e-01 -3.83082293e-02 7.01760799e-02
7.38140419e-02 -2.10010782e-01 -5.90470910e-01 -7.39185989e-01
-3.73832822e-01 -1.28184289e-01 4.51819986e-01 4.59218174e-01
5.97284675e-01 -1.08890049e-01 -5.02885282e-01 5.24902642e-01
1.07402706e+00 -2.66084343e-01 3.17387640e-01 5.17258227e-01
1.06552899e+00 7.46356189e-01 7.05234587e-01 4.61336315e-01
5.44386744e-01 1.10280716e+00 1.13309026e-01 -2.15244502e-01
-1.48965195e-01 -4.23086941e-01 2.69754022e-01 5.54020047e-01
-5.58483362e-01 -3.38989645e-02 -8.99596035e-01 3.42628986e-01
-1.98434925e+00 -7.40287960e-01 -6.75666034e-02 2.42273951e+00
5.81851840e-01 3.27476770e-01 6.16423190e-01 -1.02279402e-01
1.11008453e+00 1.97714269e-02 -7.16452956e-01 5.41307151e-01
1.13367654e-01 -4.11523938e-01 3.54362667e-01 3.13067764e-01
-1.17947495e+00 7.54115999e-01 5.20073986e+00 4.46965784e-01
-5.97114861e-01 4.94843237e-02 1.72637314e-01 -4.30146724e-01
4.11074877e-01 -1.63356990e-01 -1.18307328e+00 3.71081352e-01
1.97626233e-01 2.95907855e-01 1.01101600e-01 8.55342805e-01
3.61181110e-01 -2.19384447e-01 -1.03597450e+00 1.18346643e+00
1.26063526e-01 -6.12587214e-01 -7.85511062e-02 5.48592694e-02
5.66297412e-01 -4.11500096e-01 -3.31523478e-01 2.45218694e-01
-6.74435347e-02 -6.75421238e-01 9.08012211e-01 5.04626453e-01
5.30696750e-01 -7.97102273e-01 7.57507324e-01 6.14207208e-01
-1.53854823e+00 6.46000654e-02 -2.51072347e-01 -4.81847562e-02
5.64157009e-01 6.11426353e-01 -3.21976870e-01 5.60076892e-01
9.40584123e-01 4.32933360e-01 -5.03449440e-01 1.04917252e+00
-4.38704014e-01 -1.70977980e-01 -6.13265991e-01 7.64203072e-02
-2.66421705e-01 -1.37036160e-01 7.16035843e-01 1.05857038e+00
4.70972836e-01 -1.25059187e-02 7.57622123e-01 7.04741657e-01
1.66460544e-01 3.97643959e-03 -2.56291687e-01 4.89407778e-01
4.13371682e-01 1.24329019e+00 -7.29332685e-01 -2.25181758e-01
-3.78318220e-01 1.18833864e+00 2.39857063e-01 4.09371316e-01
-9.47319150e-01 -2.21743166e-01 6.42255962e-01 3.30186516e-01
-8.63080565e-03 -4.98743743e-01 -9.92933586e-02 -1.45409262e+00
5.30736804e-01 -1.02137434e+00 3.90608847e-01 -5.77163994e-01
-1.16111386e+00 3.42511207e-01 2.54133075e-01 -1.35930777e+00
-2.64170021e-01 -5.09448647e-01 -2.20793471e-01 8.87761772e-01
-8.69073093e-01 -1.25743747e+00 -5.85183144e-01 6.59438074e-01
4.32683438e-01 2.63754666e-01 5.23468316e-01 4.65870708e-01
-8.84921372e-01 7.80438960e-01 -6.00304008e-01 4.69318449e-01
9.80332553e-01 -9.87353384e-01 5.62634706e-01 1.03171301e+00
-1.21352479e-01 1.06669676e+00 6.55207276e-01 -9.82009888e-01
-1.29016888e+00 -8.61024499e-01 7.36073852e-01 -5.79237580e-01
1.52051970e-01 -7.64284551e-01 -5.74775219e-01 7.01669216e-01
-5.09373128e-01 6.99314252e-02 3.71270269e-01 3.12022895e-01
-1.85457215e-01 1.02923848e-02 -1.07736552e+00 9.03108180e-01
1.33856666e+00 -1.91890150e-01 -4.65047002e-01 4.27407622e-01
4.63414937e-01 -9.12033379e-01 -7.75273681e-01 3.80148798e-01
9.99914169e-01 -9.09409702e-01 1.29514635e+00 -1.44011334e-01
2.93161366e-02 -6.72438085e-01 1.50966868e-01 -1.04723418e+00
-4.09313232e-01 -4.56655592e-01 -2.60417014e-01 8.62838984e-01
1.35697678e-01 -5.14353633e-01 1.11779571e+00 6.09302938e-01
2.38425121e-01 -7.42662132e-01 -1.04955578e+00 -7.95107484e-01
-2.65691578e-01 -2.02395245e-01 3.59320700e-01 5.18393338e-01
-2.50835449e-01 1.92959547e-01 -8.78167927e-01 5.17500341e-01
9.35376644e-01 -7.53596872e-02 1.32994163e+00 -1.21147788e+00
-4.23993617e-01 -1.33596202e-02 -5.29244661e-01 -1.22678792e+00
-4.21981126e-01 -1.89635113e-01 2.52095550e-01 -1.60850310e+00
4.35247004e-01 -1.09051563e-01 3.66665376e-03 5.27239203e-01
-4.58195716e-01 5.22357106e-01 5.23631930e-01 3.76822293e-01
-4.64682281e-01 4.71580923e-01 1.46486390e+00 1.97466433e-01
-2.49232605e-01 1.44987717e-01 -3.88537019e-01 1.07779312e+00
6.39556289e-01 -4.00413096e-01 -1.08780608e-01 -3.07214230e-01
1.50657475e-01 -4.65611108e-02 8.83568525e-01 -1.38304901e+00
3.72016221e-01 -4.97110784e-02 9.72799718e-01 -8.40822935e-01
7.62072027e-01 -6.74863100e-01 3.17521095e-01 6.52275920e-01
2.50600100e-01 2.17979088e-01 -4.45302650e-02 5.40542841e-01
-9.44207888e-03 1.19568832e-01 7.18547702e-01 -4.28174943e-01
-4.76982415e-01 6.02812946e-01 1.84917957e-01 -1.59729436e-01
1.00931859e+00 -6.57849491e-01 3.17556448e-02 -4.78591383e-01
-9.14201319e-01 3.17708939e-01 6.16943538e-01 5.33814788e-01
6.50878370e-01 -1.47587097e+00 -6.62829876e-01 9.91184916e-03
4.63323072e-02 3.18678856e-01 4.06905651e-01 1.06371582e+00
-4.08859640e-01 2.53316104e-01 -1.15735672e-01 -7.20292747e-01
-1.48115969e+00 3.09239030e-01 4.82683837e-01 -3.05717379e-01
-7.43684709e-01 6.78659976e-01 3.40264112e-01 -6.98217928e-01
2.89452583e-01 7.71919116e-02 4.82039712e-02 -5.53131700e-02
4.43104863e-01 5.45725226e-01 -2.83524424e-01 -8.78562212e-01
-6.03853285e-01 1.21699679e+00 -2.64039431e-02 -2.31942505e-01
1.07308507e+00 -1.95902601e-01 1.61424667e-01 2.15897337e-01
9.28914309e-01 1.17547512e-01 -1.54115665e+00 -1.96519166e-01
-4.79452312e-01 -5.85886359e-01 -4.61505949e-01 -5.96939504e-01
-9.61154521e-01 6.79445744e-01 6.35258377e-01 -4.18767929e-01
8.54232013e-01 -2.10055009e-01 8.18715811e-01 2.95745760e-01
6.06686413e-01 -1.37101471e+00 1.86886087e-01 3.62771273e-01
9.25191045e-01 -1.15279114e+00 4.92787033e-01 -7.59228885e-01
-2.83327699e-01 1.01878083e+00 1.07549465e+00 -1.04986385e-01
2.28250727e-01 -5.51939644e-02 5.76745421e-02 -9.26842839e-02
-5.40563278e-02 -1.38177603e-01 5.58348894e-01 4.98787314e-01
3.48362803e-01 5.01502268e-02 -2.18797594e-01 4.45731699e-01
-2.04925984e-01 -1.13753624e-01 1.60784557e-01 1.01988542e+00
-2.43756562e-01 -9.06235218e-01 -9.73047376e-01 3.75878327e-02
-2.20598251e-01 3.61265063e-01 -3.51927787e-01 1.18224490e+00
3.83107156e-01 8.23172927e-01 -3.18311721e-01 -4.11545366e-01
9.66744184e-01 -9.44190621e-02 5.31950414e-01 -5.26863813e-01
-4.16839987e-01 3.63362700e-01 6.23257048e-02 -7.18958795e-01
-3.39289606e-01 -9.02309358e-01 -1.19913125e+00 -2.98213005e-01
-5.05393922e-01 -2.69640446e-01 4.64498311e-01 7.23402619e-01
1.96732819e-01 3.36090326e-01 1.88648671e-01 -1.36161256e+00
-5.14507234e-01 -9.57781613e-01 -3.07828218e-01 5.30238450e-01
1.45680442e-01 -9.43994880e-01 -1.95544034e-01 -2.76592702e-01] | [7.08331823348999, -0.8555943965911865] |
eed054a9-7c45-494c-bc4f-0a92a6891428 | rotate-and-render-unsupervised-photorealistic | 2003.08124 | null | https://arxiv.org/abs/2003.08124v1 | https://arxiv.org/pdf/2003.08124v1.pdf | Rotate-and-Render: Unsupervised Photorealistic Face Rotation from Single-View Images | Though face rotation has achieved rapid progress in recent years, the lack of high-quality paired training data remains a great hurdle for existing methods. The current generative models heavily rely on datasets with multi-view images of the same person. Thus, their generated results are restricted by the scale and domain of the data source. To overcome these challenges, we propose a novel unsupervised framework that can synthesize photo-realistic rotated faces using only single-view image collections in the wild. Our key insight is that rotating faces in the 3D space back and forth, and re-rendering them to the 2D plane can serve as a strong self-supervision. We leverage the recent advances in 3D face modeling and high-resolution GAN to constitute our building blocks. Since the 3D rotation-and-render on faces can be applied to arbitrary angles without losing details, our approach is extremely suitable for in-the-wild scenarios (i.e. no paired data are available), where existing methods fall short. Extensive experiments demonstrate that our approach has superior synthesis quality as well as identity preservation over the state-of-the-art methods, across a wide range of poses and domains. Furthermore, we validate that our rotate-and-render framework naturally can act as an effective data augmentation engine for boosting modern face recognition systems even on strong baseline models. | ['Yu Liu', 'Jihao Liu', 'Hang Zhou', 'Ziwei Liu', 'Xiaogang Wang'] | 2020-03-18 | rotate-and-render-unsupervised-photorealistic-1 | http://openaccess.thecvf.com/content_CVPR_2020/html/Zhou_Rotate-and-Render_Unsupervised_Photorealistic_Face_Rotation_From_Single-View_Images_CVPR_2020_paper.html | http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhou_Rotate-and-Render_Unsupervised_Photorealistic_Face_Rotation_From_Single-View_Images_CVPR_2020_paper.pdf | cvpr-2020-6 | ['3d-face-modeling'] | ['computer-vision'] | [ 1.03840545e-01 -1.98891923e-01 -2.03701228e-01 -5.10373831e-01
-6.35572910e-01 -6.28977895e-01 9.28957462e-01 -1.02052724e+00
9.14067030e-02 5.28875232e-01 2.27278367e-01 4.68387157e-02
3.20805728e-01 -7.44804561e-01 -7.34988391e-01 -7.24240303e-01
4.53724295e-01 6.09999180e-01 -3.64723414e-01 -4.16384935e-01
-3.45142126e-01 7.60582566e-01 -1.71737957e+00 6.23147637e-02
5.87588191e-01 7.16511846e-01 -1.56349510e-01 2.87350982e-01
2.31899664e-01 2.84324944e-01 -4.85713661e-01 -7.47274041e-01
6.88677549e-01 -4.53628749e-01 -3.53382587e-01 3.69493574e-01
9.05151963e-01 -7.61263430e-01 -5.40653825e-01 8.68068218e-01
7.28702605e-01 -9.25334692e-02 3.70990247e-01 -1.29590976e+00
-8.00251245e-01 -3.80041189e-02 -8.53526771e-01 -3.06759238e-01
6.04424477e-01 4.06096466e-02 6.26748383e-01 -1.24371934e+00
8.70278001e-01 1.45543218e+00 6.33135557e-01 1.01449347e+00
-1.30908203e+00 -1.02411628e+00 2.73045719e-01 -1.13010675e-01
-1.31894183e+00 -8.88475597e-01 9.74284589e-01 -2.66024262e-01
5.47266781e-01 1.12809308e-01 6.49442673e-01 1.65143526e+00
-3.02315861e-01 5.28616905e-01 1.19868731e+00 -2.84755975e-01
1.37822460e-02 -1.15540244e-01 -6.05955899e-01 6.38816714e-01
1.60567090e-01 2.66217589e-01 -7.49381065e-01 -1.08852796e-02
1.19458544e+00 3.41484934e-01 -3.79159570e-01 -6.61860526e-01
-1.01755130e+00 7.09968388e-01 4.05341327e-01 -1.27315894e-01
-1.69181228e-01 -9.82676595e-02 -2.67240964e-02 2.27981091e-01
6.58295214e-01 1.64332286e-01 -3.02390128e-01 1.94666371e-01
-1.02092969e+00 5.62775552e-01 4.63580996e-01 9.48773921e-01
6.64534211e-01 2.84563065e-01 1.02818646e-01 9.05979276e-01
3.22587252e-01 7.89662361e-01 1.95037901e-01 -8.11039209e-01
4.73543048e-01 3.09924603e-01 -6.95420653e-02 -9.12138343e-01
-6.08460680e-02 -4.66811687e-01 -9.35649455e-01 3.73828620e-01
4.33833092e-01 3.35230604e-02 -1.05655754e+00 2.11013031e+00
6.84484720e-01 3.95813227e-01 -1.13085590e-01 8.62904429e-01
7.65913069e-01 3.56269568e-01 -3.63686144e-01 -2.07235754e-01
1.33324826e+00 -8.28875899e-01 -6.62417412e-01 -3.58472168e-01
2.45634075e-02 -8.81021857e-01 9.18562233e-01 3.78656119e-01
-1.10471678e+00 -6.69137537e-01 -9.86992419e-01 -1.08486950e-01
-6.66301772e-02 2.87654009e-02 7.11413145e-01 8.08841288e-01
-1.07236719e+00 3.77227038e-01 -8.67452204e-01 -3.02746475e-01
7.04450905e-01 2.41274506e-01 -9.20728981e-01 -5.94229400e-01
-7.45056272e-01 6.93397760e-01 -3.94091278e-01 2.29146451e-01
-1.03124487e+00 -7.84459889e-01 -8.68670225e-01 -3.54348063e-01
3.58689547e-01 -9.21437502e-01 1.04064858e+00 -7.81658232e-01
-1.63609934e+00 1.11273837e+00 -3.33459735e-01 9.28850845e-02
8.43065083e-01 -4.78260159e-01 -4.38527465e-01 8.84104967e-02
7.19888657e-02 7.10996270e-01 1.24843431e+00 -1.58320212e+00
-1.11398630e-01 -8.85377824e-01 4.72306944e-02 2.98688203e-01
-4.28235859e-01 2.51297397e-03 -8.10131311e-01 -8.13191533e-01
2.28037298e-01 -1.06779337e+00 4.99944165e-02 1.44144624e-01
-2.32347071e-01 1.52085885e-01 1.00656438e+00 -6.58831716e-01
5.66201270e-01 -1.98295391e+00 2.81791776e-01 -1.06627122e-02
1.95041478e-01 3.63258213e-01 -2.35157728e-01 2.59535223e-01
-3.56277287e-01 -4.78138402e-02 -4.24924344e-02 -8.52336287e-01
-1.20407216e-01 2.03819960e-01 -5.80796063e-01 5.58345318e-01
4.14034635e-01 8.30190122e-01 -6.92236722e-01 -1.66400418e-01
1.59582362e-01 1.07483399e+00 -7.78916359e-01 5.68003058e-01
6.35979921e-02 8.78112793e-01 -2.63982058e-01 7.01718867e-01
1.05319285e+00 -1.96448296e-01 2.60892987e-01 -3.02605450e-01
2.37690300e-01 2.30441660e-01 -1.12794888e+00 1.96578312e+00
-5.56628585e-01 2.40121171e-01 1.58396259e-01 -7.49006867e-01
9.09394562e-01 3.80229950e-01 3.65507573e-01 -6.77748084e-01
-1.95931476e-02 6.07917607e-02 -2.55438596e-01 -1.97248623e-01
1.70170501e-01 -3.47258657e-01 3.70337039e-01 4.41717774e-01
1.24138132e-01 -2.70248085e-01 -4.67237011e-02 2.63468362e-03
6.96489692e-01 6.73254251e-01 4.31655310e-02 1.10626034e-01
3.25736374e-01 -6.49364948e-01 8.26183558e-01 2.61711985e-01
9.21122879e-02 1.16033840e+00 2.23380357e-01 -4.01044279e-01
-1.17245853e+00 -1.17905152e+00 -1.84788182e-01 9.27245319e-01
-1.21302374e-01 -3.80931228e-01 -9.01691854e-01 -7.15883017e-01
-5.39459288e-02 1.17489345e-01 -6.86447561e-01 4.69461009e-02
-7.04255700e-01 -7.25193262e-01 4.28783923e-01 6.09218478e-01
6.11432254e-01 -6.56365216e-01 -1.84032172e-01 -2.55350500e-01
-1.24169730e-01 -1.43880105e+00 -3.88827324e-01 -4.23935205e-01
-7.34634817e-01 -1.01562393e+00 -8.62936258e-01 -7.02119052e-01
9.26494539e-01 5.79387903e-01 1.23481035e+00 3.92482840e-02
-1.78537458e-01 2.77245879e-01 -1.81641266e-01 -1.64928287e-01
-2.43618906e-01 -2.72007346e-01 4.06182438e-01 2.13489771e-01
9.50687304e-02 -1.03726649e+00 -7.21050739e-01 5.56347489e-01
-6.68103993e-01 2.45729476e-01 4.27565783e-01 9.54247057e-01
4.84726787e-01 -3.04841161e-01 6.40633941e-01 -9.48042095e-01
5.20652346e-02 -1.83436826e-01 -5.21822035e-01 1.62357941e-01
-3.67312104e-01 -1.41623765e-01 6.67844772e-01 -3.33797157e-01
-1.19619238e+00 1.35213897e-01 -2.69733399e-01 -7.50466287e-01
-1.05226859e-01 -1.63409546e-01 -7.45895743e-01 -9.17809382e-02
5.41625857e-01 7.57869929e-02 1.95402235e-01 -6.49590790e-01
4.99960244e-01 4.27911580e-01 6.85935378e-01 -6.88251615e-01
1.35538578e+00 9.20566201e-01 1.31071121e-01 -7.75430799e-01
-8.07003319e-01 -8.82143825e-02 -7.21179605e-01 -1.02202803e-01
5.44283688e-01 -1.44556201e+00 -6.71638191e-01 7.25710273e-01
-9.80991721e-01 -5.35830855e-02 -4.77346741e-02 2.53898889e-01
-4.13988322e-01 3.61671716e-01 -3.68979961e-01 -7.56053984e-01
-2.44208917e-01 -1.34107864e+00 1.37904525e+00 2.10588202e-01
7.42139891e-02 -6.71391785e-01 -5.06087877e-02 7.09177911e-01
2.13190332e-01 3.16146523e-01 4.92043257e-01 -1.77496821e-01
-5.67961931e-01 -7.75387138e-02 -6.44111484e-02 4.10864323e-01
3.61165941e-01 2.94802170e-02 -1.35424995e+00 -5.90008199e-01
6.47258610e-02 -6.29750490e-01 5.76951563e-01 -2.87422561e-03
1.15255904e+00 -1.49711519e-01 -2.14438215e-01 1.09569395e+00
9.86177802e-01 -2.64344454e-01 6.91933632e-01 -1.69851929e-01
1.04935622e+00 6.03760302e-01 3.42203200e-01 2.98726022e-01
4.71127331e-01 1.16184652e+00 3.87510926e-01 -1.31403625e-01
-4.33859378e-01 -6.44947350e-01 4.51535940e-01 6.77010357e-01
-3.32824469e-01 7.17985211e-03 -6.77077651e-01 2.79780537e-01
-1.41971207e+00 -1.03437805e+00 3.40744793e-01 2.42060614e+00
8.26331437e-01 -2.15763405e-01 2.14336097e-01 1.63558215e-01
6.42949581e-01 3.42432767e-01 -5.48142552e-01 2.13747784e-01
-1.85340554e-01 4.85828817e-01 -1.86170544e-02 2.83333331e-01
-9.45764065e-01 8.55590641e-01 6.16985083e+00 5.68734229e-01
-1.29030168e+00 5.10028899e-02 6.53304875e-01 -1.81305647e-01
-3.64739448e-01 -9.45737809e-02 -9.97630119e-01 3.05464000e-01
4.18783814e-01 3.30966443e-01 7.14461148e-01 8.83659005e-01
-8.64799395e-02 3.91321391e-01 -1.35828757e+00 1.36674881e+00
5.30534565e-01 -1.08635151e+00 1.81808099e-01 3.33953381e-01
9.45333540e-01 -2.12880939e-01 5.22752523e-01 1.58151910e-01
3.10940117e-01 -1.30924714e+00 6.19594872e-01 1.84295118e-01
1.25308752e+00 -7.27365613e-01 2.91616559e-01 2.16467261e-01
-1.11907637e+00 2.53343076e-01 -2.67720193e-01 1.12943277e-01
1.37796104e-01 5.62653303e-01 -7.56574690e-01 8.29680502e-01
6.75513446e-01 8.22466195e-01 -4.97103184e-01 3.15087914e-01
-4.66019005e-01 2.80579984e-01 -4.48319495e-01 6.50106490e-01
-3.37473750e-01 -3.60801220e-01 2.99785048e-01 6.77404761e-01
5.07506967e-01 6.21224232e-02 7.91042671e-02 7.32300043e-01
-4.94478911e-01 -1.25276253e-01 -8.12273860e-01 1.92558691e-01
5.82893193e-01 1.35867345e+00 -4.30075079e-01 6.79882057e-03
-6.22471571e-01 1.02107847e+00 4.94137973e-01 3.99586141e-01
-7.70108163e-01 2.68093079e-01 1.00771892e+00 2.78579354e-01
4.22183394e-01 -1.86702117e-01 -1.20833576e-01 -1.53884244e+00
3.76191258e-01 -1.36471367e+00 7.90362507e-02 -6.50819302e-01
-1.38293350e+00 6.64869785e-01 -1.25255063e-01 -1.27254522e+00
-4.87335324e-01 -7.27632701e-01 -4.61465210e-01 7.97686577e-01
-1.50904489e+00 -1.69248009e+00 -5.17230570e-01 8.54900062e-01
3.10060620e-01 -3.98090839e-01 9.25929129e-01 4.36465472e-01
-6.03164196e-01 9.68481064e-01 -6.59586638e-02 2.44876876e-01
1.00432718e+00 -8.31786215e-01 6.52994514e-01 9.69560027e-01
5.95773816e-01 9.25621569e-01 5.23698866e-01 -4.26550150e-01
-1.87673461e+00 -8.98965716e-01 3.41370523e-01 -7.31684983e-01
1.47259429e-01 -8.19008350e-01 -7.93017983e-01 7.96137631e-01
-5.30578084e-02 4.46779877e-01 7.04540610e-01 3.35449785e-01
-9.49878514e-01 -3.74645621e-01 -1.12712216e+00 7.05503106e-01
1.51222420e+00 -6.61193371e-01 -3.50255638e-01 2.56826520e-01
3.58960599e-01 -7.26508915e-01 -7.12915719e-01 4.99063969e-01
7.92685091e-01 -1.22105670e+00 1.31899989e+00 -5.77959836e-01
5.47967374e-01 -3.00462395e-01 -1.99571460e-01 -1.34229684e+00
2.29398329e-02 -8.67196500e-01 -2.30125144e-01 1.55053484e+00
-9.46640894e-02 -5.97771704e-01 9.46853220e-01 4.29984361e-01
1.51931852e-01 -6.23232067e-01 -9.44209456e-01 -6.32640541e-01
6.80238158e-02 -2.44659290e-01 9.83112633e-01 9.97325361e-01
-5.10479212e-01 3.95484209e-01 -7.23281562e-01 2.16387525e-01
7.18676686e-01 2.17638910e-01 1.41386163e+00 -1.18030655e+00
-4.05992895e-01 -6.38553128e-02 -4.08665508e-01 -1.24397230e+00
4.25969183e-01 -7.31027961e-01 -2.42138520e-01 -1.03655398e+00
2.08537996e-01 -4.90230441e-01 1.30864725e-01 4.99924093e-01
-2.59438694e-01 6.43743634e-01 3.06963503e-01 1.66878894e-01
1.22103281e-02 8.40860426e-01 1.42923236e+00 2.59755194e-01
1.83132410e-01 -7.81186670e-02 -8.29535067e-01 8.29736471e-01
3.18631113e-01 -1.62406161e-01 -6.19522572e-01 -5.69142044e-01
3.18059810e-02 -1.10387713e-01 4.81541604e-01 -8.07876408e-01
-1.16220638e-01 -1.20388694e-01 8.01287830e-01 -3.65886092e-01
8.25470388e-01 -8.25082004e-01 4.22327399e-01 -1.76641648e-03
1.26819789e-01 1.88024893e-01 -5.02904840e-02 4.85940337e-01
-7.30694979e-02 3.22007388e-01 8.93307984e-01 1.02068065e-02
-2.27951273e-01 7.43537128e-01 5.56860149e-01 2.31322065e-01
8.15605223e-01 -1.04914986e-01 -2.67617762e-01 -5.51763713e-01
-2.87268937e-01 -1.17472969e-01 9.81521010e-01 6.60400033e-01
5.12640059e-01 -1.64859784e+00 -8.32677841e-01 7.42405355e-01
5.17284647e-02 3.77959430e-01 3.10940295e-01 3.77304822e-01
-2.69996941e-01 1.90481953e-02 -3.97074163e-01 -7.14991331e-01
-1.30635870e+00 5.27952552e-01 1.98015586e-01 -1.82947770e-01
-6.92143381e-01 8.27187598e-01 5.58599293e-01 -5.74019790e-01
-2.27282271e-02 3.13825667e-01 6.04087561e-02 -3.75147127e-02
7.53672361e-01 -2.06223484e-02 2.27697909e-01 -1.00240958e+00
-4.21049505e-01 9.10109580e-01 -1.82626426e-01 -3.03043485e-01
1.59304786e+00 1.27067760e-01 3.24863121e-02 8.27949271e-02
1.14589632e+00 2.67359316e-01 -1.59632015e+00 -2.81441808e-01
-7.62592852e-01 -1.02363110e+00 -1.79405749e-01 -5.12284458e-01
-1.48583066e+00 1.02884829e+00 4.13506240e-01 -3.74236792e-01
1.14592767e+00 -1.79611668e-01 5.72873533e-01 9.04326662e-02
5.03994524e-01 -7.83220589e-01 2.42629915e-01 1.99508160e-01
1.05021012e+00 -1.33893132e+00 3.31020683e-01 -8.05529475e-01
-5.37831187e-01 8.92963171e-01 7.54815936e-01 -6.59355968e-02
4.33779418e-01 1.95684522e-01 1.16158545e-01 2.03339178e-02
-5.41755676e-01 6.05125763e-02 2.84581095e-01 9.34767127e-01
5.62492669e-01 -1.32547662e-01 2.85154909e-01 3.28833252e-01
-5.08105755e-01 -1.09366015e-01 2.34872296e-01 6.56100571e-01
3.07516813e-01 -1.46158934e+00 -5.80292344e-01 -3.94248916e-03
-3.88499528e-01 1.81190968e-01 -2.12899789e-01 8.19396853e-01
1.40656892e-03 8.49702239e-01 7.06070010e-03 -3.47509086e-01
3.29303235e-01 8.12520087e-02 9.98190343e-01 -6.04841828e-01
-1.45078868e-01 1.30708054e-01 -1.50958478e-01 -5.34630179e-01
-4.58513737e-01 -7.17011690e-01 -7.50718594e-01 -5.86567998e-01
-5.66517673e-02 -2.76063293e-01 5.18024385e-01 8.27160478e-01
5.62695444e-01 1.92262828e-01 1.02064157e+00 -1.23308396e+00
-6.83413565e-01 -8.28147888e-01 -3.49136800e-01 7.75023997e-01
3.84123951e-01 -1.05190039e+00 -1.93594113e-01 1.78203717e-01] | [12.954380989074707, 0.051384154707193375] |
3b615e6d-e1fa-4242-811f-f2d0fd4e01dd | goalienet-a-multi-stage-network-for-joint | 2306.15853 | null | https://arxiv.org/abs/2306.15853v1 | https://arxiv.org/pdf/2306.15853v1.pdf | GoalieNet: A Multi-Stage Network for Joint Goalie, Equipment, and Net Pose Estimation in Ice Hockey | In the field of computer vision-driven ice hockey analytics, one of the most challenging and least studied tasks is goalie pose estimation. Unlike general human pose estimation, goalie pose estimation is much more complex as it involves not only the detection of keypoints corresponding to the joints of the goalie concealed under thick padding and mask, but also a large number of non-human keypoints corresponding to the large leg pads and gloves worn, the stick, as well as the hockey net. To tackle this challenge, we introduce GoalieNet, a multi-stage deep neural network for jointly estimating the pose of the goalie, their equipment, and the net. Experimental results using NHL benchmark data demonstrate that the proposed GoalieNet can achieve an average of 84\% accuracy across all keypoints, where 22 out of 29 keypoints are detected with more than 80\% accuracy. This indicates that such a joint pose estimation approach can be a promising research direction. | ['Alexander Wong', 'David Clausi', 'Marjan Shahi'] | 2023-06-28 | null | null | null | null | ['pose-estimation'] | ['computer-vision'] | [-2.71773994e-01 4.79764938e-02 2.04973876e-01 3.30391169e-01
