paperID
stringlengths
36
36
pwc_id
stringlengths
8
47
arxiv_id
stringlengths
6
16
nips_id
float64
url_abs
stringlengths
18
329
url_pdf
stringlengths
18
742
title
stringlengths
8
325
abstract
stringlengths
1
7.27k
authors
stringlengths
2
7.06k
published
stringlengths
10
10
conference
stringlengths
12
47
conference_url_abs
stringlengths
16
198
conference_url_pdf
stringlengths
27
199
proceeding
stringlengths
6
47
taskID
stringlengths
7
1.44k
areaID
stringclasses
688 values
embedding
stringlengths
9.26k
12.5k
umap_embedding
stringlengths
29
44
c3fe9d83-260a-4119-91ad-9f56f23582e0
inter-beat-interval-estimation-with-tiramisu
2107.00693
null
https://arxiv.org/abs/2107.00693v1
https://arxiv.org/pdf/2107.00693v1.pdf
Inter-Beat Interval Estimation with Tiramisu Model: A Novel Approach with Reduced Error
Inter-beat interval (IBI) measurement enables estimation of heart-rate variability (HRV) which, in turns, can provide early indication of potential cardiovascular diseases. However, extracting IBIs from noisy signals is challenging since the morphology of the signal is distorted in the presence of the noise. Electrocardiogram (ECG) of a person in heavy motion is highly corrupted with noise, known as motion-artifact, and IBI extracted from it is inaccurate. As a part of remote health monitoring and wearable system development, denoising ECG signals and estimating IBIs correctly from them have become an emerging topic among signal-processing researchers. Apart from conventional methods, deep-learning techniques have been successfully used in signal denoising recently, and diagnosis process has become easier, leading to accuracy levels that were previously unachievable. We propose a deep-learning approach leveraging tiramisu autoencoder model to suppress motion-artifact noise and make the R-peaks of the ECG signal prominent even in the presence of high-intensity motion. After denoising, IBIs are estimated more accurately expediting diagnosis tasks. Results illustrate that our method enables IBI estimation from noisy ECG signals with SNR up to -30dB with average root mean square error (RMSE) of 13 milliseconds for estimated IBIs. At this noise level, our error percentage remains below 8% and outperforms other state of the art techniques.
['Hassan Ghasemzadeh', 'Behrooz A. Shirazi', 'Roozbeh Jafari', 'Seyed Iman Mirzadeh', 'Ali Akbari', 'Asiful Arefeen']
2021-07-01
null
null
null
null
['heart-rate-variability']
['medical']
[ 3.14562649e-01 -3.96713823e-01 2.17536598e-01 -1.13719717e-01 -6.00889683e-01 -3.40324283e-01 -1.88589498e-01 1.61971465e-01 -3.31647247e-01 9.02452767e-01 2.14611441e-01 1.16319679e-01 -3.06278616e-01 -5.47297716e-01 -1.93713397e-01 -1.00592291e+00 -3.22873056e-01 -1.70983911e-01 -4.54349667e-01 -2.68965424e-03 -7.42163658e-02 3.57876509e-01 -9.49929774e-01 1.09520080e-02 8.79991412e-01 1.24037611e+00 -1.49631262e-01 7.62813747e-01 3.75514239e-01 3.46721292e-01 -1.27862597e+00 -6.08104132e-02 2.74458025e-02 -7.05961049e-01 -2.96918362e-01 -2.31139526e-01 -1.11970976e-01 -5.32092094e-01 -4.29490298e-01 9.41065252e-01 1.10040522e+00 -8.14756006e-02 4.54587519e-01 -6.36989415e-01 -1.32873043e-01 2.05195218e-01 -5.57102621e-01 6.12336397e-01 1.84941694e-01 1.70576096e-01 2.55609453e-01 -5.22586942e-01 2.32765749e-01 5.33586740e-01 1.40097010e+00 2.63830066e-01 -1.35367393e+00 -5.15731990e-01 -5.35101593e-01 3.70103329e-01 -1.44719362e+00 -2.37205088e-01 1.13939643e+00 -2.28974491e-01 5.04233837e-01 5.07655323e-01 9.88678336e-01 1.01163614e+00 6.15034878e-01 2.70787209e-01 1.08648133e+00 -1.42919764e-01 6.86970502e-02 -3.70730400e-01 2.65076328e-02 3.64966765e-02 4.04816329e-01 1.40666023e-01 -2.50946283e-01 -8.37505795e-03 8.57414961e-01 3.43496561e-01 -6.84554696e-01 5.11891305e-01 -1.39356136e+00 3.41111124e-01 4.15905505e-01 5.34679651e-01 -9.02953088e-01 8.03226829e-02 5.71382940e-01 4.73980397e-01 3.75497103e-01 2.81194091e-01 -3.41693163e-01 -3.25837433e-01 -1.02450109e+00 6.23390526e-02 5.87048173e-01 2.42764577e-01 1.44944608e-01 5.50474286e-01 -2.54670143e-01 6.57716990e-01 2.99625564e-02 6.67789578e-01 6.30388081e-01 -1.07248986e+00 7.75338113e-02 2.72178024e-01 2.80186176e-01 -1.42881918e+00 -5.80385387e-01 -1.00991499e+00 -1.69726872e+00 -2.33526424e-01 4.52886969e-01 -3.69926631e-01 -4.65071797e-01 1.35969365e+00 5.58788121e-01 3.99715722e-01 -5.34085408e-02 1.19344628e+00 9.03670549e-01 6.67190552e-01 3.04107182e-02 -8.15478444e-01 1.30358303e+00 -3.66689148e-03 -1.22017193e+00 -9.45400000e-02 1.31506816e-01 -4.84072298e-01 5.26607752e-01 6.98299348e-01 -7.89639235e-01 -8.78520310e-01 -1.09731436e+00 2.31401548e-01 4.58009660e-01 1.26020417e-01 2.31181279e-01 5.95402122e-01 -6.12732470e-01 1.01099491e+00 -8.08658838e-01 9.00372267e-02 3.63655120e-01 1.09804079e-01 -3.16211402e-01 1.45527884e-01 -1.43215442e+00 6.12762809e-01 3.91802117e-02 8.24851573e-01 -4.70196277e-01 -8.46226752e-01 -5.41164994e-01 -4.03327122e-03 7.06311688e-02 -6.70203686e-01 7.84924209e-01 -9.65680838e-01 -1.27272737e+00 3.57085168e-01 -1.92192778e-01 -4.65174824e-01 4.82422322e-01 -4.72966492e-01 -8.41107965e-01 3.16286176e-01 -2.16356382e-01 -2.31119126e-01 1.41201723e+00 -8.78081620e-01 1.36238605e-01 -5.63953638e-01 -6.01731062e-01 -5.25633544e-02 -1.56969994e-01 -2.52026707e-01 5.01963198e-02 -9.23059702e-01 5.08216619e-01 -7.01278627e-01 -7.34640881e-02 -1.70103267e-01 -2.08929420e-01 3.26732755e-01 4.17664081e-01 -1.33736622e+00 1.65711701e+00 -2.39644432e+00 -1.23557188e-02 2.46100470e-01 4.62675780e-01 5.81243813e-01 2.71759152e-01 2.34700277e-01 -6.38936460e-02 1.45843402e-01 -3.46557438e-01 3.43001604e-01 -5.58606863e-01 5.09453006e-02 6.75546080e-02 7.86388218e-01 1.16708346e-01 6.51143730e-01 -6.46835566e-01 -2.55840153e-01 2.43130520e-01 8.60316634e-01 -4.31802869e-02 1.86339915e-01 5.77592969e-01 1.07135451e+00 -3.15412730e-01 5.44166028e-01 6.14519238e-01 -2.02696715e-02 2.44275287e-01 -9.24498975e-01 1.39125809e-01 -2.93336585e-02 -1.31168997e+00 1.39703798e+00 -2.48832256e-01 7.15782762e-01 1.42648518e-01 -1.31662035e+00 1.01742458e+00 6.74935520e-01 6.03096664e-01 -8.21758926e-01 2.69112855e-01 7.28843361e-02 2.64533967e-01 -8.84697974e-01 -3.28809381e-01 -4.26967919e-01 2.03814074e-01 1.83060139e-01 -3.63589078e-01 2.19154730e-01 -2.02535659e-01 -4.29666191e-01 1.02975273e+00 -5.87292872e-02 5.76135814e-01 -1.69614524e-01 4.58433568e-01 -5.28429508e-01 9.76623952e-01 7.68256903e-01 -5.58688164e-01 6.94197416e-01 1.35253444e-01 -9.23665345e-01 -7.26574183e-01 -9.03588355e-01 -3.79947513e-01 1.80635661e-01 -2.21675150e-02 -4.56082486e-02 -6.51046157e-01 -3.91713344e-02 -7.83984456e-03 1.54606581e-01 -3.42675269e-01 -2.45593905e-01 -8.69377613e-01 -1.00451446e+00 6.87389195e-01 7.74008811e-01 5.22957504e-01 -9.88525033e-01 -8.40924621e-01 6.99291229e-01 -6.95804775e-01 -9.66180325e-01 -2.30337501e-01 -1.37761859e-02 -1.33895457e+00 -9.09217596e-01 -1.06571448e+00 -3.33548367e-01 3.81820172e-01 -1.08304240e-01 1.14831221e+00 2.85036415e-01 -7.89048553e-01 1.17394432e-01 -5.08424900e-02 -6.22020423e-01 -2.19522834e-01 -3.83223981e-01 9.08262730e-02 1.98419690e-01 1.33013353e-01 -8.68350148e-01 -1.36399460e+00 1.45643964e-01 -6.57615244e-01 -3.47631246e-01 5.00309825e-01 9.10259128e-01 5.35464287e-01 1.99729934e-01 1.16043723e+00 -3.70305568e-01 7.34989524e-01 -2.84740269e-01 -2.61343181e-01 -3.52580279e-01 -4.39428568e-01 -4.62144226e-01 6.40796423e-01 -5.26813924e-01 -8.09387207e-01 -3.59192818e-01 -2.86693573e-01 -1.27185851e-01 -2.66544074e-01 5.34772456e-01 -4.01017554e-02 2.97550559e-01 7.26605237e-01 3.75309587e-01 3.81226152e-01 -2.17117205e-01 -3.05918515e-01 7.71420717e-01 7.63467610e-01 -1.79774895e-01 3.83278370e-01 4.03836757e-01 1.56767815e-01 -1.34613395e+00 -5.06566465e-01 -5.11871397e-01 -3.33675563e-01 -3.49553823e-01 8.22877467e-01 -1.13832951e+00 -9.86939132e-01 7.07571507e-01 -1.05911708e+00 1.09064328e-02 -9.35155377e-02 7.17719018e-01 1.45676574e-02 6.70995653e-01 -8.65591288e-01 -1.01123750e+00 -1.02622581e+00 -6.96525514e-01 6.00871086e-01 2.23258317e-01 -5.99829853e-01 -7.51839459e-01 -5.81593141e-02 5.13316512e-01 6.53146148e-01 9.51427937e-01 7.70286798e-01 -2.39445210e-01 -1.18102185e-01 -5.91916323e-01 1.07396662e-01 6.47361755e-01 2.17959344e-01 -3.51840675e-01 -9.31671917e-01 -2.50580281e-01 6.66408479e-01 2.99505711e-01 4.20649558e-01 7.96669126e-01 1.08409560e+00 -3.23625833e-01 -9.73286107e-02 5.55700839e-01 1.40247607e+00 3.51117432e-01 9.69743967e-01 3.55362818e-02 5.39174736e-01 3.31681132e-01 2.39085913e-01 7.33145714e-01 -2.94018593e-02 2.72452056e-01 1.87636226e-01 -2.48311996e-01 4.99849916e-02 6.10813498e-01 7.74302334e-02 1.07193708e+00 -6.12708449e-01 3.75493057e-02 -7.05113888e-01 5.47775626e-01 -1.39923310e+00 -1.01303148e+00 -6.16448224e-01 2.30394626e+00 1.01167309e+00 -6.51991665e-02 1.41460776e-01 8.62942636e-01 6.93857968e-01 -3.03416587e-02 -7.43654549e-01 -1.68999031e-01 4.04220633e-03 4.37264949e-01 7.92161524e-02 5.91909364e-02 -1.00962389e+00 -2.03406364e-01 5.60531807e+00 -1.08766090e-02 -1.46424532e+00 2.85088294e-03 6.56965435e-01 8.91598240e-02 2.29148805e-01 -5.10198712e-01 -1.88814774e-01 7.22014844e-01 1.17890704e+00 1.46018431e-01 2.84200639e-01 4.97748315e-01 5.63233495e-01 -3.51141244e-02 -7.05705106e-01 1.47148752e+00 -1.61433175e-01 -9.40975726e-01 -6.02214277e-01 -2.62727022e-01 3.45737249e-01 -4.43465054e-01 -1.40064329e-01 1.33861363e-01 -1.01054978e+00 -1.06903076e+00 2.18653992e-01 9.73291636e-01 8.61638069e-01 -9.25473213e-01 1.21718001e+00 4.24078435e-01 -9.74423170e-01 -2.12094992e-01 -1.84306920e-01 -2.08437532e-01 7.28514269e-02 1.54126489e+00 -3.82404596e-01 4.94540453e-01 7.35185564e-01 6.73367381e-01 1.34191466e-02 1.07992899e+00 -1.39161259e-01 1.03552842e+00 -2.76410818e-01 2.96852350e-01 -5.86046994e-01 -2.57029891e-01 6.70730114e-01 8.97444308e-01 5.39124310e-01 5.42542458e-01 -5.01035363e-04 6.46436453e-01 -3.35573219e-02 -1.76169351e-01 -3.62161964e-01 1.30428046e-01 4.51561719e-01 1.08030748e+00 -4.29664075e-01 -3.85759592e-01 -1.98614046e-01 8.80065262e-01 -5.84506452e-01 4.78266090e-01 -7.66589105e-01 -6.90698326e-01 4.46542948e-01 3.38428259e-01 -1.17963962e-01 -7.96897262e-02 -5.13308287e-01 -9.60401416e-01 3.50036681e-01 -1.26316798e+00 3.07330233e-03 -3.72854501e-01 -1.08629584e+00 5.34690917e-01 -3.96535397e-01 -1.33551049e+00 -2.39079773e-01 -1.57900695e-02 -7.25744903e-01 9.54504550e-01 -1.26218379e+00 -3.65689039e-01 -5.82529724e-01 3.97826046e-01 2.23391995e-01 3.45092505e-01 1.02042603e+00 6.85799837e-01 -5.13793349e-01 2.69530594e-01 5.20492829e-02 2.48405814e-01 5.87960243e-01 -1.13833058e+00 2.75755152e-02 7.37850964e-01 -1.68844253e-01 7.64332771e-01 8.55456173e-01 -5.87118685e-01 -1.44004023e+00 -1.04770410e+00 7.33713567e-01 1.25990948e-02 1.67655721e-01 2.19950095e-01 -1.16225076e+00 -5.19462721e-03 1.07144088e-01 4.07828212e-01 8.09457600e-01 -1.72890320e-01 3.45938742e-01 -8.19443464e-01 -1.04254580e+00 3.44377220e-01 5.51077843e-01 -4.95334893e-01 -6.09758198e-01 -9.71749946e-02 -4.01656069e-02 -2.97024488e-01 -1.43149412e+00 7.12562561e-01 8.97136569e-01 -8.69515657e-01 1.15266418e+00 -1.16772555e-01 4.64639254e-02 -3.92019004e-01 3.61769557e-01 -1.37936652e+00 -3.43365997e-01 -7.92449355e-01 -3.75856370e-01 1.00809658e+00 -1.91801041e-01 -4.86201704e-01 4.43503737e-01 3.40660661e-01 2.59035118e-02 -5.75891912e-01 -8.76292646e-01 -4.82517391e-01 -5.20929456e-01 -3.39292347e-01 1.80410650e-02 8.69333625e-01 -3.05873156e-01 2.05387697e-01 -6.26458824e-01 2.02082008e-01 9.47426677e-01 -5.09245731e-02 4.32608455e-01 -1.47082877e+00 -2.66446084e-01 9.71853361e-02 -4.53423500e-01 -5.30557930e-01 -2.70207763e-01 -3.25208873e-01 5.11812232e-02 -1.53358126e+00 -1.75926119e-01 9.03707668e-02 -6.26844406e-01 2.07957879e-01 -5.69360435e-01 5.18277109e-01 -4.19311188e-02 1.17845252e-01 -7.54490634e-03 3.16855431e-01 1.17406905e+00 -2.56022811e-01 -5.35065711e-01 2.21176833e-01 -4.40884650e-01 9.34971333e-01 6.81050599e-01 -5.36024094e-01 -3.01837057e-01 -1.28397539e-01 1.38584882e-01 6.44709766e-01 4.17359561e-01 -1.36316848e+00 -1.44659519e-01 3.91153395e-01 1.03369868e+00 -5.27104199e-01 1.19618140e-01 -8.03933680e-01 7.24510908e-01 6.00985467e-01 -1.18567571e-02 1.15197478e-02 1.74453810e-01 6.08842671e-01 -4.55431342e-01 1.80805445e-01 6.71518266e-01 -1.53652087e-01 -2.36451820e-01 6.53289333e-02 -6.50597870e-01 1.42237440e-01 5.76375961e-01 -3.97429705e-01 1.59398869e-01 -4.02284026e-01 -1.02277410e+00 -2.45140046e-01 -3.30027908e-01 -2.33579621e-01 9.07087445e-01 -1.17981112e+00 -8.24085295e-01 1.22240625e-01 -2.60481864e-01 2.28842371e-03 8.07100058e-01 1.50869215e+00 -6.85887098e-01 -1.56094983e-01 -9.89734083e-02 -7.63014615e-01 -1.22307861e+00 1.77599296e-01 2.80344456e-01 -1.31549701e-01 -1.01181364e+00 4.71214861e-01 -3.61419678e-01 5.40074229e-01 2.30842620e-01 -4.72958386e-01 -2.33062580e-01 2.66321361e-01 8.17227364e-01 6.79328501e-01 2.58056283e-01 -3.21028173e-01 -4.23403144e-01 6.33798122e-01 2.99003154e-01 4.33426499e-01 1.33444691e+00 -3.54669809e-01 -4.10889648e-02 5.00906169e-01 1.00810349e+00 -1.63127750e-01 -1.04906356e+00 8.30033794e-02 -1.04260802e-01 -1.78840846e-01 3.77579272e-01 -7.43027091e-01 -1.16211152e+00 1.06026137e+00 1.15619600e+00 2.61949897e-01 1.59076548e+00 -8.80884409e-01 1.30207384e+00 2.10511521e-01 1.80362403e-01 -9.33639824e-01 1.41064212e-01 -9.97425914e-02 8.65414202e-01 -1.04547942e+00 1.70514047e-01 9.46106091e-02 -5.30707955e-01 1.24368060e+00 -1.50779411e-01 -2.25684017e-01 7.47489214e-01 2.16767684e-01 4.22354162e-01 1.84497431e-01 -1.02544412e-01 2.44750753e-01 2.29191378e-01 7.30267227e-01 7.04576969e-01 -3.97403538e-02 -5.44043779e-01 8.14998507e-01 1.96445897e-01 3.72424096e-01 3.45066309e-01 8.10975552e-01 -2.23808512e-01 -4.96590674e-01 -6.25775695e-01 5.10948896e-01 -1.22355235e+00 -2.27602031e-02 3.34370583e-01 4.59350884e-01 4.98198569e-02 1.12157142e+00 -2.55721241e-01 -4.86590266e-02 3.32569331e-01 1.50269330e-01 3.41150403e-01 -5.89862242e-02 -6.88689530e-01 5.13533294e-01 1.01305428e-03 -5.33528566e-01 -4.98143226e-01 -2.94539511e-01 -1.11960053e+00 -7.51428828e-02 -3.00488114e-01 -4.97898273e-02 6.69595182e-01 8.79811287e-01 4.13991898e-01 9.72421825e-01 5.71923435e-01 -6.63201809e-01 -5.84332168e-01 -1.02495527e+00 -7.29518950e-01 6.41386986e-01 8.36692035e-01 -1.63043380e-01 -2.98481911e-01 3.55444789e-01]
[14.259604454040527, 3.177182912826538]
29266f30-49c8-40f0-b5ac-97617e885311
image-to-image-translation-for-autonomous
2209.11673
null
https://arxiv.org/abs/2209.11673v1
https://arxiv.org/pdf/2209.11673v1.pdf
Image-to-Image Translation for Autonomous Driving from Coarsely-Aligned Image Pairs
A self-driving car must be able to reliably handle adverse weather conditions (e.g., snowy) to operate safely. In this paper, we investigate the idea of turning sensor inputs (i.e., images) captured in an adverse condition into a benign one (i.e., sunny), upon which the downstream tasks (e.g., semantic segmentation) can attain high accuracy. Prior work primarily formulates this as an unpaired image-to-image translation problem due to the lack of paired images captured under the exact same camera poses and semantic layouts. While perfectly-aligned images are not available, one can easily obtain coarsely-paired images. For instance, many people drive the same routes daily in both good and adverse weather; thus, images captured at close-by GPS locations can form a pair. Though data from repeated traversals are unlikely to capture the same foreground objects, we posit that they provide rich contextual information to supervise the image translation model. To this end, we propose a novel training objective leveraging coarsely-aligned image pairs. We show that our coarsely-aligned training scheme leads to a better image translation quality and improved downstream tasks, such as semantic segmentation, monocular depth estimation, and visual localization.
['Mark Campbell', 'Kilian Q Weinberger', 'Bharath Hariharan', 'Wei-Lun Chao', 'Josephine Monica', 'Youya Xia']
2022-09-23
null
null
null
null
['visual-localization']
['computer-vision']
[ 5.91059566e-01 -4.09465730e-02 -1.30357891e-01 -6.23569906e-01 -6.77222788e-01 -7.89489388e-01 5.22156179e-01 -3.66951317e-01 -1.74560770e-01 5.96149385e-01 -2.77233154e-01 -5.05318940e-01 2.92769194e-01 -8.57134044e-01 -1.29542482e+00 -5.87364733e-01 4.87373620e-01 3.98985177e-01 1.40444905e-01 -1.47649139e-01 3.94107141e-02 3.78202289e-01 -1.67128778e+00 -1.38236642e-01 1.05915344e+00 8.61811876e-01 5.92136562e-01 7.83863783e-01 2.73533821e-01 4.71661538e-01 -4.55822617e-01 -3.60119402e-01 5.36894202e-01 -2.82469690e-01 -3.98596406e-01 6.27987504e-01 7.11818397e-01 -6.29065216e-01 -4.39375997e-01 1.06874895e+00 -6.66474625e-02 2.08263189e-01 3.43014866e-01 -1.60396671e+00 -3.86925280e-01 -1.46244556e-01 -6.09606683e-01 4.18552384e-02 3.64165038e-01 4.60061789e-01 5.06342351e-01 -4.16320920e-01 4.71804023e-01 9.76153970e-01 3.28722090e-01 2.91376412e-01 -9.20599699e-01 -5.98960161e-01 3.91573817e-01 2.20750377e-01 -1.24733543e+00 -5.21825969e-01 6.93897724e-01 -1.26572758e-01 4.69460130e-01 3.76972824e-01 5.77129722e-01 1.12764001e+00 8.90289471e-02 6.98458314e-01 1.25688851e+00 -5.96675277e-02 2.68233120e-01 2.28652537e-01 -2.62673289e-01 4.15730417e-01 3.64430398e-01 3.42445701e-01 -6.47179425e-01 4.47201997e-01 7.30904281e-01 3.13659579e-01 -2.93285280e-01 -2.84392983e-01 -1.29108667e+00 4.08299387e-01 5.81840575e-01 -5.83100878e-02 -3.13618690e-01 -9.68876854e-03 -1.83329687e-01 2.30227262e-01 2.86733121e-01 1.63824424e-01 -2.74583101e-01 -1.72304899e-01 -8.72547030e-01 3.27994704e-01 4.53546017e-01 1.37657356e+00 1.05385911e+00 -9.52088758e-02 3.42974573e-01 2.42074788e-01 3.87942940e-02 9.99590874e-01 -5.20095304e-02 -1.12587571e+00 8.94825220e-01 3.78476411e-01 4.91951972e-01 -1.03785264e+00 -1.73867121e-01 -2.70683646e-01 -5.74640632e-01 7.83994347e-02 6.54142916e-01 -1.45894438e-01 -1.26414394e+00 1.68048406e+00 4.69729036e-01 5.14620304e-01 1.79028332e-01 1.34198213e+00 3.09974134e-01 6.93457425e-01 -2.25956887e-01 -5.07590035e-03 1.28095961e+00 -1.06050849e+00 -5.65374970e-01 -9.69705582e-01 3.90206367e-01 -7.02850521e-01 1.10432136e+00 2.06864432e-01 -9.38642263e-01 -5.18457234e-01 -1.14625788e+00 -5.53399213e-02 -2.88789719e-01 -9.91235524e-02 3.81309599e-01 5.01373827e-01 -8.42520833e-01 1.94285497e-01 -8.64804208e-01 -4.36745763e-01 1.42971531e-01 -6.07935898e-02 -4.68888015e-01 -6.75003290e-01 -1.08173239e+00 8.94076407e-01 4.28002812e-02 2.05758169e-01 -9.95707750e-01 -5.39223552e-01 -8.77414882e-01 -3.73883694e-01 6.87098384e-01 -6.90636814e-01 1.30521667e+00 -1.06988668e+00 -1.09603775e+00 9.15979564e-01 -6.07050598e-01 -3.96496892e-01 7.10213006e-01 -2.82202333e-01 -2.64998257e-01 2.20718116e-01 4.97131407e-01 7.49905407e-01 9.19541419e-01 -1.66356790e+00 -9.76914585e-01 -6.13343298e-01 2.81258792e-01 7.19967246e-01 -1.61905047e-02 -3.64196062e-01 -7.90316224e-01 -2.84994811e-01 2.77692884e-01 -1.17694116e+00 -2.05395296e-01 5.23824804e-02 -5.88292360e-01 5.46511352e-01 9.10027087e-01 -5.50774813e-01 5.62863529e-01 -2.11530089e+00 -5.95549271e-02 1.85758591e-01 5.41144945e-02 -4.33301628e-02 6.08224906e-02 1.54340668e-02 2.74058521e-01 -9.62468907e-02 -3.94758165e-01 -6.40331328e-01 -1.99136376e-01 8.03161502e-01 -3.47671092e-01 5.93242049e-01 8.80127549e-02 1.03432035e+00 -1.09106612e+00 -4.02388155e-01 5.14902115e-01 2.88588077e-01 -8.15620422e-02 4.23564494e-01 -1.30794719e-01 9.27531362e-01 -4.39027220e-01 7.37287581e-01 8.82096529e-01 5.11801988e-02 -8.81067067e-02 -9.39566419e-02 -1.24648839e-01 5.69166467e-02 -1.01882124e+00 1.48555243e+00 -7.63293922e-01 8.03133130e-01 2.36899316e-01 -8.44387352e-01 6.64501548e-01 -4.58558314e-02 1.82187706e-01 -1.16835785e+00 7.15107098e-02 1.97257817e-01 -4.41154808e-01 -5.99586368e-01 6.28547251e-01 -1.17669679e-01 -2.47916639e-01 2.83186615e-01 -6.53961778e-01 -4.67714101e-01 -5.28571233e-02 4.63739857e-02 8.31770241e-01 7.15543106e-02 -1.40874937e-01 1.85952753e-01 -2.90619247e-02 2.68129140e-01 7.28454113e-01 7.40356922e-01 -3.58385265e-01 1.00623739e+00 1.53561503e-01 -1.84116378e-01 -1.26880574e+00 -1.32101643e+00 2.71122921e-02 7.37417758e-01 1.02155244e+00 3.65537368e-02 -8.92889917e-01 -4.92155820e-01 -2.04914913e-01 7.45658040e-01 -4.48491216e-01 -1.92310005e-01 -5.27592182e-01 -4.45728958e-01 3.71195853e-01 6.53097749e-01 8.85024130e-01 -4.69056726e-01 -9.73593056e-01 -3.82574648e-02 -6.50420070e-01 -1.62520361e+00 -6.11277640e-01 4.02945019e-02 -5.73504627e-01 -9.80649054e-01 -6.36323988e-01 -5.57049870e-01 8.36370647e-01 1.01580954e+00 1.12045956e+00 2.42146011e-03 1.81078929e-02 2.31618062e-01 -3.89085203e-01 -2.92422980e-01 -1.46434233e-01 -1.81224734e-01 -3.36292386e-02 2.61052877e-01 2.66529799e-01 -4.53215241e-01 -8.63459826e-01 6.83505356e-01 -9.83888566e-01 4.91569340e-01 5.91161788e-01 5.25652647e-01 7.26218462e-01 3.18520695e-01 -2.52225380e-02 -5.31021893e-01 -1.99174862e-02 -5.18346310e-01 -4.99129355e-01 1.05108902e-01 -3.21300715e-01 -3.41864318e-01 6.70760512e-01 -1.30243093e-01 -1.14879215e+00 2.48406664e-01 2.22665057e-01 -5.72237074e-01 -6.07695222e-01 4.69648130e-02 -4.22677428e-01 -3.84728611e-02 4.90376472e-01 3.77749354e-01 -1.45742267e-01 9.66892112e-03 4.35812533e-01 7.30344653e-01 9.41580176e-01 -4.38292623e-01 1.12073636e+00 9.94450748e-01 -5.03369346e-02 -8.28048825e-01 -8.82596076e-01 -5.80046952e-01 -5.41367769e-01 -4.37992066e-01 1.07589412e+00 -1.10417354e+00 -1.81352034e-01 6.64848089e-01 -8.85667264e-01 -6.17082715e-01 1.50063679e-01 3.66440475e-01 -5.55317998e-01 2.30119348e-01 -1.19934075e-01 -8.37242126e-01 3.41910809e-01 -1.26261353e+00 1.54896581e+00 5.02907872e-01 6.46572700e-03 -8.03107202e-01 -4.40075487e-01 8.43621671e-01 1.53856456e-01 2.94500500e-01 3.27172369e-01 5.95976487e-02 -1.01162589e+00 -9.01172459e-02 -3.28919023e-01 1.80817470e-01 2.16986001e-01 -1.79278016e-01 -1.03686905e+00 -1.90233648e-01 1.12120710e-01 -1.16181567e-01 6.58657730e-01 2.90511221e-01 8.16192627e-01 -1.19115919e-01 -5.08590519e-01 7.82512486e-01 1.24502504e+00 3.22839439e-01 7.06453085e-01 4.03833508e-01 1.03952491e+00 7.77332842e-01 1.17549777e+00 9.61912721e-02 7.82940030e-01 9.50767398e-01 7.01436996e-01 -3.93983275e-01 3.20958346e-02 -4.70404208e-01 2.75407016e-01 1.51021481e-01 3.11845988e-01 -5.86962044e-01 -8.54900122e-01 7.19293535e-01 -1.89813840e+00 -6.21730387e-01 -3.09543073e-01 2.28067875e+00 3.52765024e-01 2.98427284e-01 -1.61780715e-01 -9.11890045e-02 7.13083684e-01 1.56078652e-01 -8.78502190e-01 1.47323972e-02 -3.00511688e-01 -3.67877543e-01 1.02509713e+00 6.29380584e-01 -1.04661524e+00 7.96320200e-01 5.13186312e+00 4.94525701e-01 -1.04069829e+00 1.52312785e-01 9.26342070e-01 -1.89759925e-01 -5.34343719e-01 1.32711232e-01 -6.93782568e-01 8.04107666e-01 7.96278059e-01 2.22978011e-01 4.55066741e-01 6.56914771e-01 5.14331400e-01 -5.68295062e-01 -9.52567577e-01 1.13423848e+00 2.49645069e-01 -1.00292218e+00 -2.26072848e-01 2.15638988e-02 1.03910089e+00 1.96961798e-02 3.08735907e-01 -1.26439586e-01 1.85786828e-01 -1.02236974e+00 1.13372803e+00 3.75838339e-01 8.02627563e-01 -6.44547582e-01 6.09576941e-01 5.14302194e-01 -1.20838094e+00 2.20504496e-02 -9.55052599e-02 -2.50801831e-01 5.85167348e-01 6.99125648e-01 -5.62235832e-01 7.38247097e-01 7.20402777e-01 6.94455802e-01 -4.26313013e-01 7.82445610e-01 -4.80619580e-01 2.71751732e-01 -5.32492459e-01 3.31030369e-01 3.49700570e-01 -4.57982600e-01 5.33325434e-01 6.03607774e-01 3.74254167e-01 1.76872090e-01 2.73394674e-01 8.26613963e-01 2.21790254e-01 -6.01757407e-01 -9.03731525e-01 3.59945416e-01 5.82359493e-01 1.02111840e+00 -7.75075912e-01 -2.86644787e-01 -5.18044710e-01 1.35522103e+00 -1.07847460e-01 6.49241209e-01 -1.15755296e+00 4.65733893e-02 9.65192199e-01 3.76098484e-01 1.35326564e-01 -3.59174401e-01 -7.73155212e-01 -1.21533060e+00 5.23906350e-01 -6.12466812e-01 -1.60883516e-01 -1.13602126e+00 -9.74015653e-01 5.55725694e-01 5.48972897e-02 -1.28765190e+00 -1.97199881e-01 -3.94629061e-01 -5.98551929e-01 7.95958579e-01 -1.79676008e+00 -1.26817465e+00 -8.33693326e-01 6.16568446e-01 5.70022523e-01 4.38153297e-01 1.20715022e-01 4.94402677e-01 -6.50026917e-01 5.04036486e-01 1.06342666e-01 -1.02313221e-01 6.33995473e-01 -1.16009200e+00 5.87788284e-01 1.44572985e+00 4.95467223e-02 2.08470911e-01 8.39498878e-01 -6.69847190e-01 -1.38872683e+00 -1.55802810e+00 6.63180411e-01 -5.82461059e-01 2.30310500e-01 -3.99116427e-01 -6.75873280e-01 6.83136642e-01 -2.07753301e-01 -7.92924389e-02 -4.01190221e-02 -5.67067623e-01 -2.72353124e-02 -1.94346189e-01 -1.04222393e+00 9.32758927e-01 1.25678575e+00 -6.56193912e-01 -3.10789943e-01 4.68928099e-01 6.66726172e-01 -7.90728569e-01 -2.91601241e-01 2.98864543e-01 1.61355570e-01 -1.07622480e+00 1.01271367e+00 -7.80029446e-02 3.87094855e-01 -5.84580004e-01 -2.83884108e-01 -1.19797778e+00 4.05099452e-01 -5.55400610e-01 2.38395825e-01 9.91671622e-01 3.50878030e-01 -8.04012299e-01 9.42645907e-01 8.61790717e-01 -3.77368301e-01 -6.08650148e-01 -1.00389731e+00 -9.09743607e-01 -2.09022075e-01 -6.75160587e-01 6.96467578e-01 6.69378400e-01 -4.23710883e-01 8.33308846e-02 -4.89429444e-01 6.28859460e-01 7.15865493e-01 4.22745913e-01 1.01993215e+00 -7.19724536e-01 -1.06128819e-01 -2.99834292e-02 -4.23448592e-01 -1.56238520e+00 1.11163266e-01 -3.61704111e-01 4.90894109e-01 -1.46668184e+00 3.40798050e-02 -7.30352879e-01 3.82197618e-01 2.33053908e-01 -3.99458230e-01 5.77883422e-01 3.90358754e-02 2.15538755e-01 -4.84745383e-01 3.31044793e-01 1.28672731e+00 1.03936368e-03 -8.13117549e-02 1.47175670e-01 -6.65382326e-01 5.64678788e-01 8.95338595e-01 -1.65857300e-01 -6.74229681e-01 -7.32225358e-01 2.90682167e-01 1.15679458e-01 6.83459878e-01 -1.05075932e+00 1.65520802e-01 -4.10168082e-01 2.47331128e-01 -4.83755201e-01 5.61044455e-01 -8.75375211e-01 2.82671750e-01 1.77097604e-01 9.29909572e-02 8.67704898e-02 -1.79041978e-02 8.10709119e-01 -2.54085302e-01 1.01890303e-02 6.26168370e-01 -2.04035819e-01 -1.01795745e+00 3.99762750e-01 -1.85242817e-01 6.48219213e-02 1.37780261e+00 -8.57199430e-01 -4.60015357e-01 -6.37569964e-01 -3.93299937e-01 5.42464495e-01 1.05591166e+00 5.61119854e-01 6.59924448e-01 -1.15988898e+00 -4.92130220e-01 5.06529331e-01 2.62386143e-01 5.29760540e-01 3.96642923e-01 1.01908779e+00 -4.83987838e-01 3.48286510e-01 -2.96410732e-02 -8.93393934e-01 -1.20319235e+00 3.15114141e-01 3.51349205e-01 1.43875107e-01 -6.04207873e-01 7.22662866e-01 6.55184686e-01 -3.50094438e-01 9.10016075e-02 -5.15238523e-01 3.55913311e-01 -2.67561704e-01 4.92411256e-01 1.78468704e-01 2.53569752e-01 -8.67688298e-01 -2.80948758e-01 7.35706687e-01 1.18476465e-01 -2.08724111e-01 8.17653477e-01 -8.32766712e-01 3.61294925e-01 3.24088186e-01 1.17395997e+00 -3.29554856e-01 -1.91928208e+00 -1.37409836e-01 -7.22523212e-01 -1.02685630e+00 6.10447042e-02 -5.84600389e-01 -1.19447100e+00 8.45707059e-01 5.05709469e-01 -7.17289746e-02 1.16206622e+00 1.08109318e-01 1.17253327e+00 1.31348908e-01 6.81510806e-01 -1.10236394e+00 -1.45028725e-01 2.97250658e-01 3.06088150e-01 -1.47162068e+00 -4.23166633e-01 -5.31874478e-01 -8.79643679e-01 6.83991671e-01 7.31842935e-01 2.58738577e-01 1.43182248e-01 2.20738217e-01 2.59595841e-01 -8.28076228e-02 -3.69403273e-01 -4.52790082e-01 -3.50383483e-02 9.12126243e-01 -3.80702972e-01 3.55896503e-01 5.33959091e-01 1.22250393e-01 -3.95049334e-01 -2.90774405e-01 6.43764138e-01 9.94484663e-01 -3.05838287e-01 -5.65406144e-01 -7.77566433e-01 3.85563731e-01 1.08013205e-01 1.68782771e-01 -3.66871178e-01 5.89734495e-01 3.05708319e-01 1.30274916e+00 3.32126409e-01 -4.74339843e-01 4.86066848e-01 -4.47806001e-01 4.13554192e-01 -4.90787476e-01 1.40249744e-01 -3.83316100e-01 8.36855695e-02 -7.97828674e-01 -3.92334878e-01 -7.24541187e-01 -1.08316660e+00 -5.83398879e-01 -2.89342310e-02 -2.65702128e-01 6.58760130e-01 1.22948694e+00 1.95260435e-01 4.87980783e-01 7.98494220e-01 -1.12615764e+00 -4.41568494e-02 -4.20360327e-01 -5.22355974e-01 5.86445391e-01 6.07521892e-01 -6.62686288e-01 -4.63432074e-01 2.77322114e-01]
[8.468131065368652, -2.138725996017456]
1b548b8b-dc5a-42b2-ba5e-f7ae619146df
boosting-rgb-d-saliency-detection-by
2201.001
null
https://arxiv.org/abs/2201.00100v1
https://arxiv.org/pdf/2201.00100v1.pdf
Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images
Training deep models for RGB-D salient object detection (SOD) often requires a large number of labeled RGB-D images. However, RGB-D data is not easily acquired, which limits the development of RGB-D SOD techniques. To alleviate this issue, we present a Dual-Semi RGB-D Salient Object Detection Network (DS-Net) to leverage unlabeled RGB images for boosting RGB-D saliency detection. We first devise a depth decoupling convolutional neural network (DDCNN), which contains a depth estimation branch and a saliency detection branch. The depth estimation branch is trained with RGB-D images and then used to estimate the pseudo depth maps for all unlabeled RGB images to form the paired data. The saliency detection branch is used to fuse the RGB feature and depth feature to predict the RGB-D saliency. Then, the whole DDCNN is assigned as the backbone in a teacher-student framework for semi-supervised learning. Moreover, we also introduce a consistency loss on the intermediate attention and saliency maps for the unlabeled data, as well as a supervised depth and saliency loss for labeled data. Experimental results on seven widely-used benchmark datasets demonstrate that our DDCNN outperforms state-of-the-art methods both quantitatively and qualitatively. We also demonstrate that our semi-supervised DS-Net can further improve the performance, even when using an RGB image with the pseudo depth map.
['Yueting Zhuang', 'Yi Yang', 'Fei Wu', 'Ping Li', 'Huazhu Fu', 'Siliang Tang', 'Lei Zhu', 'Xiaoqiang Wang']
2022-01-01
null
null
null
null
['rgb-d-salient-object-detection']
['computer-vision']
[ 1.69812620e-01 3.36705863e-01 -3.73539597e-01 -4.86153007e-01 -7.54141510e-01 -1.38018116e-01 1.99548259e-01 -2.44836528e-02 -2.69491673e-01 2.94922739e-01 7.39625171e-02 -1.40871331e-01 4.01395857e-01 -6.45928741e-01 -8.09204400e-01 -8.87029707e-01 6.07878625e-01 6.20639622e-02 9.25225079e-01 -1.11936450e-01 1.58506811e-01 4.42625791e-01 -1.68279910e+00 1.00015718e-02 8.65776062e-01 1.64207757e+00 7.62673497e-01 6.14484996e-02 -2.77925670e-01 9.72437978e-01 -1.59400612e-01 3.46301198e-02 5.02596080e-01 -3.42071772e-01 -5.59924185e-01 3.91306907e-01 2.44178370e-01 -7.18970358e-01 -4.11770642e-01 9.97207820e-01 5.86705148e-01 3.67863216e-02 2.90556908e-01 -1.48102152e+00 -6.61203921e-01 2.34158307e-01 -9.42038774e-01 3.20917636e-01 9.73480269e-02 2.35785142e-01 7.47296691e-01 -1.26808274e+00 3.71224821e-01 1.11740661e+00 2.55911499e-01 6.20925546e-01 -7.77395487e-01 -6.56343281e-01 2.92621702e-01 1.13209963e-01 -1.10640359e+00 5.99989295e-02 1.48145294e+00 1.25727365e-02 5.18107951e-01 -6.11457005e-02 9.41788435e-01 6.20300412e-01 -3.78614038e-01 1.62775636e+00 1.09951031e+00 -3.27886432e-01 1.49557069e-01 1.69550389e-01 -2.81444751e-02 9.06923234e-01 7.77618960e-02 1.59838229e-01 -6.46122098e-01 4.40338671e-01 1.10996985e+00 3.14111471e-01 -1.06917344e-01 -8.77929389e-01 -1.06323588e+00 6.89438879e-01 1.39652467e+00 -9.86709297e-02 -3.49251211e-01 -4.40693721e-02 5.00824116e-02 -5.72299697e-02 5.92818081e-01 3.32677574e-03 -4.76128399e-01 3.93018574e-01 -7.79217422e-01 1.03512693e-05 1.64028972e-01 9.21965361e-01 1.21563768e+00 -6.85335770e-02 2.53956579e-02 5.47052264e-01 6.05460286e-01 7.15211749e-01 4.10467029e-01 -8.22090387e-01 6.09176874e-01 1.22008944e+00 1.05081387e-01 -7.67478228e-01 -5.03258228e-01 -3.47378075e-01 -6.68160200e-01 2.71712542e-01 3.78516316e-01 1.74447328e-01 -1.13278615e+00 1.46185219e+00 7.58542955e-01 5.27851023e-02 -4.29910682e-02 1.60993946e+00 1.15407324e+00 3.33498269e-01 -7.78820962e-02 4.53463309e-02 9.98310149e-01 -1.34558761e+00 -2.93422908e-01 -5.88677347e-01 3.85573834e-01 -4.65170741e-01 1.33479381e+00 -6.93485979e-03 -1.14361763e+00 -5.97654164e-01 -1.04094148e+00 -7.18270421e-01 -2.15980992e-01 3.56905580e-01 7.60360658e-01 3.65880519e-01 -9.62751806e-01 1.30078599e-01 -1.05147219e+00 3.55060287e-02 8.16751361e-01 2.85039365e-01 -3.15974690e-02 -1.15364037e-01 -1.13208282e+00 7.27870762e-01 3.67523283e-01 1.99362695e-01 -1.26253223e+00 -6.85127854e-01 -1.12272191e+00 -1.27441555e-01 3.58652085e-01 -3.60262334e-01 1.22883952e+00 -1.09773135e+00 -1.29032278e+00 1.19415104e+00 -7.36781359e-02 -7.86449835e-02 3.84895623e-01 -5.33906594e-02 3.15693207e-02 4.61825997e-01 3.44378263e-01 1.12216580e+00 8.77190948e-01 -1.53499091e+00 -9.98794496e-01 -5.94629228e-01 9.41182598e-02 4.84334588e-01 -2.62358308e-01 -3.78197044e-01 -6.51181936e-01 -4.63894337e-01 8.02221000e-01 -6.77381992e-01 -2.32924983e-01 5.09784222e-01 -7.37771451e-01 -1.73154339e-01 9.19919252e-01 -4.20818448e-01 6.83240652e-01 -2.13747263e+00 2.60656625e-01 -2.09839158e-02 4.14344281e-01 1.92318648e-01 3.91806103e-02 -3.76011521e-01 -4.50676903e-02 -4.34448004e-01 -3.00064534e-01 -6.86126351e-01 -2.38964096e-01 7.77563453e-02 -5.00435472e-01 4.61989373e-01 5.42865694e-01 1.16088331e+00 -1.26231027e+00 -7.52852559e-01 5.40618479e-01 3.43451381e-01 -2.89617896e-01 3.86634618e-01 -3.37870181e-01 4.01930839e-01 -7.90564716e-01 1.26492953e+00 7.40503371e-01 -5.19256055e-01 -3.91728520e-01 -2.69068986e-01 -2.21870497e-01 4.07546103e-01 -8.75231087e-01 2.03181863e+00 -2.21147045e-01 4.57464695e-01 -1.51981965e-01 -9.02002692e-01 1.07546568e+00 -2.66555309e-01 3.81285250e-01 -9.15610194e-01 2.09017009e-01 4.65524375e-01 -4.77992862e-01 -1.85101554e-01 3.06606472e-01 -2.42302381e-02 -1.61537062e-02 6.39142692e-01 -5.21535287e-03 -5.61613679e-01 -2.91707009e-01 3.23958546e-01 5.54487348e-01 2.45059088e-01 -1.01346396e-01 3.84017229e-02 5.02005875e-01 9.09191817e-02 6.67873919e-01 3.17090929e-01 -5.23556948e-01 8.40571463e-01 4.67573285e-01 -5.80236018e-01 -9.07428026e-01 -1.42627990e+00 4.93850447e-02 9.45679367e-01 1.07872045e+00 2.60978550e-01 -6.13294184e-01 -1.04662061e+00 1.50377348e-01 3.61729532e-01 -7.98532605e-01 -4.21310455e-01 -2.76357561e-01 -4.07299638e-01 -7.70743489e-02 8.02531123e-01 9.45569158e-01 -1.22140312e+00 -8.69397521e-01 -8.40145200e-02 -1.57101259e-01 -9.46309805e-01 -4.56190020e-01 6.61651194e-01 -1.09709823e+00 -9.08133388e-01 -9.59275842e-01 -1.15276575e+00 9.40104544e-01 1.04713333e+00 8.43401730e-01 8.70300531e-02 -1.28239155e-01 1.11958787e-01 -2.49027759e-01 -5.69495618e-01 1.18370555e-01 1.60166591e-01 -9.74433348e-02 -1.35137975e-01 4.90069747e-01 -5.18264592e-01 -1.10253549e+00 4.61523533e-01 -8.87517750e-01 4.83209968e-01 9.52388465e-01 6.10043585e-01 1.01429653e+00 -4.08798456e-01 5.35684526e-01 -2.80669391e-01 -2.66680777e-01 -3.04538757e-01 -5.88823974e-01 1.47098362e-01 -4.59373176e-01 -2.43768692e-02 9.90144387e-02 -3.09258342e-01 -8.97754967e-01 5.96875489e-01 1.93855278e-02 -7.89108932e-01 2.20845696e-02 7.03688264e-02 -3.53512287e-01 -2.46929884e-01 2.72778779e-01 5.69001198e-01 1.06038235e-01 -3.83104742e-01 2.92411417e-01 7.30794370e-01 5.05863845e-01 -7.20770657e-02 9.79312122e-01 7.18676269e-01 -1.84541315e-01 -5.17105579e-01 -1.63875401e+00 -5.37687659e-01 -6.57158136e-01 -2.29843199e-01 8.64906311e-01 -1.34188783e+00 -3.42549771e-01 8.23798656e-01 -9.00436461e-01 -6.84265137e-01 -3.57972175e-01 1.83745295e-01 -4.79732096e-01 1.39505282e-01 -4.61428374e-01 -6.44453585e-01 -2.93120682e-01 -1.29695737e+00 1.70858717e+00 7.26049244e-01 5.28513849e-01 -6.85031950e-01 -2.73429573e-01 5.05829632e-01 8.22080970e-02 1.01594292e-01 6.55711234e-01 -1.53699666e-01 -1.01128626e+00 -1.18397148e-02 -8.54393482e-01 4.09946561e-01 3.14632714e-01 -5.65676689e-01 -1.14527118e+00 8.64465255e-03 -7.12996535e-03 -8.18900824e-01 1.04082835e+00 3.87240618e-01 1.39547062e+00 1.84002295e-01 -3.61552358e-01 8.24678183e-01 1.32152402e+00 -3.63853812e-01 3.22490275e-01 4.08746302e-01 1.15744555e+00 4.90707666e-01 9.66710627e-01 3.20041001e-01 8.08255494e-01 4.23394203e-01 9.40172732e-01 -6.41232073e-01 -3.96408468e-01 -5.66450536e-01 1.50984734e-01 5.73156595e-01 2.44622171e-01 2.14831740e-01 -8.57869029e-01 7.11463690e-01 -1.66904938e+00 -3.95395696e-01 1.66133828e-02 1.89935863e+00 1.16661084e+00 3.20766836e-01 3.24741453e-01 2.56998628e-01 5.58998168e-01 8.24351758e-02 -1.15225434e+00 3.84607762e-01 -3.00008804e-01 -8.71343613e-02 4.99554068e-01 1.63370043e-01 -1.15567875e+00 9.61177528e-01 4.73462677e+00 6.18405461e-01 -1.37843728e+00 1.20919608e-01 7.82977462e-01 -2.53638148e-01 -5.19440055e-01 -2.06754982e-01 -8.61252367e-01 4.80767578e-01 3.58007438e-02 1.05632424e-01 1.08892769e-01 1.28018773e+00 8.61000195e-02 -3.83978367e-01 -7.58825898e-01 1.10764158e+00 1.61601424e-01 -1.14601755e+00 1.57196280e-02 -1.19286425e-01 1.06385994e+00 3.30246359e-01 2.11212188e-01 8.26602578e-02 2.51107633e-01 -5.45445561e-01 1.01637805e+00 2.08002135e-01 6.18731201e-01 -8.06436121e-01 6.09890461e-01 3.52602810e-01 -1.20530117e+00 -1.91754103e-01 -5.98956048e-01 9.62561592e-02 2.10256502e-02 7.17112601e-01 -4.64864880e-01 3.14228654e-01 8.81270051e-01 1.14585388e+00 -8.10037196e-01 1.01857364e+00 -7.92443037e-01 1.08933210e-01 -3.29413325e-01 -2.06296027e-01 4.49189633e-01 -2.62535866e-02 2.02816322e-01 5.25275409e-01 1.17981303e-02 8.54341909e-02 2.61672109e-01 9.92708802e-01 -1.14031658e-01 -2.84415632e-01 -1.24130234e-01 3.86774480e-01 6.09753132e-01 1.32904267e+00 -9.76485610e-01 -2.37787709e-01 -4.31408226e-01 1.16156638e+00 5.05054295e-01 2.92670786e-01 -7.53650248e-01 -3.48801106e-01 4.55839872e-01 5.97280301e-02 4.77016836e-01 7.98643604e-02 -5.26410282e-01 -1.10458553e+00 9.94195603e-03 -3.12237769e-01 1.80762678e-01 -1.31343138e+00 -1.08196115e+00 4.16218281e-01 -2.24349216e-01 -1.52565217e+00 1.83466956e-01 -5.32459617e-01 -5.35822213e-01 8.36322486e-01 -2.25109768e+00 -1.40832949e+00 -9.36702430e-01 6.73098087e-01 3.43999237e-01 1.41633332e-01 1.71402648e-01 2.92397533e-02 -6.29266679e-01 3.96110773e-01 -2.52393961e-01 1.29986137e-01 4.56246257e-01 -1.42291844e+00 2.52720535e-01 8.33436787e-01 -1.10999584e-01 2.04871729e-01 2.51425683e-01 -4.85610574e-01 -1.37749970e+00 -1.39942670e+00 4.68013555e-01 -3.91999960e-01 4.03438747e-01 -4.33315605e-01 -7.60961175e-01 4.70496446e-01 -4.42295432e-01 5.83040059e-01 2.43660241e-01 -5.78781486e-01 -2.01790467e-01 -2.81081080e-01 -1.11323071e+00 4.01572883e-01 1.08593667e+00 -7.43658483e-01 -7.14858353e-01 3.99448663e-01 1.31827128e+00 -7.62846589e-01 -4.32829022e-01 2.02182651e-01 3.12655509e-01 -1.12786412e+00 1.23575079e+00 -4.68464792e-02 9.07663405e-01 -5.58050275e-01 -9.28814709e-02 -1.03022754e+00 2.52036750e-01 -1.06621673e-02 -2.13848338e-01 1.03945148e+00 2.33265609e-01 -2.59951949e-01 1.15500915e+00 5.26711226e-01 -4.61276680e-01 -1.06714582e+00 -7.98097551e-01 -4.37928021e-01 -2.52083153e-01 -4.09424335e-01 5.16866446e-01 6.80301845e-01 -3.43584478e-01 2.02399686e-01 2.38589756e-02 2.48892248e-01 9.90661502e-01 7.25460410e-01 6.61363482e-01 -1.04012787e+00 1.12305760e-01 -4.14999098e-01 -4.10290867e-01 -1.55064726e+00 8.29300098e-03 -8.55685413e-01 3.02969962e-01 -1.61261666e+00 2.32435510e-01 -7.32231855e-01 -4.68806684e-01 6.77695751e-01 -5.07820964e-01 5.41620791e-01 -1.23379426e-02 2.66862482e-01 -9.14428711e-01 1.08288968e+00 1.67041588e+00 -1.70285285e-01 -4.59345162e-01 -1.30935144e-02 -7.28763938e-01 7.24506199e-01 6.38746679e-01 -4.36819047e-01 -5.18163264e-01 -3.94756556e-01 -7.26611391e-02 -6.33074790e-02 7.63062239e-01 -8.88898075e-01 2.85082668e-01 -1.23634599e-01 7.53327310e-01 -1.15737367e+00 2.02607095e-01 -6.55004084e-01 -8.95910442e-01 4.34345186e-01 -2.07123488e-01 -5.26758134e-01 -5.93943289e-03 5.33542514e-01 -1.68751746e-01 1.57726198e-01 8.52624893e-01 4.58307331e-03 -1.07067895e+00 6.17652118e-01 4.43464488e-01 9.69795734e-02 1.11264265e+00 -4.04504955e-01 -2.13154584e-01 -3.54181938e-02 -3.03879172e-01 5.70059776e-01 7.46365488e-01 4.51890498e-01 1.02740610e+00 -1.45650649e+00 -1.71295956e-01 4.74576473e-01 3.86087835e-01 8.52469683e-01 1.94155216e-01 9.20711100e-01 -4.20269281e-01 2.51025349e-01 -3.62935275e-01 -9.46352720e-01 -7.10646093e-01 7.31129289e-01 2.34888256e-01 1.61965042e-01 -5.10068536e-01 1.22122550e+00 3.88535917e-01 -4.95259255e-01 5.42880833e-01 -6.60231411e-01 6.85544014e-02 -4.94156703e-02 5.11904478e-01 2.52880324e-02 1.14911934e-02 -4.83555704e-01 -5.73897839e-01 6.12389505e-01 1.00663811e-01 1.31839573e-01 1.41935515e+00 -5.15071273e-01 -6.39897957e-02 5.34811556e-01 1.19797504e+00 -5.21147490e-01 -1.96808040e+00 -5.64014018e-01 -3.24008942e-01 -4.87047404e-01 4.89620715e-01 -5.56459665e-01 -1.50153625e+00 1.07702112e+00 7.38970101e-01 -8.31781924e-02 1.44831896e+00 3.07068944e-01 1.02305484e+00 2.61028886e-01 3.88065636e-01 -8.28452468e-01 6.96767271e-01 1.72303066e-01 6.71439826e-01 -1.79098678e+00 3.22328471e-02 -4.57615107e-01 -8.47696841e-01 7.87466705e-01 1.00501430e+00 -2.42060140e-01 5.94469428e-01 -2.77338326e-02 2.74471581e-01 -1.50586322e-01 -2.56806791e-01 -5.15132964e-01 2.83190846e-01 7.54330277e-01 -1.49686769e-01 -2.73088634e-01 4.50667977e-01 7.22019970e-01 7.33898953e-02 3.94767597e-02 2.69203871e-01 9.49856281e-01 -6.78903818e-01 -6.73092127e-01 -8.77652541e-02 3.08054805e-01 1.19552083e-01 -9.63247195e-02 -4.54725653e-01 7.88943768e-01 1.52784273e-01 5.97877502e-01 1.36542276e-01 -4.70985591e-01 1.94597676e-01 -4.23213005e-01 3.42080086e-01 -6.70873046e-01 -3.06766570e-01 -1.10123128e-01 -6.18496597e-01 -7.09703505e-01 -6.11928701e-01 -4.79940832e-01 -1.65149665e+00 5.71581870e-02 -4.64844197e-01 -1.99916333e-01 6.53640926e-01 9.13462579e-01 1.20408952e-01 4.53765541e-01 1.07448971e+00 -1.26495671e+00 -3.25535029e-01 -6.79517865e-01 -6.88095093e-01 2.80642718e-01 7.87254810e-01 -9.30514216e-01 -5.24880946e-01 -1.53406546e-01]
[9.67101764678955, -0.7761887907981873]
c46ae9d2-246b-4564-9060-7515b59586d6
scalable-algorithms-for-string-kernels-with
null
null
http://papers.nips.cc/paper/3441-scalable-algorithms-for-string-kernels-with-inexact-matching
http://papers.nips.cc/paper/3441-scalable-algorithms-for-string-kernels-with-inexact-matching.pdf
Scalable Algorithms for String Kernels with Inexact Matching
We present a new family of linear time algorithms based on sufficient statistics for string comparison with mismatches under the string kernels framework. Our algorithms improve theoretical complexity bounds of existing approaches while scaling well with respect to the sequence alphabet size, the number of allowed mismatches and the size of the dataset. In particular, on large alphabets with loose mismatch constraints our algorithms are several orders of magnitude faster than the existing algorithms for string comparison under the mismatch similarity measure. We evaluate our algorithms on synthetic data and real applications in music genre classification, protein remote homology detection and protein fold prediction. The scalability of the algorithms allows us to consider complex sequence transformations, modeled using longer string features and larger numbers of mismatches, leading to a state-of-the-art performance with significantly reduced running times.
['Pai-Hsi Huang', 'Vladimir Pavlovic', 'Pavel P. Kuksa']
2008-12-01
null
null
null
neurips-2008-12
['genre-classification']
['computer-vision']
[ 6.42693341e-01 -4.97496188e-01 -1.26468703e-01 -1.74740762e-01 -7.92704582e-01 -1.00635529e+00 2.39152580e-01 7.83838391e-01 -5.79944849e-01 6.61605716e-01 -2.59721279e-01 -3.60659838e-01 -1.11085892e-01 -6.19333565e-01 -9.30006444e-01 -6.60552204e-01 -2.67359436e-01 7.21546173e-01 7.53317237e-01 -3.45158279e-01 6.57614946e-01 4.75952148e-01 -1.90685952e+00 2.67703205e-01 7.27607489e-01 8.11745226e-01 1.83496438e-02 1.02241206e+00 -2.23687682e-02 -2.11740304e-02 -4.26332444e-01 -4.54930753e-01 4.19758052e-01 -5.95005810e-01 -8.37885141e-01 -3.49586427e-01 6.35564446e-01 2.27102831e-01 -1.08581983e-01 1.11983371e+00 7.18198895e-01 1.43005416e-01 3.27371627e-01 -9.35784698e-01 -2.12276042e-01 6.33968711e-01 -2.90768296e-01 1.50346100e-01 8.66064668e-01 1.04136720e-01 1.21794999e+00 -7.81368136e-01 7.13138402e-01 1.04358697e+00 9.72293198e-01 5.38028218e-02 -1.71678138e+00 -5.33273160e-01 -2.76800245e-01 6.22643471e-01 -1.43311667e+00 -6.49891123e-02 6.26808628e-02 -3.86344016e-01 1.35886550e+00 7.40275621e-01 4.40732747e-01 7.69599319e-01 -1.49119735e-01 -5.36791161e-02 7.89444864e-01 -7.63111413e-01 3.15806776e-01 -2.79558331e-01 4.58243340e-01 5.14985502e-01 1.50600150e-01 -1.04936017e-02 -4.82312649e-01 -9.76918697e-01 4.68528509e-01 -1.64676964e-01 -1.23872191e-01 -3.45674068e-01 -1.56872022e+00 7.27936566e-01 -3.09546262e-01 1.86146453e-01 4.52434607e-02 -1.52517691e-01 6.36425197e-01 6.42130196e-01 1.47080004e-01 4.30726469e-01 -4.69347596e-01 -4.65121955e-01 -7.81986177e-01 5.39816201e-01 1.25970602e+00 1.11740541e+00 5.10513723e-01 -5.48641741e-01 1.13695957e-01 9.05171633e-01 -5.29451191e-01 4.25857097e-01 4.42706794e-01 -8.26279104e-01 3.11311483e-01 4.10079032e-01 2.58723557e-01 -8.67106974e-01 -4.72558975e-01 -2.44804874e-01 -6.94320023e-01 4.56436612e-02 8.07033956e-01 6.12508774e-01 -4.15953666e-01 1.81313431e+00 3.85030478e-01 2.66819805e-01 -7.96525367e-03 5.92025340e-01 2.37479821e-01 5.54336667e-01 -3.63677233e-01 -6.03168190e-01 1.46139622e+00 -6.92746580e-01 -2.84983665e-01 2.63258696e-01 8.60539019e-01 -1.09966719e+00 1.30911374e+00 6.52751207e-01 -1.04266846e+00 -4.76452947e-01 -1.05008888e+00 8.31903964e-02 -2.26165384e-01 -1.54751658e-01 4.38585401e-01 7.49850273e-01 -5.86129189e-01 1.20900750e+00 -6.89012468e-01 -6.22077882e-01 -1.16479270e-01 5.28612971e-01 -4.74458843e-01 1.30880266e-01 -9.05511677e-01 5.41825831e-01 6.92110837e-01 -4.94131655e-01 1.60122603e-01 -7.82523692e-01 -4.36994702e-01 3.82497124e-02 2.27656960e-02 -3.79402161e-01 1.14137220e+00 -8.02081823e-01 -1.34073925e+00 9.93122816e-01 -1.22054525e-01 -5.72748780e-01 6.12519085e-01 -2.70477384e-02 -2.16536537e-01 8.34050477e-02 -3.88469577e-01 9.93382558e-02 1.30050480e-01 -2.14201003e-01 -3.56883645e-01 -2.21529886e-01 -1.20839544e-01 -1.90486349e-02 -1.82891503e-01 3.36244285e-01 -3.23060155e-01 -9.28505659e-01 1.01496384e-01 -1.20678425e+00 -3.80788952e-01 1.54481735e-02 -1.90080553e-01 -1.37374833e-01 3.17371607e-01 -4.52656120e-01 1.22785580e+00 -2.15814042e+00 5.01302719e-01 3.69024158e-01 -2.24676639e-01 2.95275837e-01 -3.50673407e-01 1.00445640e+00 -3.74333620e-01 -2.59493321e-01 -3.47755581e-01 3.42705309e-01 1.80868402e-01 1.49048716e-01 -3.67550552e-01 6.01555407e-01 -1.78536698e-01 3.57685864e-01 -6.72330201e-01 -1.77529901e-01 -1.43707842e-01 -5.53332232e-02 -7.60809660e-01 2.81763077e-01 -3.80673736e-01 1.98488578e-01 -1.43609896e-01 2.97814906e-01 8.54256809e-01 -4.58318353e-01 5.51451027e-01 -1.52038187e-01 2.60107219e-03 3.94055605e-01 -1.54299784e+00 1.69094634e+00 -1.49242664e-02 2.11838111e-01 -4.40652847e-01 -1.15546525e+00 9.21468914e-01 -1.16202440e-02 4.43053603e-01 -3.39811802e-01 -1.67216837e-01 5.90903521e-01 1.76296234e-01 -2.54747659e-01 2.02324495e-01 -3.60372150e-03 4.64797951e-02 4.48960245e-01 -1.22777358e-01 2.21390754e-01 5.50020695e-01 3.73077877e-02 1.26010799e+00 1.16572101e-02 6.91778064e-01 -4.47556049e-01 5.51918149e-01 -6.79841340e-02 5.37966132e-01 8.44009280e-01 3.86891723e-01 4.21643078e-01 7.24552333e-01 -5.31308472e-01 -1.58793497e+00 -8.27337861e-01 -3.37849736e-01 1.46507788e+00 1.90896437e-01 -6.22389734e-01 -7.88155735e-01 -1.47888452e-01 1.73722029e-01 2.54080087e-01 -2.93777525e-01 -6.49368018e-02 -8.09569836e-01 -9.98434544e-01 7.97531843e-01 5.21398604e-01 -5.52739911e-02 -8.03120852e-01 -5.77248871e-01 3.67560655e-01 -5.23195527e-02 -1.22281218e+00 -6.60441458e-01 1.66718140e-01 -8.49083483e-01 -1.34315288e+00 -5.65898597e-01 -8.60341549e-01 2.37163395e-01 -9.19694975e-02 1.03581142e+00 -5.89509234e-02 -7.66129315e-01 -1.58043906e-01 -3.57931137e-01 -5.59415147e-02 -6.88187063e-01 7.56430998e-02 3.06798220e-01 -2.83211440e-01 3.04118484e-01 -1.09211349e+00 -4.55752403e-01 6.04730546e-01 -1.14624715e+00 1.85835897e-03 2.95013934e-01 1.16047013e+00 7.84843206e-01 -3.84598553e-01 3.19778055e-01 -8.67579877e-01 2.15006039e-01 -1.94241315e-01 -1.01635361e+00 3.85606080e-01 -4.97009367e-01 2.53455609e-01 9.04633164e-01 -9.96134818e-01 -3.48330796e-01 3.55979323e-01 -3.47063571e-01 5.15565425e-02 3.74167114e-02 1.54646471e-01 -1.26671493e-01 -4.25644994e-01 8.58186603e-01 5.66507161e-01 -3.21769714e-02 -7.46110678e-01 2.47509122e-01 5.47423780e-01 8.05852473e-01 -7.53887057e-01 4.19540197e-01 1.80614322e-01 3.78241211e-01 -6.53726220e-01 -2.57542521e-01 -6.45813763e-01 -8.04746747e-01 3.75796467e-01 3.12851191e-01 -4.90350306e-01 -1.23557401e+00 5.38621545e-01 -9.13646877e-01 -2.42403187e-02 4.32343632e-02 5.29575050e-01 -1.11121845e+00 1.12575102e+00 -6.69088900e-01 -4.58272219e-01 -2.94000834e-01 -1.07133806e+00 8.27558935e-01 -2.44523570e-01 -2.78294533e-01 -5.34195125e-01 4.93228048e-01 1.70213953e-02 5.18357009e-02 4.38146681e-01 1.50573123e+00 -1.10360253e+00 -3.97974849e-01 -2.25754425e-01 -1.35157295e-02 5.92306070e-02 -1.92418262e-01 -1.65608764e-01 -4.33531880e-01 -4.23179537e-01 -3.96098077e-01 -2.55641609e-01 7.60171413e-01 -1.83139026e-01 1.22711635e+00 -3.93449873e-01 -2.68692225e-01 8.38519216e-01 1.44481671e+00 -3.73747759e-02 4.79337692e-01 3.92115802e-01 2.55607814e-01 3.55626643e-01 7.62629271e-01 8.66551638e-01 -4.39362556e-01 1.20717049e+00 1.05516627e-01 3.11489165e-01 3.43973666e-01 2.38406174e-02 1.61797091e-01 8.76742840e-01 -1.85552351e-02 -2.84102082e-01 -7.23258674e-01 2.30172575e-01 -2.14851642e+00 -9.82238650e-01 -3.31223279e-01 2.81480098e+00 1.02510321e+00 3.61265987e-02 6.08172178e-01 4.43065226e-01 7.84413815e-01 -3.18638027e-01 -7.25130260e-01 -6.42123282e-01 -4.40662026e-01 5.84750056e-01 7.76363850e-01 2.60854363e-01 -9.36810672e-01 6.30552828e-01 7.28299427e+00 1.07672179e+00 -6.45667195e-01 -2.83056259e-01 1.14199162e-01 -1.76924005e-01 2.89937705e-02 1.42779443e-02 -6.54954076e-01 4.92704928e-01 1.01671267e+00 -3.48185450e-01 5.44844329e-01 6.98269427e-01 -2.80980468e-01 1.02285430e-01 -1.30331397e+00 1.17098510e+00 -2.65180990e-02 -1.47315478e+00 8.19467846e-03 1.80470794e-02 4.25344169e-01 5.01793288e-02 -1.73346803e-01 -3.64256710e-01 1.56525865e-01 -8.14054132e-01 5.32656372e-01 2.81381011e-01 8.70760739e-01 -9.18239474e-01 4.58019227e-01 3.38712126e-01 -1.00230849e+00 -5.16818278e-02 -6.16479814e-01 -1.67663381e-01 -1.06957614e-01 5.91797054e-01 -4.22172248e-01 5.60367167e-01 5.22512555e-01 3.22912425e-01 -3.72313976e-01 1.27861702e+00 4.60980654e-01 5.48007429e-01 -8.21725667e-01 -3.04770499e-01 -8.72551203e-02 -2.90360510e-01 6.18066728e-01 1.46577442e+00 4.47504640e-01 3.59313577e-01 3.48611295e-01 2.10540131e-01 8.69363323e-02 7.48770297e-01 -1.76750213e-01 -7.93009698e-02 5.36083281e-01 7.02513039e-01 -6.65993989e-01 -4.00701553e-01 -3.03431869e-01 1.09153163e+00 3.74862254e-01 4.77534160e-02 -7.44754136e-01 -9.36717749e-01 8.08137476e-01 -4.78603244e-02 6.25748575e-01 -2.52109528e-01 7.01569468e-02 -1.07913148e+00 3.91856879e-01 -1.37417972e+00 6.45769060e-01 -1.42358243e-01 -1.31562269e+00 4.36678767e-01 -1.18974634e-01 -1.32472456e+00 -2.31360018e-01 -8.81965101e-01 -2.16671363e-01 6.82705283e-01 -8.55133355e-01 -5.87117374e-01 1.26702398e-01 1.43314287e-01 1.81624502e-01 -1.29566938e-01 1.34784269e+00 2.97916681e-01 -2.07809001e-01 1.09462178e+00 9.44802165e-01 -3.26190025e-01 8.23452532e-01 -1.01992261e+00 8.68703127e-01 4.49351072e-01 2.60315597e-01 5.50817251e-01 1.16943657e+00 -3.64662677e-01 -1.52576709e+00 -6.52050614e-01 8.84089291e-01 -1.75739542e-01 7.37933218e-01 -6.97156370e-01 -1.23011577e+00 3.51348758e-01 -3.73063803e-01 -1.87661424e-01 1.15720475e+00 1.04833513e-01 -1.07641017e+00 1.09897271e-01 -1.06559861e+00 3.65597248e-01 1.52745831e+00 -4.17203993e-01 -3.98177177e-01 8.31375003e-01 6.39821529e-01 -4.61262107e-01 -1.18204606e+00 5.36202133e-01 1.07362378e+00 -1.03465831e+00 1.00232494e+00 -1.04329813e+00 -8.60036016e-02 -2.50569314e-01 -3.78032744e-01 -7.02808678e-01 -4.33800280e-01 -9.51449871e-01 2.70299405e-01 7.36898720e-01 3.29368234e-01 -6.66840851e-01 5.29893577e-01 -1.68709084e-02 2.35795766e-01 -6.52935982e-01 -1.07034731e+00 -1.29269075e+00 -5.45437820e-03 -3.15073431e-01 7.52707005e-01 8.80994856e-01 6.45307958e-01 -4.20035869e-02 -4.19296861e-01 1.11090608e-01 4.89766926e-01 6.98149145e-01 8.17101419e-01 -1.27924573e+00 -1.08819938e+00 -5.85787058e-01 -9.97731149e-01 -1.01765490e+00 5.39072081e-02 -8.77547741e-01 -1.76121101e-01 -5.89392483e-01 6.51434600e-01 -2.25278258e-01 -2.51455933e-01 3.55220288e-01 -2.46989682e-01 5.01606405e-01 1.69787034e-02 1.49551317e-01 -4.77948099e-01 2.62776278e-02 4.17403340e-01 1.11268558e-01 -1.00604407e-02 1.34523377e-01 -1.48035437e-01 5.52948415e-01 6.19562566e-01 -4.89865899e-01 6.26195669e-02 5.99178448e-02 4.73240405e-01 1.12269614e-02 1.28310338e-01 -9.15409207e-01 6.58003166e-02 -2.89594352e-01 -2.03892644e-02 -5.75154543e-01 2.96882540e-01 -3.40687513e-01 4.97617662e-01 7.53931344e-01 -6.53895497e-01 4.52577353e-01 3.33958209e-01 6.82549536e-01 9.55048501e-02 -2.20512196e-01 1.00011265e+00 2.61482149e-01 -1.52412742e-01 7.63676316e-02 -2.73382723e-01 -1.47796227e-02 9.29594576e-01 -2.44289130e-01 -1.19965978e-01 -1.46568939e-01 -7.80735910e-01 -2.44497135e-01 8.68797243e-01 3.25172633e-01 2.11616635e-01 -1.27546000e+00 -7.75560498e-01 3.09295893e-01 5.54980874e-01 -8.08753908e-01 1.13892639e-02 6.82344377e-01 -9.07983780e-01 4.60794896e-01 -3.59673202e-01 -6.60329401e-01 -2.09682775e+00 8.17697167e-01 3.34540755e-02 -2.27211311e-01 -6.57212853e-01 6.89448833e-01 1.90373454e-02 -3.78277898e-01 4.59733933e-01 -2.74565995e-01 3.61921489e-01 -3.41677278e-01 7.26276696e-01 5.27790308e-01 3.43924761e-01 -4.59526211e-01 -3.68287474e-01 8.91153634e-01 2.18421929e-02 1.33138508e-01 1.13212097e+00 4.06475872e-01 -2.58583844e-01 4.14037943e-01 1.28738654e+00 3.05003976e-03 -6.03561103e-01 -4.09159511e-01 3.15128982e-01 -5.69340169e-01 -9.25269961e-01 -5.06846845e-01 -1.80764198e-01 5.90344727e-01 7.57171452e-01 -2.66058855e-02 1.12698209e+00 -1.58321057e-02 8.61501276e-01 9.83449042e-01 4.41559374e-01 -8.46808434e-01 -2.88601547e-01 5.25470614e-01 4.88514900e-01 -7.62116194e-01 1.48126844e-03 -6.67159379e-01 -1.25400349e-01 1.30654848e+00 1.96226668e-02 -1.03964850e-01 2.67686903e-01 5.03924370e-01 -2.68222868e-01 4.48734403e-01 -9.36363161e-01 -9.03543532e-02 2.24672630e-01 3.52832347e-01 4.46877807e-01 1.91672891e-02 -9.46375012e-01 3.54786694e-01 -3.70584935e-01 -2.72473305e-01 2.49700382e-01 7.52691567e-01 -7.52720714e-01 -1.78962910e+00 -2.99972981e-01 3.07675868e-01 -6.62625968e-01 -3.06110322e-01 -5.38579464e-01 3.36211145e-01 -2.20456108e-01 5.81440985e-01 -6.32974431e-02 -2.38049999e-01 4.65109438e-01 3.57139260e-01 9.17396963e-01 -3.43410283e-01 -6.55881524e-01 4.18518297e-02 1.48662195e-01 -6.80922031e-01 -2.14106798e-01 -7.47543156e-01 -1.21282446e+00 -4.78855759e-01 -4.64560956e-01 3.45434576e-01 4.56591487e-01 6.93877280e-01 6.14218175e-01 -2.22887844e-01 7.00857937e-01 -3.35052729e-01 -1.16070604e+00 -8.63986433e-01 -5.63069582e-01 7.10601687e-01 -9.49325934e-02 -2.64117956e-01 -1.39296576e-01 1.66956767e-01]
[4.860790729522705, 5.202752590179443]
588caeb7-e1d5-4b8a-afb6-339b7959de3d
sparse-gaussian-process-temporal-difference
1810.01217
null
http://arxiv.org/abs/1810.01217v1
http://arxiv.org/pdf/1810.01217v1.pdf
Sparse Gaussian Process Temporal Difference Learning for Marine Robot Navigation
We present a method for Temporal Difference (TD) learning that addresses several challenges faced by robots learning to navigate in a marine environment. For improved data efficiency, our method reduces TD updates to Gaussian Process regression. To make predictions amenable to online settings, we introduce a sparse approximation with improved quality over current rejection-based sparse methods. We derive the predictive value function posterior and use the moments to obtain a new algorithm for model-free policy evaluation, SPGP-SARSA. With simple changes, we show SPGP-SARSA can be reduced to a model-based equivalent, SPGP-TD. We perform comprehensive simulation studies and also conduct physical learning trials with an underwater robot. Our results show SPGP-SARSA can outperform the state-of-the-art sparse method, replicate the prediction quality of its exact counterpart, and be applied to solve underwater navigation tasks.