-6.15798533e-01 -5.88711023e-01 2.70052105e-02 -1.09862737e-01
-5.06324410e-01 1.92012906e-01 -1.89443439e-01 4.77631062e-01
-2.20168501e-01 -3.21312994e-01 -1.00324297e+00 -3.38167995e-01
-1.93638399e-01 4.95261729e-01 3.03232461e-01 -3.28089833e-01
-3.99715500e-03 3.35401148e-01 -1.26455522e+00 -3.72800916e-01
1.05796844e-01 1.41567683e+00 -6.34776056e-02 5.49297988e-01
9.84987497e-01 5.57929397e-01 -9.43624496e-01 -6.10429704e-01
5.46065986e-01 2.19456866e-01 -1.23436609e-02 -1.34302363e-01
8.32795084e-01 -7.95206547e-01 -4.35618758e-01 8.25727403e-01
5.47193170e-01 1.14344865e-01 4.72123682e-01 -1.58404481e+00
1.75885051e-01 1.76029637e-01 -8.39167833e-01 -2.33911470e-01
4.82452750e-01 2.55022764e-01 7.13989794e-01 -8.41773689e-01
5.56782961e-01 8.01794767e-01 1.20967090e+00 -2.16599200e-02
-5.02767205e-01 -1.03513563e+00 -2.51251291e-02 2.90075064e-01
-1.69644499e+00 7.65560642e-02 9.47271645e-01 -4.30427700e-01
3.29280257e-01 6.40843511e-02 8.60769570e-01 1.17753911e+00
6.17603362e-01 9.68535662e-01 6.96388602e-01 -8.92201886e-02
-1.71838645e-02 4.38684002e-02 9.76804942e-02 8.90551686e-01
7.10967422e-01 -6.80138990e-02 -5.18996060e-01 -3.33764330e-02
7.66829371e-01 1.67133868e-01 -1.92583472e-01 -7.86987603e-01
-1.10278535e+00 3.48765880e-01 7.12373734e-01 -4.16322410e-01
-5.58492601e-01 4.77705777e-01 3.22220564e-01 -3.72780383e-01
8.10477659e-02 5.25886595e-01 -3.78873467e-01 -2.32006490e-01
-6.07693791e-01 6.74409807e-01 7.68828869e-01 1.36299932e+00
4.20321494e-01 -1.44568279e-01 4.75137606e-02 2.67271906e-01
1.67346954e-01 5.39563894e-01 -4.19744045e-01 -6.78731859e-01
9.48584080e-01 7.04782724e-01 7.38827229e-01 -1.27588391e+00
-7.88321674e-01 -3.98247451e-01 -6.41798615e-01 1.91581503e-01
6.40246212e-01 -5.82602143e-01 -8.75300825e-01 1.25543547e+00
5.45925379e-01 -5.23562282e-02 -5.56368887e-01 1.24876940e+00
7.86523104e-01 3.60739440e-01 -2.56421380e-02 4.21672165e-01
1.64672410e+00 -8.66942823e-01 -6.48636043e-01 -7.52299964e-01
1.24517955e-01 -6.76189244e-01 6.77758038e-01 5.74940503e-01
-8.70859683e-01 -6.33005202e-01 -1.50571775e+00 2.19333097e-02
-2.86641210e-01 8.89721155e-01 5.78736126e-01 1.82151675e-01
-3.47233087e-01 2.59447455e-01 -7.54336417e-01 -2.05489427e-01
1.81666106e-01 4.31439847e-01 -5.49673617e-01 -7.49671683e-02
-9.52139080e-01 8.81499469e-01 3.55430722e-01 7.82779932e-01
-9.66518700e-01 -4.50504690e-01 -1.08367491e+00 -2.12315912e-03
9.83688653e-01 -3.83147120e-01 1.03243697e+00 1.16037920e-01
-1.04601252e+00 6.89983845e-01 4.75728840e-01 -3.95612806e-01
9.15193498e-01 -1.24410284e+00 -7.08217360e-03 4.51350817e-03
9.12434161e-02 3.03145796e-01 1.01292861e+00 -1.03511071e+00
-6.31812036e-01 -7.01058030e-01 -9.09694284e-02 2.04967752e-01
-1.47842452e-01 -2.43390098e-01 -1.05128539e+00 -5.68794250e-01
1.02473453e-01 -1.37492800e+00 -7.47072231e-03 2.52592206e-01
-8.99102569e-01 -1.60737604e-01 9.00600255e-01 -1.09350097e+00
1.00059998e+00 -2.19453955e+00 2.36939006e-02 2.09181443e-01
4.76759195e-01 2.87074536e-01 2.74996102e-01 4.41989452e-01
2.91133285e-01 -5.78711450e-01 1.59618318e-01 -2.42012069e-01
2.16001451e-01 -4.67326194e-01 6.82666600e-02 7.59658813e-01
-9.69170555e-02 1.00001562e+00 -6.19004905e-01 -3.77254449e-02
2.96353310e-01 4.43099678e-01 -9.09084827e-03 3.52972031e-01
-4.18683179e-02 -1.70177221e-03 -3.93873602e-01 1.04305577e+00
7.83495426e-01 3.75034139e-02 3.44810262e-02 -4.67072606e-01
1.77743256e-01 -1.93699613e-01 -1.56205642e+00 1.56205273e+00
-3.75857912e-02 6.01941586e-01 3.25142592e-01 -4.16427642e-01
8.90799880e-01 7.76422918e-02 4.53517646e-01 -3.14155847e-01
4.44754422e-01 -2.49235202e-02 -4.14263219e-01 -4.28300142e-01
8.41514647e-01 2.36615911e-01 -8.10180664e-01 1.35129243e-01
-9.59352851e-02 -5.59624210e-02 -2.65800178e-01 -1.02882341e-01
1.16216147e+00 2.53549993e-01 4.05236125e-01 2.80926414e-02
-1.29430741e-01 2.97991872e-01 7.02808559e-01 6.42951131e-01
-3.98184061e-01 4.40196633e-01 2.29604289e-01 -6.05396509e-01
-9.28519607e-01 -1.06928098e+00 4.15204853e-01 8.56920600e-01
8.06916475e-01 -4.08638984e-01 -1.03073001e+00 -7.14511693e-01
4.14705127e-01 -8.39903429e-02 -6.75040483e-01 -3.93577337e-01
-8.35686922e-01 -1.19125456e-01 5.10674238e-01 1.07794476e+00
7.53820658e-01 -7.88235486e-01 -1.09834445e+00 1.81474686e-01
-2.84750164e-01 -1.59794283e+00 -5.68291783e-01 2.08537012e-01
-2.90229976e-01 -1.51839817e+00 -7.51761198e-01 -7.56512165e-01
4.21524882e-01 2.11405143e-01 9.39602673e-01 -2.11099803e-01
-8.24774504e-01 3.56198817e-01 -6.13804534e-02 -8.54344964e-01
4.63377088e-01 -8.57734457e-02 4.78762448e-01 -2.74474233e-01
4.91582572e-01 1.63301378e-01 -6.56772852e-01 7.61176884e-01
-7.88137913e-02 -2.55203515e-01 5.63809752e-01 4.40354377e-01
5.17925441e-01 5.22601604e-01 -2.55165458e-01 -1.96353555e-01
3.65734249e-01 -1.32455125e-01 -8.40254366e-01 1.85102507e-01
2.78398227e-02 -5.49960017e-01 4.29543883e-01 -6.45541251e-01
-5.54453433e-01 2.85711229e-01 2.00053334e-01 -6.35739326e-01
-2.01676890e-01 1.22480944e-01 -4.49899822e-01 -3.63656759e-01
4.68692929e-01 -1.69553295e-01 -8.15348849e-02 -5.07122338e-01
-6.48658797e-02 3.70283127e-01 8.79718244e-01 -4.20684963e-01
1.20667422e+00 5.67842782e-01 3.01353663e-01 -8.32931519e-01
-8.31863701e-01 -6.00973725e-01 -5.62316537e-01 -5.49506307e-01
9.08598483e-01 -1.14958072e+00 -1.44297469e+00 8.63762200e-01
-1.12811255e+00 -1.79784730e-01 6.83350638e-02 5.82285166e-01
-5.28096437e-01 1.39581919e-01 -5.29201984e-01 -8.67936790e-01
-5.52817106e-01 -1.03838897e+00 1.37810564e+00 3.86268467e-01
-3.79553884e-01 -3.13133121e-01 -2.13507235e-01 6.25610292e-01
-9.99964252e-02 7.09682763e-01 2.67404258e-01 -3.32150280e-01
-7.64732957e-01 -1.13225305e+00 -2.53295843e-02 4.11846749e-02
-1.90176219e-01 -3.97487789e-01 -4.93389964e-01 -5.98712564e-01
-2.10167393e-01 -3.86730790e-01 2.71296889e-01 4.40307468e-01
7.44470835e-01 3.10377032e-02 -5.71736515e-01 8.14523101e-01
1.20201206e+00 5.35975546e-02 3.23051542e-01 4.90301907e-01
1.07873404e+00 7.08612084e-01 1.33174038e+00 4.76028442e-01
4.45810556e-01 1.00239980e+00 8.05118024e-01 -1.86747402e-01
2.43229568e-01 -5.73574007e-01 3.44913185e-01 1.08885460e-01
-2.00865969e-01 -1.06712379e-01 -1.01407576e+00 5.58053195e-01
-1.79443848e+00 -4.21862185e-01 -2.01960906e-01 1.94661987e+00
-8.43423754e-02 3.44637513e-01 3.81975055e-01 1.96535841e-01
6.88964248e-01 -1.22875959e-01 -9.01036084e-01 2.64989495e-01
5.72032928e-01 -1.63088143e-01 1.00231481e+00 -1.28437564e-01
-1.58516204e+00 9.05153990e-01 6.28298330e+00 5.91424465e-01
-7.10334182e-01 -2.92070419e-01 2.70825196e-02 -1.63074374e-01
9.50239539e-01 -4.21003252e-01 -1.25607979e+00 3.98954958e-01
1.51081681e-01 3.60986412e-01 -3.29271778e-02 1.43267238e+00
-2.22457469e-01 -2.50494391e-01 -9.57151771e-01 1.20722592e+00
2.10888326e-01 -8.87402475e-01 -6.14284337e-01 1.80606157e-01
3.28672856e-01 -2.96745956e-01 2.01409012e-02 4.13847655e-01
8.66700336e-02 -7.14358449e-01 1.02686322e+00 4.36868131e-01
6.08639121e-01 -1.09056258e+00 9.27756965e-01 5.45569003e-01
-1.72997284e+00 -2.64683515e-01 -2.46993721e-01 -2.27912366e-01
5.37789017e-02 1.19182847e-01 -7.39207149e-01 2.98381358e-01
1.10018528e+00 3.98100048e-01 -4.97508973e-01 1.30737782e+00
-6.71644270e-01 2.24128813e-01 -6.19294882e-01 -2.76922882e-01
5.26521318e-02 1.32077262e-01 6.63976967e-01 7.96948850e-01
1.67151719e-01 -1.76527634e-01 4.31763500e-01 4.05611634e-01
-8.19892138e-02 -2.97961354e-01 -5.49055696e-01 2.17108592e-01
3.24914336e-01 1.46369445e+00 -6.29846931e-01 1.21055201e-01
8.49162489e-02 1.10935390e+00 1.57518148e-01 2.81101137e-01
-1.17889857e+00 -7.71846175e-01 8.64608824e-01 6.03564024e-01
5.21494687e-01 -5.29278338e-01 -1.40085369e-01 -8.47287238e-01
8.89729917e-01 -7.26691306e-01 2.15340704e-01 -8.82192373e-01
-7.58832693e-01 2.54992664e-01 4.22461592e-02 -1.57879186e+00
-9.37999561e-02 -9.44690883e-01 -4.09228504e-01 3.61031443e-01
-7.52146006e-01 -1.44998205e+00 -8.96631718e-01 4.18519735e-01
3.20845038e-01 -3.19498405e-02 3.70690256e-01 1.90993607e-01
-6.02689564e-01 9.15639937e-01 -2.29196668e-01 5.40034533e-01
5.93682230e-01 -9.87547159e-01 6.03198409e-01 8.17894340e-01
-2.63594329e-01 5.18585682e-01 8.50512683e-01 -8.66278529e-01
-1.90407848e+00 -9.51003313e-01 2.12191015e-01 -8.16857517e-01
5.79505026e-01 -1.06120467e+00 -3.52759540e-01 8.48559737e-01
-4.87806767e-01 -1.26799151e-01 1.80383161e-01 -3.74031998e-02
3.55738886e-02 -3.10806483e-01 -9.63945627e-01 4.91891265e-01
9.16885555e-01 -1.60955772e-01 -3.09273332e-01 3.44811946e-01
3.11345011e-01 -1.03054762e+00 -8.46113920e-01 6.05425298e-01
8.97718668e-01 -6.09472156e-01 1.26421428e+00 -2.93494351e-02
1.08990356e-01 -3.88737679e-01 6.96958676e-02 -1.00304890e+00
-2.86066175e-01 -5.94394922e-01 -5.29508173e-01 9.65766191e-01
-3.12751561e-01 4.64303493e-02 1.41615069e+00 6.52100086e-01
1.10960744e-01 -6.71344817e-01 -9.26752627e-01 -8.47255111e-01
-7.26406097e-01 -4.30597723e-01 3.85823965e-01 2.98392981e-01
-2.01755732e-01 2.27273256e-01 -1.06881785e+00 5.75209260e-01
1.14131641e+00 -1.98518530e-01 1.43417597e+00 -1.31911135e+00
-1.28343031e-01 1.15808427e-01 -8.89650047e-01 -1.10137951e+00
-1.95425421e-01 4.41555977e-02 6.83892727e-01 -1.40259695e+00
5.57493931e-03 -1.28755212e-01 5.84139340e-02 4.74512786e-01
-2.43294761e-01 4.65194792e-01 2.70621330e-01 -1.37039304e-01
-7.32775092e-01 2.47899964e-01 1.05828679e+00 -2.31559634e-01
2.82476619e-02 1.12523034e-01 -4.98150796e-01 1.22544801e+00
3.02661568e-01 -4.53796834e-01 8.62483308e-02 -2.34804958e-01
1.98023334e-01 2.76163697e-01 8.24080050e-01 -1.64820981e+00
5.80672085e-01 1.76660359e-01 7.11623251e-01 -1.02317846e+00
7.76099443e-01 -1.22802508e+00 2.69079357e-01 6.05311036e-01
4.16498423e-01 -3.55660915e-04 4.27180946e-01 6.80333078e-01
8.67227092e-02 2.21798018e-01 4.90252197e-01 -1.08431600e-01
-1.03578568e+00 3.36720616e-01 -1.77505150e-01 -9.92702469e-02
1.59024060e+00 -4.17170018e-01 -1.94548488e-01 -3.42192620e-01
-5.50653636e-01 5.56576908e-01 2.84149200e-01 7.49264538e-01
7.63811469e-01 -1.08609724e+00 -3.17779839e-01 2.28872001e-01
4.03955072e-01 3.70639235e-01 3.43145519e-01 7.42853880e-01
-5.62773466e-01 2.85278708e-01 -1.67515278e-01 -7.10979164e-01
-1.53619885e+00 3.04595441e-01 2.11363196e-01 -2.28967518e-01
-8.19493890e-01 1.02546155e+00 -1.95744056e-02 -2.80235767e-01
6.13347769e-01 -1.82896197e-01 1.78195294e-02 1.08317109e-02
4.74470019e-01 6.51966572e-01 1.16858603e-02 -6.34112775e-01
-5.67194998e-01 1.09255314e+00 -8.56738836e-02 5.27903736e-01
1.23856556e+00 2.07410887e-01 3.97201449e-01 -5.88855557e-02
8.67123365e-01 -1.28298268e-01 -1.76679063e+00 -8.88380706e-02
-2.17733189e-01 -3.09598804e-01 -2.21534729e-01 -6.95329964e-01
-7.73694754e-01 6.60399318e-01 5.57162642e-01 -2.76273727e-01
7.94238448e-01 -1.40599579e-01 1.04812622e+00 5.82544923e-01
1.02341962e+00 -1.42439270e+00 2.84450442e-01 3.79992455e-01
9.14112985e-01 -1.23934937e+00 3.03849339e-01 -4.08085942e-01
-4.89413619e-01 8.72707546e-01 1.09305608e+00 -5.51937938e-01
3.97796988e-01 3.94481629e-01 1.24001801e-01 -6.33617938e-01
5.31156808e-02 3.88086475e-02 4.81223524e-01 4.50358123e-01
-2.97781378e-01 7.96478093e-02 1.99554294e-01 1.01771915e+00
-3.73248667e-01 -1.60056606e-01 1.45300478e-01 1.24847209e+00
-2.58902907e-01 -2.84700036e-01 -8.51769686e-01 3.09607923e-01
-2.94705659e-01 4.55609888e-01 -5.84315479e-01 1.30503142e+00
2.58082360e-01 6.63056612e-01 -2.97185034e-01 -9.08743799e-01
9.92832184e-01 -2.76724815e-01 4.33124989e-01 -3.49499196e-01
-7.14636207e-01 -3.15328799e-02 -3.53144296e-02 -9.74025726e-01
3.31945837e-01 -2.91162252e-01 -8.71796727e-01 -2.50841439e-01
-4.07162309e-01 -1.64080963e-01 8.76481533e-01 9.72882509e-01
2.96099205e-02 4.24107194e-01 3.07427526e-01 -1.35754383e+00
-5.59463024e-01 -8.29994500e-01 -8.94746542e-01 3.95909458e-01
2.50703961e-01 -1.17675936e+00 -1.81650624e-01 -3.91404122e-01] | [7.088001251220703, -0.9338282346725464] |
77c9c5bc-b6cb-4892-8b9d-3cc2f12e7bbe | grid-tagging-scheme-for-aspect-oriented-fine | 2010.0464 | null | https://arxiv.org/abs/2010.04640v2 | https://arxiv.org/pdf/2010.04640v2.pdf | Grid Tagging Scheme for Aspect-oriented Fine-grained Opinion Extraction | Aspect-oriented Fine-grained Opinion Extraction (AFOE) aims at extracting aspect terms and opinion terms from review in the form of opinion pairs or additionally extracting sentiment polarity of aspect term to form opinion triplet. Because of containing several opinion factors, the complete AFOE task is usually divided into multiple subtasks and achieved in the pipeline. However, pipeline approaches easily suffer from error propagation and inconvenience in real-world scenarios. To this end, we propose a novel tagging scheme, Grid Tagging Scheme (GTS), to address the AFOE task in an end-to-end fashion only with one unified grid tagging task. Additionally, we design an effective inference strategy on GTS to exploit mutual indication between different opinion factors for more accurate extractions. To validate the feasibility and compatibility of GTS, we implement three different GTS models respectively based on CNN, BiLSTM, and BERT, and conduct experiments on the aspect-oriented opinion pair extraction and opinion triplet extraction datasets. Extensive experimental results indicate that GTS models outperform strong baselines significantly and achieve state-of-the-art performance. | ['Rui Xia', 'Xinyu Dai', 'Zhifang Fan', 'Fei Zhao', 'Chengcan Ying', 'Zhen Wu'] | 2020-10-09 | null | https://aclanthology.org/2020.findings-emnlp.234 | https://aclanthology.org/2020.findings-emnlp.234.pdf | findings-of-the-association-for-computational | ['aspect-sentiment-opinion-triplet-extraction', 'aspect-sentiment-triplet-extraction'] | ['natural-language-processing', 'natural-language-processing'] | [-3.89313325e-02 -2.69041155e-02 -9.16108266e-02 -5.83150208e-01
-1.00315320e+00 -6.61509216e-01 5.14514685e-01 1.92849301e-02
-1.69985637e-01 5.73576570e-01 3.47356111e-01 -4.15338427e-01
2.65742302e-01 -7.69270003e-01 -4.17840421e-01 -6.53765500e-01
2.47528002e-01 2.32824042e-01 -1.82545781e-02 -1.71378881e-01
2.76825160e-01 -1.12020209e-01 -1.14726174e+00 5.05269945e-01
1.04352164e+00 1.32065165e+00 -2.20572710e-01 4.62041885e-01
-4.13471758e-01 8.04649293e-01 -8.42851520e-01 -1.01604593e+00
1.05818912e-01 -2.72234350e-01 -5.14076412e-01 3.30424696e-01
2.75825579e-02 -3.81551236e-02 3.78425509e-01 1.28448927e+00
6.01258636e-01 -2.15332612e-01 5.21068156e-01 -1.11964250e+00
-9.47582245e-01 6.49875164e-01 -9.16335881e-01 -1.35360643e-01
3.84610772e-01 -9.33796316e-02 1.45910347e+00 -1.11950624e+00
2.64696926e-01 1.12150276e+00 7.15054035e-01 -6.93122074e-02
-5.14483631e-01 -4.56385195e-01 7.19438195e-01 1.23722274e-02
-9.18944895e-01 -1.36304662e-01 7.78878868e-01 -5.17900176e-02
1.10518432e+00 3.60082686e-02 1.01552367e+00 6.80919945e-01
4.41331714e-01 1.14397371e+00 1.37358749e+00 -1.78827912e-01
1.59523055e-01 2.56688148e-01 3.62696469e-01 8.30385327e-01
3.72351438e-01 -5.69334567e-01 -7.12693989e-01 -8.89844000e-02
2.00465798e-01 -3.64205241e-02 -3.25901993e-02 -1.56781115e-02
-1.13891804e+00 6.61284983e-01 3.32245886e-01 3.42031509e-01
-6.75904691e-01 -1.80526018e-01 4.04753953e-01 3.43936652e-01
1.10589039e+00 2.81615198e-01 -1.05242801e+00 -3.95406038e-02
-6.58655047e-01 5.95769770e-02 1.00010478e+00 9.59415615e-01
9.56380129e-01 -7.25590140e-02 -3.51859272e-01 7.11946070e-01
6.29576266e-01 6.95061624e-01 4.19795215e-01 -3.61598790e-01
4.50377524e-01 1.02629375e+00 -6.35354668e-02 -1.12271452e+00
-3.27517003e-01 -8.94206524e-01 -9.18611288e-01 -2.23211899e-01
-2.89034963e-01 -5.10611057e-01 -1.12760842e+00 1.30710876e+00
5.17142355e-01 -8.21758062e-03 9.69673470e-02 6.92571938e-01
9.61822033e-01 5.66772342e-01 8.88794214e-02 -2.54987568e-01
1.98614812e+00 -1.42810500e+00 -1.10695910e+00 -6.02097094e-01
5.90136349e-01 -9.59516764e-01 9.60844874e-01 3.95858079e-01
-8.94724488e-01 -3.87924671e-01 -1.12421882e+00 -6.77554533e-02
-5.61004758e-01 4.95053649e-01 1.09183979e+00 4.53225493e-01
-1.08871579e+00 1.38833802e-02 -7.83786714e-01 5.85615784e-02
4.49471384e-01 3.74063820e-01 -2.93498427e-01 1.42217472e-01
-1.36877000e+00 6.56792998e-01 -1.07052691e-01 7.16271281e-01
-2.06147209e-01 -5.15376270e-01 -1.09125352e+00 6.01078272e-02
2.70139784e-01 -1.07430899e+00 1.34363866e+00 -1.17282736e+00
-1.42049551e+00 7.44515061e-01 -6.47254586e-01 -5.48838899e-02
-1.74922690e-01 -4.62787986e-01 -5.70863247e-01 -1.29920647e-01
4.53571200e-01 2.26961613e-01 7.44806290e-01 -1.14093602e+00
-8.57051432e-01 -5.29221654e-01 5.04187942e-01 4.36273366e-01
-4.07646149e-01 2.57531881e-01 -7.41982222e-01 -5.37842810e-01
-4.38904278e-02 -7.52263367e-01 -3.87001097e-01 -5.00288129e-01
-3.95917714e-01 -4.42374676e-01 4.98577148e-01 -6.54413462e-01
1.42436206e+00 -1.88424039e+00 -9.84126180e-02 1.67213045e-02
2.51823723e-01 3.27863157e-01 -1.08099081e-01 1.75014883e-01
2.46499985e-01 1.34724811e-01 -2.52519250e-01 -6.22339249e-01
2.35491395e-01 1.41170006e-02 -2.39696115e-01 -8.27025026e-02
5.96076429e-01 1.23342967e+00 -1.00131595e+00 -5.64361393e-01
-1.67746603e-01 5.19738674e-01 -4.58817005e-01 3.07623565e-01
-2.92972982e-01 2.71337330e-01 -8.81019771e-01 1.01237130e+00
7.76888430e-01 -4.70768183e-01 1.33318365e-01 -5.47187567e-01
5.94652165e-03 6.34527802e-01 -8.77351105e-01 1.60312593e+00
-8.06165695e-01 3.07466120e-01 -2.78118695e-03 -6.39994264e-01
8.49124908e-01 3.91913444e-01 2.71682322e-01 -6.08603716e-01
2.00854599e-01 3.00755590e-01 -1.41592383e-01 -4.93184656e-01
7.49460399e-01 -2.00293228e-01 -3.05650264e-01 4.67431277e-01
1.72402143e-01 -6.20856620e-02 3.18238527e-01 8.36381093e-02
9.24732268e-01 1.93432048e-01 5.08615673e-01 -1.94943100e-01
7.01455414e-01 -1.42145649e-01 8.14732492e-01 2.48280331e-01
-1.54001266e-01 6.34287834e-01 6.73331797e-01 -4.94821817e-01
-4.01916087e-01 -6.44764006e-01 2.24539936e-01 8.62258315e-01
1.04801767e-01 -7.10756302e-01 -5.70829630e-01 -1.22255826e+00
-4.60457921e-01 3.02529842e-01 -6.92139089e-01 2.22452149e-01
-3.04426730e-01 -1.31098258e+00 6.21651160e-03 5.55642426e-01
8.92477274e-01 -1.10384572e+00 -3.10197771e-02 1.59343883e-01
-3.51612478e-01 -1.40600944e+00 -5.59739172e-01 1.03081554e-01
-4.47665721e-01 -9.10782218e-01 -5.92662632e-01 -8.08202922e-01
7.46820331e-01 4.62650925e-01 1.62594771e+00 1.02483213e-01
4.68028456e-01 -8.16126615e-02 -6.24579489e-01 -5.96059740e-01
4.06824529e-01 3.95463049e-01 -3.99528295e-01 3.12355816e-01
9.00666118e-01 -7.53065705e-01 -1.04609323e+00 6.66511208e-02
-7.31657743e-01 2.63331197e-02 1.05702388e+00 7.63886869e-01
6.96358979e-01 -1.09829390e-02 5.65998852e-01 -1.32834291e+00
7.84084737e-01 -3.20508868e-01 -3.73531163e-01 2.64381826e-01
-7.94016361e-01 -7.17082918e-02 5.86792588e-01 1.23838276e-01
-1.32331240e+00 -3.27736199e-01 -4.84330058e-01 1.14431791e-01
1.60253957e-01 9.38857436e-01 -4.55711961e-01 2.89016038e-01
-4.16297242e-02 1.75907969e-01 -6.52067423e-01 -2.82475144e-01
4.91570771e-01 9.19365108e-01 1.11348949e-01 -2.47329101e-01
6.11700177e-01 4.21939552e-01 -4.49354529e-01 -2.51175433e-01
-1.79220891e+00 -4.82293516e-01 -4.09185231e-01 -3.42468731e-02
9.47211683e-01 -1.46642733e+00 -3.40547532e-01 8.29664350e-01
-1.32018888e+00 2.29044899e-01 6.31099120e-02 1.85168594e-01
9.17820185e-02 1.66871309e-01 -6.95051193e-01 -8.49016905e-01
-1.03298855e+00 -1.18241906e+00 1.78809392e+00 5.10668039e-01
-1.37770744e-02 -1.16140866e+00 1.40767425e-01 6.67743921e-01
4.09403116e-01 -5.49837295e-03 5.16272724e-01 -5.55190384e-01
-5.30931771e-01 -3.94460768e-01 -3.94128025e-01 4.68569487e-01
2.91854650e-01 6.87506376e-03 -1.20571077e+00 4.13567126e-02
1.50514811e-01 -2.04248264e-01 9.64898884e-01 7.54297078e-02
6.67727649e-01 -2.42407322e-01 -1.25164047e-01 4.79538172e-01
1.25193489e+00 9.64211598e-02 5.74281991e-01 4.24348980e-01
1.03014731e+00 3.87501329e-01 9.11973000e-01 1.45111442e-01
1.11690736e+00 3.13914478e-01 4.13377173e-02 -3.71998668e-01
-3.45082730e-02 -1.47620708e-01 6.01605058e-01 1.70392776e+00
7.44326487e-02 -4.25014228e-01 -3.56454194e-01 7.97548652e-01
-1.93023384e+00 -4.37591553e-01 -1.28141716e-01 1.56792724e+00
8.70625734e-01 4.08561736e-01 -3.48226368e-01 -4.30362597e-02
4.13739949e-01 6.60555899e-01 -3.91341150e-01 -5.40075421e-01
-2.47582242e-01 2.03208163e-01 1.34630382e-01 4.38402325e-01
-1.14622653e+00 1.07142329e+00 5.21864700e+00 8.55395198e-01
-9.41092432e-01 2.51834929e-01 9.65156734e-01 3.41640979e-01
-7.97158182e-01 3.12273473e-01 -8.71179402e-01 2.88506001e-01
5.85457742e-01 1.67177275e-01 -5.87093532e-02 7.40435004e-01
8.78072232e-02 -3.83167788e-02 -4.94593799e-01 6.57618046e-01
1.85465991e-01 -8.17193568e-01 1.22224346e-01 -2.88886160e-01
1.03761852e+00 6.99004233e-02 -7.56594911e-02 5.12139440e-01
3.96338165e-01 -5.49603879e-01 5.33471167e-01 2.83228785e-01
4.80372280e-01 -6.60825968e-01 1.30877519e+00 -1.11743942e-01
-1.68188286e+00 4.25375283e-01 -2.16243356e-01 -2.71219879e-01
4.76424217e-01 1.36223531e+00 -3.01936388e-01 1.03296912e+00
6.95739090e-01 1.14496601e+00 -5.45581043e-01 5.53716600e-01
-8.68123829e-01 5.28807282e-01 -2.60206312e-02 -1.72634169e-01
3.51084471e-01 -3.58696312e-01 2.49813452e-01 1.18635809e+00
2.41727531e-01 -1.70401528e-01 7.22871646e-02 3.58138382e-01
-1.76987931e-01 1.61735028e-01 -3.40478241e-01 -2.04815164e-01
2.45994329e-01 2.04839373e+00 -7.69172132e-01 -4.74311739e-01
-8.05428147e-01 9.97366607e-01 4.45015877e-01 4.15086448e-01
-6.47705376e-01 -5.38664818e-01 6.46164954e-01 -4.75912094e-01
7.04550564e-01 7.88339078e-02 -4.97129351e-01 -1.77201021e+00
5.17794967e-01 -1.13673270e+00 6.74036667e-02 -8.55832100e-01
-1.41544855e+00 1.24038363e+00 -5.36432028e-01 -1.32150090e+00
-1.87964812e-01 -5.89766979e-01 -9.27190602e-01 9.04995739e-01
-2.08885193e+00 -1.69581735e+00 -2.01831058e-01 2.07027450e-01
6.42217398e-01 8.76058564e-02 7.58631885e-01 3.34977090e-01
-6.81062460e-01 5.06145060e-01 -5.00444412e-01 9.66311023e-02
6.96445644e-01 -1.59411049e+00 8.18105638e-01 9.47276294e-01
7.40251169e-02 7.76941597e-01 3.89492661e-01 -5.46980262e-01
-1.26873219e+00 -1.10590076e+00 1.40178573e+00 -4.92613792e-01
9.36242461e-01 -3.75642568e-01 -5.33693314e-01 5.46647131e-01
6.65935993e-01 -1.88036859e-01 8.46873820e-01 4.68359649e-01
-3.79057020e-01 -3.21617573e-01 -6.30012691e-01 6.11238599e-01
8.85387063e-01 -7.32216716e-01 -5.50475657e-01 2.82651126e-01
1.04736292e+00 -2.80760020e-01 -1.02319121e+00 8.14874053e-01
6.60638213e-01 -1.13621056e+00 4.49434698e-01 -1.41965583e-01
6.07536137e-01 -6.72401726e-01 2.23753899e-02 -1.48921585e+00
-1.35912344e-01 -5.10220289e-01 -1.80928499e-01 1.61762595e+00
9.25000668e-01 -7.16273963e-01 4.63795424e-01 2.49428257e-01
-1.65922195e-01 -1.33961511e+00 -3.89244795e-01 7.93907270e-02
-3.44190985e-01 -3.99851561e-01 9.19621646e-01 6.77672803e-01
-6.84912130e-02 1.10203445e+00 -3.29780370e-01 2.08370164e-01
2.91336447e-01 7.44201183e-01 5.92797637e-01 -7.78979361e-01
-4.32241261e-01 -2.71050513e-01 -9.49352235e-02 -1.25399029e+00
1.76018521e-01 -3.01376134e-01 9.38257948e-02 -2.05263329e+00
3.92638952e-01 -1.16288655e-01 -6.49418354e-01 4.98137712e-01
-9.92524147e-01 5.35498679e-01 2.51831766e-03 3.63990553e-02
-1.25996411e+00 8.69683743e-01 1.44550741e+00 -2.04620570e-01
1.05605312e-01 4.94584069e-02 -1.43006241e+00 9.68769014e-01
6.02214336e-01 -2.64330000e-01 -4.73068476e-01 -6.49581432e-01
1.09129691e+00 -2.64688909e-01 -2.99569041e-01 -4.20163065e-01
1.22341432e-01 4.00707126e-01 2.03442797e-01 -8.47654879e-01
2.83163600e-03 -6.18142366e-01 -3.89655441e-01 -1.30757213e-01
1.03473648e-01 5.27135789e-01 3.89664583e-02 4.71715391e-01
-8.16529512e-01 1.41184762e-01 9.86724067e-03 -1.43261909e-01
-4.57331896e-01 3.54830623e-01 -2.57082433e-01 -7.33565830e-04
4.46561158e-01 3.38009745e-01 -4.08758879e-01 -4.46518213e-01
-2.64582515e-01 5.21555722e-01 2.46536016e-01 4.08122599e-01
2.78643280e-01 -1.30494547e+00 -5.09174109e-01 2.46015191e-01
2.23241359e-01 3.01530957e-01 2.16678128e-01 1.07298708e+00
-9.34182778e-02 3.45812410e-01 4.27759767e-01 -3.09971899e-01
-1.04177868e+00 2.40320623e-01 2.57375091e-01 -1.08983302e+00
9.23191309e-02 8.77446055e-01 4.58960712e-01 -6.99649692e-01
-2.55082101e-01 -4.39734548e-01 -6.33827746e-01 2.99057752e-01
4.77954060e-01 -3.89198810e-01 4.16157067e-01 -4.90677714e-01
-3.86858761e-01 8.67362678e-01 -3.30490291e-01 2.95309108e-02
1.18880391e+00 -3.95629704e-01 -7.08828866e-01 3.09413761e-01
1.12796521e+00 2.92320639e-01 -9.54254031e-01 -1.43173814e-01
-5.64491861e-02 -3.81765068e-02 1.79600775e-01 -9.51631129e-01
-1.41300929e+00 6.82033598e-01 9.28370804e-02 3.67303461e-01
1.54487777e+00 -1.66046813e-01 1.17140317e+00 2.50838906e-01
2.26974502e-01 -7.98048615e-01 -2.84059167e-01 6.24219120e-01
5.11260509e-01 -1.39143729e+00 7.89514408e-02 -5.69780111e-01
-7.44180322e-01 6.73922718e-01 6.46661997e-01 -1.13079347e-01
9.04883564e-01 3.12324375e-01 5.81812382e-01 -5.10147333e-01
-1.08188915e+00 -4.59644139e-01 6.51593566e-01 2.46024430e-01
7.84923255e-01 4.41370010e-02 -6.85192347e-01 1.14353991e+00
-2.50042528e-01 1.23297926e-02 1.22825243e-02 8.08877647e-01
-2.26091757e-01 -1.29334617e+00 1.66296065e-01 5.25742352e-01
-9.36480165e-01 -7.17630863e-01 -5.46887815e-01 2.92105108e-01
1.93852812e-01 1.21166193e+00 -1.95793152e-01 -5.84684908e-01
3.90618324e-01 -1.09662861e-01 5.51326424e-02 -5.35020590e-01
-1.00608957e+00 4.42388147e-01 4.85758424e-01 -5.06485403e-01
-9.77600753e-01 -3.73465806e-01 -8.95119309e-01 1.39728382e-01
-6.03884459e-01 4.39815640e-01 4.75149453e-01 1.40239751e+00
7.01134086e-01 8.44047368e-01 8.24791610e-01 -4.90241617e-01
-5.24974354e-02 -1.29445660e+00 -4.17288274e-01 2.53783762e-01
1.95381433e-01 -3.08800191e-01 -2.70133674e-01 -8.70317519e-02] | [11.495271682739258, 6.589450836181641] |
3ff18420-b7b6-49fa-84d7-869c472e22bb | deep-learning-for-spatio-temporal-forecasting | 2205.03571 | null | https://arxiv.org/abs/2205.03571v1 | https://arxiv.org/pdf/2205.03571v1.pdf | Deep learning for spatio-temporal forecasting -- application to solar energy | This thesis tackles the subject of spatio-temporal forecasting with deep learning. The motivating application at Electricity de France (EDF) is short-term solar energy forecasting with fisheye images. We explore two main research directions for improving deep forecasting methods by injecting external physical knowledge. The first direction concerns the role of the training loss function. We show that differentiable shape and temporal criteria can be leveraged to improve the performances of existing models. We address both the deterministic context with the proposed DILATE loss function and the probabilistic context with the STRIPE model. Our second direction is to augment incomplete physical models with deep data-driven networks for accurate forecasting. For video prediction, we introduce the PhyDNet model that disentangles physical dynamics from residual information necessary for prediction, such as texture or details. We further propose a learning framework (APHYNITY) that ensures a principled and unique linear decomposition between physical and data-driven components under mild assumptions, leading to better forecasting performances and parameter identification. | ['Vincent Le Guen'] | 2022-05-07 | null | null | null | null | ['video-prediction', 'spatio-temporal-forecasting'] | ['computer-vision', 'time-series'] | [ 3.07923090e-02 -2.39186183e-01 -4.19050068e-01 -3.18020105e-01
-2.21504167e-01 -3.84160876e-01 1.01957798e+00 -4.76974338e-01
2.33827546e-01 8.92297983e-01 9.18448344e-02 -3.67232472e-01
-5.65933883e-01 -9.32127833e-01 -9.35982168e-01 -1.37688208e+00
-5.25339618e-02 -6.69892132e-03 -1.49975438e-02 -1.70547113e-01
2.09005207e-01 9.26017404e-01 -1.54218423e+00 1.48427725e-01
8.74387205e-01 1.42071331e+00 2.74422020e-01 9.73813355e-01
1.31819025e-03 1.02894461e+00 -5.20012900e-02 1.93708852e-01
4.68273520e-01 -1.97454348e-01 -4.50468302e-01 7.41505204e-03
3.87486845e-01 -5.39789557e-01 -6.07074082e-01 4.82832730e-01
4.09989923e-01 2.84345150e-01 8.66448462e-01 -1.32442331e+00
-5.23842096e-01 9.74258110e-02 -2.94427305e-01 1.05298638e-01
-2.58278996e-01 3.08871806e-01 7.41548121e-01 -5.15664577e-01
3.82024497e-01 9.43692386e-01 1.00179207e+00 4.80517983e-01
-9.60755527e-01 -3.51742804e-01 1.66779593e-01 3.89951169e-01
-1.15642321e+00 -3.75749052e-01 9.43420410e-01 -6.22455299e-01
8.05872142e-01 2.25045353e-01 5.33633471e-01 1.38016427e+00
5.89175284e-01 7.26172745e-01 1.19753611e+00 -3.51311594e-01
2.79639244e-01 1.23054147e-01 -9.06747431e-02 6.48961604e-01
-1.89075947e-01 7.68575668e-01 -6.80446506e-01 -3.05074006e-02
7.26994693e-01 -8.34750682e-02 -3.38265002e-01 -5.67205489e-01
-7.58916974e-01 6.95833623e-01 2.88762420e-01 2.64917523e-01
-5.77516496e-01 3.27338368e-01 2.64061261e-02 1.70159370e-01
7.63211846e-01 3.56263876e-01 -8.99775386e-01 -3.48074585e-02
-1.19533694e+00 7.16672838e-02 8.98940444e-01 5.37309349e-01
5.11016309e-01 4.29765552e-01 1.48819312e-02 5.36070168e-01
5.04385889e-01 9.91872609e-01 1.61163628e-01 -1.32913029e+00
1.80122241e-01 1.36452571e-01 5.39128423e-01 -8.18348765e-01
-5.70158482e-01 -5.00285327e-01 -1.09303236e+00 5.32390893e-01
3.04263562e-01 -4.09597129e-01 -7.33381689e-01 1.74454272e+00
3.35052609e-01 6.18492186e-01 2.03886196e-01 9.33290780e-01
7.36620903e-01 1.04821265e+00 -7.42189884e-02 -1.94726482e-01
6.67170405e-01 -9.14368272e-01 -4.95074302e-01 3.83226395e-01
7.63468266e-01 -3.08674157e-01 8.15157235e-01 4.27199304e-01
-1.00468421e+00 -5.09177387e-01 -9.88699853e-01 -2.56906822e-02
-6.95428371e-01 3.75478119e-01 4.77748513e-01 5.01519263e-01
-1.30442631e+00 1.14030707e+00 -1.18022597e+00 -3.70188385e-01
6.61994591e-02 3.32177848e-01 1.37308583e-01 3.75226110e-01
-1.15003288e+00 9.77812529e-01 4.77706678e-02 2.54450530e-01
-1.00184882e+00 -1.06398869e+00 -4.90023196e-01 1.43984616e-01
5.90020381e-02 -7.93629646e-01 9.24371302e-01 -8.69723976e-01
-1.89601433e+00 2.05872610e-01 -1.91115007e-01 -6.32160723e-01
6.27133787e-01 -2.17232645e-01 -2.77635455e-01 5.72974123e-02
-5.38719773e-01 5.40917158e-01 9.27403212e-01 -1.40210176e+00
-5.18076181e-01 -9.09340531e-02 1.03093661e-01 1.79257065e-01
-5.60735703e-01 -6.66257858e-01 1.50974929e-01 -5.87701738e-01
-3.96765739e-01 -1.10795188e+00 7.86858574e-02 2.79496372e-01
-1.73554793e-01 -2.07662001e-01 1.08528149e+00 -8.61477852e-01
9.04481947e-01 -1.83505476e+00 2.98904389e-01 5.60479425e-02
4.86190282e-02 2.59799361e-01 -2.38576412e-01 4.41901505e-01
6.28549382e-02 4.95285355e-02 -5.48937656e-02 -5.17091215e-01
1.74364954e-01 4.46147472e-01 -7.68895268e-01 4.66995835e-01
1.58713665e-02 9.36634719e-01 -6.50598109e-01 -1.12143643e-01
5.53834021e-01 8.35971177e-01 5.35263233e-02 1.39383987e-01
-4.75003093e-01 5.41141927e-01 -4.73137885e-01 3.41156006e-01
8.90856683e-01 -3.37711304e-01 -9.14356261e-02 -1.54727250e-01
-4.26050812e-01 2.90204823e-01 -8.73216748e-01 1.29884100e+00
-8.16175699e-01 8.01171780e-01 2.54653513e-01 -1.04805243e+00
8.58021319e-01 1.98367491e-01 9.68773365e-01 -8.32953632e-01
-2.48628438e-01 5.26235811e-03 -6.13062978e-01 -7.35274136e-01
5.60411155e-01 -4.18996125e-01 4.85647529e-01 4.26206440e-01
-1.41416535e-01 -6.57342300e-02 -3.55411589e-01 -1.54240295e-01
9.06496882e-01 7.95426250e-01 -3.47248465e-01 -6.03686929e-01
5.11128902e-01 -7.09656104e-02 4.90273803e-01 7.56628036e-01
1.77025814e-02 4.16244328e-01 2.11261883e-01 -8.29553843e-01
-1.16993010e+00 -8.11018586e-01 -1.97589442e-01 1.07197583e+00
7.90671855e-02 -6.69388054e-03 -3.15625310e-01 -6.75518274e-01
1.17837839e-01 8.18882108e-01 -7.39071548e-01 -9.66242701e-02
-3.98377001e-01 -9.40349996e-01 3.58752966e-01 6.58377826e-01
4.13405299e-01 -8.42942655e-01 -6.98625088e-01 3.90817560e-02
2.54193544e-02 -9.85594034e-01 8.34286436e-02 3.18672866e-01
-7.98734546e-01 -7.68962204e-01 -7.41420150e-01 -9.05624703e-02
1.12228701e-02 1.20788537e-01 1.14854312e+00 -7.88430944e-02
1.89894848e-02 6.66818976e-01 -1.52232766e-01 -2.00880498e-01
-3.41371298e-01 1.64671272e-01 2.34572336e-01 3.69847491e-02
1.07008852e-02 -6.64802372e-01 -6.94170296e-01 2.77322471e-01
-7.96539366e-01 3.16526949e-01 3.88225317e-01 6.81063235e-01
3.03529590e-01 2.49398813e-01 2.10571960e-01 -3.45245689e-01
1.12682633e-01 -5.65587699e-01 -8.76663148e-01 6.05596840e-01
-8.04035246e-01 3.67638618e-01 8.07612002e-01 -3.58113229e-01
-1.46489191e+00 2.12810948e-01 -5.86193576e-02 -6.90359831e-01
-2.58085400e-01 2.40618557e-01 5.84216043e-02 -4.48110133e-01
3.14375877e-01 4.61189449e-01 -2.01982766e-01 -3.88068348e-01
2.34804600e-01 1.44819349e-01 3.29684883e-01 -6.38796687e-01
8.79523456e-01 7.54075706e-01 7.50359237e-01 -1.17712450e+00
-8.57868433e-01 -1.98571354e-01 -8.11176062e-01 -3.65876079e-01
7.45881021e-01 -8.44404459e-01 -8.07409704e-01 6.33325398e-01
-1.15695059e+00 -1.00873983e+00 -5.09971321e-01 4.83506322e-01
-7.37377048e-01 2.39105165e-01 -5.48775494e-01 -1.18408895e+00
-5.89744784e-02 -6.73827946e-01 1.27577388e+00 9.45403427e-02
3.87911141e-01 -1.75677454e+00 3.94916445e-01 -8.32517340e-04
5.46311319e-01 3.67558151e-01 8.13430846e-01 -7.63267800e-02
-8.38970125e-01 3.40062112e-01 -2.25324124e-01 3.30606401e-01
-1.90137297e-01 3.58754545e-01 -1.11156273e+00 -1.90097943e-01
3.43178958e-01 -3.11332464e-01 1.20116913e+00 8.41092765e-01
1.17100942e+00 -3.94719899e-01 -3.51311684e-01 1.04285181e+00
1.53266656e+00 4.22158614e-02 6.17545426e-01 2.18696818e-01
8.44221592e-01 7.61010826e-01 1.56464726e-01 6.80040896e-01
4.98339951e-01 6.44606113e-01 4.33200300e-01 -1.54664442e-01
-9.87057462e-02 -2.01414540e-01 4.99317914e-01 7.47092187e-01
-2.10195094e-01 -7.63125837e-01 -7.97310352e-01 3.49513352e-01
-2.02596951e+00 -9.90381777e-01 -2.69539863e-01 1.94667149e+00
2.22375274e-01 -3.41629714e-01 -4.10923995e-02 -6.48570135e-02
3.31240743e-01 4.26722527e-01 -8.35676730e-01 -2.00731084e-01
-2.96240836e-01 -2.32430115e-01 7.01777279e-01 8.09894025e-01
-1.10730684e+00 4.52251792e-01 6.65233898e+00 7.73541808e-01
-1.48050392e+00 1.79601759e-01 7.82317340e-01 -9.28659737e-02
-3.50990474e-01 -2.06127420e-01 -9.82173562e-01 5.68658173e-01
1.38497639e+00 5.07619917e-01 3.60453814e-01 5.16533673e-01
8.03634822e-01 -4.35206033e-02 -9.00126755e-01 5.92169106e-01
-4.12003212e-02 -1.64530957e+00 -1.88271910e-01 5.55476069e-01
1.10520566e+00 2.91996866e-01 1.72191739e-01 3.30791138e-02
3.36260051e-01 -8.78520548e-01 5.07843018e-01 1.42161477e+00
4.71335411e-01 -2.30953008e-01 6.42259955e-01 5.47006547e-01
-1.15685129e+00 -1.88300967e-01 -3.72723997e-01 -2.20825687e-01
1.24655902e-01 6.93374813e-01 -2.11089119e-01 6.86469138e-01
6.68841541e-01 1.05987167e+00 -9.34331119e-02 7.79007554e-01
1.73959192e-02 7.46581376e-01 -7.41812170e-01 1.57023966e-02
2.57258147e-01 -4.08261389e-01 5.15014470e-01 9.16445851e-01
7.38229752e-01 1.64250046e-01 7.94601720e-03 8.00334930e-01
1.32800803e-01 -4.05253172e-01 -7.79433191e-01 1.84552923e-01
-3.91311273e-02 1.11063576e+00 -4.56063390e-01 -1.18359886e-01
-2.80281097e-01 7.32364774e-01 3.95056419e-02 5.00346363e-01
-1.00462127e+00 3.54347676e-01 5.01427650e-01 2.17477709e-01
6.13619268e-01 -3.63319516e-01 -5.89687228e-01 -1.27578676e+00
7.46047543e-03 -3.13079730e-02 1.00136749e-01 -8.93827498e-01
-1.51339495e+00 1.44604072e-01 6.98189251e-03 -1.06860507e+00
-1.05508208e-01 -9.47280884e-01 -9.10102785e-01 7.67968178e-01
-2.05400133e+00 -1.45736289e+00 -3.93513322e-01 3.98047298e-01
2.47088075e-01 -8.59159306e-02 6.09710336e-01 6.71646446e-02
-5.71995437e-01 1.37574688e-01 7.95012832e-01 -5.69015801e-01
3.27753276e-01 -1.34558403e+00 1.84720621e-01 6.85109556e-01
-1.20934725e-01 6.02275655e-02 8.82672906e-01 -5.20565450e-01
-1.55901706e+00 -1.13740063e+00 8.60966146e-01 -7.22913921e-01
8.06928396e-01 -2.19790235e-01 -8.04734111e-01 8.95273015e-02
1.93557158e-01 2.16022015e-01 2.90925980e-01 -1.43315345e-01
-1.02818601e-01 -3.68509769e-01 -9.76725817e-01 2.21662112e-02
7.31589496e-01 -5.32626152e-01 7.74553046e-02 5.58948278e-01
3.57517302e-01 -1.30190060e-01 -1.01350355e+00 5.91866851e-01
6.68852985e-01 -1.03763866e+00 9.70389307e-01 -5.43903172e-01
6.72965407e-01 -1.67835385e-01 -2.38042086e-01 -1.15853488e+00
-2.20697805e-01 -8.58566105e-01 -8.40889871e-01 1.10390079e+00
2.24973768e-01 -5.14530957e-01 9.64976907e-01 8.42428923e-01
-3.54106538e-02 -9.55737948e-01 -9.02182937e-01 -1.04745650e+00
5.37043810e-01 -5.10785520e-01 4.71465617e-01 9.08757687e-01
-5.15804410e-01 -9.77288336e-02 -9.15224493e-01 4.24120724e-01
5.39240122e-01 2.46825501e-01 4.75217909e-01 -1.25168049e+00
-2.97304124e-01 -3.37957889e-01 6.27034679e-02 -1.35106874e+00
3.95671338e-01 -2.97127366e-01 2.33989164e-01 -1.41639245e+00
-2.51422473e-03 -4.62623984e-01 -4.70053226e-01 1.71559289e-01
3.89733285e-01 4.50856499e-02 2.27688655e-01 2.73740470e-01
-3.84240538e-01 1.03117967e+00 1.05840874e+00 4.19130847e-02
-7.32650384e-02 2.02663586e-01 -4.48592380e-02 5.26678681e-01
9.06575084e-01 -2.35379174e-01 -4.60430682e-01 -4.99651104e-01
3.57168615e-01 3.05262715e-01 8.68511438e-01 -1.05334294e+00
3.36909175e-01 -5.16569614e-01 5.17259121e-01 -7.14476168e-01
6.07732892e-01 -9.38980162e-01 1.33230820e-01 2.89796948e-01
-3.98582339e-01 -2.88643744e-02 1.80370897e-01 5.49424231e-01
1.91354811e-01 5.63723370e-02 8.64495933e-01 8.08028579e-02
-5.81794143e-01 3.17824006e-01 -2.61219889e-01 -3.64082217e-01
8.98966610e-01 -4.29058373e-02 -4.26714718e-01 -6.31956279e-01
-7.71374881e-01 1.91056058e-01 4.16228175e-01 1.51532903e-01
2.10428491e-01 -1.20965385e+00 -5.48779368e-01 5.18904142e-02
-4.79802340e-01 -4.99953777e-01 4.29332703e-01 9.12897587e-01
-3.31471831e-01 6.41701698e-01 6.48317486e-02 -6.59074247e-01
-8.03367496e-01 3.26849788e-01 7.28460193e-01 -4.14460719e-01
-5.81145883e-01 5.99206805e-01 3.64009082e-01 -5.32856762e-01
1.66422397e-01 -4.60471034e-01 5.10252677e-02 -1.18257314e-01
2.12552175e-01 6.82930708e-01 -5.93030043e-02 -6.41989470e-01
-1.54552519e-01 7.06043899e-01 5.50365269e-01 3.73607315e-02
1.70642185e+00 -5.29594004e-01 2.55860716e-01 6.20423794e-01
1.09315002e+00 -3.88034374e-01 -2.20509434e+00 6.31512105e-02
-1.57741636e-01 -1.83897349e-03 5.02770245e-01 -1.14071286e+00
-1.24856794e+00 1.21892989e+00 8.94272208e-01 5.57809353e-01
1.08772933e+00 -3.23002219e-01 9.36231375e-01 5.51495135e-01
-3.09050828e-02 -1.14303720e+00 -1.64387584e-01 7.53138065e-01
7.61864960e-01 -1.35364449e+00 6.20742813e-02 6.23586960e-02
-3.77037376e-01 1.37126863e+00 5.02964437e-01 -1.88412905e-01
1.09804869e+00 4.06552076e-01 -1.01746790e-01 -1.31617472e-01
-9.72284853e-01 1.27617158e-02 4.91125196e-01 4.00832444e-01
6.86116591e-02 -1.02696735e-02 1.31218120e-01 2.63351113e-01
1.48115948e-01 1.61327586e-01 2.47276306e-01 6.15346730e-01
-2.76051790e-01 -8.82591486e-01 -1.77727655e-01 2.15280280e-01
-1.28390923e-01 2.95432080e-02 -2.17244014e-01 7.11671412e-01
2.73619056e-01 7.96066284e-01 9.82022379e-03 -3.66005868e-01
-1.67977557e-01 1.25344440e-01 2.49629825e-01 4.05062102e-02
-1.76812395e-01 -1.03896230e-01 -1.87384710e-01 -5.29486299e-01
-8.53015482e-01 -6.94941819e-01 -6.40559852e-01 -6.24560654e-01
-2.93686330e-01 -7.21514896e-02 9.40127850e-01 1.42893088e+00
5.30914128e-01 4.76081878e-01 8.70680332e-01 -1.28397501e+00
-4.34545249e-01 -6.74585879e-01 -5.06809711e-01 -8.83305892e-02
8.13634038e-01 -7.09894419e-01 -5.96457541e-01 1.19495071e-01] | [6.559482097625732, 3.3089616298675537] |
e723e2e4-48b1-4648-8ffc-0ca630530fae | personalized-automatic-sleep-staging-with | 2004.11349 | null | https://arxiv.org/abs/2004.11349v2 | https://arxiv.org/pdf/2004.11349v2.pdf | Personalized Automatic Sleep Staging with Single-Night Data: a Pilot Study with KL-Divergence Regularization | Brain waves vary between people. An obvious way to improve automatic sleep staging for longitudinal sleep monitoring is personalization of algorithms based on individual characteristics extracted from the first night of data. As a single night is a very small amount of data to train a sleep staging model, we propose a Kullback-Leibler (KL) divergence regularized transfer learning approach to address this problem. We employ the pretrained SeqSleepNet (i.e. the subject independent model) as a starting point and finetune it with the single-night personalization data to derive the personalized model. This is done by adding the KL divergence between the output of the subject independent model and the output of the personalized model to the loss function during finetuning. In effect, KL-divergence regularization prevents the personalized model from overfitting to the single-night data and straying too far away from the subject independent model. Experimental results on the Sleep-EDF Expanded database with 75 subjects show that sleep staging personalization with a single-night data is possible with help of the proposed KL-divergence regularization. On average, we achieve a personalized sleep staging accuracy of 79.6%, a Cohen's kappa of 0.706, a macro F1-score of 73.0%, a sensitivity of 71.8%, and a specificity of 94.2%. We find both that the approach is robust against overfitting and that it improves the accuracy by 4.5 percentage points compared to non-personalization and 2.2 percentage points compared to personalization without regularization. | ['Preben Kidmose', 'Oliver Y. Chén', 'Alfred Mertins', 'Philipp Koch', 'Kaare Mikkelsen', 'Huy Phan', 'Maarten De Vos'] | 2020-04-23 | null | null | null | null | ['sleep-staging'] | ['medical'] | [-9.41505432e-02 1.85471967e-01 -2.40588598e-02 -7.27319300e-01
-5.66557884e-01 -6.95307180e-02 5.34103028e-02 -1.00479955e-02
-1.03867686e+00 1.04214954e+00 6.19917884e-02 7.57182762e-02
-2.23416835e-01 -4.58132386e-01 -4.73949611e-01 -8.63742292e-01
4.02507037e-02 4.59022850e-01 2.54946142e-01 6.91721365e-02
-8.64948146e-03 4.90055010e-02 -1.26170278e+00 -2.56762534e-01
1.23824954e+00 9.29853261e-01 1.18442923e-01 4.15802300e-01
2.74586082e-01 8.10844079e-02 -7.37544775e-01 -4.11512166e-01