['John Martin', 'Jinkun Wang', 'Brendan Englot']
2018-10-02
null
null
null
null
['marine-robot-navigation']
['robots']
[ 1.04133487e-01 2.20677346e-01 7.52495751e-02 -8.56427327e-02 -1.18342721e+00 -3.08899432e-01 2.99909920e-01 -5.65068088e-02 -6.32521272e-01 1.07822633e+00 5.67869507e-02 -3.75427663e-01 -3.65404814e-01 -4.94271070e-01 -1.12994981e+00 -1.01957214e+00 -7.66222179e-01 6.41938567e-01 1.51471317e-01 -1.59037858e-01 3.14022273e-01 1.39284357e-01 -1.23331761e+00 -3.82653266e-01 9.76238072e-01 1.02293229e+00 5.93214750e-01 5.48816860e-01 2.77480334e-01 7.19979525e-01 -9.94614735e-02 2.62423363e-02 6.20151579e-01 -8.64722282e-02 -3.39227140e-01 -3.37706566e-01 2.22582132e-01 -4.13604379e-01 -3.40202928e-01 9.78345037e-01 8.96801531e-01 7.16573656e-01 7.09842861e-01 -8.56402397e-01 -4.86557670e-02 4.12271887e-01 -6.12174034e-01 8.43334384e-03 9.25955698e-02 3.98296677e-02 7.20217109e-01 -8.82720530e-01 2.51657724e-01 1.67757201e+00 1.13614190e+00 6.95077837e-01 -1.29164791e+00 -7.29084253e-01 4.41197276e-01 -1.67429492e-01 -8.95212531e-01 -4.95355219e-01 3.03521665e-04 -2.97713369e-01 8.07952881e-01 -4.82929558e-01 8.32839549e-01 1.00251174e+00 6.10743284e-01 9.56536174e-01 1.19598627e+00 1.06029503e-01 9.61600065e-01 -5.36318660e-01 -3.55529428e-01 9.29942310e-01 5.63800395e-01 4.42705274e-01 -7.89579034e-01 -5.88381290e-01 7.27291882e-01 -2.78953761e-01 -5.24569035e-01 -7.59519577e-01 -7.43598521e-01 1.05085850e+00 1.56404637e-02 -7.38253117e-01 -5.83754241e-01 5.81987560e-01 1.72014460e-01 3.77513230e-01 3.88797045e-01 4.21962410e-01 -8.06599081e-01 -5.92291355e-01 -6.44400835e-01 6.84227467e-01 1.63124883e+00 9.62985814e-01 6.69332922e-01 5.59272230e-01 1.20743379e-01 6.97858155e-01 7.50725448e-01 1.09992409e+00 2.97916204e-01 -1.75125730e+00 3.07986408e-01 -6.22724056e-01 6.67758703e-01 -5.16309261e-01 -5.15194476e-01 -5.34899890e-01 -5.83737493e-01 4.52652007e-01 1.64998755e-01 -9.20866907e-01 -5.61392784e-01 1.68115270e+00 2.56057173e-01 6.92440271e-01 7.03603625e-01 7.61786520e-01 1.04218759e-01 1.00286555e+00 -7.11961985e-02 -4.11320060e-01 5.81192672e-01 -8.47721517e-01 -3.85379255e-01 -6.02162957e-01 5.77861369e-01 -2.56017387e-01 5.08881450e-01 7.60998249e-01 -8.79867196e-01 5.35515174e-02 -8.65233004e-01 5.98973215e-01 5.12517869e-01 -3.39016199e-01 6.93845928e-01 3.14459711e-01 -1.23158312e+00 9.12329614e-01 -1.31674433e+00 -2.63031512e-01 3.15416634e-01 4.22707677e-01 -1.19874813e-01 -9.81763303e-02 -8.48764122e-01 1.14117420e+00 4.36545163e-02 5.24441525e-03 -1.55910957e+00 -8.62243831e-01 -1.13586879e+00 -1.72882274e-01 3.53999645e-01 -7.62145281e-01 2.03068614e+00 -3.48324269e-01 -2.23107195e+00 -6.41336292e-02 -3.77271742e-01 -1.11583972e+00 3.06631953e-01 -7.46316671e-01 4.14832264e-01 1.73403069e-01 2.78715879e-01 4.77924585e-01 9.38542604e-01 -1.51975608e+00 -9.61419404e-01 1.25542164e-01 -2.01449275e-01 4.80696172e-01 2.30482128e-02 -6.64594054e-01 -1.55464346e-02 -3.28865111e-01 2.16816440e-01 -1.23175251e+00 -1.02799571e+00 2.37724483e-01 2.92577505e-01 1.56381622e-01 6.00196123e-01 -3.99423212e-01 3.56341213e-01 -1.76554155e+00 3.13951641e-01 2.02807710e-01 -2.01378345e-01 -1.38428090e-02 -2.08106220e-01 5.62968135e-01 7.40199029e-01 -2.54989088e-01 -4.64623302e-01 -8.73215139e-01 3.74790691e-02 9.62027311e-01 -6.93588853e-01 8.27138782e-01 3.66800651e-02 2.07995415e-01 -1.44490242e+00 -2.63709068e-01 -8.18508193e-02 3.10906738e-01 -9.82481360e-01 1.15517914e-01 -2.17836782e-01 6.02537215e-01 -8.64794195e-01 5.32077849e-01 4.32730854e-01 1.64394919e-02 1.46858767e-01 1.80752382e-01 -3.22117120e-01 8.59950036e-02 -1.10625529e+00 1.69608212e+00 -7.82668114e-01 3.79310101e-01 8.08078229e-01 -1.08840883e+00 9.41705048e-01 -7.84760248e-03 6.58319116e-01 -2.79812068e-01 -1.15157567e-01 4.03686017e-01 -2.39253670e-01 -3.48465025e-01 6.58544600e-01 -3.46373469e-01 7.71100074e-02 1.37421846e-01 1.64420068e-01 -5.55347443e-01 -3.80525179e-02 1.15478560e-01 1.04110599e+00 5.33624709e-01 1.62009358e-01 -6.79741442e-01 -3.10982391e-02 -3.02982070e-02 1.01316833e+00 1.37478340e+00 -1.46951467e-01 2.10519299e-01 3.12910855e-01 -1.29309520e-01 -7.73863554e-01 -1.14249206e+00 -3.13037857e-02 1.02834582e+00 4.21965271e-01 -1.42163038e-01 -9.26252902e-02 -1.63450837e-01 5.56880116e-01 5.37126005e-01 -4.91003275e-01 -2.50892108e-03 -4.95443583e-01 -7.06646025e-01 2.85989910e-01 4.41608965e-01 2.10553616e-01 -5.23581564e-01 -7.33046710e-01 6.30456507e-01 1.99832901e-01 -7.47837901e-01 -1.93955064e-01 7.20206320e-01 -1.08232629e+00 -7.51992941e-01 -6.38199747e-01 -7.25796521e-01 2.46890098e-01 1.85021698e-01 7.15955496e-01 -6.44491315e-01 4.53518629e-01 8.44933748e-01 -3.75438064e-01 -7.22891092e-01 -1.61927283e-01 -2.91375309e-01 7.51782894e-01 -3.08763653e-01 -3.98648292e-01 -7.83933938e-01 -5.60278893e-01 1.56999096e-01 -3.67235094e-01 -3.27332914e-01 7.20258117e-01 1.10101688e+00 8.31877530e-01 -2.55462468e-01 5.55090547e-01 -3.94324511e-01 6.71740234e-01 -8.16576004e-01 -1.05714476e+00 -3.15616488e-01 -5.74380159e-01 5.53607225e-01 5.25750220e-01 -6.06603444e-01 -1.12991655e+00 2.93495148e-01 -1.31321386e-01 -4.96337593e-01 4.75244731e-01 8.44276965e-01 4.86250192e-01 -6.12392783e-01 3.96054983e-01 4.31014270e-01 5.25270462e-01 -4.84310567e-01 1.32729426e-01 2.91274607e-01 5.79416454e-01 -1.23944318e+00 7.22737312e-01 6.29111648e-01 3.04116040e-01 -1.05714202e+00 -1.05802190e+00 -4.64587182e-01 1.26043499e-01 -3.93565595e-02 3.27140063e-01 -1.46102643e+00 -8.96734178e-01 2.32639566e-01 -8.47413599e-01 -1.06066096e+00 -4.64948922e-01 7.23287284e-01 -1.17753899e+00 4.66998994e-01 -6.91756964e-01 -1.51002872e+00 -3.76455665e-01 -8.58667731e-01 1.09879982e+00 3.95975798e-01 3.39885384e-01 -1.08357739e+00 6.45251215e-01 -4.06608015e-01 5.63062012e-01 -1.54413218e-02 1.41219035e-01 -5.04978538e-01 -3.02102268e-01 3.22268814e-01 2.90598243e-01 1.54862955e-01 -2.89856464e-01 -4.31776404e-01 -4.88247901e-01 -8.04095924e-01 1.41605586e-01 -5.66399693e-01 9.67767477e-01 7.31513560e-01 5.51614106e-01 -6.28518641e-01 -4.52840298e-01 9.00216639e-01 1.31284654e+00 1.67138472e-01 8.32465664e-02 5.68914175e-01 2.13443696e-01 3.42492580e-01 9.78647351e-01 1.03948057e+00 4.92168218e-01 1.92958072e-01 7.18044043e-01 4.78356361e-01 7.51324296e-01 -4.31392789e-01 8.71337056e-01 7.67477632e-01 1.64225362e-02 -1.11067154e-01 -6.94007516e-01 6.18034244e-01 -2.24006033e+00 -8.49938154e-01 2.82713801e-01 2.10838675e+00 7.99128890e-01 -3.93157639e-02 -2.02405244e-01 -6.46964133e-01 2.20336825e-01 4.20910418e-02 -8.32234859e-01 -2.86132932e-01 8.83589871e-03 2.44852632e-01 1.12831771e+00 6.54068112e-01 -1.03958440e+00 8.03591788e-01 7.25811815e+00 6.00604355e-01 -7.98019648e-01 9.74828936e-03 1.11597441e-01 3.25789559e-03 -1.07290581e-01 5.32669239e-02 -9.97522533e-01 2.19252288e-01 1.12599325e+00 -3.73139888e-01 4.00461316e-01 1.31082261e+00 6.52927816e-01 -2.20730394e-01 -9.26392734e-01 9.18735325e-01 -2.02557191e-01 -1.09745634e+00 -1.98341131e-01 1.16573744e-01 1.07939065e+00 7.39345074e-01 4.42499444e-02 6.04922652e-01 1.21946168e+00 -7.98571408e-01 7.60230303e-01 7.50855505e-01 3.15986186e-01 -6.44742310e-01 9.02756453e-01 4.72410768e-01 -1.25938153e+00 -5.71956336e-01 -8.42223883e-01 -3.60059142e-01 6.12870038e-01 2.53928721e-01 -6.31739736e-01 4.30262864e-01 9.31762516e-01 1.01801097e+00 4.54284877e-01 1.66196942e+00 -3.22686471e-02 8.78776073e-01 -8.78580749e-01 -3.06241959e-01 6.62401974e-01 -3.05925965e-01 9.51492131e-01 9.95751321e-01 8.74854982e-01 1.32084981e-01 6.21664643e-01 2.83233553e-01 3.06813717e-01 -1.63358375e-01 -5.92977226e-01 3.27909201e-01 7.30558932e-01 7.53300667e-01 7.02125654e-02 -1.84910461e-01 -3.43533486e-01 4.26456809e-01 2.67564029e-01 5.30864716e-01 -3.93696934e-01 -7.10938424e-02 1.11567438e+00 -4.66714472e-01 7.86590397e-01 -6.11815393e-01 2.04999238e-01 -1.01604748e+00 -4.37541366e-01 -8.34476173e-01 3.17024649e-03 -5.65855324e-01 -1.61052155e+00 2.67866790e-01 8.65459740e-02 -1.55476737e+00 -4.38444108e-01 -6.89915299e-01 -4.46716338e-01 6.31107926e-01 -1.74642861e+00 -6.02687061e-01 1.61291301e-01 2.23082349e-01 7.22621620e-01 -2.05008298e-01 8.68881643e-01 -2.53391713e-01 -1.27600908e-01 1.13865405e-01 8.59371185e-01 -4.02554750e-01 5.63426316e-01 -1.35308528e+00 1.61282927e-01 6.96821988e-01 -3.96099448e-01 4.62301314e-01 1.33037376e+00 -8.39613914e-01 -2.00370908e+00 -1.17701650e+00 -2.95322210e-01 -1.95322707e-02 1.22152054e+00 2.03918412e-01 -6.34470880e-01 6.48693919e-01 -1.64680809e-01 -5.18360361e-02 4.98326451e-01 -3.97620201e-02 1.17703132e-01 -3.09608597e-02 -9.57803428e-01 5.33567011e-01 8.65479708e-01 3.72525528e-02 -6.91631138e-01 9.09294859e-02 7.06930757e-01 -7.84356952e-01 -9.86685514e-01 5.19035101e-01 8.76638114e-01 -2.99849212e-01 7.69377112e-01 -4.68402922e-01 -4.31112275e-02 -2.46730000e-01 -4.19583857e-01 -1.81629455e+00 -7.23740757e-02 -1.26695168e+00 -5.57465911e-01 4.04211015e-01 3.58604938e-01 -1.06824338e+00 8.75964761e-01 3.14825982e-01 -6.35215044e-01 -8.20680618e-01 -1.28893065e+00 -1.10633790e+00 5.12937546e-01 -3.26878369e-01 -1.44947723e-01 3.20255220e-01 2.71025971e-02 -1.21396221e-02 -8.90867770e-01 8.84638309e-01 1.24709094e+00 1.70272496e-02 6.99161053e-01 -1.25474179e+00 -7.58917689e-01 -1.22855529e-02 -3.38861085e-02 -1.83924425e+00 3.29423189e-01 -2.08295688e-01 9.11962450e-01 -1.72942924e+00 -2.29348734e-01 -7.10755885e-01 4.92974557e-02 2.62077123e-01 8.62956345e-02 -1.80136874e-01 3.16659398e-02 1.67281002e-01 -7.28427887e-01 1.23106956e+00 1.07319498e+00 -7.25597590e-02 -3.20357352e-01 2.16041744e-01 -4.62823570e-01 9.10992444e-01 7.79247403e-01 -6.52057946e-01 -3.91361743e-01 -5.81398785e-01 1.62008837e-01 4.92573380e-01 -6.75988197e-02 -1.37608969e+00 6.03099883e-01 -3.84523213e-01 3.82651854e-03 -3.84260356e-01 5.74650109e-01 -4.90851462e-01 -1.98597714e-01 9.52189982e-01 -3.00066590e-01 -1.76433221e-01 3.57295305e-01 1.38525903e+00 -3.64642218e-03 -3.89106840e-01 7.04830229e-01 -1.08497880e-01 -8.29157591e-01 5.68560839e-01 -1.10116971e+00 2.12423772e-01 5.35348177e-01 2.05248132e-01 -2.75965959e-01 -8.42289627e-01 -6.80395007e-01 9.32892382e-01 3.05801123e-01 -2.12278053e-01 8.07057679e-01 -7.36988127e-01 -6.76908970e-01 -2.49337494e-01 -3.90848875e-01 2.72858202e-01 9.05517638e-02 8.07367682e-01 -4.92696464e-01 1.47337139e-01 1.00546025e-01 -5.18375993e-01 -5.53575456e-01 2.04925425e-02 5.93336403e-01 -5.12183867e-02 -7.36009657e-01 9.51201558e-01 1.29622445e-01 -5.87840736e-01 3.62642616e-01 -3.88875961e-01 -1.81014799e-02 -4.92137402e-01 4.28353518e-01 2.59026080e-01 -5.21254301e-01 -1.25494912e-01 -3.88080478e-02 5.90597093e-01 3.54090959e-01 -4.61002588e-01 1.74783051e+00 -3.81271958e-01 2.53388733e-01 5.30977249e-01 6.30694091e-01 1.96924154e-02 -2.43139005e+00 -2.87050992e-01 -9.63220075e-02 -2.00176343e-01 -1.30799338e-02 -2.58735448e-01 -6.98301852e-01 4.91418272e-01 5.44732153e-01 -2.20268041e-01 5.45560598e-01 -2.46745393e-01 6.92977846e-01 1.41741264e+00 1.14785004e+00 -9.05012667e-01 1.87508073e-02 1.25675917e+00 6.67161286e-01 -1.24734175e+00 7.21162856e-02 8.56132731e-02 -6.56331539e-01 1.01340961e+00 5.03922164e-01 -6.06467545e-01 8.59091699e-01 6.53697491e-01 -1.48583606e-01 2.38866359e-01 -1.17656457e+00 -1.61714241e-01 -2.86404133e-01 8.78200889e-01 -2.53564924e-01 -2.43234038e-01 -1.36774937e-02 5.59211254e-01 -2.10628718e-01 -1.90302104e-01 6.87998116e-01 1.39393556e+00 -1.08909714e+00 -7.50255883e-01 -2.00409502e-01 6.71484232e-01 -3.94921809e-01 -1.62004799e-01 5.72685778e-01 5.16810000e-01 -6.02474988e-01 9.00267184e-01 -1.04544368e-02 -1.05113789e-01 9.83606353e-02 -4.02390659e-01 3.36120039e-01 -5.30560136e-01 1.34674400e-01 3.01728118e-02 3.71823490e-01 -8.99715781e-01 -5.69069743e-01 -9.87296641e-01 -1.32837081e+00 -5.30689955e-02 -1.35876298e-01 7.77478158e-01 6.18749619e-01 1.01354408e+00 3.58294904e-01 1.52332306e-01 4.97002065e-01 -1.60364771e+00 -1.28495502e+00 -9.47560012e-01 -5.94998956e-01 -5.53697705e-01 6.31748617e-01 -1.07129109e+00 -6.80800796e-01 -2.29028568e-01]
[4.163841247558594, 2.332655191421509]
e11bce48-5f55-4b32-a3c1-6f9dcabdf881
continuous-mdp-homomorphisms-and-homomorphic
2209.07364
null
https://arxiv.org/abs/2209.07364v1
https://arxiv.org/pdf/2209.07364v1.pdf
Continuous MDP Homomorphisms and Homomorphic Policy Gradient
Abstraction has been widely studied as a way to improve the efficiency and generalization of reinforcement learning algorithms. In this paper, we study abstraction in the continuous-control setting. We extend the definition of MDP homomorphisms to encompass continuous actions in continuous state spaces. We derive a policy gradient theorem on the abstract MDP, which allows us to leverage approximate symmetries of the environment for policy optimization. Based on this theorem, we propose an actor-critic algorithm that is able to learn the policy and the MDP homomorphism map simultaneously, using the lax bisimulation metric. We demonstrate the effectiveness of our method on benchmark tasks in the DeepMind Control Suite. Our method's ability to utilize MDP homomorphisms for representation learning leads to improved performance when learning from pixel observations.
['Doina Precup', 'David Meger', 'Prakash Panangaden', 'Rosie Zhao', 'Sahand Rezaei-Shoshtari']
2022-09-15
null
null
null
null
['policy-gradient-methods']
['methodology']
[-1.88507468e-01 1.57964766e-01 -7.23378897e-01 1.02657929e-01 -5.55015564e-01 -6.94994450e-01 9.49579477e-01 4.43653800e-02 -4.69218194e-01 9.06403959e-01 3.95194024e-01 -5.08581698e-01 -1.08053647e-01 -7.72835255e-01 -9.63823199e-01 -7.69086480e-01 -3.48164767e-01 2.14484587e-01 3.93666625e-02 -3.95694971e-01 2.39855394e-01 6.44237518e-01 -1.22869134e+00 2.83935070e-02 6.58880293e-01 7.46959209e-01 -3.66845839e-02 5.99245906e-01 1.79308385e-01 8.28876615e-01 -3.32200795e-01 3.36444497e-01 7.79393196e-01 -3.72144371e-01 -8.34778786e-01 -1.28865056e-02 2.91420192e-01 -5.54759443e-01 -5.52539825e-01 9.98349905e-01 3.08602273e-01 4.83318418e-01 4.46925133e-01 -1.40808070e+00 -2.73128301e-01 7.05798924e-01 -4.40183878e-01 -4.99807186e-02 -8.96159001e-03 4.82654661e-01 1.23224294e+00 -3.40981156e-01 6.86797678e-01 1.53828776e+00 2.25807682e-01 7.02694654e-01 -1.69216335e+00 -5.06984949e-01 5.48136294e-01 -4.98121716e-02 -1.04711032e+00 -2.46197730e-01 3.80874336e-01 -4.04363334e-01 1.23791838e+00 -1.58836350e-01 7.74401963e-01 1.15629113e+00 4.02980387e-01 8.30564618e-01 1.19716144e+00 -3.84293377e-01 7.46667445e-01 -5.83399273e-02 -1.70075163e-01 9.36867177e-01 1.98677212e-01 8.16493452e-01 -3.16595823e-01 -3.23548257e-01 9.71306145e-01 -1.82866603e-01 -8.93707126e-02 -9.98577774e-01 -1.01057112e+00 1.02146077e+00 4.25789893e-01 -2.16224134e-01 -3.91219884e-01 8.10190976e-01 6.10620022e-01 7.05208719e-01 1.04372784e-01 8.56928229e-01 -2.64860034e-01 -3.63933861e-01 -3.06894839e-01 7.13939786e-01 1.03108549e+00 7.71047533e-01 6.22015417e-01 4.18661207e-01 -4.40343618e-01 3.20255131e-01 4.24034223e-02 5.25182843e-01 2.19073787e-01 -1.59287071e+00 4.06545013e-01 2.31518403e-01 4.79835749e-01 -5.90664566e-01 -2.78216928e-01 -4.11974937e-01 -3.86795610e-01 7.94423103e-01 2.52072662e-01 -2.11814091e-01 -7.17487216e-01 2.18591285e+00 3.49948794e-01 1.99636608e-01 2.72592396e-01 5.90285301e-01 -6.23779118e-01 7.09824681e-01 -5.04715741e-02 -2.52692074e-01 7.88416445e-01 -8.54247630e-01 -5.12645721e-01 -9.87700000e-02 7.57736981e-01 1.11137144e-01 1.30558133e+00 3.21792811e-01 -1.11685681e+00 -2.67686546e-01 -1.27017117e+00 1.88582495e-01 -1.26979634e-01 -4.21552509e-01 5.53189695e-01 3.15236479e-01 -1.00871074e+00 9.85496223e-01 -1.33215058e+00 -1.62495255e-01 5.05511284e-01 4.89373267e-01 -1.45737097e-01 3.46051127e-01 -1.02606332e+00 1.18866003e+00 6.93634033e-01 -5.26469588e-01 -1.74062169e+00 -8.16090822e-01 -7.23814249e-01 2.83362955e-01 7.65364230e-01 -7.81310737e-01 1.73865509e+00 -6.12016499e-01 -2.03381968e+00 2.77016789e-01 2.35117003e-01 -1.06600523e+00 4.73177642e-01 -6.55443817e-02 1.15058385e-01 1.80825070e-01 -9.87176746e-02 4.05714214e-01 9.96195078e-01 -9.91681039e-01 -8.75248849e-01 -2.91295528e-01 5.76301992e-01 3.19659323e-01 -2.89577842e-01 -4.69236612e-01 2.36532241e-01 -2.55948633e-01 -3.47315282e-01 -1.15052152e+00 -5.06822705e-01 4.63439114e-02 -1.81329712e-01 -8.41434970e-02 7.65096545e-01 -2.19581753e-01 9.18867648e-01 -2.13889909e+00 6.20074034e-01 3.24680001e-01 1.22732393e-01 1.70309335e-01 -1.21406019e-01 6.49482012e-01 7.94148445e-02 1.03694357e-01 -2.66702443e-01 -3.03672612e-01 5.44578731e-01 6.08649790e-01 -9.41147268e-01 7.01737702e-01 1.44569546e-01 7.71229565e-01 -1.07961226e+00 -2.41951898e-01 1.67506859e-01 -3.03453542e-02 -9.03766453e-01 2.31844455e-01 -8.22025180e-01 4.78341132e-01 -6.44470274e-01 3.26463580e-02 3.00261021e-01 1.71736881e-01 4.10259634e-01 4.91247416e-01 -3.09744954e-01 3.67471367e-01 -1.03034616e+00 1.84180629e+00 -7.81690896e-01 1.76101074e-01 1.88301593e-01 -1.18733394e+00 6.27710223e-01 2.40967527e-01 5.33082783e-01 -6.75526321e-01 -1.31030202e-01 2.63622440e-02 -9.04880166e-02 -1.16412349e-01 3.12419683e-01 -1.98301896e-01 -2.39294693e-01 6.18836880e-01 3.77316736e-02 -2.94938654e-01 1.92077637e-01 1.78954765e-01 1.14189994e+00 5.40360868e-01 4.45242852e-01 -6.26140416e-01 3.87694001e-01 -1.97010767e-02 5.05407870e-01 1.10539281e+00 -1.04178697e-01 -3.20967227e-01 1.27975273e+00 -2.52315998e-01 -1.25954831e+00 -1.39246964e+00 7.79678077e-02 1.15946138e+00 -2.46179193e-01 -5.71859419e-01 -5.74778140e-01 -7.87356079e-01 4.22888786e-01 8.35682511e-01 -7.89735258e-01 -5.62607586e-01 -7.51626849e-01 -1.35638282e-01 5.10986865e-01 6.36307716e-01 5.67491531e-01 -7.13549018e-01 -7.95475185e-01 2.77018219e-01 4.66083050e-01 -8.72505963e-01 -4.27912772e-01 1.99560270e-01 -9.19401705e-01 -8.31397891e-01 -3.16943347e-01 -4.40872103e-01 2.43883237e-01 -1.04407176e-01 6.56673312e-01 -2.97286987e-01 3.93813923e-02 7.92072177e-01 1.07657775e-01 -4.04162914e-01 -7.48999476e-01 2.63463825e-01 3.15377206e-01 -2.64110774e-01 -1.72365293e-01 -7.43697703e-01 -2.88509697e-01 6.12720214e-02 -7.92635322e-01 5.51654138e-02 1.95624799e-01 1.06928194e+00 6.23260081e-01 -2.58598089e-01 4.59586352e-01 -6.44867659e-01 7.70578623e-01 -4.42866504e-01 -1.40541506e+00 3.97373028e-02 -7.62974858e-01 1.00438511e+00 9.58409011e-01 -3.03384095e-01 -1.00761449e+00 9.35957506e-02 2.32892841e-01 -6.19392753e-01 2.54601419e-01 3.11784297e-01 2.21210415e-03 -5.28863035e-02 6.58137500e-01 2.71890700e-01 5.00684202e-01 -3.62691015e-01 5.65981865e-01 1.42303348e-01 3.65051657e-01 -1.58192956e+00 7.08687007e-01 5.92284441e-01 5.74932992e-01 -6.40133202e-01 -7.16266811e-01 2.06625909e-02 -1.58102244e-01 2.32303917e-01 5.98914146e-01 -7.67738581e-01 -1.07128882e+00 -2.33834032e-02 -7.35337794e-01 -8.94072711e-01 -7.11894512e-01 4.54979151e-01 -1.29929078e+00 1.54663518e-01 -5.18026173e-01 -8.28063011e-01 1.99031364e-02 -1.32147241e+00 7.29090035e-01 -1.54688805e-01 2.02307731e-01 -9.39554572e-01 5.71489573e-01 -6.01810336e-01 4.00949389e-01 3.65437865e-01 1.06048536e+00 -4.73123401e-01 -6.98803365e-01 3.22670609e-01 1.86916366e-01 5.66162825e-01 -6.68190345e-02 -2.32026324e-01 -7.08956182e-01 -6.71164572e-01 2.48829797e-02 -3.51611614e-01 8.40524137e-01 1.76286593e-01 1.42195427e+00 -6.32686496e-01 -1.51824847e-01 7.99018621e-01 1.52012181e+00 1.08144417e-01 4.53958511e-01 5.58123946e-01 4.53730315e-01 2.59934306e-01 6.13642573e-01 7.50923336e-01 -8.41465220e-02 7.51404107e-01 6.64012849e-01 3.96217287e-01 2.59293973e-01 -6.52666271e-01 8.30650032e-01 1.92588568e-01 -5.75641617e-02 3.78518313e-01 -7.35011637e-01 4.47997451e-01 -2.16550827e+00 -9.59937871e-01 7.38007843e-01 2.30694675e+00 9.56742287e-01 1.29021332e-01 4.22901362e-01 -3.92175525e-01 4.27977622e-01 2.04955637e-01 -8.10886085e-01 -8.08612466e-01 3.67861271e-01 5.95142782e-01 7.75961578e-01 7.72456765e-01 -7.97503829e-01 9.19773757e-01 6.62612534e+00 5.23705006e-01 -1.02628422e+00 7.42790550e-02 1.26556093e-02 -2.27651447e-01 -7.45849684e-02 1.90466046e-01 -8.52240324e-01 3.62010479e-01 1.05707419e+00 -5.66453516e-01 9.79080796e-01 1.09246480e+00 3.51388544e-01 2.03122526e-01 -1.51398492e+00 4.79720294e-01 -6.29061997e-01 -1.45051694e+00 -8.63084644e-02 4.81277078e-01 9.12413776e-01 -5.82593046e-02 4.35313046e-01 6.86605990e-01 9.22526836e-01 -9.08576369e-01 5.61506450e-01 5.06244116e-02 5.39477825e-01 -1.02283978e+00 3.80609967e-02 2.87610114e-01 -9.58699465e-01 -5.65147877e-01 -3.48561347e-01 -3.33498448e-01 -1.27509996e-01 -2.23297805e-01 -1.05449891e+00 3.60486567e-01 4.73420620e-02 7.37146020e-01 6.00510929e-03 6.34321451e-01 -5.08923531e-01 4.67859030e-01 -3.92653197e-01 6.84896410e-02 7.48305500e-01 -4.05467302e-01 6.37310266e-01 9.43046570e-01 2.36049034e-02 -2.90262222e-01 5.56467175e-01 1.05282414e+00 -7.22525716e-02 -2.56601870e-01 -9.42091525e-01 -1.23770639e-01 3.60637039e-01 7.31776714e-01 -1.27192870e-01 -2.72230387e-01 -2.02686995e-01 5.81696630e-01 6.00474834e-01 5.23575604e-01 -9.71744835e-01 -1.36010885e-01 1.39892733e+00 -1.00770853e-01 5.38684487e-01 -6.05602860e-01 8.86203423e-02 -1.15958321e+00 -1.58030391e-01 -1.16468513e+00 4.01407242e-01 -8.84571671e-02 -8.77259851e-01 -2.28023037e-01 5.13215065e-01 -9.89455223e-01 -6.90056205e-01 -6.61088526e-01 -4.82958376e-01 7.42766857e-01 -1.34545875e+00 -6.11740291e-01 3.77331376e-01 6.93051040e-01 2.05269784e-01 -2.24503353e-01 8.78149390e-01 -2.76529849e-01 -5.75919151e-01 4.47475046e-01 5.02420783e-01 -8.97593647e-02 3.42389435e-01 -1.65167367e+00 3.45796108e-01 8.14652741e-01 5.87021466e-03 7.25054681e-01 8.03600430e-01 -3.11010063e-01 -1.83412480e+00 -1.01247227e+00 -2.07136601e-01 -2.00340420e-01 1.08005142e+00 -3.07449162e-01 -6.70411825e-01 1.16640508e+00 2.89691925e-01 3.90337668e-02 -2.51484960e-02 1.89810857e-01 -5.49395442e-01 -3.89900118e-01 -1.03663480e+00 8.77756178e-01 1.04360831e+00 -6.68963730e-01 -6.33374512e-01 1.77650183e-01 1.02141416e+00 -6.11856699e-01 -1.02632999e+00 -1.01500884e-01 3.47524315e-01 -4.71449822e-01 1.01308692e+00 -1.34426451e+00 3.56029928e-01 -1.75212055e-01 -2.70917833e-01 -1.83753717e+00 -2.31794015e-01 -9.88327444e-01 -7.25392342e-01 5.59461534e-01 1.79076806e-01 -1.10777950e+00 4.43365157e-01 2.66730934e-01 -2.48944059e-01 -8.88831139e-01 -1.07091951e+00 -1.14083219e+00 5.95867872e-01 -4.66928929e-02 6.84477091e-01 5.47964215e-01 3.59857172e-01 1.18547000e-01 -3.58754963e-01 2.62125075e-01 7.20705390e-01 1.83961481e-01 7.40767419e-01 -6.23976171e-01 -9.52923477e-01 -5.43521285e-01 -1.93403691e-01 -1.06208897e+00 6.80430412e-01 -1.04058969e+00 -1.46889389e-01 -1.08109748e+00 -1.00173593e-01 -3.24190080e-01 -4.96087253e-01 5.58521450e-01 4.24609154e-01 -6.41878188e-01 4.73514885e-01 -7.16200694e-02 -4.58178103e-01 8.62801790e-01 1.35587668e+00 -9.20866728e-02 -3.05042863e-01 -3.94488648e-02 -4.93641913e-01 4.14203048e-01 1.21813154e+00 -3.94123137e-01 -7.52953351e-01 -3.27601433e-01 1.62204325e-01 4.38491963e-02 4.35372710e-01 -8.96118343e-01 -4.95368093e-02 -6.83107853e-01 -1.11546054e-01 1.12549856e-01 3.42670143e-01 -6.48312569e-01 -2.76075333e-01 9.50050473e-01 -8.29182148e-01 1.34160012e-01 2.60846019e-01 6.77734077e-01 1.69251785e-01 -6.60496652e-02 9.42358434e-01 -2.26396561e-01 -6.54797852e-01 4.62467790e-01 -3.37112278e-01 4.52453762e-01 1.05675805e+00 4.65606391e-01 -3.88297170e-01 -2.33285218e-01 -6.10537291e-01 3.62231582e-01 6.80791557e-01 1.46923229e-01 2.98774660e-01 -1.28323150e+00 -4.82343733e-01 1.13827057e-01 -7.09890723e-02 -2.08039448e-01 -3.64011973e-01 7.69077778e-01 -3.66565615e-01 4.02050167e-01 -5.36769450e-01 -3.26882839e-01 -7.49027133e-01 8.25899363e-01 7.36167490e-01 -4.64343697e-01 -8.89203668e-01 6.63563460e-02 1.67302817e-01 -1.14658356e-01 3.56482983e-01 -7.29632556e-01 4.35309917e-01 -3.83010149e-01 5.92993200e-01 3.36286157e-01 -2.44587094e-01 2.76162058e-01 -1.22953986e-03 5.61922565e-02 -2.30810165e-01 -6.89481080e-01 1.23515499e+00 2.05120504e-01 7.61144012e-02 4.06844467e-01 1.24829614e+00 -3.45049113e-01 -1.81258607e+00 -2.28811845e-01 2.58255191e-02 -5.97894490e-01 8.21276233e-02 -3.88163358e-01 -7.99662173e-01 7.72153199e-01 4.89702612e-01 3.18738103e-01 7.31711388e-01 -2.20822558e-01 3.36650997e-01 9.37544584e-01 5.99522591e-01 -1.35937893e+00 1.00736506e-01 7.08608866e-01 9.06613886e-01 -7.50782132e-01 -4.09134384e-03 3.09694588e-01 -6.30708575e-01 9.59833860e-01 5.64911306e-01 -5.43547630e-01 3.78293544e-01 3.86620343e-01 -6.20213926e-01 1.86090857e-01 -1.10317099e+00 -2.00744495e-01 -3.99660438e-01 7.05774486e-01 -2.06785545e-01 1.47000909e-01 -1.25659794e-01 -9.71930921e-02 7.37346560e-02 -5.22454344e-02 7.24708796e-01 1.27144873e+00 -6.62204266e-01 -1.42367685e+00 -2.19273325e-02 1.52644202e-01 -2.22245410e-01 2.82366961e-01 4.21998799e-02 1.01955771e+00 -4.58903670e-01 2.80037493e-01 2.30799057e-02 -2.64545046e-02 3.48252654e-01 1.93197712e-01 8.85746121e-01 -6.67989492e-01 -3.48324299e-01 -3.87024671e-01 5.32862470e-02 -1.11969459e+00 -3.93256247e-02 -5.84799826e-01 -1.41557920e+00 -4.77770835e-01 3.31557840e-01 2.01152295e-01 7.52273738e-01 7.72158623e-01 4.75446224e-01 4.86765742e-01 8.95246446e-01 -4.83647525e-01 -1.85913479e+00 -5.10252416e-01 -7.11772025e-01 1.83102012e-01 7.43024409e-01 -8.50216806e-01 -2.58345813e-01 -3.21055353e-01]
[4.173600673675537, 2.044827938079834]
d074922d-177e-42be-b3ff-5703ac9126f8
iterative-patch-selection-for-high-resolution
2210.13007
null
https://arxiv.org/abs/2210.13007v2
https://arxiv.org/pdf/2210.13007v2.pdf
Iterative Patch Selection for High-Resolution Image Recognition
High-resolution images are prevalent in various applications, such as autonomous driving and computer-aided diagnosis. However, training neural networks on such images is computationally challenging and easily leads to out-of-memory errors even on modern GPUs. We propose a simple method, Iterative Patch Selection (IPS), which decouples the memory usage from the input size and thus enables the processing of arbitrarily large images under tight hardware constraints. IPS achieves this by selecting only the most salient patches, which are then aggregated into a global representation for image recognition. For both patch selection and aggregation, a cross-attention based transformer is introduced, which exhibits a close connection to Multiple Instance Learning. Our method demonstrates strong performance and has wide applicability across different domains, training regimes and image sizes while using minimal accelerator memory. For example, we are able to finetune our model on whole-slide images consisting of up to 250k patches (>16 gigapixels) with only 5 GB of GPU VRAM at a batch size of 16.
['Aravindh Mahendran', 'Christoph Lippert', 'Benjamin Bergner']
2022-10-24
null
null
null
null
['multiple-instance-learning']
['methodology']
[ 4.58998203e-01 5.74493501e-03 -9.21363160e-02 -1.68245718e-01 -8.59071910e-01 -2.97140509e-01 3.36182684e-01 5.10954022e-01 -7.17901945e-01 4.10921723e-01 -4.14611101e-01 -3.99477094e-01 -4.72798124e-02 -9.97455537e-01 -8.70021880e-01 -7.60786235e-01 1.85045600e-01 3.70814830e-01 4.84544337e-01 -4.73993504e-03 3.76660258e-01 5.94476581e-01 -2.00161123e+00 3.96497011e-01 7.05496013e-01 1.16419494e+00 4.69992012e-01 6.28652036e-01 1.21370897e-01 4.68781620e-01 -5.22507548e-01 -2.27808077e-02 2.09957048e-01 1.04402930e-01 -6.58720970e-01 1.11721084e-01 6.50237739e-01 -1.82985619e-01 -4.92847450e-02 8.38040113e-01 6.04960740e-01 1.00859255e-01 2.46861726e-01 -5.99242508e-01 -2.02583313e-01 4.81055640e-02 -8.21631789e-01 4.08964336e-01 -1.56412557e-01 1.48723632e-01 7.44890392e-01 -7.81217873e-01 4.72212940e-01 8.49285245e-01 5.62009215e-01 3.46623182e-01 -1.27756000e+00 -5.91708124e-01 6.21371418e-02 1.81570992e-01 -1.27004564e+00 -3.72023672e-01 4.43792969e-01 -2.51879781e-01 1.40114915e+00 3.49946320e-01 6.87614799e-01 8.32992613e-01 3.69129956e-01 4.93942767e-01 1.03502274e+00 -3.65865827e-01 3.68946373e-01 -5.04388176e-02 2.44975120e-01 6.33901656e-01 2.72537440e-01 -1.72208562e-01 -5.84666193e-01 -1.80533513e-01 1.04510415e+00 8.48793164e-02 -9.25270021e-02 5.93800936e-03 -1.28062844e+00 8.75896811e-01 4.48797852e-01 1.02536805e-01 -3.19258302e-01 4.60805604e-03 5.69766343e-01 1.63383126e-01 2.57630527e-01 4.52572882e-01 -3.75483602e-01 4.11991104e-02 -7.81869113e-01 2.75276192e-02 3.74884456e-01 5.74062467e-01 9.95942175e-01 -1.84509441e-01 -5.92409559e-02 1.07742560e+00 -2.48761490e-01 4.13982034e-01 6.19428515e-01 -7.02039242e-01 2.48814777e-01 6.95453465e-01 -1.65348232e-01 -9.83781397e-01 -5.92006207e-01 -5.05226552e-01 -1.19366145e+00 3.85920316e-01 2.74155378e-01 2.06235549e-04 -9.92855787e-01 1.36662126e+00 6.86294854e-01 1.18985131e-01 -1.42197937e-01 9.89653707e-01 7.91335046e-01 5.96098125e-01 2.59617511e-02 2.82505830e-03 1.87803996e+00 -1.06294429e+00 -7.70268217e-02 -5.53297102e-01 6.20955229e-01 -5.15246391e-01 1.17531657e+00 5.97972453e-01 -9.92790461e-01 -7.39368618e-01 -1.20680559e+00 -4.18075621e-01 -2.50175297e-01 2.22217023e-01 6.03286862e-01 3.87116492e-01 -1.04793799e+00 7.00630724e-01 -1.05921865e+00 -2.52623349e-01 4.44375783e-01 7.54400373e-01 -4.51413274e-01 8.36346485e-03 -6.89974308e-01 4.17588770e-01 2.61950344e-01 9.02264267e-02 -4.10928249e-01 -8.74836028e-01 -6.74025178e-01 1.04386635e-01 1.94195792e-01 -6.79890752e-01 7.29933202e-01 -1.02483070e+00 -1.55357933e+00 9.23992693e-01 -1.59325540e-01 -5.68454385e-01 1.29199162e-01 -7.53083378e-02 -1.65922299e-01 1.34684965e-01 -8.49223044e-03 7.57456660e-01 1.22232461e+00 -6.55799150e-01 -7.58172035e-01 -5.38062096e-01 -1.24872245e-01 2.61226833e-01 -5.46101332e-01 -8.83814320e-02 -7.34371126e-01 -3.89546871e-01 8.31736252e-02 -9.46851850e-01 -4.46981966e-01 -1.73484206e-01 -1.85065761e-01 -4.33353409e-02 7.01416314e-01 -2.24853665e-01 7.74071097e-01 -2.33569074e+00 1.37160063e-01 2.93794751e-01 3.10492665e-01 1.85520619e-01 -1.06970267e-02 -1.25919521e-01 2.93119494e-02 -3.73193830e-01 -7.39795417e-02 -1.64777935e-01 -3.79786521e-01 1.53176129e-01 -2.66472131e-01 4.29403067e-01 3.40722054e-01 7.12820470e-01 -5.78975797e-01 -3.69694024e-01 2.48014897e-01 6.20517194e-01 -6.96238518e-01 1.21768616e-01 -5.01073971e-02 4.45753187e-01 -4.38212425e-01 3.69720638e-01 6.98007762e-01 -8.02847564e-01 3.41973752e-01 -3.15478563e-01 -1.73652142e-01 1.91715866e-01 -1.07425296e+00 1.53045797e+00 -6.27688348e-01 5.48552215e-01 5.26649877e-02 -1.03188062e+00 8.85303259e-01 -1.69578105e-01 2.97541946e-01 -1.14853811e+00 2.24310398e-01 2.26572543e-01 -1.33087859e-01 -1.67800307e-01 7.87130117e-01 1.15260482e-01 -1.19672880e-01 4.01693702e-01 -1.54594049e-01 2.65699565e-01 1.65895030e-01 -2.29140908e-01 1.25517023e+00 -3.49117756e-01 3.50865334e-01 -4.70231831e-01 3.49022955e-01 1.56433240e-01 4.39433783e-01 7.33167052e-01 1.65689871e-01 5.60132802e-01 4.87337232e-01 -7.95936525e-01 -1.11157203e+00 -5.77224731e-01 -4.38452899e-01 1.20627189e+00 2.69432753e-01 -3.58140737e-01 -7.14215636e-01 -4.13915724e-01 -2.54268199e-02 -2.77652545e-03 -6.18387043e-01 5.72474599e-02 -8.59930336e-01 -1.02892506e+00 2.32657790e-01 5.53018510e-01 3.74317437e-01 -1.16323102e+00 -1.16898119e+00 2.54978150e-01 4.22815144e-01 -1.12664592e+00 -1.19281761e-01 3.17265987e-01 -9.72202182e-01 -8.19011807e-01 -6.50593281e-01 -7.36568630e-01 9.22024608e-01 3.62937659e-01 1.15652180e+00 2.68597752e-01 -6.77267373e-01 -1.06149372e-02 -8.69301427e-03 -6.96099550e-02 -1.02471188e-01 3.97020876e-01 -3.20102870e-02 7.71967322e-02 1.63753301e-01 -6.01899505e-01 -9.22282517e-01 3.87957454e-01 -7.75135756e-01 2.79538125e-01 9.18003917e-01 1.22937953e+00 1.17049110e+00 -1.57971814e-01 3.98112923e-01 -1.08104229e+00 2.02553272e-01 -3.41977358e-01 -9.55661833e-01 3.15159559e-02 -3.51346850e-01 2.02156734e-02 9.02104080e-01 -6.15438879e-01 -7.11958647e-01 1.36924252e-01 -2.58845538e-01 -4.07659590e-01 -3.25784326e-01 2.37444207e-01 1.77092999e-01 -4.29342180e-01 7.16736734e-01 2.13880509e-01 1.79550841e-01 -3.44741166e-01 6.23646053e-03 4.94146168e-01 5.01116097e-01 -5.91695905e-01 2.92384654e-01 4.75654930e-01 1.29006561e-02 -1.24358582e+00 -4.76203352e-01 -2.52758324e-01 -3.46834391e-01 4.44782972e-02 6.12466097e-01 -1.01422477e+00 -9.81367528e-01 4.03454095e-01 -7.75822639e-01 -6.14115298e-01 -1.46270350e-01 2.50952333e-01 -3.43196869e-01 1.87552005e-01 -7.59448886e-01 -3.44268590e-01 -6.70711100e-01 -1.46199286e+00 1.43140614e+00 3.71542692e-01 -1.39826715e-01 -5.46691895e-01 -1.77679300e-01 3.18233311e-01 3.65490586e-01 5.06650954e-02 1.07713866e+00 -2.36800179e-01 -8.82568359e-01 -1.02846466e-01 -5.18567920e-01 -9.78723913e-02 -6.28575385e-02 -2.41569847e-01 -9.18501079e-01 -6.02284431e-01 -2.01212138e-01 -4.13687021e-01 8.30621243e-01 3.61773729e-01 1.50015581e+00 -3.46622691e-02 -5.72134018e-01 7.23186612e-01 1.54548013e+00 -1.49295600e-02 7.44085968e-01 3.76834840e-01 8.55121255e-01 4.45123762e-01 5.97873032e-01 4.13510740e-01 4.90383580e-02 9.30263579e-01 2.87848383e-01 -3.41912031e-01 3.85850221e-02 3.10864121e-01 -1.07192509e-02 7.40745842e-01 -3.97575162e-02 -5.47806621e-02 -8.72336447e-01 4.57850814e-01 -1.59583819e+00 -5.97884834e-01 6.31550103e-02 2.46591353e+00 6.31276667e-01 1.62731349e-01 6.55916112e-04 4.01662588e-02 5.57646334e-01 1.76188871e-01 -7.99341142e-01 -3.38663608e-01 1.65368572e-01 5.87137341e-01 6.46989167e-01 2.49930516e-01 -1.08757865e+00 7.91630447e-01 6.27058125e+00 1.08394182e+00 -1.61234844e+00 3.66393663e-02 1.09767616e+00 -3.61461669e-01 1.33719370e-01 -3.43586266e-01 -1.16617727e+00 4.40225035e-01 9.44820821e-01 2.81374753e-01 2.35782877e-01 1.00929177e+00 -1.86229765e-01 -3.18908751e-01 -8.76571059e-01 1.12828195e+00 -8.75086337e-02 -1.63009775e+00 -8.03106353e-02 2.72290707e-01 5.79493761e-01 3.56487304e-01 1.70622006e-01 8.15718621e-03 -1.10410266e-01 -9.62148726e-01 4.11676198e-01 -5.17738014e-02 1.10910583e+00 -8.68825376e-01 5.03075659e-01 2.94368774e-01 -1.01003611e+00 -1.21692970e-01 -6.25741780e-01 1.16537392e-01 -1.59965798e-01 7.27524817e-01 -5.18728912e-01 1.54442042e-01 1.01761734e+00 3.85210425e-01 -5.03159642e-01 6.80281878e-01 4.42601800e-01 2.30303168e-01 -6.53206825e-01 -2.12760810e-02 7.01181144e-02 -1.92796588e-02 1.62075654e-01 1.11125016e+00 5.26375175e-01 1.78948611e-01 1.68702733e-02 3.53665173e-01 -8.44720453e-02 2.28075787e-01 -3.32425326e-01 4.51525867e-01 3.17027718e-01 1.40996540e+00 -1.08791065e+00 -3.73379022e-01 -4.64659244e-01 9.55409944e-01 8.71670604e-01 -3.08790319e-02 -7.22258985e-01 -3.80147576e-01 8.20913494e-01 2.18936145e-01 7.21370220e-01 -1.56380028e-01 -4.52520937e-01 -9.97877181e-01 2.42604703e-01 -9.65814531e-01 3.59648556e-01 -2.31475249e-01 -8.98969114e-01 8.75724435e-01 -4.71131146e-01 -1.20604360e+00 2.90279668e-02 -7.98378050e-01 -4.47614729e-01 5.27963817e-01 -1.52698910e+00 -7.58999586e-01 -5.88576078e-01 4.57788885e-01 4.86454666e-01 -4.45582382e-02 8.25015187e-01 4.41630721e-01 -8.54812205e-01 7.71605194e-01 1.40528917e-01 -1.99012905e-01 5.50437272e-01 -8.80347848e-01 6.25426531e-01 4.69433039e-01 5.72552495e-02 4.99505877e-01 5.01662314e-01 -4.03400391e-01 -1.70078111e+00 -1.23806953e+00 3.49317908e-01 -1.06214747e-01 4.17820752e-01 -4.00174618e-01 -1.25340676e+00 2.80811369e-01 1.46632586e-02 4.97652113e-01 5.59888601e-01 1.98509321e-01 -3.26465875e-01 -3.94878656e-01 -9.84896779e-01 5.58011234e-01 7.76153445e-01 -2.38836795e-01 1.35563821e-01 5.29765666e-01 4.22648370e-01 -8.23118508e-01 -9.55064595e-01 3.44524801e-01 4.74941820e-01 -1.05570245e+00 9.97426808e-01 -1.57946914e-01 3.06914866e-01 -3.22210789e-01 1.27687618e-01 -8.08783531e-01 -4.94751126e-01 -3.75402123e-01 1.20938495e-02 5.87317765e-01 5.15047252e-01 -8.52485299e-01 9.56620455e-01 3.50664377e-01 -2.35258080e-02 -1.08421338e+00 -1.04726410e+00 -4.38551307e-01 -1.73094004e-01 -2.66928643e-01 5.22896349e-01 6.70246959e-01 -9.38740894e-02 3.72533262e-01 -1.93676829e-01 4.14362043e-01 6.12240613e-01 4.66538250e-01 7.77964294e-01 -1.07178271e+00 -6.63532615e-01 -4.72572029e-01 -6.06839538e-01 -1.18892193e+00 -4.40427139e-02 -4.70463425e-01 7.47345686e-02 -1.03270817e+00 1.07849136e-01 -8.74996006e-01 -2.71992922e-01 5.55586815e-01 -7.95276389e-02 7.89228797e-01 -1.55101836e-01 2.90598959e-01 -5.51001310e-01 1.55621111e-01 1.02995300e+00 -1.05697364e-01 -2.49378651e-01 -2.17702493e-01 -5.33870637e-01 4.47665244e-01 6.71430707e-01 -3.39556307e-01 -2.17180535e-01 -6.40157998e-01 1.27969310e-01 1.23591930e-01 3.94355208e-01 -1.29940295e+00 3.10353100e-01 4.36829813e-02 4.67052281e-01 -3.19159359e-01 4.64187920e-01 -4.98434186e-01 2.76785642e-01 3.75858426e-01 -8.83413181e-02 4.70095798e-02 5.91405690e-01 5.26392817e-01 -1.91975936e-01 -2.84480322e-02 1.02546382e+00 2.59595457e-02 -7.63174236e-01 3.43585223e-01 -2.17586130e-01 -3.03476274e-01 1.02959192e+00 -2.12277889e-01 -4.78986531e-01 2.84144402e-01 -5.73269963e-01 -1.82290059e-02 5.58239579e-01 2.83515513e-01 4.32310075e-01 -1.12812877e+00 -5.08324265e-01 6.20205760e-01 1.70366824e-01 3.88422489e-01 7.98890471e-01 8.93383145e-01 -7.11220980e-01 3.66227359e-01 -2.63199031e-01 -1.05489028e+00 -1.51907825e+00 5.98063350e-01 1.34753168e-01 -3.41864824e-01 -1.18225241e+00 7.26518571e-01 5.27763486e-01 7.62435570e-02 -9.16596577e-02 -2.22751856e-01 -3.37425023e-01 -1.84317619e-01 9.07872319e-01 7.72455558e-02 5.83310485e-01 -5.09630978e-01 -2.94810504e-01 9.10608709e-01 -5.22684336e-01 3.47183734e-01 1.26282763e+00 1.93932086e-01 -9.60437804e-02 -3.92979383e-02 1.16623640e+00 -1.94196224e-01 -1.40168834e+00 -1.65905401e-01 -2.10526124e-01 -3.92459154e-01 2.02885106e-01 -1.11663669e-01 -1.22599506e+00 7.76636064e-01 7.20466614e-01 1.73018783e-01 1.33392251e+00 -6.49027526e-02 9.47618902e-01 5.42302847e-01 6.92224085e-01 -1.00546145e+00 -7.45724589e-02 3.22981775e-01 5.19694865e-01 -1.25385058e+00 1.79606110e-01 -3.85111183e-01 -4.17069048e-01 1.05244482e+00 7.20242500e-01 -4.12212342e-01 4.17379200e-01 5.20377994e-01 -7.25020543e-02 -1.70339480e-01 -9.13352549e-01 8.10105503e-02 1.95375368e-01 2.76219040e-01 1.63153231e-01 1.90539155e-02 -2.17826571e-02 2.24128962e-01 4.31891298e-03 -1.47344500e-01 2.20806718e-01 8.87407899e-01 -4.18460906e-01 -9.93303895e-01 -2.27900788e-01 7.32706904e-01 -4.16517019e-01 -1.75387424e-03 3.52233768e-01 5.15137315e-01 -2.53389068e-02 3.63753229e-01 5.80123782e-01 -3.24817866e-01 2.37824306e-01 -2.82335788e-01 4.68091428e-01 -5.41538537e-01 -6.56542778e-01 2.49871183e-02 -1.88050389e-01 -7.03884661e-01 -1.55731261e-01 -4.73058522e-01 -1.01192701e+00 -3.03507835e-01 -1.68609142e-01 -6.23559766e-02 6.34031296e-01 8.39567006e-01 1.04986262e+00 6.19373441e-01 4.16578382e-01 -1.17156851e+00 -7.36345053e-02 -6.15019202e-01 -3.49988729e-01 1.12235002e-01 3.24142814e-01 -5.33954382e-01 -1.66687310e-01 -1.40971512e-01]
[9.467338562011719, 0.296062707901001]
45632730-e93e-4a51-a261-0cfd674be36f
continuous-episodic-control
2211.15183
null
https://arxiv.org/abs/2211.15183v3
https://arxiv.org/pdf/2211.15183v3.pdf
Continuous Episodic Control
Non-parametric episodic memory can be used to quickly latch onto high-rewarded experience in reinforcement learning tasks. In contrast to parametric deep reinforcement learning approaches in which reward signals need to be back-propagated slowly, these methods only need to discover the solution once, and may then repeatedly solve the task. However, episodic control solutions are stored in discrete tables, and this approach has so far only been applied to discrete action space problems. Therefore, this paper introduces Continuous Episodic Control (CEC), a novel non-parametric episodic memory algorithm for sequential decision making in problems with a continuous action space. Results on several sparse-reward continuous control environments show that our proposed method learns faster than state-of-the-art model-free RL and memory-augmented RL algorithms, while maintaining good long-run performance as well. In short, CEC can be a fast approach for learning in continuous control tasks.
['Aske Plaat', 'Mike Preuss', 'Thomas M. Moerland', 'Zhao Yang']
2022-11-28
null
null
null
null
['continuous-control']
['playing-games']
[-6.26154989e-02 -8.65770318e-03 -4.66286659e-01 7.58479908e-02 -7.82113314e-01 -2.64223546e-01 6.66117132e-01 2.17098683e-01 -8.06525409e-01 1.45309997e+00 9.70934778e-02 9.70574915e-02 -4.19739276e-01 -9.47378635e-01 -8.00960183e-01 -7.98976600e-01 -3.01771402e-01 9.59770441e-01 2.08653778e-01 -1.50049224e-01 4.41320658e-01 1.99338570e-01 -1.82163870e+00 2.58107763e-02 7.74736822e-01 7.77885377e-01 5.61773360e-01 3.83240253e-01 -1.85222059e-01 1.23628032e+00 -4.73199785e-01 2.07017884e-01 2.42142635e-03 -7.86732793e-01 -7.80827463e-01 -1.84991524e-01 -2.55863219e-01 -4.99843627e-01 -4.38245922e-01 5.37997425e-01 6.61585927e-01 7.18655586e-01 2.47461945e-01 -9.05357778e-01 -4.73551810e-01 7.67534971e-01 -5.64374961e-02 1.59515679e-01 4.40736115e-01 3.33488107e-01 6.93385959e-01 -7.56065607e-01 8.02516878e-01 1.11994863e+00 3.57287198e-01 6.99658215e-01 -1.37274969e+00 -6.29950702e-01 4.49341327e-01 4.44128364e-01 -8.65438581e-01 -2.22537205e-01 4.54580337e-01 2.96597797e-02 1.46041703e+00 -1.70877367e-01 1.40037549e+00 1.32560456e+00 5.30116677e-01 1.21416247e+00 1.51534665e+00 -1.81598753e-01 9.51852500e-01 -2.63005793e-01 -5.07909477e-01 5.63816011e-01 -1.33028343e-01 1.03471041e+00 -9.28963959e-01 -4.13873494e-02 9.79334712e-01 -4.38577263e-03 1.44165143e-01 -7.13975012e-01 -1.21227109e+00 1.14747715e+00 3.77377272e-01 1.37367547e-01 -8.69239807e-01 7.55924702e-01 4.05313671e-01 8.11347485e-01 1.21484779e-01 9.63383019e-01 -4.25556421e-01 -7.63432205e-01 -8.96527946e-01 8.80191267e-01 6.60773039e-01 6.39225066e-01 6.02520704e-01 5.29884398e-01 -5.75680017e-01 7.55451322e-01 -3.12955081e-02 4.98681128e-01 7.99333334e-01 -1.15050304e+00 1.16890319e-01 1.29511759e-01 5.20215511e-01 -4.75937814e-01 -4.19957519e-01 -6.73263133e-01 -4.83425438e-01 4.73267972e-01 2.59105653e-01 -2.60786384e-01 -7.59740114e-01 1.69715798e+00 3.31870794e-01 3.39195520e-01 3.46365035e-01 8.86968732e-01 1.60312280e-01 7.54966676e-01 1.66864619e-01 -5.98262489e-01 5.78618169e-01 -1.02440357e+00 -1.01053023e+00 -4.91840959e-01 4.24206793e-01 -2.22538203e-01 1.04552078e+00 6.29891038e-01 -1.43840206e+00 -3.99014324e-01 -9.34288025e-01 4.59261060e-01 -2.48508140e-01 -3.09145659e-01 8.57807398e-01 2.45935753e-01 -9.26249743e-01 9.67389286e-01 -1.02620411e+00 3.59532386e-02 5.13688326e-01 4.15459931e-01 2.40043432e-01 -2.80051082e-01 -1.39594316e+00 1.38270593e+00 6.44277394e-01 -4.52413559e-02 -1.63683474e+00 -6.02719367e-01 -6.20526552e-01 1.49399051e-02 9.90642011e-01 -4.45320815e-01 1.69755089e+00 -7.88458347e-01 -2.13986635e+00 1.43412620e-01 2.01276585e-01 -9.34996784e-01 3.69078428e-01 -4.52657968e-01 -2.07231879e-01 1.97055377e-03 -8.06907117e-02 8.36380422e-01 9.95928168e-01 -9.83377039e-01 -5.82724869e-01 6.76793605e-02 2.95981374e-02 4.98102218e-01 8.08936656e-02 -3.77490193e-01 1.31911874e-01 -5.71301997e-01 -1.08234167e-01 -8.35074902e-01 -6.17441535e-01 -2.58773565e-01 3.34531456e-01 -1.94906801e-01 5.27560234e-01 -1.91355839e-01 1.23280466e+00 -1.86050057e+00 5.85070491e-01 1.33286178e-01 -3.17524344e-01 1.27388746e-01 -3.37088972e-01 6.86467528e-01 2.68219948e-01 -4.02181894e-01 -2.98548102e-01 -6.67005926e-02 3.37802052e-01 6.85693145e-01 -5.61537504e-01 2.01619536e-01 9.32263806e-02 1.24230206e+00 -1.36897767e+00 -3.22325081e-01 1.47760615e-01 1.65299401e-01 -5.78793645e-01 3.22531939e-01 -9.16121662e-01 4.48448062e-01 -4.87193018e-01 4.49570507e-01 5.38583584e-02 7.68275931e-02 4.58276898e-01 8.48608673e-01 -2.32501522e-01 3.18525970e-01 -1.36313152e+00 1.90631068e+00 -6.63129628e-01 5.57731576e-02 -2.00539351e-01 -1.02082086e+00 1.01818919e+00 2.85331458e-01 5.00106990e-01 -1.54750979e+00 -1.62379146e-01 3.12377185e-01 -1.28212348e-01 -1.30055234e-01 6.37050688e-01 -2.14315146e-01 -1.45225987e-01 5.83529413e-01 8.37022364e-02 -4.00060177e-01 3.97245854e-01 -1.39854163e-01 1.20793390e+00 6.82377100e-01 3.10802788e-01 2.70589218e-02 3.39316390e-02 2.25206599e-01 6.76240921e-01 1.08185625e+00 4.75882441e-02 6.98773414e-02 5.50263464e-01 -4.42655385e-01 -7.94993162e-01 -1.15464818e+00 7.78826699e-02 1.22413719e+00 -1.57001372e-02 -3.18840325e-01 -3.62553179e-01 -4.61065859e-01 1.36699021e-01 1.02759790e+00 -6.52056515e-01 -4.86975580e-01 -7.76849627e-01 -6.02588952e-01 3.78940068e-02 6.52963102e-01 5.95860302e-01 -1.92456961e+00 -1.15551627e+00 9.79919016e-01 2.11156160e-01 -2.65342206e-01 -1.82633460e-01 8.05148780e-01 -1.22620344e+00 -8.49678814e-01 -6.58186972e-01 -6.36187971e-01 2.37202972e-01 -3.26629728e-01 1.19998753e+00 2.10894085e-02 -1.19018808e-01 5.60386300e-01 -3.15928876e-01 -1.84146002e-01 -2.67904967e-01 -3.20000239e-02 1.14289239e-01 -3.93104225e-01 8.20873380e-02 -5.16910195e-01 -5.18533289e-01 2.04625562e-01 -7.05473065e-01 -2.07955554e-01 7.88572729e-01 1.42605627e+00 1.09709859e+00 4.81023416e-02 1.22242928e+00 -7.21006453e-01 8.96753073e-01 -4.98519480e-01 -8.57348740e-01 1.21027850e-01 -9.94858682e-01 4.15126592e-01 5.24086356e-01 -7.37524450e-01 -1.13030541e+00 4.13272142e-01 1.45444676e-01 -4.17052388e-01 4.55076620e-02 8.87304425e-01 3.65702868e-01 2.01615557e-01 6.58608139e-01 6.77045703e-01 3.44747156e-01 -2.15998486e-01 4.55581665e-01 -1.70083448e-01 2.57054895e-01 -8.10427248e-01 3.58062118e-01 -1.63055331e-01 6.13829903e-02 -3.26101631e-01 -6.86758041e-01 -3.04329656e-02 -3.88230622e-01 -3.20084125e-01 6.37036145e-01 -8.61935318e-01 -5.38253963e-01 4.12183732e-01 -5.59845269e-01 -1.16428959e+00 -9.60550189e-01 5.48561096e-01 -1.43279934e+00 -3.31362158e-01 -6.53230369e-01 -1.02761936e+00 2.47510254e-01 -8.26565564e-01 5.60339510e-01 1.40898973e-01 -2.80592948e-01 -8.56973231e-01 5.42998910e-01 -3.18355560e-01 7.13842928e-01 2.08638459e-01 7.42742002e-01 -2.25367352e-01 -7.56812155e-01 1.42540872e-01 5.27495623e-01 -2.15577856e-01 -2.88963228e-01 -6.37890339e-01 -5.16346872e-01 -5.43666184e-01 -5.29008433e-02 -1.04462731e+00 9.22836781e-01 4.21923548e-01 1.00511265e+00 -4.36598718e-01 -8.63545835e-02 9.72499251e-02 1.36435318e+00 4.94599968e-01 8.66602480e-01 6.23544693e-01 -5.96139394e-02 2.50100076e-01 1.37569475e+00 8.93113852e-01 7.74856582e-02 6.61047518e-01 5.38940370e-01 2.09857687e-01 1.21933311e-01 -6.07569039e-01 6.10554695e-01 4.39921200e-01 7.69032314e-02 1.32398501e-01 -6.27008855e-01 5.95702350e-01 -2.31323123e+00 -1.45324945e+00 4.58920568e-01 2.18920970e+00 1.21738243e+00 2.16855019e-01 3.28643799e-01 1.23423390e-01 3.03128660e-01 2.09909841e-01 -1.05225861e+00 -6.02959931e-01 -6.22117296e-02 6.85233414e-01 2.72072434e-01 3.97099257e-01 -8.70798826e-01 1.21786487e+00 6.89815760e+00 8.52778673e-01 -1.09886920e+00 2.07157090e-01 2.38876119e-01 -5.90088069e-01 -6.12934642e-02 -1.40002683e-01 -5.78085244e-01 2.85912871e-01 1.34216392e+00 -2.02678531e-01 9.74967122e-01 1.10743272e+00 6.16694614e-02 -5.51069677e-01 -1.03311336e+00 8.63032758e-01 -4.28988397e-01 -1.44050360e+00 -3.80546391e-01 -3.64621170e-02 1.03627145e+00 -1.17663592e-01 4.46426690e-01 1.09940159e+00 7.50614941e-01 -1.26715708e+00 6.89121306e-01 7.78680325e-01 5.59352815e-01 -1.20504940e+00 3.99213523e-01 4.45139468e-01 -8.91968548e-01 -7.44456112e-01 -5.84130287e-01 -2.96076417e-01 8.29277337e-02 8.11811537e-02 -5.40413976e-01 1.31164849e-01 5.94431639e-01 7.73172557e-01 -2.64487296e-01 1.18039536e+00 -4.65738744e-01 5.46028793e-01 -9.48959216e-02 -4.84980583e-01 6.10758781e-01 6.08320348e-02 2.28788063e-01 5.97890735e-01 3.39721411e-01 1.68102577e-01 3.85833234e-01 8.97130966e-01 2.54351676e-01 -8.86013508e-02 -8.53062749e-01 -2.42550194e-01 5.32931149e-01 6.27260387e-01 -6.69320226e-01 -2.14870572e-01 -1.39884632e-02 9.27968264e-01 6.21607661e-01 2.63820022e-01 -8.23751271e-01 -2.70359796e-02 3.02366585e-01 3.87513787e-02 7.78617442e-01 -5.11875927e-01 2.95238681e-02 -7.46061802e-01 -3.97354215e-01 -1.05049527e+00 2.81506687e-01 -5.27539432e-01 -9.51911449e-01 2.10327238e-01 8.07928480e-03 -1.27229464e+00 -9.09158051e-01 -5.59554994e-02 -3.86924416e-01 4.23021853e-01 -1.58735752e+00 -3.89988482e-01 2.61317313e-01 7.37990499e-01 7.05276132e-01 -3.31270337e-01 1.30892050e+00 -1.65532887e-01 -2.60217994e-01 2.98400313e-01 6.26111269e-01 -5.13531804e-01 4.59329069e-01 -1.42187488e+00 -2.86809318e-02 2.76111931e-01 1.76622182e-01 3.43919098e-01 5.88428438e-01 -8.57522905e-01 -1.75232506e+00 -9.85636711e-01 4.57104951e-01 -9.16085094e-02 4.94433343e-01 -2.69851446e-01 -9.04974282e-01 4.22682703e-01 2.78172433e-01 -6.93875402e-02 2.70116985e-01 1.28211617e-01 6.57624602e-02 1.83067657e-02 -1.07917011e+00 4.96245325e-01 9.37626839e-01 -3.48630279e-01 -7.42971420e-01 3.21254551e-01 4.99581397e-01 -6.91073418e-01 -8.03149223e-01 -2.09807884e-02 3.64155769e-01 -8.39467645e-01 9.57027912e-01 -7.39049911e-01 4.03223932e-01 -1.25936717e-01 1.30667794e-03 -1.81594861e+00 -4.21906680e-01 -6.63153410e-01 -7.42578089e-01 6.39080524e-01 3.25899005e-01 -5.44484735e-01 6.91326261e-01 3.56795669e-01 -2.48481199e-01 -1.10697722e+00 -1.19648898e+00 -1.05320561e+00 1.95367664e-01 -1.23537965e-01 5.18651128e-01 7.05802500e-01 7.54335430e-03 4.79511730e-02 -7.15213299e-01 -3.85344356e-01 4.23202008e-01 3.81040841e-01 4.30860549e-01 -1.03875828e+00 -5.40944755e-01 -2.42902189e-01 1.74107566e-01 -8.53804529e-01 3.74500155e-01 -6.91557646e-01 3.45580339e-01 -1.54300165e+00 -1.34143829e-01 -6.47891283e-01 -5.09220600e-01 6.89680934e-01 1.41285002e-01 -1.78913221e-01 1.87848628e-01 7.80558661e-02 -1.02876937e+00 1.25922382e+00 1.53518748e+00 -5.93879707e-02 -5.89965761e-01 -1.00299917e-01 -2.83560455e-01 2.42791146e-01 1.06823719e+00 -7.22039700e-01 -7.62639225e-01 -1.98069979e-02 4.06391591e-01 6.50502205e-01 2.58868486e-01 -1.20958495e+00 3.08010399e-01 -6.09771073e-01 5.91684461e-01 -5.50371766e-01 4.52191532e-01 -6.20291293e-01 1.43229127e-01 8.77954841e-01 -6.15087509e-01 3.49244952e-01 3.30541849e-01 9.93034720e-01 -2.16598317e-01 -2.41651654e-01 6.90793633e-01 -4.30883050e-01 -1.00950181e+00 1.82763696e-01 -9.54245448e-01 2.46956334e-01 1.15990472e+00 -1.24031238e-01 -1.76838964e-01 -3.77540201e-01 -1.17671967e+00 5.04869044e-01 1.42066777e-01 4.02297795e-01 1.08523118e+00 -1.47082186e+00 -4.50716376e-01 -2.62847776e-03 -3.26013833e-01 -1.44031480e-01 3.16809177e-01 6.81064665e-01 -4.99670021e-02 3.60930771e-01 -7.17826188e-01 -3.20360184e-01 -5.31927645e-01 8.81817341e-01 3.95206898e-01 -5.37020981e-01 -8.26891243e-01 5.37297964e-01 -5.51796019e-01 -3.55038226e-01 5.53303897e-01 -1.68675900e-01 -2.38622397e-01 3.23470026e-01 4.80096340e-01 2.86110312e-01 -1.69279844e-01 2.19794393e-01 6.85899984e-03 2.08062902e-01 -1.67347342e-02 -5.14621198e-01 1.62726331e+00 1.33690596e-01 1.71605378e-01 8.08918536e-01 4.90969360e-01 -6.34347260e-01 -1.62756813e+00 -1.96218580e-01 1.34859100e-01 -5.94868124e-01 2.19606176e-01 -1.25810421e+00 -8.92147124e-01 5.95364571e-01 7.11003304e-01 -1.63092494e-01 1.01051092e+00 -4.15903986e-01 5.98507166e-01 9.38685656e-01 8.09515715e-01 -1.86104691e+00 7.52075553e-01 8.51763189e-01 1.21129489e+00 -9.24793780e-01 -8.20291191e-02 4.60346311e-01 -9.02485967e-01 8.63391399e-01 7.72285104e-01 -3.76696497e-01 3.80248010e-01 1.87102512e-01 -2.75284320e-01 1.66829918e-02 -1.36345696e+00 -3.62246305e-01 -3.56376439e-01 7.39794731e-01 9.98511016e-02 -9.87305939e-02 -2.85194159e-01 2.73656398e-01 -4.65849377e-02 3.12412173e-01 4.78253543e-01 1.42111325e+00 -6.59765601e-01 -1.38969350e+00 -1.96240023e-01 5.39086282e-01 -1.35523841e-01 7.52071887e-02 -1.35747090e-01 8.17630827e-01 -3.12198102e-01 7.16957033e-01 1.01592224e-02 -4.30494100e-02 2.81592578e-01 2.45435566e-01 8.31109345e-01 -5.39098203e-01 -9.64766979e-01 5.60729988e-02 1.04974799e-01 -1.06950736e+00 -1.89672112e-01 -9.61713612e-01 -1.68035901e+00 -1.51016504e-01 1.24698512e-01 2.94236600e-01 3.98834258e-01 6.53000355e-01 3.16235721e-01 7.57284999e-01 5.24157166e-01 -7.70912588e-01 -1.05357242e+00 -6.81272447e-01 -7.19311833e-01 -5.12570590e-02 2.05934539e-01 -1.21260333e+00 -1.33712422e-02 -5.58209062e-01]
[4.087830066680908, 1.7945263385772705]
119816f4-3efa-4894-8a87-a5f59c5a7a3d
do-deep-learning-models-really-outperform
2302.07134
null
https://arxiv.org/abs/2302.07134v3
https://arxiv.org/pdf/2302.07134v3.pdf
Do Deep Learning Models Really Outperform Traditional Approaches in Molecular Docking?
Molecular docking, given a ligand molecule and a ligand binding site (called ``pocket'') on a protein, predicting the binding mode of the protein-ligand complex, is a widely used technique in drug design. Many deep learning models have been developed for molecular docking, while most existing deep learning models perform docking on the whole protein, rather than on a given pocket as the traditional molecular docking approaches, which does not match common needs. What's more, they claim to perform better than traditional molecular docking, but the approach of comparison is not fair, since traditional methods are not designed for docking on the whole protein without a given pocket. In this paper, we design a series of experiments to examine the actual performance of these deep learning models and traditional methods. For a fair comparison, we decompose the docking on the whole protein into two steps, pocket searching and docking on a given pocket, and build pipelines to evaluate traditional methods and deep learning methods respectively. We find that deep learning models are actually good at pocket searching, but traditional methods are better than deep learning models at docking on given pockets. Overall, our work explicitly reveals some potential problems in current deep learning models for molecular docking and provides several suggestions for future works.
['Guolin Ke', 'Hang Zheng', 'Zhifeng Gao', 'Shuqi Lu', 'Yuejiang Yu']
2023-02-14
null
null
null
null
['molecular-docking']
['medical']
[-3.65817696e-01 -2.97885388e-01 -4.13684636e-01 -1.83456138e-01 -7.54580975e-01 -7.60551035e-01 -2.74683554e-02 1.83852434e-01 -3.39643538e-01 1.08245707e+00 -7.25424737e-02 -8.81182313e-01 2.58978784e-01 -6.91041291e-01 -1.06469691e+00 -1.00512660e+00 -1.91583201e-01 6.02103829e-01 1.31158784e-01 -3.22302341e-01 1.87938139e-01 7.70080328e-01 -6.70258939e-01 3.14397961e-01 6.01318538e-01 3.50916356e-01 9.55520272e-02 2.31668323e-01 3.51533890e-02 3.40709507e-01 -5.01521170e-01 -5.28614581e-01 -6.20539933e-02 -3.06080431e-01 -9.17673528e-01 -5.27620137e-01 3.23063463e-01 -2.76729703e-01 -4.38211150e-02 8.54084849e-01 1.04637718e+00 -7.34444633e-02 6.67782605e-01 -5.40926695e-01 -5.12384057e-01 -1.06929243e-01 -3.85248303e-01 1.19952589e-01 5.73252439e-01 2.13018090e-01 1.01173437e+00 -1.15410864e+00 5.81684649e-01 1.01778209e+00 1.17024601e+00 7.47243226e-01 -1.22219336e+00 -8.61750245e-01 -4.47588600e-02 1.21849164e-01 -1.37202585e+00 -1.22258238e-01 2.70741045e-01 -7.19004691e-01 1.27813399e+00 7.67974406e-02 5.58995843e-01 1.18552136e+00 8.99337709e-01 4.03627008e-01 5.16506374e-01 -1.24315955e-01 5.31621277e-01 -3.89741182e-01 -9.94946733e-02 6.70848906e-01 1.40580339e-02 2.41091341e-01 -4.03946847e-01 -8.46112788e-01 8.79757583e-01 3.89455646e-01 -4.17911381e-01 -5.91914415e-01 -9.87277985e-01 1.12281966e+00 7.79176474e-01 1.48991168e-01 -3.83142173e-01 4.36118469e-02 4.21604067e-01 1.65734347e-02 8.36749375e-02 4.85874146e-01 -8.35378826e-01 2.05011636e-01 -5.50717890e-01 7.14228809e-01 8.35266829e-01 3.87742549e-01 7.37736940e-01 -4.24504787e-01 -6.78721517e-02 4.34451103e-01 5.32007694e-01 -2.24426776e-01 3.07342529e-01 -3.17665011e-01 1.41331449e-01 5.27618766e-01 4.23563749e-01 -8.12238574e-01 -7.54381418e-01 -1.68508247e-01 -8.31434250e-01 4.84104514e-01 5.72768867e-01 -3.61579388e-01 -7.96742618e-01 1.58115840e+00 3.12775463e-01 2.07238868e-01 2.15983108e-01 1.00202203e+00 1.07500410e+00 6.60156965e-01 4.46534634e-01 -9.10340250e-02 1.36041355e+00 -1.01070273e+00 -5.05902052e-01 1.30177559e-02 9.26567614e-01 -9.09339130e-01 9.64639544e-01 4.38911051e-01 -7.13374138e-01 -4.12127137e-01 -1.14104295e+00 -1.95554465e-01 -5.33332348e-01 -6.10116031e-03 1.20939147e+00 5.98005295e-01 -8.18696022e-01 8.87161314e-01 -8.20309162e-01 -2.78861612e-01 4.02699649e-01 1.10266781e+00 -5.97975492e-01 6.23370335e-02 -1.35494220e+00 9.77993011e-01 3.55121911e-01 5.41705713e-02 -1.05850482e+00 -5.92821121e-01 -4.67181832e-01 -6.32561669e-02 -8.13161135e-02 -7.13003278e-01 1.23746622e+00 -6.20303094e-01 -1.48902738e+00 7.87340879e-01 -1.68261111e-01 -2.68713057e-01 5.61651066e-02 1.61219221e-02 4.27175239e-02 -4.95326310e-01 -2.13605061e-01 5.84980428e-01 -9.92686898e-02 -8.88849378e-01 -2.68056840e-01 -5.46763301e-01 4.95796382e-01 2.55702078e-01 3.63810718e-01 1.68640777e-01 -3.27981502e-01 -4.50682670e-01 -8.95612687e-02 -9.11844671e-01 -7.67703891e-01 -1.05614811e-01 -4.21371639e-01 -4.30963218e-01 2.67940253e-01 -2.54846007e-01 1.12479436e+00 -1.74616265e+00 2.43307635e-01 2.35958457e-01 5.33625960e-01 4.70889956e-01 -4.43876795e-02 8.45913231e-01 -5.61840713e-01 -3.67343277e-02 1.89962909e-01 1.53007075e-01 -2.10519880e-01 6.32624403e-02 -1.92355081e-01 7.52870083e-01 -2.84337431e-01 9.48380232e-01 -7.19172418e-01 5.38646206e-02 -1.30042851e-01 7.19116688e-01 -8.87807846e-01 1.99029326e-01 -5.62296271e-01 6.22180641e-01 -6.52211726e-01 9.63418841e-01 7.71523058e-01 -3.91008973e-01 6.63615525e-01 -2.59089768e-01 1.00433491e-02 3.82862628e-01 -7.69762278e-01 1.77273083e+00 2.50606507e-01 2.44462371e-01 -2.98058152e-01 -7.35571206e-01 7.53616571e-01 5.46697676e-01 5.15586495e-01 -5.18202960e-01 7.00310245e-02 3.58366460e-01 4.65140224e-01 -1.95403501e-01 -3.07388276e-01 -5.48325360e-01 3.92808229e-01 1.56849653e-01 -1.69437975e-02 6.41224921e-01 -2.37017199e-01 -2.83588618e-01 1.03262126e+00 3.18653524e-01 4.99405205e-01 -2.29055136e-01 4.05154049e-01 2.03677773e-01 4.95719582e-01 2.31474414e-01 -7.08240494e-02 3.17876488e-01 5.72671950e-01 -1.22109306e+00 -7.50569105e-01 -6.11780941e-01 -3.50017428e-01 1.44011521e+00 1.56528801e-01 -7.24742770e-01 -1.03563905e+00 -6.71933591e-01 1.89400658e-01 -2.32271224e-01 -8.35089982e-01 -4.36445475e-02 -3.83281231e-01 -1.44733369e+00 6.18960202e-01 3.52328062e-01 -1.57956064e-01 -1.09226370e+00 -2.54078954e-01 5.37137806e-01 1.14205770e-01 -2.69644767e-01 -3.53103518e-01 8.20094287e-01 -7.64212549e-01 -1.56940556e+00 -8.04520130e-01 -1.00702226e+00 3.39333147e-01 8.28739330e-02 1.09165549e+00 1.49998695e-01 -1.17584608e-01 -5.86284339e-01 -2.89375596e-02 -4.96639132e-01 6.43792152e-02 -2.84258686e-02 2.85275549e-01 -3.94585967e-01 9.98419821e-01 -6.02966785e-01 -8.77481222e-01 4.78322148e-01 -5.85669696e-01 -2.81445324e-01 6.46351874e-01 1.03552616e+00 9.80717242e-01 -3.33036095e-01 2.66766578e-01 -8.36532116e-01 7.81808376e-01 -5.63187957e-01 -5.14437497e-01 2.02369075e-02 -2.69607365e-01 -1.90985929e-02 6.51903152e-01 -4.54541773e-01 -2.95577139e-01 3.96666408e-01 -9.43375647e-01 -1.64771467e-01 -1.94498450e-01 8.90779853e-01 -3.64719123e-01 -6.90845072e-01 9.32909548e-01 2.29629260e-02 -1.08043164e-01 -9.82559502e-01 -1.80943012e-01 3.08075845e-01 5.09577803e-02 -6.35895729e-01 3.53987187e-01 2.27805942e-01 3.85088138e-02 -9.57502574e-02 -6.66944563e-01 -4.98812765e-01 -8.07189107e-01 5.11042714e-01 9.68427062e-01 -9.64733183e-01 -1.47928357e+00 8.42124894e-02 -1.38231063e+00 -4.87537742e-01 5.80706000e-01 5.47229588e-01 -4.84083414e-01 5.02773762e-01 -6.34990871e-01 1.67175494e-02 -3.12779039e-01 -1.73054576e+00 1.18245864e+00 -5.91118373e-02 -1.96999788e-01 -1.38144326e+00 8.54081392e-01 1.74454629e-01 9.45216492e-02 5.03157973e-01 1.20342374e+00 -1.00626636e+00 -4.77413118e-01 -3.61452520e-01 -5.66227622e-02 -1.58478156e-01 1.99117050e-01 -2.57415354e-01 -8.65562618e-01 -5.48607469e-01 -2.45148957e-01 -4.87583399e-01 5.77688813e-01 4.40114886e-01 1.06101704e+00 -2.56175041e-01 -8.35105836e-01 9.93293881e-01 1.40387416e+00 6.88924432e-01 9.95524824e-01 6.58464909e-01 7.11874902e-01 7.86268041e-02 4.57759559e-01 1.88269481e-01 9.95279625e-02 9.44229603e-01 7.13617384e-01 -7.06781089e-01 4.40217346e-01 2.19167788e-02 4.25449342e-01 3.18601131e-02 -4.92561907e-01 -2.59775370e-01 -1.14430428e+00 -2.31569692e-01 -1.78497040e+00 -8.56701910e-01 -7.39257932e-02 2.18291450e+00 1.32829213e+00 -2.76165932e-01 3.07888448e-01 -2.73546070e-01 1.44036800e-01 -4.24256384e-01 -8.36239874e-01 -2.91551918e-01 3.20473015e-02 5.13484299e-01 3.35680991e-01 7.00769484e-01 -1.20687711e+00 1.00930417e+00 7.71239614e+00 8.82580876e-01 -1.46489370e+00 5.95919564e-02 6.63609266e-01 2.10020155e-01 2.62983069e-02 4.89499560e-03 -9.93124723e-01 3.62437487e-01 9.25347090e-01 2.17969567e-01 1.85075670e-01 1.05115438e+00 1.82538047e-01 2.79688507e-01 -1.71201730e+00 1.05792427e+00 -4.29918468e-01 -1.95922458e+00 2.91982263e-01 6.19061947e-01 2.08526596e-01 1.94360152e-01 3.48928198e-02 2.80520469e-01 2.20543474e-01 -1.78297508e+00 4.15596813e-02 2.41970450e-01 4.79865193e-01 -9.37173784e-01 9.90780115e-01 3.70359868e-01 -8.75085533e-01 3.85704994e-01 -7.53526330e-01 -2.19950870e-01 -4.71045375e-01 7.94373304e-02 -8.21659207e-01 3.45985085e-01 6.44998193e-01 6.04395568e-01 -3.77711892e-01 1.13774061e+00 2.33690068e-01 2.77235478e-01 -1.12365987e-02 8.44395310e-02 5.80932379e-01 -2.81854093e-01 -1.43906519e-01 1.34281361e+00 -2.06951484e-01 1.81092173e-01 5.70475280e-01 7.08987415e-01 -2.39046484e-01 4.89406377e-01 -4.08202916e-01 1.63036153e-01 1.90840125e-01 8.93231332e-01 -4.38726723e-01 -4.03245762e-02 -6.46965921e-01 9.26954031e-01 3.71952176e-01 4.39034432e-01 -1.06614077e+00 -3.78156751e-01 1.29237413e+00 1.45197913e-01 -7.12481737e-02 -7.61540234e-02 2.31960475e-01 -1.07724130e+00 -2.62842059e-01 -1.14375615e+00 2.27080271e-01 -4.71815169e-01 -1.27902281e+00 2.93884933e-01 -6.94247186e-01 -9.84274149e-01 3.65772337e-01 -1.23908532e+00 -7.43066847e-01 1.26585495e+00 -1.47282422e+00 -9.35793459e-01 9.18547884e-02 8.10782135e-01 2.14600503e-01 -2.12161675e-01 1.31089520e+00 6.81007206e-01 -7.29506910e-01 7.73973048e-01 6.18026018e-01 1.18323803e-01 9.38178539e-01 -1.16788089e+00 4.38134700e-01 1.12064546e-02 -2.46007934e-01 1.38603628e+00 5.77895403e-01 -6.21357799e-01 -1.66100347e+00 -9.27258432e-01 6.74053013e-01 -8.36169422e-01 4.23211157e-01 -3.11979443e-01 -1.10373926e+00 7.00077236e-01 3.17866765e-02 -1.48267135e-01 1.51050115e+00 2.79110163e-01 -2.56649822e-01 3.65167528e-01 -1.00315166e+00 6.09010279e-01 6.70195282e-01 -3.67960006e-01 -3.51178825e-01 1.04147446e+00 4.34403509e-01 -8.64021778e-01 -1.04922640e+00 3.82834733e-01 7.24935353e-01 -1.12466502e+00 1.40678060e+00 -1.25231814e+00 -1.87606271e-02 -5.81160128e-01 -2.52490461e-01 -9.09646511e-01 -7.23168910e-01 -5.59987307e-01 9.89115164e-02 2.77755529e-01 5.62789142e-01 -3.83425832e-01 1.35627460e+00 3.02861959e-01 -1.52085945e-01 -1.30344558e+00 -9.78446543e-01 -5.47869980e-01 6.27720535e-01 5.55586442e-02 6.66179240e-01 1.12298477e+00 1.24576323e-01 7.49166667e-01 -2.52542883e-01 2.97650605e-01 2.06958517e-01 -2.58706789e-02 9.51063097e-01 -1.43788111e+00 -4.01790440e-01 -3.59003037e-01 -3.58016968e-01 -1.10411620e+00 9.44566280e-02 -8.46215308e-01 -3.81394058e-01 -1.49213111e+00 5.72930038e-01 -2.34229952e-01 -3.67079705e-01 9.10389602e-01 -3.55607904e-02 2.77712971e-01 -4.94664907e-01 5.30650795e-01 -4.64890391e-01 3.25868666e-01 1.35092592e+00 -2.30595946e-01 -3.38673413e-01 9.50676650e-02 -7.14455605e-01 8.16336215e-01 5.22084296e-01 -3.89911205e-01 2.11767401e-04 -3.34690139e-02 4.83973980e-01 -1.89461827e-01 2.01901659e-01 -7.08410025e-01 8.00908506e-02 -4.05155540e-01 7.29974449e-01 -3.33504587e-01 2.46809468e-01 -6.95204496e-01 2.92712659e-01 6.36439085e-01 2.74852246e-01 -3.81372273e-02 4.12110150e-01 4.85967278e-01 -1.37056500e-01 1.52947977e-01 8.74130189e-01 -2.76632190e-01 -4.81103748e-01 6.54956639e-01 -4.95438844e-01 -5.50813854e-01 8.56656134e-01 -6.16227210e-01 1.50565699e-01 2.16659948e-01 -1.24302161e+00 -7.29592051e-03 7.78625846e-01 -1.10686503e-01 5.05369365e-01 -1.26979017e+00 -1.54794037e-01 1.89697482e-02 9.19770002e-02 -4.35463078e-02 -2.04812974e-01 6.80250585e-01 -1.09788275e+00 8.70857179e-01 -2.49363109e-01 -3.61975402e-01 -1.36681092e+00 7.62728691e-01 1.08098388e+00 -1.91463023e-01 -1.91401049e-01 1.01248729e+00 8.22184026e-01 -6.55788660e-01 6.56765640e-01 -4.21875745e-01 -2.41509989e-01 -1.57825828e-01 5.85250914e-01 -1.89936429e-01 4.18248504e-01 -4.67518806e-01 -6.60626531e-01 7.32372284e-01 -3.40534627e-01 8.86673093e-01 1.28907645e+00 5.51342487e-01 -3.60480934e-01 -2.19312340e-01 1.04688442e+00 -3.39715704e-02 -1.03732598e+00 -1.50519637e-02 3.77570689e-02 -1.10818908e-01 -1.68730184e-01 -1.04873788e+00 -7.28269339e-01 1.04821551e+00 8.72525096e-01 -4.73082572e-01 6.33445024e-01 -8.23457912e-02 8.01052451e-01 1.00071895e+00 4.63449389e-01 -3.11617583e-01 1.17156170e-01 6.65402114e-01 7.30070055e-01 -1.30312169e+00 3.35892886e-02 -1.85857192e-01 -2.49719843e-01 1.46634436e+00 6.70677662e-01 3.22082005e-02 5.80584049e-01 5.62627167e-02 1.13757104e-01 -6.33345246e-01 -5.37847459e-01 3.57205197e-02 2.68888056e-01 6.62497222e-01 1.18838704e+00 -2.39263713e-01 -1.43644243e-01 9.86546636e-01 1.23539954e-01 1.98413432e-01 -3.42116877e-03 8.72899652e-01 -6.44375741e-01 -1.70985794e+00 -5.75829685e-01 -2.79628336e-01 -7.98896313e-01 -3.49470019e-01 -9.55074787e-01 6.86577260e-01 5.02923906e-01 4.21630144e-01 -3.64481509e-01 -3.82291555e-01 4.61366594e-01 6.32889867e-02 5.75270176e-01 -8.45111012e-01 -7.22390115e-01 3.04592252e-01 -3.87048006e-01 -5.82191169e-01 -1.94110811e-01 -7.72010861e-03 -1.46609724e+00 -6.66178286e-01 -4.88419473e-01 6.52524352e-01 3.97584409e-01 9.24071789e-01 6.43082082e-01 1.46203205e-01 2.20937744e-01 -1.39522624e+00 -2.27702767e-01 -6.05663896e-01 -5.63504398e-01 -1.74482003e-01 5.87849975e-01 -8.40736866e-01 1.34330556e-01 6.76881243e-03]
[4.916896343231201, 5.6805620193481445]
c5024753-d946-4ebe-b729-3dbcff4b6e32
fr-net-a-light-weight-fft-residual-net-for
2305.11875
null
https://arxiv.org/abs/2305.11875v1
https://arxiv.org/pdf/2305.11875v1.pdf
FR-Net:A Light-weight FFT Residual Net For Gaze Estimation
Gaze estimation is a crucial task in computer vision, however, existing methods suffer from high computational costs, which limit their practical deployment in resource-limited environments. In this paper, we propose a novel lightweight model, FR-Net, for accurate gaze angle estimation while significantly reducing computational complexity. FR-Net utilizes the Fast Fourier Transform (FFT) to extract gaze-relevant features in frequency domains while reducing the number of parameters. Additionally, we introduce a shortcut component that focuses on the spatial domain to further improve the accuracy of our model. Our experimental results demonstrate that our approach achieves substantially lower gaze error angles (3.86 on MPII and 4.51 on EYEDIAP) compared to state-of-the-art gaze estimation methods, while utilizing 17 times fewer parameters (0.67M) and only 12\% of FLOPs (0.22B). Furthermore, our method outperforms existing lightweight methods in terms of accuracy and efficiency for the gaze estimation task. These results suggest that our proposed approach has significant potential applications in areas such as human-computer interaction and driver assistance systems.
['Di Huang', 'Yun Zhou', 'Ruilong Fan', 'Bo Wu', 'Tao Xu']
2023-05-04
null
null
null
null
['gaze-estimation']
['computer-vision']
[ 1.12278700e-01 -2.31358469e-01 1.91327259e-02 -4.39402461e-01 -2.43160620e-01 -2.06103697e-01 3.83422971e-02 -1.86520040e-01 -7.25301027e-01 4.26440954e-01 -3.69387537e-01 -4.90206689e-01 -7.61883482e-02 -1.98019594e-01 -4.65753406e-01 -6.56827152e-01 2.96376854e-01 -5.05998552e-01 4.78289187e-01 -8.50124508e-02 7.61005282e-01 3.32400143e-01 -2.23958468e+00 -4.72678035e-01 1.19885242e+00 1.29162025e+00 3.32783937e-01 5.58708787e-01 2.74096638e-01 4.41165686e-01 -6.81426883e-01 -1.27468228e-01 -3.54327494e-03 -1.26697868e-01 -3.45261425e-01 -2.51013070e-01 7.77738392e-01 -5.28233171e-01 2.17512064e-02 1.01241100e+00 5.96483827e-01 2.17939109e-01 3.22842687e-01 -1.46107650e+00 -3.57273757e-01 -3.73680741e-01 -1.23728955e+00 3.01360250e-01 4.47174162e-01 1.99222818e-01 4.89280909e-01 -9.01268721e-01 8.75351503e-02 9.21466470e-01 7.37008333e-01 2.65976459e-01 -7.82786250e-01 -1.10272884e+00 1.26393706e-01 5.96796930e-01 -1.47708213e+00 -7.06422806e-01 4.76598710e-01 -2.82968789e-01 8.55739236e-01 2.70601749e-01 4.81442809e-01 3.88542086e-01 2.64428884e-01 5.53440690e-01 1.26170111e+00 -5.11262238e-01 -9.12638605e-02 6.12011142e-02 4.12421495e-01 7.44595349e-01 3.75224203e-01 -3.43758687e-02 -9.92893636e-01 1.17960975e-01 5.88661373e-01 3.45213003e-02 -5.60181201e-01 -5.40668741e-02 -1.07251525e+00 6.78604960e-01 4.59187984e-01 -2.28290200e-01 -2.92269737e-01 1.22863743e-02 -1.47572509e-05 1.67314392e-02 5.02485752e-01 1.70488760e-01 -1.32254168e-01 -7.04873145e-01 -7.93453991e-01 3.10375839e-01 4.70590204e-01 1.22908616e+00 8.03888679e-01 -2.96495169e-01 3.30971479e-02 7.99811482e-01 6.10809326e-01 9.69872594e-01 2.97729254e-01 -9.95486140e-01 3.24409723e-01 5.13143241e-01 3.58570397e-01 -1.06146896e+00 -6.51167393e-01 -8.81564990e-02 -3.42510015e-01 3.04665864e-01 4.92235839e-01 -2.80247092e-01 -6.17004097e-01 1.49919808e+00 5.43804526e-01 1.45569369e-01 -4.34795409e-01 1.14250827e+00 6.84076130e-01 3.56934547e-01 -8.23155493e-02 -3.47008705e-01 1.60665429e+00 -1.00258183e+00 -9.57670331e-01 -1.87823147e-01 5.00350118e-01 -1.17771411e+00 1.24623084e+00 4.64867264e-01 -1.05727339e+00 -5.24450839e-01 -1.08192241e+00 -2.13795573e-01 6.09040149e-02 3.89748931e-01 5.97942293e-01 9.74821031e-01 -1.18884182e+00 2.78487802e-02 -7.16493189e-01 -4.53987211e-01 2.73069739e-01 6.90437496e-01 1.16395913e-01 1.61727980e-01 -6.37585282e-01 7.61373818e-01 -1.75637290e-01 1.68846697e-01 9.39155370e-02 -6.54866755e-01 -9.19370472e-01 2.01509833e-01 4.65627879e-01 -3.60373646e-01 1.44701862e+00 -6.01405144e-01 -1.83765912e+00 4.13292289e-01 -1.04875565e+00 -2.07455426e-01 1.04416065e-01 -5.49897015e-01 -4.45847958e-01 1.87028363e-01 -1.50079057e-01 6.67760074e-01 1.00401127e+00 -7.88331568e-01 -1.18159056e+00 -4.33442414e-01 3.43014836e-01 3.89821500e-01 -5.70352495e-01 2.70177752e-01 -5.85528135e-01 -1.48863435e-01 -1.76188105e-03 -1.18445015e+00 2.59713054e-01 2.04460800e-01 -1.09152749e-01 -4.57988977e-01 1.04118621e+00 -2.98784465e-01 1.67083216e+00 -2.20019746e+00 -3.92229915e-01 9.49332267e-02 6.14603043e-01 4.87143993e-01 2.33325064e-01 1.38811348e-02 3.32438916e-01 -2.44403809e-01 2.17665419e-01 -4.25588310e-01 -1.29918590e-01 -3.51793319e-01 9.51341838e-02 6.09501183e-01 -4.83995769e-03 6.29704475e-01 -6.58055365e-01 -4.24722284e-01 3.72051328e-01 6.64947927e-01 -4.78590965e-01 1.39183521e-01 4.49145764e-01 2.24945366e-01 -2.60119408e-01 4.70493138e-01 1.01699722e+00 -3.19609076e-01 -1.51544556e-01 -2.32639685e-01 -6.40919745e-01 2.55425394e-01 -9.58963752e-01 1.37470388e+00 -4.75649655e-01 1.19045484e+00 -1.52522013e-01 -3.45447063e-01 7.13459849e-01 -1.39396071e-01 1.24347538e-01 -9.07974601e-01 5.45120716e-01 1.24467462e-01 1.56143218e-01 -6.27018809e-01 7.94964373e-01 4.71525669e-01 3.60374600e-01 5.93423545e-01 -3.19977641e-01 3.99521112e-01 3.06118280e-01 -1.74184233e-01 6.82271481e-01 9.03219283e-02 3.42432588e-01 -2.87011266e-01 6.64648235e-01 -4.49097514e-01 2.81381398e-01 2.73060352e-01 -6.42899096e-01 3.01699996e-01 3.43203902e-01 -1.74084291e-01 -4.78985786e-01 -4.49843466e-01 -1.84909508e-01 1.21651125e+00 6.71710372e-01 -5.38466871e-01 -1.21336257e+00 -3.59820873e-01 -1.54663011e-01 5.61246157e-01 -4.76113528e-01 7.76698962e-02 -5.37527263e-01 -3.93400162e-01 2.48130977e-01 4.45785820e-01 5.44896841e-01 -7.15813398e-01 -1.33555532e+00 -3.67538244e-01 -2.39853755e-01 -1.08465004e+00 -8.56089413e-01 -6.55689895e-01 -6.44693255e-01 -1.21196139e+00 -6.59720123e-01 -6.91995859e-01 8.51521552e-01 1.12631834e+00 5.78421474e-01 1.90308899e-01 -1.19713224e-01 1.70285061e-01 -1.50473759e-01 -8.71007562e-01 4.59179342e-01 1.99903503e-01 2.49221489e-01 9.28364173e-02 1.05180645e+00 -1.42954528e-01 -1.11279917e+00 7.19458520e-01 -1.92358613e-01 1.46969678e-02 5.80758631e-01 6.56149328e-01 2.68893033e-01 -2.48561963e-01 3.12231153e-01 -6.64859712e-01 6.58828914e-01 -1.16201535e-01 -1.00547230e+00 1.13392202e-02 -1.03240585e+00 -1.17642231e-01 2.34004110e-01 -4.79454100e-01 -1.26879966e+00 -2.99050361e-01 1.53021127e-01 -2.18398198e-01 -7.38012195e-02 2.03423023e-01 2.87342519e-01 -6.12032890e-01 6.91999376e-01 -9.40309018e-02 3.48525107e-01 -2.93991625e-01 -5.46153896e-02 1.02383733e+00 3.20621312e-01 2.83973888e-02 5.60874343e-01 3.45710903e-01 9.51986536e-02 -1.03803277e+00 -7.44561553e-01 -7.41424739e-01 -3.08355600e-01 -3.29663664e-01 5.92621684e-01 -8.70075107e-01 -1.69264376e+00 6.78788126e-01 -9.11623776e-01 1.08292557e-01 4.48983520e-01 8.14391375e-01 -3.06845039e-01 3.53292048e-01 -1.95267960e-01 -9.97619092e-01 -5.95761895e-01 -1.27619410e+00 1.08747220e+00 8.04024518e-01 -2.05010772e-01 -5.42008817e-01 -3.48845154e-01 4.88622457e-01 5.81324399e-01 -2.13485539e-01 2.98886776e-01 1.55231103e-01 -6.03472352e-01 8.47142539e-04 -7.15604067e-01 -6.14389731e-03 1.80737451e-01 2.56385505e-02 -1.21631658e+00 -4.66372162e-01 1.71816081e-03 -8.13949853e-02 3.40215564e-01 6.45229042e-01 1.20173967e+00 1.33832060e-02 -4.77122396e-01 8.68685186e-01 1.13008213e+00 2.78631955e-01 4.74668473e-01 4.45592672e-01 6.92011178e-01 6.16248131e-01 1.14941823e+00 6.04178309e-01 7.40667164e-01 6.58019602e-01 3.53059679e-01 -9.45875272e-02 -1.50016388e-02 1.56035498e-01 1.64860457e-01 5.69783032e-01 -4.74354714e-01 -2.72245616e-01 -9.31649864e-01 4.00869489e-01 -1.76454282e+00 -6.75023139e-01 -4.09029573e-01 2.37340117e+00 6.38352513e-01 1.21265002e-01 3.03070694e-01 1.43957332e-01 6.48251772e-01 -1.01082727e-01 -7.14169085e-01 -2.68279403e-01 6.05997443e-01 2.31995836e-01 6.43217504e-01 3.56926858e-01 -8.73681962e-01 6.37897551e-01 6.47389078e+00 5.10977387e-01 -1.39828634e+00 -1.17546823e-02 9.83523130e-02 -4.89345968e-01 2.99189985e-01 -3.57081771e-01 -1.18160021e+00 7.39459336e-01 1.12578237e+00 -1.84963331e-01 4.89080817e-01 7.04532504e-01 3.21246237e-01 -5.85754693e-01 -8.40610623e-01 1.45456982e+00 3.83495957e-01 -8.10192049e-01 -6.62282884e-01 2.81566560e-01 2.50175416e-01 -6.89874664e-02 3.77336532e-01 -4.87487130e-02 -4.37199950e-01 -8.91396344e-01 5.03555536e-01 4.02576298e-01 1.08850241e+00 -1.00268888e+00 7.72138834e-01 2.40812629e-01 -1.13728929e+00 1.63223520e-02 -2.82994568e-01 -3.92341763e-01 -9.54195857e-03 2.18328208e-01 -8.18893135e-01 1.49325669e-01 1.01173198e+00 5.72077334e-01 -6.02635026e-01 1.04563498e+00 -7.87044764e-02 5.10026276e-01 -4.71095890e-01 -3.79380375e-01 -4.90916781e-02 -2.58311573e-02 2.91600406e-01 7.38712907e-01 4.81527895e-01 2.08724648e-01 -3.27988178e-01 4.75865662e-01 2.21706759e-02 -6.53974190e-02 -1.83630481e-01 3.69695485e-01 7.76589632e-01 1.26401579e+00 -4.13662940e-01 3.44189443e-02 -6.67420447e-01 6.20547593e-01 2.80361563e-01 4.80282426e-01 -1.07730210e+00 -9.86570477e-01 9.58290935e-01 2.22102776e-01 4.39491630e-01 -2.48161048e-01 -3.73720139e-01 -8.82105112e-01 3.16145957e-01 -6.24824524e-01 -1.82931304e-01 -8.50514889e-01 -6.10903203e-01 6.52930796e-01 -9.47690308e-02 -1.51657164e+00 -2.95798987e-01 -7.36386418e-01 -3.54503214e-01 1.11791062e+00 -1.98928201e+00 -1.03337252e+00 -1.01726580e+00 6.66803062e-01 4.17836547e-01 7.06978841e-03 5.36676884e-01 2.57040054e-01 -7.98074007e-01 1.15960419e+00 -8.15331656e-03 -3.64816129e-01 1.11656535e+00 -8.96962881e-01 4.44282144e-01 8.87666702e-01 -4.02991414e-01 1.07096612e+00 5.98000944e-01 -2.81930957e-02 -1.35740387e+00 -5.30254424e-01 1.04245234e+00 -2.77061075e-01 3.78757179e-01 -1.98351592e-01 -7.40141988e-01 3.16684902e-01 2.64916629e-01 -4.10674661e-02 8.20591986e-01 3.70403528e-01 -9.52173844e-02 -2.76566505e-01 -9.60998118e-01 7.13365853e-01 9.88797545e-01 -3.77957046e-01 -2.28635207e-01 -6.29372299e-02 4.22855794e-01 -7.89832711e-01 -7.17511833e-01 1.03645749e-01 1.01169872e+00 -1.29516840e+00 6.61909819e-01 1.86618045e-01 -5.16527519e-02 -4.70063120e-01 3.92142147e-01 -9.29384947e-01 -2.85368443e-01 -8.83492291e-01 -4.75125223e-01 9.11285341e-01 9.47642103e-02 -1.16930497e+00 5.25435448e-01 7.26524830e-01 1.32714793e-01 -9.67258751e-01 -5.30291498e-01 -4.47195709e-01 -6.90060079e-01 -3.59315485e-01 7.05880642e-01 4.40139383e-01 7.78823942e-02 3.60223800e-01 -2.22539485e-01 1.69447258e-01 6.63486362e-01 6.40897686e-03 1.09514177e+00 -1.31066895e+00 2.10897133e-01 -3.56369317e-01 -5.59898674e-01 -1.47439325e+00 -7.64139444e-02 1.39208645e-01 1.88851617e-02 -1.01922631e+00 3.14667001e-02 -4.48497593e-01 -3.78664106e-01 3.33388925e-01 -5.60550570e-01 4.76848602e-01 2.03026742e-01 4.07815099e-01 -4.78744805e-01 3.18023235e-01 1.08002198e+00 3.81426781e-01 -2.19686702e-01 1.74584359e-01 -8.25933397e-01 8.96787763e-01 7.33248591e-01 -2.52790034e-01 -7.32487857e-01 -5.73244333e-01 1.19715936e-01 -3.50105762e-01 2.00457156e-01 -1.03341568e+00 5.24185300e-01 -1.71506688e-01 1.76176399e-01 -7.51961768e-01 4.47935671e-01 -6.76810622e-01 -3.91807407e-01 1.43132910e-01 1.80050686e-01 2.09360659e-01 5.05312085e-01 4.44147021e-01 -8.28388110e-02 -1.53953373e-01 7.29130507e-01 7.48307765e-01 -7.33355522e-01 1.61829099e-01 -1.43943265e-01 -1.50174975e-01 1.29249549e+00 -5.79456747e-01 -7.29656577e-01 -2.78287679e-01 1.13173183e-02 1.99416146e-01 7.46024311e-01 3.32002938e-01 6.06632113e-01 -9.58926916e-01 -1.75690591e-01 5.47086298e-01 2.33676836e-01 -2.43289564e-02 2.61229604e-01 1.29425442e+00 -7.08415449e-01 7.56198347e-01 -2.95249581e-01 -9.78825688e-01 -1.75770450e+00 2.44219363e-01 -7.58098811e-02 3.41328532e-01 -3.34746271e-01 9.21516359e-01 3.75032783e-01 2.64025807e-01 2.56065458e-01 -4.30621386e-01 -4.85883772e-01 -2.80357525e-02 9.51007307e-01 7.50755370e-01 9.47494581e-02 -7.64563084e-01 -5.06066859e-01 9.83413279e-01 -2.45391950e-01 1.72459409e-01 9.82307613e-01 -6.32040501e-01 3.18982303e-02 1.90620691e-01 9.55449700e-01 2.27561638e-01 -1.44750893e+00 -1.58880770e-01 -3.19028497e-01 -8.49031746e-01 3.41948837e-01 -4.75212991e-01 -7.48931110e-01 9.05450165e-01 9.19443369e-01 -1.59590654e-02 1.59527612e+00 -4.38416421e-01 9.57198799e-01 3.85615706e-01 3.72772276e-01 -9.69075799e-01 -3.04931849e-01 3.13539177e-01 4.25389409e-01 -1.51881313e+00 2.44802594e-01 -7.30653286e-01 -4.99827653e-01 9.69298601e-01 8.73048067e-01 1.85554773e-01 6.58173442e-01 -3.41571565e-03 3.26241910e-01 -2.35472709e-01 -5.13387620e-01 -3.28552544e-01 6.56259775e-01 5.92144668e-01 5.78447223e-01 -2.56175935e-01 -4.55254048e-01 1.46668583e-01 -4.14618284e-01 1.37709484e-01 4.05673057e-01 1.08597040e+00 -4.22726631e-01 -7.05278158e-01 -4.60202187e-01 4.33041751e-01 -4.45702314e-01 -9.56428051e-02 2.05078110e-01 7.60547400e-01 -6.60308152e-02 1.33274913e+00 2.59152889e-01 -4.31059092e-01 3.89375091e-01 -1.65071443e-01 4.64808077e-01 -3.00715566e-01 -2.56815106e-01 6.93470612e-02 -1.43073618e-01 -9.15793777e-01 -8.99022639e-01 -5.52224815e-01 -9.42365348e-01 -8.23007822e-01 -7.65081167e-01 -2.58061588e-01 8.34874272e-01 7.21225321e-01 9.54117537e-01 5.14059663e-01 5.69569886e-01 -9.01532829e-01 -1.67678133e-01 -1.11246085e+00 -3.01316470e-01 7.09696487e-02 5.90994418e-01 -1.28592658e+00 -2.51827657e-01 1.99839547e-01]
[14.110392570495605, 0.10402733832597733]
3d9127c9-8c82-42d0-b293-5491946fa71a
milestones-in-autonomous-driving-and-2
2306.0198
null
https://arxiv.org/abs/2306.01980v1
https://arxiv.org/pdf/2306.01980v1.pdf
Milestones in Autonomous Driving and Intelligent Vehicles Part II: Perception and Planning
Growing interest in autonomous driving (AD) and intelligent vehicles (IVs) is fueled by their promise for enhanced safety, efficiency, and economic benefits. While previous surveys have captured progress in this field, a comprehensive and forward-looking summary is needed. Our work fills this gap through three distinct articles. The first part, a "Survey of Surveys" (SoS), outlines the history, surveys, ethics, and future directions of AD and IV technologies. The second part, "Milestones in Autonomous Driving and Intelligent Vehicles Part I: Control, Computing System Design, Communication, HD Map, Testing, and Human Behaviors" delves into the development of control, computing system, communication, HD map, testing, and human behaviors in IVs. This part, the third part, reviews perception and planning in the context of IVs. Aiming to provide a comprehensive overview of the latest advancements in AD and IVs, this work caters to both newcomers and seasoned researchers. By integrating the SoS and Part I, we offer unique insights and strive to serve as a bridge between past achievements and future possibilities in this dynamic field.
['Fei-Yue Wang', 'Nanning Zheng', 'Dongpu Cao', 'Jinjun Wang', 'Zixuan Li', 'Yuchen Li', 'Xiaoxiang Na', 'Bai Li', 'Siyu Teng', 'Long Chen']
2023-06-03
null
null
null
null
['ethics']
['miscellaneous']
[-1.18053183e-01 1.82953939e-01 -4.06474710e-01 -5.36268413e-01 -2.45540235e-02 -4.99406427e-01 6.43296599e-01 -1.00734644e-02 -2.75981098e-01 4.03334081e-01 -1.48315921e-01 -8.38853598e-01 1.54087916e-01 -8.09864163e-01 -6.29117310e-01 -3.21641505e-01 8.86290297e-02 6.16054647e-02 4.56428587e-01 -6.81317985e-01 3.12545151e-01 6.77994192e-01 -2.23053765e+00 -2.80503273e-01 8.48470449e-01 9.88385558e-01 3.39047283e-01 4.72256392e-01 2.88353026e-01 7.98379481e-01 -3.41976970e-01 -4.71181050e-02 -7.56838964e-03 -1.75551468e-04 -5.50630629e-01 -1.03432097e-01 9.78227630e-02 -5.41130841e-01 -5.91462255e-01 5.60031056e-01 3.03748369e-01 -6.45326748e-02 3.19903374e-01 -2.21580720e+00 -3.84627759e-01 -9.47079882e-02 -2.01969873e-02 -1.02750435e-01 1.69077456e-01 5.34815133e-01 4.02850956e-01 -5.45332253e-01 4.92519349e-01 9.65688109e-01 6.27117455e-01 7.65528738e-01 -7.50787199e-01 -8.22355211e-01 2.24951953e-01 6.09513938e-01 -1.23741555e+00 -7.29781687e-01 3.80234540e-01 -7.30208874e-01 1.03120983e+00 9.79507864e-02 9.12741005e-01 9.04456913e-01 5.14457822e-01 1.02959406e+00 7.82826960e-01 -1.92444205e-01 5.17482638e-01 7.94759035e-01 5.12822986e-01 3.36193979e-01 4.47846919e-01 5.42345941e-01 -3.43297631e-01 2.52302408e-01 -1.14640228e-01 -3.50862890e-01 2.92885393e-01 -4.75985050e-01 -8.44832242e-01 7.55657434e-01 -6.97675049e-02 -3.83792892e-02 -2.97092915e-01 1.39422879e-01 5.71255147e-01 1.13483272e-01 -9.33707133e-02 -6.66763335e-02 -1.20968595e-01 -5.34988821e-01 -2.34135821e-01 5.23107052e-01 7.43616939e-01 1.18815601e+00 8.24246585e-01 2.37327501e-01 1.16656549e-01 6.08473957e-01 6.25943542e-01 9.86772180e-01 -7.54258931e-02 -1.33038247e+00 8.29985589e-02 4.19455349e-01 3.87996197e-01 -9.42767262e-01 -6.27190769e-01 7.47350045e-03 -3.68128419e-01 7.32304871e-01 -3.60723972e-01 -5.77277064e-01 -5.85332215e-01 1.41169298e+00 1.80559695e-01 -4.93224740e-01 1.73212424e-01 6.30301774e-01 8.60920846e-01 5.91878533e-01 1.52827114e-01 -5.21087162e-02 1.25631738e+00 -8.82622600e-01 -9.00415599e-01 -4.85838145e-01 3.88305932e-01 -3.81288797e-01 7.88369596e-01 1.24489002e-01 -8.99183571e-01 -8.19867194e-01 -1.57069385e+00 3.16450261e-02 -6.60193861e-01 -2.25768492e-01 4.62118536e-01 9.28639233e-01 -1.34900546e+00 -3.99704091e-02 -8.15242708e-01 -7.68839836e-01 1.78003192e-01 2.38153800e-01 -4.39523943e-02 -1.28850982e-01 -1.31409609e+00 1.47511184e+00 -1.78864494e-01 -2.66652584e-01 -6.76503479e-01 -5.20452917e-01 -1.00424409e+00 -5.88261127e-01 3.24538112e-01 -5.67351222e-01 1.53373265e+00 -3.14683579e-02 -1.52626014e+00 7.08264351e-01 -3.69931102e-01 -4.82310891e-01 2.24041343e-01 2.38918653e-03 -8.85079563e-01 -4.47076485e-02 5.10922313e-01 9.46095943e-01 4.94111851e-02 -1.30791652e+00 -1.37537205e+00 -4.21518743e-01 -1.16885386e-01 1.36378169e-01 2.20161855e-01 1.29387006e-01 -2.88151085e-01 4.40200239e-01 -3.43690276e-01 -9.84573781e-01 -2.28992075e-01 1.82656962e-02 6.07835054e-02 -4.09657478e-01 1.31527317e+00 5.34888916e-02 1.11385036e+00 -2.47916770e+00 -6.53549135e-01 3.03247850e-02 1.88539419e-02 5.77721238e-01 2.79122710e-01 9.05432820e-01 5.86083174e-01 -2.20746174e-01 2.35728219e-01 8.54955614e-03 5.25955319e-01 5.89650929e-01 -3.09874713e-01 3.51614416e-01 9.57866013e-03 7.77143538e-01 -8.24761271e-01 -9.06931907e-02 1.06933546e+00 3.03008020e-01 -4.30441834e-02 -1.04816288e-01 1.12621814e-01 3.17380935e-01 -3.51193368e-01 5.34553587e-01 7.14628816e-01 3.42220545e-01 -1.48413152e-01 8.22665170e-02 -1.04856551e+00 9.91740450e-02 -8.15011561e-01 8.82897794e-01 -1.78675041e-01 1.10577106e+00 3.26975971e-01 -8.65514755e-01 9.80787992e-01 2.58999169e-01 4.37204599e-01 -1.37054157e+00 1.56493396e-01 4.89070833e-01 -3.06986839e-01 -9.35451806e-01 7.37319231e-01 2.37695247e-01 -1.57379523e-01 -5.99554516e-02 -5.61548591e-01 -3.54490370e-01 3.36256295e-01 5.04514500e-02 9.30606067e-01 2.40259040e-02 7.52409101e-02 -1.90820411e-01 5.80420375e-01 3.69048685e-01 4.08742309e-01 6.63482010e-01 -9.51573491e-01 -2.39212513e-01 3.48685384e-01 -4.98894066e-01 -8.28690112e-01 -1.02232683e+00 -3.74150068e-01 8.80205274e-01 8.42907012e-01 -3.13820362e-01 -7.16582060e-01 -1.77333966e-01 4.32281762e-01 1.14105093e+00 -4.11336005e-01 -1.03400253e-01 -1.97476372e-01 -2.75142670e-01 5.56697547e-01 7.83822656e-01 8.65919352e-01 -7.56782830e-01 -8.99953544e-01 8.32333043e-02 -1.62059516e-01 -1.41282570e+00 2.65769601e-01 -1.19626209e-01 -2.55928338e-01 -1.00723135e+00 8.09893385e-03 -8.45539212e-01 1.17292926e-01 7.62163639e-01 5.41564703e-01 -1.25515729e-01 -7.18337893e-02 7.43633330e-01 -1.41906634e-01 -9.78655040e-01 -4.89827216e-01 -2.73368627e-01 2.99667478e-01 -3.66941512e-01 7.66817749e-01 -3.28051686e-01 -6.35167003e-01 7.06510067e-01 -2.97401041e-01 -5.97596318e-02 5.14309287e-01 2.44501710e-01 2.60195792e-01 -7.36571699e-02 6.42063737e-01 -3.61336738e-01 2.93641299e-01 -7.02145934e-01 -7.05581725e-01 -2.27576464e-01 -1.20096231e+00 -5.01383781e-01 2.55844533e-01 4.99707013e-01 -7.11837769e-01 -9.39473435e-02 -3.74478728e-01 3.50254983e-01 -7.09153593e-01 -1.30230337e-02 -1.75768524e-01 -2.64716089e-01 5.85360944e-01 7.48166293e-02 6.92246556e-01 -1.36946393e-02 2.40196332e-01 1.25884175e+00 6.28688753e-01 -2.06355259e-01 5.59106350e-01 5.42479396e-01 2.31473148e-02 -1.07035697e+00 -1.93054199e-01 -6.01910830e-01 -1.98734611e-01 -7.49604821e-01 8.30256164e-01 -7.87582934e-01 -1.17934763e+00 5.85158527e-01 -8.76431048e-01 -4.56722647e-01 -2.08895355e-01 6.77621722e-01 -6.14754975e-01 9.81277749e-02 -2.75718808e-01 -1.09770679e+00 1.13261454e-01 -1.58210182e+00 1.01030338e+00 3.67569685e-01 -2.47755393e-01 -7.47785807e-01 6.25126157e-03 6.56007469e-01 6.52673483e-01 3.01951110e-01 5.06016195e-01 -6.58416823e-02 -5.19509614e-01 -4.50977027e-01 -3.05746347e-01 3.26941043e-01 -2.92401344e-01 3.05445522e-01 -1.06577086e+00 4.79289740e-02 -3.27376157e-01 -3.52739356e-02 2.70015001e-01 3.68703783e-01 5.21788359e-01 7.90104046e-02 -7.39277422e-01 1.14506662e-01 1.14604485e+00 1.10362256e+00 6.69867992e-01 7.52263546e-01 1.15886219e-01 8.34129155e-01 1.17424965e+00 3.11421514e-01 1.15476573e+00 6.17297173e-01 6.47273242e-01 -4.14307788e-02 -1.60449475e-01 -2.17980221e-01 3.84423792e-01 5.44197142e-01 3.91581170e-02 -1.35739595e-01 -9.78925586e-01 7.15292931e-01 -1.71399927e+00 -8.25629592e-01 -4.74491358e-01 1.93963480e+00 -6.35411143e-02 1.44729048e-01 3.40713948e-01 2.22171843e-01 7.08998203e-01 -8.80545750e-02 -6.92853808e-01 -7.32884884e-01 2.84682572e-01 -3.75693440e-01 7.15440273e-01 5.19956827e-01 -8.02305043e-01 6.94501758e-01 7.76255465e+00 3.88419360e-01 -1.11532605e+00 -1.16474576e-01 3.48731399e-01 3.46677363e-01 -2.82024801e-01 5.40856346e-02 -1.08982635e+00 4.71227735e-01 1.25761747e+00 -2.46737584e-01 1.34680480e-01 1.05142355e+00 7.67597139e-01 -4.88690108e-01 -8.68904889e-01 6.43413126e-01 -9.85776484e-02 -1.28378689e+00 -4.55602139e-01 1.81329280e-01 5.03564596e-01 4.83652085e-01 1.71466768e-01 5.86930275e-01 2.00838760e-01 -7.21302927e-01 1.13885498e+00 1.96248457e-01 7.56822824e-01 -8.50558579e-01 8.89790416e-01 1.31880194e-01 -1.06008101e+00 -3.53090674e-01 -6.98935017e-02 -5.52293718e-01 3.63217860e-01 1.94411844e-01 -5.63497841e-01 3.76953065e-01 8.37366045e-01 4.28758204e-01 -8.73064250e-02 8.74079525e-01 6.38495535e-02 2.75664747e-01 -5.83970584e-02 -5.43379903e-01 3.39527220e-01 -7.13820755e-02 4.97505248e-01 1.20383108e+00 -2.14285463e-01 1.10958628e-01 1.96966350e-01 5.16048253e-01 6.99872136e-01 -2.70755380e-01 -9.46762323e-01 1.01570385e-02 7.31345534e-01 1.09307206e+00 -1.77236065e-01 -3.65268409e-01 -7.51811445e-01 7.67598897e-02 -3.32088411e-01 3.00523549e-01 -8.90967429e-01 -7.78653860e-01 1.11353970e+00 5.19168079e-01 -1.22936472e-01 -6.03909135e-01 -8.10203969e-01 -1.56039402e-01 -6.96145520e-02 -4.33623284e-01 -1.74131989e-01 -7.68150449e-01 -3.60946536e-01 3.22801411e-01 4.13190067e-01 -1.21682405e+00 -3.08632493e-01 -5.91507614e-01 -3.90603244e-01 3.45803648e-01 -1.68439972e+00 -1.00272882e+00 -8.12493920e-01 1.08330362e-01 4.40815270e-01 -2.66434193e-01 5.05156100e-01 5.28693914e-01 -6.48665607e-01 4.40470040e-01 1.84913412e-01 -5.52088022e-01 4.44811583e-01 -5.83575130e-01 6.74649954e-01 4.71423686e-01 -1.03347683e+00 2.36720696e-01 1.00676548e+00 -4.26282316e-01 -1.84478223e+00 -1.03203487e+00 8.42695117e-01 -4.17985111e-01 5.53254843e-01 -2.25410357e-01 -8.99881050e-02 6.62196636e-01 3.12765002e-01 -4.51160878e-01 3.84776324e-01 -1.27007902e-01 1.74124300e-01 -6.78683281e-01 -1.24183786e+00 8.51302803e-01 7.87744761e-01 -2.35838354e-01 -5.82719855e-02 7.59314448e-02 6.47525609e-01 -3.03656459e-01 -5.14530420e-01 5.59199691e-01 8.99152994e-01 -1.13603115e+00 3.96507323e-01 3.99480201e-02 -9.87182856e-02 -5.15669346e-01 -3.30865353e-01 -8.31277907e-01 -2.76969522e-01 -7.37178981e-01 4.96699810e-01 8.61239433e-01 3.92219007e-01 -1.17407274e+00 5.22742152e-01 9.27856147e-01 -1.05399191e+00 -6.50482953e-01 -6.49821877e-01 -7.48556435e-01 -1.40078306e-01 -1.03596652e+00 5.52016973e-01 4.19374198e-01 4.63641763e-01 2.16089770e-01 -1.27189569e-02 9.07722190e-02 6.34836316e-01 -4.43932503e-01 1.25409210e+00 -9.85798001e-01 4.68004256e-01 -3.60201269e-01 -1.08567607e+00 -1.04144728e+00 -1.81983843e-01 -2.77555555e-01 3.01222324e-01 -1.93452179e+00 -1.94310278e-01 -3.82481009e-01 3.27328801e-01 3.82848769e-01 4.23360586e-01 2.84867376e-01 -3.23830545e-02 -9.23640877e-02 -5.75794697e-01 3.47283751e-01 9.25202310e-01 -3.73042864e-03 -1.44599497e-01 2.19954595e-01 -8.96008492e-01 6.96482360e-01 1.14763045e+00 3.36807311e-01 -7.10406959e-01 -1.94741830e-01 -4.08588424e-02 -1.03807487e-02 5.50596178e-01 -1.28193712e+00 6.65921867e-01 -5.16332567e-01 -1.86095819e-01 -1.03606033e+00 3.63107383e-01 -8.07632327e-01 1.92876652e-01 7.26865649e-01 2.74022520e-01 -1.11867301e-02 5.05239844e-01 3.50352854e-01 -1.97999477e-01 2.10418552e-01 8.21699619e-01 1.76608279e-01 -1.40425265e+00 1.51823303e-02 -1.31000972e+00 -4.03837979e-01 1.60289454e+00 -7.69715667e-01 -6.68481171e-01 -3.88074249e-01 -4.55661923e-01 7.81435966e-01 4.11016256e-01 8.37658763e-01 4.88776743e-01 -1.15812206e+00 -3.98717016e-01 4.30542529e-01 4.55627203e-01 -3.03744346e-01 3.76309842e-01 9.54630971e-01 -5.44952214e-01 9.56198752e-01 -4.52005416e-01 -6.92064464e-01 -9.69957948e-01 5.20476639e-01 1.38039455e-01 7.19216824e-01 -4.35995638e-01 1.59471467e-01 1.64221749e-01 -3.36666793e-01 4.13908422e-01 4.83650565e-02 -3.20284277e-01 -3.76257479e-01 5.27556777e-01 9.68063235e-01 2.76939943e-02 -8.86224091e-01 -5.32934666e-01 5.36146879e-01 6.81776181e-02 -3.19837004e-01 7.02875137e-01 -9.22563434e-01 1.07781149e-01 6.73448980e-01 9.03257310e-01 -2.17882946e-01 -1.08452022e+00 4.48767841e-01 -2.86752969e-01 -2.21177429e-01 -7.17224851e-02 -6.45390451e-01 -6.76224530e-01 6.75041676e-01 7.92941988e-01 2.35638902e-01 8.52141201e-01 -2.98062321e-02 9.64599490e-01 5.95061630e-02 6.36953294e-01 -1.49327469e+00 -2.93476373e-01 7.48395562e-01 6.23508573e-01 -1.17559934e+00 -4.15399611e-01 -4.08893794e-01 -8.69450748e-01 7.97468960e-01 8.36402595e-01 2.78395921e-01 9.78967309e-01 4.94271100e-01 3.17925423e-01 -2.31905058e-01 -7.44235694e-01 -3.16093326e-01 -2.59772301e-01 1.31503832e+00 1.48077816e-01 2.68368363e-01 -4.83421981e-01 3.20925921e-01 -4.06620055e-01 2.14027464e-01 4.18613166e-01 1.04601741e+00 -1.05705583e+00 -9.41535473e-01 -3.25119793e-01 1.69149026e-01 1.19390197e-01 6.62733614e-01 -2.55028516e-01 9.93956208e-01 5.36071122e-01 1.73388624e+00 1.85541436e-01 -1.00382769e+00 8.76723051e-01 -2.04378828e-01 -6.25614077e-02 6.77705631e-02 -1.16228268e-01 -6.29733860e-01 5.60060084e-01 -7.54067421e-01 -2.60557115e-01 -8.13619494e-01 -1.38425350e+00 -1.02081692e+00 5.87691441e-02 1.10110827e-01 1.35225105e+00 8.93616021e-01 6.58121347e-01 5.55133522e-01 8.74787927e-01 -6.05003893e-01 -1.23924352e-01 -2.97380358e-01 -5.87456405e-01 -3.65053624e-01 3.98790091e-01 -7.54696131e-01 -9.36668441e-02 -3.17570418e-01]
[5.690428733825684, 1.0457582473754883]
2197e1c1-6164-4c2a-bdf3-b92e624eca08
amuse-multilingual-semantic-parsing-for
1802.09296
null
http://arxiv.org/abs/1802.09296v1
http://arxiv.org/pdf/1802.09296v1.pdf
AMUSE: Multilingual Semantic Parsing for Question Answering over Linked Data
The task of answering natural language questions over RDF data has received wide interest in recent years, in particular in the context of the series of QALD benchmarks. The task consists of mapping a natural language question to an executable form, e.g. SPARQL, so that answers from a given KB can be extracted. So far, most systems proposed are i) monolingual and ii) rely on a set of hard-coded rules to interpret questions and map them into a SPARQL query. We present the first multilingual QALD pipeline that induces a model from training data for mapping a natural language question into logical form as probabilistic inference. In particular, our approach learns to map universal syntactic dependency representations to a language-independent logical form based on DUDES (Dependency-based Underspecified Discourse Representation Structures) that are then mapped to a SPARQL query as a deterministic second step. Our model builds on factor graphs that rely on features extracted from the dependency graph and corresponding semantic representations. We rely on approximate inference techniques, Markov Chain Monte Carlo methods in particular, as well as Sample Rank to update parameters using a ranking objective. Our focus lies on developing methods that overcome the lexical gap and present a novel combination of machine translation and word embedding approaches for this purpose. As a proof of concept for our approach, we evaluate our approach on the QALD-6 datasets for English, German & Spanish.
['Soufian Jebbara', 'Sherzod Hakimov', 'Philipp Cimiano']
2018-02-26
null
null
null
null
['knowledge-base-question-answering']
['natural-language-processing']
[-1.02431573e-01 6.86746895e-01 -2.77220964e-01 -6.84356451e-01 -1.14731336e+00 -7.64868498e-01 1.05596375e+00 6.50437236e-01 -5.18376470e-01 7.68575191e-01 6.82374477e-01 -4.49323386e-01 -4.05074507e-01 -1.32332253e+00 -1.12019479e+00 6.83844686e-02 2.79496193e-01 1.13911295e+00 4.83421534e-01 -6.25736058e-01 -9.86530259e-02 2.05619782e-01 -1.45402241e+00 6.55040979e-01 9.92005169e-01 7.79152572e-01 3.31284329e-02 4.43582207e-01 -8.43975723e-01 1.15621006e+00 -2.99255908e-01 -7.86643326e-01 -1.58488795e-01 -3.42274010e-01 -1.50643730e+00 -7.56092608e-01 4.55833703e-01 2.02484708e-02 -5.77781014e-02 9.11918759e-01 1.63999826e-01 1.45303041e-01 7.44228780e-01 -9.14032876e-01 -6.82026148e-01 8.60939562e-01 4.01833296e-01 -1.43971378e-02 9.44055915e-01 -2.52026141e-01 1.62445700e+00 -8.85905087e-01 9.90107536e-01 1.62041104e+00 4.43144649e-01 5.48882067e-01 -1.34705937e+00 1.08950421e-01 -1.59387618e-01 7.71227896e-01 -1.03854144e+00 -1.69567168e-01 3.66874337e-01 -3.16548169e-01 1.47510970e+00 2.88242787e-01 1.67835698e-01 8.49935830e-01 1.36869460e-01 5.34217417e-01 1.17969239e+00 -9.35231686e-01 5.43379784e-01 4.13628876e-01 4.70801860e-01 8.09375644e-01 2.96598911e-01 -2.46177346e-01 -4.88316834e-01 -2.75422603e-01 -8.78874660e-02 -5.64295650e-01 -7.70130306e-02 -4.73797649e-01 -8.61799836e-01 1.18955755e+00 4.45747226e-01 3.88788164e-01 -3.04247260e-01 1.61279738e-01 3.60965461e-01 4.11265612e-01 2.48227686e-01 4.39670891e-01 -7.76514232e-01 2.79666305e-01 -5.43897569e-01 6.16364241e-01 1.47564471e+00 7.48117983e-01 1.02383232e+00 -8.20488751e-01 -2.97929764e-01 5.31761408e-01 6.72822654e-01 5.00311196e-01 2.99135059e-01 -8.75880480e-01 6.47748411e-01 8.83957148e-01 1.34803683e-01 -6.68228865e-01 -2.77387142e-01 2.77341425e-01 1.51733622e-01 -1.30011402e-02 4.69485044e-01 2.68314838e-01 -3.78751755e-01 1.80524445e+00 7.28268862e-01 -2.11330742e-01 5.22815287e-01 6.63387001e-01 8.65513265e-01 7.09419489e-01 3.04825544e-01 2.65196949e-01 1.89916420e+00 -5.71778536e-01 -6.33496940e-01 -1.33344680e-01 8.73195708e-01 -4.89361256e-01 1.35812879e+00 8.38265717e-02 -8.05745900e-01 -2.52784520e-01 -9.84301329e-01 -5.99682271e-01 -6.88607991e-01 -5.85587770e-02 2.96426654e-01 7.41152763e-01 -9.08483684e-01 4.08575207e-01 -7.44447410e-01 -7.77246714e-01 3.51073556e-02 2.30956823e-02 -4.42390889e-01 -4.93414462e-01 -1.63339543e+00 1.37021804e+00 7.39746809e-01 -3.46132100e-01 -5.94229817e-01 -8.01870525e-01 -1.13500297e+00 7.68312886e-02 5.19549549e-01 -1.03896976e+00 1.15282226e+00 -5.83345592e-01 -1.49025249e+00 8.73109698e-01 -2.67708898e-01 -7.58643210e-01 7.70254508e-02 -2.47228980e-01 -4.14373308e-01 1.97303876e-01 2.69551367e-01 3.98499966e-01 4.82755721e-01 -9.15916145e-01 -6.12640262e-01 -5.72848320e-01 7.99029827e-01 -3.23757939e-02 -1.20872058e-01 2.98067212e-01 -2.92745709e-01 -1.07512116e-01 -3.41333538e-01 -7.40707517e-01 1.08563647e-01 -2.84568578e-01 -1.51998401e-01 -8.89760971e-01 3.32413644e-01 -9.19538140e-01 1.13571203e+00 -1.53184450e+00 4.49183255e-01 1.74996972e-01 -5.52682057e-02 -2.14815531e-02 3.99513775e-03 7.18763649e-01 1.06547765e-01 1.82212040e-01 -3.63705546e-01 9.59301442e-02 6.55206084e-01 5.77988327e-01 -5.72517514e-01 9.86683741e-02 5.41054308e-01 1.02495766e+00 -9.09707725e-01 -4.94866788e-01 5.42203784e-02 3.21803004e-01 -9.35193539e-01 3.54673892e-01 -1.04609489e+00 -4.80966680e-02 -4.57871675e-01 1.94881082e-01 5.13596117e-01 -1.70959875e-01 6.03786469e-01 -6.86023355e-01 1.23821586e-01 9.69460428e-01 -1.02466452e+00 1.96515334e+00 -9.00451362e-01 1.25929415e-01 -5.32057405e-01 -9.06185925e-01 7.27743387e-01 2.44315341e-01 -2.77995765e-02 -6.88075900e-01 -1.30847588e-01 3.74282897e-01 -5.83481789e-01 -8.63044739e-01 4.40483391e-01 -2.48314232e-01 -3.45504552e-01 5.27154565e-01 5.72745144e-01 -1.33259490e-01 5.92716813e-01 4.27378416e-01 1.13452470e+00 6.35608375e-01 4.22537804e-01 -4.34861153e-01 8.65981936e-01 3.20936859e-01 1.28682539e-01 4.81651902e-01 4.72141325e-01 1.02300525e-01 7.21601605e-01 -3.67841661e-01 -9.36395347e-01 -1.31038666e+00 -4.87530380e-02 1.03135669e+00 -2.58508086e-01 -6.97065771e-01 -8.74790728e-01 -1.15295875e+00 1.49443537e-01 1.43623281e+00 -6.61957860e-01 -4.39151414e-02 -6.68280780e-01 -3.47305447e-01 5.86488366e-01 2.72218913e-01 -4.15082946e-02 -1.01227605e+00 -5.35446465e-01 2.69011080e-01 -2.11340874e-01 -1.39615595e+00 7.89490938e-02 9.61143523e-02 -6.21239126e-01 -1.37915003e+00 -2.29235203e-03 -4.70550805e-01 4.21767473e-01 -6.89243078e-01 1.56442523e+00 -3.11952651e-01 -8.59266818e-02 6.93585277e-01 -4.55670327e-01 -2.15425491e-01 -8.18168521e-01 1.89815342e-01 -1.77643597e-02 -3.26681733e-02 8.04205656e-01 -2.27256611e-01 -2.59738445e-01 -1.55016035e-01 -1.37769961e+00 -3.34215045e-01 2.72169501e-01 5.13629854e-01 6.10750020e-01 -3.82692873e-01 4.08633381e-01 -1.16097724e+00 7.24766076e-01 -7.80004978e-01 -8.07490945e-01 8.08062196e-01 -7.05695152e-01 9.66396868e-01 7.46038735e-01 1.44695997e-01 -1.26994407e+00 -1.51091456e-01 -3.42328876e-01 5.47904484e-02 -5.31687699e-02 1.05979514e+00 -4.90751743e-01 2.53838301e-01 1.03269684e+00 -2.12905943e-01 -1.79552138e-01 -6.27064705e-01 1.02921164e+00 4.59762096e-01 3.59500587e-01 -1.16916490e+00 8.01035106e-01 4.40008521e-01 -2.58993842e-02 -4.75635052e-01 -1.05251217e+00 -2.66926289e-01 -4.72319573e-01 1.54337615e-01 1.09984124e+00 -7.25964904e-01 -6.59837663e-01 -4.76219833e-01 -1.31643367e+00 -6.46035895e-02 -6.43685520e-01 5.42817712e-01 -5.42595565e-01 4.23299789e-01 -3.70871633e-01 -4.22585577e-01 -2.93697208e-01 -8.04422200e-01 1.01803350e+00 3.67787480e-02 -2.93325245e-01 -1.25632429e+00 7.01276302e-01 4.72532272e-01 3.24812710e-01 -7.10027069e-02 1.67580092e+00 -9.53130424e-01 -6.24762952e-01 -5.17834611e-02 -2.71942794e-01 4.72092152e-01 -6.73746243e-02 -2.84811080e-01 -8.21895301e-01 2.72971727e-02 -1.18818089e-01 -5.60555577e-01 5.60703933e-01 -1.25886232e-01 2.65376240e-01 -4.86621082e-01 -3.03979591e-03 2.05272749e-01 1.83334064e+00 -5.25334299e-01 5.47248602e-01 4.36837882e-01 3.64997596e-01 8.38202477e-01 4.49422091e-01 -2.85646934e-02 1.05928862e+00 7.51537085e-01 3.16280514e-01 6.16301358e-01 -2.54423082e-01 -6.90789461e-01 5.27513504e-01 8.04513872e-01 2.42798701e-01 -9.59092379e-02 -1.09669864e+00 5.67484081e-01 -1.68627143e+00 -6.61561012e-01 -1.89165905e-01 2.23921466e+00 1.06808889e+00 -2.88300931e-01 -2.21642107e-01 -3.06757569e-01 2.55616993e-01 -3.78091075e-02 -1.58767819e-01 -4.79063630e-01 -2.58644614e-02 8.16605270e-01 2.57139087e-01 8.54729354e-01 -6.80005848e-01 9.58887577e-01 5.05569887e+00 5.36707580e-01 -6.38321102e-01 3.90062869e-01 -6.74428269e-02 2.35888869e-01 -1.01121545e+00 6.17732882e-01 -1.01968646e+00 1.70278981e-01 1.39787161e+00 -2.93428689e-01 5.05407035e-01 5.95138967e-01 -3.20426285e-01 -5.85331172e-02 -1.36683440e+00 4.53040808e-01 2.13192537e-01 -1.52085793e+00 5.25293946e-01 -3.76948386e-01 2.76843697e-01 1.04997240e-01 -4.92220193e-01 6.55754566e-01 7.41662383e-01 -1.02178609e+00 7.82690644e-01 8.45242321e-01 7.50211298e-01 -5.63395739e-01 6.90518737e-01 2.41959646e-01 -1.00853026e+00 6.92397356e-02 -5.34700990e-01 2.11396381e-01 2.29436412e-01 5.49848616e-01 -8.67353261e-01 1.22640908e+00 6.63814366e-01 2.28473529e-01 -5.56539178e-01 3.14439625e-01 -7.43730605e-01 5.37051380e-01 -4.57442373e-01 -2.23761320e-01 1.54405218e-02 -1.23252109e-01 3.25916588e-01 1.12891185e+00 3.87684524e-01 -1.15060493e-01 -1.63111985e-01 1.12085724e+00 -2.17600793e-01 5.84752679e-01 -4.32180732e-01 -3.96292619e-02 2.20284626e-01 1.09240866e+00 -5.59982844e-02 -3.26995343e-01 -6.67543650e-01 6.49811983e-01 7.78001130e-01 2.50852793e-01 -6.37404084e-01 -2.98963398e-01 3.47652316e-01 7.63634443e-02 3.28188926e-01 -5.06599993e-03 3.46719354e-01 -1.49157214e+00 2.98782408e-01 -1.00641632e+00 8.05795193e-01 -7.96912968e-01 -1.33544481e+00 6.41163945e-01 2.21310019e-01 -5.21220267e-01 -7.58367896e-01 -6.72603607e-01 -1.75497219e-01 1.05701745e+00 -1.88795257e+00 -1.19936073e+00 -5.30636907e-02 5.86673319e-01 6.10133186e-02 -6.90243319e-02 1.20196581e+00 3.11719865e-01 -2.00607747e-01 2.94604212e-01 -2.09860533e-01 -6.30953982e-02 7.37644196e-01 -1.48085678e+00 3.21348637e-01 6.37462616e-01 5.39906263e-01 7.19942153e-01 8.61541986e-01 -5.17044485e-01 -1.66308177e+00 -1.03247666e+00 1.68543303e+00 -1.00880015e+00 9.96755004e-01 -3.46256495e-01 -1.07622981e+00 8.00610363e-01 4.10523772e-01 1.19181275e-01 5.74641705e-01 2.31381819e-01 -7.32516825e-01 -2.04069689e-01 -1.11730409e+00 2.80673593e-01 6.46869779e-01 -9.56342340e-01 -1.28361678e+00 3.82952511e-01 8.21744084e-01 -2.59798646e-01 -1.16935694e+00 3.17845374e-01 2.67679423e-01 -7.89686024e-01 8.22774053e-01 -1.21218157e+00 3.81678820e-01 -4.70046401e-01 -6.11938238e-01 -1.09867489e+00 1.64943993e-01 -3.06267262e-01 -2.64012367e-01 1.18425977e+00 7.05060959e-01 -6.51172280e-01 5.53622782e-01 6.46360755e-01 2.83948421e-01 -5.99830270e-01 -1.22416186e+00 -6.49320960e-01 2.44246811e-01 -6.28408253e-01 8.51459146e-01 6.41335607e-01 3.73024121e-02 7.41340339e-01 2.81992048e-01 3.71803075e-01 4.86472696e-01 2.33235389e-01 7.48683512e-01 -1.24080682e+00 -4.31554377e-01 4.71568964e-02 -3.19904476e-01 -8.02423835e-01 5.78651845e-01 -1.45277786e+00 -2.44155392e-01 -1.92726314e+00 -4.74648401e-02 -3.75956476e-01 -1.16455354e-01 3.10209394e-01 -3.66493501e-02 -3.56127590e-01 1.65819954e-02 -1.53050303e-01 -5.21083295e-01 5.25516570e-01 4.06155735e-01 -2.15383098e-01 3.55268598e-01 -4.32420254e-01 -5.72168589e-01 3.93252015e-01 5.07768810e-01 -7.75895357e-01 -4.49766487e-01 -4.85845685e-01 1.20034766e+00 1.07246168e-01 5.49679399e-01 -5.85905254e-01 2.87344962e-01 5.98825254e-02 -4.11440760e-01 8.22255109e-03 5.19544398e-03 -8.40454400e-01 -6.61980361e-02 3.10291141e-01 -4.62396145e-01 -3.26248296e-02 1.37298070e-02 5.78041494e-01 -4.09208626e-01 -7.38664985e-01 3.48731846e-01 4.03946079e-02 -7.01417208e-01 -2.10418291e-02 6.28162697e-02 6.62957013e-01 6.97705507e-01 4.79181886e-01 -3.10576677e-01 -1.34471849e-01 -6.84097588e-01 8.05327669e-02 3.34074348e-01 4.30438399e-01 2.71485686e-01 -1.29828429e+00 -9.20607626e-01 -4.10763063e-02 4.83382314e-01 -2.81941563e-01 8.27182829e-02 5.89014471e-01 -5.92975199e-01 8.00750196e-01 9.25521329e-02 -2.50619352e-01 -7.82749295e-01 5.70719600e-01 3.35561872e-01 -8.11379671e-01 -1.78510338e-01 5.46089411e-01 -2.25332066e-01 -1.03003109e+00 -2.71525234e-01 -6.28875077e-01 -4.85047817e-01 1.15086243e-01 3.81353050e-01 1.36879027e-01 4.12007481e-01 -4.20757353e-01 -5.40582478e-01 3.45629513e-01 1.56875849e-01 -3.40278178e-01 1.26343298e+00 8.81481692e-02 -5.59516668e-01 3.04065257e-01 1.21409249e+00 2.88899153e-01 -5.84632218e-01 -6.67937279e-01 6.79233134e-01 -1.28121689e-01 -2.57600635e-01 -7.79031277e-01 -3.67518574e-01 6.58053935e-01 4.03815746e-01 1.95468202e-01 6.67877436e-01 6.49630189e-01 6.09662950e-01 8.00139844e-01 4.67576176e-01 -9.85398889e-01 -2.66149342e-01 7.55696535e-01 9.03855026e-01 -1.01300418e+00 -1.48949936e-01 -2.11580142e-01 -2.70682871e-01 1.26555479e+00 2.04527229e-02 -3.79693694e-02 4.62788731e-01 3.83897834e-02 -2.98034633e-03 -4.40533787e-01 -9.08690810e-01 -3.68723571e-01 5.04976451e-01 5.18964350e-01 4.61948067e-01 -2.43002828e-02 -4.31419551e-01 8.19469333e-01 -1.82412222e-01 2.85839409e-01 2.61489987e-01 7.62572944e-01 -3.51550192e-01 -1.69473457e+00 -1.18968025e-01 3.07794929e-01 -3.77754927e-01 -3.03435564e-01 -1.51279092e-01 7.18601227e-01 -1.04906857e-01 8.00391734e-01 -2.97898173e-01 -5.60023785e-02 6.52202725e-01 5.26374459e-01 7.61885643e-01 -8.72579277e-01 -5.32046378e-01 -9.53713536e-01 5.60978353e-01 -7.39468217e-01 -4.41645801e-01 -6.37809336e-01 -1.38771534e+00 -7.31562600e-02 -2.33670920e-02 4.44721371e-01 8.57426345e-01 1.25083113e+00 4.47295606e-01 2.49756247e-01 1.04430951e-01 8.19798708e-02 -8.76691997e-01 -7.15678751e-01 -1.26291275e-01 5.31422317e-01 -1.91722378e-01 -3.19165975e-01 -1.76080868e-01 9.10912305e-02]
[10.2982816696167, 7.896028995513916]
269939d9-615f-4174-b449-d39b8cf8e9f0
a-discourse-aware-graph-neural-network-for
null
null
https://aclanthology.org/2021.findings-emnlp.252
https://aclanthology.org/2021.findings-emnlp.252.pdf
A Discourse-Aware Graph Neural Network for Emotion Recognition in Multi-Party Conversation
Emotion recognition in multi-party conversation (ERMC) is becoming increasingly popular as an emerging research topic in natural language processing. Prior research focuses on exploring sequential information but ignores the discourse structures of conversations. In this paper, we investigate the importance of discourse structures in handling informative contextual cues and speaker-specific features for ERMC. To this end, we propose a discourse-aware graph neural network (ERMC-DisGCN) for ERMC. In particular, we design a relational convolution to lever the self-speaker dependency of interlocutors to propagate contextual information. Furthermore, we exploit a gated convolution to select more informative cues for ERMC from dependent utterances. The experimental results show our method outperforms multiple baselines, illustrating that discourse structures are of great value to ERMC.
['Guohong Fu', 'Nan Yu', 'Yang Sun']
null
null
null
null
findings-emnlp-2021-11
['emotion-recognition-in-conversation']
['natural-language-processing']
[ 1.43472642e-01 2.78324157e-01 -1.40620759e-02 -6.94632947e-01 -4.46294338e-01 -5.47589302e-01 7.12923169e-01 2.27083847e-01 -2.84271091e-01 4.30247962e-01 1.03297246e+00 -2.55317301e-01 2.08662316e-01 -3.90558779e-01 -2.23377302e-01 -3.24868888e-01 -3.25835228e-01 -2.51205694e-02 -2.77531713e-01 -6.43921018e-01 2.74764150e-01 2.20308170e-01 -9.88739371e-01 6.92705691e-01 8.90929103e-01 7.85370290e-01 2.67663691e-03 7.83850491e-01 -3.94891322e-01 1.21508098e+00 -8.67748916e-01 -4.02301490e-01 -4.12852019e-01 -7.42092609e-01 -1.10270452e+00 2.99478531e-01 -2.07041010e-01 -3.09881475e-02 -2.48115540e-01 7.79020548e-01 5.24589419e-01 5.64564049e-01 5.41849852e-01 -1.02999902e+00 -5.69945574e-01 1.19926274e+00 -4.69437122e-01 3.34979177e-01 4.11308438e-01 -3.15687582e-02 1.25045502e+00 -7.11268783e-01 6.78586125e-01 1.60020840e+00 4.01498377e-01 6.30936027e-01 -8.02205563e-01 -4.73551422e-01 8.11095834e-01 4.08797115e-01 -8.20861995e-01 -5.99765539e-01 1.48407149e+00 -3.04143041e-01 1.03168404e+00 4.33821440e-01 4.05532449e-01 1.58675516e+00 -1.89374641e-01 1.18612421e+00 8.30029249e-01 -4.25971448e-01 8.81428942e-02 -7.46107567e-03 5.29834330e-01 2.92028457e-01 -4.90063697e-01 -3.39820921e-01 -7.12633073e-01 7.35494681e-03 3.64055455e-01 -2.96008646e-01 -6.15728021e-01 3.31044525e-01 -8.41431022e-01 1.17490160e+00 3.89023006e-01 6.06119573e-01 -3.11494619e-01 6.38754889e-02 9.46068168e-01 5.12066543e-01 9.51746166e-01 5.87810278e-01 -2.24011973e-01 -4.31586802e-01 -2.39500940e-01 -1.64311379e-01 9.95347142e-01 9.95269954e-01 3.53936523e-01 7.72696454e-03 -5.36519468e-01 1.20259273e+00 3.91664088e-01 -7.37525746e-02 3.63479763e-01 -9.86655951e-01 8.18283200e-01 8.08058441e-01 -3.35444570e-01 -1.33711541e+00 -6.51788175e-01 -1.11728981e-01 -8.48133683e-01 -6.04080796e-01 -7.15718567e-02 -5.61494291e-01 -1.75505280e-01 1.75044513e+00 1.99532464e-01 -2.91689318e-02 2.94646442e-01 1.00285804e+00 1.31289744e+00 8.73265803e-01 1.20625384e-01 -3.97170484e-01 1.32382202e+00 -1.23968506e+00 -1.19315398e+00 -3.11981350e-01 5.67950189e-01 -6.46059513e-01 8.43367398e-01 7.17919916e-02 -8.35579336e-01 -2.59347558e-01 -6.81590617e-01 -2.11325303e-01 -1.45968691e-01 -1.56636670e-01 7.58871019e-01 3.30879301e-01 -8.96155596e-01 1.99759007e-01 -5.74116230e-01 -1.86445698e-01 2.32608438e-01 -5.87030035e-03 -4.90716882e-02 5.26411310e-02 -1.53584909e+00 8.50876331e-01 3.04271996e-01 5.25254905e-01 -4.66356039e-01 -2.99969286e-01 -1.19389546e+00 1.43932179e-01 5.40017843e-01 -1.45872265e-01 1.39292765e+00 -1.16372299e+00 -2.04869771e+00 5.41894138e-01 -4.02857810e-01 -3.53143960e-01 2.86371112e-01 -2.28983507e-01 -6.43676400e-01 3.73601824e-01 -2.73170888e-01 3.21818501e-01 6.81011200e-01 -1.25708199e+00 -2.38490745e-01 -1.26320869e-01 2.70732939e-01 5.79465449e-01 -4.45533752e-01 5.19708812e-01 -5.44497609e-01 -6.43819928e-01 -1.10875547e-01 -6.14923656e-01 -1.62186772e-01 -6.69179440e-01 -7.51163244e-01 -7.75519073e-01 8.50512445e-01 -6.04842603e-01 1.47370553e+00 -2.20423841e+00 3.29531819e-01 8.46447200e-02 3.27587932e-01 1.63494915e-01 -3.66522789e-01 8.69683981e-01 1.43363297e-01 2.57080138e-01 -2.63542142e-02 -7.48670399e-01 1.07429072e-01 1.37677059e-01 -1.69089481e-01 3.11576933e-01 4.86336470e-01 1.10458219e+00 -7.78549373e-01 -4.94271040e-01 6.05172738e-02 5.65403998e-01 -4.39178467e-01 4.53279018e-01 -3.59819412e-01 6.35808706e-01 -6.46651089e-01 2.94712484e-01 4.62928951e-01 -4.22543079e-01 6.16886437e-01 1.66159272e-02 -4.42906134e-02 5.75925231e-01 -5.76263011e-01 1.47534454e+00 -5.25851965e-01 9.57798481e-01 4.20443416e-01 -1.04265785e+00 9.96672451e-01 5.42381823e-01 9.82166901e-02 -5.91578424e-01 5.04023015e-01 -2.77899772e-01 8.16735178e-02 -7.54121900e-01 8.16365361e-01 4.27468233e-02 -3.74806523e-01 5.28336942e-01 2.24853065e-02 1.45418987e-01 7.99884796e-02 4.73877758e-01 8.67131770e-01 -3.51352990e-01 4.31174904e-01 -5.95453605e-02 6.32717609e-01 -4.48735595e-01 7.19968081e-01 4.79947895e-01 -5.19308388e-01 5.14723778e-01 8.62425387e-01 -1.16126463e-01 -1.86342254e-01 -2.21476048e-01 3.13657582e-01 1.40012014e+00 1.26161054e-01 -4.88689631e-01 -6.42951310e-01 -7.80419469e-01 -2.72787839e-01 8.15909743e-01 -7.24155188e-01 -1.20459296e-01 -9.95805085e-01 -3.92288893e-01 4.82866675e-01 5.24702430e-01 4.87508804e-01 -1.30140805e+00 -2.14658394e-01 3.62130076e-01 -7.65330255e-01 -1.32739449e+00 -8.33116055e-01 7.97735974e-02 -4.33375567e-01 -1.07345390e+00 -2.58157402e-01 -7.27476001e-01 3.12122524e-01 3.97405982e-01 1.22891068e+00 4.37716544e-02 2.68676043e-01 6.59464240e-01 -8.18914473e-01 -3.05017978e-01 -4.91128594e-01 3.80368710e-01 -4.97960299e-01 2.72311896e-01 4.15801525e-01 -5.62702417e-01 -5.36333740e-01 1.42708853e-01 -5.54562747e-01 9.61275473e-02 9.74965692e-02 6.55930042e-01 -8.97467360e-02 -2.83886284e-01 8.99929047e-01 -1.22852552e+00 1.35710824e+00 -6.31581366e-01 -1.17007889e-01 2.47322127e-01 -1.16544060e-01 -2.51746207e-01 6.89897239e-01 -4.01405096e-01 -1.52918077e+00 -4.13222104e-01 -1.03971004e-01 -1.53429329e-01 -1.97226211e-01 7.97276139e-01 -2.99014121e-01 4.67475504e-01 1.91715091e-01 -2.49410912e-01 -1.68492019e-01 -2.63990909e-01 6.00492358e-01 8.36286843e-01 1.61524177e-01 -7.90843844e-01 8.65252514e-04 1.26758084e-01 -6.29059911e-01 -1.09908891e+00 -1.00758398e+00 -7.44521081e-01 -2.54896909e-01 -6.15973651e-01 1.14608979e+00 -7.87431002e-01 -1.09496260e+00 2.36286432e-01 -1.61784852e+00 -3.04189682e-01 8.73051137e-02 3.98014009e-01 -1.40163332e-01 2.95055121e-01 -9.83876169e-01 -1.14398324e+00 -3.77932936e-01 -1.04189742e+00 9.54278529e-01 3.30008358e-01 -4.39971745e-01 -1.43913591e+00 -6.82102069e-02 5.66465378e-01 4.90453124e-01 4.55968559e-01 7.10069954e-01 -1.05399132e+00 -3.58028203e-01 1.51016116e-01 -2.30146259e-01 2.44208947e-01 7.23451748e-02 -1.19707517e-01 -1.09983110e+00 6.88168481e-02 8.49183649e-02 -4.40596849e-01 1.03079283e+00 3.39578152e-01 1.04743600e+00 -4.48228568e-01 -1.79947540e-01 2.49119699e-01 8.30420136e-01 2.48464122e-01 3.72197092e-01 5.69877140e-02 7.63769329e-01 1.08297622e+00 2.68563747e-01 5.39596915e-01 8.58629346e-01 3.25887144e-01 3.01540345e-01 5.37288487e-02 1.17451340e-01 1.21923350e-02 4.46670830e-01 1.58207440e+00 -7.16583878e-02 -7.39865959e-01 -7.94949055e-01 4.98022109e-01 -2.03808832e+00 -9.56129074e-01 -3.11601311e-01 1.32070363e+00 9.10458565e-01 -9.73334610e-02 -2.30834261e-01 -3.36436331e-01 1.03238869e+00 7.43245661e-01 -3.76773894e-01 -7.02166378e-01 -3.03698719e-01 -1.20937109e-01 -2.32337132e-01 5.97154796e-01 -1.17876065e+00 9.38186169e-01 5.64979362e+00 4.11263227e-01 -1.00288951e+00 -4.90027480e-03 7.38778412e-01 8.47574398e-02 -4.66005683e-01 -2.06833750e-01 -6.56273007e-01 2.99549550e-01 9.04392481e-01 -6.70081973e-02 3.32561076e-01 6.40264273e-01 4.09790814e-01 8.00712779e-02 -1.05543053e+00 7.42476285e-01 4.04141694e-01 -1.26436424e+00 -3.09944451e-01 -1.94995612e-01 6.05928719e-01 -1.44802541e-01 -2.19108060e-01 6.92500353e-01 5.82884133e-01 -9.41051543e-01 2.46213779e-01 3.27841014e-01 1.46795690e-01 -8.01501155e-01 8.08378220e-01 1.86173916e-01 -1.07911038e+00 1.14928745e-01 2.30341535e-02 -2.27625474e-01 4.10600662e-01 4.18984264e-01 -9.03846383e-01 5.89831591e-01 4.42557365e-01 8.47938895e-01 -4.11652952e-01 3.45785201e-01 -5.30897319e-01 1.07793915e+00 1.18811904e-02 -5.02096474e-01 4.34069842e-01 -1.08941562e-01 5.44023335e-01 1.75414348e+00 -2.52714247e-01 3.88105631e-01 3.62089783e-01 7.09640622e-01 -5.39885879e-01 3.23841661e-01 -5.00978172e-01 -1.95034698e-01 6.76630676e-01 1.32833171e+00 -6.25908136e-01 -2.52113827e-02 -4.70378578e-01 1.03186691e+00 8.08831930e-01 6.23331726e-01 -5.86010456e-01 -2.76782185e-01 5.80628216e-01 -6.81913555e-01 3.75795782e-01 -1.33032933e-01 -3.01675014e-02 -1.17068124e+00 3.44245136e-02 -8.43251824e-01 4.41305965e-01 -3.02215368e-01 -1.64999676e+00 6.52142286e-01 -2.94404477e-01 -7.26345181e-01 -3.68944317e-01 -3.32775354e-01 -1.22416806e+00 7.07071841e-01 -1.77657712e+00 -1.17608202e+00 -1.54003114e-01 5.34026265e-01 8.52082074e-01 -3.33409831e-02 8.38804781e-01 -6.56287149e-02 -8.44684899e-01 5.01323581e-01 -2.22776905e-01 5.88985443e-01 7.14347959e-01 -1.23805416e+00 2.68999636e-01 7.62082398e-01 -1.92297980e-01 8.65570247e-01 5.30730367e-01 -4.51961488e-01 -1.27451360e+00 -1.07836354e+00 1.02013969e+00 -3.45044434e-02 7.47820973e-01 -6.01437569e-01 -1.12971604e+00 7.13856757e-01 1.01745677e+00 -2.75622278e-01 1.16945243e+00 7.36372292e-01 -4.00056750e-01 2.57288814e-01 -7.08323240e-01 6.30444288e-01 8.98463786e-01 -7.48319209e-01 -6.31841958e-01 1.24318309e-01 1.32609105e+00 -3.83643955e-01 -8.07462275e-01 1.63158745e-01 1.08644761e-01 -8.18494022e-01 5.78444898e-01 -6.21856809e-01 6.50243819e-01 1.08304389e-01 -8.49049389e-02 -1.52650380e+00 -2.29382068e-02 -9.24960554e-01 -2.10481793e-01 1.77731597e+00 4.13569093e-01 -6.07288957e-01 2.95855701e-01 7.60970831e-01 -5.47257423e-01 -5.65750957e-01 -7.14124084e-01 -3.01311880e-01 -9.23492666e-03 -6.19056344e-01 4.69072104e-01 1.45054770e+00 6.29733503e-01 9.81497824e-01 -4.50033605e-01 -6.17906228e-02 3.66866356e-03 4.10403073e-01 6.12312376e-01 -1.15614688e+00 -2.68252105e-01 -6.41566277e-01 1.77330241e-01 -1.16942346e+00 7.91722596e-01 -8.85587096e-01 2.50300080e-01 -1.55362856e+00 -3.88154760e-02 -6.69948086e-02 -1.51508272e-01 8.82074609e-02 -5.18722892e-01 -4.31620955e-01 3.25539589e-01 -1.75709546e-01 -1.08284068e+00 9.69320893e-01 1.38294399e+00 -2.17072040e-01 -4.66454715e-01 -5.98451272e-02 -1.02836406e+00 7.15230227e-01 1.03660595e+00 -8.06563720e-02 -4.34213221e-01 -3.57786417e-01 1.08629622e-01 3.34546566e-01 3.28570046e-02 -1.71783626e-01 3.75119597e-01 -1.63817108e-01 -1.19994424e-01 -6.52662218e-01 3.83583635e-01 -5.04142821e-01 -5.76226413e-01 -3.45103770e-01 -8.98403645e-01 -1.38445497e-01 1.32685542e-01 7.06163824e-01 -5.40556252e-01 -2.37498105e-01 2.30629161e-01 -1.27475038e-01 -6.94110811e-01 4.03199485e-03 -8.07632744e-01 4.80112314e-01 6.44095361e-01 2.70702392e-01 -5.32974243e-01 -9.00350511e-01 -6.14457786e-01 7.03099430e-01 -1.91791892e-01 7.26017118e-01 6.72031641e-01 -1.27292800e+00 -7.98756123e-01 -1.55531809e-01 2.29552746e-01 9.44730490e-02 4.10498083e-01 7.68791258e-01 6.15111068e-02 3.29015166e-01 4.32215482e-01 -3.80420119e-01 -1.50457406e+00 3.14783931e-01 3.44665535e-02 -3.72827947e-01 -6.13690913e-01 9.92620289e-01 9.05430987e-02 -6.42625272e-01 5.08309543e-01 -4.16319460e-01 -8.57364953e-01 4.02850121e-01 4.39731896e-01 1.31153569e-01 -2.01060742e-01 -6.81697488e-01 -2.16168955e-01 -8.33960325e-02 -3.27318221e-01 -1.07268192e-01 1.46516669e+00 -4.98013437e-01 -3.34175795e-01 7.50890553e-01 1.44158494e+00 1.03194676e-01 -1.11086500e+00 -4.63551730e-01 4.08026248e-01 -4.35559005e-02 -7.28900358e-02 -6.36430979e-01 -9.38836932e-01 8.61822724e-01 -1.71108082e-01 6.29890919e-01 8.89061689e-01 1.37141630e-01 6.77878499e-01 5.52967966e-01 -1.56712040e-01 -1.35371566e+00 2.99453795e-01 1.05666292e+00 1.21426678e+00 -1.43717289e+00 -2.79587984e-01 -6.10015690e-01 -1.20693278e+00 1.24745476e+00 7.82612383e-01 1.32019386e-01 5.71350753e-01 6.93171797e-03 3.49361688e-01 -4.77246255e-01 -1.05843341e+00 -2.43954256e-01 2.74701446e-01 5.03683627e-01 1.00056827e+00 1.08483151e-01 -2.85391599e-01 7.65812755e-01 -1.60547838e-01 -6.03154361e-01 5.12706280e-01 7.68412530e-01 -1.85171142e-01 -9.85730827e-01 -1.25275716e-01 1.41731814e-01 -3.80351156e-01 -2.59597331e-01 -8.71793628e-01 7.50463068e-01 -3.75914603e-01 1.52418494e+00 1.51802786e-02 -2.31125951e-01 2.91717172e-01 1.71957031e-01 -4.66527417e-02 -6.25964701e-01 -1.03937876e+00 2.73424536e-01 7.99514949e-01 -5.25965512e-01 -8.96449029e-01 -6.12200856e-01 -1.32626414e+00 -1.29564837e-01 -3.84479582e-01 3.42900068e-01 5.32973766e-01 9.72055674e-01 5.51705539e-01 9.78640378e-01 8.11626792e-01 -6.50566697e-01 -1.38832226e-01 -1.29187477e+00 -1.54449925e-01 4.55667466e-01 4.32538688e-01 -4.41463262e-01 -4.23068076e-01 -1.75906852e-01]
[12.93421745300293, 6.374436378479004]
0c150f54-ac0e-4e56-973d-8395b48776ef
low-resource-neural-machine-translation-a
2003.14402
null
https://arxiv.org/abs/2003.14402v1
https://arxiv.org/pdf/2003.14402v1.pdf
Low Resource Neural Machine Translation: A Benchmark for Five African Languages
Recent advents in Neural Machine Translation (NMT) have shown improvements in low-resource language (LRL) translation tasks. In this work, we benchmark NMT between English and five African LRL pairs (Swahili, Amharic, Tigrigna, Oromo, Somali [SATOS]). We collected the available resources on the SATOS languages to evaluate the current state of NMT for LRLs. Our evaluation, comparing a baseline single language pair NMT model against semi-supervised learning, transfer learning, and multilingual modeling, shows significant performance improvements both in the En-LRL and LRL-En directions. In terms of averaged BLEU score, the multilingual approach shows the largest gains, up to +5 points, in six out of ten translation directions. To demonstrate the generalization capability of each model, we also report results on multi-domain test sets. We release the standardized experimental data and the test sets for future works addressing the challenges of NMT in under-resourced settings, in particular for the SATOS languages.