1.86635807e-01 -4.35492843e-01 -7.09031880e-01 2.50137262e-02
1.33390874e-01 -1.64464582e-02 3.18280458e-02 9.19722140e-01
5.15495837e-01 5.82218289e-01 4.60109502e-01 -1.03094327e+00
-5.10907531e-01 2.41529495e-01 -4.46579754e-01 6.04117453e-01
-1.15072213e-01 1.12653576e-01 6.85830534e-01 -4.14807588e-01
1.70196220e-01 5.27570724e-01 9.79331374e-01 9.76112247e-01
-1.66512275e+00 -7.57695198e-01 -2.06287652e-01 8.04361030e-02
-1.60791814e+00 -5.17344832e-01 4.22937304e-01 -3.49505544e-01
8.03403080e-01 2.44362831e-01 8.11087549e-01 8.20252240e-01
5.81077754e-01 1.53862342e-01 1.07651615e+00 -1.15967855e-01
3.70212018e-01 3.70959550e-01 3.44881326e-01 7.27056146e-01
1.44030929e-01 -1.27147332e-01 -4.23287630e-01 -4.64432649e-02
3.45225394e-01 1.57462209e-01 -1.01578861e-01 -8.41035172e-02
-7.15879142e-01 6.93367839e-01 5.85085869e-01 4.08931136e-01
-3.00456852e-01 -7.63785616e-02 3.58514667e-01 2.59411871e-01
7.86351264e-01 4.00004476e-01 -4.88414973e-01 -6.75726980e-02
-1.45912695e+00 3.95510439e-03 5.68463326e-01 4.94935334e-01
9.18497264e-01 -7.26409405e-02 -4.45825934e-01 1.06026840e+00
1.90805018e-01 5.08177876e-01 8.91912222e-01 -9.57954824e-01
3.50604653e-02 6.33571625e-01 -1.94955803e-02 -4.50507969e-01
-9.37003970e-01 -7.44655132e-01 -9.47038651e-01 -2.68948339e-02
3.65013748e-01 -3.94385308e-01 -8.51931036e-01 2.03749537e+00
5.85778058e-02 1.24853671e-01 -1.94476992e-01 8.18001926e-01
3.66587251e-01 4.29176092e-01 2.60689855e-01 -4.99978989e-01
1.22440755e+00 -7.64064848e-01 -4.74887967e-01 -4.38264579e-01
4.22438800e-01 -2.00709596e-01 1.28173423e+00 2.98063129e-01
-1.07909727e+00 -6.08596981e-01 -1.13707459e+00 2.50969138e-02
-7.23199770e-02 1.07139200e-01 2.48245910e-01 7.05522060e-01
-1.25829887e+00 8.51406276e-01 -1.20802104e+00 -6.62992656e-01
4.34197098e-01 8.74821424e-01 -2.87603527e-01 2.90368408e-01
-9.72296357e-01 7.69189119e-01 2.14694336e-01 -1.74003705e-01
-5.34603059e-01 -1.06448972e+00 -3.45550835e-01 3.18600297e-01
1.24867298e-01 -1.24721527e+00 9.13933337e-01 -9.37456071e-01
-1.45137417e+00 9.20349300e-01 -2.95523167e-01 -7.28760183e-01
2.55159676e-01 -1.25056043e-01 -3.98669899e-01 -1.98008269e-01
2.88334429e-01 4.52823579e-01 8.49062145e-01 -6.55456483e-01
-4.86430615e-01 -6.35850132e-01 -2.17178971e-01 1.62540153e-01
-5.19787312e-01 -1.38370678e-01 -5.02331853e-01 -3.00360799e-01
-3.38191420e-01 -1.18330276e+00 -7.24527165e-02 -1.89107314e-01
-1.32237062e-01 -1.99883953e-01 2.21277416e-01 -7.95906842e-01
1.43851244e+00 -2.18454266e+00 9.35645960e-03 9.87379998e-02
3.88379931e-01 2.21819222e-01 1.76153868e-01 -1.56177238e-01
2.50052195e-02 -1.06575638e-01 -5.19803405e-01 -7.83641040e-01
-1.30325705e-01 3.20013702e-01 5.26409388e-01 6.48974359e-01
-3.14843774e-01 7.11685121e-01 -7.30643094e-01 -1.41704187e-01
-9.30323154e-02 4.29515719e-01 -7.60470092e-01 1.94083884e-01
3.49199712e-01 4.95519757e-01 -1.56578943e-01 2.98060197e-02
3.61918598e-01 -2.67675757e-01 -5.15125431e-02 -1.87215079e-02
-5.02333939e-02 2.45441362e-01 -5.78447521e-01 1.76853085e+00
-6.06807351e-01 5.83132446e-01 -9.39446911e-02 -8.86833549e-01
8.96879554e-01 4.79215607e-02 5.55198729e-01 -7.31879175e-01
1.10916860e-01 1.32353529e-02 6.30156770e-02 -3.75346512e-01
1.80918396e-01 -7.49276161e-01 -1.03096105e-01 4.14914459e-01
2.05537573e-01 4.93713081e-01 1.12529457e-01 -8.62298161e-02
1.19952762e+00 -2.75003165e-01 3.11196715e-01 -5.75053930e-01
5.94350159e-01 -5.17262638e-01 9.84616578e-01 5.60929477e-01
-3.37984085e-01 4.29206133e-01 2.17179492e-01 -3.23838145e-01
-7.99712777e-01 -1.17360795e+00 -2.27032691e-01 9.76039648e-01
-2.10211292e-01 -5.91037929e-01 -1.01695228e+00 -8.82006884e-01
-9.84742790e-02 8.92821491e-01 -7.66528130e-01 -8.27396035e-01
-2.83604205e-01 -1.08952475e+00 5.24460196e-01 5.01498938e-01
6.90799177e-01 -7.76916802e-01 -5.19539356e-01 -2.49152184e-02
-2.14513630e-01 -5.97626328e-01 -7.23219216e-01 3.74859750e-01
-1.04403615e+00 -7.51964271e-01 -6.97065890e-01 -3.60277295e-01
6.63014948e-01 -5.64077199e-02 1.05257189e+00 9.36434492e-02
-1.32499978e-01 2.57998854e-01 6.51383698e-02 -1.59935728e-01
-1.73331589e-01 2.51115799e-01 5.40409803e-01 2.05443904e-01
6.25052571e-01 -9.11035597e-01 -9.22358990e-01 1.90248087e-01
-5.27384222e-01 -3.66455406e-01 5.10325909e-01 8.60047221e-01
6.16090477e-01 1.96415912e-02 6.48340046e-01 -7.95378447e-01
5.69415212e-01 -5.45042336e-01 -4.76435065e-01 8.67169574e-02
-1.38220155e+00 1.00603439e-01 7.47416735e-01 -3.26785356e-01
-9.93470609e-01 -1.89950727e-02 -9.55635682e-02 -4.75210935e-01
-8.88143107e-02 1.12285480e-01 4.88727726e-02 1.61125660e-01
9.03493643e-01 3.19407284e-01 1.54767022e-01 -6.30842984e-01
-7.57308006e-02 6.73033834e-01 4.91120666e-01 -1.31242454e-01
6.84691250e-01 2.84500599e-01 -8.14723819e-02 -9.59509969e-01
-1.02456892e+00 -6.37967169e-01 -6.90684021e-01 6.48571104e-02
1.23542058e+00 -6.67936862e-01 -7.65357196e-01 1.89521238e-01
-4.52707261e-01 -6.86998487e-01 -4.93190259e-01 5.42420089e-01
-5.09750426e-01 2.88654566e-01 -2.67472446e-01 -4.78577822e-01
-8.57860088e-01 -8.00596476e-01 6.26228929e-01 4.74251717e-01
-4.78703946e-01 -1.23894656e+00 2.82998711e-01 4.88495439e-01
4.44513679e-01 -1.58381119e-01 8.10315430e-01 -7.11523235e-01
8.78074542e-02 -1.60440862e-01 2.24566385e-02 7.89995074e-01
4.03135866e-01 -5.74212611e-01 -1.02986217e+00 -4.11451042e-01
3.66394937e-01 8.94091055e-02 9.05809820e-01 5.45074821e-01
1.01862228e+00 -2.58827001e-01 -2.33964622e-01 7.89630949e-01
1.16086590e+00 1.13104060e-01 4.91348505e-01 3.62013191e-01
4.24098849e-01 2.13106796e-01 2.01601118e-01 3.58133197e-01
4.53107476e-01 6.37717247e-01 -2.26212237e-02 8.16429630e-02
-1.08189084e-01 1.27885759e-01 4.79940921e-01 6.94303513e-01
-9.96403694e-02 8.67340788e-02 -7.78160453e-01 3.81663859e-01
-1.74169576e+00 -9.21719551e-01 -8.09248351e-03 2.57565689e+00
8.25325072e-01 2.55512118e-01 4.05218542e-01 -6.37228712e-02
3.55213076e-01 -1.99770868e-01 -6.73544347e-01 -5.41893899e-01
3.84069681e-01 2.90634960e-01 6.29932165e-01 4.87224013e-01
-9.79351103e-01 7.03724980e-01 5.55438185e+00 6.05556488e-01
-1.04615927e+00 4.60722774e-01 3.48226905e-01 -5.10644555e-01
2.32813761e-01 -1.59973174e-01 -8.20498586e-01 9.94848669e-01
1.66044688e+00 -3.54634941e-01 7.91299760e-01 6.78007543e-01
5.79769135e-01 -2.23756850e-01 -9.96516585e-01 1.00457764e+00
1.33307770e-01 -9.46633518e-01 -5.26585102e-01 1.64926156e-01
5.25129378e-01 1.78746119e-01 -9.43799615e-02 4.53257352e-01
-2.61023074e-01 -7.95412242e-01 3.55359882e-01 9.70862448e-01
8.15280080e-01 -7.53655851e-01 7.99527228e-01 6.24647260e-01
-7.48935699e-01 -1.31886080e-01 -4.68218714e-01 6.72598258e-02
-2.39188317e-02 7.72839010e-01 -9.05721009e-01 2.10358620e-01
1.00648773e+00 5.74121058e-01 -8.14825118e-01 1.16266489e+00
-4.31874581e-02 8.31822157e-01 -4.80173558e-01 1.87778249e-01
-1.10426091e-01 -3.49886060e-01 3.71877432e-01 1.10292685e+00
3.27166796e-01 -2.72222832e-02 -1.93171382e-01 9.93028760e-01
-1.70318887e-01 -6.70523942e-02 -1.43921614e-01 3.25130880e-01
7.53682628e-02 1.29680789e+00 -5.62471569e-01 -1.25774294e-01
-3.05649370e-01 1.32010508e+00 4.47203428e-01 1.47822306e-01
-8.12136352e-01 -4.39275444e-01 6.39635921e-01 2.47783452e-01
1.28060341e-01 6.67946860e-02 -3.79631549e-01 -1.05007851e+00
-1.13865152e-01 -3.74494582e-01 5.44035792e-01 -5.72702825e-01
-1.37123501e+00 5.59281349e-01 1.88254705e-03 -8.65030169e-01
-4.54454012e-02 -1.54824138e-01 -8.66318822e-01 1.05382252e+00
-1.08951688e+00 -6.51691854e-01 -3.28642845e-01 6.05932117e-01
4.40466732e-01 -4.80592139e-02 7.93455660e-01 5.56473732e-01
-8.49562049e-01 9.56813991e-01 1.70094952e-01 -2.46268407e-01
9.46653664e-01 -1.50021684e+00 -8.50029383e-03 6.22137666e-01
-1.59412697e-01 9.18580234e-01 5.78173816e-01 -5.69794655e-01
-7.51603723e-01 -1.17429900e+00 1.10608482e+00 -4.38449562e-01
3.95887852e-01 -2.97430843e-01 -1.00220764e+00 6.80553913e-01
-8.98436755e-02 -2.71550089e-01 1.10779190e+00 4.88542706e-01
1.42359242e-01 -7.11353898e-01 -1.27848744e+00 4.21969086e-01
7.82090068e-01 -3.36076170e-01 -6.93598986e-01 2.40099370e-01
2.78785288e-01 6.91025779e-02 -1.06316519e+00 1.29682228e-01
6.20304525e-01 -1.06023192e+00 7.76203573e-01 -2.42919609e-01
-2.17308983e-01 -3.45568508e-02 1.54606700e-01 -1.41348529e+00
-6.68421030e-01 -5.80947101e-01 1.77120999e-01 1.13982904e+00
4.43480164e-01 -5.65191507e-01 8.93663108e-01 1.02641284e+00
-3.44817072e-01 -7.36481786e-01 -1.08680356e+00 -9.35714424e-01
1.68123394e-01 -2.29714498e-01 2.49252468e-01 4.68269646e-01
-3.49299610e-02 7.27579534e-01 -3.86484385e-01 1.21104149e-02
7.41688430e-01 -1.94223493e-01 5.80860913e-01 -1.47340560e+00
-3.20408106e-01 -1.98647007e-01 -2.51812905e-01 -6.70943379e-01
1.73074320e-01 -1.18559754e+00 7.47340638e-03 -1.43980074e+00
4.70029056e-01 -4.04842675e-01 -6.72760665e-01 6.60886168e-01
-2.15064615e-01 3.58875245e-01 4.07972634e-02 2.28001535e-01
-5.50962090e-01 6.04814589e-01 8.58508229e-01 7.77077973e-02
-7.45966315e-01 5.33164203e-01 -8.64358366e-01 7.67552316e-01
1.18479264e+00 -7.56393313e-01 -5.92720211e-01 -9.84450504e-02
-3.16972025e-02 -1.32617980e-01 2.15911120e-01 -1.22776735e+00
1.65863872e-01 2.10536137e-01 6.16466701e-01 4.73076449e-04
5.05363524e-01 -6.10056639e-01 2.02830404e-01 5.20135343e-01
-1.10888705e-01 -2.33892113e-01 2.20243543e-01 5.78472316e-01
4.08716440e-01 -2.14061663e-01 1.09931779e+00 1.29870167e-02
-3.15131664e-01 1.46474198e-01 -3.94845933e-01 1.19496182e-01
6.98600054e-01 -2.62004673e-01 -3.97995003e-02 -1.29383206e-01
-1.17402935e+00 2.75909990e-01 4.58724260e-01 2.09227309e-01
2.30889738e-01 -8.60990107e-01 -3.29027146e-01 5.21389484e-01
-7.94175714e-02 -4.40251619e-01 3.58292013e-01 1.41699326e+00
5.32921366e-02 3.12742084e-01 -3.34867328e-01 -4.77081150e-01
-1.27621400e+00 3.41207147e-01 6.02596819e-01 -2.89973050e-01
-7.34399915e-01 8.20099711e-01 1.14548028e-01 -8.88958573e-02
1.20801076e-01 -4.42459285e-01 -6.02267049e-02 -1.25334505e-02
3.07800740e-01 6.45371497e-01 3.11530888e-01 -4.65761185e-01
-5.44072866e-01 5.61325788e-01 -6.89097568e-02 1.43401131e-01
1.30092752e+00 -3.10827762e-01 -4.73616272e-02 7.28158057e-01
1.27143764e+00 8.65026787e-02 -1.18399608e+00 1.63116343e-02
-3.88955362e-02 -6.52286410e-02 1.83983058e-01 -9.93907690e-01
-1.02315688e+00 6.05181754e-01 1.05278242e+00 1.40045419e-01
1.31029487e+00 -1.80700179e-02 9.36255395e-01 3.38727266e-01
3.73328365e-02 -1.05049992e+00 -2.99801350e-01 2.64124900e-01
5.56663930e-01 -1.03485763e+00 1.42342165e-01 3.62951130e-01
-7.15519667e-01 7.16596961e-01 6.10863626e-01 -2.99047470e-01
7.51010120e-01 -1.47315040e-01 -7.77190849e-02 -1.00485757e-01
-5.09931445e-01 -8.63872096e-02 5.55635810e-01 5.38347185e-01
1.26440242e-01 6.06446229e-02 -5.54517806e-01 1.17502391e+00
-3.75502259e-01 2.08428010e-01 2.79229701e-01 4.26873356e-01
-5.46223998e-01 -1.04734325e+00 -1.14170248e-02 8.47341120e-01
-6.07072771e-01 1.08330034e-01 -1.01476155e-01 5.29105842e-01
3.53959143e-01 9.24202383e-01 1.62309736e-01 -5.28315723e-01
4.28482533e-01 5.55607915e-01 1.93929061e-01 -8.28116834e-01
-6.75078213e-01 -1.20135639e-02 -1.77949026e-01 -6.15040600e-01
-3.21432471e-01 -6.11286819e-01 -1.39290285e+00 -3.71898830e-01
-1.04578435e-01 4.04263854e-01 3.57841849e-01 9.68105018e-01
5.74872553e-01 5.53606629e-01 4.55628991e-01 -7.36000657e-01
-5.53187668e-01 -8.96255970e-01 -7.97775388e-01 2.68071026e-01
4.77414697e-01 -6.70809448e-01 -5.58074772e-01 4.97541614e-02] | [13.450603485107422, 3.5114126205444336] |
a90b59b5-1214-493d-bbf8-ccabbb0e16ad | swim-a-general-purpose-high-performing-and | 2303.0264 | null | https://arxiv.org/abs/2303.02640v1 | https://arxiv.org/pdf/2303.02640v1.pdf | Swim: A General-Purpose, High-Performing, and Efficient Activation Function for Locomotion Control Tasks | Activation functions play a significant role in the performance of deep learning algorithms. In particular, the Swish activation function tends to outperform ReLU on deeper models, including deep reinforcement learning models, across challenging tasks. Despite this progress, ReLU is the preferred function partly because it is more efficient than Swish. Furthermore, in contrast to the fields of computer vision and natural language processing, the deep reinforcement learning and robotics domains have seen less inclination to adopt new activation functions, such as Swish, and instead continue to use more traditional functions, like ReLU. To tackle those issues, we propose Swim, a general-purpose, efficient, and high-performing alternative to Swish, and then provide an analysis of its properties as well as an explanation for its high-performance relative to Swish, in terms of both reward-achievement and efficiency. We focus on testing Swim on MuJoCo's locomotion continuous control tasks since they exhibit more complex dynamics and would therefore benefit most from a high-performing and efficient activation function. We also use the TD3 algorithm in conjunction with Swim and explain this choice in the context of the robot locomotion domain. We then conclude that Swim is a state-of-the-art activation function for continuous control locomotion tasks and recommend using it with TD3 as a working framework. | ['Tony Dear', 'Maryam Abdool'] | 2023-03-05 | null | null | null | null | ['continuous-control'] | ['playing-games'] | [-3.39265764e-01 -2.62679905e-01 -1.39835507e-01 7.35818818e-02
-2.64555030e-03 -3.12740952e-01 6.89474463e-01 -1.03295773e-01
-9.36151981e-01 1.05346036e+00 9.60328430e-02 -1.81308404e-01
-5.53070068e-01 -8.60857725e-01 -5.65240264e-01 -7.82691061e-01
-2.75516063e-01 5.50689220e-01 2.54580021e-01 -7.83987701e-01
2.63202280e-01 3.08376878e-01 -1.88452625e+00 -2.37906709e-01
8.18162739e-01 4.20904696e-01 3.94966245e-01 5.18912256e-01
1.91668287e-01 8.32516789e-01 -6.41526401e-01 1.46424294e-01
-1.80612933e-02 -7.26892471e-01 -1.10689867e+00 -4.19600725e-01
-3.00089896e-01 -1.17025219e-01 7.21867830e-02 4.00796741e-01
7.17177629e-01 6.71504796e-01 7.04489827e-01 -1.28867447e+00
-2.86524773e-01 6.42368317e-01 -3.91687185e-01 2.55218327e-01
1.51649430e-01 4.08824176e-01 1.02753413e+00 -5.38423538e-01
8.02916348e-01 1.18855417e+00 7.27590322e-01 7.42273152e-01
-1.23361325e+00 -3.72266054e-01 1.65942963e-02 1.55549258e-01
-9.13776159e-01 -2.18580320e-01 3.59782308e-01 -9.38143283e-02
1.42233849e+00 -1.21740751e-01 9.92144465e-01 1.28068984e+00
4.45736408e-01 1.13369572e+00 8.78581107e-01 -3.23446423e-01
5.59259176e-01 -4.55067575e-01 -2.26793930e-01 7.08192348e-01
3.14790696e-01 4.17257458e-01 -4.10046071e-01 2.01852769e-01
6.86735392e-01 -3.46607536e-01 -1.00929163e-01 -7.60818481e-01
-1.10072327e+00 1.12600839e+00 8.35520864e-01 6.90702975e-01
-5.50962389e-01 8.16756546e-01 5.44358611e-01 3.91631752e-01
9.20407940e-03 1.06235433e+00 -4.21448201e-01 -7.23866463e-01
-5.72646558e-01 9.00910497e-01 6.23941004e-01 2.90369928e-01
7.42517948e-01 4.28613782e-01 1.09378900e-02 1.01814806e+00
8.75257049e-03 6.99023753e-02 8.33904326e-01 -1.22138572e+00
2.92673032e-03 4.46971267e-01 -1.58924870e-02 -6.98787510e-01
-7.81878233e-01 -6.20271027e-01 -5.35374105e-01 8.57047558e-01
3.35545510e-01 -2.66146958e-01 -6.52887225e-01 1.95304489e+00
5.80324903e-02 -2.42058650e-01 1.62365939e-02 1.06892860e+00
3.28798175e-01 6.44129276e-01 1.50415778e-01 1.11614287e-01
8.97162139e-01 -9.59806204e-01 -3.00307184e-01 -2.99663782e-01
1.05246079e+00 -1.25508130e-01 1.32261598e+00 6.16664290e-01
-1.06745005e+00 -5.73160172e-01 -1.15026116e+00 2.80799009e-02
-5.75374663e-01 -2.43172944e-01 1.08217108e+00 4.83289450e-01
-1.17241740e+00 1.06375575e+00 -1.09023249e+00 -6.93095624e-01
3.50121677e-01 4.47257549e-01 -3.17838252e-01 1.10108696e-01
-1.07980621e+00 1.41399217e+00 6.45719111e-01 -2.65397370e-01
-8.41443360e-01 -3.73351395e-01 -7.24015653e-01 2.04736054e-01
3.26229960e-01 -8.26829016e-01 1.32695007e+00 -8.47171605e-01
-1.60441935e+00 6.33559525e-01 3.97941589e-01 -8.42151642e-01
4.19778347e-01 -2.97832876e-01 1.90056369e-01 -3.47185172e-02
1.09683856e-01 1.13080215e+00 5.36299765e-01 -1.02636898e+00
-7.54661679e-01 -9.85315815e-02 1.69289216e-01 3.46745282e-01
-1.81407213e-01 -3.46801311e-01 1.77999288e-01 -4.43991542e-01
-3.52545142e-01 -9.99901831e-01 -1.68661579e-01 -4.41472977e-02
3.66346031e-01 -5.90659022e-01 1.01703238e+00 1.64314061e-02
1.10810375e+00 -1.93004274e+00 4.73217666e-01 -7.44173527e-02
3.33918668e-02 2.45583490e-01 -2.86634028e-01 5.02587497e-01
9.65653062e-02 -7.64704868e-02 -5.72430193e-01 -1.22515678e-01
1.92872003e-01 8.75066817e-01 1.73139408e-01 3.85653943e-01
4.03344721e-01 1.05874300e+00 -1.28346086e+00 -2.17257246e-01
3.00213784e-01 2.66114473e-01 -9.20877159e-01 3.55648459e-03
-2.38241196e-01 3.06730628e-01 -2.29998231e-01 3.62138331e-01
9.30438116e-02 1.34825304e-01 3.69595317e-03 4.38928574e-01
-3.96972239e-01 1.36139065e-01 -8.88789058e-01 1.87854755e+00
-6.49604142e-01 7.42468655e-01 8.07219297e-02 -1.36391640e+00
9.82743561e-01 -7.97311291e-02 6.70891583e-01 -1.10267437e+00
2.42821619e-01 4.97896671e-01 4.90664423e-01 -5.10685265e-01
6.89477324e-01 -2.07984626e-01 -3.20995376e-02 5.37625253e-01
2.46140376e-01 -4.58672374e-01 6.79726422e-01 2.13766191e-02
1.41313398e+00 9.78561878e-01 2.62085587e-01 -6.98392332e-01
2.33708799e-01 5.59221953e-02 3.29413623e-01 6.74983203e-01
-3.06154251e-01 2.75106907e-01 4.55960959e-01 -4.13829178e-01
-9.39282179e-01 -8.55324805e-01 -1.98617447e-02 1.43436420e+00
8.87654126e-02 -2.07733661e-01 -6.35359585e-01 -4.68215764e-01
8.56794715e-02 8.40100169e-01 -8.73104513e-01 -2.88631201e-01
-9.02971387e-01 -8.31947923e-01 7.38416314e-01 6.11472845e-01
6.63137496e-01 -1.75177634e+00 -1.68422282e+00 5.28934181e-01
8.63136202e-02 -3.64968926e-01 2.18116909e-01 8.81932020e-01
-7.62574375e-01 -1.01198554e+00 -8.11408162e-01 -7.06439853e-01
4.93921936e-02 3.57983634e-02 1.20705831e+00 3.14908266e-01
-3.34069431e-01 3.17428261e-01 -7.32741117e-01 -2.71758407e-01
-4.39927280e-01 3.36715281e-01 5.38855381e-02 -7.14542270e-01
-5.31124584e-02 -6.90263689e-01 -5.27077198e-01 3.07412922e-01
-1.02607584e+00 -1.61486730e-01 5.46461403e-01 1.22220469e+00
3.63609232e-02 5.33817410e-02 7.91963935e-01 -4.05768752e-01
1.00640142e+00 -5.59813380e-01 -2.92419106e-01 -2.91925162e-01
-6.40973568e-01 4.00955588e-01 6.91113770e-01 -3.12632650e-01
-7.88245678e-01 -1.54574558e-01 -5.43410897e-01 -3.45045999e-02
3.06921862e-02 6.87641203e-01 3.60892445e-01 8.36948399e-03
9.99312460e-01 6.02043904e-02 3.12359035e-01 -2.01179981e-01
1.76451698e-01 1.09048374e-01 3.07941884e-01 -9.58296001e-01
2.84938753e-01 1.57431468e-01 2.83422824e-02 -1.03773165e+00
-1.81663543e-01 -1.34497777e-01 -2.14314789e-01 -2.40798980e-01
8.04491878e-01 -3.26006085e-01 -1.02743185e+00 4.48787242e-01
-7.92839587e-01 -9.33846295e-01 -5.96428931e-01 3.98545355e-01
-1.12285233e+00 1.48040920e-01 -6.02660000e-01 -8.85704279e-01
1.05324453e-02 -1.19709027e+00 7.76148498e-01 2.17269838e-01
-4.88472998e-01 -1.11572647e+00 2.99036562e-01 -1.75171152e-01
7.69358039e-01 5.43423653e-01 1.01392996e+00 -2.40758926e-01
2.16490671e-01 3.35222095e-01 -3.74372043e-02 2.36543849e-01
-5.70129193e-02 1.00878906e-02 -6.37348056e-01 -4.22448069e-01
-2.15787292e-01 -7.94769943e-01 1.08500886e+00 4.12894636e-01
7.24116623e-01 1.80485770e-01 -5.94614074e-02 4.42141384e-01
1.37935579e+00 4.41819400e-01 6.73417926e-01 9.12512660e-01
8.20018500e-02 6.66413367e-01 5.89686513e-01 4.20127779e-01
1.49556682e-01 7.08485305e-01 9.77097034e-01 -4.42541391e-02
1.32846847e-01 -2.62942940e-01 6.06513500e-01 4.88899678e-01
-2.92126238e-01 -3.46621394e-01 -9.61971939e-01 5.07428288e-01
-2.15217614e+00 -1.03529346e+00 7.22133890e-02 1.76600122e+00
4.36380237e-01 2.38252550e-01 6.23805225e-01 5.34168541e-01
2.05387682e-01 6.88712671e-02 -5.23976803e-01 -9.08596992e-01
-2.04394177e-01 5.94406843e-01 2.69727498e-01 2.07375810e-01
-8.75475466e-01 1.05954051e+00 6.82571363e+00 7.48944342e-01
-1.15109456e+00 -1.75810024e-01 2.50148267e-01 -2.69349292e-02
5.02281971e-02 -2.55251616e-01 -3.49194199e-01 5.12959599e-01
9.84214127e-01 1.69006497e-01 6.71440065e-01 8.98880780e-01
2.23904446e-01 -5.47461927e-01 -9.73464310e-01 6.60757840e-01
-3.08851987e-01 -1.22049034e+00 -1.86309099e-01 1.64352059e-01
4.99996811e-01 1.82986841e-01 -1.02722026e-01 8.82995248e-01
6.36320353e-01 -1.30747008e+00 7.82204270e-01 -1.20355405e-01
2.48996362e-01 -9.88935351e-01 8.36302102e-01 4.93177146e-01
-1.00388324e+00 -4.41641271e-01 -4.45417702e-01 -5.83790481e-01
-7.51799867e-02 -3.73471528e-02 -5.18050373e-01 4.84804064e-01
8.33315432e-01 8.00152481e-01 -3.13906759e-01 9.48060274e-01
-2.34160841e-01 5.27798533e-01 -2.46486887e-01 -5.51603258e-01
8.58715773e-01 -1.65488765e-01 2.88641721e-01 1.27697635e+00
4.06407475e-01 -2.83841997e-01 -1.80966463e-02 7.95188904e-01
2.40305603e-01 -9.68657732e-02 -8.82838845e-01 -5.35005853e-02
5.69716915e-02 9.43025112e-01 -8.09144318e-01 -2.03214288e-02
6.89196065e-02 7.56531775e-01 4.88164634e-01 1.16974212e-01
-9.04267848e-01 -4.86739367e-01 8.38468909e-01 -2.91973129e-02
2.80346662e-01 -4.55924869e-01 -1.96099758e-01 -6.90542102e-01
-4.14455444e-01 -7.69170403e-01 2.49647453e-01 -1.03260744e+00
-8.08103740e-01 4.88123417e-01 3.95746380e-02 -1.14253354e+00