['Matteo Negri', 'Marco Turchi', 'Surafel M. Lakew']
2020-03-31
null
null
null
null
['low-resource-neural-machine-translation']
['natural-language-processing']
[ 9.15639028e-02 -3.00680131e-01 -6.05943978e-01 -3.79055530e-01 -1.73313475e+00 -8.44869077e-01 8.80432069e-01 -3.35945964e-01 -5.17046332e-01 1.29754210e+00 2.67063588e-01 -9.76612151e-01 2.49362439e-01 -1.45056173e-01 -9.15077567e-01 -2.82864630e-01 3.50160003e-01 1.14234698e+00 -4.42444414e-01 -6.39557421e-01 5.85304992e-03 1.70015305e-01 -3.51175338e-01 5.81635118e-01 1.24999464e+00 2.03502446e-01 2.27462769e-01 4.79223967e-01 2.52346937e-02 2.89332747e-01 -4.75401551e-01 -7.74835765e-01 5.32789826e-01 -6.33007407e-01 -9.16190147e-01 -5.96077740e-01 6.96519315e-01 -4.80732322e-02 -1.30188195e-02 6.92001045e-01 7.21391976e-01 -2.74181217e-01 6.95396125e-01 -7.91792870e-01 -1.12272847e+00 9.73054588e-01 -6.72575295e-01 1.57762945e-01 3.96495193e-01 1.96928270e-02 9.75618124e-01 -1.42123020e+00 9.83228445e-01 1.40347397e+00 7.59247243e-01 5.65548539e-01 -1.20355487e+00 -7.63334513e-01 -2.73678094e-01 -4.34607603e-02 -1.18795967e+00 -7.16004968e-01 1.06542990e-01 -1.28238484e-01 1.49288249e+00 1.62863925e-01 1.56980380e-02 1.32773912e+00 4.95610684e-01 7.70231366e-01 1.76334500e+00 -9.73939598e-01 -3.25674653e-01 3.78848106e-01 -4.12632048e-01 2.88979292e-01 1.90239295e-01 -1.56124565e-03 -7.97860324e-01 -1.70590263e-02 4.15627211e-01 -6.57803297e-01 -1.01290792e-02 2.27396950e-01 -1.74988520e+00 7.32909024e-01 7.32207522e-02 6.04770243e-01 -1.83414847e-01 -3.13314408e-01 4.48592335e-01 1.02015793e+00 1.07894039e+00 5.22186160e-01 -9.72123861e-01 -3.42237473e-01 -9.82869387e-01 -9.40540507e-02 8.04280281e-01 1.23022425e+00 4.79429305e-01 4.15919488e-03 -8.20455551e-02 1.39029598e+00 6.98082373e-02 1.10774541e+00 5.86698353e-01 -4.25966948e-01 1.36897254e+00 2.09108159e-01 5.71638979e-02 -2.12667644e-01 -1.01651609e-01 -3.71929944e-01 -7.42646933e-01 -4.60452765e-01 4.68288839e-01 -3.95728409e-01 -8.28738630e-01 1.79960346e+00 -9.79837254e-02 -5.25116086e-01 5.90352714e-01 6.23418331e-01 5.25916398e-01 1.02525854e+00 -1.67304754e-01 -3.86266649e-01 1.05129325e+00 -1.38466585e+00 -6.32363141e-01 -4.01383072e-01 1.10181749e+00 -1.51914358e+00 1.33517003e+00 6.22074306e-02 -1.24673629e+00 -5.52229285e-01 -9.55590725e-01 -1.07208826e-01 -3.88851643e-01 6.92799032e-01 3.21525544e-01 4.42452669e-01 -1.38324738e+00 3.98274153e-01 -7.51993001e-01 -9.63140130e-01 -6.89779818e-02 4.58642781e-01 -6.32492185e-01 -4.07247692e-01 -1.57988560e+00 1.46811223e+00 2.04063386e-01 -1.86534086e-03 -6.78695798e-01 -5.55792451e-01 -5.07387519e-01 -6.14838481e-01 -2.00626999e-01 -4.06673908e-01 1.31665730e+00 -1.03502965e+00 -1.55317020e+00 1.20322871e+00 -2.13474303e-01 -3.06835443e-01 7.61433601e-01 -3.65828842e-01 -6.80784464e-01 -4.28410500e-01 4.04303819e-01 7.67199457e-01 2.14437738e-01 -8.07465971e-01 -5.86678684e-01 -1.79595396e-01 -3.42844784e-01 5.09472251e-01 -1.85737535e-01 6.96994007e-01 -2.51843154e-01 -7.52240539e-01 -6.38892725e-02 -1.35760522e+00 8.23200960e-03 -9.25578058e-01 -2.54972100e-01 -1.12604924e-01 3.10269862e-01 -1.31873977e+00 9.72453535e-01 -1.70393288e+00 3.88671786e-01 -2.45033711e-01 -6.28972411e-01 3.06391656e-01 -5.43844879e-01 8.21373701e-01 1.41077619e-02 2.08598047e-01 -1.66245446e-01 -4.17417049e-01 -1.78201348e-01 2.48880565e-01 -1.76704541e-01 3.10183644e-01 3.58888805e-01 1.31726742e+00 -7.51160443e-01 -3.81292105e-01 -2.18382195e-01 1.90988109e-01 2.75332611e-02 2.87825260e-02 5.19790268e-03 9.15894389e-01 1.12506449e-01 8.02197754e-01 4.50994045e-01 2.27154821e-01 3.70632619e-01 1.35361329e-01 -3.05811793e-01 9.06503737e-01 -2.97641903e-01 2.07929611e+00 -9.59554076e-01 7.53467083e-01 -3.03190053e-01 -4.44299042e-01 9.53827322e-01 5.18582106e-01 3.34357731e-02 -1.00127125e+00 -2.82515585e-01 1.22179568e+00 3.80922794e-01 -2.47911233e-02 5.86879671e-01 -7.73729831e-02 -1.87253296e-01 7.27403402e-01 3.19795400e-01 -5.39654195e-02 2.90511250e-01 -4.81473133e-02 5.96583545e-01 5.32581985e-01 3.02631199e-01 -6.24813080e-01 3.72604847e-01 2.88260370e-01 4.91158545e-01 4.75289583e-01 3.96740437e-02 5.04713833e-01 9.47870407e-03 -2.06225529e-01 -1.45379567e+00 -1.07795751e+00 -5.79322949e-02 1.29174113e+00 -4.76298898e-01 -1.64654508e-01 -8.72330606e-01 -8.26118469e-01 -3.66244763e-01 8.71068656e-01 -2.31019586e-01 9.71745253e-02 -1.22284937e+00 -1.06229293e+00 8.52408946e-01 2.35759124e-01 4.23865587e-01 -1.04994857e+00 2.71121800e-01 1.50895000e-01 -7.68304229e-01 -1.31331754e+00 -7.02581942e-01 7.17106238e-02 -1.04234278e+00 -2.91546732e-01 -1.10793400e+00 -1.18854153e+00 4.02047396e-01 1.09456465e-01 1.26563275e+00 -5.99656999e-01 3.08105737e-01 -2.73172885e-01 -3.12680542e-01 -3.59411001e-01 -9.79203820e-01 7.80217409e-01 4.93699580e-01 -4.60979670e-01 5.67320764e-01 -1.93631902e-01 3.25025357e-02 3.64210308e-01 -1.85519964e-01 2.83498645e-01 9.68688965e-01 9.19581890e-01 5.42616904e-01 -8.81271839e-01 7.56238580e-01 -8.50237548e-01 7.28993237e-01 -5.31196654e-01 -3.03113729e-01 7.51549304e-01 -7.37100899e-01 -3.91516760e-02 6.04146838e-01 -4.21076119e-01 -1.17518365e+00 -4.29099262e-01 9.96851400e-02 1.23700641e-01 1.47206157e-01 6.22563601e-01 -6.84081540e-02 2.30111312e-02 7.44050205e-01 3.17347616e-01 -3.27202737e-01 -7.89956868e-01 4.61520374e-01 1.14441919e+00 4.21595067e-01 -9.09056365e-01 8.15499604e-01 -2.39245266e-01 -3.30626428e-01 -4.44663167e-01 -4.48351771e-01 -1.22353487e-01 -9.74424541e-01 3.01718805e-02 5.67769587e-01 -1.24131978e+00 2.64147878e-01 4.63386446e-01 -1.38280308e+00 -6.00682616e-01 1.16112538e-01 8.80587399e-01 -5.85725009e-01 -9.01800171e-02 -1.16830850e+00 -3.49343210e-01 -7.85771012e-01 -1.38789868e+00 1.13710713e+00 -1.34780213e-01 -4.58931148e-01 -1.15024257e+00 4.72340882e-01 5.43953717e-01 6.38396084e-01 -1.91061229e-01 1.21922553e+00 -9.46992755e-01 -9.32730734e-02 2.24286299e-02 -2.08047956e-01 4.49700743e-01 3.32789987e-01 -3.11905921e-01 -4.92084056e-01 -6.82928979e-01 -2.07138985e-01 -6.23824656e-01 3.75998825e-01 7.28007555e-02 -1.42964497e-01 -2.03337058e-01 -1.01707526e-01 4.47609931e-01 1.29755461e+00 2.11974189e-01 3.94081384e-01 5.50683379e-01 6.63536251e-01 5.17024696e-01 8.82574737e-01 -3.47485483e-01 4.43054914e-01 9.22604501e-01 -4.53597933e-01 -4.63049620e-01 -4.49106902e-01 -4.23208684e-01 1.06807005e+00 1.81421697e+00 -2.41143331e-01 -2.85662085e-01 -1.21116912e+00 5.54192960e-01 -1.67907894e+00 -2.71661520e-01 -1.60054758e-01 2.32566595e+00 1.22913885e+00 -1.38319924e-01 -4.33063433e-02 -5.83225548e-01 6.47368133e-01 -2.93376774e-01 -1.99160531e-01 -1.04360485e+00 -4.83870775e-01 4.47820961e-01 6.34854317e-01 6.77739620e-01 -6.78857028e-01 1.68662667e+00 6.34318161e+00 1.02345884e+00 -1.12252569e+00 6.52989209e-01 7.40600109e-01 -5.12659224e-03 -1.89311698e-01 1.32444739e-01 -9.07546043e-01 2.32431516e-01 1.66062653e+00 -8.13062638e-02 7.33212113e-01 3.23299825e-01 3.26402217e-01 2.38022029e-01 -1.31827426e+00 6.49641693e-01 2.22689673e-01 -9.27839100e-01 1.49109930e-01 1.02486573e-01 1.34762001e+00 9.00250256e-01 1.61783010e-01 5.62283278e-01 4.02646214e-01 -1.01786351e+00 6.14817381e-01 4.74598669e-02 1.38014138e+00 -7.67445207e-01 8.11022520e-01 3.56939554e-01 -7.07112134e-01 4.84660596e-01 -5.05775392e-01 1.37006894e-01 1.07974723e-01 6.01560250e-02 -1.14642262e+00 1.03395987e+00 4.74223495e-01 7.61044562e-01 -5.24063051e-01 4.11748827e-01 -3.96399677e-01 1.01424980e+00 -2.11089462e-01 1.25445396e-01 5.16272366e-01 -4.97162670e-01 5.11473954e-01 1.60125446e+00 5.01930416e-01 -5.34903109e-01 4.97519337e-02 4.46221650e-01 -3.70245814e-01 8.25043440e-01 -7.66121924e-01 -2.05169678e-01 3.29838067e-01 9.98891532e-01 -2.80387253e-01 -2.52390087e-01 -5.18331170e-01 1.33410311e+00 5.11191428e-01 4.18838501e-01 -6.68964565e-01 -2.36181542e-01 4.98488247e-01 -1.94956109e-01 -2.76745319e-01 -5.29635012e-01 -3.05631340e-01 -1.32201493e+00 1.22606628e-01 -1.51269007e+00 1.06740063e-02 -5.64598560e-01 -1.23738515e+00 9.78479981e-01 4.14529815e-02 -1.33833587e+00 -6.20314717e-01 -6.25269234e-01 -2.06577092e-01 1.49830091e+00 -1.31585777e+00 -1.82200885e+00 7.08604038e-01 1.23592064e-01 9.96888757e-01 -7.76288509e-01 1.06611955e+00 5.96612275e-01 -4.06875193e-01 1.11522532e+00 6.84402764e-01 1.13682643e-01 1.36590242e+00 -1.06243694e+00 1.17025483e+00 9.40538764e-01 4.74248886e-01 8.18172991e-01 4.05587137e-01 -7.60922253e-01 -1.25548589e+00 -1.14378369e+00 1.82266009e+00 -7.53559709e-01 7.30483472e-01 -6.13424659e-01 -4.98198569e-01 9.88106728e-01 7.11632729e-01 -6.65601194e-01 6.44986629e-01 2.96885610e-01 -4.49875057e-01 1.21130623e-01 -1.00316000e+00 8.21692705e-01 9.68991697e-01 -6.82478070e-01 -4.90129501e-01 7.70205915e-01 8.46865177e-01 -3.39665771e-01 -1.15113437e+00 4.83273864e-01 6.65931880e-01 -2.68893927e-01 6.38613522e-01 -1.03300035e+00 5.75085580e-01 -7.76220858e-02 -5.71848094e-01 -1.81306016e+00 -1.19046174e-01 -7.54126132e-01 4.85345036e-01 1.40019035e+00 1.20905650e+00 -7.42452979e-01 1.47293955e-01 -1.80749565e-01 -1.76689684e-01 -6.42263710e-01 -1.16036081e+00 -1.07833850e+00 8.47934544e-01 -2.08152041e-01 3.53948623e-01 1.16835773e+00 -7.00537711e-02 8.18039894e-01 -7.57600486e-01 -2.55564660e-01 2.61819869e-01 3.16043035e-03 7.81642973e-01 -5.86026967e-01 -4.96802181e-01 -2.21533209e-01 1.74438775e-01 -7.64245450e-01 3.35866958e-01 -1.49339068e+00 -1.16290376e-02 -1.55792630e+00 3.16771448e-01 -4.94858265e-01 -1.91935614e-01 6.42287076e-01 -1.02654450e-01 6.90677166e-01 3.37888479e-01 6.40236318e-01 -2.97072738e-01 1.15968667e-01 1.18792045e+00 -8.62079337e-02 -1.31841689e-01 -1.83356583e-01 -3.61400902e-01 2.47584432e-01 1.02345741e+00 -5.22191107e-01 -1.40013441e-01 -1.17653811e+00 9.77493078e-02 -5.43182641e-02 -5.96321225e-01 -6.68806016e-01 -1.16799235e-01 -1.78518012e-01 1.92474440e-01 -3.53489697e-01 1.61663041e-01 -2.86904275e-01 1.65893450e-01 5.48776567e-01 -5.31075299e-01 7.81242013e-01 3.53680283e-01 -2.34109119e-01 -1.22010134e-01 1.36062369e-01 6.65476024e-01 -9.37701985e-02 -2.26219699e-01 1.65725052e-02 -2.62888640e-01 2.11683929e-01 5.82668662e-01 1.25938967e-01 -3.70595753e-01 -3.25011641e-01 -2.28226691e-01 1.29773661e-01 5.30152559e-01 8.46476614e-01 1.12363778e-01 -1.43800664e+00 -1.58834159e+00 1.53111100e-01 3.04290414e-01 -6.67863131e-01 -4.43713754e-01 1.11799932e+00 -5.09736836e-01 8.78746569e-01 -4.48625058e-01 -4.71545547e-01 -1.04795432e+00 1.34494724e-02 2.00309262e-01 -6.87640548e-01 8.86249531e-04 5.95804811e-01 -1.83705181e-01 -1.22576165e+00 -2.14480653e-01 -1.64148156e-02 3.04651648e-01 -2.78939545e-01 1.13944121e-01 4.22180563e-01 3.53019923e-01 -1.02799833e+00 -3.44771564e-01 5.03416419e-01 -4.43975240e-01 -6.75274611e-01 9.52646792e-01 -2.15437472e-01 -4.48401541e-01 8.36083710e-01 1.24027264e+00 2.65493661e-01 -2.68525153e-01 -4.00566101e-01 3.39671493e-01 -9.79299471e-02 -4.52829659e-01 -1.48108506e+00 -4.54221815e-01 9.25205827e-01 4.91445333e-01 -7.50388265e-01 9.37839031e-01 -1.71945974e-01 9.15419638e-01 3.60367209e-01 8.11501801e-01 -1.11188126e+00 -6.31727040e-01 9.42876458e-01 8.54909301e-01 -1.35021412e+00 -4.14057910e-01 -1.64433233e-02 -7.44248688e-01 1.03854847e+00 4.30660248e-01 2.11541131e-01 6.69109747e-02 1.26082510e-01 5.84980607e-01 4.88717645e-01 -9.01051164e-01 2.71215141e-01 3.53506535e-01 3.66835713e-01 1.16568065e+00 4.19436216e-01 -8.87909055e-01 3.71370539e-02 -3.52351457e-01 -1.96410030e-01 2.24251673e-01 6.43969297e-01 8.04920420e-02 -1.75657248e+00 -3.46605122e-01 2.70620942e-01 -7.73982584e-01 -6.81388974e-01 -7.90773094e-01 9.75031972e-01 -9.20951068e-02 9.88757193e-01 -1.61226794e-01 -4.49202716e-01 2.12458730e-01 3.40329260e-01 6.39228046e-01 -6.08899117e-01 -8.77511322e-01 2.96013862e-01 4.77445394e-01 -1.17961571e-01 -1.77446485e-01 -7.72079766e-01 -8.48672092e-01 -4.06159341e-01 -2.85430968e-01 3.98244590e-01 1.00649905e+00 9.80783761e-01 1.96859956e-01 -2.42556054e-02 5.69816530e-01 -6.28111541e-01 -7.18782902e-01 -1.57233918e+00 1.52299419e-01 1.32346883e-01 -2.08352581e-01 -9.40363482e-02 -2.02843659e-02 -1.97169274e-01]
[11.542854309082031, 10.390960693359375]
598c2b33-a2e0-41cf-b340-7908e7e0538c
inducing-semantic-grouping-of-latent-concepts
2108.11761
null
https://arxiv.org/abs/2108.11761v2
https://arxiv.org/pdf/2108.11761v2.pdf
A Framework for Learning Ante-hoc Explainable Models via Concepts
Self-explaining deep models are designed to learn the latent concept-based explanations implicitly during training, which eliminates the requirement of any post-hoc explanation generation technique. In this work, we propose one such model that appends an explanation generation module on top of any basic network and jointly trains the whole module that shows high predictive performance and generates meaningful explanations in terms of concepts. Our training strategy is suitable for unsupervised concept learning with much lesser parameter space requirements compared to baseline methods. Our proposed model also has provision for leveraging self-supervision on concepts to extract better explanations. However, with full concept supervision, we achieve the best predictive performance compared to recently proposed concept-based explainable models. We report both qualitative and quantitative results with our method, which shows better performance than recently proposed concept-based explainability methods. We reported exhaustive results with two datasets without ground truth concepts, i.e., CIFAR10, ImageNet, and two datasets with ground truth concepts, i.e., AwA2, CUB-200, to show the effectiveness of our method for both cases. To the best of our knowledge, we are the first ante-hoc explanation generation method to show results with a large-scale dataset such as ImageNet.
['Vineeth N Balasubramanian', 'Anindya Sarkar', 'Deepak Vijaykeerthy', 'Anirban Sarkar']
2021-08-25
null
http://openaccess.thecvf.com//content/CVPR2022/html/Sarkar_A_Framework_for_Learning_Ante-Hoc_Explainable_Models_via_Concepts_CVPR_2022_paper.html
http://openaccess.thecvf.com//content/CVPR2022/papers/Sarkar_A_Framework_for_Learning_Ante-Hoc_Explainable_Models_via_Concepts_CVPR_2022_paper.pdf
cvpr-2022-1
['explainable-models']
['computer-vision']
[ 1.21638231e-01 9.16474283e-01 -2.48883530e-01 -5.99613607e-01 -2.96173275e-01 -9.52221230e-02 7.02698946e-01 1.14969738e-01 -5.12634590e-02 8.47614884e-01 1.49538785e-01 -5.64190328e-01 -2.46099874e-01 -7.03880847e-01 -9.25229371e-01 -2.65432924e-01 -1.01243801e-01 7.01929688e-01 -3.83189991e-02 -1.74519420e-01 4.16571736e-01 -5.10882996e-02 -1.80179155e+00 3.70761514e-01 1.41735721e+00 7.05194414e-01 1.82882994e-01 3.48331392e-01 -1.58803195e-01 6.81816220e-01 -3.63353938e-01 -5.68335712e-01 -2.88325585e-02 -5.99239230e-01 -8.68019760e-01 3.54445666e-01 5.22671402e-01 -2.57388204e-01 -1.12163108e-02 5.57998002e-01 -1.11770868e-01 1.35356054e-01 7.14688480e-01 -1.58141410e+00 -1.12730265e+00 9.34659183e-01 -2.31325969e-01 -1.21465363e-01 1.83406696e-01 -1.17007703e-01 1.28691483e+00 -9.83208239e-01 4.03432488e-01 1.12553489e+00 4.95019436e-01 9.69171882e-01 -1.22670174e+00 -8.94802988e-01 4.42553580e-01 3.74075085e-01 -8.98060799e-01 -5.16780056e-02 7.36946464e-01 -1.64623290e-01 1.11382568e+00 -2.12293733e-02 7.12363660e-01 1.12316239e+00 -1.44091425e-02 8.27104926e-01 8.64234030e-01 -4.94914353e-01 4.67681944e-01 3.22331637e-01 4.21705097e-01 7.18115866e-01 5.29910862e-01 2.71722883e-01 -6.54070079e-01 7.58613124e-02 6.36151373e-01 3.69250685e-01 -2.74007827e-01 -5.82848489e-01 -1.16930103e+00 1.12819040e+00 8.47103179e-01 3.46890718e-01 -3.40856045e-01 4.00193363e-01 -9.07958820e-02 1.84149683e-01 5.17906547e-01 7.10049748e-01 -7.01714873e-01 3.18014592e-01 -1.00712454e+00 1.67826205e-01 6.21792674e-01 1.23446381e+00 9.60640490e-01 2.70797193e-01 1.17917791e-01 4.50952739e-01 3.55247021e-01 2.11078465e-01 7.71698117e-01 -8.32249761e-01 4.43763435e-01 7.45584369e-01 -1.31805882e-01 -8.19972038e-01 -3.90622079e-01 -7.87172675e-01 -8.15923870e-01 -5.87625280e-02 -6.32128417e-02 -3.57021838e-02 -1.14424336e+00 1.85225403e+00 -1.53061926e-01 4.86492634e-01 5.44799864e-01 9.10092831e-01 1.00743258e+00 3.25454563e-01 1.72734290e-01 -7.22289756e-02 1.11777997e+00 -1.40888929e+00 -6.75727904e-01 -3.79387081e-01 5.51806927e-01 -2.01178432e-01 1.21481597e+00 3.96990240e-01 -8.73184443e-01 -6.66967213e-01 -1.27196610e+00 1.43409789e-01 -3.79819542e-01 1.59543917e-01 1.46967709e+00 4.40845937e-01 -1.18466306e+00 6.44840419e-01 -7.78527200e-01 -4.84333932e-01 5.58502853e-01 5.71230114e-01 -5.02642572e-01 -4.29415591e-02 -1.08469677e+00 6.17226362e-01 6.43767357e-01 -3.76284599e-01 -9.05534267e-01 -7.67608166e-01 -9.70488012e-01 5.56560755e-01 3.79677981e-01 -9.86653090e-01 1.14995992e+00 -1.13599873e+00 -1.08976805e+00 3.80373597e-01 -2.42146581e-01 -9.71807599e-01 1.02751724e-01 -4.22560871e-01 -3.27136397e-01 1.24668613e-01 2.60434866e-01 1.37890565e+00 6.47432268e-01 -1.60302222e+00 -3.65012318e-01 -3.41518484e-02 4.78669077e-01 -2.52594259e-02 -4.80949938e-01 -6.53339565e-01 -1.67918548e-01 -5.53154171e-01 5.74641705e-01 -9.25060868e-01 -3.61406475e-01 -3.10837984e-01 -6.66266739e-01 -2.29958460e-01 5.68551123e-01 -6.89420477e-02 8.29738021e-01 -1.86334753e+00 -1.73231632e-01 2.96589248e-02 4.53426212e-01 3.71790379e-02 -3.19235265e-01 2.77988464e-01 -6.24811769e-01 5.23319542e-01 -5.15498757e-01 -7.39357054e-01 -3.62938419e-02 4.67043459e-01 -4.70857531e-01 -3.00241895e-02 4.42898959e-01 9.80767310e-01 -1.00875449e+00 -3.02146435e-01 1.50092646e-01 4.37059224e-01 -1.20250249e+00 1.38559103e-01 -5.06389976e-01 3.93668890e-01 -4.16280150e-01 3.82908404e-01 4.22599316e-01 -5.86044312e-01 1.48703799e-01 1.51000276e-01 2.67537534e-01 3.87109607e-01 -8.28296781e-01 1.93389392e+00 -5.44206440e-01 6.38362169e-01 -7.71139920e-01 -1.04986441e+00 1.03543019e+00 5.35635412e-01 2.01664343e-01 -5.21068394e-01 -1.20848611e-01 2.50758857e-01 1.30154416e-01 -1.21895023e-01 5.24407148e-01 -3.46262366e-01 3.13150376e-01 4.92381752e-01 3.43149096e-01 3.11043169e-02 1.29976004e-01 6.77580655e-01 9.82259989e-01 1.25603735e-01 3.59504223e-01 -3.25548798e-01 4.22385395e-01 1.90256953e-01 3.09984684e-01 8.15618336e-01 1.84885994e-01 8.16183567e-01 3.16190004e-01 -5.54809690e-01 -7.45324969e-01 -8.86685014e-01 5.22944592e-02 5.62318623e-01 2.54078537e-01 -7.23042369e-01 -6.50080204e-01 -9.32739019e-01 -6.60223141e-02 1.09859574e+00 -7.43515551e-01 -2.36617640e-01 -8.28870833e-02 -4.48483437e-01 1.57275483e-01 7.31360316e-01 6.16831541e-01 -1.17069507e+00 -4.26399797e-01 3.24267447e-02 -2.06102908e-01 -1.03025413e+00 -7.78774824e-03 3.15237790e-01 -1.38659978e+00 -1.20263386e+00 -1.80131584e-01 -5.85957050e-01 1.04307604e+00 4.46808517e-01 1.32984281e+00 7.46610880e-01 1.40852258e-01 2.87183851e-01 -5.64976037e-01 -4.82845277e-01 -2.62578577e-02 7.14578852e-02 -1.42976686e-01 -3.06925774e-01 2.83997536e-01 -8.05753589e-01 -6.99963272e-01 2.64355361e-01 -9.47478652e-01 5.35423815e-01 7.46296525e-01 1.00002706e+00 5.60148656e-01 1.67779639e-01 7.28945732e-01 -1.37292290e+00 3.75201762e-01 -7.69193590e-01 -1.00102924e-01 7.80765899e-03 -1.17582607e+00 4.01827693e-01 7.22935438e-01 -2.59822577e-01 -1.03138936e+00 7.54373968e-02 1.00546353e-01 -3.27101260e-01 -4.65101928e-01 5.95405400e-01 -1.54633507e-01 4.44474488e-01 7.35491216e-01 9.78923813e-02 -2.65986621e-01 -4.78193432e-01 6.25397325e-01 2.23842427e-01 6.15352929e-01 -4.07051504e-01 1.00850832e+00 5.98126709e-01 -1.38490453e-01 -1.67997077e-01 -1.12983894e+00 -3.24927062e-01 -6.00984097e-01 3.33450735e-01 7.61062205e-01 -9.90261793e-01 -3.87562007e-01 -2.67414659e-01 -1.32433438e+00 -8.66143629e-02 -2.32677117e-01 6.81608498e-01 -7.58074701e-01 6.61601871e-02 -3.24524611e-01 -5.83495855e-01 -2.73638010e-01 -8.01516235e-01 8.01586211e-01 1.67824343e-01 -3.65653247e-01 -1.22418773e+00 -2.06257731e-01 4.70648915e-01 4.03222293e-01 2.64808059e-01 8.89925778e-01 -1.07178485e+00 -9.02467489e-01 7.61468783e-02 -2.70601183e-01 5.57333715e-02 4.84308489e-02 -3.76432776e-01 -1.16455054e+00 -8.64064544e-02 -1.87383428e-01 -3.50761950e-01 1.34063280e+00 2.82251656e-01 1.45385504e+00 -5.72086811e-01 -3.86782229e-01 4.36999500e-01 1.46394217e+00 2.88193696e-03 7.45384872e-01 4.46730644e-01 6.67646110e-01 5.97962439e-01 8.05185676e-01 2.82268614e-01 5.67661762e-01 4.23191398e-01 9.13857877e-01 -4.08336788e-01 -1.45397037e-01 -4.71688569e-01 7.80299678e-02 5.37981570e-01 -1.49365142e-01 -5.27829289e-01 -7.57043362e-01 7.32818067e-01 -2.19641995e+00 -9.84123290e-01 -3.73616129e-01 1.84089446e+00 5.09130478e-01 8.18847120e-02 -2.99763560e-01 2.99495041e-01 3.97622436e-01 -1.57593369e-01 -5.20829320e-01 -3.75134647e-01 1.02297768e-01 3.56746227e-01 -8.05748347e-03 5.67279220e-01 -8.39537203e-01 1.17259371e+00 6.10297871e+00 3.94346118e-01 -7.06337214e-01 2.23174617e-01 5.14274418e-01 -3.15969996e-02 -8.74734700e-01 5.08706093e-01 -4.29013759e-01 8.81225318e-02 8.72172117e-01 1.09305836e-01 1.74343929e-01 1.09580839e+00 2.03670096e-02 2.51890421e-01 -1.35930228e+00 7.03350306e-01 2.20132440e-01 -1.40948474e+00 3.59337717e-01 1.05994612e-01 1.00185215e+00 -3.10030878e-01 -5.29749691e-02 4.06447023e-01 3.39551449e-01 -1.23831189e+00 6.06908739e-01 3.62850398e-01 4.87045825e-01 -8.44000220e-01 8.99338007e-01 3.40173453e-01 -7.93769240e-01 -6.12789169e-02 -5.44405460e-01 -2.91405499e-01 3.67477424e-02 7.77268648e-01 -8.62784028e-01 6.74741507e-01 4.74120617e-01 1.05672896e+00 -7.12128520e-01 8.88802707e-01 -8.19773316e-01 8.36746573e-01 1.74081728e-01 2.00841039e-01 2.36985236e-01 1.60584196e-01 1.90836787e-01 8.79484117e-01 5.37918150e-01 2.38720834e-01 -1.76966842e-02 1.26238263e+00 -5.97649887e-02 -9.28429887e-02 -5.22543311e-01 -3.12864706e-02 3.43618661e-01 1.20319486e+00 -7.53287375e-01 -6.59258544e-01 -3.81046623e-01 9.59843278e-01 4.54566538e-01 3.35047841e-01 -9.86207902e-01 -8.26635212e-02 5.37314475e-01 1.38573855e-01 2.68806815e-01 -1.03412732e-01 -5.79893470e-01 -1.41981077e+00 -2.89320886e-01 -6.71948612e-01 3.79594892e-01 -1.03908336e+00 -1.23262799e+00 9.00974870e-01 1.21838883e-01 -1.03500056e+00 -4.96369243e-01 -5.95280409e-01 -9.01534438e-01 6.18991554e-01 -1.72693539e+00 -1.19497335e+00 -5.46112418e-01 5.89573264e-01 6.59707963e-01 -4.00185674e-01 8.55332553e-01 -4.69159409e-02 -2.39136547e-01 5.25035441e-01 -3.97798091e-01 -2.67816871e-01 4.88529652e-01 -1.55513310e+00 4.83838081e-01 7.20548570e-01 6.09058976e-01 1.08565092e+00 8.68992329e-01 -6.92416787e-01 -8.13968956e-01 -1.01432621e+00 1.12140965e+00 -4.78036612e-01 3.78392696e-01 -3.09109151e-01 -9.97555256e-01 8.15729380e-01 2.95153081e-01 -3.25932771e-01 9.14926291e-01 5.74675560e-01 -3.54340136e-01 1.76039487e-01 -9.79047835e-01 5.29993057e-01 1.30572367e+00 -6.22082688e-02 -8.22178781e-01 3.32422018e-01 1.17966890e+00 -1.83010131e-01 -3.72178197e-01 4.01596963e-01 3.26960146e-01 -1.35278213e+00 9.52999949e-01 -7.26853907e-01 1.06723130e+00 -3.73940885e-01 -5.50590865e-02 -1.39732695e+00 -3.82042468e-01 -1.32098719e-01 -2.84370035e-01 1.20783567e+00 7.98496366e-01 -8.17636669e-01 9.42167759e-01 6.86654806e-01 -5.23953736e-01 -7.92337537e-01 -4.08828795e-01 -7.47090816e-01 -9.48705599e-02 -5.83603740e-01 1.05434155e+00 9.21750128e-01 5.41686043e-02 5.44006050e-01 -3.03032279e-01 2.21938759e-01 6.14100933e-01 4.59798515e-01 8.16543460e-01 -1.30286431e+00 -4.56231475e-01 -1.24326803e-01 -3.94849539e-01 -8.49936783e-01 5.15371382e-01 -1.03611374e+00 -1.66730806e-02 -1.86256289e+00 5.97390354e-01 -3.77133369e-01 -3.47156078e-01 1.01958966e+00 -3.87362927e-01 2.35426888e-01 2.32087344e-01 3.64819884e-01 -6.45724773e-01 8.22359502e-01 1.23749757e+00 -6.38791844e-02 -9.72996280e-02 -1.89501330e-01 -1.36878836e+00 6.71678245e-01 1.22591579e+00 -6.74704611e-01 -1.09660542e+00 -5.04595459e-01 6.34474866e-03 -2.53893733e-01 6.73166752e-01 -1.15341151e+00 7.42171258e-02 -1.24196291e-01 3.76352966e-01 -4.97657061e-01 6.82118684e-02 -8.20999980e-01 1.45268500e-01 4.92753267e-01 -5.22999406e-01 -2.31437422e-02 2.29751319e-01 7.27368593e-01 -4.33958739e-01 -1.57717571e-01 3.22560132e-01 -9.11649764e-02 -7.75068879e-01 3.70140642e-01 -3.51282135e-02 -3.05300713e-01 7.62513518e-01 -3.77822876e-01 -5.19524157e-01 -6.88623905e-01 -6.40005410e-01 3.40665460e-01 3.83207381e-01 5.67339003e-01 9.00341928e-01 -1.45943689e+00 -5.75030386e-01 1.75672144e-01 3.78573656e-01 -2.08889917e-02 1.10008195e-01 4.74063426e-01 -1.26893476e-01 8.62528265e-01 -1.87737182e-01 -4.81316537e-01 -8.81796777e-01 8.16458464e-01 1.16833203e-01 -2.63108134e-01 -7.19085693e-01 6.32413387e-01 6.49125099e-01 -5.94678581e-01 -3.71456705e-02 -4.17379737e-01 -3.75544488e-01 -4.75518107e-01 3.65900248e-01 -4.67623509e-02 -1.41373232e-01 -2.35114321e-01 -3.13803583e-01 2.01290920e-01 -1.71344019e-02 -1.15094163e-01 1.38883233e+00 -5.58852293e-02 1.44975185e-01 1.42875999e-01 7.99114883e-01 -3.04207921e-01 -1.23945379e+00 6.89375866e-03 5.55165708e-02 -5.03515303e-01 -1.28719732e-01 -1.03428698e+00 -1.27585137e+00 1.13895047e+00 2.73547560e-01 -1.86962318e-02 1.18018067e+00 2.18604624e-01 5.29065788e-01 4.85341251e-01 3.40470105e-01 -4.97282475e-01 5.20006359e-01 3.38470459e-01 9.92026091e-01 -1.45175517e+00 -8.01429152e-02 -5.85813344e-01 -7.04266846e-01 9.37217593e-01 1.09026229e+00 -1.91941202e-01 3.91369820e-01 -3.50378960e-01 -6.37680665e-02 -4.79210198e-01 -1.09442818e+00 -4.08778071e-01 6.30897939e-01 7.17042387e-01 6.44148588e-01 1.23154424e-01 -3.60981017e-01 1.08652544e+00 -5.31613648e-01 -1.09423354e-01 4.74228382e-01 3.76271725e-01 -4.42448914e-01 -1.21188748e+00 -3.63343656e-02 3.12453240e-01 -6.91708773e-02 -4.58985060e-01 -5.70834160e-01 1.07207131e+00 3.14878225e-01 1.22044170e+00 1.01637654e-02 -3.24931175e-01 1.04509570e-01 7.69923255e-02 1.18378088e-01 -9.64385271e-01 -3.64345491e-01 -3.69102597e-01 -8.21000189e-02 -6.33872330e-01 -5.96831203e-01 -3.13197732e-01 -1.85872543e+00 -3.32411617e-01 -5.59400141e-01 4.08425540e-01 6.30231857e-01 1.28497648e+00 5.66525638e-01 6.97182536e-01 2.21607953e-01 -5.96439958e-01 -2.04714350e-02 -8.98584902e-01 -4.17976707e-01 6.22288465e-01 2.16017693e-01 -8.58583033e-01 -4.15948480e-01 6.73652962e-02]
[9.02340316772461, 5.703380107879639]
0db958ae-4354-42f5-890f-b9fcf6c2baa7
s2gan-share-aging-factors-across-ages-and
null
null
http://openaccess.thecvf.com/content_ICCV_2019/html/He_S2GAN_Share_Aging_Factors_Across_Ages_and_Share_Aging_Trends_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/papers/He_S2GAN_Share_Aging_Factors_Across_Ages_and_Share_Aging_Trends_ICCV_2019_paper.pdf
S2GAN: Share Aging Factors Across Ages and Share Aging Trends Among Individuals
Generally, we human follow the roughly common aging trends, e.g., the wrinkles only tend to be more, longer or deeper. However, the aging process of each individual is more dominated by his/her personalized factors, including the invariant factors such as identity and mole, as well as the personalized aging patterns, e.g., one may age by graying hair while another may age by receding hairline. Following this biological principle, in this work, we propose an effective and efficient method to simulate natural aging. Specifically, a personalized aging basis is established for each individual to depict his/her own aging factors. Then different ages share this basis, being derived through age-specific transforms. The age-specific transforms represent the aging trends which are shared among all individuals. The proposed method can achieve continuous face aging with favorable aging accuracy, identity preservation, and fidelity. Furthermore, befitted from the effective design, a unique model is capable of all ages and the prediction time is significantly saved.
[' Xilin Chen', ' Shiguang Shan', ' Meina Kan', 'Zhenliang He']
2019-10-01
null
null
null
iccv-2019-10
['face-age-editing']
['computer-vision']
[-1.54118448e-01 -1.80709392e-01 -2.17081860e-01 -6.47541583e-02 4.24334586e-01 -2.58334398e-01 1.23644508e-01 -3.16840746e-02 -1.90405976e-02 8.74216735e-01 3.20700556e-01 2.87677169e-01 8.97737667e-02 -8.80845487e-01 -4.79980439e-01 -8.23579550e-01 -3.03340815e-02 -8.53199586e-02 1.60334513e-01 -3.61132413e-01 2.00302135e-02 1.32525459e-01 -1.78483987e+00 -3.11727732e-01 1.26085508e+00 1.00654936e+00 -2.57136412e-02 2.97945321e-01 4.88116592e-02 1.23821609e-01 -3.41338009e-01 -4.27015156e-01 -9.07591879e-02 -5.36912918e-01 -7.39553571e-02 -1.47939771e-01 3.05415750e-01 -6.05057061e-01 -5.29550612e-01 8.84286880e-01 6.07545316e-01 -2.16505080e-01 7.81808436e-01 -1.27063012e+00 -9.08052444e-01 5.28708100e-01 -8.44438314e-01 -4.91962075e-01 3.38558763e-01 5.14431186e-02 6.41261578e-01 -5.65616429e-01 4.48277861e-01 1.43938875e+00 7.95331717e-01 9.65114295e-01 -9.86781776e-01 -1.06593263e+00 4.83496189e-01 2.40955144e-01 -1.42165685e+00 -2.58307278e-01 7.31324613e-01 -3.53154212e-01 -3.19320172e-01 2.20332682e-01 1.27063811e+00 1.07200801e+00 7.23636031e-01 7.56298661e-01 1.04052556e+00 -2.26884589e-01 2.23012082e-02 -1.98598281e-01 1.04517698e-01 7.82383263e-01 6.98992014e-01 1.76180393e-01 -7.15930521e-01 3.29259560e-02 6.19719148e-01 1.31211862e-01 -3.66860092e-01 -4.33380008e-02 -1.06098223e+00 8.16808864e-02 1.63326249e-01 1.78432480e-01 -4.09274139e-02 1.66836157e-02 2.48612672e-01 -8.07483941e-02 3.04220229e-01 -1.67273477e-01 -4.87247407e-01 2.39115015e-01 -8.46189797e-01 5.25646210e-01 4.53774780e-01 9.59172726e-01 1.11314905e+00 7.08201602e-02 -1.86837047e-01 7.81504333e-01 5.73665917e-01 7.03165293e-01 6.99877441e-01 -8.76337230e-01 -3.24160218e-01 5.78910589e-01 1.68687794e-02 -1.12545753e+00 -4.49324667e-01 -5.44676423e-01 -1.18858016e+00 1.76128179e-01 3.56336445e-01 -1.84492648e-01 -8.38681579e-01 2.27866316e+00 5.59759676e-01 2.77328193e-01 -1.44473821e-01 3.71653795e-01 5.60794652e-01 5.03649056e-01 4.72856492e-01 -7.25186706e-01 1.67114449e+00 -3.81977022e-01 -9.90193546e-01 -3.75057086e-02 -3.98941524e-03 -6.87123597e-01 8.78766358e-01 3.90818685e-01 -8.66270185e-01 -6.91089988e-01 -1.45059228e+00 1.48160517e-01 -8.27094447e-03 1.34282976e-01 5.17910600e-01 9.23865736e-01 -7.52244711e-01 8.18773210e-01 -5.08798599e-01 -6.23991430e-01 2.61140615e-01 7.66655132e-02 -2.67274845e-02 6.76297247e-02 -1.37859547e+00 4.52123046e-01 2.64290452e-01 1.29389510e-01 -7.51400888e-01 -1.18832719e+00 -5.56733727e-01 -3.45878124e-01 -2.19707400e-01 -1.04640937e+00 9.98346746e-01 -7.04880714e-01 -1.40734684e+00 6.20855927e-01 -3.66221994e-01 7.05099339e-03 6.64897084e-01 -4.91266370e-01 -7.76431322e-01 -2.10604668e-01 -1.40534062e-02 5.24510562e-01 8.83014083e-01 -1.48772049e+00 -5.05402446e-01 -7.09868491e-01 -2.51520395e-01 5.44521138e-02 -9.58324313e-01 -1.86031029e-01 -2.28125721e-01 -7.68539011e-01 2.98463285e-01 -7.96894729e-01 9.78961214e-03 6.26843512e-01 -3.97580802e-01 2.34848976e-01 1.13294387e+00 -1.14375889e+00 1.73701131e+00 -2.07824874e+00 1.81695268e-01 1.10888921e-01 4.76959229e-01 -1.45866826e-01 1.98279947e-01 3.98897618e-01 9.30136144e-02 1.74866647e-01 -1.76945567e-01 -1.00314170e-01 -1.31460845e-01 8.53817612e-02 -5.45091694e-03 3.09422553e-01 -2.91485876e-01 5.49858153e-01 -7.18162417e-01 -8.48681033e-01 -2.99231589e-01 4.76705909e-01 -3.68522763e-01 4.28960919e-02 -1.91465154e-01 5.41614890e-01 -5.41912913e-01 7.48307526e-01 1.00779045e+00 2.74378359e-01 1.04968950e-01 -6.61165535e-01 -3.36407036e-01 -7.49119878e-01 -9.83399808e-01 1.51220059e+00 -2.19416633e-01 -1.18675284e-01 4.82557416e-02 -2.58588970e-01 1.36605072e+00 2.14018449e-01 7.10816145e-01 -4.50685799e-01 1.19296342e-01 3.58356684e-01 -1.95408985e-01 -2.12213308e-01 3.54543597e-01 -3.18745106e-01 2.62160331e-01 4.10970926e-01 -3.63926977e-01 2.58703679e-01 9.97580364e-02 -2.36171223e-02 4.73819673e-01 2.49214873e-01 1.94308847e-01 -6.09353662e-01 7.69509256e-01 -6.37140691e-01 1.19674194e+00 -5.93844615e-02 -2.54210293e-01 2.96909124e-01 2.36162931e-01 -4.17720407e-01 -1.18221998e+00 -1.28805494e+00 -2.47808158e-01 5.97756147e-01 6.59986854e-01 -4.39635485e-01 -9.10675049e-01 -7.76768178e-02 1.24393299e-01 2.89907008e-01 -6.92297995e-01 -7.63619602e-01 -4.03915435e-01 -7.60085106e-01 5.94016910e-01 3.12225699e-01 1.04280484e+00 -6.32253885e-01 -1.07476451e-01 2.16017678e-01 3.11552975e-02 -5.93635499e-01 -8.53120804e-01 -7.98580825e-01 -1.04137540e+00 -9.23929274e-01 -1.07907152e+00 -7.12391198e-01 7.22896636e-01 -1.45303518e-01 7.29460776e-01 3.67486805e-01 -4.25941020e-01 1.78677753e-01 -2.86876351e-01 -4.74944562e-01 -2.19239384e-01 -2.83051678e-03 6.36054277e-01 3.43700439e-01 -1.40572086e-01 -1.07505143e+00 -1.23011136e+00 3.66745412e-01 -6.48617506e-01 2.02072769e-01 3.59148979e-01 5.95167339e-01 4.14490104e-01 3.10670823e-01 6.97804749e-01 -4.20304775e-01 6.20910048e-01 -1.86725408e-01 1.35443863e-02 4.55173731e-01 -1.01845860e+00 -7.03240260e-02 7.15300679e-01 -6.09310150e-01 -1.32274461e+00 -5.65122701e-02 -3.65693797e-03 -9.24743488e-02 2.98676223e-01 1.40478713e-02 -7.25342691e-01 -6.71552792e-02 4.60893422e-01 4.06462401e-01 2.87013859e-01 -4.53453541e-01 3.62104893e-01 4.22349364e-01 5.84763408e-01 -1.08813310e+00 1.09606743e+00 3.63164842e-01 2.25650877e-01 -8.79112184e-01 -4.27393287e-01 4.69650477e-01 -3.67547601e-01 -8.31185162e-01 8.73243868e-01 -6.98965490e-01 -9.42485690e-01 1.36026335e+00 -9.06688869e-01 1.02322297e-02 -4.21238318e-02 3.05425465e-01 -3.07667345e-01 6.33436263e-01 -9.80507970e-01 -1.01831436e+00 -5.32621324e-01 -5.81280470e-01 7.73909628e-01 9.35399771e-01 -3.19142967e-01 -8.38663459e-01 8.88734162e-02 -1.88351408e-01 2.44016007e-01 4.33975369e-01 1.19553471e+00 3.01167607e-01 -3.36036891e-01 1.67509824e-01 -2.41905842e-02 3.05363297e-01 4.89253014e-01 7.20809102e-01 -8.84760678e-01 -2.77095377e-01 -3.22742105e-01 2.16682762e-01 5.45754969e-01 2.64019191e-01 1.04525459e+00 -4.04504597e-01 -5.02662599e-01 6.28489494e-01 1.24775910e+00 5.23583829e-01 8.33491981e-01 3.38246338e-02 6.00084424e-01 8.55319858e-01 5.35353899e-01 6.22339785e-01 3.88925612e-01 3.09480846e-01 1.32730499e-01 -1.13479145e-01 -1.26228511e-01 -8.15583825e-01 3.36583555e-01 1.04677272e+00 -3.38785350e-01 1.59916461e-01 -5.49574971e-01 4.10469808e-02 -1.57530177e+00 -8.88138771e-01 4.10110597e-03 2.25061703e+00 9.94931698e-01 -1.39013737e-01 1.34523764e-01 1.59148023e-01 1.10239100e+00 1.80007704e-02 -1.07832706e+00 1.27481520e-01 -3.09363544e-01 -3.29234526e-02 3.32100332e-01 1.69217139e-01 -5.69431245e-01 5.85801661e-01 7.00626135e+00 7.18028903e-01 -9.35720444e-01 -2.68432498e-01 8.74714017e-01 1.24827653e-01 -7.25461364e-01 3.35004702e-02 -8.55536282e-01 8.06572676e-01 2.66011715e-01 -9.06826735e-01 3.86362642e-01 5.81487715e-01 3.42969209e-01 1.58459961e-01 -6.78818882e-01 8.08641672e-01 -1.61487907e-01 -7.94465125e-01 2.82635331e-01 -7.16966251e-03 5.29833257e-01 -1.15551341e+00 1.64613694e-01 4.27151173e-02 2.26258882e-03 -6.20310664e-01 9.18281436e-01 1.09446561e+00 1.09589052e+00 -6.92168176e-01 1.92546830e-01 1.40812665e-01 -1.75398219e+00 -1.48885816e-01 -8.26120451e-02 2.64718343e-04 1.61941588e-01 8.08765709e-01 2.02338323e-01 7.96500146e-01 6.84898317e-01 9.38318312e-01 -5.46933472e-01 9.50338125e-01 -4.78294007e-02 3.42371166e-01 -1.02713279e-01 2.12515388e-02 -7.38583922e-01 -7.23211288e-01 1.88982174e-01 6.00906730e-01 1.00146544e+00 1.57661751e-01 -1.88961979e-02 6.21345401e-01 1.39594972e-01 3.19822520e-01 -2.14599356e-01 9.53197330e-02 9.66792583e-01 1.08020091e+00 -3.32448244e-01 -1.17543794e-01 -2.91186217e-02 8.06126237e-01 -2.23723561e-01 4.88807350e-01 -8.25462759e-01 -3.37896198e-01 1.07138455e+00 5.15689373e-01 -3.97291839e-01 -1.52034611e-01 -2.43598089e-01 -9.52298105e-01 6.41462067e-03 -6.79401875e-01 2.65259445e-01 -7.80800939e-01 -1.30769563e+00 2.93376595e-01 -2.53034562e-01 -1.22202396e+00 5.18837690e-01 -4.47124809e-01 -9.60930586e-01 7.79759228e-01 -9.70832586e-01 -1.35073721e+00 -7.05340743e-01 4.39705491e-01 1.69957448e-02 -1.28336355e-01 5.57783544e-01 5.79060197e-01 -8.87152791e-01 7.61015594e-01 1.59211867e-02 -3.82210851e-01 9.09580529e-01 -8.06880355e-01 4.81425487e-02 5.99849343e-01 -7.40118921e-01 9.82158065e-01 8.73720050e-01 -9.64444101e-01 -1.30033863e+00 -8.67804825e-01 4.76694733e-01 2.64404267e-01 5.39677441e-01 -1.10501021e-01 -8.51431310e-01 4.24865991e-01 -9.32527930e-02 -6.22833014e-01 4.75014240e-01 2.49299496e-01 -4.86969799e-01 -9.48565185e-01 -1.12888610e+00 1.10100091e+00 1.55456483e+00 -1.97022825e-01 -1.21545687e-01 -5.13582267e-02 9.03395653e-01 -1.50710523e-01 -9.96543169e-01 6.11784518e-01 1.35170829e+00 -8.98502231e-01 8.43936622e-01 -6.00214750e-02 3.66652638e-01 -6.87934399e-01 1.57482237e-01 -1.07587934e+00 -5.95074177e-01 -6.82038903e-01 -2.29305193e-01 1.79748058e+00 -5.72063308e-03 -8.82602632e-01 7.85125434e-01 4.68051553e-01 -6.72577024e-02 -8.94347250e-01 -7.51338840e-01 -8.08307827e-01 5.47726043e-02 2.87530601e-01 1.19052017e+00 6.57591581e-01 -2.07511485e-01 1.13101810e-01 -6.98485911e-01 4.26171310e-02 9.00134563e-01 -2.38351166e-01 5.98289073e-01 -1.44462204e+00 -5.34872748e-02 -3.69239509e-01 -4.00222510e-01 -9.45541322e-01 -7.43247345e-02 -4.26345170e-01 -1.70354411e-01 -1.24593067e+00 2.97619671e-01 -6.23902380e-01 -3.30000728e-01 3.11757047e-02 -4.17842776e-01 -1.71245739e-01 -8.14097300e-02 2.00512975e-01 7.10618049e-02 8.73583376e-01 1.88188756e+00 -1.00841098e-01 3.07956133e-02 -2.10611612e-01 -8.95993054e-01 5.84204555e-01 8.71689260e-01 1.80907980e-01 -5.45961916e-01 9.60530248e-03 1.81019843e-01 -7.93697983e-02 5.17500713e-02 -1.29674184e+00 5.76684773e-02 -2.21956685e-01 5.41513026e-01 -3.93460274e-01 2.75536269e-01 -5.71758628e-01 7.19387412e-01 1.01054776e+00 2.20902890e-01 -8.32147002e-02 2.45424472e-02 6.53749049e-01 1.60527080e-01 6.05505146e-02 8.57645214e-01 8.23535100e-02 -5.24604261e-01 1.01233816e+00 -1.37241930e-01 -3.14728618e-01 1.12270081e+00 -4.56684858e-01 -4.40956533e-01 -2.86909461e-01 -6.44801021e-01 3.70457411e-01 9.46485281e-01 2.76283264e-01 3.78800094e-01 -1.70820761e+00 -7.24089861e-01 2.34092787e-01 9.89299193e-02 -3.59358937e-01 8.14551771e-01 4.10817981e-01 -4.85631675e-01 -3.67577791e-01 -7.08025217e-01 -2.65196711e-01 -1.33773601e+00 6.00756824e-01 3.41251165e-01 1.17282085e-01 -3.25264454e-01 5.49806356e-01 4.41760004e-01 -1.14456557e-01 -1.28792331e-01 8.05921331e-02 -3.38884443e-01 2.77851254e-01 5.83636940e-01 6.65163815e-01 -6.10837698e-01 -3.98773938e-01 -1.85389310e-01 1.33123016e+00 -4.15564515e-02 1.19817629e-01 8.49247158e-01 -3.14698964e-01 -4.14505810e-01 6.12298429e-01 6.12692654e-01 1.90154180e-01 -1.26276982e+00 1.61505803e-01 -4.59576696e-01 -4.45261300e-01 -6.10030591e-01 -4.39686149e-01 -1.15792441e+00 4.90859926e-01 7.27426112e-01 2.46926807e-02 1.46267653e+00 -2.98738927e-01 1.15795600e+00 -3.07205021e-01 7.12594271e-01 -1.07348621e+00 -1.44593953e-03 5.77871762e-02 7.08062410e-01 -3.84506375e-01 3.32557887e-01 -6.73041940e-01 -1.64348513e-01 9.15205777e-01 8.95370722e-01 -5.98807633e-03 7.35562265e-01 3.98354381e-02 -8.39603916e-02 3.05776477e-01 -6.12470448e-01 3.32970321e-01 -7.91056603e-02 8.39971304e-01 5.05599618e-01 2.54776835e-01 -1.01023781e+00 8.95009577e-01 -4.11130816e-01 6.59921914e-02 1.11726284e-01 4.44212973e-01 -5.92535675e-01 -1.40421784e+00 -4.19221371e-01 5.00496924e-01 -5.98359201e-03 1.71068385e-01 -8.28531757e-02 5.62359750e-01 6.92818820e-01 6.16297543e-01 -9.10615325e-02 -7.78494895e-01 3.01602483e-01 7.59818479e-02 5.64326942e-01 -4.14091870e-02 -6.08540103e-02 -2.35554442e-01 -1.13640897e-01 -4.13639516e-01 -7.83268958e-02 -8.35061908e-01 -1.11013186e+00 -8.11667740e-01 -2.29576249e-02 -7.81507045e-02 2.85677642e-01 4.86153007e-01 2.04975918e-01 5.77482343e-01 7.49657393e-01 -2.65123665e-01 -1.97113767e-01 -6.29978955e-01 -1.15145421e+00 3.62541050e-01 -3.67855020e-02 -8.35334659e-01 -3.41105521e-01 3.42442304e-01]
[13.146327018737793, 0.43954065442085266]
1c704b56-414d-47bf-b3d5-d41d8b78664b
neural-inventory-control-in-networks-via
2306.11246
null
https://arxiv.org/abs/2306.11246v1
https://arxiv.org/pdf/2306.11246v1.pdf
Neural Inventory Control in Networks via Hindsight Differentiable Policy Optimization
Inventory management offers unique opportunities for reliably evaluating and applying deep reinforcement learning (DRL). Rather than evaluate DRL algorithms by comparing against one another or against human experts, we can compare to the optimum itself in several problem classes with hidden structure. Our DRL methods consistently recover near-optimal policies in such settings, despite being applied with up to 600-dimensional raw state vectors. In others, they can vastly outperform problem-specific heuristics. To reliably apply DRL, we leverage two insights. First, one can directly optimize the hindsight performance of any policy using stochastic gradient descent. This uses (i) an ability to backtest any policy's performance on a subsample of historical demand observations, and (ii) the differentiability of the total cost incurred on any subsample with respect to policy parameters. Second, we propose a natural neural network architecture to address problems with weak (or aggregate) coupling constraints between locations in an inventory network. This architecture employs weight duplication for ``sibling'' locations in the network, and state summarization. We justify this architecture through an asymptotic guarantee, and empirically affirm its value in handling large-scale problems.
['Yash Kanoria', 'Daniel Russo', 'Matias Alvo']
2023-06-20
null
null
null
null
['management']
['miscellaneous']
[-1.20173067e-01 -2.05191299e-02 -6.80825830e-01 -2.17945844e-01 -7.41884053e-01 -8.45669985e-01 3.04233819e-01 1.31000236e-01 -6.02051318e-01 1.04246294e+00 1.89818531e-01 -7.67196476e-01 -4.79844064e-01 -6.00877464e-01 -1.07673371e+00 -7.05758333e-01 -5.20269096e-01 9.53515351e-01 -1.01569660e-01 -2.41534784e-01 4.42975760e-01 5.98689437e-01 -1.19812536e+00 -8.14647079e-02 7.63665617e-01 1.25267017e+00 2.61918247e-01 5.55337131e-01 1.15979433e-01 1.00613856e+00 -8.31082761e-01 -1.10208280e-01 5.23081362e-01 -1.21126093e-01 -6.81956708e-01 1.00944877e-01 3.18241417e-01 -7.68329382e-01 -4.03988570e-01 9.99154627e-01 5.38450360e-01 3.17648053e-01 4.46272582e-01 -1.28880084e+00 -6.13877237e-01 9.48584378e-01 -6.19564235e-01 3.64530206e-01 -1.21264532e-02 6.83063447e-01 1.38908815e+00 -2.31800489e-02 3.99481922e-01 1.26957798e+00 4.80988264e-01 2.79872566e-01 -1.44006109e+00 -3.65920335e-01 7.82848060e-01 3.73972207e-02 -7.66867340e-01 -4.18237388e-01 5.13776302e-01 -1.98408470e-01 1.21558499e+00 -8.16119164e-02 4.62989569e-01 1.20086396e+00 3.01274955e-01 1.01532757e+00 1.03956974e+00 -6.02621175e-02 6.46384299e-01 -4.97198403e-02 -1.20230787e-01 5.87238193e-01 3.54541004e-01 3.82922500e-01 -2.56077379e-01 -1.51464492e-01 7.21368730e-01 -6.94277212e-02 -1.67460006e-03 -3.86258841e-01 -1.00674534e+00 8.25459063e-01 3.13169271e-01 -3.22004050e-01 -6.29909456e-01 5.94975114e-01 4.41312224e-01 6.06479883e-01 1.65649951e-01 1.26027620e+00 -8.04616153e-01 -1.96917951e-01 -8.23241293e-01 4.33007270e-01 1.03363168e+00 9.67849791e-01 4.19224709e-01 4.81741607e-01 -2.47822925e-01 4.13476199e-01 -1.42459288e-01 6.76031113e-01 3.69808823e-01 -1.50513196e+00 7.23291934e-01 3.90435234e-02 6.56307936e-01 -8.37730348e-01 -6.08224690e-01 -7.32062399e-01 -5.21482468e-01 2.38122180e-01 4.42359149e-01 -5.99439800e-01 -7.08440900e-01 2.07739305e+00 -3.84536083e-03 -1.65462986e-01 -6.18870836e-03 8.05394053e-01 -3.81254315e-01 7.05654860e-01 -2.74908602e-01 -4.26454842e-01 9.18970704e-01 -9.34523821e-01 -3.40337545e-01 -5.41876674e-01 5.19508302e-01 -2.53761351e-01 1.01928949e+00 6.06966317e-01 -1.45595503e+00 -1.74538538e-01 -9.57829297e-01 5.07599354e-01 -1.68092251e-01 -1.90366089e-01 6.82017326e-01 1.67051509e-01 -1.11512935e+00 9.80060875e-01 -9.30553496e-01 4.06450545e-03 2.55257279e-01 6.25177443e-01 2.62230754e-01 1.88390493e-01 -1.16207683e+00 1.07826781e+00 3.97190303e-01 2.11711019e-01 -1.29243207e+00 -5.89585245e-01 -5.57734072e-01 4.46765989e-01 1.12641788e+00 -5.17127454e-01 1.79858851e+00 -9.71914589e-01 -1.56011689e+00 3.80915701e-02 2.23857731e-01 -8.95181835e-01 5.65307021e-01 -2.98587829e-01 -2.55625367e-01 6.38807938e-02 6.28743023e-02 3.58803749e-01 6.25998616e-01 -1.19595683e+00 -9.76778090e-01 -2.35696718e-01 4.03650671e-01 2.17865542e-01 -1.29295319e-01 -4.03440356e-01 -1.67163223e-01 -4.81419414e-01 -1.62069216e-01 -9.14639354e-01 -5.98574221e-01 -4.62372273e-01 -6.01082087e-01 -1.18880168e-01 2.44721308e-01 -4.99313354e-01 1.12647235e+00 -1.73236871e+00 1.03777938e-01 5.15067518e-01 -2.98923589e-02 4.37963419e-02 -3.17527473e-01 5.08570194e-01 2.46901974e-01 3.83043438e-02 9.43403989e-02 -9.40339118e-02 4.46299136e-01 4.65807080e-01 -5.71696818e-01 4.60853547e-01 3.03899884e-01 9.15625572e-01 -1.13529408e+00 -1.02987468e-01 -1.92167182e-02 -4.42729801e-01 -8.29661191e-01 4.83893640e-02 -7.19514787e-01 1.18828110e-01 -4.40662414e-01 6.36607111e-01 1.14518248e-01 -3.23157787e-01 5.90759993e-01 6.36056587e-02 -1.08360043e-02 3.74164283e-01 -1.17233169e+00 1.21312737e+00 -5.66186786e-01 2.58933395e-01 2.83714205e-01 -1.33125472e+00 5.69577634e-01 1.23146707e-02 6.51082039e-01 -9.83182371e-01 8.17477256e-02 2.32655734e-01 3.83196846e-02 -3.78529578e-01 5.53610086e-01 -1.41855508e-01 -3.89953285e-01 7.51876056e-01 3.69867757e-02 9.04450491e-02 2.92438388e-01 1.04428660e-02 1.19636345e+00 -1.31965047e-02 9.52912588e-03 -3.63590658e-01 -1.81104764e-01 1.31370738e-01 7.40161002e-01 1.30758226e+00 -2.78488219e-01 -1.43757433e-01 1.08620834e+00 -4.70138252e-01 -1.20517004e+00 -1.22249258e+00 3.52198511e-01 1.33007812e+00 -2.87699886e-03 3.22553754e-01 -3.75071287e-01 -6.98851526e-01 7.33854711e-01 9.70273137e-01 -6.10439956e-01 -2.52134055e-01 -6.34397864e-01 -5.50036907e-01 3.10751617e-01 8.94036531e-01 2.10786834e-01 -9.61133540e-01 -6.58288181e-01 5.62741160e-01 3.13672125e-01 -8.92953277e-01 -6.41324699e-01 6.89912617e-01 -8.76134217e-01 -9.22044098e-01 -4.82541353e-01 -5.51996946e-01 4.45007324e-01 4.03164364e-02 1.34811676e+00 -2.61494964e-01 1.46654561e-01 2.77379572e-01 1.34618908e-01 -1.95219323e-01 -3.12646210e-01 5.45465827e-01 5.69837570e-01 -4.51381594e-01 9.28141549e-02 -5.94762683e-01 -6.38657987e-01 3.71398538e-01 -6.24160707e-01 -4.30699527e-01 8.78791451e-01 8.73134494e-01 4.27617878e-01 1.43096298e-01 8.35450649e-01 -7.85817623e-01 1.01233566e+00 -5.20435393e-01 -1.15629327e+00 4.16918695e-01 -8.73345196e-01 5.83642066e-01 9.64345753e-01 -4.83323067e-01 -6.20065749e-01 -2.45195881e-01 1.61110640e-01 -6.31797373e-01 1.97850883e-01 4.75689769e-01 1.08581334e-01 5.92400670e-01 3.82933736e-01 2.40677431e-01 2.46527106e-01 -4.48088229e-01 5.23877680e-01 2.82396376e-01 7.99199998e-01 -1.31254315e+00 4.66268271e-01 1.14703745e-01 -6.16259268e-03 -2.18721256e-01 -1.02146411e+00 -4.09755558e-02 -1.91690713e-01 3.61598469e-02 4.46345210e-01 -6.37460411e-01 -1.38090169e+00 9.99197587e-02 -6.49603963e-01 -7.95149386e-01 -5.58829606e-01 3.47938955e-01 -9.63271379e-01 -3.39713469e-02 -7.47816563e-01 -9.95231271e-01 -4.91533801e-03 -1.17391634e+00 7.18069792e-01 6.86364770e-02 4.90761399e-02 -1.02282941e+00 -4.01400924e-02 -8.33802000e-02 4.87932354e-01 1.46300584e-01 1.09814000e+00 -8.38303506e-01 -3.75252753e-01 -2.02078726e-02 1.18479598e-02 5.41864097e-01 7.85685107e-02 -4.98122647e-02 -5.21286607e-01 -7.79255867e-01 -1.71784699e-01 -5.08721292e-01 6.75650716e-01 5.75029492e-01 1.43258274e+00 -9.10718799e-01 -1.68617666e-01 4.73921150e-01 1.36075878e+00 4.13439959e-01 1.19059272e-02 6.43406212e-01 3.33517730e-01 5.59633970e-01 5.13247132e-01 6.92077398e-01 2.88482249e-01 4.40631419e-01 5.98231792e-01 1.20553918e-01 5.78241050e-01 -4.47877020e-01 4.49936628e-01 5.89730263e-01 1.38357654e-01 -2.84379065e-01 -7.44060934e-01 4.90983307e-01 -1.96482551e+00 -1.12607598e+00 7.47184396e-01 2.25652766e+00 8.05971265e-01 7.97642529e-01 5.24088144e-01 -3.91153663e-01 6.00758910e-01 1.91111296e-01 -1.43091893e+00 -8.94149899e-01 -1.09932929e-01 -2.05931962e-02 1.27101874e+00 4.70081151e-01 -7.55312085e-01 8.05397213e-01 7.48153210e+00 6.43346250e-01 -1.09070158e+00 -2.31606200e-01 8.71813059e-01 -7.20428407e-01 -2.71764696e-01 -2.76231587e-01 -8.95169914e-01 6.57632172e-01 1.18220985e+00 -1.57057390e-01 1.06423712e+00 1.00821316e+00 4.05916899e-01 -1.18540945e-02 -1.34944785e+00 3.23254138e-01 -3.77655298e-01 -1.46626472e+00 -2.30283644e-02 2.76383936e-01 9.60800350e-01 1.31368786e-01 3.53791803e-01 6.70115769e-01 1.18846381e+00 -9.75374520e-01 9.13968086e-01 2.83266664e-01 5.21148801e-01 -1.09768999e+00 5.62551498e-01 3.46853822e-01 -6.80559516e-01 -7.91027844e-01 -3.76066953e-01 -1.77036434e-01 1.50291741e-01 1.73131973e-01 -7.84264207e-01 2.53078878e-01 4.30982918e-01 2.09952533e-01 -1.20201327e-01 7.31961250e-01 -1.58841163e-01 5.03851414e-01 -5.49623609e-01 -1.83083594e-01 9.52001035e-01 -1.12665690e-01 2.03127339e-01 9.12697077e-01 3.22409486e-03 -2.53959000e-01 5.45313001e-01 6.64742351e-01 -1.58575680e-02 -4.49852943e-01 -5.04055738e-01 -2.85672307e-01 6.47587121e-01 7.20812440e-01 -4.43346918e-01 -3.23677450e-01 -2.01955944e-01 4.94341314e-01 3.85465503e-01 5.71729720e-01 -8.31534147e-01 -3.39499950e-01 1.03600574e+00 -1.61524639e-01 5.40693283e-01 -3.41274410e-01 -1.03802107e-01 -7.06130385e-01 3.67367417e-02 -1.11394596e+00 4.03906941e-01 -5.45904040e-01 -1.44756532e+00 1.39322162e-01 -2.06621736e-02 -8.70612323e-01 -5.77849448e-01 -8.57719302e-01 -4.03923184e-01 5.52384138e-01 -1.52686667e+00 -3.71048808e-01 6.16251707e-01 3.25295657e-01 5.51554382e-01 -1.98963836e-01 3.62070680e-01 4.66258302e-02 -9.52302873e-01 8.04777145e-01 7.36719787e-01 -2.59456336e-02 4.00376588e-01 -1.60631955e+00 5.28597295e-01 6.03565335e-01 -3.10051203e-01 5.43898761e-01 9.35854256e-01 -4.35448378e-01 -1.83080757e+00 -9.62219238e-01 1.17566660e-01 -3.55979800e-01 1.09074748e+00 -1.53273106e-01 -5.50847888e-01 9.23637509e-01 3.63938808e-02 -3.28978688e-01 1.61230460e-01 3.61769259e-01 -2.76178479e-01 -3.97271544e-01 -1.01739764e+00 6.69885278e-01 1.06030285e+00 -2.54529655e-01 -4.06928658e-01 4.62916791e-01 9.50550497e-01 -3.32377136e-01 -9.43499625e-01 1.18848294e-01 5.42372942e-01 -7.14370668e-01 7.79426336e-01 -1.40614736e+00 4.84891146e-01 4.72369827e-02 -3.43542099e-01 -1.60449493e+00 -4.35875267e-01 -9.59758341e-01 -4.85403180e-01 8.09398532e-01 6.65012360e-01 -7.97269583e-01 8.21576953e-01 6.06576681e-01 -1.68363363e-01 -1.19979274e+00 -7.58857787e-01 -1.25905252e+00 3.67363065e-01 -7.59189054e-02 8.69974613e-01 7.26099789e-01 -1.90957412e-01 1.99301079e-01 -5.13217211e-01 3.30584973e-01 5.06391406e-01 3.16497743e-01 5.18600583e-01 -8.24821055e-01 -8.38228285e-01 -8.82655501e-01 8.11502710e-02 -1.35903561e+00 2.83601552e-01 -4.86331880e-01 2.74528593e-01 -1.40418649e+00 -1.20790236e-01 -6.81243062e-01 -7.41600573e-01 4.99110043e-01 1.75108835e-01 -5.58440864e-01 2.22726390e-01 1.06992900e-01 -9.02614594e-01 3.52529138e-01 1.18841660e+00 -1.66620642e-01 -2.52523422e-01 2.24608153e-01 -9.89245474e-01 4.55062926e-01 1.08557999e+00 -2.70244896e-01 -4.78462130e-01 -7.08474696e-01 4.62647080e-01 3.16129714e-01 -7.89410342e-03 -6.00248337e-01 2.04896897e-01 -7.28325963e-01 3.25772732e-01 -4.72511381e-01 7.61960745e-02 -5.40822625e-01 -2.35897899e-01 6.96567595e-01 -6.71553969e-01 7.35799372e-01 1.36460543e-01 5.96036494e-01 3.17178994e-01 -1.98775634e-01 6.02127254e-01 -4.06284422e-01 -6.67834997e-01 1.71835333e-01 -4.29449856e-01 4.17575389e-01 8.72620881e-01 9.72077623e-02 -5.71396053e-01 -5.29907823e-01 -4.41000968e-01 1.01124728e+00 4.85405177e-01 1.97787225e-01 1.60072029e-01 -1.03437495e+00 -3.52309257e-01 -1.70575287e-02 -3.29646587e-01 -9.44078267e-02 -1.04799636e-01 7.19412923e-01 -3.26540887e-01 5.87928951e-01 -3.60901535e-01 -3.82578313e-01 -2.03323826e-01 1.00248814e+00 5.16364634e-01 -5.28060257e-01 -3.57313722e-01 6.27969146e-01 -1.60151452e-01 -2.28896365e-01 6.28240764e-01 -4.60709989e-01 4.04479831e-01 1.42187446e-01 3.37470978e-01 4.01342064e-01 -2.59345230e-02 2.28810057e-01 -1.45860031e-01 -3.02900188e-02 -3.02323222e-01 -3.32835585e-01 1.47591567e+00 3.13652456e-02 3.33414078e-01 4.58885789e-01 1.00764060e+00 -3.61957312e-01 -1.85423148e+00 -3.52588177e-01 2.66966790e-01 -2.54076689e-01 1.03112467e-01 -9.98247623e-01 -1.31911039e+00 5.36983550e-01 3.02112520e-01 6.88873231e-01 9.31248724e-01 -2.75362611e-01 7.00034082e-01 9.94685709e-01 4.08017635e-01 -1.65312433e+00 4.23546843e-02 5.32559216e-01 4.48083937e-01 -1.08720720e+00 7.85977915e-02 7.18016565e-01 -8.47117782e-01 8.71450484e-01 5.84958196e-01 -3.50514621e-01 2.44658589e-01 3.19189787e-01 -1.29854769e-01 -7.13574365e-02 -1.27540469e+00 -1.25091970e-01 -3.22586358e-01 4.66256529e-01 -1.61170542e-01 2.61276871e-01 1.85334712e-01 2.44114533e-01 -2.33133763e-01 -3.42883974e-01 3.82446676e-01 1.08541048e+00 -7.90873408e-01 -7.06958592e-01 -1.12986207e-01 8.45741868e-01 -3.74338388e-01 1.65314332e-01 -1.09840184e-01 8.40314090e-01 -4.79291499e-01 7.91910827e-01 4.13976312e-01 -1.99700519e-01 4.86493707e-01 -2.07829192e-01 4.20013636e-01 -3.41914594e-01 -4.25990850e-01 -3.58685143e-02 1.88532144e-01 -8.93824697e-01 1.82360113e-01 -6.87742472e-01 -8.29685628e-01 -6.65601313e-01 -2.64380760e-02 1.85300633e-01 6.22772455e-01 9.14267361e-01 4.05353278e-01 6.09388173e-01 1.05049098e+00 -8.12649965e-01 -1.79327118e+00 -5.84738851e-01 -7.23853528e-01 8.96447673e-02 5.52249134e-01 -7.63320208e-01 -3.39769721e-01 -6.61605656e-01]
[4.215375900268555, 2.3922066688537598]
a2be6792-a350-4652-8e00-3d7832c6e067
audio-transformers-transformer-architectures
2105.00335
null
https://arxiv.org/abs/2105.00335v1
https://arxiv.org/pdf/2105.00335v1.pdf
Audio Transformers:Transformer Architectures For Large Scale Audio Understanding. Adieu Convolutions
Over the past two decades, CNN architectures have produced compelling models of sound perception and cognition, learning hierarchical organizations of features. Analogous to successes in computer vision, audio feature classification can be optimized for a particular task of interest, over a wide variety of datasets and labels. In fact similar architectures designed for image understanding have proven effective for acoustic scene analysis. Here we propose applying Transformer based architectures without convolutional layers to raw audio signals. On a standard dataset of Free Sound 50K,comprising of 200 categories, our model outperforms convolutional models to produce state of the art results. This is significant as unlike in natural language processing and computer vision, we do not perform unsupervised pre-training for outperforming convolutional architectures. On the same training set, with respect mean aver-age precision benchmarks, we show a significant improvement. We further improve the performance of Transformer architectures by using techniques such as pooling inspired from convolutional net-work designed in the past few years. In addition, we also show how multi-rate signal processing ideas inspired from wavelets, can be applied to the Transformer embeddings to improve the results. We also show how our models learns a non-linear non constant band-width filter-bank, which shows an adaptable time frequency front end representation for the task of audio understanding, different from other tasks e.g. pitch estimation.
['Jonathan Berger', 'Prateek Verma']
2021-05-01
null
null
null
null
['unsupervised-pre-training']
['methodology']
[ 1.33098543e-01 5.08214300e-03 4.10441071e-01 -3.90825123e-01 -7.48498380e-01 -5.61523974e-01 4.62393016e-01 1.33532807e-01 -5.43342173e-01 1.29398674e-01 5.45513332e-01 -5.46855479e-02 -1.70204416e-01 -8.00821126e-01 -6.22650266e-01 -4.87902194e-01 -5.74994028e-01 -1.09702908e-01 3.40751112e-01 -3.63196224e-01 2.27080837e-01 2.85646081e-01 -1.82354164e+00 7.20619917e-01 -2.65436530e-01 1.41247797e+00 5.16114458e-02 1.06680882e+00 8.32379051e-03 6.47421479e-01 -5.95233440e-01 -2.21116856e-01 1.68889761e-02 -4.63268347e-02 -9.65503454e-01 -3.61499131e-01 6.70037210e-01 2.93625779e-02 -4.09769565e-01 7.35616624e-01 7.96674311e-01 2.45111495e-01 4.36575621e-01 -1.04071426e+00 -7.40683138e-01 9.83880997e-01 8.61342698e-02 4.93333668e-01 2.83346981e-01 -7.75981843e-02 1.55101752e+00 -1.13151181e+00 -4.49988097e-02 1.51535416e+00 8.64049137e-01 5.46913624e-01 -1.17285848e+00 -8.10333371e-01 1.02266692e-01 5.06737113e-01 -1.13385820e+00 -5.36274672e-01 8.53221178e-01 -3.55146080e-01 1.22856224e+00 2.01495171e-01 7.53860414e-01 1.00476277e+00 1.86537147e-01 6.40027702e-01 7.93477476e-01 -5.26180625e-01 1.42890871e-01 -1.23384736e-01 1.12735622e-01 4.32851076e-01 -5.05084634e-01 2.07458124e-01 -1.07171535e+00 2.25195549e-02 4.79428917e-01 -1.92056283e-01 -3.17666411e-01 -2.20146868e-02 -1.38067794e+00 8.06501269e-01 6.87944710e-01 5.91407120e-01 9.43790078e-02 7.31260300e-01 8.31124187e-01 6.14747345e-01 4.67101872e-01 7.51804948e-01 -8.06992948e-01 -2.83831805e-01 -8.30519676e-01 2.00569913e-01 7.56117761e-01 4.61273223e-01 4.81057376e-01 5.17601132e-01 -2.45370436e-02 9.48086977e-01 1.69755995e-01 5.18875569e-02 8.66930366e-01 -1.03707826e+00 1.10051602e-01 -6.94674775e-02 -3.96408945e-01 -8.20655048e-01 -6.92351043e-01 -7.30507731e-01 -7.28049755e-01 1.07474066e-01 4.26922619e-01 2.07426831e-01 -9.03748333e-01 1.77167416e+00 -2.82698691e-01 4.29524004e-01 1.10091932e-01 8.02239180e-01 9.05703306e-01 8.13437462e-01 -2.01306120e-02 2.43067190e-01 1.68176377e+00 -7.96365798e-01 -6.03983760e-01 -9.48214978e-02 3.05383682e-01 -9.51182187e-01 1.30217814e+00 7.98412561e-01 -9.06150579e-01 -9.25547183e-01 -1.07706046e+00 -3.28090310e-01 -6.55230522e-01 -1.28984004e-01 7.75487840e-01 6.72359943e-01 -1.24635828e+00 7.82940447e-01 -7.06564009e-01 -3.51534516e-01 5.70946157e-01 4.85463858e-01 -1.84069857e-01 4.44126248e-01 -1.29544485e+00 6.70568705e-01 2.99882650e-01 -1.53381750e-01 -1.18972147e+00 -1.20239782e+00 -8.02139223e-01 3.98579448e-01 -8.56109038e-02 -4.90583718e-01 1.69056571e+00 -8.80139172e-01 -1.76732874e+00 5.47373772e-01 3.29582468e-02 -1.07032776e+00 -1.61722422e-01 -5.01607239e-01 -5.07739246e-01 1.35722846e-01 -2.36131877e-01 9.71988499e-01 9.92158234e-01 -6.06609881e-01 -6.25616729e-01 5.74503541e-02 2.64623076e-01 -1.73184246e-01 -8.24049532e-01 1.05130129e-01 1.67148516e-01 -8.34927380e-01 3.45309339e-02 -6.90533221e-01 -1.36867642e-01 -3.48186493e-02 4.82721590e-02 -4.57313895e-01 8.64979744e-01 -2.56363958e-01 1.02547383e+00 -2.48528886e+00 -2.25045718e-02 -8.97895321e-02 1.15822837e-01 -4.26812023e-02 -3.66201371e-01 3.89686197e-01 -3.05518776e-01 3.01643074e-01 -1.64205566e-01 -2.12532356e-01 2.56173074e-01 2.61015128e-02 -9.04181302e-01 1.33784398e-01 4.80689853e-01 6.03175282e-01 -8.29509735e-01 1.12933712e-02 1.93072349e-01 6.44328713e-01 -9.43125725e-01 6.07728623e-02 -1.61005318e-01 1.56678349e-01 4.68252314e-04 3.81628245e-01 1.96531370e-01 8.12641084e-02 -2.88053453e-01 -3.11519086e-01 -7.14913160e-02 7.54390240e-01 -9.04759467e-01 2.06559968e+00 -1.04366875e+00 1.26657665e+00 -3.82648073e-02 -1.23807883e+00 9.30756211e-01 7.79537916e-01 3.98163646e-01 -6.00771308e-01 -4.84218914e-03 1.43341556e-01 3.92630249e-01 -2.30326474e-01 5.43464661e-01 -3.92543614e-01 -1.18563846e-01 2.68131733e-01 6.95821881e-01 -6.74743354e-01 -1.16070308e-01 -8.81064683e-03 1.09179139e+00 -2.76105165e-01 9.56589133e-02 -3.32593590e-01 3.83497894e-01 -4.62538004e-01 1.13994487e-01 6.42707109e-01 -6.14849031e-02 7.94524968e-01 2.78735250e-01 -7.56424665e-01 -8.93754959e-01 -1.23320234e+00 -5.73665023e-01 1.76702452e+00 -4.39764202e-01 -7.82755435e-01 -5.92353046e-01 -7.34116808e-02 -1.11424617e-01 2.81521529e-01 -5.25943935e-01 -2.27554277e-01 -5.11313021e-01 -5.45874834e-01 1.03953302e+00 7.16654003e-01 2.76227444e-01 -1.36558366e+00 -7.43871689e-01 6.02565765e-01 1.19795784e-01 -1.16937053e+00 -1.25913158e-01 7.77853549e-01 -5.91472983e-01 -6.06017947e-01 -4.48908210e-01 -9.09551740e-01 -3.58166575e-01 1.17574381e-02 1.35149598e+00 -1.65198207e-01 -3.94551814e-01 7.09129989e-01 -3.90703470e-01 -8.77498329e-01 -2.31042221e-01 2.87661880e-01 3.76444370e-01 -6.44817129e-02 4.19103503e-01 -1.03086758e+00 -5.49172163e-01 4.45660576e-02 -8.85229230e-01 -4.41188544e-01 3.78610820e-01 8.18644047e-01 3.71592283e-01 6.91780169e-03 1.01739669e+00 -3.76545280e-01 6.65839791e-01 -3.04865688e-01 -1.39530987e-01 -2.67465532e-01 -1.62132144e-01 2.55242046e-02 8.02134752e-01 -5.94109356e-01 -3.77619952e-01 -7.15462351e-03 -5.76301575e-01 -4.10952955e-01 -2.97033370e-01 2.47311801e-01 2.28229329e-01 4.17119218e-03 7.65193939e-01 9.13831592e-02 -2.76441574e-01 -6.45276129e-01 6.08206868e-01 7.54017770e-01 6.10264480e-01 -5.04865885e-01 6.26699984e-01 4.17546898e-01 -1.27281532e-01 -1.08926153e+00 -1.08727336e+00 -3.89958650e-01 -4.96822178e-01 6.52841106e-02 1.01690078e+00 -9.84560609e-01 -9.75326717e-01 1.96713537e-01 -1.12836802e+00 -1.85015604e-01 -6.41472578e-01 7.27325022e-01 -8.02360415e-01 -1.05149217e-01 -7.63267696e-01 -6.90689802e-01 -1.85583696e-01 -9.51159835e-01 1.09543645e+00 4.92780358e-02 -3.66600066e-01 -9.89007711e-01 1.73999578e-01 -1.01778857e-01 8.08844864e-01 -1.70990273e-01 9.45583701e-01 -7.78739750e-01 -4.28173095e-01 1.29096493e-01 3.71218473e-02 7.66433179e-01 3.64154801e-02 -7.87269473e-02 -1.84764683e+00 -1.35498881e-01 1.06214494e-01 -6.26293600e-01 1.37304068e+00 4.08427209e-01 1.74792230e+00 -1.68602029e-03 2.17351139e-01 5.76416254e-01 1.00488651e+00 1.44146919e-01 4.09648627e-01 1.87158242e-01 5.45665503e-01 4.90750074e-01 1.33796066e-01 3.18182945e-01 2.23372310e-01 6.50350153e-01 4.63173270e-01 -1.34299293e-01 -3.70303601e-01 -2.02397585e-01 4.78564888e-01 1.29152262e+00 7.80841783e-02 4.63554710e-02 -7.95931041e-01 7.72044003e-01 -1.32275295e+00 -1.05018771e+00 3.08609575e-01 1.84655643e+00 7.53152192e-01 3.77844751e-01 6.13858216e-02 8.88824344e-01 1.32739618e-01 3.06853563e-01 -2.05139726e-01 -9.45520520e-01 2.63253041e-02 1.16934884e+00 1.05681598e-01 4.20147926e-01 -1.31001532e+00 9.66353655e-01 6.88721085e+00 8.66316378e-01 -1.40651035e+00 2.65934289e-01 2.41101101e-01 -2.20065981e-01 -1.72813937e-01 -1.67243704e-01 -4.22541261e-01 5.42926863e-02 1.44073784e+00 -5.74877262e-02 4.79068875e-01 7.59816468e-01 -1.11467347e-01 5.04133344e-01 -1.48401356e+00 1.01837099e+00 -4.24732491e-02 -1.46825635e+00 5.08407690e-02 -1.55768618e-01 2.54680306e-01 1.43226713e-01 4.53916728e-01 5.17303526e-01 1.86053127e-01 -1.42238498e+00 1.03689766e+00 3.62162977e-01 5.68196833e-01 -8.39732409e-01 4.38827097e-01 -1.04774244e-01 -1.60710609e+00 -3.93541098e-01 -6.60714924e-01 -4.87117171e-01 -8.85294303e-02 6.45494938e-01 -9.39887822e-01 2.99189538e-01 1.22249746e+00 8.95518839e-01 -4.40304846e-01 9.26313162e-01 -2.93348935e-02 9.75464761e-01 -3.38180572e-01 -2.86786985e-02 2.71289945e-01 5.05456805e-01 4.29401755e-01 1.58346093e+00 2.99361736e-01 -3.61490011e-01 -9.12144259e-02 5.07414341e-01 -2.01716408e-01 6.11376092e-02 -6.99731290e-01 -5.38311377e-02 4.20515239e-01 1.24002481e+00 -4.51101065e-01 -2.10546881e-01 -4.01630372e-01 4.01763171e-01 2.11288497e-01 2.51071721e-01 -5.39412677e-01 -6.36928439e-01 9.62416410e-01 -1.55660491e-02 5.64514935e-01 -3.90065402e-01 -1.13683805e-01 -7.71476269e-01 -2.70593882e-01 -8.47291946e-01 2.52703637e-01 -6.31013095e-01 -1.32122755e+00 8.27003479e-01 -2.69210726e-01 -1.31102872e+00 -3.35469723e-01 -8.80724847e-01 -6.69184566e-01 5.98423898e-01 -1.56882238e+00 -8.84314120e-01 8.79167169e-02 5.90306342e-01 8.17557693e-01 -3.56287837e-01 1.19659543e+00 3.80011082e-01 8.87581930e-02 5.14033735e-01 -2.49194086e-01 2.50696212e-01 7.25029290e-01 -1.49525321e+00 5.91504276e-01 5.35727203e-01 1.04402423e+00 3.89439613e-01 6.23744786e-01 4.54318374e-01 -1.12193727e+00 -9.42571163e-01 6.14243150e-01 -3.58720183e-01 1.09090054e+00 -8.16314638e-01 -8.99428666e-01 5.06412148e-01 3.65920216e-01 1.76950112e-01 9.19848859e-01 5.02084613e-01 -7.83225060e-01 -4.23538953e-01 -5.75975358e-01 2.44310305e-01 1.01248038e+00 -1.12570345e+00 -7.19591916e-01 2.07110658e-01 1.30149567e+00 -1.65979937e-01 -9.45241749e-01 3.34607184e-01 7.62737155e-01 -1.00702929e+00 1.29495525e+00 -7.48917937e-01 4.37750608e-01 -1.68783337e-01 -5.32769680e-01 -1.47781038e+00 -4.43484485e-01 -5.22126615e-01 1.02748483e-01 1.07909310e+00 3.11362118e-01 -4.24559951e-01 4.03006166e-01 -2.92248309e-01 -5.78301132e-01 -7.32569337e-01 -1.27006376e+00 -7.66738474e-01 3.85902882e-01 -1.13254821e+00 5.77168047e-01 6.00630164e-01 1.02831041e-02 4.22817111e-01 -2.37467587e-01 1.66624010e-01 2.69370645e-01 4.03073058e-03 5.70044458e-01 -1.40653300e+00 -4.39621270e-01 -6.43016040e-01 -9.49155450e-01 -1.04385662e+00 3.11594486e-01 -1.03887093e+00 1.48573712e-01 -1.08747232e+00 -4.14230198e-01 -2.39557907e-01 -8.53465438e-01 5.93635321e-01 3.49708706e-01 6.95453286e-01 3.19939315e-01 -1.47164479e-01 -2.32494399e-01 5.06991029e-01 1.04507601e+00 -3.05335641e-01 5.41354809e-03 -4.05914783e-02 -6.68179512e-01 9.33930397e-01 9.28323269e-01 -5.24880826e-01 -4.33291316e-01 -5.65379083e-01 2.78547078e-01 -2.09040597e-01 5.56826234e-01 -1.57523715e+00 1.39056012e-01 3.35135758e-01 3.10619056e-01 -1.91644713e-01 7.55180299e-01 -6.51430726e-01 -3.40997249e-01 4.84987080e-01 -7.60223508e-01 -7.18510523e-02 3.84537995e-01 4.18927342e-01 -7.08793461e-01 -6.92009777e-02 6.77769721e-01 -2.53145844e-02 -7.34250546e-01 1.29866332e-01 -5.23168445e-01 5.93240783e-02 3.23150933e-01 2.90115271e-02 -2.37666652e-01 -4.62511599e-01 -1.02550173e+00 -2.10565656e-01 -2.89540857e-01 7.08010972e-01 6.75714731e-01 -1.36492896e+00 -7.65794098e-01 2.46134102e-01 7.45997652e-02 -2.23527297e-01 1.06857769e-01 5.07327974e-01 -1.84423119e-01 4.34200495e-01 -2.65671909e-01 -8.63700867e-01 -1.01583290e+00 2.66824782e-01 4.42030281e-01 5.28475009e-02 -5.24949908e-01 1.13263690e+00 4.95976150e-01 -2.23823279e-01 5.10614693e-01 -1.04956126e+00 -2.90185362e-01 2.49798834e-01 6.92790747e-01 1.03674401e-02 3.12159061e-01 -2.90430576e-01 -4.64382470e-01 7.55847335e-01 1.07533067e-01 -3.31983119e-01 1.58002460e+00 2.24943042e-01 9.53636616e-02 1.01374876e+00 1.44281733e+00 3.58304307e-02 -1.00125527e+00 -1.56518996e-01 1.10320393e-02 -7.82954022e-02 1.56082332e-01 -5.57174385e-01 -1.11012280e+00 1.61837959e+00 8.54301453e-01 7.42298067e-01 1.21006048e+00 1.92932963e-01 6.12305641e-01 6.17953897e-01 2.21728474e-01 -8.55793118e-01 5.18378794e-01 9.03537869e-01 1.02229738e+00 -9.32187438e-01 -4.09293532e-01 3.95043641e-02 -2.60946542e-01 1.51116800e+00 1.24157108e-01 -4.60378230e-01 1.00436747e+00 4.53145236e-01 1.84740394e-01 -1.75298572e-01 -1.17472446e+00 -2.71169424e-01 4.22380507e-01 6.76468074e-01 8.24624181e-01 1.30922854e-01 2.76029468e-01 7.27886021e-01 -1.05865312e+00 -2.90011346e-01 5.60456336e-01 4.48190957e-01 -7.43939817e-01 -1.03105998e+00 -2.62197316e-01 3.80121350e-01 -7.97837138e-01 -3.08476210e-01 -1.30196944e-01 5.59015989e-01 1.61232218e-01 9.93274271e-01 4.33736503e-01 -6.90226793e-01 2.80792356e-01 3.67271781e-01 4.56901461e-01 -8.31425607e-01 -9.63007867e-01 -1.12264128e-02 -9.42629352e-02 -4.80953842e-01 -5.40263891e-01 -1.29520506e-01 -1.25426054e+00 8.47311541e-02 -7.65625387e-02 2.42259279e-01 6.69279277e-01 7.50823140e-01 7.30268052e-03 9.16079521e-01 6.59217358e-01 -1.14546084e+00 -4.57865626e-01 -1.18550730e+00 -5.11058807e-01 9.17463005e-02 7.55826354e-01 -5.44206262e-01 -5.37934065e-01 2.68692881e-01]
[15.423295021057129, 5.328564167022705]
56915359-8b11-43bf-8ae9-98f1ac989305
label-relation-graphs-enhanced-hierarchical
2201.03194
null
https://arxiv.org/abs/2201.03194v2
https://arxiv.org/pdf/2201.03194v2.pdf
Label Relation Graphs Enhanced Hierarchical Residual Network for Hierarchical Multi-Granularity Classification
Hierarchical multi-granularity classification (HMC) assigns hierarchical multi-granularity labels to each object and focuses on encoding the label hierarchy, e.g., ["Albatross", "Laysan Albatross"] from coarse-to-fine levels. However, the definition of what is fine-grained is subjective, and the image quality may affect the identification. Thus, samples could be observed at any level of the hierarchy, e.g., ["Albatross"] or ["Albatross", "Laysan Albatross"], and examples discerned at coarse categories are often neglected in the conventional setting of HMC. In this paper, we study the HMC problem in which objects are labeled at any level of the hierarchy. The essential designs of the proposed method are derived from two motivations: (1) learning with objects labeled at various levels should transfer hierarchical knowledge between levels; (2) lower-level classes should inherit attributes related to upper-level superclasses. The proposed combinatorial loss maximizes the marginal probability of the observed ground truth label by aggregating information from related labels defined in the tree hierarchy. If the observed label is at the leaf level, the combinatorial loss further imposes the multi-class cross-entropy loss to increase the weight of fine-grained classification loss. Considering the hierarchical feature interaction, we propose a hierarchical residual network (HRN), in which granularity-specific features from parent levels acting as residual connections are added to features of children levels. Experiments on three commonly used datasets demonstrate the effectiveness of our approach compared to the state-of-the-art HMC approaches and fine-grained visual classification (FGVC) methods exploiting the label hierarchy.
['Yuntao Qian', 'Jian Liu', 'Peng Wang', 'Jingzhou Chen']
2022-01-10
null
http://openaccess.thecvf.com//content/CVPR2022/html/Chen_Label_Relation_Graphs_Enhanced_Hierarchical_Residual_Network_for_Hierarchical_Multi-Granularity_CVPR_2022_paper.html
http://openaccess.thecvf.com//content/CVPR2022/papers/Chen_Label_Relation_Graphs_Enhanced_Hierarchical_Residual_Network_for_Hierarchical_Multi-Granularity_CVPR_2022_paper.pdf
cvpr-2022-1
['fine-grained-image-classification']
['computer-vision']
[ 3.47916245e-01 2.56280303e-01 -2.96794981e-01 -4.06038195e-01 -5.68489850e-01 -4.01994437e-01 3.76895458e-01 3.62259597e-01 -1.07466191e-01 8.94409716e-01 -1.09741770e-01 1.69908166e-01 -5.38038850e-01 -1.16896498e+00 -7.80614257e-01 -9.28764045e-01 -2.50474542e-01 3.40220124e-01 3.55363071e-01 3.79903555e-01 1.39518738e-01 6.17481112e-01 -2.06951284e+00 7.80636549e-01 8.35939288e-01 1.53389215e+00 9.90290120e-02 2.60797203e-01 -3.07912305e-02 9.29953754e-01 -6.77536070e-01 -4.44853187e-01 2.90011823e-01 -2.23626480e-01 -9.54164088e-01 3.55069339e-01 8.39966536e-01 2.49841325e-02 1.91281050e-01 1.34518504e+00 -8.54021758e-02 -1.44590074e-02 1.01853359e+00 -1.40876698e+00 -6.04158819e-01 5.71272910e-01 -7.92394340e-01 -6.14010654e-02 -3.12385350e-01 -9.43359509e-02 1.43949914e+00 -6.00928485e-01 3.82216573e-01 1.42769110e+00 6.12813473e-01 3.20326686e-01 -1.38427305e+00 -7.68682301e-01 6.22735620e-01 2.83701271e-01 -1.66304028e+00 1.05299003e-01 6.50767386e-01 -7.73853958e-01 1.56303704e-01 1.99400082e-01 5.50416350e-01 7.93542802e-01 1.87139109e-01 6.89600408e-01 1.63349879e+00 -2.19585091e-01 3.07263494e-01 2.86588728e-01 4.00475442e-01 9.09465492e-01 3.07464898e-01 3.15491021e-01 -5.56071401e-01 -8.51412937e-02 5.17495334e-01 1.26933932e-01 -1.67893514e-01 -5.54177105e-01 -9.32138145e-01 9.54484463e-01 9.14312541e-01 1.51431590e-01 -3.45313609e-01 6.29489869e-02 2.29355201e-01 1.71266004e-01 4.76066083e-01 1.44206971e-01 -3.92908365e-01 5.30519187e-01 -9.84785974e-01 -1.10630542e-01 5.50808847e-01 1.09599185e+00 1.20233548e+00 -2.41240636e-01 -4.03351337e-01 8.77441227e-01 3.58427435e-01 -6.12874143e-02 1.78088278e-01 -9.77214515e-01 4.04495627e-01 8.92008662e-01 -1.43875182e-01 -8.02649677e-01 -3.33482057e-01 -8.82598937e-01 -1.06579292e+00 5.40271699e-01 2.11819544e-01 1.80419266e-01 -1.06590772e+00 1.79292500e+00 5.46225250e-01 4.44025509e-02 1.54455351e-02 7.31030703e-01 6.86871946e-01 5.59306979e-01 3.69824708e-01 -1.07420154e-01 1.57704377e+00 -9.38213766e-01 -2.55988091e-01 1.71012431e-01 2.14637384e-01 -3.07313144e-01 1.08481705e+00 3.10543537e-01 -6.62074924e-01 -8.84057045e-01 -1.03910720e+00 1.72639519e-01 -6.69871390e-01 2.26460665e-01 4.36871916e-01 5.64422965e-01 -8.41991365e-01 6.57733977e-01 -3.89021397e-01 -1.02141492e-01 4.59264606e-01 2.23007694e-01 -2.70124525e-01 2.27751471e-02 -1.10216761e+00 5.01180828e-01 6.65147483e-01 -9.05884802e-02 -1.14967597e+00 -7.44269073e-01 -7.42493033e-01 3.55052114e-01 4.41185921e-01 -4.60055560e-01 7.00974703e-01 -1.00989890e+00 -8.41462970e-01 9.57637250e-01 1.95603371e-01 -4.07108814e-01 3.98395211e-01 1.66272312e-01 -2.79714286e-01 3.11097980e-01 5.05849600e-01 1.07803917e+00 8.79016221e-01 -1.77653909e+00 -1.53618705e+00 -5.19695163e-01 5.82503200e-01 2.16623113e-01 -2.04763010e-01 -4.90809709e-01 -1.24791063e-01 -7.85432279e-01 1.78263202e-01 -7.79149532e-01 2.82190591e-01 1.23503171e-01 -4.20088559e-01 -4.80168730e-01 7.78380036e-01 -2.93721825e-01 1.16473842e+00 -2.17884374e+00 1.27639798e-02 2.03854054e-01 3.30298692e-01 -2.34851182e-01 3.14269066e-02 1.23564661e-01 1.16999075e-01 2.48271257e-01 -2.84066826e-01 6.49557710e-02 2.23191082e-01 2.78273165e-01 -1.86681688e-01 3.16808313e-01 1.88988104e-01 4.92291063e-01 -7.23682642e-01 -8.81633639e-01 1.37040675e-01 3.22402596e-01 -3.31479669e-01 1.00908317e-01 -1.31056443e-01 3.01811963e-01 -4.23991054e-01 9.44399416e-01 5.48439622e-01 -4.49039578e-01 -5.86887710e-02 -6.83030128e-01 -1.30212903e-01 -1.50904059e-01 -1.13943624e+00 9.94914114e-01 -5.34435749e-01 6.89513311e-02 7.70977139e-02 -9.39489186e-01 8.55442286e-01 7.73032531e-02 3.48772138e-01 -3.12533498e-01 -1.30505025e-01 -4.97672483e-02 -6.87960535e-02 -5.88455833e-02 3.00246030e-01 -3.38435739e-01 -3.13058555e-01 -6.81692809e-02 2.73267757e-02 3.01555712e-02 2.59864926e-01 -1.03920415e-01 7.19609916e-01 2.25457847e-02 6.05866671e-01 -3.98851573e-01 6.26184285e-01 -9.62731689e-02 9.84010458e-01 8.85757327e-01 -2.43052751e-01 4.22876060e-01 6.24142349e-01 -3.68127584e-01 -7.64428079e-01 -1.19721532e+00 -6.11590922e-01 1.27360225e+00 3.41839284e-01 -1.94638580e-01 -8.30589592e-01 -1.09665084e+00 2.63569385e-01 4.59811330e-01 -1.04271543e+00 -8.57988223e-02 -5.90250231e-02 -5.59275448e-01 4.96354699e-01 5.33439219e-01 9.65690196e-01 -1.05221093e+00 -6.89720333e-01 2.78563574e-02 -1.51782095e-01 -1.04584658e+00 -3.10557514e-01 3.68662983e-01 -5.80894768e-01 -1.04667068e+00 -4.91468906e-01 -6.74937844e-01 6.90131128e-01 -2.56620366e-02 1.26308179e+00 2.89936829e-02 -3.97504598e-01 1.87912956e-01 -5.93163490e-01 2.88879182e-02 -1.13299124e-01 9.50538516e-02 -1.81279629e-01 6.67228699e-01 1.20683342e-01 -4.06363904e-01 -4.49804813e-01 5.20246267e-01 -8.92612696e-01 -6.78187376e-03 7.70446777e-01 1.03611302e+00 9.52624381e-01 7.13406980e-01 5.14905095e-01 -1.23849916e+00 6.80462569e-02 -5.02833128e-01 -7.31053233e-01 5.86753845e-01 -6.73984110e-01 1.09508755e-02 8.28997493e-01 -4.06030148e-01 -9.28826332e-01 2.29879282e-02 3.01352799e-01 -4.32896942e-01 -5.31789899e-01 2.33593985e-01 -5.74663699e-01 -9.35289860e-02 3.16587538e-01 -2.68075876e-02 -7.90157735e-01 -3.55707616e-01 2.48857304e-01 6.89276457e-01 3.88230801e-01 -1.10190725e+00 5.76525271e-01 4.17912632e-01 3.93406332e-01 -6.01154804e-01 -1.30352974e+00 -2.05611095e-01 -7.39490867e-01 -2.65965372e-01 1.15618074e+00 -8.72847319e-01 -8.50339890e-01 3.07855666e-01 -7.80121803e-01 -1.12659864e-01 -5.48009574e-01 2.21722439e-01 -4.43511099e-01 1.34963483e-01 -4.86540109e-01 -8.01205873e-01 6.42768294e-02 -1.15949774e+00 1.38490295e+00 4.01857883e-01 1.02227263e-01 -7.90425658e-01 -6.50796175e-01 4.62572575e-01 -9.87134725e-02 4.69761789e-01 1.39121974e+00 -2.66061097e-01 -8.09102774e-01 -1.66628242e-03 -5.93555212e-01 6.30607724e-01 1.42574146e-01 -1.34209335e-01 -9.78216350e-01 -3.75779718e-01 -1.50190875e-01 -6.84317708e-01 9.08906519e-01 2.16026157e-01 1.60306728e+00 -5.80906093e-01 -2.77652144e-01 5.86655676e-01 1.61052573e+00 2.01359496e-01 2.19824895e-01 1.43127307e-01 6.74086213e-01 9.82224941e-01 6.54486716e-01 3.89054239e-01 5.24125814e-01 5.96746087e-01 6.82032406e-01 -2.31070742e-02 -2.98927337e-01 -3.41607809e-01 4.16022688e-02 2.10361212e-01 2.24250257e-02 -1.93266392e-01 -5.57785451e-01 4.41306800e-01 -1.58842230e+00 -7.47243583e-01 7.96763226e-02 2.36807036e+00 7.49478698e-01 1.05822079e-01 -6.10788129e-02 4.08161953e-02 1.03561509e+00 1.41635612e-01 -6.73046112e-01 -6.68533966e-02 -7.76614398e-02 -1.27055030e-02 4.19475794e-01 4.71707165e-01 -1.39559853e+00 7.32662559e-01 4.73993349e+00 1.26340246e+00 -6.96320891e-01 1.22303322e-01 7.98167229e-01 1.97147831e-01 3.03180311e-02 6.00471236e-02 -1.29792321e+00 7.13106632e-01 3.47498983e-01 2.85074919e-01 2.58553654e-01 8.00748944e-01 -4.13435370e-01 -7.41536766e-02 -1.28047252e+00 7.73514807e-01 -1.32146910e-01 -1.01525772e+00 3.63541633e-01 3.52440268e-01 8.60668659e-01 -4.59837735e-01 1.41557992e-01 5.91181338e-01 4.99133408e-01 -8.59602571e-01 9.20503378e-01 4.76235509e-01 9.57992256e-01 -8.29723179e-01 5.44673681e-01 4.65184510e-01 -1.73815024e+00 -3.42062920e-01 -6.04509413e-01 3.60354841e-01 -2.61245370e-01 6.25208676e-01 -2.18082502e-01 7.90742278e-01 8.18117976e-01 4.24221218e-01 -7.39168227e-01 7.14979410e-01 -3.17613631e-01 6.08978868e-01 -1.08219124e-01 2.99824774e-01 5.11685491e-01 -1.44005269e-01 1.40542209e-01 1.09135616e+00 1.44030944e-01 5.55871725e-02 7.69179881e-01 8.66091788e-01 -2.90507406e-01 -8.15203264e-02 -2.90756047e-01 3.21971774e-01 5.32307982e-01 1.37066662e+00 -8.20714593e-01 -4.60886478e-01 -3.92289549e-01 7.35661745e-01 5.91833532e-01 3.69240910e-01 -8.25300813e-01 -4.03916657e-01 3.63086373e-01 1.20293915e-01 3.37847024e-01 4.63153690e-01 -3.39703649e-01 -9.58937943e-01 3.85662983e-03 -7.38244057e-01 8.46186996e-01 -4.73856032e-01 -1.65217996e+00 5.51368356e-01 1.80049360e-01 -1.43004441e+00 2.08300889e-01 -6.92443013e-01 -1.20338656e-01 8.75965059e-01 -1.40765917e+00 -1.52953136e+00 -4.64357793e-01 5.82326114e-01 5.52813888e-01 -8.19771364e-02 5.69001436e-01 2.81035483e-01 -2.50917464e-01 7.15333343e-01 -1.56278789e-01 3.75475809e-02 2.27556184e-01 -1.44637430e+00 -4.98537153e-01 5.74438930e-01 1.16773114e-01 3.70838284e-01 8.37295204e-02 -6.01503134e-01 -3.32932472e-01 -1.56696451e+00 6.94491684e-01 -7.80633232e-03 5.90237081e-01 -4.40540433e-01 -9.15392160e-01 4.68782932e-01 -1.74382776e-01 2.67939925e-01 6.13597691e-01 2.37014681e-01 -7.08557069e-01 -5.99521637e-01 -1.49294901e+00 2.45065227e-01 9.38389838e-01 -6.12173200e-01 -4.39372331e-01 2.13500291e-01 6.79795623e-01 1.44944772e-01 -1.35934901e+00 8.95711243e-01 6.41124070e-01 -9.69177663e-01 8.70431900e-01 -5.23507357e-01 4.57173198e-01 -6.14734709e-01 -5.49698651e-01 -1.10383046e+00 -6.27868891e-01 1.80538192e-01 -4.52817865e-02 1.53697610e+00 2.07104817e-01 -5.44245541e-01 7.89456010e-01 1.54049918e-01 -1.58620790e-01 -8.03722858e-01 -1.09606862e+00 -1.01820910e+00 2.06554770e-01 7.12876841e-02 7.22200155e-01 8.71162415e-01 -5.88428378e-01 4.37070668e-01 -2.16711596e-01 6.54002249e-01 1.13926184e+00 4.79077041e-01 2.47996524e-01 -1.71776450e+00 -4.37878907e-01 -4.69101846e-01 -6.21076524e-01 -8.09359372e-01 3.47728521e-01 -1.00313020e+00 7.32544288e-02 -1.36886895e+00 3.77312124e-01 -7.04862773e-01 -5.98875344e-01 5.80107749e-01 -8.97088870e-02 3.47056657e-01 3.21401030e-01 3.55576783e-01 -5.16798139e-01 4.21358913e-01 1.30081081e+00 -4.84119534e-01 3.88309121e-01 -6.35271892e-03 -6.21006072e-01 8.43592823e-01 5.14407337e-01 -4.82556731e-01 -4.04231250e-01 -2.52604987e-02 -1.63251206e-01 6.07345514e-02 6.68317974e-01 -1.22743881e+00 1.04669988e-01 -1.42518565e-01 5.05628228e-01 -7.59276450e-01 4.03773725e-01 -1.06136155e+00 1.63833916e-01 3.52254540e-01 -5.96820354e-01 -4.60772365e-01 -2.54318684e-01 5.82036018e-01 -4.48058128e-01 -4.74642992e-01 1.33627486e+00 -1.90951899e-01 -6.81843102e-01 4.20095563e-01 -1.05095744e-01 1.14207193e-01 1.10755050e+00 -2.48102397e-01 -4.11456138e-01 2.28881836e-01 -8.28916728e-01 2.53378898e-01 4.19808418e-01 1.63022697e-01 2.77547956e-01 -1.38503277e+00 -6.69323802e-01 1.88336030e-01 5.40959656e-01 8.57463256e-02 2.01737136e-01 4.99878794e-01 -7.22515881e-02 1.97152525e-01 -3.21091205e-01 -7.44901419e-01 -1.17410600e+00 7.65922546e-01 3.18469822e-01 -6.32168889e-01 -4.41680402e-01 8.53689909e-01 1.14933240e+00 -4.98638302e-01 4.63961214e-01 -3.08712572e-01 -3.53122324e-01 3.74383003e-01 8.02663863e-02 4.49823171e-01 -7.39741698e-02 -6.90628171e-01 -1.69758886e-01 8.74499679e-01 -1.74515888e-01 2.51853198e-01 7.21193075e-01 -2.07154125e-01 -2.07849696e-01 6.85790002e-01 1.19491065e+00 -3.42948645e-01 -1.38326001e+00 -2.08185598e-01 4.60153483e-02 -3.80309194e-01 -7.75028244e-02 -1.06700385e+00 -1.04644370e+00 9.86027300e-01 8.55441272e-01 3.75211388e-01 1.32325900e+00 2.72828758e-01 2.32800320e-01 1.68563277e-01 7.77340472e-01 -1.10024202e+00 -9.00809392e-02 3.13027024e-01 7.04323888e-01 -1.00550842e+00 -1.48993477e-01 -5.85809052e-01 -5.04634500e-01 7.80957937e-01 7.93290854e-01 -3.33171384e-03 5.08853614e-01 1.80544220e-02 -2.70329326e-01 -2.17783689e-01 -6.71446323e-01 -4.50282186e-01 4.89035726e-01 4.63328511e-01 2.30396688e-01 4.87338185e-01 -2.91599602e-01 5.27804375e-01 -5.22455433e-03 -2.92601556e-01 1.65293857e-01 5.29602110e-01 -6.48166537e-01 -8.24648619e-01 -5.37686944e-01 6.89990103e-01 -3.83422494e-01 -6.99581951e-02 -2.85894275e-01 8.43520105e-01 1.04274201e+00 9.10851300e-01 9.37069878e-02 -2.54969746e-01 3.57285500e-01 -7.42245466e-02 4.28271979e-01 -6.74413383e-01 -6.00347161e-01 -1.01317372e-02 -7.39523992e-02 -3.03103387e-01 -4.27904427e-01 -6.61635160e-01 -1.10339403e+00 -1.18570169e-02 -1.93007708e-01 3.61538649e-01 1.99374661e-01 7.06820726e-01 7.73738697e-02 6.00801289e-01 8.37586224e-01 -5.12024164e-01 -4.47252572e-01 -8.53734672e-01 -1.12791169e+00 5.81052065e-01 3.97032738e-01 -1.07548332e+00 -5.39753139e-01 1.55441150e-01]
[9.601076126098633, 2.3980371952056885]
ec9160a0-2ec3-475a-b9b7-3337ce13e687
generative-entity-typing-with-curriculum
2210.02914
null
https://arxiv.org/abs/2210.02914v2
https://arxiv.org/pdf/2210.02914v2.pdf
Generative Entity Typing with Curriculum Learning
Entity typing aims to assign types to the entity mentions in given texts. The traditional classification-based entity typing paradigm has two unignorable drawbacks: 1) it fails to assign an entity to the types beyond the predefined type set, and 2) it can hardly handle few-shot and zero-shot situations where many long-tail types only have few or even no training instances. To overcome these drawbacks, we propose a novel generative entity typing (GET) paradigm: given a text with an entity mention, the multiple types for the role that the entity plays in the text are generated with a pre-trained language model (PLM). However, PLMs tend to generate coarse-grained types after fine-tuning upon the entity typing dataset. Besides, we only have heterogeneous training data consisting of a small portion of human-annotated data and a large portion of auto-generated but low-quality data. To tackle these problems, we employ curriculum learning (CL) to train our GET model upon the heterogeneous data, where the curriculum could be self-adjusted with the self-paced learning according to its comprehension of the type granularity and data heterogeneity. Our extensive experiments upon the datasets of different languages and downstream tasks justify the superiority of our GET model over the state-of-the-art entity typing models. The code has been released on https://github.com/siyuyuan/GET.
['Yanghua Xiao', 'Jingyue Huang', 'Jinxi Liu', 'Zhixu Li', 'Jiaqing Liang', 'Deqing Yang', 'Siyu Yuan']
2022-10-06
null
null
null
null
['entity-typing']
['natural-language-processing']
[-1.12056389e-01 1.89094007e-01 -3.53751779e-01 -3.98484558e-01 -6.03944242e-01 -6.27447605e-01 6.49360418e-01 2.47329399e-01 -6.98625863e-01 9.85196471e-01 -3.96923721e-02 -3.49573106e-01 2.17693835e-01 -1.15457606e+00 -7.37271249e-01 -4.37950999e-01 3.07893097e-01 8.69488299e-01 2.72328287e-01 -3.47642422e-01 -6.80364743e-02 -4.43505853e-01 -1.71974719e+00 3.23736429e-01 1.36965561e+00 7.30371594e-01 4.60465640e-01 5.05719364e-01 -6.66050315e-01 4.57751662e-01 -6.26697719e-01 -8.37094784e-01 -1.97307289e-01 -1.05832897e-01 -7.91707873e-01 -5.42994320e-01 2.21751511e-01 1.17949266e-02 -6.49793819e-02 1.08020258e+00 6.05384350e-01 5.82219362e-02 8.33990455e-01 -1.40588224e+00 -1.03256309e+00 8.63637209e-01 -4.04981881e-01 4.91649704e-03 4.30086553e-01 1.09198302e-01 1.26631773e+00 -1.10485196e+00 8.72051120e-01 1.01268375e+00 8.29423547e-01 1.06486917e+00 -1.01142073e+00 -7.06575394e-01 1.80426776e-01 3.47425938e-01 -1.30626822e+00 -3.04524481e-01 3.51922035e-01 -5.34814477e-01 8.69464815e-01 2.90609807e-01 3.08338583e-01 1.36755729e+00 -1.53128430e-01 8.29700470e-01 9.03003871e-01 -3.63195211e-01 3.19737256e-01 3.60230267e-01 5.53026915e-01 5.47985196e-01 5.15251398e-01 -4.21631522e-02 -2.27310658e-01 -3.60162199e-01 2.54679233e-01 -2.16357455e-01 -2.78026946e-02 2.30531227e-02 -1.15556157e+00 6.45049214e-01 1.31107435e-01 3.22721899e-01 -1.21391848e-01 -7.94065893e-02 6.69029236e-01 1.06623799e-01 3.39107811e-01 5.02016962e-01 -9.62952495e-01 -2.45838672e-01 -5.70386350e-01 4.23730522e-01 9.38714921e-01 1.63919401e+00 9.78407562e-01 -1.23847924e-01 -3.04198325e-01 1.04117751e+00 1.55116245e-01 5.12679100e-01 6.60114765e-01 -1.78924039e-01 7.84228683e-01 9.34093416e-01 2.54075706e-01 -3.39450330e-01 -2.92903572e-01 -1.33389533e-01 -9.60503757e-01 -2.20011219e-01 4.76325721e-01 -5.85951805e-01 -8.72203648e-01 1.75494432e+00 6.22985005e-01 3.62174213e-01 1.80397257e-01 5.19160628e-01 1.26138413e+00 6.56888247e-01 3.98140788e-01 1.11390173e-01 1.71481621e+00 -6.64125025e-01 -8.05786669e-01 -3.76908362e-01 7.90105581e-01 -4.23328191e-01 1.32574522e+00 -1.87495984e-02 -6.94854617e-01 -5.36385357e-01 -8.51888537e-01 -1.78420797e-01 -7.23086655e-01 2.20131055e-01 4.82220262e-01 6.80835545e-01 -3.25912148e-01 2.51766026e-01 -4.86884803e-01 -1.32065058e-01 2.10340664e-01 2.93419547e-02 -3.00487150e-02 1.02595754e-01 -1.78548419e+00 5.60896158e-01 5.65220177e-01 7.90574029e-02 -5.40519357e-01 -1.14819717e+00 -8.70799780e-01 1.20168172e-01 6.49956882e-01 -1.01447904e+00 1.47658777e+00 -7.18242645e-01 -1.10035741e+00 7.23343015e-01 -3.97111803e-01 -6.97586313e-02 4.40617323e-01 -1.59655467e-01 -4.56846565e-01 -5.53537071e-01 2.75836110e-01 8.25681314e-02 3.76083612e-01 -1.21663165e+00 -1.21331024e+00 -4.03268859e-02 2.16642320e-01 1.55201957e-01 -2.45057046e-01 -2.76858397e-02 -4.32189703e-01 -8.14662457e-01 -3.79525006e-01 -8.28650653e-01 -1.10803738e-01 -5.85736930e-01 -4.36809033e-01 -8.03389013e-01 4.63057578e-01 -3.52518916e-01 1.70273638e+00 -1.88475513e+00 9.19838026e-02 -1.27661362e-01 2.12922439e-01 3.26273054e-01 4.25773375e-02 4.13506418e-01 2.03300029e-01 4.23605591e-01 -2.49672934e-01 -3.53489041e-01 3.86040330e-01 2.95584559e-01 -2.67758727e-01 -5.07845655e-02 -3.59652564e-02 8.56033266e-01 -1.33549750e+00 -5.82597673e-01 -3.66216153e-01 1.52781889e-01 -6.22975826e-01 6.88655019e-01 -5.70734143e-01 1.19736955e-01 -6.54028714e-01 7.06393242e-01 5.60654223e-01 -1.59406066e-01 3.01565230e-01 -1.15872137e-01 -9.20207500e-02 5.41072369e-01 -1.44348669e+00 1.31298244e+00 -5.15088499e-01 4.62289974e-02 -2.26974756e-01 -5.51845670e-01 6.63442552e-01 4.56575841e-01 1.57554984e-01 -4.48707312e-01 -5.49523942e-02 3.97484243e-01 -6.61828071e-02 -8.50220680e-01 8.82256627e-01 -2.62591302e-01 -5.74552417e-01 4.49773967e-01 2.63509840e-01 4.26350355e-01 4.43079203e-01 1.90075472e-01 8.70945811e-01 1.56196460e-01 2.27359876e-01 9.50676873e-02 2.99879074e-01 -3.33766751e-02 1.16474271e+00 9.20317531e-01 1.02767467e-01 3.84919107e-01 5.88177621e-01 -2.66419798e-01 -1.14710605e+00 -7.28864253e-01 -2.79236704e-01 1.50111043e+00 2.80261219e-01 -5.73036373e-01 -6.05135739e-01 -9.63400900e-01 4.33326997e-02 7.23936617e-01 -7.51575112e-01 1.34444013e-01 -5.48167944e-01 -1.08729100e+00 7.79513657e-01 5.81141293e-01 2.89708734e-01 -1.41714585e+00 -1.45040482e-01 3.87887061e-01 -5.94579160e-01 -9.34771955e-01 -5.04488289e-01 7.87384510e-02 -2.12825209e-01 -1.10572112e+00 -5.21727979e-01 -9.28545117e-01 6.70873404e-01 -1.51052788e-01 1.24568582e+00 2.63229698e-01 1.16765462e-01 -1.77823633e-01 -6.86164200e-01 -4.43265408e-01 -5.34145117e-01 6.64511383e-01 7.63154924e-02 -6.60787970e-02 6.37717068e-01 -1.98918968e-01 -2.31023937e-01 1.93308949e-01 -6.43089473e-01 4.91940677e-02 5.24451733e-01 1.21401215e+00 4.00934994e-01 1.03305921e-01 7.49577999e-01 -1.91061068e+00 5.80256164e-01 -9.51547325e-01 -3.89241755e-01 4.69647914e-01 -8.97033811e-01 7.97227919e-02 8.21731031e-01 -7.45065331e-01 -1.47287452e+00 -3.38387102e-01 -2.66827345e-01 5.64335147e-03 -1.24550737e-01 8.39903295e-01 -6.01746678e-01 6.15048826e-01 6.41777933e-01 8.76070485e-02 -6.13673687e-01 -5.84861517e-01 4.54431772e-01 9.14887428e-01 5.91935158e-01 -1.16786921e+00 8.34661245e-01 -2.51219481e-01 -6.27240717e-01 -3.51069331e-01 -9.00270224e-01 -5.28359652e-01 -8.11382353e-01 9.69304740e-02 6.35501385e-01 -9.08170938e-01 -4.88533497e-01 8.28797996e-01 -1.04821014e+00 -6.55110002e-01 -4.89886142e-02 9.65707004e-02 -3.15651566e-01 3.09647501e-01 -6.97342038e-01 -7.33497322e-01 -5.41493833e-01 -9.07744288e-01 9.05759275e-01 4.42515463e-01 -1.31699681e-01 -1.02503657e+00 1.67876810e-01 6.34895638e-02 2.58940279e-01 6.67746663e-02 1.29030132e+00 -7.74474740e-01 -4.43000853e-01 -1.38316870e-01 -4.79293838e-02 -1.83666885e-01 1.36983767e-01 1.32474169e-01 -8.36888492e-01 -1.21157773e-01 -5.31552792e-01 -3.58114094e-01 4.20150399e-01 -1.64395615e-01 9.21990871e-01 -7.53499925e-01 -4.57027137e-01 7.19141006e-01 1.42700744e+00 6.06015176e-02 5.28946579e-01 5.51670492e-01 1.06275141e+00 5.08081615e-01 9.90306437e-01 4.67389762e-01 8.81430149e-01 6.76981747e-01 -7.92495534e-02 -3.30008343e-02 1.69212315e-02 -6.54211640e-01 4.18061391e-02 8.40539336e-01 -9.06640366e-02 -4.22173232e-01 -1.02920532e+00 6.49774492e-01 -2.03140068e+00 -1.22988260e+00 -3.91502947e-01 2.11980438e+00 1.69112706e+00 1.95702866e-01 1.98356599e-01 -3.01230013e-01 8.39488506e-01 -1.42321676e-01 -6.21903241e-01 -9.31280330e-02 5.43457456e-02 -5.94132394e-02 4.59933251e-01 4.91836071e-01 -1.07350385e+00 1.06238997e+00 5.39569139e+00 9.16501999e-01 -8.18343520e-01 1.94344863e-01 2.33749449e-01 3.79801631e-01 -6.22433603e-01 9.77208763e-02 -1.37457252e+00 1.10523093e+00 7.91674256e-01 -6.34986997e-01 2.37518728e-01 9.46306646e-01 -2.81422377e-01 1.57829553e-01 -1.08973598e+00 5.73110044e-01 -2.88076848e-01 -1.13932252e+00 1.63647963e-03 -7.50463828e-02 5.16212106e-01 -6.85615018e-02 -2.06157506e-01 1.02171063e+00 6.82580709e-01 -7.48359144e-01 9.35311377e-01 4.46808487e-01 1.19393110e+00 -5.76552331e-01 9.76379395e-01 7.65250921e-01 -1.39204502e+00 -3.02549172e-02 -5.66145539e-01 2.44757548e-01 -7.48791248e-02 5.03162682e-01 -9.08242881e-01 7.24761128e-01 5.85194528e-01 4.76057440e-01 -5.33542097e-01 9.12723958e-01 -4.31291997e-01 6.04270279e-01 -4.84946296e-02 -3.57700706e-01 -9.94817391e-02 -1.40026556e-02 4.17618334e-01 1.52780497e+00 2.23546043e-01 3.05345982e-01 9.26845521e-02 8.41525674e-01 -1.27613336e-01 -3.00389528e-02 -2.20171019e-01 2.46777296e-01 1.10706961e+00 1.53055060e+00 -9.16427933e-03 -8.83583307e-01 -5.97565114e-01 5.65357625e-01 6.45947874e-01 3.18974465e-01 -8.22806537e-01 -6.64848268e-01 6.01001263e-01 5.89728765e-02 3.27450037e-01 8.57172981e-02 -4.00705129e-01 -1.59082615e+00 4.63699363e-02 -1.05170751e+00 7.82727063e-01 -5.60555637e-01 -1.76807356e+00 6.47539556e-01 1.23911828e-01 -1.18618178e+00 -3.77413362e-01 -3.34888697e-01 -5.43070138e-01 1.03425920e+00 -1.50782096e+00 -1.18585896e+00 -4.15081412e-01 2.95355707e-01 5.69036126e-01 -1.89189255e-01 8.90008628e-01 6.62760019e-01 -9.02141929e-01 1.26640093e+00 -2.80773565e-02 6.11896634e-01 9.24200773e-01 -1.80825782e+00 6.93850160e-01 8.26821685e-01 -3.90945017e-01 8.98659110e-01 8.03838611e-01 -7.82430947e-01 -1.36654353e+00 -1.41077518e+00 1.34777594e+00 -7.29453027e-01 7.09314823e-01 -7.01223731e-01 -1.38338780e+00 8.61448050e-01 1.13348022e-01 -1.05650380e-01 8.58288288e-01 6.95031762e-01 -6.91038132e-01 9.26975086e-02 -1.00938904e+00 4.18184906e-01 1.07781577e+00 -3.19399446e-01 -1.05862236e+00 4.14065234e-02 5.38665473e-01 -7.85508573e-01 -9.62805808e-01 2.88098723e-01 5.49497187e-01 -4.03361142e-01 5.20268977e-01 -7.69122541e-01 4.98345524e-01 -3.10811996e-01 1.37437314e-01 -1.66041148e+00 -4.80344474e-01 -4.79073614e-01 -2.76306301e-01 1.95859802e+00 7.48763382e-01 -7.35972822e-01 5.40593088e-01 9.83310580e-01 -2.99113095e-01 -6.92602336e-01 -6.29202902e-01 -7.60208786e-01 1.75659418e-01 -3.93996201e-02 1.04684937e+00 1.21571171e+00 2.01120928e-01 5.92210889e-01 -1.77879974e-01 2.31609285e-01 4.70183551e-01 2.29448989e-01 1.01219189e+00 -1.12527764e+00 -4.11468387e-01 -3.16372424e-01 6.76834956e-02 -8.90140057e-01 2.37341389e-01 -1.11041367e+00 3.17184448e-01 -1.33657265e+00 3.71255487e-01 -1.45317197e+00 -2.47553751e-01 9.15106118e-01 -9.89422917e-01 -3.36361527e-01 -1.51755050e-01 2.81054735e-01 -4.79898602e-01 3.58153939e-01 8.49264205e-01 -2.03464881e-01 -6.18668534e-02 7.84913152e-02 -8.90946090e-01 4.17417377e-01 6.08754635e-01 -7.34074533e-01 -2.62662202e-01 -4.40553218e-01 5.88246644e-01 2.59319507e-02 1.44718727e-02 -3.94633085e-01 3.64095688e-01 -4.21844155e-01 2.30588168e-02 -5.45461774e-01 -2.64041156e-01 -2.86470234e-01 3.11730832e-01 9.13080275e-02 -4.07157898e-01 1.31849244e-01 -1.37062520e-01 3.79257202e-01 1.62187440e-03 -6.33862615e-01 4.90624219e-01 -2.15028837e-01 -1.07633817e+00 6.20826960e-01 -1.32772937e-01 6.91634119e-01 7.15755403e-01 9.21244249e-02 -6.94259524e-01 3.22602659e-01 -2.94547409e-01 4.45603043e-01 6.65132105e-01 6.46842718e-01 9.44688767e-02 -1.32449722e+00 -8.34895730e-01 1.96762741e-01 5.55000901e-01 4.75666851e-01 2.92345315e-01 3.34257662e-01 -1.24338120e-02 -4.82470822e-03 -5.92510886e-02 -3.28365624e-01 -1.12020814e+00 7.10435629e-01 3.38145554e-01 -3.57654303e-01 -6.55010998e-01 7.72416830e-01 2.61494666e-01 -8.74211192e-01 2.10919827e-01 -1.29147753e-01 -2.97393680e-01 3.07500809e-01 5.51055670e-01 6.57935590e-02 1.54626727e-01 -3.79995316e-01 -3.12326729e-01 1.18599072e-01 -2.85866737e-01 1.32474065e-01 1.29814827e+00 9.10130739e-02 -3.23416404e-02 7.01901853e-01 9.11679387e-01 2.40307167e-01 -1.06705666e+00 -4.12709266e-01 1.37142777e-01 -3.56801838e-01 -4.62973297e-01 -8.72533679e-01 -7.83275485e-01 4.30982262e-01 1.51098808e-02 3.91785353e-01 6.13270402e-01 4.57779020e-02 9.63886559e-01 2.82275110e-01 5.42971909e-01 -1.16117573e+00 -3.93668085e-01 8.34847450e-01 4.80129331e-01 -1.11174762e+00 -2.22617313e-01 -4.72756952e-01 -7.30197370e-01 7.76735067e-01 1.00305402e+00 2.47284383e-01 4.29842591e-01 5.28758645e-01 1.70413911e-01 1.01762004e-01 -1.20232296e+00 -3.36646467e-01 2.18635038e-01 6.32777810e-01 6.57052100e-01 3.67629290e-01 -4.73957658e-01 1.16959190e+00 -4.90816951e-01 -3.89546528e-03 5.96828461e-01 7.87282407e-01 -2.22417638e-01 -1.40035272e+00 7.34789744e-02 5.65618277e-01 -3.72503251e-01 -3.07233453e-01 -1.09218694e-01 7.30929255e-01 4.51548964e-01 6.44317329e-01 -1.21325500e-01 -3.30753058e-01 5.76807559e-01 1.17674544e-01 2.45246544e-01 -9.87722874e-01 -8.28096151e-01 -2.77027935e-01 3.67980212e-01 4.32521440e-02 1.07865073e-02 -8.27251673e-01 -1.36687219e+00 -3.41916382e-01 -3.96707892e-01 2.30940357e-01 2.09180772e-01 8.32349658e-01 4.31474090e-01 4.22176450e-01 6.63428783e-01 -1.53413132e-01 -5.37107825e-01 -1.13468587e+00 -4.38333154e-01 7.82826483e-01 1.66185334e-01 -8.93914402e-01 -3.44657987e-01 1.27486885e-01]
[9.644502639770508, 8.758882522583008]
b1a9f1b7-f0a1-4db4-ba08-03cc1da24902
reinforcement-learning-finetuned-vision-code
2305.14637
null
https://arxiv.org/abs/2305.14637v1
https://arxiv.org/pdf/2305.14637v1.pdf
Reinforcement Learning finetuned Vision-Code Transformer for UI-to-Code Generation
Automated HTML/CSS code generation from screenshots is an important yet challenging problem with broad applications in website development and design. In this paper, we present a novel vision-code transformer approach that leverages an Encoder-Decoder architecture as well as explore actor-critic fine-tuning as a method for improving upon the baseline. For this purpose, two image encoders are compared: Vision Transformer (ViT) and Document Image Transformer (DiT). We propose an end-to-end pipeline that can generate high-quality code snippets directly from screenshots, streamlining the website creation process for developers. To train and evaluate our models, we created a synthetic dataset of 30,000 unique pairs of code and corresponding screenshots. We evaluate the performance of our approach using a combination of automated metrics such as MSE, BLEU, IoU, and a novel htmlBLEU score, where our models demonstrated strong performance. We establish a strong baseline with the DiT-GPT2 model and show that actor-critic can be used to improve IoU score from the baseline of 0.64 to 0.79 and lower MSE from 12.25 to 9.02. We achieved similar performance as when using larger models, with much lower computational cost.
['Tianyi Zhou', 'Khalid Saifullah', 'Davit Soselia']
2023-05-24
null
null
null
null
['code-generation']
['computer-code']
[ 3.85940403e-01 1.21314332e-01 2.52668291e-01 -2.60064781e-01 -1.32293105e+00 -8.97094250e-01 5.60110807e-01 -2.51108199e-01 1.81377809e-02 3.76625001e-01 2.15432689e-01 -4.74861622e-01 3.00044656e-01 -5.37580729e-01 -1.07618451e+00 6.31019920e-02 4.40559864e-01 1.61894038e-03 1.87799662e-01 -5.21899275e-02 3.80985737e-01 -3.75501484e-01 -1.32035542e+00 7.35826075e-01 1.01899457e+00 6.54362023e-01 3.35372239e-01 1.18890858e+00 -9.61580351e-02 9.69865322e-01 -7.98822045e-01 -1.11730731e+00 1.93549171e-01 -7.61080980e-01 -5.93734741e-01 -2.37259921e-03 7.43359685e-01 -3.84080619e-01 -1.48478955e-01 9.13303971e-01 5.49626350e-01 -5.33230245e-01 4.27768499e-01 -9.43794131e-01 -1.26279652e+00 7.63221025e-01 -7.27041781e-01 -1.49606913e-01 6.06221378e-01 2.76684880e-01 1.15470362e+00 -1.00936449e+00 7.28694677e-01 1.08966112e+00 9.62658703e-01 5.93196511e-01 -1.31852949e+00 -2.90199339e-01 -2.61797428e-01 -9.82041806e-02 -1.02376938e+00 -5.04039526e-01 4.32700992e-01 -7.01829433e-01 1.08235633e+00 9.36990082e-02 4.81607258e-01 1.38139176e+00 1.03100851e-01 8.47641110e-01 9.07989383e-01 -8.62423241e-01 -2.99584214e-03 3.38379562e-01 -1.20855741e-01 1.02488673e+00 2.69444138e-01 -2.19095111e-01 -4.25610900e-01 -3.53441276e-02 6.06743932e-01 -2.76481748e-01 -2.05906123e-01 -2.02836230e-01 -1.16494346e+00 7.39747703e-01 8.80949795e-02 7.31450086e-03 -1.30463034e-01 5.95181227e-01 3.12792391e-01 2.82219768e-01 2.07864076e-01 7.35326648e-01 -3.63295853e-01 -6.78036690e-01 -1.08791089e+00 2.35091627e-01 8.67713213e-01 1.29681921e+00 5.08884192e-01 2.48993542e-02 -7.36659050e-01 1.06801915e+00 2.66103506e-01 5.56156158e-01 4.34512943e-01 -1.08729291e+00 8.68253052e-01 4.24458236e-01 1.15835398e-01 -6.89476252e-01 2.54540175e-01 -2.68752664e-01 -1.85485393e-01 1.67788029e-01 2.87203252e-01 -3.35416675e-01 -9.82277811e-01 1.44035983e+00 -2.76802540e-01 -3.27120751e-01 -9.23432410e-02 3.97848785e-01 6.77674830e-01 6.65740728e-01 -2.87531972e-01 2.29094297e-01 1.20269060e+00 -1.51219678e+00 -4.65770900e-01 -3.19423616e-01 5.20060778e-01 -1.07822394e+00 1.68558490e+00 3.53842735e-01 -1.46952319e+00 -5.31542242e-01 -9.89965200e-01 -6.38133958e-02 7.68502206e-02 7.29357719e-01 2.90836513e-01 8.51391494e-01 -1.35924482e+00 5.05011559e-01 -7.76337326e-01 -4.20680195e-01 5.50057650e-01 -1.40387118e-01 1.03871906e-02 -2.49952190e-02 -4.16728854e-01 5.58627784e-01 -4.88524958e-02 -5.41169643e-01 -1.03800678e+00 -8.08993340e-01 -6.60858035e-01 3.47913802e-01 2.89119601e-01 -7.44178712e-01 1.83036661e+00 -1.09786987e+00 -1.57568574e+00 7.50339389e-01 -4.08999622e-04 -3.58058184e-01 6.09720826e-01 -2.97886372e-01 -1.57644629e-01 -4.90345880e-02 2.31683806e-01 5.36971807e-01 8.05065393e-01 -1.11885834e+00 -6.55773938e-01 1.63066596e-01 1.80549055e-01 -1.55470401e-01 -6.44466877e-01 1.92486107e-01 -9.92555022e-01 -7.02588975e-01 -6.24730229e-01 -1.02529097e+00 9.75821018e-02 8.95830840e-02 -5.76972961e-01 2.57167518e-01 3.47900867e-01 -1.10763633e+00 1.47029555e+00 -2.01616263e+00 -1.00377619e-01 -7.04272538e-02 1.21418387e-01 3.52284998e-01 -5.25119066e-01 5.98997474e-01 1.33201167e-01 3.79192322e-01 -2.87339509e-01 -3.05561900e-01 8.49349722e-02 -3.89860958e-01 -7.83350766e-02 -2.96644151e-01 4.20186162e-01 1.13459921e+00 -7.18078732e-01 -3.07926327e-01 -2.74192095e-01 4.85193342e-01 -9.62485313e-01 4.33371305e-01 -4.38266128e-01 -1.36030644e-01 -1.04483306e-01 7.15916753e-01 2.44559050e-01 -6.21604323e-01 2.16960251e-01 8.43472779e-02 -6.14941046e-02 2.29464084e-01 -6.71452641e-01 1.80461466e+00 -8.69382679e-01 1.25382864e+00 -3.47302884e-01 -3.18925977e-01 9.70848501e-01 1.69918269e-01 8.88204575e-03 -9.70301032e-01 -2.48649061e-01 1.83787271e-02 -2.09604979e-01 -7.98197389e-01 5.61227202e-01 4.80343461e-01 -1.47100436e-02 5.39731503e-01 2.41968445e-02 -1.06999531e-01 5.49306154e-01 2.85766870e-01 1.68029618e+00 5.37530482e-01 4.06689756e-02 1.91881895e-01 1.54698431e-01 7.44119212e-02 -1.45751797e-03 8.94073308e-01 1.80240184e-01 1.05741167e+00 9.72656012e-01 -2.19038770e-01 -1.63811445e+00 -1.00428975e+00 3.55131418e-01 1.06011605e+00 -4.35676783e-01 -8.28615308e-01 -1.24364245e+00 -9.48954701e-01 -2.31491983e-01 9.63899076e-01 -6.01479530e-01 -9.74131450e-02 -4.24239516e-01 -5.96588016e-01 7.00401425e-01 5.76933265e-01 3.79366517e-01 -8.68873596e-01 -6.23331249e-01 1.56822830e-01 -2.38827944e-01 -1.02890265e+00 -8.25992942e-01 -1.96888074e-01 -4.11365151e-01 -1.01207292e+00 -1.08529055e+00 -8.83826971e-01 6.34692609e-01 2.41448715e-01 1.57658148e+00 4.79912013e-02 -2.52730131e-01 4.90003943e-01 -5.69793463e-01 -4.86293793e-01 -9.87170577e-01 8.59485269e-02 -7.03578413e-01 -3.62355173e-01 2.28652284e-02 -2.76189029e-01 -6.69518113e-01 1.46720499e-01 -7.73619294e-01 3.55275631e-01 7.95404673e-01 8.82263422e-01 2.71760017e-01 -4.65831935e-01 2.84599900e-01 -1.03786767e+00 9.28354323e-01 -2.88226306e-01 -8.17998171e-01 6.63197339e-01 -8.66557956e-01 2.88823873e-01 7.66400874e-01 -2.43448719e-01 -1.21529329e+00 3.60886753e-02 -1.86734170e-01 -2.14131683e-01 3.05357397e-01 5.89272082e-01 1.32868320e-01 -2.58917473e-02 1.06050014e+00 1.67205140e-01 -1.75547346e-01 -4.89184052e-01 4.82571393e-01 9.47515130e-01 4.78496075e-01 -3.90882552e-01 8.59889209e-01 -5.01020700e-02 -6.37382746e-01 -2.66264975e-01 -6.71898603e-01 2.60402486e-02 -1.72607407e-01 -3.87429744e-02 6.62059247e-01 -1.00541306e+00 -2.49788523e-01 2.38754958e-01 -1.35590613e+00 -5.57395458e-01 -8.60412121e-02 3.02104615e-02 -5.02234340e-01 3.57660770e-01 -6.45164490e-01 -3.97150487e-01 -5.34787297e-01 -1.16318846e+00 1.13925910e+00 1.73218787e-01 -1.42770663e-01 -7.88451195e-01 3.66333008e-01 4.08805192e-01 5.88229895e-01 3.89248550e-01 8.19611132e-01 -3.29356611e-01 -6.39733016e-01 -2.62165248e-01 -4.98920530e-01 4.70353425e-01 1.38864042e-02 6.44794106e-01 -8.75666261e-01 -2.20412999e-01 -4.86513972e-01 -3.18476021e-01 6.73055947e-01 9.16339457e-02 1.20715046e+00 -4.56707567e-01 -4.39140201e-02 6.87866211e-01 1.68743587e+00 3.82767260e-01 8.05533051e-01 5.60762882e-01 8.92540693e-01 2.35276461e-01 3.78359407e-01 6.07913017e-01 6.04541421e-01 7.92994380e-01 2.71375209e-01 -1.64107755e-02 -4.85169023e-01 -5.48225522e-01 7.07896650e-01 8.62124085e-01 1.08178690e-01 -4.72939730e-01 -1.13420510e+00 6.37350321e-01 -1.68451023e+00 -8.95296216e-01 -1.48663655e-01 2.05461025e+00 9.95116651e-01 2.80510426e-01 1.02120474e-01 -2.50195801e-01 6.90504313e-01 -1.25375196e-01 -3.16761643e-01 -6.29222572e-01 1.58644915e-01 2.47089595e-01 3.83128405e-01 1.29744112e-01 -7.60639250e-01 7.82297492e-01 6.78628969e+00 5.40791988e-01 -8.49553466e-01 1.07846387e-01 5.24674714e-01 -1.33890823e-01 -5.99422812e-01 6.55609146e-02 -6.29809499e-01 7.21276820e-01 1.36161208e+00 -3.05117548e-01 7.76224554e-01 1.17081904e+00 1.45563066e-01 2.58917570e-01 -1.14803195e+00 9.69749689e-01 3.02444220e-01 -1.65607798e+00 -2.82256342e-02 -7.81277418e-02 1.19701660e+00 -4.81130183e-02 3.34331505e-02 4.14510876e-01 5.84243178e-01 -7.55028009e-01 9.95628834e-01 4.74654108e-01 1.20256698e+00 -3.58062148e-01 4.31638956e-01 -1.07989669e-01 -8.77219200e-01 -1.47210151e-01 -2.59857506e-01 1.82044804e-01 -4.00528796e-02 5.70084929e-01 -1.26821733e+00 1.75255924e-01 7.04287827e-01 7.82792687e-01 -1.14540184e+00 1.27595520e+00 -3.60406458e-01 7.64004111e-01 1.86452225e-01 -2.53848016e-01 4.59026918e-02 1.98589116e-01 1.26450926e-01 1.58950186e+00 7.84346342e-01 -6.25727534e-01 -2.88129926e-01 1.27140617e+00 -4.92525041e-01 -6.62940554e-03 -6.03822470e-01 -3.48396063e-01 5.19183159e-01 1.32272863e+00 -4.50002909e-01 -4.27078247e-01 -7.20942080e-01 1.21601152e+00 3.42502773e-01 3.26824069e-01 -1.31205392e+00 -8.86002064e-01 3.09192061e-01 -5.39496448e-03 7.76724577e-01 -6.67643920e-02 -2.87719667e-01 -1.20568538e+00 3.40924740e-01 -1.20827007e+00 -9.31890756e-02 -1.13799024e+00 -7.86949158e-01 6.74358249e-01 -3.98943365e-01 -1.32788563e+00 -2.91889131e-01 -4.75888461e-01 -7.92253435e-01 6.49089217e-01 -1.41790569e+00 -1.07947302e+00 -6.88495696e-01 4.70921807e-02 8.32495034e-01 -3.26523840e-01 4.89339113e-01 3.56983095e-01 -6.63529158e-01 1.12478256e+00 5.16785324e-01 2.11494371e-01 7.69321382e-01 -1.56181777e+00 1.19876242e+00 1.13152885e+00 3.26239318e-01 6.39960825e-01 4.65187818e-01 -5.13238251e-01 -1.34480047e+00 -1.31145084e+00 5.96936762e-01 -7.30009437e-01 5.76092899e-01 -5.15723169e-01 -4.49344873e-01 6.25101328e-01 6.06704652e-01 -4.16351795e-01 4.43154693e-01 -1.25843883e-01 -5.37027121e-01 8.09875503e-02 -8.19913983e-01 7.64531493e-01 9.41561341e-01 -5.11414230e-01 -2.46470481e-01 4.17395771e-01 1.06115174e+00 -4.53606546e-01 -9.74675059e-01 -2.47031674e-01 7.72460580e-01 -1.25685728e+00 7.55334198e-01 -2.51559287e-01 1.29891431e+00 -1.27825767e-01 8.04268289e-03 -1.31470370e+00 -4.55174446e-01 -8.39145899e-01 -1.21956080e-01 1.50245440e+00 8.94453287e-01 -4.15794477e-02 6.58764064e-01 5.16989172e-01 -3.03719699e-01 -6.54284477e-01 -2.60823905e-01 -7.29513407e-01 -1.38970613e-01 -1.96971908e-01 5.68140805e-01 5.13800442e-01 -6.13424517e-02 4.52844173e-01 -4.37095881e-01 -3.37320268e-01 4.61751401e-01 -4.15543318e-02 9.65388536e-01 -6.47070527e-01 -7.06406415e-01 -4.54857469e-01 6.18197117e-03 -8.98051143e-01 -3.36166680e-01 -8.66027296e-01 1.84242249e-01 -1.78928196e+00 6.31585002e-01 3.48737910e-02 4.67896387e-02 5.88213205e-01 -2.55750179e-01 2.86918253e-01 3.64829481e-01 1.85298577e-01 -7.56290793e-01 3.37654322e-01 1.02525759e+00 -2.86175251e-01 -1.41653001e-01 -1.49007320e-01 -1.00704932e+00 4.51952487e-01 7.03984618e-01 -4.32429522e-01 -3.74136925e-01 -8.74048352e-01 5.80649018e-01 3.54179926e-02 1.62956312e-01 -1.16370916e+00 -1.26246586e-01 2.17052788e-01 2.89209664e-01 -1.20192327e-01 -1.57222480e-01 -3.53977263e-01 -4.45416495e-02 3.37068588e-01 -6.76126122e-01 4.02496129e-01 1.92204982e-01 3.97829413e-01 3.88351008e-02 -5.27903318e-01 5.74492097e-01 -2.65003115e-01 -5.07709384e-01 -2.40731344e-01 -2.81057775e-01 3.19663972e-01 8.48112941e-01 -2.74912328e-01 -6.35269165e-01 -4.22468305e-01 -1.89767897e-01 -7.99210891e-02 8.02397072e-01 5.93300223e-01 7.76531219e-01 -1.20702672e+00 -7.84339905e-01 3.13773304e-02 4.06098962e-01 -5.33377647e-01 -2.17213094e-01 5.34918725e-01 -9.47198033e-01 4.11953449e-01 -2.64213562e-01 -5.28333068e-01 -1.34006023e+00 3.85331392e-01 1.29308879e-01 -2.94037253e-01 -3.00667048e-01 7.93003201e-01 9.02364999e-02 -2.75343031e-01 2.04560801e-01 -4.88077790e-01 8.53995308e-02 -3.06029260e-01 5.16302228e-01 4.19000238e-01 1.37884676e-01 8.41032714e-02 -1.30413741e-01 5.83972871e-01 -1.86887592e-01 -2.12536067e-01 1.43656790e+00 -4.71293256e-02 1.97235286e-01 1.52909150e-02 1.31051362e+00 1.26404315e-01 -1.59389853e+00 1.16118252e-01 1.17431439e-01 -6.45252645e-01 -2.13184208e-01 -1.26646495e+00 -1.06192875e+00 7.05219090e-01 5.92346668e-01 3.58824193e-01 9.86997783e-01 -1.23663604e-01 8.70924950e-01 3.76916498e-01 1.91339791e-01 -1.06423068e+00 6.42406225e-01 3.78599882e-01 9.21060681e-01 -1.28186488e+00 -2.05732271e-01 -8.68230537e-02 -9.79118049e-01 1.19530606e+00 6.98866963e-01 7.81961605e-02 -6.33376539e-02 4.00091738e-01 4.90562990e-02 -6.78201169e-02 -1.10772777e+00 1.52683333e-02 2.86638737e-01 5.81589937e-01 8.50646794e-01 -3.12567890e-01 -1.21869788e-01 4.44006860e-01 -2.14234322e-01 1.65726051e-01 1.08982968e+00 9.38801885e-01 -2.54980981e-01 -1.14902067e+00 -2.39308387e-01 5.81513762e-01 -6.23157263e-01 -4.84277308e-01 -4.32191342e-01 4.70424324e-01 -2.17944771e-01 9.14916873e-01 -2.04572320e-01 -5.99798679e-01 5.00971794e-01 -1.11253023e-01 3.67740542e-01 -6.77344084e-01 -7.66016185e-01 -6.05359627e-03 4.11482394e-01 -6.36044860e-01 -1.38380095e-01 -6.93114638e-01 -7.29985118e-01 -7.47209266e-02 -2.97379583e-01 -1.04887731e-01 9.40686822e-01 3.97086173e-01 7.41770923e-01 9.04018998e-01 6.81212008e-01 -4.76415753e-01 -5.93675852e-01 -7.88486838e-01 9.25526172e-02 3.73308331e-01 1.98222339e-01 4.11173794e-03 -4.61939722e-04 7.08831489e-01]
[7.783567905426025, 7.795492172241211]
c009cbf6-3779-483b-98bf-487ced354785
correcting-discount-factor-mismatch-in-on
2306.13284
null
https://arxiv.org/abs/2306.13284v1
https://arxiv.org/pdf/2306.13284v1.pdf
Correcting discount-factor mismatch in on-policy policy gradient methods
The policy gradient theorem gives a convenient form of the policy gradient in terms of three factors: an action value, a gradient of the action likelihood, and a state distribution involving discounting called the \emph{discounted stationary distribution}. But commonly used on-policy methods based on the policy gradient theorem ignores the discount factor in the state distribution, which is technically incorrect and may even cause degenerate learning behavior in some environments. An existing solution corrects this discrepancy by using $\gamma^t$ as a factor in the gradient estimate. However, this solution is not widely adopted and does not work well in tasks where the later states are similar to earlier states. We introduce a novel distribution correction to account for the discounted stationary distribution that can be plugged into many existing gradient estimators. Our correction circumvents the performance degradation associated with the $\gamma^t$ correction with a lower variance. Importantly, compared to the uncorrected estimators, our algorithm provides improved state emphasis to evade suboptimal policies in certain environments and consistently matches or exceeds the original performance on several OpenAI gym and DeepMind suite benchmarks.
['A. Rupam Mahmood', 'Gautham Vasan', 'Fengdi Che']
2023-06-23
null
null
null
null
['policy-gradient-methods', 'openai-gym']
['methodology', 'playing-games']
[-9.10883695e-02 -1.56497121e-01 -5.79787314e-01 -4.31941450e-01 -4.52479005e-01 -4.98283565e-01 5.36944449e-01 1.76244915e-01 -1.03474605e+00 1.18583429e+00 1.82008758e-01 -6.97194219e-01 -7.33587295e-02 -3.83435398e-01 -7.67381608e-01 -7.56949663e-01 5.35894781e-02 8.01946521e-02 5.59219956e-01 -1.94922820e-01 4.79488671e-01 1.08183153e-01 -1.61358654e+00 -2.22745627e-01 1.01407194e+00 9.43786800e-01 1.59804538e-01 5.54271400e-01 -1.64270490e-01 7.98842907e-01 -6.94152296e-01 -1.78278357e-01 5.06332934e-01 -5.68557918e-01 -5.35369992e-01 -2.64047951e-01 5.19559205e-01 -8.46450627e-01 -2.04754889e-01 1.25808048e+00 4.34948146e-01 5.04616141e-01 4.98248935e-01 -1.15405345e+00 -3.51249456e-01 4.62145001e-01 -6.58881366e-01 5.62604368e-01 1.22860588e-01 1.20250121e-01 7.63612211e-01 -2.11493149e-01 3.12652647e-01 1.35750973e+00 6.80346906e-01 6.57584071e-01 -1.15206790e+00 -5.31892121e-01 7.37169743e-01 5.08515835e-02 -8.74747634e-01 -3.25439930e-01 3.17161947e-01 -2.21305639e-01 1.08243501e+00 -6.38959408e-02 7.28289545e-01 1.07487619e+00 6.71981394e-01 9.08887148e-01 1.46502292e+00 -2.27054253e-01 6.39379859e-01 1.16374590e-01 1.22655155e-02 7.12052941e-01 3.71114016e-01 5.22704124e-01 -3.54655504e-01 -3.13015103e-01 8.53567481e-01 -1.19972505e-01 -1.87013298e-01 -4.88032162e-01 -8.41639638e-01 7.61845469e-01 1.04486234e-01 -1.71143532e-01 -3.02673668e-01 5.62139452e-01 4.44316745e-01 3.29600900e-01 6.18646145e-01 2.59963572e-01 -5.11402786e-01 -6.39157116e-01 -7.72322178e-01 6.87820792e-01 7.73017347e-01 6.39431953e-01 5.60527742e-01 4.16400582e-01 -5.58617830e-01 6.01089656e-01 3.63517731e-01 4.49129105e-01 5.74232578e-01 -1.45711851e+00 2.76236743e-01 2.47719899e-01 6.87291801e-01 -4.42885727e-01 -3.32278222e-01 -6.41309619e-01 -1.24169677e-01 7.65388131e-01 1.04530072e+00 -4.20427412e-01 -9.96898592e-01 2.21081591e+00 3.87039363e-01 1.09423086e-01 -1.81605071e-01 9.09749746e-01 -1.63758233e-01 2.85661459e-01 2.23561421e-01 -3.27208132e-01 1.03511155e+00 -8.64623368e-01 -8.94998193e-01 -5.42387366e-01 5.04506648e-01 -5.03694355e-01 1.27061677e+00 3.25562209e-01 -1.00562942e+00 -1.43197151e-02 -1.16808951e+00 2.61099517e-01 -1.60748646e-01 -2.76539147e-01 8.71583045e-01 7.30410576e-01 -1.11711109e+00 1.13323700e+00 -9.51313913e-01 -3.00980002e-01 1.58510372e-01 1.65776640e-01 2.66657472e-01 2.70956099e-01 -1.11640799e+00 1.45768023e+00 3.37246299e-01 -1.63761988e-01 -7.86382437e-01 -7.03789532e-01 -7.15497375e-01 -7.73992911e-02 5.80710053e-01 -4.28549260e-01 1.85112548e+00 -9.17216361e-01 -2.09040308e+00 2.65691847e-01 6.91035241e-02 -6.46704495e-01 9.10011351e-01 -4.69145179e-01 -2.25674175e-02 -1.64098427e-01 -2.78601535e-02 3.95695508e-01 9.47627485e-01 -8.21534574e-01 -7.84266889e-01 -3.03396016e-01 1.91081271e-01 6.66503966e-01 -8.81208405e-02 -2.79381096e-01 -1.13705270e-01 -4.68575507e-01 -7.64503479e-02 -1.03950655e+00 -4.20377314e-01 1.15638733e-01 1.66867778e-01 -2.25814000e-01 5.11464119e-01 -5.36825478e-01 1.20786989e+00 -1.96068072e+00 -2.72056103e-01 -8.14211182e-03 -1.23657264e-01 3.85638744e-01 1.74041986e-01 2.15119779e-01 2.44255528e-01 -8.36664811e-02 -1.54691175e-01 -2.31238946e-01 2.24209845e-01 4.98049676e-01 -3.88012320e-01 7.31063426e-01 -1.80423990e-01 3.36578578e-01 -1.35419548e+00 -1.66242763e-01 1.46911204e-01 2.00203404e-01 -7.41985798e-01 -1.43631116e-01 -3.48073572e-01 3.13337177e-01 -4.79951292e-01 1.10365301e-01 4.47768301e-01 9.94545966e-02 2.05763862e-01 3.46975863e-01 -4.84683037e-01 6.58967733e-01 -1.39258361e+00 1.67253160e+00 -4.52996343e-02 3.02479416e-01 1.81957945e-01 -1.02189386e+00 5.68115294e-01 1.95067123e-01 5.24920404e-01 -6.30568862e-01 1.47488832e-01 3.34798247e-01 1.56642556e-01 -1.17391363e-01 6.26734972e-01 -3.53845328e-01 2.20587552e-01 5.17641425e-01 -2.50440519e-02 -1.94755137e-01 3.60900134e-01 1.27382264e-01 1.05214083e+00 7.26276815e-01 1.90590501e-01 -7.84548163e-01 -1.34266131e-02 -1.46381512e-01 9.27240074e-01 1.08973980e+00 -8.83126557e-01 1.34145826e-01 7.98336446e-01 -2.39173412e-01 -9.04586673e-01 -1.08397830e+00 -6.60185367e-02 1.24668562e+00 2.21055567e-01 -2.90383399e-01 -6.75471127e-01 -7.21587300e-01 3.86742711e-01 8.89228880e-01 -5.14058828e-01 -6.22677863e-01 -2.25454524e-01 -8.27468276e-01 5.56664944e-01 6.81286514e-01 4.83264178e-01 -7.03638077e-01 -9.27568793e-01 3.94813985e-01 4.92843380e-03 -7.10678577e-01 -6.62639678e-01 4.06905651e-01 -1.07724035e+00 -7.90912390e-01 -7.80443072e-01 -1.49486467e-01 3.54975611e-01 -3.30436304e-02 9.59929883e-01 -3.07786822e-01 1.34812668e-01 4.84582335e-01 -6.37695119e-02 -7.68816888e-01 -3.95877719e-01 -2.46816665e-01 5.77449381e-01 -3.83037269e-01 2.53744125e-01 -3.62459540e-01 -8.11868548e-01 4.39917222e-02 -5.70796013e-01 -2.98663348e-01 3.57163310e-01 8.28798115e-01 3.02302003e-01 -1.92432180e-01 6.58147216e-01 -6.76351309e-01 8.34417641e-01 -3.70493591e-01 -8.73748422e-01 -7.26240873e-02 -1.31596410e+00 6.57144606e-01 4.96231735e-01 -6.73017979e-01 -1.27229130e+00 -1.72429278e-01 -1.32012501e-01 -3.24290514e-01 2.69849688e-01 1.34576157e-01 3.88945431e-01 9.62349400e-02 7.19312429e-01 6.62066936e-02 3.97708535e-01 -5.38497329e-01 2.19016075e-01 2.75926977e-01 3.66402924e-01 -9.85047221e-01 2.47624099e-01 3.99989516e-01 -8.67340341e-02 -2.69957066e-01 -9.57466960e-01 -2.13847235e-01 -1.60852186e-02 -9.66847390e-02 4.86004263e-01 -8.28274965e-01 -8.19261014e-01 5.43417692e-01 -7.69708037e-01 -6.76302314e-01 -7.05218256e-01 8.71729553e-01 -7.92559147e-01 4.11920726e-01 -8.14904869e-01 -1.12750900e+00 -1.68708429e-01 -1.11982346e+00 5.94727755e-01 6.40282214e-01 6.36851788e-02 -9.45986390e-01 1.81010053e-01 -3.17993224e-01 6.89619482e-01 -1.75863281e-02 7.74785995e-01 -3.32677454e-01 1.25407875e-01 7.15816626e-03 3.18757184e-02 6.98240340e-01 8.31217915e-02 -3.78631838e-02 -6.94432914e-01 -5.80416262e-01 4.60662656e-02 -2.05794498e-01 9.15244460e-01 6.64120674e-01 6.81927204e-01 -2.28251562e-01 1.00299791e-02 3.13230366e-01 1.28586483e+00 4.39374030e-01 3.95881921e-01 5.38182080e-01 1.79835498e-01 1.94994569e-01 5.64701617e-01 8.32914352e-01 3.58866930e-01 3.55416596e-01 4.44844365e-01 2.33158037e-01 1.84682295e-01 -3.34438473e-01 8.16388071e-01 3.64894569e-01 -1.79130346e-01 1.02416255e-01 -6.65565789e-01 3.80738735e-01 -2.03730536e+00 -1.00337625e+00 1.19838186e-01 2.54632950e+00 1.11491442e+00 5.25395632e-01 2.26237774e-01 -1.17598578e-01 5.49268186e-01 2.39337832e-01 -1.11177647e+00 -6.89051747e-01 1.97657928e-01 1.91099048e-02 1.02235150e+00 7.01575339e-01 -7.92398214e-01 8.67879391e-01 7.86521912e+00 6.45764291e-01 -1.09008169e+00 1.72394246e-01 2.29703248e-01 -2.52990901e-01 -2.23604307e-01 2.94671863e-01 -9.70762789e-01 6.32999301e-01 9.87693489e-01 -4.29881692e-01 5.62760890e-01 1.12949717e+00 2.27220491e-01 -5.84285378e-01 -9.17052269e-01 5.34186900e-01 -3.38555455e-01 -8.77556980e-01 -3.42559069e-01 1.05429642e-01 6.29937530e-01 2.04878628e-01 1.67136222e-01 7.44427264e-01 8.30880046e-01 -3.80661905e-01 1.05651557e+00 3.05084288e-01 4.89308238e-01 -7.75923908e-01 4.53773260e-01 4.71690029e-01 -7.98592389e-01 -3.39662284e-01 -4.48204815e-01 -5.35433412e-01 -2.07000058e-02 4.33508158e-01 -6.17374778e-01 3.67984585e-02 6.87106550e-01 4.05603588e-01 -2.23651543e-01 9.94233906e-01 -2.87682474e-01 5.62740564e-01 -5.33111751e-01 -1.20507278e-01 5.75958729e-01 -3.22634012e-01 7.35839307e-01 8.68251979e-01 1.56711221e-01 -2.51818240e-01 2.59169310e-01 5.79282880e-01 3.09642851e-01 -2.28061602e-01 -3.61871421e-01 3.59533690e-02 3.47035319e-01 7.72939980e-01 -7.12888598e-01 -5.27153373e-01 -2.18141913e-01 8.48905981e-01 4.27165002e-01 6.03964746e-01 -9.53536034e-01 -2.31293872e-01 1.03423119e+00 3.96421999e-02 2.51427948e-01 -3.80009264e-01 3.76818329e-03 -1.21579218e+00 9.37438011e-02 -8.59002352e-01 3.87682378e-01 -3.37733805e-01 -9.36296344e-01 1.61988452e-01 4.25471991e-01 -9.63726223e-01 -5.82296610e-01 -5.55738986e-01 -3.81796360e-01 7.54643440e-01 -1.58344543e+00 -1.32676333e-01 2.62091607e-01 5.94230354e-01 4.04594243e-01 2.02072114e-01 5.74445784e-01 3.33744615e-01 -6.39959693e-01 5.07232547e-01 4.79514688e-01 -4.40506250e-01 9.38471973e-01 -1.72974503e+00 7.25881830e-02 9.33692515e-01 -4.93091702e-01 6.31541848e-01 1.17861032e+00 -6.42613828e-01 -1.08661425e+00 -6.34442806e-01 3.53291661e-01 -2.42633507e-01 6.44425631e-01 6.55662864e-02 -8.77078474e-01 8.30799639e-01 4.62325923e-02 -1.43710803e-03 2.80740976e-01 7.78733343e-02 -1.92590401e-01 -3.55874375e-02 -1.17202950e+00 7.60852754e-01 9.74423647e-01 -3.11105013e-01 -5.36774576e-01 1.45697013e-01 5.22251248e-01 -6.84568405e-01 -6.42904758e-01 2.54010051e-01 6.67977393e-01 -1.01420212e+00 5.31454742e-01 -8.25174332e-01 -1.17565446e-01 -1.33125797e-01 -8.43638554e-02 -1.62352860e+00 -2.98594385e-01 -7.67837703e-01 -5.27867019e-01 8.51669967e-01 1.95318148e-01 -8.79119992e-01 6.95281446e-01 9.51463521e-01 -2.79544413e-01 -8.44955146e-01 -1.11419487e+00 -1.17089593e+00 3.24309289e-01 -3.48286688e-01 3.28714460e-01 6.06477797e-01 1.93726495e-02 -2.86698993e-03 -4.43906903e-01 -2.41447419e-01 7.42556572e-01 -2.20975250e-01 2.28159934e-01 -9.18359339e-01 -4.29698199e-01 -6.99872017e-01 2.28067078e-02 -1.35992956e+00 1.57336518e-01 -4.35573071e-01 3.37562561e-01 -1.43935478e+00 -1.40938789e-01 -4.30350721e-01 -7.06488311e-01 5.26136458e-01 -3.87907624e-01 -3.01805884e-01 2.00670078e-01 -9.94977206e-02 -4.84889686e-01 7.55910695e-01 1.30454731e+00 2.19179437e-01 -3.74794632e-01 6.32204860e-02 -7.34086633e-01 9.63779032e-01 8.90756667e-01 -6.38566852e-01 -5.90101838e-01 -4.60155129e-01 1.25621483e-01 -1.89575121e-01 1.50427833e-01 -9.42800343e-01 1.82548851e-01 -5.42122424e-01 2.41071075e-01 -1.78978205e-01 2.09799722e-01 -4.62070733e-01 -2.79390305e-01 7.30818033e-01 -3.60121131e-01 2.85041571e-01 2.81991839e-01 8.62919807e-01 3.97339255e-01 -1.83485255e-01 9.70166743e-01 -1.78802252e-01 -7.19380260e-01 1.19888872e-01 -7.26772428e-01 2.16574088e-01 7.68380940e-01 -9.01370570e-02 -3.94491524e-01 -4.68329519e-01 -3.14716041e-01 3.84132415e-01 4.45162505e-01 4.54498976e-01 1.73947111e-01 -1.23571074e+00 -3.68929863e-01 -5.49407825e-02 -3.52076411e-01 -3.77960473e-01 -5.89226335e-02 9.64870453e-01 -2.97290385e-01 1.04687624e-01 -2.24910617e-01 -2.82411247e-01 -5.58774710e-01 2.86326349e-01 6.20422482e-01 -4.01633769e-01 -6.65119052e-01 6.60637736e-01 -3.63114923e-01 -1.90696344e-01 4.70100790e-01 -6.10292435e-01 1.41436845e-01 -1.05479218e-01 6.52400136e-01 5.46642303e-01 -6.90207854e-02 -1.86416537e-01 -3.63549531e-01 -2.08654199e-02 -1.89212024e-01 -5.96589804e-01 1.02107358e+00 -9.96252671e-02 4.53703910e-01 7.41584063e-01 7.51801431e-01 -2.64762819e-01 -2.11121345e+00 -2.42050841e-01 -2.39064340e-02 -5.23788095e-01 3.36332440e-01 -8.20735693e-01 -7.68392682e-01 4.43276048e-01 7.89582253e-01 5.91829792e-02 7.45724797e-01 -6.43133581e-01 6.28260016e-01 3.61237586e-01 4.74461317e-01 -1.72916853e+00 -1.97160646e-01 8.68994117e-01 4.47095603e-01 -1.20088863e+00 3.39421213e-01 3.39478910e-01 -7.56070137e-01 7.01153278e-01 7.41363406e-01 -2.88917929e-01 6.95184112e-01 2.91911006e-01 1.01462893e-01 3.67513627e-01 -8.33079815e-01 -2.85106599e-01 -1.01566397e-01 4.32724983e-01 3.53660196e-01 -5.76624982e-02 -9.37915504e-01 3.93736154e-01 3.05398293e-02 7.88759291e-02 4.15317148e-01 1.53088403e+00 -5.88268578e-01 -1.04559124e+00 -1.63876399e-01 5.96802056e-01 -7.15429127e-01 2.67139226e-02 1.81848228e-01 6.48178697e-01 -1.42745525e-01 8.49701464e-01 2.04115078e-01 -1.41936749e-01 4.13468033e-01 2.82117754e-01 6.13113523e-01 -2.91577935e-01 -5.71199656e-01 1.50877365e-03 -4.97443341e-02 -8.91386151e-01 -3.04194152e-01 -5.62698007e-01 -1.37387943e+00 -4.49409544e-01 -2.81570345e-01 2.10690916e-01 9.12093043e-01 1.07034004e+00 3.84038925e-01 4.63358313e-01 3.16864640e-01 -9.10821199e-01 -1.55209327e+00 -8.27617824e-01 -8.33061755e-01 3.33396494e-01 4.55317557e-01 -1.12114179e+00 -6.29691303e-01 -3.85817260e-01]
[4.110219955444336, 2.373169183731079]
349e37e4-ff18-4855-a0f5-ccf1f88dc9a0
neural-rankers-for-effective-screening
2212.09017
null
https://arxiv.org/abs/2212.09017v1
https://arxiv.org/pdf/2212.09017v1.pdf
Neural Rankers for Effective Screening Prioritisation in Medical Systematic Review Literature Search
Medical systematic reviews typically require assessing all the documents retrieved by a search. The reason is two-fold: the task aims for ``total recall''; and documents retrieved using Boolean search are an unordered set, and thus it is unclear how an assessor could examine only a subset. Screening prioritisation is the process of ranking the (unordered) set of retrieved documents, allowing assessors to begin the downstream processes of the systematic review creation earlier, leading to earlier completion of the review, or even avoiding screening documents ranked least relevant. Screening prioritisation requires highly effective ranking methods. Pre-trained language models are state-of-the-art on many IR tasks but have yet to be applied to systematic review screening prioritisation. In this paper, we apply several pre-trained language models to the systematic review document ranking task, both directly and fine-tuned. An empirical analysis compares how effective neural methods compare to traditional methods for this task. We also investigate different types of document representations for neural methods and their impact on ranking performance. Our results show that BERT-based rankers outperform the current state-of-the-art screening prioritisation methods. However, BERT rankers and existing methods can actually be complementary, and thus, further improvements may be achieved if used in conjunction.