-6.10516548e-01 -8.27166319e-01 -5.87097764e-01 4.56417084e-01
-1.42776585e+00 -7.07905531e-01 -1.29732072e-01 5.48458755e-01
7.38592863e-01 -8.25125277e-02 7.70128727e-01 1.11636661e-01
-3.46057951e-01 1.40885800e-01 -1.19713200e-02 -1.71783417e-01
2.78238773e-01 -1.32351363e+00 2.89059430e-01 5.48982859e-01
-3.59888226e-02 4.06347394e-01 8.46326113e-01 -2.03765213e-01
-1.35532439e+00 -6.21821105e-01 2.83658326e-01 -2.90244222e-01
6.16414189e-01 -1.27846733e-01 -6.61767066e-01 2.00407341e-01
4.48967606e-01 -3.80602986e-01 1.35446265e-01 1.39858469e-01
1.90195695e-01 1.66410908e-01 -1.11496127e+00 7.66393185e-01
1.34238338e+00 2.19471559e-01 -7.66860545e-01 -2.36412436e-01
3.30641836e-01 -1.32384360e-01 -5.14794230e-01 3.04975718e-01
7.11607039e-01 -1.37288427e+00 8.24671030e-01 -4.90721643e-01
7.93798625e-01 -2.03035310e-01 2.21498664e-02 -1.85705519e+00
-5.88770390e-01 -4.32112068e-01 1.26077339e-01 6.84575558e-01
2.57845283e-01 -7.49406695e-01 1.01079822e+00 -8.10796991e-02
-4.01311517e-01 -1.03293979e+00 -1.04424393e+00 -1.18222797e+00
4.63939577e-01 -3.13409358e-01 2.28707790e-01 8.08365464e-01
1.91756085e-01 4.93689686e-01 -4.01206374e-01 -8.29909742e-01
1.35870978e-01 -7.70810097e-02 9.20361400e-01 -1.24553120e+00
-3.41743499e-01 -8.40726674e-01 -4.05501693e-01 -8.22162569e-01
1.43107891e-01 -8.52300048e-01 4.42019224e-01 -1.73239863e+00
-3.37439567e-01 -3.71667892e-01 -3.01033527e-01 7.32346058e-01
2.53573172e-02 2.38383636e-01 2.59147525e-01 -1.49623665e-04
-4.41447347e-01 8.96621048e-01 1.33721519e+00 1.32399891e-02
-4.00807798e-01 -3.13883722e-01 -6.49915576e-01 5.55940986e-01
9.81786251e-01 -3.02405000e-01 -5.18725038e-01 -4.61544514e-01
3.87220651e-01 -1.13682747e-01 1.02707125e-01 -1.35728145e+00
-1.81800678e-01 -2.13108823e-01 2.76917458e-01 -2.18918920e-02
3.84036690e-01 -6.56499863e-01 -2.15355590e-01 1.15034986e+00
-2.09409401e-01 4.33352411e-01 3.31450373e-01 3.09582502e-02
-2.13860393e-01 -3.34300965e-01 1.01675987e+00 -2.73692191e-01
-9.73482251e-01 -7.74044767e-02 -1.02745676e+00 1.01859078e-01
9.52916026e-01 -6.42151177e-01 -2.66819239e-01 -2.31284112e-01
-5.00446260e-01 5.40848017e-01 5.26964128e-01 6.70413673e-01
4.86143023e-01 -9.98503149e-01 -7.05646813e-01 2.08053038e-01
-1.85930077e-02 -1.42337069e-01 -4.02456671e-02 7.80752540e-01
-8.60350013e-01 2.94888437e-01 -9.60180283e-01 -5.10728836e-01
-7.88896918e-01 3.51545185e-01 4.18084204e-01 -4.71224278e-01
-6.77651346e-01 7.79715598e-01 9.67515334e-02 -4.58753705e-01
5.12651242e-02 -4.87056911e-01 -2.31263638e-01 6.63622394e-02
-1.13361962e-02 5.47846198e-01 2.33890526e-02 -6.94880709e-02
-5.11616409e-01 3.55404377e-01 4.76950020e-01 -2.99602628e-01
1.56981099e+00 3.53607565e-01 1.14089333e-01 3.01059663e-01
8.76249075e-01 -5.62944353e-01 -1.25673342e+00 3.58457237e-01
2.35697642e-01 -1.74227938e-01 -9.92084295e-02 -8.14143777e-01
-9.02639508e-01 9.19328690e-01 4.36283976e-01 2.87073702e-01
9.92907405e-01 -3.86055946e-01 5.85594296e-01 6.35371447e-01
5.86841524e-01 -1.38277376e+00 3.90251637e-01 9.16778445e-01
9.69261527e-01 -9.45496619e-01 -1.92047618e-02 4.49831069e-01
-6.17420912e-01 1.06491816e+00 8.92217636e-01 -6.02641523e-01
7.82334507e-02 3.23608369e-01 -1.55028477e-01 1.03861252e-02
-1.04269838e+00 -5.50607443e-01 -5.01969099e-01 8.09146047e-01
5.18571198e-01 -1.73941255e-01 -7.10876107e-01 -3.88753377e-02
-3.06829542e-01 1.81477442e-01 4.41401094e-01 1.29531789e+00
-6.89119697e-01 -1.22766328e+00 -4.81816605e-02 2.46771172e-01
-1.43217564e-01 2.55131155e-01 -2.56691068e-01 1.26425803e+00
1.70882836e-01 7.72498846e-01 1.26051083e-02 -3.54711741e-01
3.80012572e-01 -4.04848978e-02 6.73846960e-01 -4.38958764e-01
-1.10972226e+00 -2.95441449e-01 1.75140858e-01 -5.44640362e-01
-4.28870112e-01 -4.48672384e-01 -1.45365465e+00 -4.72985327e-01
6.23764060e-02 4.30459380e-01 7.59828687e-01 8.58973742e-01
7.74743780e-02 7.03613520e-01 3.25281471e-01 -1.26561928e+00
-4.42514837e-01 -8.72711182e-01 -6.02383912e-01 3.42024714e-01
1.66691408e-01 -1.13893354e+00 -1.66689038e-01 -4.96608496e-01] | [4.070342063903809, 1.4033290147781372] |
387537bf-3aee-4b50-9757-8d9f6f560c0d | attention-based-clinical-note-summarization | 2104.08942 | null | https://arxiv.org/abs/2104.08942v3 | https://arxiv.org/pdf/2104.08942v3.pdf | Attention-based Clinical Note Summarization | In recent years, the trend of deploying digital systems in numerous industries has hiked. The health sector has observed an extensive adoption of digital systems and services that generate significant medical records. Electronic health records contain valuable information for prospective and retrospective analysis that is often not entirely exploited because of the complicated dense information storage. The crude purpose of condensing health records is to select the information that holds most characteristics of the original documents based on a reported disease. These summaries may boost diagnosis and save a doctor's time during a saturated workload situation like the COVID-19 pandemic. In this paper, we are applying a multi-head attention-based mechanism to perform extractive summarization of meaningful phrases on clinical notes. Our method finds major sentences for a summary by correlating tokens, segments, and positional embeddings of sentences in a clinical note. The model outputs attention scores that are statistically transformed to extract critical phrases for visualization on the heat-mapping tool and for human use. | ['Giuseppe Rizzo', 'Neel Kanwal'] | 2021-04-18 | null | null | null | null | ['clinical-information-retreival'] | ['natural-language-processing'] | [ 5.19114077e-01 4.23749626e-01 -2.12415248e-01 -2.34187752e-01
-1.11116445e+00 -3.26096326e-01 2.40478635e-01 1.31123590e+00
-3.47501695e-01 6.31152630e-01 1.27010858e+00 -3.55603844e-01
-3.14826101e-01 -5.49315453e-01 -1.72714040e-01 -6.43577993e-01
-2.98116356e-01 6.10524416e-01 -2.93369651e-01 -3.20881084e-02
5.48318207e-01 3.73992652e-01 -1.22501874e+00 7.83858299e-01
8.55016172e-01 4.84456003e-01 4.06021655e-01 9.71525431e-01
-4.24703270e-01 5.58007240e-01 -9.32855904e-01 -2.38218322e-01
-1.53556004e-01 -6.13926411e-01 -7.59573817e-01 -3.24845612e-01
-5.18691167e-02 -1.34215012e-01 -1.65621132e-01 9.57951725e-01
9.98660862e-01 -8.65384489e-02 4.67997164e-01 -6.14411116e-01
-6.46633565e-01 7.74731040e-01 -4.09103274e-01 6.65197790e-01
6.56413615e-01 -2.30750497e-02 8.90053511e-01 -6.56492472e-01
1.05369818e+00 9.90063369e-01 6.64799511e-01 3.53891760e-01
-9.57796097e-01 -4.59028929e-02 -3.78049016e-01 -8.26448649e-02
-1.14530766e+00 -2.94666886e-01 5.14735222e-01 -4.51700300e-01
1.26123476e+00 8.28164041e-01 8.21338117e-01 7.72357523e-01
8.26166987e-01 5.98688722e-01 4.66188699e-01 -2.78123885e-01
2.00484306e-01 2.57201105e-01 2.81240284e-01 4.01259512e-01
5.63252628e-01 -6.78900957e-01 -4.26406235e-01 -6.60146415e-01
4.07233275e-02 6.34894788e-01 -2.97877729e-01 5.17332017e-01
-1.40683019e+00 9.25348163e-01 3.48333150e-01 4.44903940e-01
-9.98149335e-01 -3.64635944e-01 7.45578229e-01 3.02770711e-03
6.97631061e-01 1.03858900e+00 -1.95491344e-01 -3.73302490e-01
-1.20682085e+00 5.07564187e-01 6.08966410e-01 7.02496231e-01
3.52578722e-02 -6.77249074e-01 -7.85954416e-01 4.22039062e-01
-7.71834254e-02 5.09583175e-01 8.92377853e-01 -3.74914706e-01
5.15574276e-01 1.05775642e+00 -2.02396080e-01 -1.15712237e+00
-6.42468691e-01 -3.07517022e-01 -1.01491725e+00 -6.77286506e-01
-3.03424209e-01 -3.02470684e-01 -8.50985944e-01 1.01714635e+00
3.16987038e-01 -1.99161842e-01 1.04507901e-01 5.68352640e-01
8.05571496e-01 9.11589622e-01 2.57375330e-01 -3.49912673e-01
1.71584082e+00 -4.92071986e-01 -1.18105114e+00 7.60866627e-02
8.53426337e-01 -7.86217153e-01 7.38111496e-01 4.86792922e-02
-1.20122743e+00 -8.58578011e-02 -7.70084918e-01 -3.75814289e-01
-5.57590425e-01 -2.91192412e-01 1.32404312e-01 2.47959882e-01
-8.77077401e-01 6.29555285e-01 -8.61669660e-01 -7.03850329e-01
8.04119647e-01 1.00409918e-01 -1.71323478e-01 2.87729688e-03
-9.27885890e-01 8.55785191e-01 1.90717950e-01 -2.95053005e-01
-1.24795943e-01 -1.08699930e+00 -6.91775918e-01 3.61325294e-01
-2.28868052e-02 -9.47369933e-01 9.99623299e-01 -1.23849191e-01
-6.14056051e-01 7.09921837e-01 -2.83300608e-01 -5.13037443e-01
1.16974212e-01 -1.91875145e-01 -3.11448514e-01 4.05762255e-01
1.10040784e-01 3.80262643e-01 3.16256136e-01 -5.98419428e-01
-6.49775267e-01 -6.64867222e-01 -6.57201648e-01 2.31314361e-01
-4.82409418e-01 1.74715847e-01 -2.39236027e-01 -7.69799769e-01
-1.41835049e-01 -6.79362059e-01 -6.35438561e-01 -5.63083589e-01
-8.10226262e-01 -7.97624961e-02 6.72673345e-01 -1.20175254e+00
1.95058417e+00 -1.90249789e+00 5.59156351e-02 9.56011340e-02
4.36694652e-01 2.81684399e-01 2.27145836e-01 8.88936162e-01
1.05092905e-01 4.78061467e-01 -3.26762885e-01 -2.25018531e-01
-3.02259654e-01 -7.49949217e-02 -3.50521743e-01 2.17201486e-01
4.20740843e-01 1.05513215e+00 -9.32211101e-01 -7.84534395e-01
-1.94929168e-01 6.58556342e-01 -7.81735420e-01 3.73771757e-01
-8.86453241e-02 2.75462866e-01 -5.86775184e-01 6.93330824e-01
3.46639782e-01 -5.79414427e-01 2.82456428e-01 -8.75729620e-02
-1.31359637e-01 6.80895150e-01 -3.84846807e-01 1.73839045e+00
-9.14828107e-03 6.35182142e-01 -3.14132899e-01 -5.26935935e-01
6.27506316e-01 4.56345141e-01 7.61604249e-01 -4.30196613e-01
1.01620279e-01 -1.24439456e-01 -1.32267356e-01 -1.05391061e+00
9.63353872e-01 -4.94315885e-02 -3.17841589e-01 5.47214091e-01
-4.30746496e-01 1.42345726e-02 -4.38465253e-02 5.28757691e-01
1.54804659e+00 -5.40761769e-01 6.59629583e-01 -1.67575851e-01
-4.94071096e-02 4.34001327e-01 3.16346407e-01 6.89641833e-01
1.29185813e-02 8.38986099e-01 6.14683628e-01 -3.15909773e-01
-1.27766323e+00 -6.14781320e-01 -2.22345471e-01 6.53553665e-01
-3.56074393e-01 -5.07475734e-01 -5.99092245e-01 -4.08642888e-01
5.93268611e-02 7.91611731e-01 -6.73561633e-01 -2.68690586e-01
-5.16124547e-01 -7.66870737e-01 4.19095159e-01 3.17507505e-01
-2.97641039e-01 -1.41059828e+00 -1.34415591e+00 4.02199417e-01
-3.72483075e-01 -5.14188826e-01 -6.80418670e-01 1.12581387e-01
-9.52158213e-01 -6.74905837e-01 -8.86463284e-01 -6.40239537e-01
8.79966199e-01 -2.53060926e-03 9.65066731e-01 -8.36491734e-02
-8.25148642e-01 1.13729604e-01 -3.54230493e-01 -8.26798439e-01
-4.49226707e-01 3.51297319e-01 -1.80448517e-01 -3.91863942e-01
7.15753376e-01 -1.65949121e-01 -8.46561730e-01 -6.70189083e-01
-1.13747489e+00 1.25861675e-01 6.93351030e-01 6.64418161e-01
6.57099128e-01 -1.84965700e-01 7.16603518e-01 -1.14720786e+00
1.30252755e+00 -1.03211451e+00 1.23597056e-01 2.50904202e-01
-6.38929367e-01 1.47955790e-01 4.47902769e-01 1.06197760e-01
-6.41539216e-01 -2.17008218e-01 -1.14010036e-01 -1.39577001e-01
-2.93704215e-02 9.43339527e-01 3.95346761e-01 1.01349211e+00
4.57615018e-01 2.02559814e-01 1.41165316e-01 -5.83142459e-01
9.82980505e-02 1.15010524e+00 3.60012501e-01 3.16003412e-01
1.10333629e-01 2.61677384e-01 -3.02659541e-01 -9.40103889e-01
-5.95002115e-01 -7.96483755e-01 -4.34562832e-01 1.57389659e-02
1.12883389e+00 -5.11634469e-01 -6.67598546e-01 -2.94255555e-01
-1.23971212e+00 3.87853712e-01 -6.22669399e-01 3.88608724e-01
2.69570923e-03 2.25884601e-01 -4.39466387e-01 -6.70537949e-01
-1.01989019e+00 -9.12524045e-01 1.16625404e+00 3.13941419e-01
-9.10471320e-01 -7.60792851e-01 6.22523606e-01 7.15065673e-02
4.23438787e-01 3.84024471e-01 1.23321533e+00 -1.05658448e+00
-2.50570953e-01 -5.72845042e-01 -5.59160896e-02 -1.22408934e-01
5.03657222e-01 -1.32300392e-01 -7.81966984e-01 -1.50870457e-01
-8.18340182e-02 2.30793938e-01 8.00482392e-01 7.53403664e-01
1.21824729e+00 -8.19857895e-01 -7.10390091e-01 3.51637155e-01
1.21267104e+00 5.02997577e-01 5.27012110e-01 5.04522026e-02
5.12276769e-01 7.16625750e-01 4.53421324e-01 7.20267832e-01
3.01382095e-01 2.06869662e-01 -9.63987187e-02 -2.42655337e-01
2.16090217e-01 -2.19466224e-01 3.68689634e-02 1.22519946e+00
2.89803207e-01 -3.72314692e-01 -1.12788081e+00 9.42656219e-01
-1.64863622e+00 -1.19478238e+00 2.29910403e-01 2.06133032e+00
1.06564510e+00 -7.82196671e-02 -4.10773344e-02 -1.44009873e-01
5.44832170e-01 -1.05690071e-02 -4.77749079e-01 -7.69263685e-01
2.60483801e-01 2.38424003e-01 5.90420961e-01 1.77562639e-01
-7.77809441e-01 1.49282560e-01 6.30420446e+00 2.25586653e-01
-1.08081317e+00 -4.02963497e-02 8.33688796e-01 -4.06052828e-01
-5.47798395e-01 -6.33847654e-01 -6.12840354e-01 6.98951483e-01
1.42825139e+00 -6.60049736e-01 -2.79334009e-01 6.93413079e-01
6.07487440e-01 -1.87684953e-01 -9.89602923e-01 7.75213838e-01
1.56215280e-01 -1.82144260e+00 2.63176918e-01 3.08480471e-01
6.39110386e-01 -2.51113065e-02 2.29843214e-01 -1.78611517e-01
2.17352360e-02 -9.83721256e-01 9.12183523e-02 7.56735086e-01
7.79591501e-01 -7.10369289e-01 1.09836769e+00 6.68539926e-02
-5.56004941e-01 -1.36419162e-02 -3.52391809e-01 3.36273104e-01
4.39876914e-01 6.92021787e-01 -1.73520231e+00 5.42891443e-01
5.62424004e-01 6.05058193e-01 -5.56504190e-01 1.24073493e+00
5.57670534e-01 6.28066957e-01 -3.72687504e-02 -3.08222383e-01
2.14797735e-01 -5.48126623e-02 7.25746214e-01 1.73034084e+00
7.00036585e-01 2.75139153e-01 -1.26064479e-01 5.61953843e-01
-1.65634841e-01 4.54588890e-01 -1.03101921e+00 -6.92593753e-01
4.52300876e-01 1.23055744e+00 -9.24521983e-01 -6.36405647e-01
-7.20073804e-02 8.93846333e-01 -2.18822435e-01 -1.02423936e-01
-5.30262291e-01 -7.30844617e-01 6.14362359e-01 3.95549119e-01
2.13149428e-01 2.18921214e-01 -7.01165318e-01 -7.45244622e-01
-1.24164157e-01 -8.85502160e-01 5.34074426e-01 -5.47469556e-01
-8.99537086e-01 8.16057980e-01 -1.91740960e-01 -1.08814967e+00
-3.85040134e-01 4.45195735e-02 -5.26657879e-01 8.74703467e-01
-1.02168918e+00 -5.07376432e-01 -7.46832266e-02 5.22982180e-02
6.42494619e-01 -1.39199421e-01 1.22642016e+00 3.80056560e-01
-6.50172889e-01 2.16473877e-01 2.90478230e-01 2.28280723e-02
6.57539845e-01 -1.25348926e+00 5.67593992e-01 6.74441934e-01
-2.54798800e-01 1.01647711e+00 9.09846485e-01 -1.01582873e+00
-1.40162742e+00 -1.23633933e+00 1.69326591e+00 -5.94314396e-01
3.18992734e-01 -1.04359783e-01 -1.04662108e+00 4.45119470e-01
4.48856384e-01 -6.80734873e-01 1.10748196e+00 -2.20167965e-01
2.67043620e-01 9.96645764e-02 -1.19341052e+00 5.19107163e-01
4.17358249e-01 -4.25640613e-01 -9.31074619e-01 4.12241399e-01
1.10764539e+00 -6.51629344e-02 -8.30395520e-01 -1.24647006e-01
4.06788498e-01 -3.83519828e-01 7.98017919e-01 -1.00068343e+00
8.34676206e-01 9.83418077e-02 1.35544419e-01 -1.39645684e+00
-2.27747276e-01 -8.19522738e-01 5.93704060e-02 9.41846013e-01
5.45363426e-01 -4.29218262e-01 5.26342154e-01 6.02444232e-01
-2.16169894e-01 -7.71478295e-01 -6.67464793e-01 1.35996997e-01
-4.72080886e-01 1.35969535e-01 7.05001354e-01 9.69191492e-01
6.10279977e-01 2.13628083e-01 -4.02675681e-02 5.84038720e-02
2.47806743e-01 1.77811339e-01 2.48860508e-01 -1.20403099e+00
7.28542730e-02 -3.14680487e-01 -2.50886321e-01 -4.17500526e-01
-6.00100636e-01 -1.04260349e+00 1.00204311e-01 -2.12787652e+00
6.95811331e-01 -1.49835721e-01 -4.63648796e-01 3.00052226e-01
-3.65185887e-01 -5.72653748e-02 -1.69655725e-01 2.35711053e-01
-5.50514460e-01 9.54618827e-02 9.07151461e-01 -2.93071300e-01
-6.07448041e-01 -1.73202261e-01 -1.07518685e+00 2.87850946e-01
7.77128339e-01 -8.59550655e-01 -1.96905255e-01 -8.49104822e-02
3.80512685e-01 1.63586125e-01 -1.85574606e-01 -7.48597205e-01
3.03493708e-01 -1.56089040e-02 2.64494956e-01 -1.00025415e+00
-8.13238397e-02 -6.43856823e-01 1.42381936e-01 8.05099010e-01
-7.75498211e-01 6.81905866e-01 3.07420641e-01 3.79785806e-01
-2.54587561e-01 2.81465761e-02 2.79423386e-01 -1.15280621e-01
1.43046333e-02 4.80333306e-02 -5.99228680e-01 -1.87658835e-02
8.07583034e-01 -1.17695324e-01 -3.75564218e-01 -3.20111811e-01
-4.68265742e-01 2.20955640e-01 1.69247210e-01 3.56756628e-01
8.73206317e-01 -1.02824616e+00 -1.03687251e+00 1.51734322e-01
5.70554137e-02 6.61449507e-02 4.51072812e-01 1.01288092e+00
-8.73811543e-01 8.73952389e-01 -2.15203866e-01 -3.48412037e-01
-1.64345431e+00 7.09064305e-01 -3.85694057e-01 -5.34249246e-01
-1.16345966e+00 5.99323392e-01 -9.78595987e-02 1.05649397e-01
9.96625647e-02 -7.66881824e-01 -3.89473349e-01 6.12387002e-01
1.14822841e+00 3.60772550e-01 2.72853374e-01 -3.25355977e-01
-4.37042594e-01 -7.57424906e-02 -3.29927742e-01 2.29633966e-04
1.84517837e+00 -1.60579234e-01 -2.75929809e-01 3.80261600e-01
1.40718865e+00 1.85905889e-01 -4.52785373e-01 2.68205162e-02
2.06577197e-01 -2.12884143e-01 -2.08901279e-02 -7.65445173e-01
-5.62741935e-01 7.80707598e-01 4.77507770e-01 5.87027788e-01
1.12341249e+00 1.38353154e-01 1.03666687e+00 1.85647890e-01
-4.52534050e-01 -1.00065351e+00 -2.84786373e-01 7.74243027e-02
7.51990080e-01 -8.50181818e-01 2.52736449e-01 2.29122460e-01
-8.16486180e-01 8.85539889e-01 -2.54949749e-01 3.33112657e-01
5.81201911e-01 4.41501737e-01 8.84863883e-02 -6.95402324e-01
-9.41038072e-01 1.82517380e-01 2.99857855e-01 3.54151845e-01
6.35752618e-01 1.67394340e-01 -4.49978739e-01 6.59839928e-01
-1.88472912e-01 -4.40885276e-02 6.45126760e-01 1.13872552e+00
-6.27520859e-01 -6.86842799e-01 -4.05112952e-01 9.99637425e-01
-1.04813993e+00 -3.99897784e-01 -4.33841437e-01 1.54883578e-01
-1.26010254e-01 7.17499256e-01 4.58296508e-01 -2.36243010e-01
3.72630477e-01 4.79075879e-01 -1.83277920e-01 -9.24241424e-01
-9.28648472e-01 9.60556269e-02 -8.38696361e-02 -3.21316540e-01
-9.35673341e-02 -7.64165163e-01 -1.37076628e+00 -2.80100882e-01
7.85403028e-02 3.75160873e-01 8.22837412e-01 4.28242803e-01
1.03622329e+00 1.02606595e+00 2.99459368e-01 -4.74575877e-01
-3.45506966e-01 -1.03459060e+00 -2.48193637e-01 4.74661440e-01
6.40273154e-01 1.64202228e-01 8.79842192e-02 2.45684966e-01] | [8.56306266784668, 8.560612678527832] |
7f86d0cd-967d-4408-a6c7-1a4ba4da39c1 | representation-learning-over-dynamic-graphs | 1803.04051 | null | http://arxiv.org/abs/1803.04051v2 | http://arxiv.org/pdf/1803.04051v2.pdf | Representation Learning over Dynamic Graphs | How can we effectively encode evolving information over dynamic graphs into
low-dimensional representations? In this paper, we propose DyRep, an inductive
deep representation learning framework that learns a set of functions to
efficiently produce low-dimensional node embeddings that evolves over time. The
learned embeddings drive the dynamics of two key processes namely,
communication and association between nodes in dynamic graphs. These processes
exhibit complex nonlinear dynamics that evolve at different time scales and
subsequently contribute to the update of node embeddings. We employ a
time-scale dependent multivariate point process model to capture these
dynamics. We devise an efficient unsupervised learning procedure and
demonstrate that our approach significantly outperforms representative
baselines on two real-world datasets for the problem of dynamic link prediction
and event time prediction. | ['Hongyuan Zha', 'Rakshit Trivedi', 'Prasenjeet Biswal', 'Mehrdad Farajtabar'] | 2018-03-11 | null | null | null | null | ['dynamic-link-prediction'] | ['graphs'] | [-2.99317509e-01 1.46782398e-01 -2.75776714e-01 -1.82435453e-01
-8.35407674e-02 -6.36077046e-01 9.77131128e-01 6.04788065e-01
-5.60151115e-02 2.96098202e-01 4.98756260e-01 -3.65045100e-01
-4.92916703e-01 -1.30101562e+00 -5.59467793e-01 -4.12088364e-01
-9.86741364e-01 9.86726284e-01 1.57404855e-01 -2.91269422e-01
-3.55367869e-01 5.79472244e-01 -8.57016444e-01 -2.29029596e-01
2.61787921e-01 3.84413511e-01 -5.21954477e-01 1.25471020e+00
-8.41585696e-02 7.66242862e-01 -3.39182884e-01 -6.34627104e-01
1.21653043e-01 -2.66683791e-02 -6.95193350e-01 -1.62138864e-01
-2.66798228e-01 -2.61508763e-01 -1.39873099e+00 5.50572634e-01
2.59664178e-01 1.76514715e-01 1.09783947e+00 -1.39460373e+00
-1.24082494e+00 7.11710334e-01 -4.48034495e-01 9.01798606e-01
5.24055287e-02 1.13689475e-01 1.34941876e+00 -4.60021496e-01
1.00839043e+00 1.44687068e+00 8.63336205e-01 4.05405134e-01
-1.75494552e+00 -2.89895236e-01 3.31470609e-01 1.97183751e-02
-1.14447474e+00 5.42510115e-02 8.10635805e-01 -7.16126740e-01
9.24484670e-01 -2.14479730e-01 8.44199359e-01 1.48496783e+00
5.98555088e-01 6.18306637e-01 2.19713569e-01 3.05687398e-01
7.61113465e-02 -4.84904230e-01 2.56739855e-01 7.88527191e-01
1.98701501e-01 2.44325131e-01 -4.72121686e-01 -6.67650223e-01
9.41982150e-01 6.27686977e-01 2.25512031e-02 -3.89236748e-01
-1.11949718e+00 9.03965831e-01 6.42057896e-01 3.54145825e-01
-5.52796364e-01 8.39558542e-01 4.64851856e-01 7.52432466e-01
6.95286572e-01 -2.69809663e-02 -6.75396025e-01 -4.31436539e-01
-1.97721526e-01 8.79280344e-02 1.21252108e+00 5.00879169e-01
4.72277373e-01 -8.51471797e-02 -1.64272472e-01 6.18369877e-01
5.24487734e-01 3.73859018e-01 1.72646239e-01 -5.87085009e-01
2.39851952e-01 6.47711277e-01 -1.40074551e-01 -1.56411123e+00
-4.49310720e-01 -4.46095884e-01 -9.00739193e-01 -3.89124721e-01
6.48642331e-02 -2.19291329e-01 -8.19449425e-01 1.77711165e+00
2.97577083e-01 8.79810989e-01 -6.39569014e-02 3.41255456e-01
5.60239732e-01 1.13128293e+00 3.77961546e-01 -6.23352937e-02
6.84855580e-01 -6.94513202e-01 -6.85715735e-01 3.20965111e-01
6.93222463e-01 6.37210384e-02 3.61772656e-01 -3.10512304e-01
-1.08648312e+00 -1.76400661e-01 -6.99693322e-01 1.93528682e-02
-5.42156875e-01 -6.15766704e-01 1.02198827e+00 1.75838947e-01
-1.39683604e+00 9.50399160e-01 -1.27686882e+00 -4.62409467e-01
4.46794271e-01 3.89532596e-01 -3.63185406e-01 1.62830632e-02
-1.35992074e+00 4.27599907e-01 -4.76840138e-02 -5.33721875e-04
-1.34211957e+00 -9.04735565e-01 -7.20766246e-01 4.63429034e-01
-3.09857470e-03 -8.78343880e-01 9.43069160e-01 -3.46634120e-01
-1.16047084e+00 6.98908806e-01 -5.24299182e-02 -8.21560800e-01
2.91460931e-01 9.76640508e-02 -8.53676021e-01 -1.65152142e-03
-2.63394505e-01 8.48082602e-02 8.32265198e-01 -9.24908698e-01
-3.84019047e-01 -2.03275591e-01 -1.66340187e-01 -2.93798223e-02
-7.63803720e-01 -3.21862459e-01 -6.96157634e-01 -8.36209536e-01
-1.58758625e-01 -8.84085536e-01 -4.38482434e-01 2.75749773e-01
-5.84563427e-02 -6.28631473e-01 9.00259197e-01 -6.49518669e-01
1.45559359e+00 -2.09310365e+00 8.39239419e-01 3.51126105e-01
9.20949519e-01 -1.33175418e-01 -3.81178141e-01 9.45022702e-01
9.06158760e-02 4.74032551e-01 -5.99720478e-02 -3.97560298e-01
9.31602269e-02 5.53391457e-01 -2.29864568e-01 3.91963631e-01
4.40422267e-01 1.32917643e+00 -1.32724202e+00 -5.80772609e-02
-1.51564747e-01 8.74851584e-01 -3.64321291e-01 1.98909894e-01
-3.43335778e-01 2.00412080e-01 -5.24719059e-01 5.90425432e-01
1.50255755e-01 -6.51496172e-01 5.09573460e-01 9.72919762e-02
4.90204364e-01 2.87959501e-02 -7.50686169e-01 1.49970269e+00
-2.73222178e-01 7.73924828e-01 -6.89756721e-02 -1.00555122e+00
8.09347332e-01 3.26270431e-01 9.88690197e-01 -2.80842751e-01
-2.24324334e-02 -2.71744132e-01 2.21321397e-02 -2.40165815e-01
2.39100680e-01 1.86432853e-01 -2.52994925e-01 9.07166541e-01
4.10873622e-01 2.67420352e-01 3.30402479e-02 8.56151640e-01
1.98398197e+00 -4.22245651e-01 -7.31003284e-02 1.69251189e-02
2.21504848e-02 -4.95565295e-01 7.30386138e-01 4.83485013e-01
-3.71093243e-01 -4.81133051e-02 1.09396362e+00 -8.25206637e-01
-1.11507261e+00 -1.64543355e+00 2.91441053e-01 1.26703990e+00
-6.63750023e-02 -7.37207294e-01 1.13061398e-01 -7.63953805e-01
7.16637254e-01 1.60774872e-01 -1.15138733e+00 -4.98378724e-01
-5.87134719e-01 -9.14032698e-01 2.88977951e-01 6.47812068e-01
-4.31442589e-01 -7.65907764e-01 4.37586159e-01 6.63626850e-01
3.80642176e-01 -8.94665182e-01 -4.43929762e-01 1.32357180e-01
-9.70833063e-01 -1.20407057e+00 -2.83467442e-01 -7.30066240e-01
6.87793851e-01 6.54057786e-02 1.37664032e+00 2.42847696e-01
-6.19359732e-01 1.06598890e+00 -2.07699776e-01 3.09565403e-02
-6.05746269e-01 2.24898830e-01 1.66818455e-01 2.81194504e-02
2.70393670e-01 -1.06218803e+00 -7.96782613e-01 -1.14166975e-01
-8.97247612e-01 -4.09758002e-01 3.63986164e-01 7.85535634e-01
4.27796662e-01 2.01302126e-01 5.51147759e-01 -9.46249843e-01
1.04255784e+00 -1.30716383e+00 -3.65367800e-01 2.49944389e-01
-6.98314548e-01 3.49710643e-01 4.40549165e-01 -6.69465542e-01
-5.78863323e-01 -3.95037293e-01 3.58131349e-01 -4.98832136e-01
4.25771862e-01 6.14973187e-01 4.72436696e-01 2.55957618e-02
4.48604077e-01 6.52562007e-02 6.68970868e-02 -2.22307742e-01
8.12024057e-01 1.21612445e-01 3.13057840e-01 -5.68692386e-01
1.34355319e+00 7.00043976e-01 1.79946661e-01 -3.74588221e-01
-3.14333022e-01 -3.09801906e-01 -5.34357071e-01 -1.54110715e-01
4.76185292e-01 -1.00187743e+00 -5.98844588e-01 2.29136661e-01
-8.70170355e-01 -6.50554419e-01 -5.58994472e-01 8.13413113e-02
-3.66213232e-01 1.69532448e-02 -1.34853446e+00 -5.11352301e-01
-4.57059532e-01 -2.07935512e-01 8.73519063e-01 1.15872055e-01
-9.76558253e-02 -1.95554399e+00 7.23486066e-01 -4.45680737e-01
5.45865238e-01 5.58406830e-01 1.07290506e+00 -6.34514332e-01
-6.73281193e-01 -4.62563962e-01 -1.20579988e-01 -1.99846223e-01
2.37782568e-01 5.72966516e-01 -2.43811622e-01 -4.97500271e-01
-7.84619689e-01 2.18193159e-01 8.60545695e-01 2.05718562e-01
1.09167624e+00 -1.81063354e-01 -8.58217835e-01 8.24954689e-01
1.22493339e+00 -1.31274402e-01 2.18503833e-01 -1.79040015e-01
8.35895181e-01 3.82995695e-01 -5.94004989e-02 5.40050507e-01
9.04735982e-01 2.06140667e-01 3.56877804e-01 7.44752213e-02
-1.46623310e-02 -6.55615509e-01 3.55455190e-01 1.22232032e+00
6.79795817e-02 -4.62583363e-01 -1.15105975e+00 9.03039098e-01
-2.02158475e+00 -1.15774572e+00 -3.88103514e-03 1.60816765e+00
6.24364018e-01 1.89757451e-01 1.09017767e-01 -2.94569045e-01
6.15761817e-01 4.90008086e-01 -6.97807729e-01 -4.20763016e-01
1.03850633e-01 1.08048812e-01 4.49336410e-01 4.75578398e-01
-1.13739288e+00 8.70941043e-01 7.31970215e+00 -1.10595234e-01
-8.92674863e-01 3.76698613e-01 5.14464557e-01 -2.41386622e-01
-6.88430846e-01 -1.70354351e-01 -4.24778879e-01 4.02752638e-01
1.64189804e+00 -7.31276751e-01 4.45589751e-01 5.05576849e-01
1.07151486e-01 8.22326064e-01 -1.17453003e+00 7.44095862e-01
-2.33613774e-01 -1.56302547e+00 4.48984019e-02 3.12398314e-01
9.79520202e-01 4.30319697e-01 2.51853913e-01 6.28137887e-01
1.30515623e+00 -1.08946514e+00 -1.76112175e-01 9.62730467e-01
4.08566326e-01 -6.08830333e-01 2.06346303e-01 -1.74771938e-02
-1.54269016e+00 -4.07200575e-01 -2.45207384e-01 1.04796544e-01
5.74719131e-01 8.03975105e-01 -8.25047374e-01 3.43301147e-01
5.11668742e-01 1.51878190e+00 -4.35297817e-01 7.63053298e-01
-1.65479898e-01 9.43366647e-01 -3.05946767e-01 7.25245699e-02
5.99669255e-02 -1.89443395e-01 7.55096614e-01 1.02098823e+00
1.71196520e-01 -7.06773326e-02 6.30287081e-02 7.36382782e-01
-5.56563914e-01 -3.20118040e-01 -8.46831739e-01 -7.46338308e-01
6.53888285e-01 1.31601393e+00 -5.79174221e-01 -2.67408758e-01
-3.98151696e-01 1.06959319e+00 8.63336086e-01 6.66122973e-01
-7.88740098e-01 9.89684016e-02 1.26231360e+00 2.11484700e-01
4.75912452e-01 -7.57144153e-01 4.17225599e-01 -1.22675478e+00
-2.31881067e-01 -1.10554650e-01 8.49408388e-01 -1.16662502e-01
-1.90419185e+00 2.97578812e-01 -3.62531066e-01 -7.00347781e-01
-3.78742307e-01 -2.98304439e-01 -8.86455595e-01 6.16636813e-01
-1.42347932e+00 -1.04697740e+00 -7.78077990e-02 5.63940525e-01
1.99532717e-01 -1.61576569e-01 9.07402635e-01 2.35343590e-01
-7.67699063e-01 3.18572193e-01 5.86261690e-01 4.02453214e-01
3.17595333e-01 -1.43664396e+00 1.08145976e+00 5.54682314e-01
5.22962391e-01 5.97893775e-01 4.37857896e-01 -7.31312215e-01
-1.83566892e+00 -1.39069939e+00 6.29684031e-01 -7.57565737e-01
1.47876978e+00 -6.31528556e-01 -1.00224376e+00 1.03891706e+00
-1.64815858e-01 7.41903663e-01 1.00912070e+00 4.66202915e-01
-5.27092993e-01 -1.09817699e-01 -9.38682199e-01 4.96667981e-01
1.48501921e+00 -8.70254695e-01 -2.03003317e-01 4.72152025e-01
1.07874846e+00 1.06990643e-01 -1.45411932e+00 1.72536403e-01
3.20801407e-01 4.62424867e-02 1.04865527e+00 -1.27181041e+00
2.06950724e-01 1.13206089e-01 2.52542138e-01 -1.66994452e+00
-7.95380652e-01 -9.89442348e-01 -1.43912280e+00 1.06569922e+00
3.89430255e-01 -7.54411578e-01 7.42839813e-01 4.58578706e-01
6.41008675e-01 -7.40392804e-01 -7.14146912e-01 -4.98386055e-01
1.71419933e-01 -1.97089035e-02 5.92801332e-01 1.06229424e+00
-1.28467023e-01 2.37486050e-01 -1.17610805e-01 2.32313842e-01
5.70822060e-01 -6.08072802e-02 6.09811783e-01 -1.90684581e+00
-3.14833879e-01 -2.82925397e-01 -1.03433824e+00 -7.65641570e-01
4.37627673e-01 -1.07639623e+00 -4.79632437e-01 -1.70762277e+00
1.88693002e-01 -4.95595098e-01 -6.69472933e-01 9.96618718e-02
-1.56202197e-01 -4.20287907e-01 -1.32032782e-01 3.82201254e-01
-7.70073116e-01 9.08944070e-01 7.56400764e-01 -2.32144207e-01
-1.74470678e-01 -7.83175156e-02 -5.32046556e-01 2.31846005e-01
6.28774345e-01 -5.29582858e-01 -5.56297064e-01 -6.22448146e-01
6.06094897e-01 1.43320844e-01 2.19372466e-01 -4.86695886e-01
2.52759695e-01 3.00458893e-02 2.65391201e-01 -3.41824025e-01
2.87883192e-01 -8.48428130e-01 2.19430313e-01 5.52733421e-01
-4.31737095e-01 4.69194472e-01 -2.23651052e-01 1.76404226e+00
7.88189545e-02 5.25699615e-01 1.18684143e-01 2.14615315e-01
-6.59550130e-01 1.28184652e+00 -3.71816665e-01 5.09474799e-02
1.36365581e+00 4.88375872e-01 -3.40221912e-01 -7.46864140e-01
-1.24777722e+00 6.96441770e-01 3.39155972e-01 9.26829219e-01
5.16739249e-01 -1.59231448e+00 -7.12941706e-01 -8.38624686e-02
-6.26757219e-02 -2.64239430e-01 2.95309331e-02 5.44975877e-01
-3.69479477e-01 -1.43538028e-01 1.48071349e-01 -3.79238039e-01
-7.69125581e-01 6.07373178e-01 4.89803493e-01 -7.30589271e-01
-9.19299901e-01 7.18998492e-01 -3.96216244e-01 -6.99325740e-01
1.67459130e-01 -1.39435723e-01 -2.74520487e-01 1.28629133e-01
3.42016101e-01 3.10241908e-01 -5.33612251e-01 -5.07920802e-01
-1.28785536e-01 2.06970870e-01 -1.26521260e-01 4.79189903e-02
1.82550383e+00 -6.38535395e-02 -2.81690091e-01 7.47055173e-01
1.61043894e+00 -5.52038908e-01 -1.38803542e+00 -6.24060035e-01
3.02800506e-01 -2.33662769e-01 3.12357992e-02 -2.50210971e-01
-1.24637914e+00 6.62563086e-01 4.31080729e-01 7.22167432e-01
5.57989597e-01 3.64934236e-01 9.49539304e-01 3.26642811e-01
2.40506962e-01 -9.13238943e-01 3.05142105e-01 5.59508741e-01
5.56012928e-01 -1.07629645e+00 -2.08085552e-01 -3.72755140e-01
-1.84549257e-01 1.17153001e+00 4.07908946e-01 -5.55974305e-01
1.31950498e+00 3.60301077e-01 -5.77364147e-01 -5.99218905e-01
-1.64576173e+00 8.04530922e-03 -1.34870913e-02 8.21359932e-01
2.21177399e-01 3.11428308e-01 -1.68976597e-02 2.94003010e-01
3.16814303e-01 -2.26898342e-01 3.84660572e-01 8.40404987e-01
-6.48264885e-02 -1.13872552e+00 2.21062064e-01 7.51946211e-01
-2.35871449e-01 2.74342537e-01 -3.77563864e-01 4.58469838e-01
-5.82852483e-01 5.38911462e-01 5.56277633e-01 -4.90876764e-01
1.09399691e-01 7.97253698e-02 1.47150263e-01 -6.63884878e-01
-3.48723173e-01 -5.50888598e-01 -9.08536166e-02 -6.59724414e-01
3.76796201e-02 -8.02956283e-01 -1.12064528e+00 -7.36264765e-01
2.39181101e-01 -5.57459667e-02 4.99416262e-01 3.90805304e-01
8.49103093e-01 8.93785536e-01 9.71095383e-01 -5.21623433e-01
-6.04382098e-01 -7.43477464e-01 -4.68430609e-01 7.43982613e-01
2.66318947e-01 -6.24498546e-01 -5.75101554e-01 -1.25499770e-01] | [7.228328704833984, 6.026055812835693] |
65403034-5fbe-4c87-af4d-492e4f504962 | visual-slam-what-are-the-current-trends-and | 2210.10491 | null | https://arxiv.org/abs/2210.10491v2 | https://arxiv.org/pdf/2210.10491v2.pdf | Visual SLAM: What are the Current Trends and What to Expect? | Vision-based sensors have shown significant performance, accuracy, and efficiency gain in Simultaneous Localization and Mapping (SLAM) systems in recent years. In this regard, Visual Simultaneous Localization and Mapping (VSLAM) methods refer to the SLAM approaches that employ cameras for pose estimation and map generation. We can see many research works that demonstrated VSLAMs can outperform traditional methods, which rely only on a particular sensor, such as a Lidar, even with lower costs. VSLAM approaches utilize different camera types (e.g., monocular, stereo, and RGB-D), have been tested on various datasets (e.g., KITTI, TUM RGB-D, and EuRoC) and in dissimilar environments (e.g., indoors and outdoors), and employ multiple algorithms and methodologies to have a better understanding of the environment. The mentioned variations have made this topic popular for researchers and resulted in a wide range of VSLAMs methodologies. In this regard, the primary intent of this survey is to present the recent advances in VSLAM systems, along with discussing the existing challenges and trends. We have given an in-depth literature survey of forty-five impactful papers published in the domain of VSLAMs. We have classified these manuscripts by different characteristics, including the novelty domain, objectives, employed algorithms, and semantic level. We also discuss the current trends and future directions that may help researchers investigate them. | ['Holger Voos', 'Jose Luis Sanchez-Lopez', 'Hriday Bavle', 'Ali Tourani'] | 2022-10-19 | null | null | null | null | ['simultaneous-localization-and-mapping'] | ['computer-vision'] | [-1.97510682e-02 -6.56644583e-01 -1.33376688e-01 -4.52836096e-01
-1.73559338e-01 -7.75308609e-01 6.73938274e-01 2.57154703e-02
-4.97078627e-01 9.78678763e-01 -1.41955256e-01 -2.53171660e-02
-4.80067655e-02 -7.56214261e-01 -6.20957077e-01 -4.81948167e-01
6.32998347e-02 2.64760554e-01 3.24929625e-01 -2.63886720e-01
6.53283298e-01 8.63997757e-01 -1.91432512e+00 -4.47906911e-01
7.84595907e-01 8.40033054e-01 6.67764068e-01 2.82087654e-01
-3.03650379e-01 2.42939919e-01 -4.63536799e-01 -1.14425328e-02
2.90473104e-01 -1.71068400e-01 -2.51855731e-01 -2.29659408e-01
5.88150918e-01 -3.51894237e-02 -2.67295122e-01 9.57935810e-01
6.74396932e-01 -3.23337689e-02 3.79954398e-01 -1.50044382e+00
-4.96259481e-01 -1.33453026e-01 -7.52805889e-01 -5.57266884e-02
1.02058017e+00 -1.69790432e-01 3.41239452e-01 -1.08704138e+00
6.21047616e-01 1.15049541e+00 9.26006258e-01 6.55084252e-02
-9.75639522e-01 -8.44575107e-01 7.97671452e-02 3.74066412e-01
-1.96882868e+00 -4.02395606e-01 6.22485459e-01 -3.64723951e-01
7.46028960e-01 3.00082833e-01 6.61271513e-01 9.74220872e-01
6.20525897e-01 3.51163000e-01 1.66174150e+00 -5.56808412e-01
2.13798642e-01 2.79879808e-01 -1.15300473e-02 6.57660484e-01
8.50856125e-01 1.58914059e-01 -9.68026400e-01 -9.60467532e-02
5.93580186e-01 7.48038441e-02 -4.10693705e-01 -9.46437240e-01
-1.43083215e+00 6.53237283e-01 6.53113663e-01 1.41485021e-01
-1.74715668e-01 8.40975791e-02 8.82081762e-02 2.18616799e-02
5.25503568e-02 2.18935505e-01 -9.28687453e-02 -2.67439871e-03
-9.57845986e-01 9.13339853e-02 5.48282921e-01 1.53888297e+00
1.15946591e+00 -4.06841002e-02 4.52930421e-01 3.93281698e-01
7.29034245e-01 1.10987854e+00 3.28381836e-01 -6.65761054e-01
4.45917368e-01 4.29808110e-01 4.17127609e-01 -1.29739630e+00
-4.00190532e-01 -5.32688685e-02 -6.03801548e-01 2.02251285e-01
-3.36703032e-01 -2.26290543e-02 -9.07331347e-01 1.22798836e+00
2.14288220e-01 2.58669138e-01 2.02527002e-01 9.57866490e-01
1.14230049e+00 4.52122748e-01 -2.85797000e-01 -2.78865844e-02
1.12334418e+00 -8.18280995e-01 -9.85664546e-01 -6.74081385e-01
1.47694990e-01 -1.06650913e+00 7.09310412e-01 2.32690200e-01
-4.73450750e-01 -7.04703927e-01 -1.43642247e+00 1.55699793e-02
-7.25342035e-01 2.19333068e-01 6.12423778e-01 5.80295801e-01
-1.28807747e+00 1.51026666e-01 -8.58176708e-01 -1.18216550e+00
-1.75434768e-01 2.25410461e-01 -5.67000270e-01 -2.44940609e-01
-1.04062057e+00 1.33622909e+00 3.44762713e-01 1.52237222e-01
-6.19355202e-01 -6.13777293e-03 -1.00817454e+00 -7.49985814e-01
1.78241342e-01 -6.21957004e-01 6.85684621e-01 -2.26637110e-01
-1.27570391e+00 8.44925523e-01 -6.81760430e-01 -3.96777928e-01
4.83744502e-01 -3.10527027e-01 -4.45474237e-01 -9.49769095e-02
5.61329961e-01 5.77251911e-01 1.13624558e-01 -1.54578769e+00
-9.00481939e-01 -6.18613601e-01 -1.43795401e-01 5.84671199e-01
1.29171878e-01 -5.46514168e-02 -4.84674215e-01 7.10782707e-02
1.01417887e+00 -1.13984561e+00 -1.52661428e-01 6.02664091e-02
-2.16708511e-01 1.62763327e-01 9.07863021e-01 -2.69103408e-01
9.27139401e-01 -1.93956125e+00 -1.62537377e-02 3.12063545e-02
-2.30871931e-01 -1.03175119e-02 4.34352338e-01 8.42740536e-01
6.68810546e-01 -9.84421894e-02 5.27342558e-02 -6.07229412e-01
-1.80327892e-01 4.70162600e-01 -3.08903903e-01 9.99138534e-01
-7.40783930e-01 6.26195490e-01 -9.85084295e-01 -6.77552104e-01
1.02251208e+00 5.22575140e-01 2.49534920e-01 4.62875888e-02
4.16168362e-01 6.76414490e-01 -1.97619423e-01 1.06601226e+00
9.58816826e-01 2.99740762e-01 -9.63352174e-02 -2.10270464e-01
-9.07411158e-01 -4.28464636e-02 -1.54286587e+00 2.06739044e+00
-5.76990068e-01 8.77011538e-01 1.33560658e-01 -3.80829692e-01
1.34499788e+00 1.23110697e-01 2.45126441e-01 -8.15700591e-01
-1.25173956e-01 8.00469339e-01 -6.35153174e-01 -3.27715546e-01
8.04150999e-01 3.03798646e-01 -9.45228934e-02 -3.39275211e-01
-1.68957382e-01 -3.41793329e-01 -5.33162206e-02 -1.15984790e-01
7.33257353e-01 4.81001765e-01 7.33035564e-01 -2.63762861e-01
7.62511730e-01 5.12972713e-01 5.14102876e-01 8.20774257e-01
-3.98584515e-01 4.64308113e-01 -4.92658585e-01 -4.13688242e-01
-6.89372122e-01 -1.14668453e+00 -3.28058004e-01 3.80744100e-01
1.28518784e+00 -2.40007117e-01 9.12133083e-02 -6.86915815e-02
3.68240118e-01 3.62607986e-01 -3.01211357e-01 3.17212582e-01
-3.90098691e-01 -3.87214094e-01 5.30148506e-01 3.24053049e-01
1.05448806e+00 -5.98861992e-01 -1.07076037e+00 2.25749686e-02
-2.19076484e-01 -1.31470084e+00 4.29557472e-01 3.02707180e-02
-9.38844562e-01 -9.01692331e-01 -5.32120407e-01 -7.12800026e-01
5.89949489e-01 1.00659370e+00 8.33992064e-01 -3.46945941e-01
-2.02093080e-01 5.66805184e-01 -4.70900923e-01 -6.30281746e-01
4.59302604e-01 -1.85407162e-01 5.25619924e-01 -3.13657939e-01
4.72929657e-01 -5.96792817e-01 -4.45402265e-01 5.86942077e-01
-2.25091293e-01 3.53803788e-03 6.69104755e-01 3.56234878e-01
9.00514364e-01 -3.81164223e-01 -2.06509396e-01 -2.48989522e-01
3.24793220e-01 -5.66835821e-01 -1.00347126e+00 1.88634753e-01
-8.58632147e-01 -3.43920171e-01 2.00297490e-01 1.71100244e-01
-7.24981606e-01 2.29218796e-01 2.11936787e-01 -2.60049194e-01
-4.27001894e-01 3.84853572e-01 2.49067377e-02 -8.76019895e-01
6.56552017e-01 6.19561970e-01 -1.12378299e-01 -4.17647213e-01
2.50359535e-01 1.11759186e+00 6.64863110e-01 -2.46178225e-01
8.46399248e-01 8.76279294e-01 2.76850224e-01 -8.27008367e-01
-4.10106033e-01 -9.96779859e-01 -8.93443167e-01 -4.09771740e-01
6.26791894e-01 -1.12462974e+00 -3.89879465e-01 4.86737758e-01
-1.17524672e+00 3.02514672e-01 3.71718824e-01 8.35844517e-01
-3.98084283e-01 2.85482526e-01 6.41327957e-03 -1.02829611e+00
-5.22282049e-02 -1.28380907e+00 1.15016186e+00 6.37412250e-01
-3.24140005e-02 -9.39993382e-01 2.71435976e-01 1.68605030e-01
6.39162183e-01 5.71459532e-01 -9.91889983e-02 -4.56394479e-02
-8.73645604e-01 -2.65462428e-01 -2.78694481e-01 -2.59978563e-01
3.17665786e-01 -1.64542496e-01 -8.61670792e-01 -4.67847109e-01
-2.59907693e-01 -8.25907588e-02 4.38568503e-01 2.05768421e-01
4.47688341e-01 2.46825650e-01 -9.44306374e-01 1.03220642e+00
2.06687474e+00 5.15054822e-01 5.58888555e-01 9.46163416e-01
6.52796566e-01 4.39583719e-01 1.19649017e+00 2.02596366e-01
7.21799314e-01 9.87427473e-01 7.46763885e-01 6.43948913e-02
3.66468579e-02 -3.13266188e-01 1.53687283e-01 6.64008856e-01
-2.41344631e-01 -1.80646837e-01 -1.15184796e+00 4.89985436e-01
-1.86493886e+00 -5.36094069e-01 -5.96625209e-01 2.24707246e+00
4.49729003e-02 -3.08905482e-01 -5.39932668e-01 -1.54958844e-01
7.73782849e-01 3.72864783e-01 -3.19170445e-01 -8.26801658e-02
-3.07847887e-01 -1.33252889e-01 1.16243744e+00 5.92761755e-01
-1.08074701e+00 1.16534865e+00 6.43094444e+00 2.99673200e-01
-1.33330667e+00 9.39359814e-02 -5.38088560e-01 2.60304958e-01
3.83302048e-02 3.83460104e-01 -1.11803889e+00 5.71157932e-01
6.65905654e-01 -1.20452300e-01 2.61698484e-01 1.04042435e+00
1.82327688e-01 -7.63687968e-01 -6.98577642e-01 1.52943575e+00
3.09874743e-01 -1.23420906e+00 -3.23661387e-01 1.04966573e-01
7.69867837e-01 5.57078302e-01 -2.95404434e-01 -4.69188839e-02
1.80300865e-02 -8.17678094e-01 7.97995865e-01 4.51357186e-01
8.03439856e-01 -4.52237368e-01 1.22815871e+00 3.96332502e-01
-1.66132236e+00 9.98436138e-02 -5.86187661e-01 -3.34607393e-01
3.60666662e-01 4.07256871e-01 -7.04007149e-01 1.20000970e+00
8.95277143e-01 8.08933377e-01 -6.60352409e-01 1.56282067e+00
-3.92844796e-01 -1.07679911e-01 -4.25870538e-01 -4.07095194e-01
2.04234064e-01 -3.92786026e-01 5.43819904e-01 9.50678110e-01
6.71991467e-01 -2.80810863e-01 3.89388591e-01 7.24063396e-01
5.62016249e-01 3.92741635e-02 -1.03947055e+00 4.79412735e-01
1.09092045e+00 1.07089674e+00 -6.19720578e-01 -1.44035846e-01
-5.45599639e-01 1.02525210e+00 -9.65275988e-02 2.53978074e-01
-7.87260234e-01 -5.34211636e-01 5.29871464e-01 4.08843420e-02
-2.02572033e-01 -8.29806805e-01 -4.18462545e-01 -8.70773196e-01
1.34699032e-01 -2.31946543e-01 -8.98782983e-02 -1.13594246e+00
-7.51667798e-01 5.74441791e-01 2.31770396e-01 -1.58123064e+00
8.14078078e-02 -5.18639266e-01 -9.93496999e-02 1.13840842e+00
-1.81409824e+00 -1.22288382e+00 -1.18112242e+00 5.07927179e-01
4.03146297e-01 -1.72450706e-01 7.05173135e-01 2.19741955e-01
-1.75255373e-01 -1.11052833e-01 2.55829185e-01 -1.89130738e-01
8.86876583e-01 -9.94828343e-01 3.50863069e-01 1.02425516e+00
1.28597423e-01 9.09789622e-01 7.95171082e-01 -8.55521739e-01
-1.78073943e+00 -8.27660203e-01 9.21866357e-01 -5.91343641e-01
3.23210150e-01 -4.91225779e-01 -6.19434081e-02 9.16784644e-01
1.32666662e-01 1.32587656e-01 1.98837832e-01 -2.44739458e-01
1.30541757e-01 -2.38897517e-01 -1.25797451e+00 4.07799453e-01
1.26154649e+00 -4.45447624e-01 -4.32680786e-01 1.12327836e-01
3.21287900e-01 -8.96001995e-01 -4.46900725e-01 6.88990653e-01
6.73472226e-01 -1.38827169e+00 9.81087506e-01 5.10100186e-01
-4.17362869e-01 -9.19067502e-01 -6.59918547e-01 -1.02854633e+00
-1.34128109e-01 -1.02099292e-01 7.56041482e-02 1.11535525e+00
-1.99966699e-01 -1.12544787e+00 6.14869416e-01 3.67148183e-02
-3.90960932e-01 -5.71109474e-01 -1.01962328e+00 -9.35648322e-01
-7.43264675e-01 -2.24106446e-01 6.73149645e-01 7.00983405e-01
-5.04047036e-01 -5.94458729e-02 -4.75726634e-01 6.53865278e-01
8.36003244e-01 1.85067758e-01 1.15606701e+00 -1.35368502e+00
6.05118394e-01 4.19229604e-02 -1.08482003e+00 -1.16638875e+00
-1.83678940e-01 -4.93970573e-01 1.22316517e-01 -2.17897153e+00
-7.55077228e-02 -7.43716836e-01 3.39576378e-02 8.97182245e-03
2.69077271e-01 3.62526685e-01 3.09636742e-02 7.18773544e-01
-6.31347239e-01 2.85036534e-01 7.60867715e-01 6.62760511e-02
-1.23383276e-01 2.73621660e-02 -2.97290504e-01 7.10456431e-01
6.09022915e-01 -2.13226974e-01 -4.31067407e-01 -6.33829474e-01
2.30482057e-01 -1.57242209e-01 4.62035924e-01 -1.52685833e+00
6.98445737e-01 -3.32469195e-01 3.36184710e-01 -1.22081697e+00