['Guido Zuccon', 'Bevan Koopman', 'Harrisen Scells', 'Shuai Wang']
2022-12-18
null
null
null
null
['document-ranking']
['natural-language-processing']
[ 6.47104621e-01 3.81299049e-01 -7.41374731e-01 -3.33215445e-01 -1.41989064e+00 -6.19506836e-01 6.40096188e-01 7.54570842e-01 -6.90374553e-01 6.82348788e-01 4.94422525e-01 -6.01242006e-01 -6.57574713e-01 -7.71739900e-01 -3.63704115e-01 -2.78027385e-01 -8.80555660e-02 9.50635135e-01 3.03677022e-01 -9.97900069e-02 5.25477946e-01 2.62827247e-01 -1.54215491e+00 8.58050764e-01 8.08395326e-01 7.12833762e-01 2.34952688e-01 6.71475708e-01 -1.78880304e-01 8.31906140e-01 -6.96976900e-01 -2.70512193e-01 -5.47441766e-02 -4.06074375e-01 -1.03864932e+00 -4.74996060e-01 4.73717004e-01 -5.37329912e-01 7.55348951e-02 9.50164080e-01 6.34178519e-01 2.91884504e-02 7.87979424e-01 -3.18683058e-01 -9.22234416e-01 8.40947926e-01 -4.39557582e-01 3.25483561e-01 6.03563190e-01 -4.98240471e-01 1.29920447e+00 -8.98909926e-01 6.20617986e-01 1.29755688e+00 5.17774940e-01 6.47993624e-01 -7.50913560e-01 -5.45334280e-01 2.20254317e-01 -4.81928065e-02 -9.34141576e-01 -4.82255012e-01 2.96841323e-01 -4.58254009e-01 9.53967631e-01 4.72347587e-01 4.29998100e-01 6.26942635e-01 3.32809508e-01 7.84962237e-01 9.87018406e-01 -6.84045613e-01 1.77001953e-01 1.41100615e-01 6.03527367e-01 6.20340586e-01 7.04936087e-01 5.55094220e-02 -5.46186805e-01 -5.83090484e-01 2.18030691e-01 5.81945963e-02 -2.34383583e-01 5.12570031e-02 -1.03679931e+00 9.62613642e-01 2.54968882e-01 2.46421039e-01 -4.05341893e-01 6.53832927e-02 6.08274996e-01 3.18305552e-01 6.44359767e-01 1.05750251e+00 -4.80460972e-01 2.52789874e-02 -1.39791310e+00 3.17902356e-01 6.28952444e-01 5.30053914e-01 3.82113755e-01 -7.77747273e-01 -7.79907882e-01 1.10201383e+00 3.42509747e-01 1.46186993e-01 5.82923889e-01 -7.11326599e-01 6.23368800e-01 9.66976523e-01 1.61400303e-01 -7.33667672e-01 -6.21082246e-01 -2.13166565e-01 -6.83760464e-01 -1.24534450e-01 5.74702658e-02 -2.13263556e-01 -1.16285062e+00 1.28820288e+00 -1.56970814e-01 -6.44256353e-01 -3.14213894e-02 7.62626827e-01 1.18334186e+00 5.54865539e-01 1.71725154e-01 -4.03446883e-01 1.61016548e+00 -8.75724316e-01 -8.82753432e-01 -3.21638286e-01 7.23970175e-01 -7.59183228e-01 8.57554972e-01 6.12195194e-01 -1.41363823e+00 -2.95125544e-01 -9.68712687e-01 -1.07088424e-01 -4.97351766e-01 4.10668939e-01 7.66933501e-01 6.56416535e-01 -1.34851670e+00 6.92308366e-01 -4.83353108e-01 -1.81019202e-01 3.34908605e-01 5.39968729e-01 -1.24118045e-01 -2.06719190e-01 -1.57595360e+00 1.11108327e+00 1.33066580e-01 3.42508972e-01 -7.20840752e-01 -5.44882357e-01 -6.83468580e-01 9.07965153e-02 4.55103129e-01 -6.37111425e-01 1.58857286e+00 -4.90982920e-01 -1.04142475e+00 1.05603969e+00 -2.35417485e-01 -1.66842714e-01 2.33839825e-01 -3.63702446e-01 -1.16898462e-01 2.66456008e-01 2.31408849e-01 4.78048474e-01 5.26932515e-02 -9.04287994e-01 -8.05745840e-01 -2.69573927e-01 2.87825614e-01 4.94331688e-01 -4.54301149e-01 6.14045918e-01 -7.34953701e-01 -4.27486390e-01 -1.33261770e-01 -7.92579889e-01 -5.79584837e-01 -2.55186200e-01 -3.41450363e-01 -4.95938450e-01 -1.34539921e-02 -5.97375453e-01 1.69136715e+00 -1.59628749e+00 -1.26934782e-01 2.74264485e-01 2.47442022e-01 4.67785954e-01 -3.06664795e-01 5.44309318e-01 -9.44004282e-02 7.45883703e-01 7.47006340e-03 -1.35969728e-01 -1.99395090e-01 -3.75703692e-01 -6.40473962e-02 1.89482406e-01 3.22742313e-01 8.78401935e-01 -1.25201511e+00 -5.69151998e-01 -2.91694134e-01 2.01387778e-01 -3.61233711e-01 -1.88176092e-02 8.20106342e-02 -3.07478577e-01 -6.68678820e-01 7.03698158e-01 3.23562115e-01 -4.39555854e-01 2.99174875e-01 1.00715481e-01 -1.90187860e-02 1.11471748e+00 -8.45401525e-01 1.15520728e+00 -3.89086455e-01 5.66051424e-01 -3.10504675e-01 -8.88281047e-01 7.88459122e-01 3.69561374e-01 3.53107393e-01 -8.19522738e-01 -2.15048656e-01 4.53610897e-01 2.45280951e-01 -2.97513455e-01 7.03106403e-01 -2.47513615e-02 -2.54701212e-04 7.29569554e-01 -4.45093393e-01 -6.74145371e-02 5.84166348e-01 2.70623714e-01 1.44279814e+00 -3.18933457e-01 5.34719825e-01 -3.10016721e-01 4.33749050e-01 2.00023636e-01 1.39940962e-01 1.34528625e+00 1.91362262e-01 7.92892039e-01 7.37001538e-01 -3.13126355e-01 -5.22956669e-01 -7.33445823e-01 -4.30769831e-01 1.17791152e+00 -2.19118029e-01 -4.98379797e-01 -4.16976184e-01 -9.65440512e-01 -1.08193256e-01 5.17244995e-01 -8.85647714e-01 -2.70890743e-01 -5.26243091e-01 -9.28267956e-01 4.33385104e-01 5.26891530e-01 -1.11619681e-01 -1.35816610e+00 -8.18731248e-01 3.28294814e-01 9.25463662e-02 -3.24282795e-01 -5.10571599e-01 6.26462042e-01 -1.04685307e+00 -1.32690156e+00 -1.16894352e+00 -7.94198990e-01 8.37392330e-01 2.66043782e-01 1.53067970e+00 5.16234338e-01 2.36941446e-02 2.08141342e-01 -4.20670062e-01 -6.19996250e-01 -5.63456297e-01 3.14559519e-01 -1.67723075e-01 -7.38292277e-01 5.47879100e-01 3.07885796e-01 -8.51746202e-01 1.38364658e-01 -9.42582846e-01 -1.87948287e-01 8.86884451e-01 9.25608575e-01 6.73105240e-01 -2.25677863e-02 7.80133486e-01 -1.44455373e+00 1.42332304e+00 -3.18234652e-01 -4.51963425e-01 6.28359735e-01 -1.00485194e+00 2.13771775e-01 2.76879966e-01 -4.94862616e-01 -8.55112135e-01 -4.91501153e-01 -3.61393653e-02 1.81707904e-01 3.80714506e-01 1.21874309e+00 3.98186296e-01 3.19234222e-01 7.86405563e-01 -2.23705992e-01 -2.30445653e-01 -3.66160244e-01 9.36345663e-03 7.31715858e-01 -1.21388473e-01 -3.58739555e-01 2.46410012e-01 1.22954056e-01 -2.08019778e-01 -2.36534044e-01 -9.26405549e-01 -7.81274557e-01 -2.15255708e-01 -1.15068089e-02 5.51588833e-01 -7.73843765e-01 -3.29368055e-01 -1.66149959e-01 -1.32774389e+00 -2.03044400e-01 -1.84752122e-01 4.11238134e-01 -4.86496044e-03 2.54770964e-01 -7.33026028e-01 -8.04313719e-01 -7.19169974e-01 -1.39061177e+00 1.25291121e+00 1.55150127e-02 -6.32681668e-01 -7.19276428e-01 2.89987773e-01 1.78694963e-01 2.97890335e-01 -3.24908435e-01 1.14239681e+00 -9.58664119e-01 -1.88772559e-01 -6.18582010e-01 -3.39039803e-01 1.97484255e-01 3.06735337e-01 -5.38001209e-02 -7.26062953e-01 -4.43787724e-02 -2.37557933e-01 -4.31190342e-01 1.28932023e+00 7.39974976e-01 1.21896505e+00 -3.31716001e-01 -7.05948293e-01 -3.75835039e-02 9.12683904e-01 5.61560810e-01 6.49954855e-01 5.20159900e-01 3.87975186e-01 1.01298070e+00 9.34186637e-01 6.61276877e-02 3.20288122e-01 5.06394506e-01 3.37087549e-02 -3.00900728e-01 3.53994630e-02 4.54460159e-02 1.37686446e-01 7.36728549e-01 6.34791702e-02 -3.13494027e-01 -1.14514017e+00 7.45551467e-01 -1.71451211e+00 -7.17716932e-01 2.22212728e-02 2.44637895e+00 1.26327133e+00 2.84898818e-01 -9.75889340e-02 9.93330479e-02 6.72788560e-01 -2.20674518e-02 -2.78919160e-01 -8.25005114e-01 1.01562314e-01 2.41887301e-01 4.14096057e-01 4.43365663e-01 -1.02475488e+00 4.93622750e-01 7.21263504e+00 6.01806521e-01 -8.46516073e-01 -1.29460692e-01 1.05886281e+00 -2.70610929e-01 -6.05939209e-01 -8.06486383e-02 -1.10207212e+00 1.51954010e-01 1.00825644e+00 -1.05424106e-01 6.31760508e-02 6.36455834e-01 1.87466532e-01 -2.13231862e-01 -1.46342635e+00 4.94903922e-01 1.25569105e-01 -1.49353600e+00 3.53967458e-01 4.47852910e-02 8.44461203e-01 -5.46066351e-02 -6.71148524e-02 4.94926363e-01 3.84842366e-01 -1.07552969e+00 4.30310011e-01 4.27861571e-01 9.16506708e-01 -5.57595909e-01 1.08828330e+00 4.79710549e-02 -8.35711420e-01 1.32624786e-02 -4.09396470e-01 1.56291798e-01 -2.58337241e-02 8.61632466e-01 -8.25328887e-01 3.77379149e-01 7.66871274e-01 4.43693697e-01 -8.20889592e-01 1.15955830e+00 -1.87849656e-01 5.28195918e-01 3.50186159e-03 -6.08024299e-01 3.58630985e-01 2.47903496e-01 2.12530196e-01 1.40340304e+00 2.69377142e-01 8.01756978e-03 -7.04795569e-02 4.55107301e-01 -1.93649322e-01 2.28172779e-01 -5.27442515e-01 -2.96197832e-01 3.63599896e-01 9.07141328e-01 -8.18624735e-01 -5.24435401e-01 -2.90606827e-01 2.32017532e-01 3.41266215e-01 3.77385706e-01 -2.84139097e-01 -4.92198557e-01 5.67573169e-03 1.92150176e-01 5.93761355e-02 4.71753299e-01 -3.14011127e-01 -6.41118824e-01 6.85998127e-02 -1.14866221e+00 7.38839805e-01 -6.51427627e-01 -1.15850341e+00 6.53317869e-01 2.59713173e-01 -1.02856171e+00 -5.13240039e-01 -6.86313152e-01 -3.53538722e-01 9.19710994e-01 -1.76753557e+00 -5.05054295e-01 1.71946943e-01 -1.59810215e-01 5.53281546e-01 -1.60607249e-01 8.52115214e-01 3.37022543e-01 -1.96433157e-01 5.42756855e-01 -9.77623463e-03 -9.99598652e-02 8.57464790e-01 -1.44940531e+00 1.48177475e-01 5.11408091e-01 -2.03784153e-01 1.26743817e+00 2.66882569e-01 -9.64612782e-01 -1.13838148e+00 -8.71816516e-01 1.49379146e+00 -6.12801909e-01 4.01460111e-01 -4.86650579e-02 -9.20783937e-01 1.21651471e-01 1.27278939e-01 -5.10483205e-01 7.53172100e-01 6.15043879e-01 -2.79052015e-02 -1.16533153e-02 -6.83470547e-01 7.95761943e-01 8.21488917e-01 -6.10614717e-01 -7.87333488e-01 4.88153428e-01 6.68521404e-01 -3.77152592e-01 -4.74380016e-01 6.61608160e-01 7.29818761e-01 -5.77202439e-01 1.03266251e+00 -5.32582879e-01 9.74453211e-01 -6.58579841e-02 3.09716165e-01 -1.10909724e+00 -4.32827175e-01 -4.04687852e-01 -4.15607169e-02 9.38337445e-01 1.02932084e+00 -3.95326376e-01 6.50489569e-01 6.47928953e-01 -8.17350298e-02 -1.33144343e+00 -6.31723523e-01 -3.38580072e-01 2.25730613e-01 -1.92981303e-01 5.30930758e-01 5.76178432e-01 1.63300052e-01 3.98979038e-01 -3.81874852e-02 -1.83906987e-01 1.17971487e-01 -5.76332696e-02 1.18394151e-01 -1.39914298e+00 -2.12084904e-01 -8.85408819e-01 3.63952935e-01 -7.54316807e-01 -1.19933628e-01 -8.62954974e-01 4.39178646e-01 -2.36960769e+00 5.85235357e-01 -5.47308028e-01 -8.03561687e-01 6.41499162e-01 -7.34691203e-01 -4.69006971e-02 -1.62710220e-01 2.79253721e-01 -8.23233306e-01 4.43784297e-02 1.26875854e+00 -4.48051542e-01 -5.26613653e-01 1.19141519e-01 -1.34381962e+00 4.77402717e-01 5.31890333e-01 -7.80185938e-01 -5.17322123e-01 -4.56302971e-01 8.98359239e-01 1.35400280e-01 -1.33433953e-01 -3.52174878e-01 3.65695715e-01 -8.20022970e-02 3.16899270e-01 -7.94468522e-01 -2.12815311e-02 -3.27163279e-01 -3.51618350e-01 5.32046199e-01 -1.01427269e+00 4.37590390e-01 2.99887210e-01 2.75442094e-01 -3.09811503e-01 -8.26719940e-01 2.89472818e-01 -3.73791099e-01 -1.41811520e-01 -2.13309773e-03 -6.98889375e-01 4.79691476e-02 2.31333539e-01 -1.77353308e-01 -3.82989496e-01 -2.64768481e-01 -1.12247750e-01 3.63336861e-01 3.00466828e-02 4.23918247e-01 7.70408154e-01 -9.94070709e-01 -7.19540715e-01 -3.43691200e-01 2.66088039e-01 1.58016875e-01 -1.18472651e-01 6.97587132e-01 -3.72135550e-01 9.06918526e-01 4.21399593e-01 -2.81130433e-01 -1.23312116e+00 3.94284010e-01 7.26925954e-02 -1.13603711e+00 -2.94290960e-01 8.61688375e-01 4.59041595e-01 -5.27662039e-01 5.10179877e-01 -5.21124601e-01 -8.91367555e-01 4.97507453e-01 8.35859239e-01 2.30002075e-01 4.85025197e-01 1.64300799e-01 -6.89733565e-01 4.64079529e-01 -5.68406224e-01 -2.24994972e-01 1.28703701e+00 2.05376789e-01 -3.30721796e-01 2.49164969e-01 9.19696867e-01 3.45117822e-02 -2.30343193e-01 -3.08483709e-02 3.27171743e-01 -2.64549460e-02 3.41992348e-01 -1.28319860e+00 -7.21297860e-01 6.94172502e-01 3.95012796e-01 2.29954824e-01 1.19471705e+00 5.25435321e-02 1.89700723e-01 7.47606814e-01 3.30162756e-02 -1.13428330e+00 6.17855787e-02 4.03372437e-01 1.07759988e+00 -1.32743680e+00 5.24327457e-01 -1.13383338e-01 -6.03696167e-01 9.64937687e-01 2.76538849e-01 9.18905810e-02 5.37627816e-01 3.32929334e-03 1.65553123e-01 -7.20761716e-01 -9.08558905e-01 -5.05817570e-02 1.04335594e+00 2.08945081e-01 1.09292769e+00 -1.31405577e-01 -1.00235271e+00 7.75516927e-01 1.58579379e-01 1.29621714e-01 4.18114543e-01 9.50531840e-01 -1.22820728e-01 -1.21783400e+00 -4.54255760e-01 1.21506834e+00 -9.76515412e-01 -5.97436845e-01 -7.54869401e-01 6.13837123e-01 -2.36668393e-01 1.17946911e+00 -2.10552722e-01 -4.54435796e-02 4.17686135e-01 -2.65319854e-01 6.99968860e-02 -1.22018564e+00 -9.95966613e-01 2.40279749e-01 6.16806209e-01 -2.93344170e-01 -4.16430384e-01 -7.07416594e-01 -9.68638659e-01 3.46024096e-01 -6.99044108e-01 5.21111429e-01 4.84620184e-01 8.54925275e-01 2.25688487e-01 7.73249090e-01 2.42305025e-01 -5.58043838e-01 -6.42764568e-01 -8.90285730e-01 -1.67215571e-01 4.30921055e-02 5.23615897e-01 -6.78740323e-01 -2.85625935e-01 -4.51332480e-01]
[8.796343803405762, 8.569063186645508]
66706eb2-fa30-4295-8df9-c64dfc1267c0
imagenet-pretrained-cnns-for-jpeg
null
null
http://www.ws.binghamton.edu/Fridrich/Research/Alaska-2-Revised.pdf
http://www.ws.binghamton.edu/Fridrich/Research/Alaska-2-Revised.pdf
ImageNet Pretrained CNNs for JPEG Steganalysis
In this paper, we investigate pre-trained computervision deep architectures, such as the EfficientNet, MixNet, and ResNet for steganalysis. These models pre-trained on ImageNet can be rather quickly refined for JPEG steganalysis while offering significantly better performance than CNNs designed purposely for steganalysis, such as the SRNet, trained from scratch. We show how different architectures compare on the ALASKA II dataset. We demonstrate that avoiding pooling/stride in the first layers enables better performance, as noticed by other top competitors, which aligns with the design choices of many CNNs designed for steganalysis. We also show how pre-trained computer-vision deep architectures perform on the ALASKA I dataset
['Jessica Fridrich', 'Eugene Khvedchenya', 'Jan Butora', 'Yassine Yousfi']
2020-11-24
null
null
null
null
['steganalysis', 'image-steganography']
['computer-vision', 'computer-vision']
[ 4.63553280e-01 4.91108119e-01 2.66155154e-01 1.87624231e-01 -4.21628088e-01 -3.51860136e-01 8.45156133e-01 -6.81053400e-01 -6.71263933e-01 3.24454993e-01 2.85919398e-01 -7.14267313e-01 5.51909924e-01 -7.76778162e-01 -8.88619065e-01 -5.92087626e-01 -1.80603206e-01 -7.73719996e-02 3.72288644e-01 -6.15194201e-01 3.07198763e-01 1.97541788e-01 -1.06896102e+00 2.33580664e-01 3.62185478e-01 7.02708483e-01 -1.69663951e-01 1.06321406e+00 6.43898427e-01 1.11737692e+00 -5.79005778e-01 -7.10422277e-01 5.24892569e-01 -5.69860280e-01 -5.54551780e-01 -1.14787430e-01 7.62354434e-01 -8.75463784e-01 -1.15958214e+00 1.17085946e+00 3.94718915e-01 -3.97925705e-01 5.00584424e-01 -7.91780531e-01 -7.55970120e-01 1.06065404e+00 -2.42587656e-01 3.94459695e-01 -1.96655422e-01 8.94710422e-01 8.52542460e-01 -5.43934226e-01 6.12733364e-01 1.36181140e+00 1.04656136e+00 6.04283690e-01 -8.14510107e-01 -8.71809959e-01 -3.27946961e-01 2.49726221e-01 -1.12859738e+00 -8.34868431e-01 5.56446493e-01 6.13668328e-03 1.26297414e+00 4.08139229e-02 8.04030001e-01 1.52551603e+00 5.73098421e-01 7.12990940e-01 7.41116107e-01 -1.59015417e-01 -1.93267643e-01 -3.73638868e-01 -2.69675642e-01 9.82306004e-01 6.15759194e-01 6.78046823e-01 2.70094350e-02 2.46862248e-01 1.00704205e+00 -2.00114191e-01 -4.46011871e-01 -1.30402386e-01 -1.49556720e+00 1.04385769e+00 7.45088458e-01 2.89425433e-01 -7.44595677e-02 1.07120121e+00 6.72744274e-01 7.64523447e-01 1.34027854e-01 8.78692806e-01 -3.35410595e-01 1.27216309e-01 -1.17635334e+00 -3.62234861e-02 8.37873161e-01 8.15388978e-01 6.83985114e-01 8.53088677e-01 1.53371409e-01 2.25237966e-01 5.38485706e-01 3.65994602e-01 3.91586721e-01 -9.89244819e-01 3.99963588e-01 -1.16777368e-01 -4.15244132e-01 -1.15676856e+00 -2.17134684e-01 -5.94388485e-01 -1.29650044e+00 4.17901665e-01 3.33810240e-01 -7.63310567e-02 -1.51163054e+00 1.38540328e+00 -5.11403382e-01 4.88333881e-01 4.02445793e-01 6.01121008e-01 7.55228102e-01 4.81311291e-01 8.25923979e-02 5.08666396e-01 1.31888485e+00 -1.16237235e+00 -2.99855381e-01 -6.10378265e-01 8.17028761e-01 -5.63769639e-01 5.06647408e-01 3.22013885e-01 -1.01650107e+00 -6.35008931e-01 -1.51310146e+00 -1.31398693e-01 -3.42160344e-01 -3.34938973e-01 3.93278539e-01 1.14130640e+00 -1.62420928e+00 8.50711763e-01 -8.63258481e-01 -3.24346304e-01 6.75756931e-01 2.78654099e-01 -3.08651298e-01 -1.38143841e-02 -1.57811141e+00 1.04993153e+00 9.50022161e-01 6.02796562e-02 -1.77381122e+00 -4.52095538e-01 -1.16676486e+00 5.10440469e-01 1.32055938e-01 -6.62227809e-01 9.76556659e-01 -1.00386262e+00 -1.48314667e+00 1.04819059e+00 7.98369527e-01 -1.29102910e+00 5.63586593e-01 1.34893015e-01 -4.78951752e-01 2.99279958e-01 -4.73968208e-01 1.08985972e+00 1.36497104e+00 -1.03404939e+00 -4.49145049e-01 3.43375593e-01 1.55062795e-01 -2.80488163e-01 -1.31616339e-01 -1.00355797e-01 -3.96595508e-01 -8.12940419e-01 -2.09862426e-01 -9.71010804e-01 -6.16466641e-01 -1.78167358e-01 -5.60984910e-01 3.37903649e-01 1.10512900e+00 -9.61292088e-01 9.35713708e-01 -2.20229340e+00 -2.45887890e-01 3.73140723e-01 6.48856461e-01 8.42642248e-01 -5.89826643e-01 3.22221518e-01 -3.86146337e-01 6.12705886e-01 -1.72158331e-01 -1.25731423e-01 -9.04483721e-03 -6.75872639e-02 -2.91473597e-01 8.65566134e-01 2.91716754e-01 1.41672432e+00 -7.73138523e-01 -3.07539970e-01 4.33221072e-01 3.98223191e-01 -7.00242460e-01 -1.51649535e-01 -2.17627347e-01 2.27874056e-01 -3.29556242e-02 4.11423326e-01 8.09028149e-01 -5.90238571e-01 3.61132860e-01 -1.25756532e-01 2.80874699e-01 3.57011914e-01 -2.81474888e-01 1.43521798e+00 -3.65401089e-01 1.20289433e+00 5.23765646e-02 -1.02687919e+00 7.66886592e-01 4.28150058e-01 3.84625942e-02 -7.47523427e-01 4.59985137e-01 3.23012948e-01 2.72055954e-01 -1.28862575e-01 6.54873312e-01 2.21349761e-01 -1.33944139e-01 3.29988748e-01 3.11814994e-01 -2.84249544e-01 -1.24655031e-01 3.11747253e-01 1.50727630e+00 -3.34066898e-01 4.11153197e-01 -3.50666493e-01 5.05794108e-01 -8.55500549e-02 6.19940870e-02 1.15629649e+00 -1.35523319e-01 6.95479333e-01 5.66496551e-01 -8.07352483e-01 -1.80046344e+00 -6.19323313e-01 2.59209782e-01 5.24671197e-01 1.78693116e-01 -5.95108747e-01 -6.26764119e-01 -8.56514573e-01 -4.68509912e-01 3.08521688e-01 -5.34855545e-01 -5.33162415e-01 -9.53142881e-01 -2.26745650e-01 1.37849140e+00 1.65870979e-01 1.36736917e+00 -1.16753066e+00 -7.26387680e-01 2.16460928e-01 1.01399541e-01 -1.28298974e+00 -3.12205821e-01 1.09548204e-01 -7.73456872e-01 -1.15707064e+00 -8.66584957e-01 -8.92318308e-01 2.44344547e-01 1.77252874e-01 1.39532614e+00 7.02207267e-01 3.15060467e-01 -4.12050076e-02 -3.63403261e-01 -6.35091215e-02 -1.02206194e+00 4.17112052e-01 -4.30930078e-01 -5.81516922e-01 8.79806876e-02 -4.94116217e-01 -7.65742064e-01 2.83281147e-01 -1.17848146e+00 1.60722751e-02 9.09700155e-01 9.13141131e-01 -1.48038149e-01 2.86263317e-01 -1.59783989e-01 -9.40838635e-01 2.67248869e-01 -4.48527783e-01 -5.61507285e-01 5.31745516e-02 -5.79271257e-01 2.15266660e-01 5.68032324e-01 -2.89514363e-01 -3.36183250e-01 -2.81564355e-01 -5.64795196e-01 -7.59133160e-01 -3.62256318e-02 3.92739862e-01 7.33347014e-02 -7.18227863e-01 6.72036827e-01 4.31061059e-01 2.87756592e-01 -1.51034683e-01 1.49359494e-01 2.34276161e-01 7.42141545e-01 1.63047135e-01 1.32961559e+00 5.21317482e-01 -1.44766299e-02 -6.73382819e-01 -3.08176309e-01 2.33676344e-01 6.50948891e-03 2.03570828e-01 1.07987261e+00 -1.36523771e+00 -5.62322736e-01 9.93925750e-01 -1.14371955e+00 -5.61328471e-01 -2.21711561e-01 2.28018165e-01 -4.96786565e-01 8.49362969e-01 -8.70434225e-01 -1.22696750e-01 -4.77285773e-01 -1.23747861e+00 7.83613801e-01 -1.16550572e-01 2.13911403e-02 -1.24427307e+00 -6.59040436e-02 -3.69284838e-03 9.45252001e-01 3.50397915e-01 6.18753314e-01 -7.82736659e-01 -9.15046930e-01 -2.11447611e-01 -4.78032678e-01 6.95038795e-01 -3.33112091e-01 -1.22677527e-01 -8.40276301e-01 -7.69311905e-01 2.56583020e-02 -4.01386172e-01 1.88219988e+00 3.85386705e-01 1.20282519e+00 -5.47353625e-01 -8.73298347e-02 1.32797682e+00 1.44105852e+00 1.75779928e-02 1.67616427e+00 7.00254798e-01 9.41073477e-01 4.83729169e-02 -1.98287606e-01 8.22749268e-03 3.38228583e-01 1.26194820e-01 1.01714480e+00 -3.01203012e-01 -3.96478057e-01 -3.22717011e-01 5.84208727e-01 5.32187581e-01 -8.72713514e-03 -7.59864986e-01 -8.59079242e-01 3.89841706e-01 -1.48868787e+00 -9.96980309e-01 -2.72576734e-02 1.47922361e+00 3.38180035e-01 4.24811006e-01 -3.38371903e-01 7.64560997e-02 6.67415798e-01 9.16292369e-01 -1.99283957e-01 -3.73570979e-01 -2.81240046e-01 5.82226217e-01 1.31303358e+00 3.68038297e-01 -1.49583113e+00 1.37319422e+00 7.93771935e+00 1.05875778e+00 -1.12590182e+00 1.80018514e-01 7.91289926e-01 5.13778329e-01 -4.00275677e-01 9.82330516e-02 -3.88895005e-01 3.71451229e-01 1.28343594e+00 4.16647106e-01 3.71999413e-01 6.06757879e-01 -2.39680573e-01 4.72156554e-01 -8.59940171e-01 9.05164421e-01 -3.57345231e-02 -1.86694539e+00 5.22653423e-02 4.59328592e-01 8.66766810e-01 4.71160978e-01 4.82270807e-01 3.22018862e-01 9.03570175e-01 -1.31133866e+00 6.70124054e-01 -4.50823922e-03 1.15315819e+00 -4.94133919e-01 8.60500097e-01 -1.82398900e-01 -7.97025681e-01 -7.51176178e-02 -6.80773735e-01 2.32783675e-01 6.89086542e-02 3.38295698e-01 -8.08480382e-01 3.46686393e-01 5.92315853e-01 1.06687295e+00 -6.75350904e-01 8.25560153e-01 -4.84546483e-01 9.43402529e-01 -2.16634706e-01 4.29148883e-01 8.72154415e-01 3.53369772e-01 6.67335868e-01 1.20492983e+00 5.02386332e-01 -4.27342236e-01 -3.87893945e-01 8.16585124e-01 -3.74756843e-01 -7.54673481e-01 -9.11132693e-01 -3.32156748e-01 3.73995118e-02 8.86745453e-01 -6.40642881e-01 -5.44227362e-01 -2.50274122e-01 8.80798876e-01 -2.39493757e-01 4.13791984e-01 -1.09622049e+00 -3.01315010e-01 7.88030088e-01 -5.42558283e-02 1.01624084e+00 -4.09788281e-01 -1.02765813e-01 -1.46838069e+00 -8.40324998e-01 -1.42616701e+00 3.45475435e-01 -6.04086816e-01 -8.50510180e-01 6.03280008e-01 -3.90812457e-01 -1.25063086e+00 -3.53980869e-01 -7.98165083e-01 -8.25242996e-01 6.06013834e-01 -1.71081650e+00 -1.20228171e+00 -1.31610602e-01 6.28061652e-01 4.95515436e-01 -5.84379852e-01 5.49884617e-01 -2.10909005e-02 -3.38755488e-01 7.36915767e-01 5.03112115e-02 6.45365715e-01 2.57306784e-01 -8.19496989e-01 1.66499579e+00 1.40175891e+00 1.13605939e-01 2.47681707e-01 7.67703950e-01 -6.95236504e-01 -1.19741058e+00 -1.10119593e+00 4.35568154e-01 -2.22978994e-01 6.29681170e-01 -2.01817662e-01 -7.15316594e-01 9.82820451e-01 7.11874902e-01 -8.30781981e-02 -3.45216170e-02 -5.68397045e-01 -7.91356206e-01 3.73177469e-01 -1.15545607e+00 6.36161208e-01 1.11343169e+00 -5.82181752e-01 -1.82571515e-01 -8.52371380e-03 9.51564014e-01 -4.17438090e-01 -5.68852007e-01 2.72843689e-01 4.65689898e-01 -1.19452572e+00 1.27233648e+00 -5.22238374e-01 8.51120710e-01 4.61537652e-02 1.47371199e-02 -1.34615982e+00 -6.93084300e-01 -1.03860188e+00 -1.93839371e-01 3.69898736e-01 2.72912353e-01 -7.71298885e-01 1.13347948e+00 -3.80606540e-02 -2.57740200e-01 -6.38565049e-02 -7.78314292e-01 -7.99767554e-01 2.34879345e-01 -2.18041092e-01 6.58175051e-01 9.21769321e-01 -7.32195139e-01 -1.47112504e-01 -9.99109805e-01 1.85478508e-01 8.92170787e-01 -7.23992527e-01 7.84387290e-01 -7.67626166e-01 -2.43953422e-01 -6.10131383e-01 -8.73211682e-01 -1.23849797e+00 1.44434631e-01 -6.42090559e-01 -3.52209114e-04 -9.63458002e-01 -2.93307394e-01 -1.42806217e-01 -3.02737385e-01 4.76346701e-01 -3.21778208e-02 9.15941179e-01 3.30535531e-01 3.34336579e-01 -4.42408353e-01 3.21109593e-01 1.34725308e+00 -4.80226427e-01 4.08632189e-01 -4.64645177e-01 -8.96513104e-01 6.95090055e-01 9.19643879e-01 -5.38112462e-01 -4.57547717e-02 -7.22301900e-01 3.24841082e-01 -1.96146443e-01 6.39398813e-01 -1.46116114e+00 1.13878354e-01 2.30900481e-01 4.58643794e-01 -3.36679876e-01 1.09012552e-01 -8.31893206e-01 4.11496490e-01 1.09570885e+00 -2.71436155e-01 -1.02246955e-01 -1.72798391e-02 5.27794063e-01 -5.54863401e-02 -5.11879288e-02 1.07909870e+00 -6.48929179e-01 -1.11956978e+00 3.69255513e-01 -6.76145315e-01 -1.24386609e-01 6.05842113e-01 -5.70144117e-01 -7.33505070e-01 -7.82053292e-01 -4.10163760e-01 3.85728292e-02 7.25052536e-01 2.33335540e-01 9.49538231e-01 -1.11253679e+00 -9.53444004e-01 3.62248927e-01 -2.00678125e-01 -3.42836082e-01 1.24320358e-01 7.02316821e-01 -1.41022623e+00 5.77087402e-01 -6.20224178e-01 -3.31614792e-01 -9.46408927e-01 6.18464112e-01 6.67310953e-01 -7.56345868e-01 -7.23865211e-01 9.14593935e-01 2.55074114e-01 -9.19950679e-02 -8.14359337e-02 -3.04101437e-01 -2.59748921e-02 -5.28944552e-01 4.26895231e-01 2.57930309e-01 -1.36961460e-01 -4.52570379e-01 -2.19825223e-01 2.46070191e-01 -3.19583178e-01 1.54147997e-01 1.31202602e+00 -1.71276197e-01 -8.05442035e-02 -6.20206535e-01 1.35624814e+00 -5.00738323e-01 -1.30933154e+00 -1.30566344e-01 -1.36607602e-01 -3.27009112e-01 2.16300085e-01 -3.34237397e-01 -1.70203590e+00 8.54218483e-01 4.39664662e-01 2.64396578e-01 9.37255442e-01 -2.43185863e-01 1.08539438e+00 6.38033509e-01 2.26994321e-01 -5.91005921e-01 2.77377009e-01 8.44030499e-01 4.99109387e-01 -1.12571001e+00 -1.31024078e-01 -6.55882135e-02 -4.05880243e-01 1.20076323e+00 4.18053806e-01 -8.41703773e-01 6.75214887e-01 2.88263381e-01 -1.07893445e-01 -4.85962838e-01 -6.01692855e-01 -1.66501880e-01 -2.95654535e-02 7.00070739e-01 -1.05653360e-01 -3.58745664e-01 8.31700787e-02 -3.33109647e-01 -3.91759068e-01 -2.25550488e-01 8.30812931e-01 7.50832856e-01 -5.04011631e-01 -6.62419617e-01 -2.72907406e-01 3.55750054e-01 -7.94037759e-01 -6.03838623e-01 -2.91592032e-01 1.02751124e+00 -5.18075861e-02 7.07494974e-01 1.43384159e-01 -8.81376922e-01 -2.46008277e-01 -3.30882132e-01 3.21772099e-01 -3.57449323e-01 -9.68952000e-01 -1.71961278e-01 4.09607410e-01 -7.61128247e-01 -2.38071099e-01 5.90920150e-02 -4.74559665e-01 -1.00652087e+00 -2.34107301e-01 -2.01012716e-01 4.53352004e-01 8.08413029e-01 2.58307643e-02 5.46868980e-01 5.33876598e-01 -1.09442604e+00 -6.45940781e-01 -9.50448811e-01 -4.96576577e-01 1.00223377e-01 7.27582216e-01 2.34826073e-01 -7.02747822e-01 -4.60118130e-02]
[4.334000587463379, 8.04135513305664]
bc5d3d30-8948-42ab-aa0f-13c9f97495fc
consistent-and-elastic-registration-of
null
null
https://link.springer.com/chapter/10.1007/11889762_8
https://repositorio.uam.es/bitstream/handle/10486/666430/consistent_arganda-carreras_LNCS_2006_ps.pdf
Consistent and elastic registration of histological sections using vector-spline regularization
Here we present a new image registration algorithm for the alignment of histological sections that combines the ideas of B-spline based elastic registration and consistent image registration, to allow simultaneous registration of images in two directions (direct and inverse). In principle, deformations based on B-splines are not invertible. The consistency term overcomes this limitation and allows registration of two images in a completely symmetric way. This extension of the elastic registration method simplifies the search for the optimum deformation and allows registering with no information about landmarks or deformation regularization. This approach can also be used as the first step to solve the problem of group-wise registration.
['Carlos Ortiz-de-Solorzano', 'José María Carazo', 'Ignacio Arganda-Carreras', 'Roberto Marabini', 'Jan Kybic', 'Carlos O. S. Sorzano']
2006-05-12
null
null
null
computer-vision-approaches-to-medical-image
['birl-cima']
['medical']
[ 8.79950672e-02 2.76348572e-02 -1.53181306e-03 -4.20913219e-01 -6.27552927e-01 -4.35017884e-01 3.34822029e-01 2.67757148e-01 -8.00951600e-01 5.97115576e-01 -3.61334607e-02 -4.10542898e-02 -3.97371233e-01 -6.94349527e-01 -3.11374158e-01 -1.05298042e+00 -1.94098845e-01 5.24214268e-01 6.19329393e-01 -3.65653157e-01 4.09910321e-01 7.83312678e-01 -8.23808193e-01 -1.00771941e-01 6.14996552e-01 4.11254615e-01 2.15216041e-01 4.69914526e-01 -9.13679600e-02 -1.04597531e-01 -2.05748174e-02 -1.17013697e-02 3.01203877e-01 -3.19082975e-01 -1.21364498e+00 6.63598925e-02 4.86980289e-01 -3.00328106e-01 7.87851959e-03 9.53361511e-01 5.63834429e-01 2.75908291e-01 6.36078835e-01 -6.53439164e-01 -3.79991859e-01 1.06502101e-01 -6.27786756e-01 2.20053971e-01 4.00009751e-01 -3.79664898e-01 3.40636104e-01 -6.61527753e-01 6.73126161e-01 9.30009246e-01 1.14401543e+00 5.96499920e-01 -1.77143908e+00 -1.75145671e-01 -4.04968560e-01 -2.28429273e-01 -1.43650270e+00 -3.99147034e-01 8.02924812e-01 -6.57777905e-01 5.54432094e-01 5.99902153e-01 6.87935054e-01 2.76732296e-01 4.06086057e-01 -3.16552371e-02 1.22594953e+00 -6.62374973e-01 -4.50243093e-02 -1.59625441e-01 3.50092560e-01 6.12589657e-01 2.30812639e-01 1.22566685e-01 1.78401899e-02 -3.87073129e-01 1.24131322e+00 -1.65215835e-01 -3.58344227e-01 -5.24051130e-01 -1.31897080e+00 6.31334066e-01 3.60992491e-01 1.05480218e+00 -3.15979838e-01 1.37641385e-01 2.80873686e-01 2.08816588e-01 5.09556115e-01 2.49930590e-01 -8.12205970e-02 4.76927727e-01 -9.46558297e-01 8.49549845e-02 4.68386769e-01 3.05860311e-01 6.04299486e-01 -1.06011078e-01 1.25620201e-01 6.39204144e-01 7.23793805e-01 2.41801247e-01 7.16073811e-01 -1.09954417e+00 -4.98641953e-02 2.45535612e-01 -1.55772984e-01 -1.13195324e+00 -5.26156545e-01 2.68096209e-01 -8.95085275e-01 5.52242458e-01 8.94662559e-01 2.04218015e-01 -6.76417172e-01 1.49817383e+00 5.34690559e-01 3.02576512e-01 -2.11326227e-01 7.10691273e-01 7.08806753e-01 1.49373263e-01 1.54276546e-02 -4.68199074e-01 1.27387333e+00 -3.34106743e-01 -1.01920998e+00 2.89479762e-01 4.65921283e-01 -1.02775586e+00 5.46652615e-01 -1.26604885e-01 -1.34096301e+00 -2.64902800e-01 -7.60281801e-01 -9.47597697e-02 -1.65530071e-01 -4.00332510e-01 4.16979402e-01 4.59521949e-01 -1.43102789e+00 9.32524264e-01 -1.24844980e+00 -3.41333210e-01 -5.95985632e-03 9.15707707e-01 -8.94334316e-01 4.89650398e-01 -8.18612278e-01 1.30260611e+00 2.38454401e-01 4.11160409e-01 1.16454840e-01 -6.47018373e-01 -7.01873302e-01 -4.70101267e-01 -3.42973560e-01 -4.95826066e-01 4.53038067e-01 -5.94541132e-01 -1.50182009e+00 1.52006817e+00 -3.90776724e-01 -1.03707306e-01 7.16163993e-01 3.28072250e-01 -3.88256349e-02 7.67728388e-02 -1.54153615e-01 4.20404166e-01 4.14613932e-01 -1.24016345e+00 2.31554449e-01 -6.11157179e-01 -5.10231555e-01 -2.34418884e-02 4.60151993e-02 3.13316405e-01 -1.61087722e-01 -6.70158029e-01 7.40325212e-01 -1.11107457e+00 -5.73857844e-01 3.08102936e-01 -8.62181652e-03 8.21238607e-02 4.84962463e-01 -9.57591891e-01 7.84918487e-01 -2.20179534e+00 2.90568799e-01 6.72766209e-01 1.44972637e-01 1.00024402e-01 -1.30451620e-01 1.22480415e-01 -5.29522419e-01 1.32545575e-01 -4.41238910e-01 -2.35627368e-01 -5.98315537e-01 2.85861611e-01 1.64969400e-01 1.03676760e+00 -3.55922163e-01 8.60693514e-01 -7.69398630e-01 -7.89491773e-01 1.06002130e-01 7.76247978e-01 -2.00150609e-01 1.84990495e-01 7.50187993e-01 1.15683150e+00 -4.03326213e-01 6.34927303e-02 7.92508364e-01 2.48854607e-01 2.59135246e-01 -3.91778678e-01 -4.03243452e-01 -1.37565974e-02 -1.18740392e+00 1.70433414e+00 -2.32168332e-01 5.28227210e-01 3.22624922e-01 -1.25254190e+00 1.20613766e+00 8.57032955e-01 1.09559441e+00 -1.61693737e-01 2.03447923e-01 5.12019336e-01 -8.70736912e-02 -4.69074547e-01 -1.03690818e-01 -4.93745089e-01 3.85221660e-01 3.97489160e-01 -1.10462308e-01 -3.83900315e-01 4.60501388e-02 -5.10856688e-01 5.73901892e-01 9.84166786e-02 6.08449161e-01 -8.96850109e-01 9.36135888e-01 -2.07512021e-01 4.68892366e-01 1.59665093e-01 -1.21442072e-01 7.29353964e-01 6.44851327e-02 -8.25565934e-01 -8.43168795e-01 -1.08005226e+00 -7.56158113e-01 1.57482713e-01 3.06913584e-01 1.91997439e-01 -7.60617256e-01 -4.04764205e-01 9.15269554e-02 -7.42064044e-02 -7.54814923e-01 1.02396704e-01 -9.68098521e-01 -1.05081785e+00 1.79598629e-01 1.43741906e-01 1.41710117e-01 -8.80884469e-01 -3.06575865e-01 2.10348487e-01 -3.35254103e-01 -6.59526467e-01 -5.65235317e-01 2.36085448e-02 -1.68081880e+00 -1.14954484e+00 -8.95515084e-01 -1.11273789e+00 1.43203187e+00 1.50529787e-01 7.93537557e-01 6.54026806e-01 -3.30270469e-01 2.70653367e-01 2.22460583e-01 1.50379390e-01 -7.57765949e-01 -3.74807537e-01 1.19027123e-01 -4.00059707e-02 -1.84766040e-03 -9.36461568e-01 -5.21473110e-01 6.64691448e-01 -9.06752944e-01 -4.00185287e-01 1.46637470e-01 7.99827635e-01 1.02861118e+00 -1.76753998e-01 1.99434906e-01 -8.05742204e-01 6.56263471e-01 1.23194596e-02 -6.39730752e-01 3.23717296e-01 -5.61239004e-01 4.18570526e-02 6.81829751e-02 -4.87898052e-01 -7.21588671e-01 3.80868077e-01 -4.47429240e-01 -4.15989645e-02 -2.72624165e-01 3.58938634e-01 2.55736351e-01 -1.21084714e+00 7.59342730e-01 1.05111293e-01 5.97442448e-01 -5.81192195e-01 1.11807980e-01 2.83121496e-01 6.89299583e-01 -3.86199117e-01 9.09865141e-01 7.84873128e-01 5.85575700e-01 -7.73863673e-01 -1.43769518e-01 -7.03020692e-01 -1.52974498e+00 -2.58116037e-01 1.00211453e+00 -3.50134999e-01 -7.60404289e-01 3.90482455e-01 -1.30553341e+00 -2.36739293e-01 -6.05528355e-01 7.93904006e-01 -8.01021039e-01 9.41170812e-01 -4.59158599e-01 -1.89393774e-01 -3.64566863e-01 -1.39489675e+00 7.17666149e-01 -1.47125378e-01 -3.58689815e-01 -1.50459611e+00 6.42129779e-01 2.84530744e-02 4.71702009e-01 6.41435266e-01 6.55470133e-01 -5.43951452e-01 -2.16955274e-01 -6.42646432e-01 2.06357464e-01 1.72060415e-01 4.47607696e-01 8.80154148e-02 -4.53133762e-01 -3.42394024e-01 4.93840963e-01 3.53588343e-01 3.53621215e-01 6.97783589e-01 7.11026430e-01 -2.06566930e-01 -3.57988000e-01 7.24494219e-01 1.63931656e+00 2.00329691e-01 9.26181257e-01 3.53255600e-01 5.00675321e-01 7.81947076e-01 2.22191304e-01 -2.05673561e-01 1.00153588e-01 1.27079165e+00 1.10636733e-01 -5.10626972e-01 -1.98088810e-01 4.49699938e-01 -1.53335482e-01 1.07954144e+00 -8.79202962e-01 6.78971887e-01 -8.59856784e-01 4.73651677e-01 -1.68234062e+00 -1.10185719e+00 -8.26206505e-01 2.48795152e+00 1.10420597e+00 -4.46127087e-01 1.25981225e-02 1.68840289e-01 9.28642094e-01 -3.35293263e-01 2.96655029e-01 -3.66647243e-01 2.93163687e-01 1.25031412e-01 6.37543440e-01 1.02025068e+00 -1.01222908e+00 2.75333554e-01 8.37476730e+00 4.77945864e-01 -1.09693670e+00 2.29810596e-01 2.24693596e-01 7.42400646e-01 -3.03803593e-01 2.23291293e-01 -5.04640877e-01 4.00858700e-01 4.86391544e-01 -2.12888062e-01 3.49540293e-01 2.38941729e-01 3.54463935e-01 -1.98941961e-01 -8.90611470e-01 5.12360454e-01 -1.62045553e-01 -1.31717527e+00 -3.53853643e-01 3.67234647e-01 5.60966551e-01 -2.30402127e-01 -2.66149908e-01 -7.50873446e-01 -1.40798524e-01 -6.97514355e-01 2.50835687e-01 8.22972715e-01 7.50608921e-01 -2.05685198e-01 7.72729337e-01 9.68420953e-02 -1.13326764e+00 6.61657810e-01 -4.28493261e-01 2.82523334e-01 5.20632625e-01 4.96745974e-01 -6.64322853e-01 5.05562961e-01 4.22675252e-01 3.78121048e-01 -1.89098030e-01 1.21146297e+00 -4.11196053e-02 -9.87919196e-02 -4.62447256e-01 5.95285416e-01 -2.95878619e-01 -8.27326357e-01 7.63035774e-01 9.32249248e-01 2.84726769e-01 2.45468512e-01 1.14358798e-01 7.41572320e-01 5.77194452e-01 4.19909149e-01 -5.05279541e-01 7.27882922e-01 1.61050279e-02 1.27501261e+00 -1.09935582e+00 1.63149387e-01 -3.84295970e-01 7.07232416e-01 2.63766032e-02 6.52175248e-02 -2.89150923e-01 -3.08874901e-02 2.31479764e-01 5.08577168e-01 -1.71742842e-01 -6.10508025e-01 -3.05739701e-01 -9.13270712e-01 -1.41343072e-01 -2.43805647e-01 2.70960897e-01 -3.29953492e-01 -1.11766839e+00 6.15506172e-01 3.64019990e-01 -1.12048018e+00 -1.83930159e-01 -3.20846558e-01 -8.90158772e-01 1.20816362e+00 -1.30585611e+00 -1.11281085e+00 -2.35526860e-01 7.73148060e-01 -1.92377821e-01 2.77385741e-01 1.16069090e+00 2.91072994e-01 1.68882273e-02 3.05770367e-01 1.84088141e-01 1.59349903e-01 8.74526978e-01 -1.31898272e+00 8.86393338e-02 6.09026015e-01 -1.61280960e-01 9.17537749e-01 7.00149655e-01 -7.06698358e-01 -8.10107112e-01 -5.45774221e-01 1.20746446e+00 -3.81801993e-01 5.67482769e-01 2.70080864e-01 -1.21027350e+00 6.99393928e-01 1.15228370e-02 5.08918583e-01 8.65328431e-01 -1.65587395e-01 2.64150292e-01 -9.10091549e-02 -1.46078610e+00 3.54844928e-01 4.55446810e-01 -2.40138412e-01 -7.40992486e-01 5.21621227e-01 7.98454806e-02 -5.57904661e-01 -1.59555149e+00 3.35141063e-01 6.93221092e-01 -7.24140048e-01 1.45374858e+00 -2.51587808e-01 -3.31205189e-01 -3.91808420e-01 3.95975977e-01 -9.63138700e-01 -3.57178152e-01 -8.22529972e-01 7.12936997e-01 1.04203343e+00 4.23676036e-02 -8.55324805e-01 5.59943557e-01 7.41868377e-01 -4.99699004e-02 -3.80184233e-01 -1.39562821e+00 -9.86620128e-01 1.56068847e-01 2.79883981e-01 2.39793226e-01 1.07457650e+00 3.33332032e-01 -5.06551087e-01 -1.17777333e-01 -9.62247625e-02 8.12507212e-01 -1.02951877e-01 3.53389353e-01 -1.59675753e+00 7.01673105e-02 -3.99093509e-01 -8.05202186e-01 -5.52179575e-01 3.44277024e-01 -1.09181511e+00 2.42284521e-01 -1.35855198e+00 -4.97053638e-02 -8.55160236e-01 -2.35682782e-02 6.03510976e-01 3.03708985e-02 5.93257427e-01 -2.11684555e-01 7.04542160e-01 2.24442273e-01 -9.40966904e-02 1.50930500e+00 2.46816918e-01 -4.05802876e-01 2.04948023e-01 -2.08218858e-01 7.95374990e-01 6.55666530e-01 -6.73133671e-01 1.30601540e-01 -1.71469018e-01 -1.55305825e-02 1.55854627e-01 3.40152293e-01 -5.84168434e-01 3.65463912e-01 -2.07866117e-01 3.01794056e-02 -7.36422790e-03 -1.27178177e-01 -1.21755588e+00 8.32617640e-01 6.94009185e-01 -2.75025666e-01 1.44111395e-01 -1.46950604e-02 2.13432938e-01 -3.39239299e-01 -7.81832874e-01 1.16559291e+00 -2.28540733e-01 -2.25813478e-01 3.04407537e-01 -3.29801232e-01 -4.92123634e-01 1.04941440e+00 -4.86212879e-01 1.83027938e-01 6.70384988e-02 -1.30927408e+00 -2.69588619e-01 6.62508190e-01 -2.25660518e-01 4.49414998e-01 -1.60467386e+00 -7.50795484e-01 2.42464378e-01 -4.36184406e-01 5.20753749e-02 1.92908973e-01 1.69303715e+00 -1.07057619e+00 1.70974687e-01 -6.19506299e-01 -6.53804064e-01 -1.75888801e+00 5.28182268e-01 7.05509365e-01 -4.53557938e-01 -5.67682326e-01 5.14088273e-01 -7.84465596e-02 -3.07332397e-01 -3.94042909e-01 1.22221066e-02 -5.41546702e-01 -1.37489527e-01 3.37664098e-01 4.21018779e-01 2.99339652e-01 -1.23794913e+00 -5.56933880e-01 1.31335115e+00 3.50757092e-01 -1.66096017e-02 1.37610209e+00 -3.36829811e-01 -9.37079608e-01 1.88264787e-01 1.21257949e+00 3.85052562e-01 -8.24407220e-01 2.05251798e-02 -8.82819295e-02 -4.83307183e-01 2.57648677e-01 -1.56550035e-01 -1.23796499e+00 5.74940264e-01 6.36425138e-01 3.02324742e-01 9.73047614e-01 -1.82875946e-01 3.65798473e-01 -2.22058427e-02 1.96150750e-01 -7.10038483e-01 -4.26544517e-01 1.07659698e-01 1.10946941e+00 -9.93873537e-01 4.11299467e-01 -8.77316833e-01 9.64419097e-02 1.54990184e+00 1.39842406e-02 -4.81131643e-01 1.00498617e+00 4.73716974e-01 2.16927618e-01 -1.37109295e-01 1.41106948e-01 3.34814042e-02 8.37087452e-01 8.50597918e-01 8.69611144e-01 -2.51284271e-01 -1.29211283e+00 -3.85101102e-02 2.84615099e-01 -1.73361208e-02 3.62949520e-01 8.49971592e-01 -2.43056864e-01 -1.64299262e+00 -7.43778825e-01 -1.21124059e-01 -6.27986252e-01 2.10704982e-01 -6.13813987e-03 8.98815036e-01 -2.95800548e-02 3.91194969e-01 1.39215693e-01 2.29173318e-01 3.78051966e-01 -8.57658759e-02 8.08253229e-01 -2.74289995e-01 -6.53545737e-01 5.07501662e-01 -3.30565393e-01 -5.64262927e-01 -1.07751107e+00 -8.86656642e-01 -1.35608947e+00 -2.25033551e-01 -6.89225793e-01 1.88450187e-01 9.20970738e-01 9.25068617e-01 -1.04604483e-01 1.12046525e-01 6.62646234e-01 -1.10134435e+00 -3.39179397e-01 -4.78682160e-01 -7.44800746e-01 6.06037199e-01 2.51309842e-01 -4.86248463e-01 -3.41747314e-01 5.56135535e-01]
[13.97729778289795, -2.595978021621704]
afe6140e-896b-412c-af4f-2aaf3f7dcea9
predictive-process-model-monitoring-using
2011.02819
null
https://arxiv.org/abs/2011.02819v3
https://arxiv.org/pdf/2011.02819v3.pdf
Predictive Process Model Monitoring using Recurrent Neural Networks
The field of predictive process monitoring focuses on case-level models to predict a single specific outcome such as a particular objective, (remaining) time, or next activity/remaining sequence. Recently, a longer-horizon, model-wide approach has been proposed in the form of process model forecasting, which predicts the future state of a whole process model through the forecasting of all activity-to-activity relations at once using time series forecasting. This paper introduces the concept of \emph{predictive process model monitoring} which sits in the middle of both predictive process monitoring and process model forecasting. Concretely, by modelling a process model as a set of constraints being present between activities over time, we can capture more detailed information between activities compared to process model forecasting, while being compatible with typical predictive process monitoring objectives which are often expressed in the same language as these constraints. To achieve this, Processes-As-Movies (PAM) is introduced, i.e., a novel technique capable of jointly mining and predicting declarative process constraints between activities in various windows of a process' execution. PAM predicts what declarative rules hold for a trace (objective-based), which also supports the prediction of all constraints together as a process model (model-based). Various recurrent neural network topologies inspired by video analysis tailored to temporal high-dimensional input are used to model the process model evolution with windows as time steps, including encoder-decoder long short-term memory networks, and convolutional long short-term memory networks. Results obtained over real-life event logs show that these topologies are effective in terms of predictive accuracy and precision.
['Jochen De Weerdt', 'Johannes De Smedt']
2020-11-05
null
null
null
null
['predictive-process-monitoring']
['time-series']
[ 6.97811902e-01 5.27110603e-03 -1.33674592e-01 -3.97535890e-01 -3.57963890e-02 -1.55875355e-01 1.21383786e+00 5.79387605e-01 8.26018378e-02 1.82277188e-01 3.87598336e-01 -2.19086006e-01 -6.69533134e-01 -1.03010786e+00 -2.50427336e-01 -3.56295466e-01 -4.29897845e-01 5.79925358e-01 1.36379704e-01 2.78044432e-01 3.39113802e-01 6.40389502e-01 -1.72316802e+00 6.76754415e-01 1.80251062e-01 1.25223374e+00 2.70774215e-01 8.42622101e-01 -5.35010338e-01 1.46898139e+00 -4.75656271e-01 -9.63383541e-02 -7.84945190e-02 -3.60510021e-01 -5.85431993e-01 4.14726406e-01 -4.90330577e-01 1.02830708e-01 -3.91758382e-01 3.55428427e-01 -2.76163429e-01 1.81752115e-01 4.87798512e-01 -1.20239902e+00 -1.83249995e-01 6.13905609e-01 -5.46193384e-02 2.89185613e-01 6.04358256e-01 3.25057119e-01 7.32799351e-01 -5.42914271e-01 4.96749729e-01 1.25536966e+00 5.12077749e-01 4.01807785e-01 -1.23939860e+00 -9.74476710e-02 4.66344237e-01 2.26319000e-01 -1.08315182e+00 -9.50712264e-02 6.80195451e-01 -7.00874686e-01 1.46310389e+00 4.49806511e-01 7.90819824e-01 1.20133388e+00 1.02985382e+00 7.19637990e-01 7.36075163e-01 -2.95810699e-01 4.34742898e-01 -3.64568919e-01 8.34145546e-02 4.08787191e-01 -2.59530902e-01 1.38788447e-01 -7.90241599e-01 -1.56774044e-01 8.37650836e-01 7.69702137e-01 1.38919279e-02 9.42949429e-02 -1.36858273e+00 2.43161052e-01 -4.68586236e-01 5.88833272e-01 -8.17143619e-01 3.62574697e-01 5.49252570e-01 5.49461842e-01 3.56307089e-01 3.08006346e-01 -4.78042901e-01 -5.80592036e-01 -1.08048224e+00 1.75111398e-01 1.41074228e+00 9.28727448e-01 5.08420110e-01 3.07069629e-01 -6.81971967e-01 3.25877458e-01 3.50196272e-01 8.84887949e-02 6.76516354e-01 -8.27424586e-01 3.46318036e-01 8.71534824e-01 2.19761088e-01 -6.59111738e-01 -3.09860855e-01 -2.67941862e-01 -9.15466309e-01 1.50178690e-02 8.65249187e-02 8.78686458e-02 -7.08255649e-01 1.38956392e+00 -2.73313314e-01 5.59502244e-01 -3.56996506e-02 6.84970245e-02 -1.38394862e-01 1.23525190e+00 2.64735430e-01 -9.21275616e-01 1.21917105e+00 -8.39555085e-01 -1.07480216e+00 -1.38884142e-01 3.28661293e-01 -2.56968290e-01 4.96668547e-01 7.07459092e-01 -1.32565820e+00 -8.76531959e-01 -6.64244115e-01 6.72037423e-01 -3.84117693e-01 -1.83119804e-01 5.64778745e-01 2.97715217e-01 -1.06598687e+00 1.11598217e+00 -1.37652707e+00 -5.25868714e-01 3.92431300e-03 4.32045221e-01 -2.15015374e-02 2.06708476e-01 -8.29335093e-01 8.19689095e-01 5.89574277e-01 3.04818451e-01 -1.34703004e+00 -5.12641191e-01 -6.47023559e-01 5.96124887e-01 5.83419979e-01 -4.83222902e-01 1.41661787e+00 -7.17602909e-01 -1.61034346e+00 2.37447038e-01 -5.80956399e-01 -7.63080537e-01 5.57464123e-01 -2.72136629e-01 -1.08343959e+00 -2.03299478e-01 -4.20647144e-01 -2.52367333e-02 9.64653432e-01 -9.03258681e-01 -1.03098571e+00 -1.78627729e-01 -3.59160632e-01 -4.67645526e-02 -2.43140221e-01 3.33881080e-01 -5.62158227e-01 -1.91153929e-01 1.17652595e-01 -6.46727502e-01 -5.75920224e-01 -4.57109809e-01 -3.56686473e-01 -3.22742522e-01 7.90783346e-01 -5.79193950e-01 1.74316752e+00 -1.90182245e+00 1.42492548e-01 4.44717318e-01 4.86975498e-02 2.46209037e-02 1.29726157e-01 1.18377829e+00 -1.57343686e-01 6.54693693e-02 -1.56540260e-01 -6.58954859e-01 1.71805367e-01 5.63007832e-01 -5.89843512e-01 9.40901861e-02 3.56476784e-01 7.28394091e-01 -5.98677754e-01 -2.46693090e-01 5.84858775e-01 3.09077144e-01 2.30511025e-01 5.83222032e-01 -5.94303012e-01 5.41669309e-01 -5.28393745e-01 6.79963827e-01 -3.43723521e-02 -1.47074416e-01 4.78998214e-01 5.43629527e-01 -4.58777666e-01 1.21694570e-02 -1.27638865e+00 1.28449762e+00 -8.12026858e-01 3.14135522e-01 -2.74524152e-01 -7.29819953e-01 1.32142317e+00 8.13732088e-01 9.52363849e-01 -5.74262738e-01 -2.90488720e-01 -4.42261323e-02 -3.26490164e-01 -5.39588451e-01 4.89540905e-01 -1.29599690e-01 8.23105425e-02 6.10506356e-01 -1.56215519e-01 2.06215858e-01 5.60227811e-01 -4.91253972e-01 1.49102950e+00 4.59782720e-01 4.30293292e-01 1.09315313e-01 9.46488738e-01 -3.91480953e-01 6.34835780e-01 6.42957866e-01 1.47423476e-01 1.96023911e-01 8.14121604e-01 -8.27666759e-01 -9.13640916e-01 -9.68966663e-01 3.58026385e-01 1.11712027e+00 -1.65597379e-01 -6.85212910e-01 -1.98961675e-01 -2.67036647e-01 -2.27230102e-01 9.55476761e-01 -7.23627806e-01 1.37991151e-02 -7.93124855e-01 -4.92391348e-01 2.44509354e-01 6.11424983e-01 8.84315670e-02 -1.45959437e+00 -9.97826815e-01 9.20689762e-01 4.86061901e-01 -9.38684583e-01 -4.06520367e-02 5.91464221e-01 -1.21664965e+00 -9.67346966e-01 -2.29805964e-03 -2.73799866e-01 9.65536982e-02 -4.14149135e-01 1.12295449e+00 -2.94865102e-01 8.34154859e-02 5.07184923e-01 -1.46089301e-01 -5.97350061e-01 -7.47895539e-01 -2.82470465e-01 -1.01293199e-01 4.42254663e-01 4.52406138e-01 -8.59084129e-01 -8.03482533e-02 1.89538613e-01 -1.13353026e+00 9.94733274e-02 5.98680556e-01 3.49005759e-01 7.60398328e-01 4.16303158e-01 3.83915365e-01 -6.35606825e-01 9.39260900e-01 -5.56918383e-01 -4.35589820e-01 5.99659920e-01 -1.00004756e+00 6.68166503e-02 8.94900858e-01 -6.07737839e-01 -1.37424898e+00 3.48998010e-02 2.01262295e-01 -7.13993907e-01 -5.23236871e-01 8.26694548e-01 -1.67565122e-01 1.01697683e+00 7.25260302e-02 8.72588336e-01 -1.49083599e-01 -3.99175644e-01 -1.52051792e-01 1.82106689e-01 3.73740017e-01 -5.10857642e-01 4.99728948e-01 6.69454277e-01 3.09210867e-01 -4.30119008e-01 -4.34239447e-01 -6.21517777e-01 -6.60902917e-01 -6.64929330e-01 7.89716363e-01 -5.92427790e-01 -1.06976414e+00 3.09314132e-01 -1.09563267e+00 -3.61995369e-01 -7.24679291e-01 4.95634645e-01 -9.56417322e-01 -1.40071893e-02 -1.09945440e+00 -1.34179854e+00 -3.46397012e-01 -7.47430861e-01 8.65444601e-01 -5.88747673e-03 -6.79650843e-01 -1.47525275e+00 1.05950303e-01 -1.32287264e-01 4.52840477e-01 3.79212111e-01 8.64010096e-01 -1.07769966e+00 -6.12328351e-01 -6.75806999e-01 3.72774541e-01 3.08580905e-01 1.55913845e-01 1.37793019e-01 -6.48608267e-01 -6.38256818e-02 6.18685424e-01 5.65904200e-01 3.57804954e-01 2.95637131e-01 1.37180912e+00 -3.13082010e-01 -5.48748016e-01 3.34441274e-01 1.47698486e+00 8.48057270e-01 7.37638175e-01 2.25725785e-01 5.44937551e-01 7.63274193e-01 5.60025871e-01 9.19196248e-01 3.07675172e-03 3.56315523e-01 4.41090375e-01 4.33574736e-01 4.98907208e-01 -3.90762389e-01 8.48087072e-01 8.15970659e-01 -5.86675227e-01 -3.09265286e-01 -1.12644982e+00 3.45864773e-01 -2.12199616e+00 -1.53015721e+00 -4.32369649e-01 2.19905424e+00 1.08094320e-01 5.01759291e-01 -1.38848424e-01 2.99245983e-01 7.37272680e-01 4.59329605e-01 -4.64731693e-01 -9.32559967e-01 2.06772327e-01 -1.49368560e-02 1.88392594e-01 3.66495699e-01 -1.00584269e+00 4.23168242e-01 6.08429193e+00 5.97969651e-01 -8.63359153e-01 8.82103741e-02 5.07169366e-01 -2.67500848e-01 -1.06330469e-01 4.66153622e-02 -9.72309649e-01 5.98017037e-01 1.83935010e+00 -3.48655850e-01 2.79882431e-01 7.53263116e-01 9.72127855e-01 4.91227433e-02 -1.83886623e+00 7.24830747e-01 -1.16769850e-01 -1.46420109e+00 1.57735601e-01 3.88626963e-01 4.78754461e-01 -2.34893441e-01 -3.63118321e-01 3.77374828e-01 2.65358388e-01 -1.26751912e+00 8.81786168e-01 1.29960549e+00 3.13362390e-01 -7.16967165e-01 7.28202224e-01 7.00402856e-01 -1.55732620e+00 -7.21356511e-01 8.03258419e-02 -4.90441084e-01 6.25253320e-01 6.86416030e-01 -7.44915247e-01 8.39707851e-01 3.62611711e-01 1.03529394e+00 -6.77034408e-02 5.61785102e-01 -5.13868518e-02 6.30710781e-01 -1.03253551e-01 1.18634954e-01 1.93915695e-01 -3.52402091e-01 5.36369264e-01 1.46423769e+00 7.18618691e-01 -4.69566524e-01 3.20136219e-01 1.01185036e+00 6.24093235e-01 -2.53450722e-01 -6.26104772e-01 -1.91501722e-01 1.63142681e-01 9.63706255e-01 -6.82380557e-01 -4.48041886e-01 -4.45140392e-01 7.69428790e-01 -2.52779990e-01 3.97251219e-01 -7.60334313e-01 4.89592075e-01 4.33388710e-01 2.47346371e-01 2.01245070e-01 -4.54794854e-01 -2.40882277e-01 -8.13943028e-01 8.90117586e-02 -4.58246261e-01 5.12492597e-01 -7.44891644e-01 -1.28301370e+00 6.15707397e-01 -9.05102119e-03 -1.52955282e+00 -7.85811305e-01 -3.09675574e-01 -1.02104533e+00 9.92233157e-01 -1.24325633e+00 -1.18394589e+00 -1.44954875e-01 6.44223332e-01 1.00738490e+00 -1.34845003e-01 9.55706596e-01 -2.86499381e-01 -6.52819157e-01 -5.69240987e-01 -2.42050365e-02 -4.54776824e-01 6.72005415e-02 -1.15788376e+00 2.74031699e-01 8.38318825e-01 1.05147958e-01 4.50001299e-01 8.76312912e-01 -9.87137675e-01 -1.67415130e+00 -1.25038016e+00 1.30991673e+00 -5.23963690e-01 1.08499169e+00 -1.21017762e-01 -1.16101241e+00 1.04617858e+00 4.14611995e-02 -4.03485775e-01 6.63902044e-01 -2.67067552e-02 1.32652193e-01 -2.01467574e-01 -5.96123993e-01 4.52979952e-01 9.21289861e-01 -6.26969635e-01 -7.78801978e-01 1.44971907e-01 5.01942158e-01 -8.57271552e-02 -1.30195630e+00 2.31874555e-01 2.22209334e-01 -9.95829999e-01 6.01359308e-01 -5.79805195e-01 5.55013001e-01 -2.52419412e-01 -2.18257099e-01 -8.55728447e-01 -4.02061075e-01 -9.36586857e-01 -1.08764875e+00 1.17679334e+00 1.38349518e-01 -2.44240522e-01 7.89446831e-01 7.58135378e-01 -2.78434992e-01 -9.86672521e-01 -9.27937090e-01 -8.89973998e-01 -5.33853531e-01 -9.90748644e-01 8.30054641e-01 7.49106765e-01 1.12038255e-01 1.79947019e-01 -4.72894430e-01 2.32652843e-01 5.61290644e-02 2.40543082e-01 3.96173477e-01 -1.50928974e+00 -4.70557451e-01 -4.86080289e-01 -3.37513745e-01 -7.09961951e-01 1.50883496e-01 -5.09058297e-01 -1.62994385e-01 -1.85864604e+00 -1.72995403e-02 6.88248947e-02 -4.97908354e-01 2.88420022e-01 3.74436319e-01 -7.88974643e-01 2.84948409e-01 6.71521842e-01 -6.03898108e-01 5.58642387e-01 9.61037099e-01 -2.82717049e-02 -5.29074371e-01 5.84128022e-01 2.28606667e-02 6.95452929e-01 7.58725762e-01 -2.60677963e-01 -5.48430681e-01 1.45228561e-02 2.97287852e-01 8.44290614e-01 2.32906580e-01 -1.53917253e+00 6.08549893e-01 -5.87125480e-01 3.76600236e-01 -6.39182866e-01 6.43678546e-01 -1.21428871e+00 9.74408925e-01 7.16667175e-01 -6.96884573e-01 4.14054006e-01 -1.13417611e-01 1.10090172e+00 -6.15995049e-01 -1.35236040e-01 7.07290769e-02 -2.11875394e-01 -9.34243500e-01 4.01316255e-01 -9.76415396e-01 -8.40018690e-01 1.29517472e+00 -6.15770698e-01 8.30713809e-02 -4.79969054e-01 -1.21576893e+00 1.58933237e-01 -6.23423532e-02 3.77174437e-01 5.28830469e-01 -7.38911152e-01 -5.55623949e-01 1.43695921e-01 5.87422140e-02 -1.73827186e-02 3.66604358e-01 8.31083119e-01 -1.23974733e-01 5.69430470e-01 -1.30819768e-01 -6.05487704e-01 -9.60999846e-01 8.27666461e-01 3.93384904e-01 -1.16614306e+00 -7.67822385e-01 1.17747433e-01 -3.08919430e-01 -4.95594786e-03 1.30121797e-01 -5.35703182e-01 -4.88604635e-01 2.18049511e-01 7.32037067e-01 3.81282926e-01 -6.90864623e-02 -2.33342513e-01 1.06034346e-01 1.02444664e-01 3.06266636e-01 -1.33257672e-01 1.60486412e+00 -1.69882774e-01 -3.84433389e-01 1.30879772e+00 4.56624746e-01 -3.28829080e-01 -1.70403993e+00 -1.71610177e-01 8.60192358e-01 -4.51571196e-02 -3.90351951e-01 -6.90803587e-01 -7.00444281e-01 8.88205588e-01 3.86616409e-01 7.24142313e-01 1.11456907e+00 -3.20610441e-02 3.97417158e-01 3.75220031e-01 3.38645786e-01 -1.25983000e+00 -6.74541816e-02 7.51800835e-01 8.46650898e-01 -4.61408824e-01 -2.94786245e-01 -3.28004152e-01 -6.01947665e-01 1.45702267e+00 3.96353155e-01 1.91773444e-01 6.60121322e-01 4.67983186e-01 -5.52357078e-01 -2.95025796e-01 -1.52943587e+00 1.11982785e-01 -1.28619671e-01 4.95952427e-01 3.16136271e-01 2.76917964e-01 1.30516514e-01 6.49889350e-01 1.76988229e-01 5.64066887e-01 6.17152631e-01 1.28201783e+00 -3.06345820e-01 -1.11017191e+00 -4.46344018e-01 7.59933472e-01 -4.76140231e-01 2.20111355e-01 1.11964352e-01 5.93575418e-01 9.80910212e-02 1.05372083e+00 5.59883893e-01 -4.40787554e-01 6.01695061e-01 6.87649012e-01 6.57485202e-02 -7.41931617e-01 -1.03250599e+00 1.31588027e-01 2.85179436e-01 -8.05135429e-01 -3.54848623e-01 -8.72977972e-01 -1.17088997e+00 -3.41110229e-01 4.23921674e-01 -2.04058409e-01 5.67822933e-01 1.19308674e+00 1.61227852e-01 1.01768517e+00 5.57109833e-01 -6.84095383e-01 -3.55865657e-01 -1.10563910e+00 -7.92308688e-01 4.33088511e-01 -1.06577218e-01 -1.27066553e-01 -1.05733536e-01 5.23376405e-01]
[8.58228588104248, 5.946831703186035]
267c9704-1a9a-47ca-9efa-2d640b36297f
segment-everything-everywhere-all-at-once
2304.06718
null
https://arxiv.org/abs/2304.06718v3
https://arxiv.org/pdf/2304.06718v3.pdf
Segment Everything Everywhere All at Once
Despite the growing demand for interactive AI systems, there have been few comprehensive studies on human-AI interaction in visual understanding e.g. segmentation. Inspired by the development of prompt-based universal interfaces for LLMs, this paper presents SEEM, a promptable, interactive model for Segmenting Everything Everywhere all at once in an image. SEEM has four desiderata: i) Versatility: by introducing a versatile prompting engine for different types of prompts, including points, boxes, scribbles, masks, texts, and referred regions of another image; ii) Compositionality: by learning a joint visual-semantic space for visual and textual prompts to compose queries on the fly for inference as shown in Fig 1; iii)Interactivity: by incorporating learnable memory prompts to retain dialog history information via mask-guided cross-attention; and iv) Semantic-awareness: by using a text encoder to encode text queries and mask labels for open-vocabulary segmentation.