6.06469810e-01 -1.11305141e+00 5.60977578e-01 6.81184888e-01
5.14649868e-01 4.95613098e-01 2.43194122e-03 5.97250402e-01
-4.58277941e-01 -1.45905048e-01 4.87417698e-01 -4.16715741e-01
-1.66324401e+00 5.51834442e-02 -8.16568434e-02 -5.18216968e-01
1.47103667e+00 -8.27893913e-01 -3.44237775e-01 -2.75844842e-01
-2.37710312e-01 3.32122266e-01 9.23064113e-01 5.70405722e-01
8.46468568e-01 -1.50831640e+00 -3.17133605e-01 2.82098532e-01
5.33951223e-01 7.10128248e-02 -2.72697620e-02 9.52574849e-01
-1.08733714e+00 8.59377027e-01 -4.81593162e-01 -1.12764442e+00
-1.32116532e+00 2.50877500e-01 1.73566982e-01 5.32184362e-01
-3.53846580e-01 7.03998685e-01 -3.46457958e-01 -6.92266405e-01
3.53105128e-01 -3.45821530e-02 -2.16990292e-01 -1.27450660e-01
2.32177675e-01 7.14624941e-01 6.95467219e-02 -1.00813687e+00
-1.14448059e+00 1.25967789e+00 7.87613273e-01 -2.48963460e-01
8.66211891e-01 -7.21722007e-01 -3.06822687e-01 7.84112036e-01
8.39529753e-01 4.51719612e-01 -7.35583842e-01 -4.18110713e-02
3.83247361e-02 -8.91270280e-01 -9.03134197e-02 -6.04780436e-01
-5.15358210e-01 6.59032583e-01 1.07848763e+00 -1.67899653e-01
8.16264272e-01 -7.30131641e-02 3.47378105e-01 3.21346402e-01
1.73204160e+00 -8.84755850e-01 -3.27808231e-01 5.30026019e-01
7.77342618e-01 -1.35248280e+00 3.29146326e-01 -4.60739285e-01
-2.72517234e-01 1.07825744e+00 7.19955087e-01 -2.70706210e-02
2.92839229e-01 3.25993210e-01 3.29853892e-01 -1.49480015e-01
1.36582732e-01 -2.34221786e-01 -7.40262493e-02 8.83077085e-01
3.58476400e-01 9.99047980e-02 -3.92304897e-01 -1.69146523e-01
-3.60283911e-01 -4.40522954e-02 3.87339354e-01 1.39337802e+00
-7.16249347e-01 -9.68972564e-01 -9.71597314e-01 -2.49409880e-02
2.83393234e-01 1.73462078e-01 -4.76923436e-01 1.06701350e+00
6.19193137e-01 1.11465585e+00 -1.75416723e-01 -5.93471944e-01
4.94789273e-01 -3.00538778e-01 5.42748630e-01 -4.30541247e-01
9.75928307e-02 -4.73327428e-01 -1.10297337e-01 -8.60381305e-01
-7.77268589e-01 -6.78270936e-01 -1.05514824e+00 -4.31903958e-01
-4.34686244e-01 1.04459710e-01 1.37906635e+00 6.82257473e-01
4.13595647e-01 5.62219806e-02 5.13285577e-01 -1.09862030e+00
-3.96669470e-02 -8.22477400e-01 -5.66848099e-01 -9.04453546e-02
3.58140290e-01 -1.14920437e+00 -3.06746989e-01 -5.64071596e-01] | [7.36745023727417, -2.1522836685180664] |
343bd28d-d51a-4f23-9cc1-79aa44025eb1 | simple-and-effective-unsupervised-speech | 2204.02524 | null | https://arxiv.org/abs/2204.02524v3 | https://arxiv.org/pdf/2204.02524v3.pdf | Simple and Effective Unsupervised Speech Synthesis | We introduce the first unsupervised speech synthesis system based on a simple, yet effective recipe. The framework leverages recent work in unsupervised speech recognition as well as existing neural-based speech synthesis. Using only unlabeled speech audio and unlabeled text as well as a lexicon, our method enables speech synthesis without the need for a human-labeled corpus. Experiments demonstrate the unsupervised system can synthesize speech similar to a supervised counterpart in terms of naturalness and intelligibility measured by human evaluation. | ['Alexei Baevski', 'James Glass', 'Michael Auli', 'Wei-Ning Hsu', 'Cheng-I Jeff Lai', 'Alexander H. Liu'] | 2022-04-06 | null | null | null | null | ['unsupervised-speech-recognition'] | ['speech'] | [ 3.81245255e-01 6.44170821e-01 -1.45821452e-01 -5.44083178e-01
-9.55848157e-01 -6.17979765e-01 9.10713196e-01 -1.06879517e-01
-1.43977642e-01 6.20167077e-01 7.63004243e-01 -5.21149099e-01
4.46972668e-01 -4.76314336e-01 -4.28416252e-01 -3.74502599e-01
3.77042860e-01 3.76881242e-01 -9.45689082e-02 -3.93864274e-01
-1.72596261e-01 1.96216986e-01 -1.47593319e+00 6.41836822e-02
7.54389405e-01 8.62960756e-01 3.65805984e-01 9.02335703e-01
-1.53990641e-01 1.09511411e+00 -9.77888405e-01 -2.54975826e-01
1.18965628e-02 -6.94386184e-01 -7.97496378e-01 5.93394101e-01
-1.85171999e-02 -5.69383800e-01 -6.02817833e-01 7.63437986e-01
5.70862055e-01 6.73292160e-01 6.14185572e-01 -6.87807560e-01
-7.38144875e-01 9.95071471e-01 6.15447581e-01 -1.53439909e-01
5.29459596e-01 3.30022484e-01 1.14490306e+00 -1.10340881e+00
5.29813290e-01 1.15108383e+00 2.09310919e-01 8.54009628e-01
-1.25906610e+00 -2.92039722e-01 -9.95494276e-02 -4.14832264e-01
-1.26365924e+00 -1.43314767e+00 5.38288772e-01 -1.88627467e-01
1.44931257e+00 1.58499599e-01 4.06488359e-01 1.34244919e+00
-4.43348378e-01 7.76326776e-01 7.53800094e-01 -9.55314875e-01
5.30297756e-01 3.86180341e-01 -2.71791905e-01 5.75430751e-01
-5.49005449e-01 5.86512864e-01 -7.96614885e-01 3.88658315e-01
4.82032686e-01 -6.60542011e-01 -2.09023446e-01 3.77170928e-02
-1.31310058e+00 6.21553898e-01 -1.08790748e-01 2.30735138e-01
-2.30860099e-01 -1.45083871e-02 3.94375235e-01 5.76518357e-01
5.85259795e-01 6.10270560e-01 -3.08418512e-01 -4.29304838e-01
-1.24351919e+00 -2.62477010e-01 1.05857420e+00 1.24366212e+00
4.09921020e-01 9.11858678e-01 -5.78387678e-02 1.10320222e+00
4.27143872e-01 6.95592165e-01 8.01913619e-01 -9.10306931e-01
3.35685015e-01 7.23795667e-02 1.16471864e-01 -5.30914545e-01
7.84368515e-02 -2.15260819e-01 -3.99598658e-01 -2.61281040e-02
-4.39970829e-02 -2.56206959e-01 -1.03126764e+00 1.65900815e+00
-8.76420885e-02 -5.55201545e-02 6.02263093e-01 4.77956861e-01
1.03430986e+00 9.85601664e-01 -5.41967154e-02 -5.18138468e-01
8.72054815e-01 -1.44416022e+00 -1.07070982e+00 -3.94088089e-01
4.04572725e-01 -7.64387906e-01 1.26845336e+00 4.47360396e-01
-1.39971220e+00 -4.75634038e-01 -1.22892499e+00 5.85552631e-03
-4.04885858e-01 2.67442971e-01 4.84400690e-01 1.16902220e+00
-1.41744864e+00 1.77682087e-01 -7.08931863e-01 -4.45898771e-01
6.04000092e-02 2.42037043e-01 -3.92985225e-01 4.12343711e-01
-1.06380641e+00 8.09337080e-01 5.26990056e-01 -1.65353268e-01
-1.16656971e+00 -1.99358493e-01 -1.12406242e+00 3.03567480e-02
4.47765112e-01 -4.08776939e-01 2.08031654e+00 -1.06964755e+00
-2.57831717e+00 6.29277229e-01 -2.59280115e-01 -6.32173061e-01
7.41336942e-02 -1.87949568e-01 -9.14617300e-01 3.41746449e-01
-2.54631817e-01 8.75565708e-01 9.70951736e-01 -8.91067028e-01
-4.29858565e-01 3.41296613e-01 -2.95224130e-01 3.58146816e-01
-5.83886266e-01 2.75175542e-01 -2.56305486e-01 -1.10397232e+00
-9.53812152e-02 -6.65210068e-01 -6.78355843e-02 -3.44666183e-01
-5.49198687e-01 -1.04200818e-01 5.70251644e-01 -6.10556722e-01
1.15457070e+00 -2.09625912e+00 -1.74880028e-02 1.32580161e-01
2.53868736e-02 3.98754120e-01 -2.24022955e-01 6.57903016e-01
1.58137336e-01 1.40737310e-01 -1.75110787e-01 -6.35624290e-01
3.93227220e-01 2.25643724e-01 -7.02723265e-01 6.33889660e-02
4.22813177e-01 9.36559558e-01 -1.02625871e+00 -3.45431924e-01
4.86707747e-01 2.05156744e-01 -6.02978408e-01 6.30111277e-01
-4.81460959e-01 5.66947758e-01 1.70079842e-02 6.88710928e-01
-1.59621596e-01 3.39492112e-02 1.57315865e-01 3.25586110e-01
-2.18000531e-01 1.24737585e+00 -7.65266657e-01 1.76904774e+00
-7.12632835e-01 7.32708097e-01 5.25790714e-02 -1.04794347e+00
1.07148159e+00 1.12558591e+00 -1.10790305e-01 -4.44620401e-01
2.10940868e-01 4.75936353e-01 -1.79710567e-01 -3.20227921e-01
4.39635336e-01 -2.99667448e-01 2.84904651e-02 8.39748323e-01
8.12023044e-01 -8.13434184e-01 8.11130553e-02 2.94452459e-01
1.03589141e+00 -2.08829954e-01 3.90004843e-01 -1.22123078e-01
4.24871504e-01 -2.87206322e-01 -5.65524353e-03 8.32028866e-01
-1.68223187e-01 5.66530049e-01 -9.55863222e-02 1.23053357e-01
-1.11288464e+00 -1.25501609e+00 1.68385327e-01 1.27447307e+00
-3.89308572e-01 -5.62004983e-01 -9.76804554e-01 -3.75135839e-01
-5.80768585e-01 9.15773392e-01 -1.13238223e-01 -3.65636721e-02
-2.95302093e-01 2.37664878e-01 8.11574519e-01 6.28767610e-01
-4.71265987e-02 -1.55436182e+00 1.47925824e-01 2.95974106e-01
-9.11979303e-02 -1.44702375e+00 -5.83673656e-01 3.14928770e-01
-6.44738793e-01 -1.01803139e-01 -5.70076585e-01 -1.17407382e+00
3.70536804e-01 5.26116882e-03 1.15953851e+00 -5.11139929e-02
2.07020044e-01 4.98696864e-01 -4.46928799e-01 -3.43748957e-01
-1.18992043e+00 1.37783587e-01 4.43759471e-01 -1.25347376e-01
1.37724251e-01 -6.66318655e-01 -6.56242622e-03 1.87714532e-01
-8.21428299e-01 5.87819852e-02 3.39289576e-01 8.40418339e-01
2.97669679e-01 -1.49345845e-01 1.08617890e+00 -4.14744169e-01
9.34290409e-01 -1.54583052e-01 -4.72144514e-01 2.90102903e-02
-5.11814833e-01 -1.00675680e-01 8.73936892e-01 -4.12956089e-01
-1.19691062e+00 6.08094074e-02 -4.12804544e-01 -1.45868674e-01
-5.45647264e-01 5.15778244e-01 -3.74925405e-01 2.44794056e-01
8.52769077e-01 4.85528231e-01 7.90696517e-02 -3.63413870e-01
9.03405905e-01 1.29447186e+00 8.79005194e-01 -4.20517504e-01
7.40610123e-01 -9.12937708e-03 -6.90998018e-01 -1.41468441e+00
-4.01374698e-01 -2.63935566e-01 -5.33635437e-01 -1.13281965e-01
5.88380218e-01 -9.58897173e-01 -3.47587615e-01 2.45728165e-01
-1.19985354e+00 -6.05701029e-01 -6.91305399e-01 7.56426990e-01
-9.11314309e-01 1.73610494e-01 -6.56704545e-01 -1.07054222e+00
-4.19832170e-01 -1.20267558e+00 1.01719725e+00 -1.46770373e-01
-5.94144702e-01 -9.29265738e-01 3.69963143e-03 3.31248015e-01
6.45051420e-01 -6.18750155e-01 6.15705073e-01 -9.97271597e-01
-3.31821471e-01 -1.34195089e-01 2.27641463e-01 8.47076893e-01
4.48214829e-01 4.36370354e-03 -1.18063986e+00 6.50364757e-02
8.82908478e-02 -9.33411121e-01 4.24935669e-01 7.71602467e-02
4.17366356e-01 -5.55064738e-01 2.04475105e-01 3.75242949e-01
5.78683734e-01 4.11614925e-01 3.68577987e-01 -2.31252804e-01
5.14021933e-01 7.34380543e-01 -7.62185529e-02 2.26263583e-01
1.24860525e-01 5.38028955e-01 -3.05552602e-01 2.20242869e-02
-4.22722995e-01 -5.61472297e-01 6.64028227e-01 1.82973862e+00
4.49382871e-01 -5.65113127e-01 -9.11209762e-01 7.67965615e-01
-1.32589960e+00 -8.20783973e-01 6.48343027e-01 1.99958622e+00
1.26982105e+00 1.79008871e-01 1.77452967e-01 4.22421187e-01
5.39200366e-01 2.45804489e-01 -2.49435499e-01 -7.34663546e-01
-1.90471813e-01 6.38255894e-01 2.34808624e-02 8.70768726e-01
-1.03565919e+00 1.45673823e+00 8.34178638e+00 9.28056002e-01
-1.02050471e+00 7.26172328e-02 3.16589415e-01 -1.93334773e-01
-5.03102958e-01 -6.27444386e-02 -3.60686600e-01 1.21043921e-01
1.64852583e+00 -2.33318105e-01 9.04403031e-01 6.58206165e-01
3.77104312e-01 3.78582686e-01 -1.16891146e+00 7.83465922e-01
1.57162920e-01 -1.30632234e+00 2.83150021e-02 -3.83504897e-01
7.01275468e-01 9.93192047e-02 6.51423931e-02 4.76926982e-01
6.20168865e-01 -1.25618112e+00 1.08970785e+00 1.82855427e-01
1.05505180e+00 -5.06205976e-01 1.03015877e-01 3.78628790e-01
-1.07451105e+00 1.20404854e-01 1.30314171e-01 -1.20754592e-01
3.62602144e-01 1.97019815e-01 -1.12685680e+00 5.21989614e-02
1.15979975e-02 4.78705317e-01 -8.18896815e-02 3.99687588e-01
-8.09626997e-01 1.21203482e+00 -3.99298131e-01 -2.74944276e-01
3.53052884e-01 1.35892823e-01 6.60506010e-01 1.38006270e+00
1.22095950e-01 1.86598286e-01 4.63310957e-01 7.19749391e-01
-2.69428104e-01 5.22314548e-01 -7.87225366e-01 -8.30474079e-01
7.27328897e-01 7.20386088e-01 -6.36100352e-01 -5.79294205e-01
-4.31974798e-01 8.39909136e-01 2.20869593e-02 6.08731627e-01
-2.27600098e-01 -4.57958013e-01 1.90322250e-01 -2.50589699e-01
2.63035178e-01 -5.33842325e-01 -4.19616252e-01 -1.08536220e+00
-1.14799783e-01 -1.29611051e+00 -4.17628229e-01 -8.40116620e-01
-1.09324360e+00 1.02087486e+00 -3.27077866e-01 -1.10472667e+00
-9.09107089e-01 -4.41043764e-01 -2.74624914e-01 7.07939148e-01
-1.05316722e+00 -9.91991878e-01 2.11176559e-01 5.07271171e-01
9.62122679e-01 -8.64060402e-01 1.30131567e+00 1.19757786e-01
-4.99211162e-01 7.55359352e-01 -2.07643807e-01 1.06690213e-01
5.24019122e-01 -1.19462633e+00 9.21723783e-01 9.30473745e-01
6.77697778e-01 6.37615919e-01 6.67234242e-01 -4.76667672e-01
-1.22625089e+00 -8.08021784e-01 1.14689410e+00 -3.24166566e-01
9.09354448e-01 -6.32360756e-01 -4.12053883e-01 6.41485810e-01
5.72576582e-01 -2.10481584e-01 7.81392872e-01 -3.76975164e-03
-3.73838216e-01 9.09146965e-02 -8.53921831e-01 9.08994496e-01
1.01314294e+00 -1.22251296e+00 -8.02311540e-01 4.82489645e-01
1.35560620e+00 -2.42407635e-01 -5.88121176e-01 2.31085241e-01
4.06072438e-01 -5.57261527e-01 6.90757096e-01 -5.30007124e-01
2.85773039e-01 -7.56999552e-02 -5.63358665e-01 -1.30468726e+00
1.73979044e-01 -1.32231605e+00 -2.43943885e-01 1.17121804e+00
8.66580844e-01 -5.66413701e-01 4.02648360e-01 3.80041957e-01
-5.49734831e-01 -1.47086903e-01 -6.80654407e-01 -1.10766971e+00
-6.75547644e-02 -7.96323359e-01 6.47269547e-01 7.15573192e-01
4.06448841e-01 6.99365735e-01 -2.86258399e-01 9.43680331e-02
1.38252988e-01 -2.38121554e-01 8.52049470e-01 -8.44167948e-01
-5.31278968e-01 -5.47800660e-01 -3.30845118e-01 -1.34821296e+00
4.99410182e-01 -9.62799728e-01 7.92753816e-01 -1.28166652e+00
-5.57782829e-01 -1.33372918e-01 -6.57176375e-02 5.70891917e-01
2.95610875e-01 1.26587421e-01 2.04604864e-02 4.82390448e-02
-4.54502434e-01 8.32467496e-01 7.77940273e-01 -3.00529689e-01
-4.78439987e-01 -1.97769955e-01 -5.51473618e-01 4.84139889e-01
8.56336951e-01 -2.90978670e-01 -8.77327144e-01 -3.88075262e-01
-3.28588933e-01 2.38081664e-01 -2.46113211e-01 -1.01947832e+00
3.52712035e-01 -5.48955724e-02 -3.30019891e-01 -1.39231026e-01
4.63202238e-01 -2.72147685e-01 -1.55204341e-01 -1.32775232e-01
-7.59137213e-01 -3.13939184e-01 1.82508573e-01 3.24819237e-01
-4.93474990e-01 -1.84026897e-01 6.28332734e-01 4.83072363e-02
-5.98188281e-01 -1.08514145e-01 -9.51887608e-01 -1.86497662e-02
5.22015035e-01 -8.32930729e-02 -2.36424014e-01 -9.77097511e-01
-7.89825439e-01 -3.26811045e-01 1.69472590e-01 6.02001369e-01
6.82070613e-01 -1.22530377e+00 -6.21221721e-01 6.37278676e-01
1.75333247e-01 -4.57385302e-01 -3.90318692e-01 4.08681929e-01
-3.28088522e-01 6.94194138e-01 1.95212990e-01 -4.35619026e-01
-5.89329183e-01 4.63161737e-01 1.53962851e-01 2.33675420e-01
-5.85197389e-01 9.12685692e-01 2.47078426e-02 -6.58806741e-01
6.37802660e-01 -3.54729265e-01 1.05814412e-01 -3.54289740e-01
7.05323160e-01 1.93876978e-02 3.24880689e-01 -7.82369971e-01
-1.06224120e-01 -2.71098286e-01 1.14888720e-01 -1.03976035e+00
8.46105158e-01 -3.25132430e-01 2.85205901e-01 7.60813117e-01
9.56281304e-01 2.61882454e-01 -8.31582665e-01 -3.27589422e-01
4.07317467e-02 -1.44994387e-03 2.51755089e-01 -8.20869923e-01
-6.60031855e-01 7.26127565e-01 5.50785810e-02 4.05878007e-01
9.43252265e-01 -8.89911428e-02 1.12133181e+00 8.75544727e-01
1.63960963e-01 -1.40818286e+00 2.61985630e-01 9.04727638e-01
7.82284677e-01 -1.13274884e+00 -4.19620782e-01 -2.08343104e-01
-7.42823899e-01 8.41950238e-01 1.34446919e-01 4.83498611e-02
8.13129127e-01 5.98365724e-01 5.04476666e-01 6.51585609e-02
-1.05048871e+00 -4.10091490e-01 3.13372403e-01 7.26309836e-01
6.21741951e-01 2.14574158e-01 3.65699716e-02 6.41649425e-01
-8.16704333e-01 -1.39863104e-01 2.42600456e-01 9.62897718e-01
-7.09038198e-01 -1.13929009e+00 -4.88659590e-02 6.96150512e-02
-3.40015084e-01 -5.03078759e-01 -6.05493248e-01 1.64453447e-01
-4.44610357e-01 1.64145637e+00 3.73416431e-02 -4.50334460e-01
2.08191082e-01 3.92996699e-01 2.71274835e-01 -1.15763116e+00
-5.54875076e-01 3.53607506e-01 5.24133205e-01 -3.86843741e-01
-4.08171564e-01 -1.79710045e-01 -1.18593466e+00 5.40118068e-02
-5.36875784e-01 1.77241519e-01 8.47426057e-01 1.28261721e+00
7.39169195e-02 4.90313083e-01 9.38538730e-01 -8.63542736e-01
-4.52974707e-01 -1.14589822e+00 -4.92856443e-01 3.43485549e-02
5.43542087e-01 -2.20488697e-01 -4.15035129e-01 4.73328322e-01] | [14.692024230957031, 6.82486629486084] |
17b4fb8a-bb0f-46ce-a3c1-834bc496d91f | confidence-guided-semi-supervised-learning-in | 2305.10344 | null | https://arxiv.org/abs/2305.10344v2 | https://arxiv.org/pdf/2305.10344v2.pdf | Confidence-Guided Semi-supervised Learning in Land Cover Classification | Semi-supervised learning has been well developed to help reduce the cost of manual labelling by exploiting a large quantity of unlabelled data. Especially in the application of land cover classification, pixel-level manual labelling in large-scale imagery is labour-intensive, time-consuming and expensive. However, existing semi-supervised learning methods pay limited attention to the quality of pseudo-labels during training even though the quality of training data is one of the critical factors determining network performance. In order to fill this gap, we develop a confidence-guided semi-supervised learning (CGSSL) approach to make use of high-confidence pseudo labels and reduce the negative effect of low-confidence ones for land cover classification. Meanwhile, the proposed semi-supervised learning approach uses multiple network architectures to increase the diversity of pseudo labels. The proposed semi-supervised learning approach significantly improves the performance of land cover classification compared to the classic semi-supervised learning methods and even outperforms fully supervised learning with a complete set of labelled imagery of the benchmark Potsdam land cover dataset. | ['Paul L. Rosin', 'Oktay Karakus', 'Wanli Ma'] | 2023-05-17 | null | null | null | null | ['pseudo-label'] | ['miscellaneous'] | [ 6.06630802e-01 2.49290213e-01 -6.28413618e-01 -7.00971127e-01
-7.32878745e-01 -4.09063101e-01 5.45674086e-01 4.56861585e-01
-6.10001206e-01 1.04947186e+00 -1.12654261e-01 -5.48329175e-01
-2.68281251e-01 -1.05616879e+00 -5.53297400e-01 -7.62851238e-01
-1.06262952e-01 3.60275120e-01 1.74608484e-01 -2.12247044e-01
-1.45235911e-01 2.56197661e-01 -1.74400055e+00 -3.46868634e-02
1.29501474e+00 8.80634844e-01 3.65967423e-01 8.55327025e-02
-1.37706190e-01 7.92918324e-01 8.26212168e-02 1.56347349e-01
2.68740773e-01 -4.02025819e-01 -8.18886578e-01 3.94509792e-01
1.61043614e-01 -8.70185196e-02 3.17376137e-01 1.26688349e+00
1.39635473e-01 -1.24095969e-01 7.95023024e-01 -9.95778084e-01
1.03808179e-01 7.07294762e-01 -6.73877895e-01 -1.56709775e-01
-4.57796723e-01 -2.05871329e-01 1.02242208e+00 -5.90906918e-01
3.67939323e-01 9.22601461e-01 7.49783516e-01 4.57119606e-02
-1.25567484e+00 -5.99398851e-01 3.29418868e-01 8.10474753e-02
-1.51246631e+00 -3.73089969e-01 7.22665846e-01 -4.79571491e-01
4.40478653e-01 1.11658402e-01 6.67144477e-01 2.26019353e-01
-2.02038899e-01 7.25637913e-01 1.47311389e+00 -7.83465266e-01
4.00051802e-01 4.04950798e-01 2.98178226e-01 7.22171962e-01
4.08521175e-01 3.12522709e-01 1.01762451e-01 -8.29355493e-02
4.59816813e-01 1.56575158e-01 3.18844654e-02 -6.33633256e-01
-8.00983727e-01 9.95062113e-01 7.40436375e-01 3.89510006e-01
-4.08094496e-01 -2.67070830e-01 4.45484638e-01 1.53703943e-01
9.25892293e-01 3.36607784e-01 -5.49206734e-01 1.70681149e-01
-1.43131411e+00 -3.32241029e-01 4.80469614e-01 6.52992606e-01
1.34536099e+00 6.12452626e-02 2.52812922e-01 8.90098035e-01
4.81332839e-01 4.83885765e-01 1.88697204e-01 -5.26538253e-01
4.38254476e-01 1.14086187e+00 9.05793086e-02 -8.27895343e-01
-4.85290468e-01 -7.53448367e-01 -1.11365926e+00 4.51971799e-01
1.46836519e-01 -2.06384480e-01 -1.13187766e+00 1.41376817e+00
2.55423844e-01 -1.88792780e-01 1.83859482e-01 5.46342194e-01
5.79502285e-01 6.79703712e-01 3.72168452e-01 -3.14199686e-01
9.45678592e-01 -9.56627667e-01 -5.62715054e-01 -5.57415664e-01
1.04660976e+00 -1.76761717e-01 6.90583885e-01 -8.36565122e-02
-1.78947553e-01 -6.76712751e-01 -1.08400548e+00 6.05307221e-01
-5.59282184e-01 6.63793385e-01 7.58521318e-01 6.61734343e-01
-6.51250958e-01 5.77870250e-01 -8.53114545e-01 -3.44397336e-01
8.75070095e-01 3.18113476e-01 -4.94366884e-01 -3.16363454e-01
-1.21879530e+00 9.01820302e-01 1.22041142e+00 5.26367426e-01
-6.47546887e-01 -7.63683021e-02 -1.00885046e+00 2.01160517e-02
5.15791655e-01 2.00786367e-01 7.02092767e-01 -1.48031068e+00
-8.86429548e-01 9.50899303e-01 1.15067348e-01 -6.60808504e-01
5.02438366e-01 -1.84128970e-01 -3.20675105e-01 -1.04184607e-02
3.34255248e-01 9.75796521e-01 8.30459714e-01 -1.35274565e+00
-8.51502478e-01 -1.73323825e-01 -1.85532019e-01 2.57598609e-01
-2.53705949e-01 -4.39260572e-01 2.30525404e-01 -3.80200863e-01
3.53885353e-01 -1.01583314e+00 -5.51879108e-01 -3.91419306e-02
1.47837654e-01 -1.08740598e-01 7.84335256e-01 -4.55487311e-01
1.03875256e+00 -2.41241169e+00 -4.15474743e-01 4.34560061e-01
-2.53999121e-02 8.11155975e-01 -5.00567891e-02 2.21936986e-01
-9.40039307e-02 1.32665053e-01 -7.17253268e-01 2.24443302e-01
-3.38991225e-01 6.26371980e-01 5.34517281e-02 3.53880942e-01
4.56759423e-01 7.98611104e-01 -1.11016774e+00 -8.84408414e-01
4.89909679e-01 3.23730528e-01 -3.83407772e-02 1.26969600e-02
-1.73212886e-01 3.90221000e-01 -4.55382586e-01 6.62176371e-01
7.46153176e-01 -2.35643685e-01 2.49398425e-01 -1.68984830e-02
-2.30224714e-01 -7.06510097e-02 -1.16514063e+00 1.33703029e+00
-5.02761602e-01 4.19678539e-01 -1.65664092e-01 -1.26909328e+00
1.17221129e+00 2.77069151e-01 3.42715949e-01 -4.10159528e-01
6.46880865e-02 4.75562721e-01 -9.97813940e-02 -3.21096301e-01
2.53389150e-01 -1.74989209e-01 2.40536660e-01 2.55237401e-01
-9.62650105e-02 -3.47476900e-02 2.69209027e-01 -1.63906619e-01
5.80935359e-01 5.52943230e-01 7.08865523e-01 -4.54114139e-01
5.73430240e-01 5.73743641e-01 6.41563952e-01 5.92902601e-01
-3.56152713e-01 1.99359387e-01 2.76528567e-01 -5.81362844e-01
-8.71207118e-01 -2.84191936e-01 -3.84313941e-01 1.17110944e+00
-7.71890879e-02 2.20651440e-02 -5.43718159e-01 -9.93364215e-01
-1.70905199e-02 5.44427514e-01 -5.23263216e-01 -5.72820902e-02
-1.43298119e-01 -1.04506862e+00 3.63584727e-01 5.21524131e-01
9.83197749e-01 -1.08913565e+00 -6.18801355e-01 2.94204175e-01
-9.64738429e-02 -7.87240028e-01 3.25059265e-01 7.97562838e-01
-1.19733107e+00 -1.05029035e+00 -6.52565956e-01 -8.95486832e-01
9.89338994e-01 3.57339919e-01 9.28387761e-01 1.30014002e-01
1.02112278e-01 -4.95874166e-01 -6.88160002e-01 -3.55975747e-01
-5.47369003e-01 6.02151692e-01 -4.04591292e-01 4.72484864e-02
4.58483875e-01 -4.06702250e-01 -2.02825576e-01 5.01473010e-01
-8.64826441e-01 2.98497558e-01 1.02410412e+00 9.79496121e-01
6.64730251e-01 7.40313411e-01 8.76176476e-01 -1.18454492e+00
-7.79111236e-02 -2.73098856e-01 -7.84559429e-01 2.79259682e-01
-8.97646070e-01 2.79658228e-01 2.78967679e-01 -1.48143739e-01
-1.13721371e+00 7.00665593e-01 -1.71235040e-01 3.00463319e-01
-4.47057784e-01 9.27367628e-01 -9.50200036e-02 -1.73770249e-01
8.17829251e-01 1.43733084e-01 -1.18954405e-04 -3.94541800e-01
1.91400766e-01 9.40057158e-01 2.62379736e-01 -1.06942952e-01
8.68243396e-01 4.51755404e-01 2.04385355e-01 -6.96170568e-01
-1.32260907e+00 -7.77667105e-01 -1.28314817e+00 -1.76117882e-01
4.47536021e-01 -1.23796606e+00 3.20031703e-01 4.51029688e-01
-4.39298838e-01 -4.62030202e-01 -3.97240698e-01 5.40083945e-01
-3.06532949e-01 3.14238876e-01 1.37163147e-01 -9.93530154e-01
-2.82159001e-01 -8.12629640e-01 8.26671898e-01 3.62057425e-02
6.00816682e-02 -9.97285008e-01 -1.39485911e-01 8.44605118e-02
4.21934366e-01 5.02339005e-01 7.40419686e-01 -5.14454007e-01
-1.31099910e-01 -5.65682113e-01 -6.20634794e-01 6.96196318e-01
5.68152666e-01 -3.41793954e-01 -8.94536674e-01 -2.26509288e-01
-3.07311565e-01 -6.72957361e-01 1.25173748e+00 4.07325417e-01
5.74216902e-01 -9.50659588e-02 -3.60136479e-01 1.91198587e-01
1.71371794e+00 -5.56030646e-02 3.74423593e-01 6.52154386e-01
6.03993893e-01 8.37961555e-01 1.20081484e+00 2.94313461e-01
2.08965048e-01 7.80726448e-02 6.21313095e-01 -5.66295505e-01
2.83952922e-01 -3.12325537e-01 -1.25108704e-01 2.39125207e-01
-1.69617668e-01 1.21671014e-01 -1.09969115e+00 6.32364750e-01
-2.09703302e+00 -7.33439207e-01 -4.07037854e-01 2.01229763e+00
9.44017291e-01 3.75126719e-01 -4.82653566e-02 7.78176606e-01
7.99267292e-01 3.65360647e-01 -3.95891309e-01 2.76634425e-01
-2.13674963e-01 -8.46777111e-03 1.04711044e+00 3.66858751e-01
-1.83742511e+00 1.12446511e+00 5.63724184e+00 9.59094286e-01
-9.00167823e-01 8.25189650e-02 4.98623401e-01 6.15094841e-01
2.24009812e-01 2.26174891e-02 -7.72468328e-01 9.64677334e-02
8.57537687e-01 5.28532207e-01 -4.84104343e-02 1.24933684e+00
3.59489143e-01 -6.62472486e-01 -7.11673141e-01 5.42222917e-01
-3.08343828e-01 -9.45971966e-01 -1.48689613e-01 7.43882507e-02
1.04005456e+00 1.37456954e-01 -5.01013398e-01 2.22303644e-01
2.91035801e-01 -8.53430331e-01 4.87118810e-01 1.16702795e-01
9.23937142e-01 -8.26085031e-01 1.34866011e+00 7.47232854e-01
-1.41692269e+00 -5.25253378e-02 -2.94461846e-01 -3.02734584e-01
-2.12083720e-02 6.94875002e-01 -5.47090471e-01 4.90776569e-01
4.57141012e-01 9.76512671e-01 -8.69430959e-01 1.01246464e+00
-5.84058046e-01 1.10507643e+00 -3.72062147e-01 2.02298015e-01
7.40978301e-01 2.17107497e-02 -1.07705124e-01 1.05506575e+00
-1.90515116e-01 2.17277668e-02 3.96126390e-01 2.63914526e-01
3.23118895e-01 1.23304784e-01 -6.20750546e-01 -1.08657621e-01
7.38025755e-02 1.17125010e+00 -1.07277811e+00 -3.76349866e-01
-1.66249633e-01 5.15397668e-01 1.80348352e-01 4.32442576e-02
-3.26055050e-01 -3.16944271e-01 -2.44731829e-01 1.69120714e-01
1.53451264e-01 -1.69826731e-01 -2.53567785e-01 -8.26675296e-01
-2.20029309e-01 -5.11284053e-01 2.64069229e-01 -4.28623915e-01
-8.41552734e-01 6.81263924e-01 1.40890926e-01 -1.52704465e+00
-3.37154925e-01 -3.98659050e-01 -1.28688678e-01 7.24073648e-01
-2.17846608e+00 -1.36091197e+00 -5.36531985e-01 1.56949088e-01
4.46102768e-01 -1.35344684e-01 9.18664098e-01 2.37114921e-01
-1.83732271e-01 -9.69671272e-03 3.55059803e-01 1.82984591e-01
5.35437942e-01 -1.08691728e+00 8.18976909e-02 8.32884550e-01
-1.17979020e-01 2.00478919e-02 3.03441972e-01 -6.34157062e-01
-4.03474241e-01 -1.62638998e+00 9.33537066e-01 2.99737960e-01
3.61492753e-01 1.22719808e-02 -1.01571107e+00 4.56000984e-01
-3.27443957e-01 3.77326816e-01 6.23414874e-01 -4.02505044e-03
-1.64394289e-01 -3.54111731e-01 -1.12309182e+00 -9.24062654e-02
7.82719910e-01 -3.93068045e-01 -4.09570336e-01 3.27772737e-01
1.98460802e-01 1.04860485e-01 -5.28777361e-01 7.37031102e-01
5.24753988e-01 -7.02410042e-01 5.66393912e-01 -4.19474393e-02
2.78663784e-01 -6.12500310e-01 -3.04140523e-03 -1.24583781e+00
-2.94817865e-01 1.07793152e-01 5.08609533e-01 1.19030273e+00
5.14590144e-01 -5.19155324e-01 8.40466917e-01 9.29899514e-02
1.22807436e-01 -3.67783189e-01 -6.42546296e-01 -7.49118030e-01
-2.39119411e-01 -2.17337847e-01 3.77964646e-01 1.06566322e+00
-2.37195835e-01 2.05890834e-01 -4.50637370e-01 2.24372506e-01
7.84145415e-01 1.32058680e-01 5.31152904e-01 -1.83375299e+00
2.10444763e-01 7.10611558e-03 -4.75050002e-01 -6.20885670e-01
2.01067641e-01 -8.73056829e-01 3.43426079e-01 -1.62626290e+00
1.67963624e-01 -1.01264620e+00 -2.24404037e-01 1.02643061e+00
-3.33496809e-01 5.06323099e-01 -2.78377205e-01 5.49918413e-01
-5.97986162e-01 5.58995247e-01 8.21240544e-01 -2.04406962e-01
-4.56388563e-01 3.12736303e-01 -4.50225621e-01 8.26276779e-01
8.89116049e-01 -8.38908732e-01 -4.19405669e-01 -1.13481075e-01
2.14100540e-01 -2.34583989e-01 2.74062306e-01 -1.11289191e+00
-1.64173231e-01 -2.62677848e-01 1.85915440e-01 -9.05944705e-01
-2.89409161e-01 -1.28029668e+00 1.48168251e-01 6.38711691e-01
-3.64003330e-01 -6.39762342e-01 1.13513365e-01 5.46043098e-01
-4.82486904e-01 -5.00682116e-01 9.59683001e-01 -4.28540915e-01
-1.02847230e+00 -2.54570004e-02 -4.78409439e-01 -2.83807218e-01
9.15241420e-01 -2.34545738e-01 2.05118582e-01 -1.40782855e-02
-7.07369983e-01 4.58036453e-01 2.76407689e-01 1.45541430e-01
1.06084920e-01 -1.13978362e+00 -7.48731911e-01 3.13403249e-01
5.97290099e-01 3.86401653e-01 -6.67661503e-02 4.60765570e-01
-5.54210305e-01 5.65052509e-01 -3.16288501e-01 -8.27563286e-01
-1.14650905e+00 8.32944438e-02 2.13319838e-01 -5.56709886e-01
-3.68864298e-01 4.22061443e-01 -2.86988139e-01 -6.65329039e-01
2.07786500e-01 -8.88816491e-02 -7.13178456e-01 3.15052509e-01
1.97171569e-01 1.63499773e-01 1.58746302e-01 -8.39276552e-01
-2.67665476e-01 5.52770793e-01 1.65582463e-01 6.83666170e-02
1.58652520e+00 -1.96630493e-01 -1.33878455e-01 4.64028865e-01
8.31244230e-01 -6.75670207e-01 -1.35398650e+00 -5.99618912e-01
4.35692936e-01 -3.12806696e-01 6.05314612e-01 -8.26979816e-01
-8.96408856e-01 7.43851423e-01 8.66590440e-01 -4.45100712e-03
1.17456341e+00 -1.71846956e-01 4.56013344e-02 7.88143218e-01
5.46551704e-01 -1.18073583e+00 -4.40771490e-01 2.80703425e-01
3.94320965e-01 -1.96200550e+00 3.45663100e-01 -5.17212987e-01
-6.07550681e-01 9.55977678e-01 3.18021387e-01 1.26791701e-01
8.07019830e-01 -3.45244370e-02 1.90238699e-01 -6.71054274e-02
-1.71987221e-01 -8.19920540e-01 3.17436397e-01 6.14948511e-01
3.95174503e-01 2.77271628e-01 -4.31100965e-01 -1.18715316e-01
1.85075998e-01 3.04817170e-01 8.74143690e-02 1.36408126e+00
-8.72664511e-01 -1.06769753e+00 -3.25316280e-01 6.77312493e-01
-8.39703232e-02 -1.14022613e-01 -1.09047666e-01 7.41729081e-01
3.16377759e-01 1.01922810e+00 -2.65252292e-01 -6.48733675e-02
-5.74868172e-02 1.83296174e-01 -9.22538862e-02 -8.95215154e-01
-1.85060948e-01 1.18619137e-01 1.60521984e-01 6.14925548e-02
-1.43750608e+00 -4.82974648e-01 -9.80805159e-01 1.06243826e-01
-9.89780188e-01 3.93702626e-01 7.44131923e-01 1.12853718e+00
-3.89166139e-02 2.03496695e-01 8.45314384e-01 -8.57312620e-01
-4.07744348e-01 -1.30362952e+00 -7.87761807e-01 6.70414045e-02
4.29638386e-01 -7.29524076e-01 -3.15068156e-01 1.67719945e-01] | [9.670392990112305, -1.4026988744735718] |
cc76acc6-68b5-4c3b-984a-2e8d67bdd693 | application-of-information-spectrum-method-on | 1907.02713 | null | http://arxiv.org/abs/1907.02713v3 | http://arxiv.org/pdf/1907.02713v3.pdf | Application of Information Spectrum Method on Small Molecules and Target Recognition | Current methods for investigation of receptor - ligand interactions in drug
discovery are based on three-dimensional complementarity of receptor and ligand
surfaces, and they include pharmacophore modelling, QSAR, molecular docking
etc. Those methods only consider short-range molecular interactions (distances
<5A), and not include long-range interactions (distances >5A) which are
essential for kinetic of biochemical reactions because they influence the
number of productive collisions between interacting molecules. Previously was
shown that the electron-ion interaction potential (EIIP) represents the
physical property which determines the long-range properties of biological
molecules. This molecular descriptor served as a base for development of the
informational spectrum method (ISM), a virtual spectroscopy method for
investigation of protein-protein interactions. In this paper, we proposed a new
approach to treat small molecules as linear entities, allowing study of the
small molecule - protein interaction by ISM. We analyzed here 21 sets of KEGG
drug-protein interactions and showed that this new approach allows an efficient
discrimination between biologically active and inactive ligands, and
consistence with AA regions of their binding site on the target protein. | [] | 2020-04-15 | null | null | null | null | ['molecular-docking'] | ['medical'] | [ 2.41145864e-01 -7.82723501e-02 -2.79199332e-01 -4.08508033e-01
-1.58711568e-01 -6.15574181e-01 3.90826434e-01 5.74140549e-01
-5.09106815e-01 1.48088193e+00 1.95764020e-01 -5.06602526e-01
-2.35849530e-01 -7.98834920e-01 -6.90481246e-01 -8.67239892e-01
-3.54766548e-01 7.72352338e-01 3.68233711e-01 -3.66915971e-01
4.78105158e-01 1.06251550e+00 -1.38790178e+00 4.68106389e-01
9.66526747e-01 8.69615749e-02 4.33683023e-02 3.08524579e-01
-3.95584166e-01 2.08164364e-01 -3.76093000e-01 3.91775407e-02
-4.43935841e-01 -7.16863811e-01 -7.75194883e-01 -7.07628727e-01
-3.50640476e-01 5.10834098e-01 4.68957156e-01 6.61168456e-01
7.51141250e-01 1.66441202e-02 1.36691797e+00 -4.54943061e-01
-4.75548685e-01 3.15966219e-01 -3.40520233e-01 8.02018419e-02
1.00394428e+00 -1.14774875e-01 8.38526905e-01 -1.07988477e+00
1.03958929e+00 1.32060564e+00 4.54042763e-01 5.46827555e-01
-1.42334020e+00 -6.47921741e-01 -5.06284237e-01 3.71914625e-01
-1.39125597e+00 -2.15495303e-01 3.02415997e-01 -5.39721489e-01
1.49684107e+00 5.52753508e-01 6.64847314e-01 5.58714449e-01
8.04037273e-01 1.08375423e-01 8.87908995e-01 -6.46335661e-01
2.96132624e-01 2.34779254e-01 3.78694355e-01 3.63550127e-01
3.56778592e-01 1.92463636e-01 -4.57939625e-01 -9.59500313e-01
1.82451054e-01 -1.71538204e-01 -3.41361582e-01 -4.91751999e-01
-8.45500112e-01 8.53250921e-01 2.05343559e-01 6.49916768e-01
-5.46392918e-01 -3.34295243e-01 2.86950380e-01 -9.85267833e-02
-7.72928968e-02 3.32334578e-01 -6.03213966e-01 1.45143464e-01
-4.08043107e-03 1.30458057e-01 1.02653778e+00 5.43933846e-02
7.28699625e-01 -6.55606806e-01 1.05628639e-01 4.41267967e-01
6.02375805e-01 3.05552095e-01 4.28405941e-01 1.92963630e-01
-1.77626997e-01 6.50793791e-01 1.84602186e-01 -5.57859600e-01
-7.61585414e-01 5.54989167e-02 -4.41041738e-01 2.90369689e-01
4.78766322e-01 -1.43743545e-01 -5.79404473e-01 1.67933369e+00
5.69831550e-01 -6.57684505e-02 2.95302957e-01 6.15972638e-01
9.50097322e-01 5.90226173e-01 5.93071580e-01 -8.39248359e-01
1.38006926e+00 -1.90660581e-01 -6.44330561e-01 7.78032899e-01
7.46424913e-01 -8.86586905e-01 5.26179194e-01 3.11880499e-01
-9.27352130e-01 -3.56062651e-01 -8.38562489e-01 4.52781647e-01
-6.83592916e-01 -2.83730060e-01 6.08639300e-01 6.66896641e-01
-5.81654847e-01 8.32577944e-01 -5.57036638e-01 -4.64720935e-01
-1.81517228e-01 9.09362972e-01 -7.13833213e-01 4.18939322e-01
-1.51898491e+00 1.31900632e+00 5.23950338e-01 -7.20316172e-02
-3.54472667e-01 -4.96468335e-01 -1.98438868e-01 -2.95822751e-02
-1.71064749e-01 -5.35492361e-01 4.92092639e-01 -6.92658186e-01
-1.47220755e+00 9.88471866e-01 -2.46245906e-01 -1.87279642e-01
-7.64564276e-02 1.90829545e-01 -4.96223837e-01 -7.62551799e-02
-2.77795672e-01 1.31130129e-01 -1.43361598e-01 -9.94174421e-01
1.09673381e-01 -6.82675958e-01 -4.50753123e-01 4.16607976e-01
4.04538751e-01 1.75815791e-01 2.53448457e-01 3.22980769e-02
8.29344243e-02 -8.55116725e-01 -3.80963564e-01 -8.28383386e-01
-3.86349708e-01 -2.75179565e-01 2.56125212e-01 -1.21150725e-01
8.54690611e-01 -1.75386834e+00 3.82303655e-01 8.86583805e-01
-8.04570410e-03 6.20466173e-01 1.80466503e-01 1.17186487e+00
-8.47100735e-01 3.35108519e-01 1.79192066e-01 9.07883406e-01
-4.17671204e-01 -1.86631739e-01 -1.45219853e-02 7.33617008e-01
-3.67220640e-01 6.55594349e-01 -5.78944385e-01 -3.43649387e-01
1.81210801e-01 7.53926158e-01 -2.64029652e-01 -8.30511004e-02
-2.99573272e-01 6.21023178e-01 -9.36363101e-01 3.29890698e-01
9.64165330e-01 2.86374930e-02 6.58507943e-01 -4.08944279e-01
-4.00936782e-01 1.97751969e-01 -8.64565611e-01 1.13324547e+00
2.60750741e-01 -1.07577620e-02 -3.73735815e-01 -6.10729873e-01
9.74017441e-01 5.61976850e-01 7.29315102e-01 -5.59292257e-01
1.34065375e-01 3.85233909e-01 4.58937287e-01 -3.19559664e-01
-3.99499804e-01 -4.84397471e-01 5.61645329e-01 1.33675247e-01
-3.64948481e-01 3.78118992e-01 2.54673157e-02 -1.15907744e-01
8.60756934e-01 1.00771420e-01 8.52045774e-01 -4.34819907e-01
1.03841782e+00 3.26753147e-02 2.53796667e-01 1.40869364e-01
1.83783248e-01 3.41757610e-02 6.20886505e-01 -4.71881688e-01
-7.69117832e-01 -8.05095077e-01 -8.36316228e-01 7.42434263e-01
2.83756465e-01 -2.96197504e-01 -7.94067800e-01 -2.47310281e-01
1.61206424e-01 3.55435818e-01 -6.21007979e-01 -2.49083802e-01
-3.52827221e-01 -1.38651240e+00 4.49373960e-01 -5.27037203e-01
-1.38143048e-01 -1.21297026e+00 -1.20732196e-01 4.19857681e-01
4.58086431e-01 -1.07661270e-01 1.20507412e-01 5.85009933e-01
-8.01279724e-01 -1.41679549e+00 -4.99836206e-01 -4.75358427e-01
4.76037681e-01 -2.04480365e-01 7.61370122e-01 1.39981523e-01
-5.33330917e-01 -2.79256195e-01 -2.88234264e-01 -6.16167486e-01
-4.94582713e-01 -3.48967016e-01 2.29986206e-01 -2.71335393e-01
7.61325598e-01 -7.62445450e-01 -5.41113257e-01 4.51386392e-01
-5.88552952e-01 -3.43234628e-01 7.19518840e-01 6.69901788e-01
7.87143588e-01 -4.35553253e-01 6.55391753e-01 -1.12153184e+00
7.69995630e-01 -4.69133854e-01 -4.20692444e-01 3.83367181e-01
-4.63596404e-01 4.51476634e-01 3.50061625e-01 -2.44718239e-01
-9.21529412e-01 3.41275632e-01 -3.96206409e-01 4.54348534e-01
-2.75466055e-01 6.22935116e-01 -6.30733848e-01 -5.57568073e-01
8.09940457e-01 1.84709951e-01 5.73065989e-02 -6.68115020e-01
-1.49842069e-01 4.79447067e-01 -1.63089409e-01 -4.98290747e-01
2.08178416e-01 2.20464274e-01 5.04347920e-01 -9.86413479e-01
6.16131015e-02 -5.62711298e-01 -5.30721903e-01 1.79710507e-01
1.09790468e+00 -5.02785921e-01 -1.51954722e+00 -7.31697604e-02
-1.21199763e+00 3.69841576e-01 2.61524916e-01 1.04776525e+00
-2.90335864e-01 7.11666048e-01 -2.96923310e-01 -7.17759907e-01
-4.47772056e-01 -1.18231356e+00 4.52718168e-01 6.95585534e-02
-2.50126123e-01 -8.70601416e-01 8.69232476e-01 -1.01609621e-02
-1.35058939e-01 5.53569078e-01 1.33928943e+00 -1.04949331e+00
-2.40529016e-01 -1.17809445e-01 2.25385595e-02 -1.52235597e-01
1.72311235e-02 1.94636449e-01 -5.58820128e-01 1.07031338e-01
-3.97931308e-01 9.17766839e-02 7.07952261e-01 6.79684520e-01
5.33098102e-01 2.21149325e-01 -9.01519775e-01 3.79944950e-01
1.41386676e+00 9.13769722e-01 1.13366175e+00 3.28655332e-01
4.31251824e-01 4.57096905e-01 8.62103105e-01 3.74088377e-01
-4.61355180e-01 9.67465937e-01 4.36208576e-01 -3.22087616e-01
4.09213930e-01 1.78629830e-01 1.92575023e-01 -4.58600000e-02
-6.16416752e-01 -4.61835653e-01 -9.40762758e-01 -1.82883114e-01
-1.74786139e+00 -1.07937419e+00 -9.16930854e-01 2.57215714e+00
1.11812627e+00 3.37522402e-02 2.10927933e-01 -3.10414553e-01
7.55978703e-01 -6.01366043e-01 -5.44916630e-01 -8.13867509e-01
-2.62194604e-01 5.19244969e-01 6.37914002e-01 9.81784880e-01
-5.09162366e-01 6.54786229e-01 7.32847357e+00 8.26817811e-01
-8.81724477e-01 -2.83031732e-01 8.85961577e-02 2.49119014e-01
-4.73923475e-01 2.13844091e-01 -8.15913916e-01 3.33421558e-01
1.17829823e+00 -1.41535118e-01 -9.81187969e-02 4.13359225e-01
5.14066637e-01 -4.67367202e-01 -1.00046349e+00 8.16361547e-01
-5.19144654e-01 -1.42960036e+00 2.29854405e-01 5.11808813e-01
4.03225541e-01 -1.09382786e-01 -3.64435107e-01 -3.58677626e-01
-3.13884556e-01 -1.30366933e+00 -1.86689198e-01 6.97603524e-01
5.18629432e-01 -9.54164386e-01 8.51884305e-01 2.21998543e-01
-1.01597834e+00 4.43850368e-01 -5.41273773e-01 1.01392874e-02
8.61088037e-02 6.20560646e-01 -1.07408583e+00 4.67063069e-01
-7.51127973e-02 1.81184947e-01 -1.37941211e-01 1.02840722e+00
2.78283596e-01 4.37432751e-02 -2.18267441e-01 -4.34072196e-01
3.16937640e-02 -7.64719248e-01 4.49121624e-01 1.08692944e+00
-1.07775420e-01 5.31140387e-01 -5.10050356e-02 6.29782319e-01
2.60735154e-01 9.34942365e-01 -5.49285531e-01 -2.38813356e-01
2.63443351e-01 7.86303401e-01 -6.89810514e-01 -1.89681143e-01
-1.90234318e-01 6.76154256e-01 -9.19917151e-02 2.70774424e-01
-6.97624147e-01 -4.27995980e-01 8.11171412e-01 3.07914108e-01
-2.01658621e-01 2.42027044e-01 4.30069447e-01 -7.19917834e-01
-4.90442842e-01 -8.43163908e-01 2.08761230e-01 -3.91689956e-01
-7.44995117e-01 3.15595806e-01 -5.10996347e-03 -7.27464557e-01
3.39483656e-02 -6.96624219e-01 -4.09231395e-01 1.51864517e+00
-9.72996056e-01 -8.54739130e-01 3.40971798e-01 6.59846246e-01
-1.74182132e-01 -1.73928231e-01 1.30473137e+00 2.24868536e-01
-3.13782692e-01 -6.43502995e-02 6.23215795e-01 -6.90804422e-01
9.34649348e-01 -1.06475294e+00 -2.55066425e-01 -1.47072822e-01
-3.95155221e-01 8.44818830e-01 1.11793268e+00 -9.52524781e-01
-1.45037186e+00 -2.72809118e-01 9.39056337e-01 -3.38240057e-01
2.54165560e-01 -1.48104504e-01 -8.31813037e-01 1.58611819e-01
-5.77761643e-02 -3.96272182e-01 1.39986253e+00 1.77038968e-01
6.39925525e-03 4.37650263e-01 -1.11283195e+00 3.04186732e-01
6.76701605e-01 -2.68434495e-01 -5.10325611e-01 7.21998751e-01
3.25803906e-01 -4.21755575e-02 -9.54715610e-01 3.44895989e-01
7.46924579e-01 -1.23280573e+00 1.30235684e+00 -9.85609949e-01
-5.10918617e-01 -4.69402283e-01 1.37692466e-01 -8.52490962e-01
-3.95930856e-01 -4.71370935e-01 4.59360480e-01 4.75097388e-01
7.00854480e-01 -6.19877994e-01 6.96506143e-01 4.18028057e-01
4.01112810e-02 -6.47131503e-01 -8.47881138e-01 -4.24533159e-01
-5.48848361e-02 2.91808784e-01 4.82872099e-01 8.90249491e-01
6.05440855e-01 7.40581810e-01 -8.88957828e-02 -6.96014911e-02
2.30743676e-01 1.77092962e-02 3.93265814e-01 -1.60458672e+00
-3.90393287e-01 -1.75731182e-01 -6.53078675e-01 -1.24370389e-01
1.84940204e-01 -6.47629082e-01 -5.62735975e-01 -1.35697782e+00
4.11756635e-01 -2.41528600e-01 -2.40088359e-01 1.12412013e-01
3.51100326e-01 -5.77302277e-02 -5.08070707e-01 1.80394083e-01
-1.52756065e-01 1.71630457e-01 9.75776732e-01 2.49585912e-01
-7.07356095e-01 6.33529127e-02 -3.24197114e-01 5.66809356e-01
5.24501860e-01 -6.06490791e-01 -4.35689777e-01 8.21605623e-01
5.54016709e-01 1.18105210e-01 -1.54748574e-01 -4.64523733e-01
-2.31375173e-01 -5.62861621e-01 4.62642282e-01 -5.47023714e-01
2.61140436e-01 -8.14565659e-01 1.22286153e+00 1.04991567e+00
-8.84530172e-02 -3.26520324e-01 1.41681433e-01 5.48047841e-01
-1.42456189e-01 -4.26589370e-01 9.42236245e-01 -2.18732819e-01
-4.05161619e-01 -2.30372697e-03 -6.15534186e-01 -7.11965501e-01
1.39043057e+00 -5.78203678e-01 2.52351742e-02 1.77050680e-01
-1.34407365e+00 -4.86841500e-01 5.51475823e-01 -2.61800379e-01
4.35095221e-01 -9.26312804e-01 -4.36170638e-01 -6.30137995e-02
1.35209337e-01 -7.75897443e-01 2.03966469e-01 9.94421482e-01
-9.38429952e-01 8.55006456e-01 -4.43088025e-01 -2.55346537e-01
-1.97195196e+00 7.97990263e-01 7.66867816e-01 -1.20358422e-01
-1.46382347e-01 7.81388998e-01 5.70727348e-01 -1.45262405e-01
-1.98621321e-02 1.49941295e-01 -8.57718587e-01 1.19086958e-01
6.05011165e-01 2.28347808e-01 1.34025142e-01 -9.09418941e-01
-9.48429704e-01 9.09673750e-01 1.65295065e-03 2.91478395e-01
1.23436797e+00 1.37528613e-01 -6.31018579e-01 2.62807131e-01
1.29792094e+00 2.17812687e-01 -1.31767765e-01 2.90534675e-01
6.53290823e-02 -1.60870910e-01 -1.83531657e-01 -9.97861922e-01
-2.56816521e-02 3.64606380e-01 9.22449410e-01 -6.61301091e-02
7.95481324e-01 -1.64576154e-02 1.16995089e-01 5.50181925e-01
2.43551925e-01 -8.43101680e-01 -4.67651069e-01 2.72088498e-01
7.91738570e-01 -8.45560968e-01 1.65912971e-01 -7.73480952e-01
-3.72191280e-01 1.30120993e+00 2.23623022e-01 2.27698222e-01
6.06193900e-01 -1.93529855e-02 -4.32360262e-01 -6.54947877e-01
-7.30078757e-01 -1.90977231e-01 3.60601157e-01 4.81950164e-01
1.24302197e+00 1.01006344e-01 -1.43432724e+00 3.57966542e-01
5.54458976e-01 6.50238171e-02 2.15510771e-01 8.43142807e-01
-8.40671659e-01 -1.91080630e+00 -6.00518346e-01 -4.94318642e-02
-5.34071922e-01 -1.63703665e-01 -1.05133176e+00 9.36338902e-01
3.49448442e-01 6.89224660e-01 -4.71198887e-01 -1.03463165e-01
4.27201211e-01 1.65542185e-01 6.46725059e-01 -4.90648240e-01
-6.50963247e-01 3.74972910e-01 3.13262314e-01 -4.17066634e-01
-5.80764771e-01 -4.98654813e-01 -1.94596791e+00 -3.62380773e-01
-8.50151658e-01 1.18473423e+00 1.05527234e+00 8.41958165e-01
4.80677664e-01 1.19065687e-01 5.21209955e-01 -5.80678880e-01
-1.11216262e-01 -7.52657115e-01 -9.83282328e-01 2.16758147e-01
3.83724906e-02 -7.52794921e-01 -1.77609459e-01 -1.23250745e-01] | [4.766985893249512, 5.340245246887207] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.