['Yong Jae Lee', 'Jianfeng Gao', 'Linjie Li', 'Feng Li', 'Hao Zhang', 'Jianwei Yang', 'Xueyan Zou']
2023-04-13
null
null
null
null
['personalized-segmentation']
['computer-vision']
[ 4.65957642e-01 6.51061833e-01 -5.84531836e-02 -5.60550272e-01 -3.72739673e-01 -9.19807076e-01 9.69369173e-01 2.46329159e-01 -3.48921418e-01 2.15814933e-01 5.49524307e-01 -3.76148015e-01 1.32178932e-01 -2.97415167e-01 -6.52124524e-01 -1.73342019e-01 2.28532508e-01 8.93396854e-01 5.75076818e-01 -2.16935620e-01 2.28539377e-01 3.95061672e-01 -1.64081585e+00 9.16445374e-01 6.88261569e-01 8.91415954e-01 6.66805387e-01 9.30689752e-01 -6.75083518e-01 1.12920320e+00 -7.11865246e-01 -3.57477754e-01 9.09318402e-03 -6.54592216e-01 -1.37875044e+00 4.97651935e-01 5.49278736e-01 -5.71198225e-01 -2.04728097e-01 7.58628011e-01 7.50216246e-02 3.31939697e-01 5.87440848e-01 -1.22549784e+00 -1.02865589e+00 9.01386678e-01 -1.96405947e-01 1.43675715e-01 8.71761084e-01 5.77135026e-01 1.21149838e+00 -7.04861999e-01 1.04717386e+00 1.49683273e+00 1.72160193e-02 8.68111312e-01 -1.38235462e+00 -7.08896071e-02 5.76162338e-01 3.04067463e-01 -1.02794111e+00 -3.37129086e-01 5.80238044e-01 -6.76818550e-01 1.09114361e+00 7.03154266e-01 9.60430801e-01 1.05020118e+00 -1.13212921e-01 1.37359202e+00 9.08968091e-01 -5.58573127e-01 9.55782682e-02 4.24317539e-01 1.30516827e-01 9.02580321e-01 -7.53692031e-01 1.10447109e-02 -7.57146537e-01 2.34861389e-01 1.29078209e+00 -1.25241317e-02 -2.60115489e-02 -3.69848192e-01 -1.31245399e+00 5.59820712e-01 4.96796340e-01 2.66742259e-01 -1.89212948e-01 1.97169974e-01 4.13088143e-01 4.38901186e-01 3.13778788e-01 6.93944335e-01 -2.68524915e-01 1.41173407e-01 -8.02484810e-01 3.59694391e-01 7.15802670e-01 1.34048998e+00 7.86383986e-01 -7.66722932e-02 -8.45725417e-01 6.93331778e-01 2.54065931e-01 4.24854189e-01 1.62382752e-01 -1.13646197e+00 3.28177661e-01 7.37492144e-01 2.31337875e-01 -6.25796318e-01 -4.68175113e-01 1.22791365e-01 -3.42549056e-01 1.11699991e-01 4.52625185e-01 -3.93913016e-02 -1.26974869e+00 1.69681168e+00 2.87680835e-01 -8.15826431e-02 -2.67604232e-01 1.08674598e+00 1.23147488e+00 6.94316566e-01 5.96970916e-01 2.15320051e-01 1.63906074e+00 -1.19272852e+00 -8.41944039e-01 -5.67476451e-01 4.10012811e-01 -4.99994665e-01 1.62909055e+00 1.56458199e-01 -1.11786020e+00 -7.04171121e-01 -6.63796842e-01 -7.98188269e-01 -6.98942542e-01 -1.40875742e-01 6.37379885e-01 1.22271515e-01 -1.33309102e+00 1.72281533e-01 -6.19713068e-01 -5.85104167e-01 3.58543158e-01 1.33663774e-01 -7.29520693e-02 2.49858335e-01 -8.40705216e-01 8.50580812e-01 2.57101476e-01 -2.11350605e-01 -8.80563974e-01 -6.86030686e-01 -9.71743643e-01 1.64780244e-01 7.42538393e-01 -8.59469891e-01 1.66381180e+00 -1.57169294e+00 -1.65643096e+00 1.20597351e+00 -3.78323048e-01 -2.94345826e-01 3.31795931e-01 -5.18098712e-01 -7.67596588e-02 4.55707490e-01 1.28052328e-02 1.51751590e+00 8.66625488e-01 -1.50245321e+00 -5.80194712e-01 -4.17119265e-01 3.60630900e-01 6.58157408e-01 1.89425245e-01 3.01374882e-01 -7.77914584e-01 -6.88081980e-01 -1.06013417e-01 -5.48294067e-01 -3.63017738e-01 3.21243852e-01 -7.00731874e-01 -3.98124725e-01 1.00780737e+00 -8.23402822e-01 1.16580081e+00 -2.17474794e+00 5.09912014e-01 -2.51610149e-02 3.44893247e-01 1.30045310e-01 -2.74312705e-01 5.02992213e-01 9.16922539e-02 6.61325231e-02 -1.36453599e-01 -5.18067658e-01 2.41990685e-01 3.23978782e-01 -5.19888341e-01 -1.96275100e-01 2.60216773e-01 1.55687952e+00 -9.18231726e-01 -7.18015432e-01 7.66958296e-01 3.11873704e-01 -4.72317547e-01 5.66851020e-01 -1.09864569e+00 6.41550362e-01 -3.08453023e-01 4.34133530e-01 7.84535185e-02 -4.68825221e-01 -1.23607501e-01 -1.38828859e-01 -2.21120924e-01 1.29722640e-01 -9.03999150e-01 2.05770946e+00 -2.03815803e-01 9.09832180e-01 3.73341203e-01 -5.55702984e-01 4.97246712e-01 3.74853373e-01 8.31132680e-02 -9.63160932e-01 1.15963720e-01 -3.39907885e-01 -5.45328736e-01 -7.85088062e-01 7.24328697e-01 2.28514075e-01 -2.43376285e-01 4.99985367e-01 1.39448956e-01 -4.52528447e-01 1.69283092e-01 6.19223416e-01 5.79949260e-01 4.13135976e-01 3.64135988e-02 -1.91631958e-01 2.18470499e-01 1.67281672e-01 -2.21863896e-01 8.92187774e-01 1.62755698e-02 5.76278627e-01 4.43413466e-01 -5.57301879e-01 -8.59508097e-01 -1.13983035e+00 2.37772644e-01 1.81308103e+00 4.87741917e-01 -2.94553429e-01 -9.59226608e-01 -4.06986147e-01 -1.16959237e-01 1.00539792e+00 -6.07755303e-01 3.15093160e-01 -4.31829154e-01 2.77783900e-01 1.33473083e-01 7.04484940e-01 2.95239538e-01 -1.68180096e+00 -1.29983354e+00 -1.30126700e-01 -1.80781603e-01 -1.06785643e+00 -8.09086084e-01 3.08647513e-01 -6.71266556e-01 -8.92676175e-01 -6.93458080e-01 -1.06406307e+00 7.83757150e-01 5.58104254e-02 1.42148399e+00 8.54830593e-02 -4.59768921e-01 9.66380775e-01 -3.07260275e-01 -3.08091521e-01 -3.53956431e-01 -1.43257022e-01 -8.44005346e-01 -6.90356344e-02 5.20500839e-02 -1.52596578e-01 -6.79104745e-01 2.21284106e-01 -9.96782660e-01 7.88350582e-01 3.25450838e-01 4.44624335e-01 5.30309677e-01 -8.11764300e-01 1.60575002e-01 -1.19407129e+00 6.56768024e-01 -1.17411815e-01 -5.06917596e-01 4.43870813e-01 -6.76615462e-02 4.64498252e-02 2.61945963e-01 -4.61561859e-01 -1.24064755e+00 2.16057092e-01 -7.52572492e-02 -2.77453095e-01 -6.74613655e-01 6.67956173e-02 -9.69986320e-02 4.00463343e-01 5.96937180e-01 1.34374648e-01 -1.00289867e-03 -3.07492226e-01 1.48104751e+00 5.55896819e-01 9.61439431e-01 -5.74188888e-01 2.87947297e-01 4.19744670e-01 -5.75075924e-01 -1.01713312e+00 -6.95475876e-01 -5.72862566e-01 -8.16796958e-01 -3.95167768e-01 1.41762578e+00 -6.75444305e-01 -1.03223193e+00 2.08236560e-01 -1.35411513e+00 -1.00622153e+00 -7.28688061e-01 -2.73059130e-01 -8.17426324e-01 6.42822012e-02 -7.88846254e-01 -7.22412348e-01 -2.44609267e-01 -1.26320469e+00 1.34264982e+00 4.37255502e-01 -8.34357142e-01 -1.03760540e+00 -4.88809913e-01 2.78960317e-01 2.67948061e-01 1.27710283e-01 1.02429044e+00 -7.49104142e-01 -9.46856439e-01 2.57310212e-01 -5.68048775e-01 -1.06450118e-01 -7.43861720e-02 -1.32382467e-01 -9.09526229e-01 1.86361909e-01 -3.75812292e-01 -4.68362987e-01 5.47103822e-01 3.12679052e-01 1.25145853e+00 -6.76534057e-01 -6.14735067e-01 5.37651241e-01 1.02773416e+00 6.02490842e-01 4.78210270e-01 -4.86468896e-02 8.52689147e-01 7.33261466e-01 2.81178266e-01 3.27924132e-01 6.44492745e-01 6.18090510e-01 3.81876200e-01 -5.55782259e-01 -3.97154242e-01 -4.39869612e-01 -1.54556558e-01 1.39105991e-01 3.75909299e-01 -4.88476813e-01 -8.42839718e-01 6.80166662e-01 -1.87157333e+00 -8.47357571e-01 7.13476166e-02 1.79242253e+00 8.36705625e-01 -1.46130130e-01 1.45938843e-01 -4.52631950e-01 3.79184783e-01 4.40436661e-01 -7.18103111e-01 -5.72751582e-01 -1.00634210e-01 1.51777714e-01 1.30846545e-01 8.06658268e-01 -1.06958020e+00 1.47551250e+00 6.94975328e+00 4.67045844e-01 -1.07562137e+00 9.46108624e-02 7.38936007e-01 4.37943377e-02 -6.39383435e-01 1.50232345e-01 -4.31157380e-01 1.17124453e-01 3.78404260e-01 1.69918910e-01 7.04804242e-01 4.91424978e-01 -5.09814546e-02 -3.94254506e-01 -1.41814053e+00 8.98331046e-01 2.77668595e-01 -1.50503469e+00 2.91573822e-01 -5.37536561e-01 4.69700992e-01 -1.89538285e-01 3.89378071e-02 1.17255315e-01 6.07066572e-01 -1.06478274e+00 1.14919770e+00 6.06312931e-01 1.00782645e+00 -2.87706703e-01 -9.66946930e-02 2.05673531e-01 -9.04576004e-01 -1.65916651e-01 2.20709160e-01 -2.50234455e-02 3.75076920e-01 -2.23386347e-01 -9.11807001e-01 1.48917452e-01 4.89446491e-01 4.44271028e-01 -6.10061467e-01 6.52771592e-01 -4.18296576e-01 1.75821513e-01 -1.05617858e-01 -1.43494278e-01 3.46750975e-01 -5.84486164e-02 4.00380880e-01 1.36936772e+00 -4.09237325e-01 1.80160210e-01 4.23042208e-01 1.13943958e+00 1.71367005e-01 3.27462144e-02 -4.54784185e-01 -2.40134686e-01 4.49627221e-01 1.00655079e+00 -1.01776040e+00 -5.38643479e-01 -4.42113101e-01 1.56379008e+00 6.21541440e-02 7.94474483e-01 -5.06713629e-01 -3.52481604e-01 2.86957800e-01 3.19142193e-01 2.76346862e-01 -2.45894343e-01 -6.35619402e-01 -6.70957208e-01 -4.41619635e-01 -8.89794290e-01 5.07201076e-01 -1.34900248e+00 -7.97431767e-01 6.78525567e-01 3.15200984e-01 -3.25987816e-01 -2.77597874e-01 -5.82241476e-01 -4.93246138e-01 8.66462827e-01 -7.44830608e-01 -1.37107980e+00 -3.45993340e-01 6.87472403e-01 1.13403201e+00 2.64414430e-01 7.80547798e-01 -1.08652890e-01 -9.02276337e-02 9.29199383e-02 -5.06346405e-01 1.14366598e-01 5.19349754e-01 -1.51493132e+00 8.13837945e-01 5.46343327e-01 5.21415353e-01 5.02864182e-01 7.87543416e-01 -6.86411142e-01 -1.21107805e+00 -5.95510364e-01 7.43576884e-01 -9.43522871e-01 4.02752012e-01 -7.67291546e-01 -8.30540538e-01 1.19086099e+00 8.98152947e-01 -5.43401420e-01 3.78058970e-01 3.54274362e-02 -4.49835598e-01 2.47734457e-01 -7.78691947e-01 1.06418228e+00 1.09485090e+00 -8.55361879e-01 -7.38100827e-01 5.17063916e-01 1.22005773e+00 -8.26411843e-01 -2.22150698e-01 3.46407034e-02 4.54430968e-01 -8.84851515e-01 1.01490235e+00 -5.80311418e-01 2.78427720e-01 -1.62379906e-01 1.02818213e-01 -9.46497083e-01 -2.68004507e-01 -9.22553062e-01 1.16993682e-02 1.10290861e+00 3.93826514e-01 -1.57077476e-01 6.55397415e-01 9.13498938e-01 -3.14583302e-01 -5.52976727e-01 -6.06221676e-01 -7.37799853e-02 -3.70585680e-01 -4.12608504e-01 5.12756526e-01 5.66603005e-01 2.93196052e-01 7.17736900e-01 -2.41090849e-01 -1.05636925e-01 7.77111501e-02 1.75707906e-01 8.20148885e-01 -1.04797018e+00 -2.58568048e-01 -7.80841470e-01 1.18515849e-01 -1.82425928e+00 2.31537595e-03 -8.51522982e-01 2.59250700e-01 -1.95692432e+00 1.85153872e-01 -1.44764736e-01 3.25033695e-01 7.03872740e-01 -2.44415015e-01 -3.19584981e-02 5.56498706e-01 1.20000571e-01 -1.04244733e+00 2.18164429e-01 1.57657647e+00 -1.60220772e-01 -5.14455974e-01 -4.04401898e-01 -7.26712286e-01 6.35006666e-01 2.38268957e-01 1.25772431e-01 -8.20272326e-01 -7.67764628e-01 3.49771641e-02 4.65273082e-01 6.42141342e-01 -6.97237432e-01 4.24740016e-01 -3.89225036e-01 3.79997611e-01 -7.33045876e-01 5.28844893e-01 -7.48700917e-01 8.78926665e-02 -1.20133918e-04 -9.23821211e-01 6.91839159e-02 4.45963979e-01 5.45551300e-01 2.03002524e-02 -1.42403552e-02 4.08044815e-01 -5.10432422e-01 -1.20769286e+00 5.44608049e-02 -6.73683286e-01 1.90226018e-01 8.46581578e-01 -4.49464351e-01 -3.30071628e-01 -5.66318154e-01 -1.08981776e+00 5.48448265e-01 5.12331903e-01 6.66331947e-01 5.64819694e-01 -8.03879797e-01 -1.54397085e-01 3.26833725e-01 1.96393341e-01 2.74722606e-01 3.52475852e-01 2.70737976e-01 -3.86018544e-01 4.82382208e-01 -9.97058526e-02 -7.73909807e-01 -1.31107843e+00 8.12008798e-01 5.61964996e-02 1.11292124e-01 -8.02866042e-01 1.26127136e+00 7.47913957e-01 -1.46955445e-01 6.91825271e-01 -4.97071713e-01 -8.98700301e-03 -5.30161289e-03 5.66342533e-01 -6.79971129e-02 -5.02898455e-01 -5.13866186e-01 -6.92040920e-02 3.48053277e-01 7.45153278e-02 -6.25971735e-01 7.59658873e-01 -5.01141727e-01 -6.24349080e-02 9.25106823e-01 6.22305334e-01 -3.28927994e-01 -1.62824059e+00 -3.33206713e-01 2.31796086e-01 -1.63681373e-01 -4.20586675e-01 -1.34352660e+00 -5.13384879e-01 9.85399425e-01 2.57600069e-01 4.05759096e-01 1.05448782e+00 6.13259017e-01 5.56127548e-01 1.95423409e-01 -3.11871711e-03 -1.05275989e+00 5.33692181e-01 5.67456484e-01 1.31206441e+00 -8.64414215e-01 -4.12786484e-01 -4.71683353e-01 -1.20838714e+00 9.69596505e-01 7.68338740e-01 3.71468544e-01 2.38513812e-01 2.06807137e-01 4.60634559e-01 -5.45839310e-01 -8.55876923e-01 -4.29311872e-01 4.98865306e-01 7.53474057e-01 4.41580147e-01 9.06300098e-02 1.81584463e-01 4.93936837e-01 -3.26990560e-02 -2.82952487e-01 -2.57547982e-02 6.82969928e-01 -6.46788538e-01 -8.54159832e-01 -1.49957612e-01 2.95608014e-01 -2.67770197e-02 -1.81901529e-01 -8.49110544e-01 6.48282290e-01 6.47593960e-02 9.70369577e-01 5.24140358e-01 -8.27473104e-02 1.15015127e-01 4.94603842e-01 5.14323473e-01 -9.50307906e-01 -9.08205926e-01 1.91841405e-02 1.91056300e-02 -7.89885879e-01 -2.54930437e-01 -4.92439836e-01 -1.45072949e+00 3.85794342e-01 6.45804256e-02 4.17553745e-02 5.58374107e-01 9.83660102e-01 5.10650814e-01 5.77864885e-01 -2.17803530e-02 -8.66967857e-01 -9.59616341e-03 -8.71089935e-01 -1.61144540e-01 6.75159574e-01 3.85265529e-01 -2.92970717e-01 4.18260805e-02 5.73790133e-01]
[10.915609359741211, 1.6670310497283936]
b774c4c0-56bd-49bf-880f-9ef7489dbd9e
deep-vfx-deep-action-recognition-driven-vfx
2007.11257
null
https://arxiv.org/abs/2007.11257v1
https://arxiv.org/pdf/2007.11257v1.pdf
Deep-VFX: Deep Action Recognition Driven VFX for Short Video
Human motion is a key function to communicate information. In the application, short-form mobile video is so popular all over the world such as Tik Tok. The users would like to add more VFX so as to pursue creativity and personlity. Many special effects are added on the short video platform. These gives the users more possibility to show off these personality. The common and traditional way is to create the template of VFX. However, in order to synthesis the perfect, the users have to tedious attempt to grasp the timing and rhythm of new templates. It is not easy-to-use especially for the mobile app. This paper aims to change the VFX synthesis by motion driven instead of the traditional template matching. We propose the AI method to improve this VFX synthesis. In detail, in order to add the special effect on the human body. The skeleton extraction is essential in this system. We also propose a novel form of LSTM to find out the user's intention by action recognition. The experiment shows that our system enables to generate VFX for short video more easier and efficient.
['Feng Jiang', 'Ning Xie', 'Ao Luo', 'Zhijia Tao']
2020-07-22
null
null
null
null
['template-matching']
['computer-vision']
[ 1.81950003e-01 -1.01176724e-01 -7.58600011e-02 -1.21772595e-01 1.81691200e-02 -1.60629645e-01 3.45217168e-01 -6.87623024e-01 -3.08422834e-01 4.38848913e-01 1.36996880e-01 -9.42475814e-03 5.57581000e-02 -7.90809333e-01 -4.75633532e-01 -4.48084503e-01 2.71213055e-01 -1.44808784e-01 3.14091146e-01 -4.25471038e-01 4.14459020e-01 2.03054160e-01 -1.53763545e+00 4.61345464e-01 6.36976242e-01 7.63009727e-01 8.85381699e-01 3.83108139e-01 -3.81393880e-01 5.73594391e-01 -5.07249594e-01 -2.61981666e-01 2.55457371e-01 -6.46671295e-01 -7.29759395e-01 1.42514333e-01 -6.32708147e-03 -5.32958567e-01 -3.86566848e-01 1.15083826e+00 6.88601077e-01 7.30643123e-02 3.62724781e-01 -1.21930885e+00 -2.33785793e-01 7.80060768e-01 -6.20172918e-01 1.05380919e-02 6.54062390e-01 2.52107203e-01 1.42896786e-01 -3.31384569e-01 6.85156703e-01 1.23765481e+00 7.17164814e-01 7.92433441e-01 -3.22375238e-01 -7.08632052e-01 -8.04062113e-02 5.79633832e-01 -1.42496943e+00 -6.15090907e-01 9.85028684e-01 -1.84070274e-01 6.32710636e-01 3.54870170e-01 1.10093284e+00 1.33350313e+00 4.97902185e-01 9.11131740e-01 8.18597317e-01 -5.46277702e-01 -2.62998521e-01 4.45626117e-02 -8.67539719e-02 7.43027031e-01 -1.83675259e-01 -2.41278529e-01 -3.40738595e-01 4.33050841e-01 1.17169631e+00 3.47835034e-01 -4.48722363e-01 6.22684285e-02 -1.44105184e+00 3.02557707e-01 1.30814746e-01 8.19831729e-01 -3.31620842e-01 2.53062159e-01 4.29787248e-01 2.11460665e-01 -2.71787077e-01 2.74261445e-01 -3.38897407e-01 -8.75589490e-01 -9.29878116e-01 1.21724829e-01 4.63378996e-01 8.94402802e-01 3.55328351e-01 1.91062942e-01 -7.89271593e-02 7.95127451e-01 4.88665074e-01 4.85578239e-01 1.15956604e+00 -1.21572459e+00 3.09567600e-01 6.72325790e-01 -5.71764037e-02 -1.32172906e+00 -2.34514117e-01 -2.47160032e-01 -8.88924062e-01 2.29492977e-01 2.99107641e-01 -1.62106425e-01 -8.39877784e-01 1.42401421e+00 7.53748268e-02 2.12292194e-01 -3.51485044e-01 1.02037859e+00 1.09828627e+00 8.96291852e-01 -2.41990939e-01 -4.18385714e-01 1.54573739e+00 -8.18515241e-01 -1.26749575e+00 -6.55153394e-02 6.48969948e-01 -9.92413163e-01 1.43612480e+00 6.08767807e-01 -1.06021380e+00 -9.66506898e-01 -1.20900595e+00 2.04852179e-01 -1.50696963e-01 3.54826957e-01 5.34030616e-01 7.04355299e-01 -5.74879646e-01 9.64036107e-01 -6.65908515e-01 -5.94924927e-01 6.29496351e-02 5.57602406e-01 -3.57863098e-01 4.38623011e-01 -1.50665843e+00 8.61310303e-01 4.60767120e-01 3.82178754e-01 -1.66943282e-01 -1.06996283e-01 -7.20401764e-01 -1.19777158e-01 3.84927064e-01 -8.55023801e-01 1.43811631e+00 -1.33797181e+00 -1.96969688e+00 6.63893402e-01 -1.35242313e-01 -8.60287473e-02 6.96199954e-01 -1.63649827e-01 -4.70302552e-01 4.99469303e-02 1.34611884e-02 6.55259311e-01 9.67688918e-01 -6.59336507e-01 -6.56057358e-01 -2.31258824e-01 9.09009799e-02 4.15403754e-01 -3.75496864e-01 -8.97450969e-02 -7.27711260e-01 -7.94961870e-01 6.84470385e-02 -9.43057179e-01 7.40053803e-02 -1.42351598e-01 -1.75228491e-01 -1.01810150e-01 1.15726662e+00 -9.57463205e-01 1.64496589e+00 -2.09900045e+00 1.58442855e-01 1.00315094e-01 1.08344689e-01 4.11381334e-01 2.83368081e-01 1.70334101e-01 1.61697179e-01 3.28322053e-02 1.63761124e-01 1.23384118e-01 -1.45728067e-01 1.32874891e-01 2.76316434e-01 6.31548986e-02 -3.82585913e-01 7.51756549e-01 -5.31093299e-01 -7.65899122e-01 1.19472109e-01 3.07311088e-01 -2.85402358e-01 -9.58946720e-02 8.66235346e-02 4.74767983e-01 -4.92588729e-01 4.49234426e-01 5.55135608e-01 -2.97053196e-02 -7.54990429e-02 -4.12987173e-01 -2.13441402e-01 -1.40883416e-01 -1.42435014e+00 2.03611636e+00 -4.69955146e-01 4.36571330e-01 -8.04471895e-02 -6.39560401e-01 9.46818709e-01 3.69236141e-01 4.23897117e-01 -7.44546473e-01 5.56843758e-01 3.10357034e-01 1.18187502e-01 -1.17841530e+00 4.55012262e-01 -4.83686961e-02 -2.87671406e-02 2.50412852e-01 -3.05302560e-01 5.24808057e-02 4.36603166e-02 -4.38098796e-02 6.35377765e-01 7.51095951e-01 6.11084104e-01 8.69906321e-02 7.28825092e-01 -2.71510273e-01 6.20329082e-01 1.85533524e-01 3.66867706e-02 4.14467961e-01 4.71572205e-02 -3.47220600e-01 -8.17700267e-01 -4.43092406e-01 3.53805751e-01 4.41884309e-01 2.80837029e-01 -4.11722571e-01 -9.65076566e-01 -4.94012982e-01 -4.89367634e-01 3.09868783e-01 -1.45717070e-01 -2.72955507e-01 -8.51545334e-01 -1.90106392e-01 4.34522390e-01 3.81441325e-01 1.28177536e+00 -1.37460458e+00 -8.40533853e-01 3.98228675e-01 -5.54029047e-01 -8.53929877e-01 -8.81626666e-01 -5.13039172e-01 -8.82418156e-01 -4.61322993e-01 -1.12900198e+00 -9.88120556e-01 1.94741011e-01 3.66143733e-01 3.48987848e-01 2.60193467e-01 -8.24195966e-02 1.67001382e-01 -5.71889997e-01 -2.95797825e-01 -3.01380873e-01 2.44300872e-01 1.41643316e-01 1.41343161e-01 3.79979074e-01 -6.40552819e-01 -5.29171288e-01 3.89980644e-01 -6.67680383e-01 4.15564746e-01 6.58965409e-01 3.31268996e-01 1.39631659e-01 4.37282622e-02 3.50374162e-01 -4.17272508e-01 7.12681353e-01 -3.20668854e-02 -3.72582674e-02 8.93719047e-02 -2.61258453e-01 -1.32105770e-02 5.91668010e-01 -7.35246480e-01 -1.09734833e+00 9.05379280e-02 -3.84279191e-01 -3.41201246e-01 -1.24811344e-01 2.33693019e-01 -5.19782364e-01 -1.06077887e-01 2.99918413e-01 2.03602865e-01 1.44018307e-01 -4.54373151e-01 7.27887675e-02 1.21379960e+00 4.13019121e-01 -1.04962282e-01 5.79943001e-01 1.36342928e-01 -8.17568675e-02 -1.16926253e+00 -2.62775775e-02 -2.21143275e-01 -6.34235978e-01 -8.01775813e-01 1.06132686e+00 -4.37130392e-01 -1.25259590e+00 6.67053163e-01 -1.49503219e+00 -1.04013957e-01 1.73121110e-01 6.73182189e-01 -6.10666871e-01 8.46118808e-01 -5.68065226e-01 -6.75461471e-01 -3.53586823e-01 -1.18663347e+00 8.20078015e-01 5.46252906e-01 -4.78113592e-01 -5.73889196e-01 -2.09479615e-01 3.19994599e-01 1.68969154e-01 4.95259427e-02 4.78566438e-01 6.22422397e-02 -5.83876312e-01 1.21037580e-01 2.58880970e-03 8.52442458e-02 4.20830250e-01 2.16410607e-01 -5.39149463e-01 1.99704617e-01 2.77058423e-01 2.54485816e-01 6.14623725e-01 3.60674143e-01 1.03492033e+00 -5.15628755e-01 -5.03617883e-01 6.87971592e-01 1.05678332e+00 9.95108068e-01 1.23162758e+00 5.89723229e-01 7.97475278e-01 6.61230385e-01 9.48378026e-01 3.11131686e-01 5.45315854e-02 1.05542374e+00 -3.18206325e-02 3.41571793e-02 -1.24976255e-01 -3.25677961e-01 6.14246786e-01 1.24574983e+00 -5.90937138e-01 4.01311442e-02 -7.07046330e-01 8.00178200e-02 -1.84177804e+00 -1.41129982e+00 -4.14697349e-01 2.09018278e+00 7.22172081e-01 2.22974509e-01 5.73365912e-02 5.31467021e-01 7.87190735e-01 -2.75520179e-02 4.49004769e-02 -5.24795175e-01 8.41925889e-02 -3.00685642e-03 2.17801094e-01 4.81185019e-01 -9.15501058e-01 8.56337070e-01 5.02719212e+00 1.14757669e+00 -1.56016552e+00 3.21655869e-02 2.66482413e-01 -1.09834950e-02 -1.25118524e-01 -1.51232377e-01 -8.35253060e-01 8.17182064e-01 4.17646110e-01 2.66561974e-02 4.11619872e-01 4.68007296e-01 7.19576299e-01 -9.88229290e-02 -5.47606051e-01 1.59644127e+00 1.25565842e-01 -1.17104614e+00 -7.12166028e-03 -5.84260821e-02 2.64402419e-01 -8.18295479e-01 -1.73595086e-01 2.63931602e-01 -8.13856661e-01 -7.62268364e-01 7.76363254e-01 8.99688184e-01 9.23795044e-01 -4.89510566e-01 6.98042989e-01 5.10468602e-01 -1.29441774e+00 -4.43970673e-02 -2.80884236e-01 -3.11518848e-01 4.11049068e-01 6.28071651e-02 -7.91238904e-01 4.23639506e-01 7.07256734e-01 5.84978282e-01 -3.74165028e-01 1.03891480e+00 6.50320500e-02 7.03694578e-03 -2.54169703e-01 -4.39307451e-01 1.25124007e-01 -4.05629694e-01 5.75317740e-01 1.00714219e+00 8.51228297e-01 1.35462210e-01 -8.93318281e-02 3.85652155e-01 1.50158271e-01 4.13363725e-01 -8.43043387e-01 -1.27296239e-01 6.10094927e-02 1.10130489e+00 -7.03848004e-01 -3.30380768e-01 -2.85485327e-01 1.50342977e+00 -3.91108513e-01 -8.61663371e-03 -1.09587491e+00 -7.88508475e-01 7.34240636e-02 5.73567927e-01 -8.83866660e-03 -3.52864832e-01 7.33961258e-03 -1.07127440e+00 1.00781672e-01 -1.22018278e+00 -1.23731025e-01 -9.42619503e-01 -7.13718116e-01 5.17876089e-01 -6.75776824e-02 -1.60086334e+00 -4.01306361e-01 -4.53843892e-01 -6.60864413e-01 6.39866948e-01 -6.37069583e-01 -1.25309861e+00 -5.92030585e-01 5.38367450e-01 1.02731264e+00 -2.22615495e-01 5.10056198e-01 6.19126499e-01 -4.35492337e-01 3.84544879e-01 -2.98945218e-01 -6.88552335e-02 8.25816572e-01 -6.06595993e-01 1.94046095e-01 6.92872226e-01 3.10362428e-02 7.97426224e-01 8.15847754e-01 -9.76089835e-01 -1.07597816e+00 -3.74629080e-01 9.00379241e-01 -1.70487851e-01 1.43025760e-02 -1.22391470e-01 -5.86682618e-01 5.80160558e-01 3.54051739e-01 -8.35405231e-01 2.50503361e-01 -4.39104617e-01 5.25323689e-01 -4.88603055e-01 -1.08292842e+00 1.08418941e+00 1.29710865e+00 -1.08503341e-03 -7.62635231e-01 -1.46448508e-01 6.43136322e-01 -2.21358985e-01 -4.97719526e-01 4.99049872e-01 1.17766631e+00 -1.06846642e+00 7.19839215e-01 -1.47485927e-01 2.61612982e-01 -5.57367623e-01 1.72724113e-01 -8.95424306e-01 -4.03295666e-01 -1.11016381e+00 1.92320690e-01 1.30033123e+00 1.54798165e-01 -4.08406049e-01 9.40376699e-01 3.26770574e-01 -2.47408636e-02 -6.22599185e-01 -5.88864446e-01 -6.64871871e-01 -8.32205653e-01 -3.12858909e-01 6.76713943e-01 8.94174278e-01 2.74302512e-01 5.59248805e-01 -7.40513682e-01 -2.83065408e-01 1.22548662e-01 -1.37746394e-01 9.73861873e-01 -1.13250005e+00 -4.28188652e-01 -3.73074621e-01 -5.09379327e-01 -1.30257714e+00 -2.75087714e-01 -4.54285771e-01 -3.21527481e-01 -1.63755691e+00 -3.72592025e-02 -5.81251793e-02 2.39965886e-01 2.81214565e-01 2.22279578e-01 1.96231812e-01 5.00163972e-01 2.39077538e-01 -2.60192901e-01 4.22812998e-01 1.71889472e+00 -1.32710218e-01 -6.09447777e-01 2.93002069e-01 -3.42686146e-01 8.81465077e-01 9.72935081e-01 -1.41941264e-01 -6.12642407e-01 -2.72159070e-01 2.33661622e-01 3.76711607e-01 1.19902715e-01 -1.33459949e+00 1.75713316e-01 -1.55069426e-01 5.84385574e-01 -6.11059189e-01 5.13008773e-01 -8.95459831e-01 5.79094470e-01 8.29624534e-01 2.41349012e-01 3.44811976e-01 -6.82330057e-02 -1.61044896e-02 -1.17575593e-01 -6.51498318e-01 4.82647628e-01 -7.04922795e-01 -9.59301531e-01 5.20263202e-02 -5.74093461e-01 -4.91932094e-01 1.11794484e+00 -8.49772453e-01 1.80271305e-02 -8.72230828e-01 -6.70107484e-01 -2.02968158e-02 3.47483963e-01 5.50703824e-01 7.90185928e-01 -1.45441604e+00 -7.62085468e-02 1.91106930e-01 -2.77678192e-01 -6.19186997e-01 5.69835782e-01 7.95823276e-01 -9.85549271e-01 3.91844064e-01 -8.97757530e-01 -2.08163872e-01 -1.64302230e+00 5.87629974e-01 2.70811528e-01 3.91155705e-02 -5.14318347e-01 3.77027661e-01 -9.99229327e-02 1.89190567e-03 1.38614193e-01 -4.28208321e-01 -7.83829272e-01 1.38862804e-01 4.68415767e-01 6.22938991e-01 -4.08346683e-01 -5.31433761e-01 -1.65413693e-01 9.25180733e-01 2.92939126e-01 -3.70653927e-01 8.56500506e-01 -3.68896037e-01 -8.30898359e-02 5.38927019e-01 1.05639040e+00 3.03224355e-01 -7.67083645e-01 3.86998922e-01 -2.82117397e-01 -5.84393620e-01 -3.71524096e-01 -5.34336388e-01 -8.57782900e-01 1.08992720e+00 7.25695193e-01 3.72307077e-02 1.14261949e+00 -5.99589646e-01 1.39307761e+00 2.63909310e-01 7.57340968e-01 -1.24457300e+00 2.64664348e-02 2.26761818e-01 8.90522599e-01 -7.52318799e-01 -1.14930145e-01 -4.24056679e-01 -7.38568008e-01 1.39827263e+00 7.44145751e-01 2.68529683e-01 3.42544824e-01 1.18108608e-01 1.23635426e-01 5.51686212e-02 -1.72441244e-01 -1.19097039e-01 1.83036536e-01 5.91010690e-01 4.48529691e-01 -1.58260599e-01 -1.03042281e+00 8.12353790e-01 -3.86644036e-01 4.72333580e-01 7.36219943e-01 7.22804666e-01 -6.48547828e-01 -1.49451041e+00 -5.24730802e-01 3.14527243e-01 -6.51599884e-01 2.73360103e-01 -1.97984591e-01 6.78775787e-01 5.65298975e-01 7.09464192e-01 -3.00636083e-01 -6.61920905e-01 3.47735703e-01 1.97354868e-01 7.15434492e-01 -2.38997772e-01 -4.36772645e-01 2.51228631e-01 4.71712053e-02 -6.04616284e-01 -4.16400045e-01 -4.47531700e-01 -1.47589874e+00 -3.23285818e-01 -8.17171410e-02 -7.20680282e-02 6.38559222e-01 8.05310428e-01 2.77897082e-02 5.14580905e-01 3.26855659e-01 -8.70933115e-01 -1.64670706e-01 -1.12484741e+00 -3.44004631e-01 3.44107896e-01 -1.80207208e-01 -5.89323223e-01 5.87444641e-02 1.89468667e-01]
[10.783562660217285, -0.7933686971664429]
560515f5-f55a-4600-b5fc-892769722b28
generalizing-interactive-backpropagating
null
null
http://openaccess.thecvf.com//content/CVPR2022/html/Lin_Generalizing_Interactive_Backpropagating_Refinement_for_Dense_Prediction_Networks_CVPR_2022_paper.html
http://openaccess.thecvf.com//content/CVPR2022/papers/Lin_Generalizing_Interactive_Backpropagating_Refinement_for_Dense_Prediction_Networks_CVPR_2022_paper.pdf
Generalizing Interactive Backpropagating Refinement for Dense Prediction Networks
As deep neural networks become the state-of-the-art approach in the field of computer vision for dense prediction tasks, many methods have been developed for automatic estimation of the target outputs given the visual inputs. Although the estimation accuracy of the proposed automatic methods continues to improve, interactive refinement is oftentimes necessary for further correction. Recently, feature backpropagating refinement scheme (f-BRS) has been proposed for the task of interactive segmentation, which enables efficient optimization of a small set of auxiliary variables inserted into the pretrained network to produce object segmentation that better aligns with user inputs. However, the proposed auxiliary variables only contain channel-wise scale and bias, limiting the optimization to global refinement only. In this work, in order to generalize backpropagating refinement for a wide range of dense prediction tasks, we introduce a set of G-BRS (Generalized Backpropagating Refinement Scheme) layers that enable both global and localized refinement for the following tasks: interactive segmentation, semantic segmentation, image matting and monocular depth estimation. Experiments on SBD, Cityscapes, Mapillary Vista, Composition-1k and NYU-Depth-V2 show that our method can successfully generalize and significantly improve performance of existing pretrained state-of-the-art models with only a few clicks.
['Tony Martinez', 'Brian Price', 'Fanqing Lin']
2022-01-01
null
null
null
cvpr-2022-1
['image-matting']
['computer-vision']
[ 3.44215184e-01 2.90944695e-01 -5.70323355e-02 -6.54229164e-01 -5.93463898e-01 -1.16388485e-01 4.86916929e-01 -9.26156119e-02 -6.07789457e-01 5.08563459e-01 -1.74513862e-01 -5.68428747e-02 3.44746441e-01 -8.07495713e-01 -8.74535620e-01 -5.44298291e-01 2.34870911e-01 6.25678420e-01 8.23676586e-01 5.30251339e-02 1.91551611e-01 4.97930497e-01 -1.47186911e+00 3.07679981e-01 9.99956906e-01 1.37802017e+00 5.72589338e-01 6.52419329e-01 -2.13138133e-01 7.28106678e-01 -3.70584637e-01 -3.32368821e-01 5.09332418e-01 -2.17838511e-01 -9.64493155e-01 1.04951277e-01 8.44891369e-01 -5.60672879e-01 -2.02598080e-01 1.08688521e+00 3.95685792e-01 1.32485330e-01 6.57515407e-01 -1.04049778e+00 -4.92908061e-01 4.63400334e-01 -8.79193127e-01 1.10460654e-01 -1.15051471e-01 2.09078893e-01 8.45191360e-01 -9.42177951e-01 7.11314440e-01 1.28537750e+00 6.44593954e-01 6.37807250e-01 -1.17329288e+00 -6.95682228e-01 5.84427238e-01 3.11864197e-01 -1.30799997e+00 -8.67852420e-02 6.75961614e-01 -4.42820668e-01 1.17395306e+00 4.28334773e-02 8.36040199e-01 7.48177588e-01 -5.78337768e-03 1.10977912e+00 9.96433616e-01 -2.60777920e-01 1.81934148e-01 2.47409314e-01 1.45216407e-02 9.07170951e-01 4.97762077e-02 5.88984303e-02 -4.78882402e-01 4.77525711e-01 1.08723330e+00 -2.13443547e-01 -1.68969274e-01 -5.50009072e-01 -9.24834549e-01 8.82213771e-01 9.44626451e-01 -7.10071716e-03 -3.52170020e-01 1.94107696e-01 1.21937141e-01 -4.90536690e-02 8.59203398e-01 4.42975730e-01 -7.20478773e-01 9.67422500e-02 -1.38026810e+00 3.45873833e-01 4.83781934e-01 9.46737111e-01 1.10825634e+00 6.56287149e-02 -3.36944789e-01 8.18669498e-01 3.29970926e-01 3.73496860e-01 2.78277814e-01 -1.03244328e+00 6.20430768e-01 8.50905597e-01 -6.62843091e-03 -8.02238464e-01 -5.93082726e-01 -5.27436435e-01 -9.06658471e-01 4.55463767e-01 4.25617754e-01 -7.57609382e-02 -1.64171004e+00 1.39508057e+00 5.76400995e-01 1.93383172e-01 -2.16735408e-01 1.07305157e+00 9.54770148e-01 5.64475656e-01 3.00915837e-02 1.24113522e-01 7.56531656e-01 -1.41425550e+00 -2.93002844e-01 -6.23034298e-01 5.30417144e-01 -5.28490722e-01 9.68532681e-01 3.87321442e-01 -1.13303638e+00 -7.57757425e-01 -8.99603486e-01 -4.33480710e-01 -2.71234363e-01 -3.89925030e-04 7.21461892e-01 4.35176283e-01 -1.17896867e+00 5.95858335e-01 -9.92624879e-01 -2.30898678e-01 8.50905359e-01 4.33679044e-01 -2.23365232e-01 -9.86046344e-02 -9.04289722e-01 7.70211458e-01 5.20119369e-01 3.37557346e-01 -8.86044741e-01 -8.18691730e-01 -9.26498652e-01 -9.35693309e-02 3.31092626e-01 -7.49183178e-01 1.17187345e+00 -1.04042578e+00 -1.45863080e+00 9.90368903e-01 -9.83050745e-03 -6.33141637e-01 7.46190131e-01 -4.23851341e-01 2.23521322e-01 4.41705063e-02 1.56421125e-01 1.49765038e+00 8.67906809e-01 -1.19820094e+00 -1.04661703e+00 -5.00598252e-01 6.72976971e-02 4.97796297e-01 -1.02131911e-01 -3.96134853e-01 -1.02214217e+00 -5.98230422e-01 4.26708400e-01 -7.87418604e-01 -5.97768188e-01 1.91025823e-01 -4.97235686e-01 -5.20701781e-02 7.74104953e-01 -6.77549779e-01 9.66626644e-01 -1.90735304e+00 6.35739565e-01 1.81279644e-01 3.09684277e-01 1.45049006e-01 -6.13332354e-02 -3.82642567e-01 1.83091223e-01 -1.17254995e-01 -5.53821862e-01 -8.46730530e-01 -2.93053389e-01 2.73690492e-01 4.25765552e-02 3.65879029e-01 8.26587453e-02 1.03441787e+00 -5.85460246e-01 -4.58904564e-01 5.80265045e-01 3.95805508e-01 -8.39806020e-01 3.57452214e-01 -5.79236209e-01 5.71018636e-01 -2.73235768e-01 7.21112072e-01 8.86973083e-01 -3.37979674e-01 -3.25438857e-01 -3.33000213e-01 -1.71142653e-01 -3.98027040e-02 -1.24581599e+00 1.91993415e+00 -3.46579820e-01 5.43727338e-01 1.37861550e-01 -8.92697453e-01 8.04110348e-01 -2.09484458e-01 3.27275693e-01 -7.18221903e-01 2.52357453e-01 8.14927444e-02 -7.53472596e-02 -2.91598439e-01 5.85902512e-01 1.93359330e-01 2.51775384e-01 8.00979324e-03 2.15421781e-01 -4.97380495e-01 7.03032017e-02 1.21296234e-01 6.53800309e-01 3.43426317e-01 9.45137590e-02 -4.02441099e-02 5.13142049e-01 4.98057529e-02 6.13215446e-01 7.24541724e-01 -1.42502040e-01 1.16844535e+00 1.23818353e-01 -4.82442558e-01 -9.85688150e-01 -6.32097900e-01 -1.00183561e-01 1.04469037e+00 4.85987186e-01 -2.08319724e-01 -1.01812541e+00 -7.87523925e-01 -4.48882915e-02 5.51843762e-01 -8.23302329e-01 1.36052445e-01 -5.81562340e-01 -7.92343557e-01 3.21553290e-01 9.52675998e-01 1.01150727e+00 -1.25164700e+00 -5.86018920e-01 2.37262860e-01 -6.72755092e-02 -1.29175723e+00 -4.09314930e-01 3.34855705e-01 -1.04797530e+00 -9.27443206e-01 -1.07439244e+00 -6.67444944e-01 7.00134873e-01 3.59651819e-03 1.04260945e+00 -2.68340409e-02 -2.86545038e-01 4.14700024e-02 -1.70126259e-01 -2.48434156e-01 -1.49891958e-01 4.75982606e-01 -4.74429607e-01 -1.99508332e-02 1.34451538e-01 -3.63847375e-01 -8.70630980e-01 1.67340010e-01 -7.46490121e-01 7.95227289e-01 6.22883260e-01 6.34784877e-01 9.73043859e-01 -3.41966897e-01 7.38419592e-02 -1.27365911e+00 6.36316789e-03 -1.42124206e-01 -7.25666344e-01 7.22665265e-02 -7.09146857e-01 1.40524253e-01 3.44178021e-01 -2.96429157e-01 -1.14162171e+00 3.67509723e-01 -5.16174316e-01 -6.80490494e-01 -3.72336149e-01 2.66883582e-01 -1.95099697e-01 -3.71553749e-01 5.86369693e-01 2.34953701e-01 -4.02823478e-01 -5.89125812e-01 5.61053693e-01 3.81690264e-01 6.04329586e-01 -1.68717027e-01 7.81006753e-01 4.30409074e-01 -5.93311936e-02 -5.65068066e-01 -1.05439925e+00 -5.14283597e-01 -9.11920726e-01 -1.60918728e-01 1.23757720e+00 -1.05933535e+00 -2.70686835e-01 1.00289285e+00 -1.06097078e+00 -8.32919478e-01 -2.04238400e-01 1.87877864e-01 -5.02608299e-01 1.78234667e-01 -6.07610345e-01 -5.04497588e-01 -5.63613117e-01 -1.41403544e+00 1.26988268e+00 3.79972965e-01 -6.65238947e-02 -9.12186503e-01 -1.63922951e-01 5.77868879e-01 3.81601423e-01 2.06713572e-01 8.06785941e-01 -1.95673525e-01 -9.41130161e-01 7.67144784e-02 -6.01147830e-01 5.11248767e-01 2.85262354e-02 -2.55737513e-01 -1.08471036e+00 -1.76907152e-01 -2.66104043e-01 -2.77809262e-01 1.14790869e+00 7.96042621e-01 1.43606353e+00 -2.37873830e-02 -3.52609664e-01 1.29917359e+00 1.30638516e+00 -6.09475281e-03 6.84323311e-01 5.78152239e-01 1.32076943e+00 2.75359690e-01 7.08176076e-01 2.49856487e-01 4.98319358e-01 6.19002879e-01 7.48320222e-01 -5.29555500e-01 -3.70310545e-01 -1.01242885e-01 -1.72444344e-01 3.64803433e-01 -2.05193833e-01 -5.68265617e-02 -8.04680645e-01 5.46192586e-01 -1.76107717e+00 -4.13842976e-01 -1.67315066e-01 1.90816545e+00 8.84919345e-01 5.11746585e-01 2.00724583e-02 -4.06020395e-02 4.78742063e-01 2.04378754e-01 -9.08315182e-01 -1.72831729e-01 -5.75311258e-02 3.94482344e-01 8.22309732e-01 7.00026631e-01 -1.21371627e+00 1.40681279e+00 5.47226572e+00 8.44286203e-01 -1.37921989e+00 9.13760364e-02 1.03127742e+00 -4.09673667e-03 -1.18161224e-01 -2.32045084e-01 -1.13450098e+00 1.32670194e-01 2.88245946e-01 3.99127424e-01 2.33465835e-01 1.08839917e+00 6.44859970e-02 -4.09060508e-01 -1.17990279e+00 1.09773338e+00 -4.63355146e-03 -1.46244109e+00 1.75269201e-01 -2.02255160e-01 1.22491610e+00 2.75557518e-01 1.01448566e-01 3.50326419e-01 -6.46024477e-03 -1.04331541e+00 8.78727973e-01 3.20780635e-01 7.75442660e-01 -6.88851416e-01 7.85772264e-01 3.40798706e-01 -1.10571814e+00 4.44980264e-02 -2.80916214e-01 2.91413553e-02 1.45617306e-01 4.38493371e-01 -8.37287605e-01 2.05135509e-01 9.86557543e-01 7.85080791e-01 -8.58348429e-01 1.17072463e+00 -3.19864988e-01 3.61894399e-01 -4.00554329e-01 1.99217886e-01 5.52918196e-01 2.90552787e-02 2.49792561e-01 1.07693911e+00 9.06556249e-02 6.91440254e-02 1.53976873e-01 9.04222190e-01 -1.71691209e-01 7.84367397e-02 2.42194580e-03 3.60862613e-01 2.05673762e-02 1.20742857e+00 -1.06744432e+00 -3.43335390e-01 -2.83514410e-01 1.20484686e+00 5.71059465e-01 3.95647854e-01 -8.26614022e-01 -7.18116015e-02 5.74238241e-01 4.58442777e-01 6.32635057e-01 -1.86311081e-01 -7.75367796e-01 -1.01029444e+00 -2.42324397e-01 -6.70665026e-01 1.44436881e-01 -6.64318621e-01 -8.59466910e-01 7.81883359e-01 -5.10469750e-02 -7.58383870e-01 -2.08001271e-01 -4.87973303e-01 -3.90207827e-01 9.55922842e-01 -1.63219023e+00 -1.24077797e+00 -7.20793068e-01 6.22065604e-01 1.11048055e+00 -9.56328865e-03 4.56196666e-01 2.43963420e-01 -5.02963662e-01 5.71922421e-01 -2.67596751e-01 -1.18544539e-02 6.25887632e-01 -1.39654362e+00 7.36224592e-01 8.94641995e-01 5.64428382e-02 5.37598915e-02 7.04871655e-01 -7.34140158e-01 -7.57198095e-01 -1.47464633e+00 3.54955733e-01 -6.32310659e-02 2.65585452e-01 -4.54541326e-01 -9.64585006e-01 5.72009563e-01 6.45679189e-03 1.39069721e-01 -3.47260125e-02 -1.08544983e-01 -1.01067889e-02 -4.48375307e-02 -1.07642591e+00 5.98821580e-01 1.07227373e+00 -1.71832159e-01 -1.94944799e-01 2.89090335e-01 7.79850781e-01 -9.87782717e-01 -4.97624576e-01 5.76116920e-01 3.05238783e-01 -1.12710786e+00 9.48160052e-01 -4.14883085e-02 5.12409687e-01 -3.36466044e-01 -6.26593456e-02 -1.07935083e+00 -2.70225346e-01 -2.25893676e-01 -2.57202297e-01 8.97128165e-01 5.87503314e-01 -1.64736077e-01 1.34061944e+00 6.98520184e-01 -3.30445409e-01 -1.09627497e+00 -7.44084179e-01 -2.02186301e-01 -9.70352292e-02 -6.40516281e-01 2.75952160e-01 5.79092026e-01 -8.19720149e-01 3.03648740e-01 -3.39423686e-01 2.07966089e-01 6.58071160e-01 -5.76987155e-02 8.96469355e-01 -1.16992295e+00 -4.93767172e-01 -4.35224354e-01 -4.50119406e-01 -1.67913413e+00 6.45858468e-03 -6.86246216e-01 2.14392483e-01 -1.83266258e+00 9.89200845e-02 -5.55105209e-01 -4.18065675e-02 5.65420985e-01 -3.25874358e-01 6.38144493e-01 1.65242106e-01 7.73354480e-03 -5.78271389e-01 5.89935422e-01 1.50286949e+00 -1.97600633e-01 -5.14727890e-01 3.03852350e-01 -4.51666951e-01 8.65085840e-01 5.36188662e-01 -3.16497684e-01 -5.32542527e-01 -5.69185376e-01 9.66428816e-02 -1.34348720e-01 3.75061363e-01 -1.04521096e+00 3.29281390e-01 -9.73730236e-02 5.58328450e-01 -9.59716558e-01 4.89312798e-01 -6.85572684e-01 -4.05311622e-02 2.54869968e-01 -2.94263154e-01 -2.34126732e-01 3.58605564e-01 4.58848000e-01 -2.16828167e-01 -1.02656312e-01 1.00457764e+00 -2.53076583e-01 -1.22111499e+00 7.23649800e-01 -1.29143931e-02 1.61629096e-01 9.15957451e-01 -5.64316988e-01 3.99007015e-02 -1.71477616e-01 -8.55996251e-01 3.13582867e-01 3.46203834e-01 3.47469628e-01 8.37927222e-01 -9.57528770e-01 -6.11028910e-01 2.71887451e-01 -8.25389922e-02 7.66920507e-01 4.30904120e-01 7.57454693e-01 -8.71977866e-01 2.83494353e-01 -2.02058733e-01 -9.06062663e-01 -1.24316084e+00 1.85103029e-01 5.02980828e-01 -2.54156768e-01 -8.90807450e-01 1.48608100e+00 6.79255605e-01 -3.23657125e-01 5.40385008e-01 -7.15814531e-01 -1.76477924e-01 -1.54320255e-01 2.85531491e-01 1.23894475e-01 2.45972514e-01 -5.23641884e-01 -2.54003912e-01 6.32794142e-01 -4.04594958e-01 3.68962698e-02 1.43693483e+00 -3.04451644e-01 1.64350137e-01 3.56067508e-01 1.08119524e+00 -6.03738129e-01 -1.75126469e+00 -2.10990950e-01 -3.97088766e-01 -4.75519389e-01 3.90591443e-01 -7.73278594e-01 -1.53252530e+00 1.01658297e+00 7.64784634e-01 -1.88933358e-01 1.17447412e+00 1.99801568e-02 8.27505410e-01 5.32755516e-02 2.83762008e-01 -1.10931969e+00 -3.42813134e-02 5.72682381e-01 7.58875430e-01 -1.44055665e+00 -1.42162964e-01 -5.55088580e-01 -6.01209521e-01 9.13551867e-01 1.18810165e+00 -1.44446000e-01 5.52149236e-01 3.17980617e-01 6.97262511e-02 -7.74908215e-02 -3.57239038e-01 -2.62170643e-01 5.14380813e-01 5.96623242e-01 3.14700335e-01 -1.07809454e-01 4.97655347e-02 3.54637295e-01 -2.34578520e-01 -1.76896587e-01 2.77050555e-01 5.74538231e-01 -5.17565429e-01 -7.64944971e-01 -1.95671976e-01 5.24732828e-01 -2.93723106e-01 -3.83836001e-01 -1.87021255e-01 9.23002779e-01 3.76320094e-01 4.36716586e-01 1.92229584e-01 -2.19382688e-01 3.69737327e-01 -2.77970850e-01 5.33044457e-01 -7.84513295e-01 -5.70514798e-01 1.51622742e-01 -2.07660079e-01 -7.48288453e-01 -4.59652811e-01 -4.90207672e-01 -1.26814473e+00 -7.98838772e-03 -4.63344187e-01 -3.70358855e-01 5.72855949e-01 1.17260623e+00 5.68653233e-02 7.07269192e-01 1.12481400e-01 -1.28270543e+00 -4.99585867e-02 -1.11914313e+00 -4.72056180e-01 2.23386094e-01 1.91896558e-01 -5.77749133e-01 -1.45646065e-01 9.12655964e-02]
[9.526975631713867, 0.009137987159192562]
f37604a2-cd9f-4572-9e8a-0d0c960b4b74
local-relighting-of-real-scenes
2207.02774
null
https://arxiv.org/abs/2207.02774v1
https://arxiv.org/pdf/2207.02774v1.pdf
Local Relighting of Real Scenes
We introduce the task of local relighting, which changes a photograph of a scene by switching on and off the light sources that are visible within the image. This new task differs from the traditional image relighting problem, as it introduces the challenge of detecting light sources and inferring the pattern of light that emanates from them. We propose an approach for local relighting that trains a model without supervision of any novel image dataset by using synthetically generated image pairs from another model. Concretely, we collect paired training images from a stylespace-manipulated GAN; then we use these images to train a conditional image-to-image model. To benchmark local relighting, we introduce Lonoff, a collection of 306 precisely aligned images taken in indoor spaces with different combinations of lights switched on. We show that our method significantly outperforms baseline methods based on GAN inversion. Finally, we demonstrate extensions of our method that control different light sources separately. We invite the community to tackle this new task of local relighting.
['David Bau', 'Rohit Kumar', 'Shahin Mahdizadehaghdam', 'Antonio Torralba', 'Agata Lapedriza', 'Ali Jahanian', 'Audrey Cui']
2022-07-06
null
null
null
null
['image-relighting']
['computer-vision']
[ 8.95174026e-01 -1.31727681e-01 3.51424754e-01 -4.57642645e-01 -7.16997683e-01 -7.15456545e-01 7.96085835e-01 -5.69209158e-01 -1.34913996e-01 8.50370228e-01 1.61507219e-01 -1.10887110e-01 5.18921137e-01 -9.62596416e-01 -1.35783851e+00 -8.33528399e-01 6.25127792e-01 2.24123344e-01 6.09377883e-02 -1.83894157e-01 2.73623586e-01 3.97798926e-01 -1.52272356e+00 2.04046756e-01 7.68456638e-01 6.86292112e-01 2.85270631e-01 9.48973298e-01 2.61588812e-01 9.61977780e-01 -6.40311420e-01 -8.84727836e-02 6.45754158e-01 -8.94619346e-01 -6.35985434e-01 4.07965243e-01 1.07590091e+00 -5.63676655e-01 -3.18333238e-01 7.61021733e-01 3.98655534e-01 1.70707107e-01 4.68998790e-01 -1.20364892e+00 -7.47326851e-01 -5.50052226e-02 -6.74223959e-01 -8.72332975e-02 5.72595298e-01 3.52114141e-01 6.68941319e-01 -6.57041669e-01 9.08651888e-01 1.02895308e+00 5.71896732e-01 4.04463530e-01 -1.77614403e+00 -6.57162488e-01 -1.98323518e-01 -5.68040013e-02 -1.04276955e+00 -7.26791918e-01 8.84326160e-01 -5.69834590e-01 5.62058747e-01 3.09146225e-01 6.06822610e-01 1.23950887e+00 7.64643550e-02 3.80429178e-01 1.62169874e+00 -6.96644783e-01 2.59480655e-01 -1.63083836e-01 -3.94940734e-01 7.32054174e-01 -2.69947708e-01 3.43392998e-01 -7.59827673e-01 1.98822498e-01 9.48070586e-01 -7.75037780e-02 -5.42138815e-01 -4.59054857e-01 -1.52281952e+00 4.97770011e-01 6.65187240e-01 -3.90279456e-03 -6.98502660e-02 3.88849437e-01 -3.77258092e-01 1.50492758e-01 4.25741374e-01 4.78488654e-01 -1.27880603e-01 2.77107120e-01 -9.45998788e-01 2.42077813e-01 4.54676837e-01 1.14989603e+00 1.35411918e+00 1.53599363e-02 -3.04795682e-01 6.53104782e-01 -9.94601622e-02 8.30088377e-01 -1.28658935e-01 -1.41521645e+00 3.32675904e-01 1.03206523e-01 3.94804060e-01 -7.22204089e-01 3.13946232e-02 -1.52909294e-01 -6.94772542e-01 5.09994149e-01 2.78963268e-01 -1.06921248e-01 -1.15542829e+00 1.62432873e+00 3.31291020e-01 4.61724013e-01 -2.58207947e-01 8.03464532e-01 5.67129910e-01 9.31457400e-01 -5.13644516e-01 -4.16743793e-02 9.89150763e-01 -1.26029754e+00 -6.63478911e-01 -3.67734760e-01 8.39255154e-02 -8.24581265e-01 1.31946099e+00 4.61234212e-01 -1.12661755e+00 -5.40711462e-01 -1.07064509e+00 -6.04049087e-01 -2.33521760e-01 4.14098464e-02 3.54699105e-01 4.32637393e-01 -1.24346781e+00 3.07475150e-01 -5.61571896e-01 -3.13351959e-01 2.58061349e-01 -5.25067821e-02 -2.36241296e-01 -3.84381503e-01 -5.97955942e-01 6.12844825e-01 6.82726353e-02 2.63543520e-02 -1.30057740e+00 -8.24758947e-01 -1.05420256e+00 -3.56919885e-01 1.75194949e-01 -8.65912378e-01 1.16772807e+00 -9.89474356e-01 -1.75550973e+00 1.13514078e+00 -4.14365232e-01 -1.95322558e-01 5.63093483e-01 -8.13427418e-02 -7.86003694e-02 -3.24505661e-03 4.02217120e-01 6.53402150e-01 1.10556602e+00 -1.89679754e+00 -4.60578799e-01 -8.79589841e-02 1.28689989e-01 1.08441412e-01 3.67464155e-01 -2.16132477e-01 -5.19945741e-01 -6.35771334e-01 -1.61002934e-01 -9.68214810e-01 -2.53058970e-02 9.22884569e-02 -8.84755433e-01 6.34635746e-01 9.01060104e-01 -5.13363898e-01 4.03382480e-01 -1.98936248e+00 2.71298259e-01 -4.63506160e-03 4.69721518e-02 -1.40241683e-01 -3.47866774e-01 5.71113527e-01 -8.24326202e-02 -1.56769201e-01 -6.56453431e-01 -8.19521844e-01 -1.89059168e-01 4.74549770e-01 -6.49253190e-01 4.21876341e-01 -4.56314608e-02 9.24384177e-01 -1.05737257e+00 -2.80514032e-01 6.93452299e-01 6.39677942e-01 -5.23067474e-01 5.33256829e-01 -3.74330193e-01 1.17014110e+00 1.22532405e-01 4.54966754e-01 9.99995649e-01 2.10314989e-02 -4.76631038e-02 -2.41316766e-01 -3.27818632e-01 1.01441488e-01 -7.86248088e-01 2.10818005e+00 -8.95566046e-01 8.09174895e-01 -6.98929578e-02 -6.27941310e-01 7.71862984e-01 -1.84128985e-01 2.23505855e-01 -8.96102250e-01 2.01672949e-02 1.36712277e-02 -8.52355957e-01 -4.12585884e-01 3.64376754e-01 -2.60348290e-01 4.90235351e-02 4.55952764e-01 -6.51247352e-02 -1.00661540e+00 -6.00298494e-03 1.31821901e-01 1.09915161e+00 5.51829398e-01 -2.37445645e-02 1.49121910e-01 2.21377313e-01 -2.84493446e-01 3.58539641e-01 8.77614856e-01 2.38699228e-01 1.24141407e+00 1.21477783e-01 -4.34832036e-01 -1.11218643e+00 -1.42268050e+00 -4.08067293e-02 8.00703466e-01 2.71426022e-01 -2.80006886e-01 -8.32536161e-01 -5.24563909e-01 -2.66307086e-01 1.07360446e+00 -7.98189700e-01 1.90735891e-01 -5.44582546e-01 -4.37658787e-01 8.33196715e-02 -2.10541636e-02 9.82410371e-01 -1.01773202e+00 -7.44367838e-01 -2.83536911e-01 -6.63527489e-01 -1.37283134e+00 -4.99135196e-01 1.57317862e-01 -3.16317677e-01 -9.58954096e-01 -6.22686505e-01 -7.46730030e-01 7.77554333e-01 5.66493154e-01 1.48918426e+00 -3.30784824e-03 -5.34450173e-01 6.15132928e-01 -2.99620628e-01 -3.48977715e-01 -4.87005711e-01 -1.80914029e-01 -4.77433354e-01 3.91280025e-01 -3.53685558e-01 -6.90472662e-01 -8.30836475e-01 4.25136119e-01 -1.13019013e+00 5.86690664e-01 1.54348582e-01 7.41858363e-01 7.64837146e-01 -5.23259155e-02 -1.06477477e-01 -8.31244111e-01 5.00753187e-02 -3.17082144e-02 -7.92815328e-01 1.69850007e-01 -1.35168836e-01 2.55742241e-02 5.67038774e-01 1.31317988e-01 -1.46390212e+00 2.98503429e-01 1.41916096e-01 -2.17203781e-01 -2.59403676e-01 -3.62730086e-01 -2.27042779e-01 -4.39703375e-01 7.60945201e-01 3.40801597e-01 -4.72708136e-01 -1.96884885e-01 6.67367160e-01 3.21239680e-01 9.01415229e-01 -6.83494210e-01 1.32863820e+00 1.06410050e+00 2.05626637e-01 -1.00154567e+00 -1.04391432e+00 -1.37764081e-01 -6.78642511e-01 -2.02076256e-01 1.08925247e+00 -8.76729786e-01 -5.32265306e-01 6.89297616e-01 -1.24620199e+00 -1.16060019e+00 -6.25242531e-01 9.05035157e-03 -9.20791566e-01 9.97703299e-02 -3.89460802e-01 -4.37864214e-01 2.27556869e-01 -1.11066127e+00 1.67893028e+00 1.40168503e-01 2.02764019e-01 -8.87036026e-01 4.06197518e-01 6.09244108e-01 3.66653502e-01 6.36150718e-01 5.88599801e-01 7.60905683e-01 -1.11379457e+00 2.35458553e-01 -2.54539937e-01 4.88755733e-01 5.46948850e-01 -4.96525280e-02 -1.36611331e+00 -2.26761386e-01 8.15456584e-02 -5.33494532e-01 8.84461641e-01 3.80176783e-01 1.32562673e+00 -2.28777453e-01 -2.51271486e-01 1.23530400e+00 1.67895758e+00 1.00206062e-01 1.00552332e+00 5.01991451e-01 1.02339351e+00 5.59279501e-01 3.20535362e-01 2.52742589e-01 3.59416276e-01 8.65761995e-01 6.70213580e-01 -6.40402079e-01 -5.60986519e-01 -5.71816981e-01 3.11324418e-01 1.53651834e-01 -1.89652294e-01 -5.24720550e-01 -4.96034771e-01 4.12946880e-01 -1.51320398e+00 -8.93772006e-01 -7.91254360e-03 2.35474467e+00 8.52434158e-01 -4.58220840e-01 -2.59558052e-01 -6.22124001e-02 5.58192194e-01 4.86768663e-01 -5.26898026e-01 -1.22960873e-01 -3.26524496e-01 3.57170075e-01 7.32906461e-01 1.02848208e+00 -8.53923023e-01 1.01787019e+00 6.90515804e+00 4.24900740e-01 -1.09506810e+00 1.19864643e-01 8.04698288e-01 -8.39734674e-02 -6.44114077e-01 1.72145382e-01 -3.43243361e-01 3.73104006e-01 5.00235856e-01 3.90634060e-01 1.12538326e+00 2.21432269e-01 3.75956327e-01 -4.90415961e-01 -1.29231977e+00 1.19712341e+00 4.44995940e-01 -1.26580560e+00 6.07829317e-02 -1.61333494e-02 1.23030043e+00 4.24908362e-02 2.22001284e-01 -3.09582472e-01 6.27209067e-01 -9.50762451e-01 7.97844648e-01 6.85874820e-01 1.00398290e+00 -2.98119247e-01 -4.70612943e-03 8.01968575e-02 -8.66998792e-01 2.47609094e-01 -2.25643322e-01 3.96772549e-02 4.48977262e-01 7.04860985e-01 -8.18525374e-01 5.31530797e-01 6.96069717e-01 9.24222291e-01 -6.36300802e-01 6.57113492e-01 -8.33930135e-01 4.99893039e-01 -2.68145621e-01 7.80203938e-01 -2.71983534e-01 -7.03233659e-01 4.02281970e-01 9.67815876e-01 5.39874315e-01 -4.77761105e-02 -8.25866684e-02 1.29706669e+00 -3.17310125e-01 -4.42093998e-01 -1.02349603e+00 6.42578542e-01 1.25331506e-01 1.20432830e+00 -5.11868894e-01 -1.90496862e-01 -2.91286290e-01 1.75743401e+00 1.24762371e-01 7.98269808e-01 -8.86072695e-01 -3.67833346e-01 2.84773827e-01 2.96611220e-01 2.13392228e-01 -2.26726592e-01 -8.49483535e-02 -1.39159703e+00 8.36383402e-02 -7.02908218e-01 -7.77473599e-02 -1.79467130e+00 -1.08751011e+00 3.53978246e-01 -1.98804960e-02 -1.08806026e+00 -9.39540043e-02 -3.58600110e-01 -5.94877124e-01 7.73593009e-01 -1.79217947e+00 -1.58485210e+00 -9.68065143e-01 8.33945870e-01 5.04825592e-01 5.21496952e-01 6.17436707e-01 7.94795528e-02 -2.16615841e-01 8.30733255e-02 2.53215849e-01 1.00851562e-02 1.04689074e+00 -1.40784431e+00 5.54317951e-01 1.21353257e+00 2.68333972e-01 2.52248615e-01 8.67169082e-01 -3.85729253e-01 -1.26490211e+00 -1.34178507e+00 5.43949604e-01 -7.25313187e-01 2.26252899e-01 -7.62019157e-01 -3.10322195e-01 1.28698730e+00 7.41818190e-01 2.84193903e-01 2.03261524e-01 -4.86124635e-01 -4.11690563e-01 -4.08647716e-01 -1.24160218e+00 7.15986252e-01 1.39541698e+00 -5.99579215e-01 -1.85491070e-01 5.88177681e-01 7.43654430e-01 -4.94529754e-01 -3.15730035e-01 -3.31846550e-02 3.35283041e-01 -1.53030062e+00 1.25513613e+00 1.02258563e-01 6.15971625e-01 -5.96369505e-01 -3.63534749e-01 -1.72209275e+00 -9.02777240e-02 -8.92534792e-01 4.43125784e-01 1.25775564e+00 5.96595835e-03 -8.95594358e-01 5.32445550e-01 2.67504364e-01 -1.24119870e-01 1.21446950e-02 -6.63725495e-01 -6.83132470e-01 -4.28891331e-02 -2.35487729e-01 7.11362839e-01 7.92889595e-01 -6.67573810e-01 3.70576710e-01 -7.36955822e-01 1.40521601e-01 1.03036332e+00 3.25934410e-01 1.40901399e+00 -6.55431926e-01 -4.61757421e-01 1.64773509e-01 -1.19470745e-01 -1.26975977e+00 7.12877065e-02 -6.49471104e-01 4.79454398e-01 -1.70925331e+00 1.60503060e-01 -4.68576252e-01 2.14477137e-01 5.05718291e-01 1.54530839e-03 8.39754343e-01 6.67316541e-02 1.21508271e-01 -2.92422324e-01 6.26709938e-01 1.38938439e+00 -3.39889944e-01 -8.32870379e-02 -4.94922668e-01 -4.48199689e-01 5.38678586e-01 6.59446657e-01 -3.76902789e-01 -5.68623424e-01 -8.34103286e-01 3.83442670e-01 -1.38784677e-01 8.44391525e-01 -1.10128057e+00 -6.21629283e-02 -2.78614998e-01 5.02877295e-01 -4.05913413e-01 5.53072989e-01 -7.39150167e-01 3.77785414e-01 1.01247154e-01 -2.82372266e-01 -1.79262578e-01 -1.19083412e-01 5.17277062e-01 -3.82761681e-03 1.25642061e-01 9.04912770e-01 -2.16180071e-01 -4.22196209e-01 2.74220973e-01 -2.74322838e-01 1.13318712e-01 1.06968606e+00 -5.03861047e-02 -5.13494253e-01 -5.22377551e-01 -3.45382541e-01 -2.63514042e-01 1.11267102e+00 1.79275542e-01 5.97216129e-01 -1.34499681e+00 -5.22408783e-01 6.07893467e-01 3.26823354e-01 4.48179454e-01 1.59992844e-01 5.29805779e-01 -9.69808042e-01 -1.51672652e-02 -1.26846492e-01 -7.12695897e-01 -1.07802439e+00 5.81253290e-01 5.55946708e-01 2.23255247e-01 -6.85905397e-01 7.77579725e-01 7.77549982e-01 -5.53717434e-01 -2.91054845e-01 -5.66214383e-01 5.03102720e-01 -5.09347916e-01 4.37418044e-01 2.28420898e-01 8.75830054e-02 -5.39149165e-01 -1.20880567e-01 1.04086626e+00 4.51116890e-01 -4.53347325e-01 1.28674245e+00 -4.46197540e-01 -3.64805400e-01 6.06901765e-01 1.19835949e+00 4.28051412e-01 -1.62897837e+00 -2.16536373e-01 -8.51189971e-01 -1.10599875e+00 3.56909558e-02 -9.26180780e-01 -1.12426388e+00 8.36276114e-01 5.72778404e-01 -8.55545774e-02 1.42700708e+00 -7.66505748e-02 7.45961905e-01 2.68097579e-01 6.33091271e-01 -9.01884794e-01 2.28686839e-01 2.35760778e-01 1.03431273e+00 -1.32357860e+00 -9.76172611e-02 -3.88388008e-01 -3.18297535e-01 9.12112474e-01 2.53377140e-01 -1.56586021e-01 3.65879238e-01 3.01212907e-01 3.18168074e-01 -2.19847158e-01 -2.06916243e-01 9.81508940e-03 -6.21780679e-02 8.58005822e-01 1.75228298e-01 -2.49655508e-02 4.25769478e-01 -5.81246138e-01 -3.74799430e-01 1.97816566e-01 7.36884415e-01 9.16856408e-01 -8.12600926e-02 -1.09105277e+00 -6.56462491e-01 -1.48724154e-01 8.58234465e-02 -2.32733950e-01 -4.07209426e-01 4.56552029e-01 4.45136189e-01 1.12546277e+00 1.12920348e-02 -1.62905410e-01 1.89875767e-01 -3.50854397e-01 9.27069902e-01 -6.09667122e-01 -7.14394376e-02 -1.95975661e-01 -1.04419284e-01 -8.86124372e-01 -7.46364474e-01 -5.63961267e-01 -7.36112893e-01 -1.60291314e-01 3.04174162e-02 -1.92671180e-01 7.30966926e-01 7.38824248e-01 2.74368942e-01 5.33113360e-01 8.70297253e-01 -1.42700672e+00 3.16345900e-01 -5.85749984e-01 -6.34021401e-01 5.27659535e-01 9.21340644e-01 -5.64285398e-01 -6.15440071e-01 6.49448276e-01]
[9.83217716217041, -2.894676446914673]
afb395e4-6749-49a1-8412-90f647a99e9e
knee-osteoarthritis-severity-prediction-using
2106.14292
null
https://arxiv.org/abs/2106.14292v1
https://arxiv.org/pdf/2106.14292v1.pdf
Knee Osteoarthritis Severity Prediction using an Attentive Multi-Scale Deep Convolutional Neural Network
Knee Osteoarthritis (OA) is a destructive joint disease identified by joint stiffness, pain, and functional disability concerning millions of lives across the globe. It is generally assessed by evaluating physical symptoms, medical history, and other joint screening tests like radiographs, Magnetic Resonance Imaging (MRI), and Computed Tomography (CT) scans. Unfortunately, the conventional methods are very subjective, which forms a barrier in detecting the disease progression at an early stage. This paper presents a deep learning-based framework, namely OsteoHRNet, that automatically assesses the Knee OA severity in terms of Kellgren and Lawrence (KL) grade classification from X-rays. As a primary novelty, the proposed approach is built upon one of the most recent deep models, called the High-Resolution Network (HRNet), to capture the multi-scale features of knee X-rays. In addition, we have also incorporated an attention mechanism to filter out the counterproductive features and boost the performance further. Our proposed model has achieved the best multiclass accuracy of 71.74% and MAE of 0.311 on the baseline cohort of the OAI dataset, which is a remarkable gain over the existing best-published works. We have also employed the Gradient-based Class Activation Maps (Grad-CAMs) visualization to justify the proposed network learning.
['Palash Ghosh', 'Arijit Sur', 'Sibaji Gaj', 'Prasen Kumar Sharma', 'Rohit Kumar Jain']
2021-06-27
null
null
null
null
['severity-prediction']
['computer-vision']
[-2.53673047e-01 -1.35210723e-01 -4.33970690e-01 -4.14233916e-02 -7.68311262e-01 2.92474717e-01 2.69312024e-01 -9.64785963e-02 -4.86020595e-01 8.64994407e-01 5.03235877e-01 8.13907534e-02 -5.61469138e-01 -7.47440696e-01 -1.52494714e-01 -5.56559443e-01 -6.30412161e-01 5.40964603e-01 3.18262309e-01 -2.27144003e-01 6.84048086e-02 4.09191132e-01 -1.39190531e+00 2.17063040e-01 8.16681683e-01 1.31460822e+00 -6.71688281e-03 2.11366475e-01 3.92506838e-01 7.79305756e-01 -4.98023778e-01 4.30737175e-02 -4.87755612e-02 -1.23047136e-01 -5.44619560e-01 -1.10250629e-01 2.07234800e-01 -6.99419677e-01 -6.86945081e-01 7.76823461e-01 7.51698732e-01 -1.66111320e-01 6.20414317e-01 -7.79527366e-01 -1.00698721e+00 -4.01397282e-03 -5.44161618e-01 4.77777511e-01 -3.20544321e-04 3.09118360e-01 7.38737404e-01 -1.05180669e+00 6.56321108e-01 1.12961817e+00 5.94063163e-01 5.56948602e-01 -6.62006557e-01 -5.77543497e-01 -2.59646028e-01 4.90601450e-01 -1.07668042e+00 2.35498399e-01 5.98411143e-01 -4.55675215e-01 5.19742310e-01 3.37700218e-01 1.20280516e+00 1.17934442e+00 1.03406382e+00 8.02388430e-01 1.55151343e+00 -6.57059252e-02 2.71173269e-01 -6.67051375e-01 2.46194631e-01 6.50548995e-01 2.77462363e-01 2.24589676e-01 -3.03702533e-01 -2.66615540e-01 1.19523728e+00 4.46765363e-01 -3.29884410e-01 -4.49757695e-01 -1.24568450e+00 7.57056952e-01 1.05045331e+00 2.16783285e-01 -5.88561893e-01 2.50884056e-01 4.07579005e-01 1.15030386e-01 3.12670022e-01 4.02959347e-01 -2.35557601e-01 3.48443016e-02 -6.42113686e-01 3.33721191e-01 2.00992659e-01 4.03767359e-03 5.20001538e-02 1.46061063e-01 -5.80516346e-02 1.16737616e+00 5.22509634e-01 2.85132289e-01 1.20268118e+00 -7.97934115e-01 -1.02892574e-02 9.14969921e-01 -2.89550364e-01 -9.00525689e-01 -5.40908277e-01 -9.50810373e-01 -1.15105653e+00 6.17341101e-01 4.27085534e-02 2.36398652e-01 -1.41665721e+00 1.44893372e+00 6.20817281e-02 -1.02527082e-01 -4.24480438e-01 1.55851305e+00 9.26295519e-01 1.04793288e-01 1.78528473e-01 -7.82138929e-02 1.76019013e+00 -1.04855871e+00 -7.38363624e-01 -3.29119772e-01 4.24142867e-01 -5.06809473e-01 1.38395810e+00 6.00712180e-01 -8.36038351e-01 -4.13777232e-01 -1.21895564e+00 -2.39044484e-02 -2.84797758e-01 4.22744274e-01 9.13532495e-01 2.21638113e-01 -8.41716170e-01 5.87222219e-01 -9.82110500e-01 -3.12788874e-01 3.87757152e-01 4.04819101e-01 -5.30764818e-01 -9.60705876e-02 -1.45918775e+00 8.34779024e-01 -1.02482893e-01 5.53901970e-01 -9.34891224e-01 -4.43997025e-01 -3.70228022e-01 -4.11921069e-02 3.84324551e-01 -9.67609346e-01 8.34545135e-01 -5.90304971e-01 -1.33058941e+00 6.63685203e-01 4.59370285e-01 -2.15597481e-01 5.11923730e-01 -1.01884735e+00 -5.95386982e-01 3.14171374e-01 7.74145573e-02 5.14193416e-01 3.78741682e-01 -8.73727977e-01 -5.50312735e-02 -8.46394300e-01 -7.92112276e-02 2.31683418e-01 -4.48025525e-01 -1.45536810e-01 -4.85817164e-01 -1.03191864e+00 3.95390809e-01 -1.03273261e+00 -4.89051968e-01 2.08224371e-01 -4.58093911e-01 -3.11179698e-01 5.87246418e-01 -9.79817510e-01 1.32025945e+00 -2.05503392e+00 1.40761971e-01 2.22801909e-01 5.14070213e-01 1.80908725e-01 1.57219455e-01 1.52995735e-01 -2.72090703e-01 1.25423402e-01 -1.43956244e-01 2.49185070e-01 -3.07587177e-01 1.03869215e-01 2.48791933e-01 3.30304950e-01 1.83801100e-01 9.42721069e-01 -5.76125145e-01 -4.23905104e-01 1.23364374e-01 4.60403293e-01 -3.82374763e-01 9.41270515e-02 1.73080444e-01 3.80648583e-01 -5.35161376e-01 1.01040840e+00 2.54440933e-01 -5.85489213e-01 6.27769977e-02 -3.17148417e-01 2.32408807e-01 5.09741977e-02 -1.05410802e+00 1.73659396e+00 -1.23708643e-01 2.40919262e-01 -5.07807657e-02 -8.00322592e-01 7.71649420e-01 3.41447711e-01 7.54836380e-01 -9.51099157e-01 1.60022601e-01 5.37523508e-01 3.40548038e-01 -6.52783871e-01 -1.97813094e-01 1.58931434e-01 -3.52054685e-02 1.21582925e-01 -2.60670751e-01 4.85191673e-01 -2.30183732e-02 3.52380015e-02 1.30115688e+00 -2.10897923e-02 3.33746821e-01 -2.38326997e-01 4.28326398e-01 -1.46041483e-01 4.86760795e-01 5.99619925e-01 -3.23621929e-01 8.01421523e-01 4.46947306e-01 -7.26852655e-01 -9.31294918e-01 -1.49185860e+00 -2.07908452e-01 5.16252458e-01 4.39367965e-02 -2.66042233e-01 -3.02023947e-01 -4.20770437e-01 2.34737232e-01 -3.18935037e-01 -7.98580766e-01 -4.68841583e-01 -7.24535227e-01 -1.01557982e+00 2.91655898e-01 8.41784418e-01 7.14575469e-01 -9.82993305e-01 -3.96353811e-01 9.45532173e-02 2.48749837e-01 -3.97857815e-01 -3.40702683e-02 5.04444875e-02 -1.45197237e+00 -1.14461768e+00 -1.30041337e+00 -9.39779699e-01 3.90056014e-01 -2.02730000e-01 7.07223237e-01 2.78768241e-01 -7.38069713e-01 6.12560622e-02 5.02980016e-02 1.74663886e-01 1.72055230e-01 1.24811493e-01 1.99662328e-01 -2.06105277e-01 1.12848930e-01 -6.38206065e-01 -1.39841974e+00 2.17164502e-01 -7.78188765e-01 -2.82131936e-02 1.41484189e+00 8.55113506e-01 9.27681386e-01 -2.10904136e-01 7.88832009e-01 -5.23261845e-01 1.03472185e+00 -4.81785029e-01 1.98909596e-01 1.08781435e-01 -9.53412294e-01 -2.55472720e-01 2.32875779e-01 -3.32128674e-01 -7.68603742e-01 -3.51507217e-01 -1.66957006e-01 -2.33734354e-01 -2.80047506e-02 8.28594267e-01 1.65970907e-01 2.56916955e-02 4.86596107e-01 1.89751033e-02 1.90201610e-01 -8.57320428e-01 -1.20796375e-01 7.98421443e-01 7.29527414e-01 -3.67519945e-01 2.48174474e-01 3.14790487e-01 8.20732117e-02 -4.16692555e-01 -7.48347640e-01 -3.73023450e-01 -3.44364613e-01 -4.10110116e-01 8.62410367e-01 -1.12345886e+00 -6.02170408e-01 5.98429799e-01 -5.12286544e-01 -5.75057194e-02 9.33869779e-02 1.06403351e+00 -2.58210719e-01 4.60959941e-01 -1.17752588e+00 -2.68946350e-01 -6.45472169e-01 -1.28331828e+00 1.10125566e+00 1.26586705e-01 -2.43280351e-01 -4.82622951e-01 1.87767014e-01 4.49504733e-01 5.88809609e-01 3.91136378e-01 1.33403695e+00 -3.89811933e-01 -5.15220642e-01 -3.04417759e-01 -3.76533240e-01 5.42661130e-01 1.65662169e-01 -4.17522460e-01 -3.87530029e-01 -1.66143507e-01 1.01877615e-01 -5.22602379e-01 8.76722634e-01 4.60100681e-01 1.41546154e+00 1.20693512e-01 -1.88449651e-01 2.88307071e-01 1.48931706e+00 2.18405977e-01 8.56437683e-01 8.74155819e-01 5.82748532e-01 5.57361916e-03 5.12134671e-01 2.09288895e-01 6.90016672e-02 6.99767828e-01 6.08730614e-01 -3.21822375e-01 -4.79607880e-01 1.31596893e-01 3.60973142e-02 1.19553280e+00 -5.26923895e-01 2.57863402e-01 -1.09506440e+00 5.08242488e-01 -1.73495448e+00 -3.94950271e-01 -2.39645377e-01 1.82107949e+00 7.87190795e-01 4.75722700e-01 -1.55944556e-01 7.76583105e-02 5.70039451e-01 -3.41524296e-02 -5.90089560e-01 7.01103136e-02 7.60834888e-02 6.03370965e-01 2.53974497e-01 -1.23678707e-01 -1.01556432e+00 2.84154058e-01 6.40236187e+00 6.53483331e-01 -1.29142380e+00 1.77411348e-01 4.60049987e-01 -1.89552084e-01 1.01176478e-01 -2.40971759e-01 -6.22819439e-02 5.73041379e-01 6.94195211e-01 2.43076086e-01 6.78953603e-02 9.94608760e-01 2.48931915e-01 -2.76350081e-01 -7.50932336e-01 6.50279462e-01 -1.18421458e-01 -1.20871222e+00 2.88575262e-01 3.16120028e-01 2.81512380e-01 1.32830739e-01 2.38337502e-01 4.24783796e-01 3.20931189e-02 -9.75610375e-01 6.95129260e-02 8.47380221e-01 6.72666490e-01 -5.58898091e-01 1.13548541e+00 -2.64624298e-01 -1.02597058e+00 -2.45373651e-01 4.56086211e-02 -1.94793239e-01 -4.14623693e-02 6.33269787e-01 -3.79071176e-01 4.63576406e-01 1.06759977e+00 5.79563081e-01 -8.37761760e-01 1.45949876e+00 -2.39021361e-01 7.11079478e-01 -1.26320675e-01 1.68186665e-01 3.23172390e-01 -5.79148978e-02 4.07880843e-01 4.95291829e-01 3.78689587e-01 -1.81486279e-01 3.75878721e-01 4.34313476e-01 -1.46420542e-02 1.66870639e-01 -2.31813654e-01 1.43913209e-01 3.19541525e-03 1.04731441e+00 -6.19440913e-01 -3.14160466e-01 -3.80398512e-01 4.78825986e-01 3.92345944e-03 2.92191595e-01 -5.64781904e-01 -2.93219566e-01 3.35035801e-01 2.54308283e-01 -1.51206076e-01 -2.57897228e-01 -3.02892834e-01 -1.08254158e+00 2.43536666e-01 -9.69970822e-01 5.36700189e-01 -1.11037576e+00 -1.39862978e+00 3.65179420e-01 -1.55888394e-01 -1.30330276e+00 -7.38006234e-02 -7.99305558e-01 -3.88296694e-01 6.38372540e-01 -1.18508506e+00 -9.00859654e-01 -5.32843471e-01 4.04715896e-01 5.23103058e-01 -2.14556769e-01 6.79622114e-01 7.40823507e-01 -5.99242151e-01 3.45162824e-02 2.00048745e-01 4.17927146e-01 7.23102152e-01 -1.29096127e+00 -1.84706092e-01 3.45462799e-01 -6.17237508e-01 9.01514232e-01 2.99961090e-01 -9.45445001e-01 -1.18649435e+00 -7.64357030e-01 4.18805808e-01 9.19134915e-02 9.33736205e-01 6.94906861e-02 -9.44224179e-01 4.50673342e-01 -3.31014879e-02 1.92093477e-01 7.42237091e-01 -3.15491343e-03 -5.02568809e-03 -1.30255848e-01 -7.07317770e-01 6.41016066e-01 9.32067513e-01 -2.31067240e-01 -8.85908425e-01 3.41640890e-01 4.38686788e-01 -2.41128832e-01 -1.44224191e+00 1.07855988e+00 9.30081367e-01 -7.76188016e-01 1.19214880e+00 -7.40726948e-01 7.55875766e-01 -1.15247391e-01 -3.72632686e-03 -9.95556891e-01 -4.98690724e-01 2.65879750e-01 -3.34656447e-01 6.75428391e-01 -1.39814749e-01 -4.37423021e-01 8.63311350e-01 9.10461023e-02 -4.70260978e-01 -1.51119483e+00 -1.02693129e+00 -8.10437560e-01 -3.55643667e-02 -5.89569509e-02 3.32061708e-01 6.90336943e-01 -4.29883063e-01 1.74046770e-01 -3.73652041e-01 -1.10374786e-01 5.12430608e-01 -1.00455405e-02 3.66167784e-01 -1.50967169e+00 -1.80087939e-01 -4.29225653e-01 -7.88101852e-01 -5.32064199e-01 -5.67481041e-01 -8.59757721e-01 -3.90043288e-01 -1.92176449e+00 3.86950403e-01 -1.75545290e-01 -9.89683449e-01 1.81161091e-01 -3.53265628e-02 5.73349178e-01 -1.74000353e-01 7.57682800e-01 -4.04554695e-01 6.73461676e-01 1.74360275e+00 -2.34742492e-01 -3.87661420e-02 -1.30225524e-01 -4.34060097e-01 8.16418231e-01 7.60211229e-01 -3.49843085e-01 -2.29443654e-01 -3.54646742e-01 2.02648640e-01 5.63509092e-02 7.91928530e-01 -1.46892846e+00 -9.89787728e-02 6.05378412e-02 8.41083109e-01 -6.66042507e-01 4.48765069e-01 -5.30498326e-01 1.06293961e-01 1.10694790e+00 -3.17102611e-01 1.00582443e-01 -2.32683018e-01 7.22410619e-01 -5.52774310e-01 1.83407396e-01 5.16640842e-01 -4.13085878e-01 -9.16422665e-01 3.81844491e-01 -4.38114911e-01 -2.36600980e-01 7.56029904e-01 -1.94347546e-01 -4.23776001e-01 6.98175356e-02 -1.16088355e+00 1.21629938e-01 1.33729875e-01 5.13284504e-01 8.85496616e-01 -1.83038843e+00 -4.01484162e-01 -5.98777644e-02 1.33592859e-01 -2.36165807e-01 3.01483512e-01 1.29266644e+00 -6.72827542e-01 4.25054520e-01 -6.90949082e-01 -7.52360940e-01 -1.03617871e+00 1.07057668e-01 3.50069165e-01 -8.69532228e-01 -9.75987732e-01 4.19240355e-01 1.37286142e-01 -1.39011681e-01 3.51061165e-01 -2.58971542e-01 -4.14379030e-01 -1.89269602e-01 1.75246909e-01 4.38627362e-01 1.73738658e-01 -1.01705953e-01 -4.49762076e-01 5.72118223e-01 -3.66028249e-01 4.64679077e-02 1.54264879e+00 1.41761974e-01 -3.27464670e-01 4.81343508e-01 1.07540393e+00 -2.42059350e-01 -7.80054390e-01 -9.65946987e-02 -5.74296899e-02 -2.93272614e-01 3.50883901e-01 -1.02861071e+00 -1.31141984e+00 8.20798159e-01 1.45682108e+00 -2.64655519e-02 9.19861257e-01 2.44015470e-01 1.22460532e+00 4.74070132e-01 3.26924950e-01 -1.01777887e+00 6.16670310e-01 -1.94899142e-02 1.13350308e+00 -1.05937302e+00 2.99899101e-01 -1.88261092e-01 -2.43699297e-01 1.21262538e+00 8.96182656e-01 -6.55450940e-01 6.66239381e-01 -1.17496334e-01 2.42246062e-01 -6.95891201e-01 -4.80606556e-01 8.49458948e-02 4.42613155e-01 3.07694674e-01 5.32537818e-01 7.86776990e-02 -9.53421891e-01 7.88308084e-01 1.06087796e-01 5.43409228e-01 1.30582705e-01 1.12645400e+00 -6.23708904e-01 -7.71950305e-01 -3.24389070e-01 1.04368949e+00 -6.81229174e-01 1.45959809e-01 -4.89739478e-01 1.33103645e+00 -1.45005397e-02 2.19558179e-01 -4.22234014e-02 -3.39422226e-01 2.06231982e-01 5.57574676e-04 1.40858486e-01 -4.71687168e-01 -3.99060637e-01 2.14553043e-01 3.29846889e-02 -7.64868855e-01 -5.09858012e-01 -1.69838667e-01 -1.24298835e+00 3.03281099e-01 -1.18053332e-01 -1.48800001e-01 4.24107969e-01 7.85701394e-01 2.66615272e-01 1.04591990e+00 2.46690109e-01 -4.09343272e-01 -5.37273407e-01 -1.10171342e+00 -6.97473586e-01 4.06742126e-01 9.86966193e-02 -1.21785533e+00 -3.51811141e-01 -4.06356126e-01]
[14.626235008239746, -1.8331093788146973]
d1f46ff6-6720-45db-a35f-7692f6966f82
capsnet-for-medical-image-segmentation
2203.08948
null
https://arxiv.org/abs/2203.08948v1
https://arxiv.org/pdf/2203.08948v1.pdf
CapsNet for Medical Image Segmentation
Convolutional Neural Networks (CNNs) have been successful in solving tasks in computer vision including medical image segmentation due to their ability to automatically extract features from unstructured data. However, CNNs are sensitive to rotation and affine transformation and their success relies on huge-scale labeled datasets capturing various input variations. This network paradigm has posed challenges at scale because acquiring annotated data for medical segmentation is expensive, and strict privacy regulations. Furthermore, visual representation learning with CNNs has its own flaws, e.g., it is arguable that the pooling layer in traditional CNNs tends to discard positional information and CNNs tend to fail on input images that differ in orientations and sizes. Capsule network (CapsNet) is a recent new architecture that has achieved better robustness in representation learning by replacing pooling layers with dynamic routing and convolutional strides, which has shown potential results on popular tasks such as classification, recognition, segmentation, and natural language processing. Different from CNNs, which result in scalar outputs, CapsNet returns vector outputs, which aim to preserve the part-whole relationships. In this work, we first introduce the limitations of CNNs and fundamentals of CapsNet. We then provide recent developments of CapsNet for the task of medical image segmentation. We finally discuss various effective network architectures to implement a CapsNet for both 2D images and 3D volumetric medical image segmentation.
['Ngan Le', 'Khoa Luu', 'Hien Nguyen', 'Kyle Quinn', 'Viet-Khoa Vo-Ho', 'Minh Tran']
2022-03-16
null
null
null
null
['volumetric-medical-image-segmentation']
['medical']
[ 1.65332586e-01 2.65499264e-01 -4.44055974e-01 -5.80310345e-01 -1.37620389e-01 -5.96537590e-01 1.01631917e-01 1.40265509e-01 -5.36941350e-01 4.51950699e-01 4.07719091e-02 -2.50084460e-01 1.29723445e-01 -8.00873518e-01 -5.25938511e-01 -5.38705707e-01 -2.30976149e-01 2.08465621e-01 3.07526350e-01 -1.42913550e-01 -6.59571439e-02 9.46737111e-01 -9.89369810e-01 4.77561414e-01 5.61363101e-01 1.23961234e+00 -7.76588097e-02 3.92139673e-01 -2.76148379e-01 7.54202366e-01 -7.02353060e-01 -1.22352429e-01 3.18285644e-01 -1.72490180e-01 -1.07629120e+00 -5.29490598e-02 3.18891913e-01 -1.60886794e-01 -4.77474391e-01 1.06487405e+00 4.92354333e-01 -1.89401954e-01 5.02418041e-01 -1.23895895e+00 -8.14659595e-01 5.28792322e-01 -4.10710007e-01 1.05815858e-01 -7.03847185e-02 1.13036022e-01 5.97755432e-01 -5.56612790e-01 7.41335690e-01 1.12557435e+00 1.02307165e+00 7.96390176e-01 -1.00162840e+00 -5.24265409e-01 3.40673365e-02 -2.46587455e-01 -1.28373706e+00 -3.32927220e-02 6.28557563e-01 -4.40428197e-01 9.11359012e-01 4.84269202e-01 8.90528977e-01 9.99988496e-01 4.95953113e-01 1.11596584e+00 8.37086439e-01 1.23224698e-01 1.90651238e-01 6.24744641e-03 2.22658202e-01 6.41924858e-01 3.32527906e-01 -1.23557195e-01 -1.63674708e-02 6.26779348e-02 1.07087481e+00 3.28161269e-01 -4.02603716e-01 -5.60030341e-01 -1.17251110e+00 9.49555874e-01 1.17950344e+00 5.68389356e-01 -1.56019300e-01 2.55043238e-01 6.45589948e-01 1.39121443e-01 2.11308271e-01 7.42023170e-01 -6.49317861e-01 4.63420004e-01 -1.05269027e+00 1.12045079e-01 5.38510203e-01 1.03900170e+00 4.26236540e-01 1.72932908e-01 -4.11342919e-01 8.47947121e-01 1.62664836e-03 9.69221666e-02 8.39802504e-01 -6.32143378e-01 1.68350473e-01 9.06842828e-01 -4.94008005e-01 -1.27859771e+00 -1.03566849e+00 -4.72297966e-01 -1.45127153e+00 2.11896926e-01 3.33532691e-01 -9.56721082e-02 -1.61104488e+00 1.40933108e+00 -1.02563515e-01 -1.42919585e-01 -3.02116480e-02 9.13726211e-01 1.39805388e+00 3.20201665e-01 1.04161158e-01 1.30749360e-01 1.30230749e+00 -9.04151022e-01 -7.47558415e-01 -3.87602150e-01 4.91046280e-01 -5.66599011e-01 4.76450264e-01 1.49076849e-01 -1.00090432e+00 -6.24006212e-01 -1.09575009e+00 -2.63509423e-01 -7.84130394e-01 -1.81738921e-02 8.78922999e-01 7.87298620e-01 -1.15025139e+00 6.27868056e-01 -1.03723419e+00 -3.58663708e-01 1.26982379e+00 8.17493916e-01 -5.33112943e-01 -2.52853017e-02 -9.58875954e-01 6.90113306e-01 6.43368244e-01 4.19405043e-01 -6.44306362e-01 -6.82353318e-01 -1.13388228e+00 7.66539127e-02 1.95030898e-01 -5.45387924e-01 9.18794990e-01 -1.15940893e+00 -1.22446036e+00 9.08321619e-01 2.94152945e-01 -6.16289854e-01 5.72512448e-01 3.84675600e-02 -1.54412821e-01 2.48388097e-01 -6.24380149e-02 1.25821722e+00 6.68445885e-01 -9.81338441e-01 -1.59731656e-01 -2.70398825e-01 -1.61634058e-01 -1.38484210e-01 -3.21748883e-01 -1.01051681e-01 -6.34786785e-01 -7.81819642e-01 5.16132593e-01 -8.63643408e-01 -8.67306232e-01 4.13921148e-01 -6.85374439e-01 3.13293538e-03 1.01831102e+00 -3.33581895e-01 7.61215687e-01 -2.14273000e+00 -1.46118611e-01 3.23743731e-01 5.81624985e-01 6.66469336e-01 -1.81193165e-02 -1.54519141e-01 -2.08224013e-01 5.30570447e-01 -4.15439874e-01 -1.17069818e-01 -4.46759909e-01 3.81408930e-01 7.51664415e-02 5.71639299e-01 4.40113932e-01 1.43309021e+00 -7.70940781e-01 -7.86451459e-01 4.40366030e-01 6.01036012e-01 -4.89718258e-01 -2.03176755e-02 -9.68150869e-02 4.81006891e-01 -5.51197827e-01 1.04485321e+00 9.20704365e-01 -4.87635523e-01 1.80664614e-01 -3.74173105e-01 3.65419500e-02 -3.07738036e-01 -8.28041494e-01 1.72482800e+00 4.61446531e-02 7.52631009e-01 1.44635513e-01 -1.29152095e+00 8.41706097e-01 3.90291274e-01 8.11846733e-01 -6.28381491e-01 5.39150119e-01 1.14202783e-01 -2.98253745e-02 -4.78331059e-01 4.71918404e-01 1.02762312e-01 -1.23705298e-01 -9.58367065e-02 2.15678319e-01 -3.50199759e-01 -4.11591083e-02 -8.09405372e-02 9.18997109e-01 -1.76698491e-01 1.79705352e-01 -2.44570076e-01 3.98361892e-01 1.10676266e-01 7.56998718e-01 6.87237620e-01 -5.24896920e-01 1.25006294e+00 7.69546807e-01 -1.01281428e+00 -7.70132422e-01 -8.35444093e-01 -4.76853490e-01 3.81796926e-01 1.67526230e-01 -1.99101374e-01 -6.56782687e-01 -8.12634706e-01 -7.09241927e-02 -1.76536933e-01 -9.02224839e-01 -1.14225753e-01 -8.17598045e-01 -9.50689733e-01 7.42522120e-01 9.09982443e-01 7.29940474e-01 -1.33256698e+00 -8.40561390e-01 1.58629492e-01 1.46848127e-01 -1.16868484e+00 -1.86596543e-01 4.81111199e-01 -1.09827709e+00 -1.36826003e+00 -9.73143160e-01 -1.22740614e+00 1.06439316e+00 -5.49623296e-02 1.06137049e+00 2.65707046e-01 -7.77721167e-01 1.38104130e-02 -1.39599189e-01 -5.14698982e-01 -5.81965968e-03 4.70313221e-01 -4.04198676e-01 -2.67566681e-01 1.37986034e-01 -2.34308064e-01 -8.99577320e-01 2.28176624e-01 -1.18519211e+00 -4.35357504e-02 7.23250866e-01 9.55278695e-01 7.49190390e-01 -2.70382643e-01 4.20454532e-01 -1.10228467e+00 5.89245081e-01 -3.85024637e-01 -3.50257903e-01 2.29925111e-01 -2.73582309e-01 -2.44816318e-01 7.70480931e-01 -2.74680614e-01 -4.55056608e-01 4.04048115e-01 -2.76978672e-01 -5.81550479e-01 -2.76776880e-01 3.57821256e-01 2.70013243e-01 -3.06925684e-01 5.70425510e-01 -5.35978153e-02 3.00093412e-01 -2.69622862e-01 2.34424859e-01 4.46815938e-01 4.71891850e-01 -2.31369615e-01 3.71336132e-01 7.17471719e-01 -3.57188634e-03 -8.07444334e-01 -6.63158178e-01 -3.48345757e-01 -8.81605566e-01 -1.58752073e-02 1.35448098e+00 -6.56926751e-01 -7.26932347e-01 6.46348834e-01 -1.08228302e+00 -1.23130269e-01 -4.02174979e-01 3.50773931e-01 -2.79947072e-01 1.73676878e-01 -8.27875137e-01 -1.41244411e-01 -5.57863891e-01 -1.49400210e+00 7.21655428e-01 6.39161170e-01 -2.04070345e-01 -1.04697013e+00 -3.70040208e-01 1.03597231e-01 7.49093115e-01 7.87356198e-01 8.06665063e-01 -7.70564437e-01 -5.11599600e-01 -3.20197612e-01 -4.41944033e-01 6.08771861e-01 2.24801093e-01 -5.51412441e-02 -9.51509476e-01 -5.32872498e-01 -2.11233258e-01 -4.46177393e-01 9.22860086e-01 8.69905829e-01 1.81606066e+00 -5.82468249e-02 -5.88189363e-01 1.08805835e+00 1.44152868e+00 2.14672431e-01 8.13986063e-01 1.67211175e-01 7.83112288e-01 4.68312263e-01 2.60959379e-02 -7.94492140e-02 -1.24585554e-01 1.78045273e-01 7.93877363e-01 -8.22840333e-01 -1.67497471e-01 2.27437750e-01 -3.13413948e-01 5.73904514e-01 4.04103883e-02 -2.66571939e-02 -8.60065520e-01 7.56339908e-01 -1.68594289e+00 -5.61816633e-01 3.41301933e-02 1.74909568e+00 6.13123775e-01 1.34097755e-01 -2.12069198e-01 -1.89296067e-01 4.96602207e-01 2.24529386e-01 -6.60201490e-01 -4.56628680e-01 -1.65102050e-01 6.87184095e-01 8.36841822e-01 -1.22707002e-01 -1.46685052e+00 9.43612218e-01 6.91640091e+00 4.90936518e-01 -1.63520408e+00 -1.49387717e-01 1.04981494e+00 8.16740096e-02 9.29771513e-02 -5.27057111e-01 -3.16689938e-01 2.26815045e-01 3.80447388e-01 4.22278762e-01 -1.16663478e-01 1.00862026e+00 -2.57691205e-01 1.19803905e-01 -9.82051194e-01 9.89686847e-01 1.03168702e-02 -1.75592351e+00 1.21244103e-01 -1.00688219e-01 8.25598419e-01 3.90078127e-01 2.72038370e-01 1.82199106e-01 1.26211569e-01 -1.73512089e+00 3.88610214e-01 2.53409177e-01 8.30802917e-01 -8.10930431e-01 1.14250529e+00 -7.39566684e-02 -1.08949852e+00 1.31504959e-03 -5.68903387e-01 3.10408831e-01 -3.92478891e-02 2.63851285e-01 -8.93254519e-01 4.77577060e-01 1.00382185e+00 7.87574649e-01 -6.80300295e-01 1.34096050e+00 7.35914037e-02 2.40281776e-01 -1.65240988e-01 -4.05177288e-02 6.19169474e-01 1.74225811e-02 1.30221754e-01 1.39801717e+00 1.63492896e-02 -9.69314128e-02 3.36012036e-01 1.01309788e+00 -2.97419399e-01 8.53544548e-02 -5.82205355e-01 -4.70138490e-02 -1.41136860e-02 1.39367008e+00 -1.40537560e+00 -1.80939421e-01 -3.47332060e-01 7.73119211e-01 1.67060539e-01 3.00951809e-01 -6.67423546e-01 -4.64403331e-01 8.12558174e-01 1.00114970e-02 4.77360100e-01 -1.72792420e-01 -6.46982968e-01 -8.40970099e-01 -1.98482409e-01 -6.53189063e-01 4.49125469e-01 -4.40087676e-01 -1.12085342e+00 9.88169670e-01 -1.62165597e-01 -1.20876479e+00 1.70225680e-01 -1.16979229e+00 -4.93167907e-01 5.63371599e-01 -1.47045207e+00 -1.25447857e+00 -3.31495672e-01 7.63569951e-01 4.73672152e-01 -1.81075353e-02 8.26460719e-01 3.31967533e-01 -5.40849149e-01 5.56242704e-01 -1.74461812e-01 9.81887102e-01 4.80791241e-01 -1.12741494e+00 2.88572103e-01 4.70448375e-01 -1.15930453e-01 7.83929706e-01 1.66688696e-01 -4.46839601e-01 -1.05333662e+00 -1.39769125e+00 4.37498271e-01 -7.99561590e-02 7.60262758e-02 -3.46915513e-01 -8.04896533e-01 8.25493336e-01 3.15951824e-01 8.04438770e-01 6.49053216e-01 -2.24875420e-01 -1.55374452e-01 -2.23252922e-02 -1.52984571e+00 5.09516001e-01 6.63056195e-01 -2.28091463e-01 -3.62313688e-01 4.48268950e-01 6.98864937e-01 -8.85032833e-01 -8.53763819e-01 5.53849578e-01 4.02835280e-01 -8.38470936e-01 1.24565303e+00 -7.61286199e-01 3.35747957e-01 -2.99394101e-01 2.66951740e-01 -1.07567620e+00 -2.55291104e-01 -3.21399778e-01 4.59712207e-01 6.24959886e-01 3.51908922e-01 -5.79376459e-01 1.04482102e+00 5.69929063e-01 -3.92780244e-01 -1.03951013e+00 -8.97917747e-01 -5.63486218e-01 3.93531501e-01 -3.27615649e-01 6.34984851e-01 1.12312961e+00 -2.94703901e-01 -1.00559324e-01 -1.88492581e-01 3.87337022e-02 2.58662909e-01 -7.04639703e-02 2.54426509e-01 -1.13475585e+00 3.58486623e-01 -5.51890731e-01 -8.40655208e-01 -8.30193579e-01 -2.83542108e-02 -1.00819051e+00 -4.63754237e-02 -1.68298769e+00 -1.27141505e-01 -5.50594866e-01 -4.36858237e-01 8.70122850e-01 3.04438919e-01 7.65281379e-01 1.73269227e-01 3.94417532e-02 -5.08357763e-01 8.45518261e-02 1.69657457e+00 -5.42313516e-01 -3.28152388e-01 -5.82921393e-02 -5.76236069e-01 7.37610400e-01 1.03723419e+00 -4.32352662e-01 -2.77048826e-01 -4.63723779e-01 8.51167515e-02 -3.26861084e-01 4.44596916e-01 -1.08288181e+00 3.55543882e-01 3.89210470e-02 9.25234258e-01 -7.22305477e-01 1.25780120e-01 -9.18963313e-01 -1.10365022e-02 7.35600471e-01 -1.87036067e-01 1.93325337e-02 3.37294132e-01 1.76639006e-01 -4.66149956e-01 -1.22412533e-01 9.31771874e-01 -6.89756155e-01 -7.09589362e-01 6.52153850e-01 -3.99057955e-01 6.48594499e-02 1.18203056e+00 -4.07891631e-01 -1.62982166e-01 7.85269439e-02 -9.45546031e-01 3.46321404e-01 1.97868228e-01 5.57649910e-01 7.82242239e-01 -1.22875285e+00 -3.48755598e-01 3.52170765e-01 -4.49534133e-02 6.73544943e-01 2.16152072e-01 8.41920078e-01 -1.13850951e+00 5.10499418e-01 -5.85546017e-01 -8.73552263e-01 -1.07965326e+00 5.58463752e-01 6.32040620e-01 -2.79994905e-01 -7.69094467e-01 9.47150171e-01 1.21658497e-01 -6.23301327e-01 4.15144593e-01 -9.68102753e-01 -4.86255348e-01 4.34354134e-02 4.04483676e-01 -1.07339405e-01 2.88385510e-01 -4.20189917e-01 -4.76878524e-01 4.51271623e-01 -4.07472223e-01 5.66012084e-01 1.49635315e+00 4.43994701e-01 -3.58932257e-01 -6.84997588e-02 1.44144726e+00 -5.07143199e-01 -1.07166600e+00 -4.15601768e-02 -8.26396048e-02 -2.09019527e-01 -1.77329574e-02 -7.36714661e-01 -1.87615812e+00 9.05821860e-01 7.21389472e-01 2.45328292e-01 9.58512664e-01 1.01884276e-01 9.58921790e-01 2.15035468e-01 1.20750383e-01 -1.16512537e+00 2.10670847e-02 4.63769257e-01 8.59621942e-01 -1.27664113e+00 3.46636549e-02 -4.29132491e-01 -4.81359392e-01 1.47463655e+00 8.21166337e-01 -2.42551416e-01 8.75122845e-01 4.07555670e-01 4.00117040e-01 -6.14296079e-01 6.70709368e-03 -7.22570270e-02 3.14291656e-01 7.81892061e-01 5.40095627e-01 1.15882933e-01 -1.36726856e-01 3.91272634e-01 -1.13189146e-01 1.86620615e-02 2.79397100e-01 1.07993388e+00 8.39606486e-03 -9.20890450e-01 -3.62527847e-01 5.54038167e-01 -6.94587111e-01 9.95365009e-02 -4.47915941e-01 1.06011808e+00 4.12135839e-01 4.24189180e-01 3.22657496e-01 -1.45810843e-01 2.88663596e-01 -2.90195882e-01 1.42976061e-01 -5.57069719e-01 -1.09842849e+00 -1.10188566e-01 -4.80969876e-01 -7.94910133e-01 -4.49007481e-01 -3.48896921e-01 -1.49429750e+00 9.33092833e-02 1.70017984e-02 -1.36582315e-01 5.72838724e-01 5.69288194e-01 2.21290112e-01 9.32844698e-01 2.81812906e-01 -7.52797008e-01 -2.03189328e-01 -6.87816501e-01 -4.00434822e-01 3.77273560e-01 5.32664895e-01 -2.82968789e-01 6.98089898e-02 -1.21201314e-01]
[14.69187068939209, -2.627533197402954]
d443fec6-f341-4f39-a0d5-1b2291b15482
seq-u-net-a-one-dimensional-causal-u-net-for
1911.06393
null
https://arxiv.org/abs/1911.06393v1
https://arxiv.org/pdf/1911.06393v1.pdf
Seq-U-Net: A One-Dimensional Causal U-Net for Efficient Sequence Modelling
Convolutional neural networks (CNNs) with dilated filters such as the Wavenet or the Temporal Convolutional Network (TCN) have shown good results in a variety of sequence modelling tasks. However, efficiently modelling long-term dependencies in these sequences is still challenging. Although the receptive field of these models grows exponentially with the number of layers, computing the convolutions over very long sequences of features in each layer is time and memory-intensive, prohibiting the use of longer receptive fields in practice. To increase efficiency, we make use of the "slow feature" hypothesis stating that many features of interest are slowly varying over time. For this, we use a U-Net architecture that computes features at multiple time-scales and adapt it to our auto-regressive scenario by making convolutions causal. We apply our model ("Seq-U-Net") to a variety of tasks including language and audio generation. In comparison to TCN and Wavenet, our network consistently saves memory and computation time, with speed-ups for training and inference of over 4x in the audio generation experiment in particular, while achieving a comparable performance in all tasks.
['Daniel Stoller', 'Simon Dixon', 'Sebastian Ewert', 'Mi Tian']
2019-11-14
null
null
null
null
['audio-generation', 'music-modeling']
['audio', 'music']
[ 2.02210054e-01 -3.29707444e-01 3.47201079e-01 -3.78169745e-01 -2.80440629e-01 -4.97260839e-01 8.17125142e-01 -1.27341077e-01 -6.31580114e-01 6.64332569e-01 3.86551768e-01 -4.88315016e-01 5.34859076e-02 -7.63679266e-01 -8.34779680e-01 -5.97111642e-01 -4.49388444e-01 -1.26394883e-01 2.78038949e-01 -2.94140071e-01 5.35191270e-03 2.96056688e-01 -1.50551486e+00 6.23624384e-01 1.82527512e-01 1.13506413e+00 3.88323575e-01 1.28074503e+00 1.06548540e-01 1.03166699e+00 -5.27892053e-01 -1.73363343e-01 1.00096717e-01 -3.35380912e-01 -1.06490111e+00 -3.69555026e-01 1.89407289e-01 -3.32812637e-01 -6.02293491e-01 5.05648077e-01 7.76066899e-01 6.93211854e-01 3.47727150e-01 -1.03131831e+00 -5.01558423e-01 7.71234274e-01 -1.10453516e-01 5.78301370e-01 1.22971565e-01 1.50399208e-01 1.13924539e+00 -6.97566509e-01 4.16191995e-01 1.32303834e+00 1.01264799e+00 6.36538684e-01 -1.18018579e+00 -6.28396213e-01 3.09949547e-01 1.27482712e-01 -1.18563640e+00 -6.94649637e-01 2.40679830e-01 -4.62880880e-01 1.79958797e+00 2.94638246e-01 4.86195058e-01 1.30395639e+00 3.35432380e-01 7.34072089e-01 5.52861333e-01 -3.03020239e-01 8.80356953e-02 -4.14093524e-01 -2.61830807e-01 4.72519338e-01 -6.55195236e-01 3.64801139e-01 -7.85873413e-01 -5.50723635e-02 1.02104211e+00 -1.96905192e-02 -1.12949498e-01 5.32256544e-01 -1.36604059e+00 6.98846042e-01 5.52064300e-01 4.27776784e-01 -4.93739486e-01 8.78512681e-01 7.12674916e-01 6.38174117e-01 8.27872574e-01 3.77316296e-01 -8.06728542e-01 -4.64499801e-01 -1.08375275e+00 4.21154737e-01 5.73684096e-01 7.79754996e-01 4.41061080e-01 3.71646613e-01 -1.32285759e-01 1.08633268e+00 -2.25659743e-01 -4.05985080e-02 8.42938900e-01 -8.84435833e-01 2.69694924e-01 -1.11251026e-01 -2.11619705e-01 -6.05719209e-01 -5.82257152e-01 -6.24244213e-01 -1.16580331e+00 8.65495726e-02 3.49985719e-01 -5.12561977e-01 -1.05588675e+00 1.93988192e+00 -1.37143269e-01 7.16252744e-01 -2.74179243e-02 7.62534022e-01 5.41751444e-01 1.16319776e+00 2.24156708e-01 -1.46485139e-02 1.22328949e+00 -9.42028403e-01 -6.25012219e-01 -3.24932307e-01 6.42459393e-01 -9.08530951e-01 7.33789444e-01 3.61249179e-01 -1.09635842e+00 -9.31287408e-01 -8.18352938e-01 -2.35562652e-01 -3.70100945e-01 -1.88775256e-01 9.83215570e-01 1.58969909e-01 -1.39439988e+00 1.15681159e+00 -9.38028514e-01 -3.32777619e-01 1.31529063e-01 5.39359152e-01 -2.60176897e-01 3.53187233e-01 -1.56759667e+00 8.46759021e-01 5.40982842e-01 1.66189775e-01 -7.88338184e-01 -9.73237157e-01 -7.70531595e-01 2.15672791e-01 -1.79470882e-01 -8.37885082e-01 1.56308472e+00 -1.03000772e+00 -1.56060147e+00 1.65205330e-01 -2.29525790e-01 -8.19465637e-01 3.22678983e-01 -4.43928480e-01 -4.25700873e-01 -2.78093845e-01 -4.39741403e-01 9.62129533e-01 8.46442938e-01 -4.05988783e-01 -7.14813232e-01 2.41130829e-01 7.41870180e-02 9.49104056e-02 -3.43955725e-01 2.74747401e-01 -1.25245243e-01 -9.82648373e-01 -1.46143645e-01 -8.94555986e-01 -4.82059360e-01 -2.71462321e-01 -4.08437336e-03 -2.70035297e-01 7.88108170e-01 -7.91291118e-01 1.33418190e+00 -2.24304867e+00 1.39662296e-01 3.22193466e-02 -2.42585670e-02 2.58002967e-01 -3.36156517e-01 5.32336950e-01 -2.48647422e-01 5.26234694e-02 -4.52609137e-02 -3.67451370e-01 -2.06366539e-01 4.97869104e-01 -6.33928180e-01 1.27306178e-01 5.30233383e-01 9.28965032e-01 -9.51685548e-01 -1.04525268e-01 5.54865301e-02 7.53504574e-01 -8.47051799e-01 1.44521251e-01 -4.06290770e-01 4.90677416e-01 -8.17414299e-02 2.54401807e-02 1.60467505e-01 -1.77990124e-01 -2.76837330e-02 1.26022309e-01 -3.39907318e-01 8.27457190e-01 -9.41523194e-01 1.70441484e+00 -9.81211543e-01 1.06370401e+00 -3.53100419e-01 -9.48227704e-01 6.77535534e-01 8.78246427e-01 4.15875345e-01 -5.98029196e-01 -1.16800480e-01 2.32678711e-01 1.89459279e-01 -4.11129564e-01 5.45716286e-01 -4.08382952e-01 6.08604215e-02 5.34492433e-01 4.74329650e-01 9.77016836e-02 2.60893852e-01 -6.80252612e-02 1.41829753e+00 3.63609850e-01 -2.43101772e-02 -1.88036431e-02 1.57564983e-01 -5.17885625e-01 5.37464201e-01 6.88766062e-01 3.15155864e-01 6.24895692e-01 3.33534867e-01 -7.76738763e-01 -1.30436718e+00 -7.54888892e-01 5.21379188e-02 1.54932034e+00 -6.76437378e-01 -6.40373707e-01 -5.49331665e-01 -1.04117371e-01 -1.54327303e-01 5.31143725e-01 -4.51919764e-01 -1.21455356e-01 -7.80969203e-01 -7.02180207e-01 9.25326586e-01 9.30995941e-01 3.56199861e-01 -1.49451137e+00 -7.70477057e-01 9.37243760e-01 -2.98189044e-01 -1.04318595e+00 -4.81032342e-01 5.80985367e-01 -9.19740200e-01 -4.38952684e-01 -7.08404720e-01 -6.88783407e-01 1.93725899e-01 -3.08556467e-01 1.21846032e+00 -1.08435564e-01 -3.14582139e-01 -2.13720817e-02 -3.52368027e-01 -4.22922790e-01 -4.17510062e-01 1.85563847e-01 1.07376680e-01 -1.35903448e-01 2.04298738e-02 -9.79457736e-01 -6.21258259e-01 -1.14770234e-01 -9.69973028e-01 1.46713421e-01 5.24137676e-01 1.05001140e+00 2.53359169e-01 2.18964443e-01 6.26401305e-01 -7.16532767e-01 7.50168741e-01 -5.15607357e-01 -3.28138143e-01 -1.12472273e-01 -2.06298679e-01 2.53732264e-01 8.11715007e-01 -8.31430554e-01 -9.51644480e-01 -4.04586270e-02 -4.70266730e-01 -5.36198258e-01 1.28362000e-01 7.48573899e-01 5.39994657e-01 2.88041472e-01 7.06386566e-01 2.38411397e-01 -1.83924675e-01 -5.37096143e-01 2.32003674e-01 4.57151622e-01 5.47833979e-01 -4.27577436e-01 5.06603837e-01 1.00843906e-01 -6.58019483e-02 -9.28552032e-01 -7.78335810e-01 -3.70705724e-01 -6.06299877e-01 -1.82684094e-01 6.97896063e-01 -9.58881319e-01 -7.40525484e-01 5.73210657e-01 -1.51980960e+00 -7.32517481e-01 -3.02746356e-01 7.31967807e-01 -7.11551309e-01 -1.27207607e-01 -1.08473504e+00 -8.05814028e-01 -3.32709879e-01 -7.55677938e-01 8.97098124e-01 -1.86337411e-01 -6.28267646e-01 -1.31743217e+00 5.99542148e-02 -4.59265739e-01 7.92385221e-01 1.14597648e-01 1.00838196e+00 -3.04980189e-01 -3.95027936e-01 -3.41903903e-02 -4.40431060e-04 6.29252970e-01 -1.75720841e-01 -1.02669567e-01 -1.39151728e+00 -1.99898988e-01 -1.65668771e-01 -3.34215254e-01 1.14500940e+00 4.93320197e-01 1.42277288e+00 -3.74064207e-01 -1.05249375e-01 6.97623968e-01 1.05807209e+00 2.20924482e-01 6.74146652e-01 -5.11796633e-03 5.05535483e-01 4.62026060e-01 1.46551743e-01 6.40699208e-01 1.74171086e-02 5.67464948e-01 1.91607490e-01 -2.15968713e-01 -2.12058246e-01 -1.66658521e-01 6.16145074e-01 1.04280913e+00 -5.66737235e-01 -2.74433047e-01 -7.74059713e-01 7.19489872e-01 -2.02506495e+00 -1.26364815e+00 6.16299845e-02 2.00372243e+00 9.92000163e-01 1.49044126e-01 2.75942590e-03 2.93016851e-01 3.36646646e-01 3.05660367e-01 -2.63787538e-01 -7.47146785e-01 1.87763311e-02 7.49372423e-01 3.06686133e-01 4.65411365e-01 -1.19714975e+00 8.13914359e-01 7.10886097e+00 7.27179706e-01 -1.47251105e+00 1.36365533e-01 6.35646820e-01 -2.99504369e-01 -2.32007466e-02 -3.00364979e-02 -6.50977015e-01 2.95651525e-01 1.56807351e+00 5.53397760e-02 6.83226764e-01 4.39492792e-01 2.72568315e-01 2.06275150e-01 -1.38028753e+00 8.40549231e-01 -3.85030031e-01 -1.40935302e+00 -8.65400732e-02 -1.45926341e-01 6.42591119e-01 3.58066797e-01 1.38068467e-01 4.75011706e-01 5.35737574e-01 -1.41794693e+00 8.69362950e-01 5.13047755e-01 9.58653390e-01 -7.85429060e-01 5.04116178e-01 4.24174547e-01 -1.32754564e+00 -1.48359984e-01 -4.54000264e-01 -5.07858157e-01 1.20557122e-01 6.93539798e-01 -8.84414256e-01 2.44584307e-01 8.34226012e-01 7.77061224e-01 -1.39657691e-01 8.12821746e-01 4.92901029e-03 8.44983518e-01 -3.84714633e-01 -7.17990752e-03 5.95798969e-01 2.44305298e-01 1.38488144e-01 1.74364305e+00 6.18251562e-01 -1.81614086e-02 -1.11909732e-01 6.75588131e-01 -7.19831511e-02 -2.91094750e-01 -4.49321508e-01 -1.77316174e-01 2.05660433e-01 9.80518997e-01 -3.86510968e-01 -3.05103272e-01 -4.30845916e-01 9.83720601e-01 3.15155625e-01 5.36905885e-01 -6.84900045e-01 -5.40565908e-01 9.48684454e-01 7.21980482e-02 5.05422354e-01 -5.08150101e-01 -1.75012350e-02 -9.05200303e-01 -7.53972754e-02 -5.01756907e-01 2.66008794e-01 -7.20570028e-01 -1.10040164e+00 8.56322169e-01 -1.11545131e-01 -1.05383945e+00 -8.83377850e-01 -6.25828326e-01 -5.91580570e-01 1.18539739e+00 -1.52717412e+00 -9.41413105e-01 2.45795518e-01 6.53543115e-01 7.13659763e-01 9.58210155e-02 1.03488564e+00 4.04172510e-01 -5.36790974e-02 3.86917979e-01 -3.43827866e-02 2.03822300e-01 4.82046515e-01 -1.08394110e+00 1.04434931e+00 6.81490004e-01 2.16728941e-01 7.24154890e-01 6.54934704e-01 -3.77167434e-01 -9.68355536e-01 -1.29208267e+00 1.34048510e+00 -1.58367366e-01 8.32399011e-01 -5.91471434e-01 -9.14791107e-01 9.21554387e-01 3.35071117e-01 2.76675254e-01 5.70945263e-01 3.91254216e-01 -6.09131753e-01 1.84083715e-01 -3.79194021e-01 6.24300778e-01 1.27599251e+00 -8.48663330e-01 -1.55500710e-01 3.26708764e-01 7.40330398e-01 -4.56279874e-01 -9.40355659e-01 3.49404514e-01 7.41918743e-01 -7.82552660e-01 9.33429241e-01 -8.17092001e-01 5.28011262e-01 -8.50390643e-02 2.43665408e-02 -1.64475632e+00 -5.81456125e-01 -9.27000880e-01 -2.18946949e-01 9.05335546e-01 5.00669718e-01 -4.70937043e-01 4.10776526e-01 1.39351323e-01 -2.66938716e-01 -7.12523103e-01 -8.99774134e-01 -7.51780152e-01 1.09193534e-01 -8.88820767e-01 4.90892291e-01 8.01227808e-01 -5.04768863e-02 3.77678752e-01 -5.78092754e-01 -5.59372343e-02 -9.82002541e-02 -2.58862019e-01 2.89575845e-01 -1.09506035e+00 -5.97854137e-01 -4.59254384e-01 -3.74636412e-01 -1.18140495e+00 2.11681426e-01 -8.89221251e-01 1.47119224e-01 -1.19909954e+00 -1.73087031e-01 -5.45610905e-01 -5.27420163e-01 6.69946909e-01 -6.77900612e-02 2.72435158e-01 1.03955269e-01 -3.44658317e-03 -1.75179154e-01 3.17532569e-01 9.91635799e-01 3.11816763e-02 -2.27609165e-02 1.10298090e-01 -1.21360444e-01 6.42806590e-01 7.59149909e-01 -2.87386924e-01 -5.09525776e-01 -6.93226218e-01 4.87836182e-01 2.13407323e-01 4.65954453e-01 -1.16220212e+00 2.67859638e-01 -3.07980292e-02 6.45587027e-01 -3.69840890e-01 6.48463309e-01 -4.76185828e-01 3.18280727e-01 3.72861028e-01 -6.99220002e-01 2.21731409e-01 3.52106959e-01 3.29121530e-01 -4.55214232e-01 -6.12891559e-03 5.77342212e-01 -2.28967130e-01 -7.92327881e-01 3.75637978e-01 -6.68543339e-01 -1.75058737e-01 4.13660109e-01 -8.41557235e-03 9.77659225e-02 -6.79220676e-01 -8.15371037e-01 -7.91788250e-02 -2.55653918e-01 5.90841651e-01 6.18878186e-01 -1.31933510e+00 -8.26723158e-01 4.00817007e-01 -2.24332020e-01 9.32964757e-02 2.96305299e-01 6.58240736e-01 -3.37942421e-01 4.92209762e-01 -1.10695973e-01 -4.61397171e-01 -1.10312891e+00 2.47301161e-01 3.50860327e-01 -5.16676188e-01 -6.70551717e-01 1.28062558e+00 3.17594141e-01 -2.90440738e-01 2.27861598e-01 -4.90710825e-01 -1.29286796e-01 -2.23546904e-02 6.65396094e-01 2.89183527e-01 2.48774722e-01 -3.81545752e-01 -9.83998850e-02 2.09965885e-01 -1.40123874e-01 -3.21077347e-01 1.45965278e+00 1.30963653e-01 -2.80174389e-02 6.65369093e-01 1.26445556e+00 -4.57795173e-01 -1.58388650e+00 -3.33674699e-01 3.74383517e-02 3.50786177e-05 1.54128268e-01 -6.11753345e-01 -1.02213407e+00 1.15280414e+00 2.91510940e-01 2.24299744e-01 1.14793432e+00 -2.91339964e-01 9.73663330e-01 4.09637690e-01 8.13146904e-02 -1.06190038e+00 4.99564707e-02 1.24532688e+00 9.30069625e-01 -6.88535690e-01 -3.56858939e-01 -2.06288379e-02 -4.05746728e-01 1.41474485e+00 2.85254896e-01 -2.71332264e-01 7.42538989e-01 7.40303755e-01 -8.51743016e-03 9.75980610e-02 -1.50055563e+00 -3.42062749e-02 2.15849876e-01 4.39986467e-01 9.13800716e-01 1.63481180e-02 1.06528223e-01 1.58322081e-01 -5.71522415e-01 1.07900985e-01 2.26057649e-01 9.44981992e-01 -1.95474491e-01 -1.06745422e+00 -3.93737443e-02 3.35512102e-01 -7.00536311e-01 -4.65298265e-01 1.42755941e-01 5.02396584e-01 1.39545441e-01 9.35798049e-01 5.59988618e-01 -5.84848464e-01 1.72043413e-01 4.73344594e-01 5.23332775e-01 -5.36820471e-01 -1.02699268e+00 2.19740808e-01 2.44520918e-01 -5.96755087e-01 -5.08522809e-01 -5.30225694e-01 -1.17649972e+00 -5.00305533e-01 -1.76904112e-01 -1.64197654e-01 7.42090046e-01 9.34700429e-01 2.09976614e-01 1.13106644e+00 3.92171860e-01 -9.49965239e-01 -5.35724640e-01 -1.26211154e+00 -3.81868422e-01 3.45635176e-01 6.51829422e-01 -2.40379274e-01 -2.85884459e-02 5.09756982e-01]
[10.95485782623291, 6.541244983673096]
7da4482e-1170-4537-b7e4-4f7c079f8b4c
efficient-unsupervised-sentence-compression-1
2205.08221
null
https://arxiv.org/abs/2205.08221v1
https://arxiv.org/pdf/2205.08221v1.pdf
Efficient Unsupervised Sentence Compression by Fine-tuning Transformers with Reinforcement Learning
Sentence compression reduces the length of text by removing non-essential content while preserving important facts and grammaticality. Unsupervised objective driven methods for sentence compression can be used to create customized models without the need for ground-truth training data, while allowing flexibility in the objective function(s) that are used for learning and inference. Recent unsupervised sentence compression approaches use custom objectives to guide discrete search; however, guided search is expensive at inference time. In this work, we explore the use of reinforcement learning to train effective sentence compression models that are also fast when generating predictions. In particular, we cast the task as binary sequence labelling and fine-tune a pre-trained transformer using a simple policy gradient approach. Our approach outperforms other unsupervised models while also being more efficient at inference time.
['Georgiana Ifrim', 'Chris Hokamp', 'Demian Gholipour Ghalandari']
2022-05-17
efficient-unsupervised-sentence-compression
https://aclanthology.org/2022.acl-long.90
https://aclanthology.org/2022.acl-long.90.pdf
acl-2022-5
['sentence-compression', 'unsupervised-abstractive-sentence-compression']
['natural-language-processing', 'natural-language-processing']
[ 6.67314887e-01 5.79833567e-01 -3.68948460e-01 -6.51458025e-01 -9.74022627e-01 -3.58870685e-01 5.64108551e-01 5.52429140e-01 -7.07431197e-01 1.08547771e+00 5.79559028e-01 -5.96133113e-01 1.62793901e-02 -9.46463287e-01 -8.37843478e-01 -2.78736383e-01 3.17051351e-01 8.64821792e-01 -1.85984448e-02 -3.26011151e-01 6.23663962e-01 3.35400961e-02 -1.50750339e+00 2.67405003e-01 1.09796560e+00 4.80673671e-01 6.75109446e-01 1.04610419e+00 -1.72403648e-01 9.68182147e-01 -6.98081851e-01 -6.54550612e-01 -1.31240875e-01 -7.49213755e-01 -1.03893101e+00 8.66234228e-02 1.72015399e-01 -3.28426152e-01 -3.09192687e-02 9.92815495e-01 5.50010324e-01 3.40509087e-01 5.81829906e-01 -4.55442458e-01 -2.46152371e-01 1.01300383e+00 -6.43262789e-02 1.27934322e-01 4.87186164e-01 2.51423895e-01 1.11089921e+00 -3.53533894e-01 7.75417864e-01 1.27628255e+00 4.28132474e-01 7.06199288e-01 -1.45753193e+00 -1.77083001e-01 5.80163226e-02 1.89144894e-01 -9.14660931e-01 -7.07363129e-01 6.80348992e-01 -3.29098776e-02 1.50974226e+00 5.17782867e-01 8.51262808e-01 9.46287870e-01 2.33635202e-01 7.55400598e-01 7.70442188e-01 -9.34622705e-01 6.07602298e-01 1.55965574e-02 -2.93999314e-01 8.07574272e-01 -2.99309511e-02 -1.28613934e-01 -3.66436869e-01 -4.61050533e-02 2.27730632e-01 -3.57067227e-01 -5.41452020e-02 -1.51626125e-01 -6.94879234e-01 1.12408566e+00 -2.54019313e-02 1.48259789e-01 -3.01658660e-01 3.37029487e-01 5.58553815e-01 3.80902350e-01 5.47367930e-01 8.76453221e-01 -4.23655838e-01 -6.41776979e-01 -1.37237751e+00 5.08915246e-01 9.81761038e-01 9.06611860e-01 7.39340007e-01 3.06776119e-03 -4.76611018e-01 9.37116385e-01 2.94863731e-01 1.03714213e-01 7.55548477e-01 -1.22569680e+00 6.74121261e-01 3.38442117e-01 -3.41571420e-02 -7.18330026e-01 -1.49698585e-01 -3.50830615e-01 -4.32628304e-01 -1.08628541e-01 -4.57631843e-03 -1.47026405e-01 -9.89587724e-01 1.67015398e+00 5.29700480e-02 -1.86391726e-01 1.58952460e-01 5.27751923e-01 2.07119435e-01 6.92786932e-01 1.01518348e-01 -3.39730531e-01 1.05620182e+00 -9.66569483e-01 -6.52057528e-01 -4.52312529e-01 9.69342053e-01 -5.57416260e-01 1.19624865e+00 2.85555869e-01 -1.51592684e+00 -2.27100596e-01 -1.13957775e+00 -2.43569508e-01 -1.94391608e-01 -1.78593814e-01 5.23693442e-01 7.60337949e-01 -1.05216587e+00 1.08603191e+00 -8.96061957e-01 -1.32134095e-01 4.76062119e-01 5.57494044e-01 1.27054736e-01 -1.64627418e-01 -1.16451812e+00 1.12675881e+00 8.35623085e-01 -3.98804307e-01 -7.58986235e-01 -4.78482753e-01 -1.01589429e+00 3.82054567e-01 4.72438693e-01 -8.99575233e-01 1.55698562e+00 -8.68979871e-01 -1.93022203e+00 4.69724238e-01 -1.81938171e-01 -9.63272214e-01 4.28465813e-01 -6.88864887e-02 3.15098604e-03 3.26650053e-01 -8.64291564e-02 9.56984580e-01 8.90467167e-01 -7.82684505e-01 -4.47697103e-01 6.23738952e-02 2.36371487e-01 4.05687332e-01 -4.33189899e-01 -8.88345316e-02 -4.55444187e-01 -6.60485327e-01 -4.09943134e-01 -6.23120070e-01 -5.79355359e-01 -4.60613459e-01 -5.10998309e-01 -1.64938644e-01 5.22601545e-01 -8.13521564e-01 1.47701788e+00 -1.61386549e+00 2.57123679e-01 2.14137986e-01 -1.27425641e-01 2.48529151e-01 -1.85116351e-01 6.61434233e-01 4.45026428e-01 2.93784887e-01 -6.58351719e-01 -7.37216949e-01 1.58098772e-01 4.65003908e-01 -2.12809354e-01 -1.35805577e-01 3.42670798e-01 1.01408982e+00 -1.00702345e+00 -8.46406281e-01 2.29973286e-01 2.28134602e-01 -1.16294956e+00 2.49672383e-01 -9.57022190e-01 2.56739706e-01 -2.17377946e-01 2.30850935e-01 1.14043415e-01 -7.72366151e-02 4.23209310e-01 2.45631710e-01 2.04170376e-01 1.03342438e+00 -8.80899131e-01 1.89737177e+00 -7.39591658e-01 4.95762825e-01 -3.21716666e-01 -1.33430219e+00 9.43029165e-01 3.57593745e-02 1.34288788e-01 -6.92318141e-01 6.88157231e-02 6.32633939e-02 1.49517460e-02 -5.18576384e-01 8.24563742e-01 -2.70911783e-01 -7.53300637e-02 7.71047175e-01 1.24327213e-01 -6.69679105e-01 6.98991060e-01 2.58050680e-01 1.01089334e+00 2.64397591e-01 7.84252957e-02 -1.53717071e-01 4.62026089e-01 2.70380965e-03 4.27144438e-01 8.66388917e-01 4.19039875e-01 5.21960914e-01 5.80415010e-01 -1.38364404e-01 -1.53757393e+00 -4.85326856e-01 7.93061927e-02 1.10105193e+00 -3.60706896e-01 -7.87424028e-01 -1.10651755e+00 -7.19147503e-01 -2.45088741e-01 1.43939674e+00 -2.11286187e-01 -4.39389348e-01 -7.65398562e-01 -5.65552056e-01 5.31878769e-01 4.19245362e-01 1.22325279e-01 -1.34175718e+00 -9.01486278e-01 4.61729616e-01 -3.69977742e-01 -9.74806190e-01 -5.12903690e-01 4.34382677e-01 -1.19411564e+00 -6.06614053e-01 -3.52556199e-01 -6.91599131e-01 8.06960285e-01 -5.35325468e-01 1.36824596e+00 3.12872201e-01 -1.94501564e-01 -1.60438195e-02 -3.09356034e-01 -5.04691422e-01 -7.95630872e-01 6.08907878e-01 -3.31468135e-01 -5.27620196e-01 2.72198558e-01 -4.81039524e-01 -3.34837526e-01 -3.38451147e-01 -9.42010283e-01 2.04608694e-01 4.59360033e-01 1.01725340e+00 6.62379622e-01 3.82108577e-02 4.87665892e-01 -1.24125242e+00 1.06217241e+00 -1.26117826e-01 -4.69349623e-01 2.24624142e-01 -1.00475657e+00 7.15416849e-01 9.55823123e-01 -5.65824956e-02 -1.06324685e+00 1.17780745e-01 -4.51083273e-01 -1.29753187e-01 3.47721726e-02 6.68360949e-01 6.85686916e-02 3.76017720e-01 6.58513129e-01 3.52801472e-01 1.01324856e-01 -4.43839967e-01 3.20145637e-01 6.68641269e-01 3.34014058e-01 -6.22758210e-01 4.22255397e-01 -1.04210488e-02 -1.29869282e-01 -6.58351362e-01 -8.39216650e-01 2.16462091e-02 -5.79206824e-01 1.43726796e-01 4.52979803e-01 -5.40500104e-01 -2.72277296e-01 -1.70322031e-01 -8.52214277e-01 -6.33696616e-01 -6.53976798e-01 3.60888809e-01 -1.04846787e+00 5.69939613e-01 -5.79800308e-01 -7.16275096e-01 -7.11728156e-01 -1.07721257e+00 1.07969606e+00 6.39462471e-02 -6.11260414e-01 -1.12639380e+00 6.55682385e-02 4.26891387e-01 4.18541312e-01 -1.92070395e-01 1.15297544e+00 -4.72885817e-01 -4.53427821e-01 -1.80239573e-01 1.77707642e-01 3.47675174e-01 -1.46756724e-01 -3.96521837e-02 -6.59796357e-01 -3.44910204e-01 -5.14190309e-02 -6.73184097e-01 9.48033810e-01 4.19776917e-01 1.56047380e+00 -8.56749713e-01 -8.70565921e-02 6.34603858e-01 1.26407158e+00 -1.21159017e-01 7.74810791e-01 5.20756185e-01 2.61364549e-01 5.97392082e-01 5.90091884e-01 4.61352795e-01 4.56271917e-01 5.75031221e-01 2.24604577e-01 2.66752273e-01 3.43358852e-02 -6.46015108e-01 3.58095735e-01 6.60069346e-01 3.63742709e-02 -3.08445603e-01 -6.16388023e-01 4.55124259e-01 -1.76669061e+00 -1.15359187e+00 5.67521513e-01 2.11740065e+00 1.49645758e+00 5.80713809e-01 1.00003690e-01 3.14044893e-01 4.53653902e-01 6.29229844e-02 -4.49316442e-01 -1.06098807e+00 1.40727907e-01 5.83902955e-01 5.04382551e-01 1.07878292e+00 -7.87576377e-01 1.12600553e+00 6.65280533e+00 8.40468764e-01 -9.37021732e-01 -1.74426049e-01 7.56618321e-01 -3.97926390e-01 -7.26528227e-01 3.58169168e-01 -7.60934472e-01 6.00334823e-01 1.35184157e+00 -6.77005053e-02 6.68259859e-01 6.31694496e-01 3.84155631e-01 -2.50669658e-01 -9.82404768e-01 5.01994014e-01 3.97118367e-02 -1.53409970e+00 6.64246455e-02 -1.96818471e-01 5.40671289e-01 -2.20272943e-01 -3.87354910e-01 3.29754770e-01 4.28953350e-01 -1.10759473e+00 6.26021922e-01 7.06341743e-01 7.75749922e-01 -1.08232141e+00 6.09790504e-01 6.51411474e-01 -3.87663871e-01 -1.25536010e-01 -5.02440751e-01 -2.70332932e-01 2.57838368e-01 5.28181195e-01 -1.17627835e+00 1.08739510e-01 2.61246473e-01 5.23322821e-01 -5.56928933e-01 8.51319730e-01 -4.43366855e-01 7.61905015e-01 -3.92714471e-01 -4.93532330e-01 2.60876894e-01 -1.05945431e-01 4.35700536e-01 1.57748044e+00 1.23829722e-01 -1.97197765e-01 1.85437620e-01 8.19512665e-01 -7.08128884e-02 5.48903197e-02 -3.66917223e-01 -2.81898022e-01 4.16412413e-01 8.13380897e-01 -6.87803626e-01 -3.87162864e-01 7.78875202e-02 1.04747546e+00 5.68663538e-01 3.02418135e-03 -4.85111743e-01 -4.96564656e-01 4.75680567e-02 3.65926959e-02 6.48453474e-01 -1.98744282e-01 -4.67967063e-01 -1.10929465e+00 -4.62994091e-02 -9.79665816e-01 1.71917424e-01 -5.37718177e-01 -6.15822971e-01 3.13384384e-01 1.33828729e-01 -6.81537449e-01 -1.05688298e+00 -1.37418091e-01 -5.47456503e-01 8.25677216e-01 -1.41609013e+00 -6.76578760e-01 3.59738588e-01 2.31540978e-01 7.60581136e-01 -1.30232885e-01 1.01862109e+00 -8.34588110e-02 -4.49690342e-01 8.29437375e-01 1.61371469e-01 -9.95716676e-02 2.84013927e-01 -1.42721033e+00 5.72980523e-01 7.50406384e-01 1.83731273e-01 5.13412118e-01 1.04898095e+00 -7.33586788e-01 -1.24627829e+00 -9.47960258e-01 1.40155506e+00 -6.44472986e-02 2.66797453e-01 -4.78836149e-01 -6.20583415e-01 3.97703588e-01 2.86055028e-01 -6.68857098e-01 5.29976845e-01 1.05625473e-01 2.62258984e-02 6.19037561e-02 -1.21767509e+00 6.55530214e-01 8.17230940e-01 -4.89609599e-01 -5.11369288e-01 4.79185641e-01 7.45868921e-01 -4.55889016e-01 -7.43349433e-01 1.57428607e-01 2.11390585e-01 -7.39459157e-01 6.91539228e-01 -6.47670031e-01 9.35916841e-01 1.14635661e-01 2.09360593e-03 -1.36936593e+00 -2.92335421e-01 -7.24686325e-01 -5.62662721e-01 1.14340007e+00 6.82069361e-01 -2.68987805e-01 1.07009232e+00 6.09986067e-01 -2.01213852e-01 -1.07073092e+00 -7.62819409e-01 -4.03873861e-01 1.90652162e-02 -4.85372633e-01 6.33769453e-01 4.66661960e-01 3.94020170e-01 6.11610830e-01 -3.49669963e-01 -5.14408708e-01 3.98859978e-01 8.17492232e-02 4.94938523e-01 -7.14277744e-01 -8.45833838e-01 -6.16142154e-01 -1.15514718e-01 -1.12286711e+00 1.58269078e-01 -9.88268971e-01 2.16155812e-01 -1.49148405e+00 1.41112909e-01 -3.89856786e-01 1.05118215e-01 5.55530012e-01 -2.32243612e-01 -3.95221151e-02 2.68074840e-01 1.41042629e-02 -6.02730393e-01 7.41515040e-01 1.13321519e+00 -2.75408834e-01 -1.44286573e-01 7.33202770e-02 -8.58685493e-01 4.28650677e-01 1.15671611e+00 -5.48878551e-01 -6.69652104e-01 -5.81246138e-01 3.70162129e-01 1.56370416e-01 -6.70082048e-02 -8.65888834e-01 2.24961653e-01 -2.14945022e-02 2.34739095e-01 -4.11438316e-01 3.06820184e-01 -3.74734014e-01 -3.79913688e-01 5.89934051e-01 -8.80707383e-01 -1.66842137e-02 2.38983594e-02 5.15179336e-01 -1.29912004e-01 -1.02870858e+00 7.16839015e-01 -4.30301607e-01 -1.60194933e-01 -3.23778056e-02 -5.33707917e-01 1.85276285e-01 6.34014428e-01 -1.85330346e-01 1.26609117e-01 -6.50501192e-01 -5.48416555e-01 2.86718786e-01 5.59463620e-01 1.42531067e-01 6.31257415e-01 -7.61074066e-01 -7.20658898e-01 1.97162062e-01 -3.41703862e-01 2.19009221e-01 -1.87675789e-01 2.35102728e-01 -5.80547094e-01 6.26917303e-01 -4.55124713e-02 -3.16328973e-01 -1.06309688e+00 4.19768065e-01 3.37676227e-01 -7.02698469e-01 -7.03534007e-01 6.53203964e-01 -7.30028868e-01 -5.37644327e-01 3.95004511e-01 -1.70227647e-01 -2.20844239e-01 -1.18816353e-01 4.15954798e-01 1.15972780e-01 2.61122316e-01 -9.91624296e-02 6.44485280e-02 8.86045992e-02 -4.39853728e-01 -4.19813722e-01 1.50265551e+00 -1.13555983e-01 -1.13869131e-01 1.40271589e-01 1.07337415e+00 -1.33197978e-01 -1.19773066e+00 -4.80333567e-02 2.83433080e-01 -3.34477037e-01 2.08021328e-01 -9.06028986e-01 -6.10864878e-01 7.02718675e-01 8.00839216e-02 1.14358716e-01 1.14719200e+00 -2.88255662e-01 9.11506891e-01 6.44442379e-01 1.59684435e-01 -1.46162498e+00 -4.78171669e-02 6.70332432e-01 5.72694719e-01 -8.14521492e-01 1.72915876e-01 -1.60062030e-01 -6.18362308e-01 1.29552162e+00 4.03772622e-01 -1.67617217e-01 2.71849900e-01 3.22335809e-01 -3.85680377e-01 5.24065457e-02 -1.03411210e+00 2.14785133e-02 2.42177099e-02 5.27069271e-01 5.77197731e-01 -8.21008980e-02 -8.48010361e-01 1.20757051e-01 -8.44757497e-01 8.12312067e-02 5.56536496e-01 1.11503172e+00 -6.14534199e-01 -1.70294130e+00 -3.68034132e-02 9.26989973e-01 -6.77860260e-01 -3.76473814e-01 -2.14955777e-01 1.55061245e-01 -1.41836479e-01 9.52520132e-01 1.01558067e-01 -2.73321927e-01 -2.62634992e-03 2.30260596e-01 6.56052887e-01 -9.11532521e-01 -4.98119920e-01 5.42159565e-03 5.48393548e-01 -2.84985870e-01 -2.41824090e-01 -8.31551254e-01 -1.20828605e+00 -2.42843926e-01 -4.12184834e-01 3.25991720e-01 6.32236004e-01 1.26856637e+00 4.07010853e-01 4.90722060e-01 5.64858913e-01 -6.96324646e-01 -8.79592180e-01 -9.99496460e-01 2.66664531e-02 3.19627136e-01 1.74956739e-01 -1.43480510e-01 5.55646047e-02 1.38321608e-01]
[12.117677688598633, 9.266711235046387]
022eda6f-1a50-4f96-b43e-e55e4d95dc85
x-scitldr-cross-lingual-extreme-summarization
2205.15051
null
https://arxiv.org/abs/2205.15051v1
https://arxiv.org/pdf/2205.15051v1.pdf
X-SCITLDR: Cross-Lingual Extreme Summarization of Scholarly Documents
The number of scientific publications nowadays is rapidly increasing, causing information overload for researchers and making it hard for scholars to keep up to date with current trends and lines of work. Consequently, recent work on applying text mining technologies for scholarly publications has investigated the application of automatic text summarization technologies, including extreme summarization, for this domain. However, previous work has concentrated only on monolingual settings, primarily in English. In this paper, we fill this research gap and present an abstractive cross-lingual summarization dataset for four different languages in the scholarly domain, which enables us to train and evaluate models that process English papers and generate summaries in German, Italian, Chinese and Japanese. We present our new X-SCITLDR dataset for multilingual summarization and thoroughly benchmark different models based on a state-of-the-art multilingual pre-trained model, including a two-stage `summarize and translate' approach and a direct cross-lingual model. We additionally explore the benefits of intermediate-stage training using English monolingual summarization and machine translation as intermediate tasks and analyze performance in zero- and few-shot scenarios.
['Simone Paolo Ponzetto', 'Kai Eckert', 'Niklas Friedrich', 'Tommaso Green', 'Sotaro Takeshita']
2022-05-30
null
null
null
null
['extreme-summarization']
['natural-language-processing']
[ 1.44095331e-01 3.64621915e-02 -4.53944981e-01 -4.47786674e-02 -1.51440167e+00 -6.89668477e-01 7.51573384e-01 5.65153301e-01 -4.31383699e-01 1.23664391e+00 7.37618685e-01 -5.05215466e-01 2.64495939e-01 -2.55614221e-01 -5.99189520e-01 -1.31964639e-01 4.45822746e-01 7.96868563e-01 -3.00298259e-02 -3.48537385e-01 7.46513069e-01 2.26480410e-01 -1.17659688e+00 5.57888210e-01 1.63237596e+00 1.00848295e-01 3.31987351e-01 9.25827742e-01 -4.68338519e-01 6.61302149e-01 -1.18891501e+00 -7.45094955e-01 -2.90051699e-01 -8.49823594e-01 -1.11299229e+00 -4.10892954e-03 7.39084423e-01 1.84267730e-01 -1.30183563e-01 9.67285275e-01 1.04132962e+00 -3.99799831e-02 6.92599475e-01 -4.99364287e-01 -8.09221029e-01 1.29311049e+00 -7.16526091e-01 3.50651443e-01 7.79802144e-01 -2.94840306e-01 1.14753878e+00 -5.92194498e-01 1.16807282e+00 1.18782485e+00 5.73267579e-01 4.00038421e-01 -1.10208035e+00 -2.66064465e-01 -5.60434759e-02 3.51248085e-01 -7.74568260e-01 -7.74390578e-01 7.41038203e-01 -1.93870328e-02 1.46979928e+00 4.28043276e-01 5.11483610e-01 1.44597363e+00 8.03853154e-01 1.20126271e+00 9.62360203e-01 -7.35682309e-01 4.87592556e-02 1.57067508e-01 2.82200158e-01 2.40319252e-01 6.01063490e-01 -9.07775640e-01 -6.32108212e-01 1.63949598e-02 -1.20411068e-01 -6.23247087e-01 -2.51705498e-01 3.24799806e-01 -1.45454597e+00 6.27959967e-01 -3.41979116e-01 6.32975996e-01 -4.14196819e-01 -4.00175601e-01 1.03470325e+00 5.13393402e-01 8.56695771e-01 9.32457268e-01 -2.86539882e-01 -4.31480110e-01 -1.66159379e+00 3.52964580e-01 1.38198972e+00 1.38466597e+00 2.78001547e-01 9.30895880e-02 -5.43980181e-01 1.11566734e+00 -1.84316054e-01 5.40215552e-01 8.79519582e-01 -8.01990628e-01 9.68357146e-01 4.30053830e-01 -3.50858361e-01 -5.78045428e-01 -1.71652675e-01 -5.13995826e-01 -8.64259064e-01 -7.28333592e-01 -1.67889789e-01 -3.70465100e-01 -3.78693372e-01 1.12807024e+00 -2.04281762e-01 -3.45119417e-01 6.31615698e-01 3.54394227e-01 1.28235888e+00 1.11294067e+00 -2.61327147e-01 -8.94375980e-01 1.21784830e+00 -1.35709298e+00 -1.05820334e+00 -1.80150896e-01 8.63722444e-01 -1.33736718e+00 8.56557131e-01 4.38635886e-01 -1.53418159e+00 -4.10763830e-01 -1.05058467e+00 -5.92426300e-01 -4.17739213e-01 6.01976216e-01 1.99028775e-01 2.64302492e-01 -1.00470114e+00 7.69797623e-01 -7.96390891e-01 -9.70446050e-01 2.20041767e-01 -2.42062986e-01 -1.92405254e-01 -8.28008056e-02 -1.03450572e+00 1.23587167e+00 4.63407844e-01 -2.49446049e-01 -3.63510251e-01 -7.89037466e-01 -6.69700444e-01 -1.16967559e-02 2.12656617e-01 -8.30658734e-01 1.47290933e+00 -2.47722179e-01 -1.67948544e+00 8.55412483e-01 -4.16018158e-01 -6.25463307e-01 6.40350461e-01 -5.64433992e-01 -2.79737771e-01 9.98726115e-02 5.60331047e-01 3.50391328e-01 1.47041783e-01 -1.07492459e+00 -5.68010509e-01 -3.05188417e-01 -5.68299413e-01 4.35402691e-01 -3.32142204e-01 3.80362302e-01 -5.62616169e-01 -7.67106891e-01 -5.26274502e-01 -6.55149877e-01 -1.20996900e-01 -1.12473845e+00 -1.11065269e+00 -4.57054585e-01 6.89528704e-01 -1.27083468e+00 1.64099574e+00 -1.24589682e+00 5.47956347e-01 -4.83773291e-01 -3.03155065e-01 2.82191902e-01 -2.37223059e-01 1.03588080e+00 2.46222720e-01 2.41091177e-01 -3.07562768e-01 -8.02229226e-01 4.98420894e-02 3.73893753e-02 -5.11710107e-01 1.35420382e-01 1.26085594e-01 1.04062104e+00 -1.06237125e+00 -8.25407743e-01 -7.86373019e-02 1.69986203e-01 -1.94092512e-01 1.30717218e-01 -2.73569316e-01 3.44324946e-01 -5.25160432e-01 5.93172610e-01 2.22259983e-01 3.15535545e-01 1.02632232e-01 -1.29521303e-02 -6.89560533e-01 6.81853652e-01 -5.57696521e-01 2.27941585e+00 -5.53336978e-01 1.00081730e+00 -2.87246674e-01 -1.01200807e+00 8.50402176e-01 4.51917589e-01 2.48608261e-01 -7.46755779e-01 3.18096370e-01 6.19756043e-01 -3.52775514e-01 -5.62978148e-01 1.14895904e+00 2.44028449e-01 -5.07248282e-01 6.72931969e-01 2.67125368e-01 -6.49406612e-01 1.18720734e+00 5.71566045e-01 9.84665811e-01 3.74716371e-01 5.39547443e-01 -4.55193013e-01 6.39254212e-01 4.41600263e-01 1.56721011e-01 8.74290705e-01 3.15192133e-01 6.31765187e-01 5.87596297e-01 1.23753786e-01 -1.28505862e+00 -6.67487621e-01 -1.48895398e-01 9.64113593e-01 -3.70137930e-01 -6.28178000e-01 -1.05459750e+00 -5.40409267e-01 -3.07917088e-01 1.45134592e+00 -4.33006547e-02 -7.13249519e-02 -6.99133456e-01 -9.18351948e-01 8.09479535e-01 6.16952740e-02 5.74440658e-01 -1.14127719e+00 -4.34555322e-01 4.85412776e-01 -5.91643512e-01 -1.22518671e+00 -4.45811301e-01 3.34932134e-02 -1.00886512e+00 -5.35459161e-01 -9.25284445e-01 -9.40372825e-01 1.18134178e-01 1.64665043e-01 1.47566867e+00 -5.95676184e-01 -3.10317874e-01 2.93534577e-01 -5.06222546e-01 -8.22417557e-01 -1.00548482e+00 9.74581003e-01 -1.60765648e-01 -6.38707519e-01 2.02957347e-01 -4.11304921e-01 -3.29399034e-02 -4.69376445e-01 -7.11960316e-01 3.03289145e-01 1.06245220e+00 5.61990023e-01 4.91698891e-01 -4.39170450e-01 1.14227343e+00 -1.14997113e+00 1.43527687e+00 -5.39581954e-01 3.21544670e-02 7.55003512e-01 -5.23010671e-01 2.19292268e-01 7.95194387e-01 -1.15905993e-01 -1.39961958e+00 -6.06690109e-01 -2.32860968e-01 1.01756550e-01 4.83689122e-02 1.11545384e+00 -4.73060608e-02 5.79205871e-01 6.27409697e-01 4.63411719e-01 -2.53894418e-01 -6.37584448e-01 5.94244301e-01 1.02757502e+00 7.12587535e-01 -7.06609607e-01 3.59952360e-01 -2.08216608e-02 -3.04776400e-01 -1.29684877e+00 -1.15445149e+00 -5.14969528e-01 -8.47556114e-01 -1.63869619e-01 7.30182886e-01 -8.49299669e-01 5.84586710e-02 2.70054638e-01 -1.57112992e+00 -3.62103581e-02 -5.80069780e-01 3.77277285e-01 -5.27413189e-01 7.12321937e-01 -8.84142101e-01 -1.90115914e-01 -1.16592872e+00 -1.01005113e+00 1.31786048e+00 3.14595938e-01 -5.89484096e-01 -1.19387400e+00 6.05516195e-01 4.71703053e-01 2.74753273e-01 1.36858776e-01 8.09909999e-01 -9.08025086e-01 -3.72633636e-02 -2.73530155e-01 3.00707947e-02 3.35390717e-01 2.07903460e-02 1.36088207e-01 -5.59288621e-01 -4.25534964e-01 9.39202867e-03 -5.38116038e-01 1.03201616e+00 3.96982461e-01 7.45329082e-01 -4.42094117e-01 -2.63579190e-01 1.96391791e-01 1.05255890e+00 -2.04790235e-01 5.62140346e-01 5.83994508e-01 7.31147587e-01 5.49577713e-01 4.43528682e-01 2.32429028e-01 7.09844708e-01 3.90461266e-01 -5.12073755e-01 4.08851095e-02 -3.45126152e-01 -7.32490495e-02 5.79039812e-01 2.06500864e+00 -3.00592750e-01 -5.71878910e-01 -7.27877975e-01 6.76096618e-01 -1.94165576e+00 -1.12645364e+00 -2.69397974e-01 1.81043732e+00 1.48303652e+00 -1.01241507e-02 -2.70534456e-01 -3.15239608e-01 4.14704621e-01 2.38883466e-01 -3.29733491e-01 -1.07587838e+00 -5.57067633e-01 2.15023711e-01 2.87699103e-01 2.65049607e-01 -8.79876196e-01 1.21262383e+00 5.90938568e+00 1.05128884e+00 -1.06117904e+00 -9.43745486e-03 5.09767532e-01 -2.61229813e-01 -2.66203791e-01 -2.19857916e-02 -9.07499611e-01 2.35921130e-01 1.39862061e+00 -9.66148973e-01 4.14973162e-02 6.54145896e-01 4.51850921e-01 -1.37862161e-01 -1.23769248e+00 6.63319170e-01 7.25129128e-01 -1.48621738e+00 5.88545859e-01 -2.21539095e-01 1.35787177e+00 2.35118300e-01 -3.60511810e-01 6.44830108e-01 2.45289564e-01 -6.65437400e-01 6.40714705e-01 5.66580474e-01 6.53370142e-01 -8.19492519e-01 8.75467360e-01 4.64795440e-01 -6.58985496e-01 5.09059310e-01 -5.43248653e-01 2.93424278e-01 3.65218788e-01 5.37367761e-01 -7.17445731e-01 1.28956687e+00 3.71422321e-01 1.29881537e+00 -7.52625823e-01 8.14178348e-01 -2.92669713e-01 7.34202504e-01 4.90641817e-02 -2.07041502e-01 2.92297184e-01 -3.82881731e-01 1.05546379e+00 2.03062272e+00 6.27071917e-01 -3.65582377e-01 1.20639503e-01 6.44635677e-01 -5.48287749e-01 6.75378919e-01 -5.76370060e-01 -2.61947900e-01 2.64140934e-01 1.27423179e+00 -5.44160306e-01 -6.76600277e-01 -3.41680735e-01 1.16236150e+00 3.07474136e-01 2.82584041e-01 -4.67184007e-01 -7.67862618e-01 -2.11579636e-01 -3.17217797e-01 1.53001379e-02 -1.63981974e-01 -4.39032078e-01 -1.67201614e+00 5.75950667e-02 -1.21999896e+00 2.47452810e-01 -5.08716106e-01 -1.18590641e+00 5.78099430e-01 6.13128766e-02 -1.02278984e+00 -4.54481930e-01 -6.95949197e-02 -1.03247035e+00 7.68950880e-01 -1.62385571e+00 -1.18699861e+00 2.72307545e-01 -7.72286803e-02 1.31533933e+00 -4.46779728e-01 7.56485522e-01 2.13755250e-01 -9.27394271e-01 4.74488974e-01 6.24173939e-01 -2.60317594e-01 1.18570817e+00 -1.33103180e+00 4.77832258e-01 9.90930736e-01 8.83181319e-02 7.10962296e-01 9.66570973e-01 -7.83344746e-01 -1.68662786e+00 -1.24699056e+00 1.66427934e+00 -5.52206814e-01 9.05307412e-01 -7.01573566e-02 -8.98093402e-01 6.97917581e-01 1.18958187e+00 -1.14753699e+00 5.42047381e-01 5.28564192e-02 3.32170248e-01 3.31217237e-02 -6.10511184e-01 9.59478676e-01 7.20961273e-01 -1.97166741e-01 -1.13646054e+00 5.86134851e-01 6.74107313e-01 -4.10509676e-01 -1.18384147e+00 2.21297711e-01 2.46067286e-01 -5.56231081e-01 6.45625591e-01 -5.45634151e-01 1.03908527e+00 1.76483825e-01 4.13078487e-01 -1.83384895e+00 1.03104867e-01 -8.18708420e-01 -1.09387994e-01 1.68140960e+00 6.31580889e-01 -3.20584446e-01 3.17206830e-01 -1.85540706e-01 -8.78264427e-01 -6.65256500e-01 -8.52312267e-01 -4.64332134e-01 6.38134480e-01 -3.74977812e-02 -1.41697880e-02 9.12789941e-01 4.29645360e-01 1.19457638e+00 -1.74187183e-01 -6.08655035e-01 5.89807212e-01 3.93582195e-01 8.31828177e-01 -1.09343660e+00 1.32019088e-01 -9.24604535e-01 1.62980527e-01 -1.02654397e+00 4.70085800e-01 -1.26691282e+00 -7.32036866e-03 -2.26258969e+00 6.29890025e-01 2.99518049e-01 2.81766534e-01 1.37140259e-01 -3.65669757e-01 2.03207694e-03 -2.95186136e-03 4.18146491e-01 -1.04821861e+00 6.79928184e-01 1.23706746e+00 -3.37043494e-01 -3.63931984e-01 -1.67480409e-01 -9.01453435e-01 3.56975704e-01 7.72899270e-01 -2.27172390e-01 -2.00030863e-01 -5.24917543e-01 2.02939272e-01 1.54496044e-01 -4.20942515e-01 -9.24440503e-01 5.39771795e-01 2.16754049e-01 1.43370986e-01 -1.00466096e+00 -2.82456189e-01 6.46791682e-02 -2.90857434e-01 2.06636161e-01 -6.89179957e-01 3.07034314e-01 5.08545339e-01 1.60774037e-01 -4.14610714e-01 -4.68566954e-01 3.98321629e-01 -2.35985979e-01 -2.52736062e-01 -2.71436602e-01 -7.42515445e-01 4.03985500e-01 7.84728587e-01 1.49092093e-01 -5.59222817e-01 -2.36214653e-01 -2.18118519e-01 5.40808558e-01 3.56651396e-01 5.46682119e-01 3.08903694e-01 -8.84686589e-01 -1.46893382e+00 -4.33525354e-01 -1.12965722e-02 -1.46542981e-01 1.37331367e-01 9.45617676e-01 -6.71053708e-01 8.88648033e-01 -1.80530861e-01 -4.33600605e-01 -1.20070517e+00 2.54486322e-01 -2.59531051e-01 -9.25450087e-01 -5.80087662e-01 2.29633376e-01 -5.75378954e-01 -5.09833515e-01 -4.39474359e-03 -3.00812781e-01 -5.42434454e-01 5.37483871e-01 5.08949220e-01 7.95056045e-01 4.43061382e-01 -5.59714079e-01 1.16558485e-01 4.62844759e-01 -5.52027345e-01 -2.07076192e-01 1.39866829e+00 -2.10191220e-01 -6.07569158e-01 8.44917119e-01 1.14671302e+00 3.05863947e-01 -2.73943484e-01 -1.77445874e-01 3.69349718e-01 3.90965283e-01 3.26741748e-02 -8.83909285e-01 -4.28984731e-01 8.29533577e-01 -3.23851198e-01 1.77666724e-01 7.59027660e-01 1.65877566e-02 8.84111702e-01 8.53509188e-01 -2.12599766e-02 -1.59865522e+00 -6.97792247e-02 8.89743984e-01 1.09285605e+00 -1.06753075e+00 5.78323364e-01 8.08320493e-02 -8.38311076e-01 1.33585906e+00 1.19411454e-01 9.45015922e-02 -1.20372005e-01 1.20010205e-01 -4.66822423e-02 -5.59215546e-02 -9.00592864e-01 2.82829672e-01 4.95387793e-01 -3.85438800e-02 9.72885489e-01 -9.59806815e-02 -9.42706287e-01 3.89010847e-01 -7.46285737e-01 -1.43058896e-01 9.17667329e-01 1.12852776e+00 -4.10209030e-01 -1.17143822e+00 -2.07426012e-01 6.12522304e-01 -9.16041791e-01 -3.69712055e-01 -7.96205342e-01 7.40100026e-01 -5.56716383e-01 9.67060685e-01 -2.70351432e-02 1.97880521e-01 5.29883385e-01 1.06024712e-01 5.24468720e-01 -9.35935318e-01 -7.39394665e-01 2.89569110e-01 5.97223818e-01 7.23530650e-02 -4.58440870e-01 -1.14597869e+00 -8.85240436e-01 -4.76541787e-01 -1.46274701e-01 6.01227999e-01 7.95864642e-01 8.87896061e-01 4.74414527e-01 9.25514162e-01 2.56499320e-01 -1.04594064e+00 -6.02016926e-01 -1.54198575e+00 -1.30706966e-01 6.65412545e-02 -1.15139760e-01 2.41175026e-01 -1.03067681e-01 4.09680039e-01]
[12.405743598937988, 9.55396556854248]
acc16a74-f180-49e4-bb4c-4a7d373aa5be
low-rank-quaternion-matrix-completion-based
2211.12793
null
https://arxiv.org/abs/2211.12793v1
https://arxiv.org/pdf/2211.12793v1.pdf
Low Rank Quaternion Matrix Completion Based on Quaternion QR Decomposition and Sparse Regularizer
Matrix completion is one of the most challenging problems in computer vision. Recently, quaternion representations of color images have achieved competitive performance in many fields. Because it treats the color image as a whole, the coupling information between the three channels of the color image is better utilized. Due to this, low-rank quaternion matrix completion (LRQMC) algorithms have gained considerable attention from researchers. In contrast to the traditional quaternion matrix completion algorithms based on quaternion singular value decomposition (QSVD), we propose a novel method based on quaternion Qatar Riyal decomposition (QQR). In the first part of the paper, a novel method for calculating an approximate QSVD based on iterative QQR is proposed (CQSVD-QQR), whose computational complexity is lower than that of QSVD. The largest $r \ (r>0)$ singular values of a given quaternion matrix can be computed by using CQSVD-QQR. Then, we propose a new quaternion matrix completion method based on CQSVD-QQR which combines low-rank and sparse priors of color images. Experimental results on color images and color medical images demonstrate that our model outperforms those state-of-the-art methods.
['LiZhi Liu', 'Jifei Miao', 'Kit Ian Kou', 'Liqiao Yang', 'Juan Han']
2022-11-23
null
null
null
null
['matrix-completion']
['methodology']
[-2.28018016e-01 -5.03633559e-01 2.53894925e-01 1.17653802e-01 -5.63901544e-01 -3.46556120e-02 1.59404978e-01 -8.23983178e-02 -7.35389233e-01 5.40376484e-01 -5.79006299e-02 -1.11934826e-01 3.68216373e-02 -5.20544767e-01 -4.48989600e-01 -7.96446919e-01 -4.30211332e-03 -1.33289158e-01 1.75724164e-01 -6.30156755e-01 1.79213792e-01 2.63813585e-01 -1.02230012e+00 -2.07180277e-01 8.50980997e-01 6.45361841e-01 7.09317699e-02 4.09955382e-01 2.40687966e-01 5.81502497e-01 -3.92264068e-01 -5.20847678e-01 3.35421503e-01 -4.53822047e-01 -4.19037908e-01 4.15912509e-01 7.53092691e-02 -4.20634866e-01 -5.82682312e-01 1.41240180e+00 3.30720186e-01 1.49546891e-01 5.07416785e-01 -1.26092958e+00 -8.49354267e-01 4.90232222e-02 -1.23372936e+00 -3.43117677e-02 4.28656697e-01 -3.48694056e-01 9.67643082e-01 -1.44775045e+00 5.57052433e-01 1.45368183e+00 4.43539381e-01 -7.96619207e-02 -1.21026123e+00 -6.05622947e-01 2.63638627e-02 6.71170592e-01 -1.88229489e+00 2.19117582e-01 7.37445831e-01 -1.39915958e-01 2.76499629e-01 3.36630285e-01 8.90950382e-01 1.34833634e-01 1.90079376e-01 7.43856490e-01 1.32249486e+00 -3.76471758e-01 1.74067363e-01 -2.58831978e-01 -4.20063525e-01 9.88896370e-01 4.79836136e-01 -3.13919604e-01 -4.19120580e-01 -4.57688756e-02 1.08112299e+00 2.51492679e-01 -4.20023799e-01 -4.21827942e-01 -1.87738895e+00 8.19837213e-01 5.29676974e-01 9.12701115e-02 -5.83239317e-01 2.56912764e-02 1.69718470e-02 -3.84545214e-02 2.14228377e-01 -1.04359224e-01 1.89121753e-01 -5.29037183e-03 -7.45195866e-01 -1.12082161e-01 6.06781721e-01 1.00058472e+00 1.01271951e+00 2.38221586e-01 2.39436492e-01 8.19617867e-01 6.66068733e-01 1.09778249e+00 2.67342627e-01 -8.49085867e-01 4.68533516e-01 4.64050621e-01 3.32606494e-01 -1.56056917e+00 -2.64025807e-01 -1.88713074e-01 -1.42795908e+00 2.19272580e-02 1.18238002e-01 -5.87248765e-02 -5.91968894e-01 1.18492270e+00 4.64719057e-01 3.30645204e-01 1.43875018e-01 1.35792959e+00 7.12898135e-01 1.12699425e+00 -2.33115181e-01 -5.16881824e-01 1.38928425e+00 -3.80792856e-01 -9.74220037e-01 2.37010881e-01 2.70332061e-02 -1.06806266e+00 6.40677035e-01 7.98801959e-01 -8.78229976e-01 -4.67795074e-01 -1.34014630e+00 -1.96008151e-03 4.10654657e-02 4.52379823e-01 5.08489370e-01 5.61745822e-01 -7.44075060e-01 2.73942679e-01 -9.40832496e-01 -4.18328531e-02 -2.05865622e-01 1.95002094e-01 -5.79353452e-01 -3.32824379e-01 -1.17471492e+00 8.55365276e-01 2.57631540e-01 6.06079340e-01 -4.16745871e-01 -8.94032419e-02 -8.86036932e-01 -4.14794743e-01 1.93606913e-01 -2.14851588e-01 8.47818077e-01 -6.03930354e-01 -1.59791863e+00 4.52374101e-01 -1.27527729e-01 1.34009257e-01 3.42498243e-01 -2.04003796e-01 -4.14896935e-01 5.83030283e-01 1.41532138e-01 2.40532175e-01 1.23486090e+00 -1.31016612e+00 -4.96238500e-01 -2.53419220e-01 -1.88940376e-01 3.23259443e-01 -1.46644399e-01 -1.68816194e-01 -1.03220057e+00 -7.80601799e-01 1.08108997e+00 -1.21629965e+00 -4.72839713e-01 -1.78709120e-01 -3.43071789e-01 -1.46104470e-01 2.32054278e-01 -8.91617537e-01 1.32239306e+00 -2.28209305e+00 6.14035785e-01 4.58861142e-01 1.11301072e-01 3.85206372e-01 -1.20077699e-01 7.98879862e-01 -2.44931534e-01 -2.34693617e-01 -2.25213155e-01 -5.23277149e-02 -5.48280440e-02 3.40534955e-01 -2.00852200e-01 1.11139596e+00 3.20854336e-01 3.04958940e-01 -1.02739096e+00 -7.61592329e-01 2.77948886e-01 6.78126335e-01 -4.32474017e-01 3.67262214e-02 5.20571530e-01 2.21383870e-01 -4.96952146e-01 6.31696820e-01 1.31586456e+00 -1.37444541e-01 3.36927265e-01 -8.76392365e-01 -4.32236075e-01 -4.82183874e-01 -1.93893802e+00 1.52171421e+00 -1.53336346e-01 1.98682696e-01 2.06836507e-01 -8.25233400e-01 8.29899013e-01 2.00135827e-01 6.64192379e-01 -7.53956974e-01 -1.75269619e-02 2.38457277e-01 -2.09692851e-01 -2.43333727e-01 7.95976102e-01 -4.04996067e-01 8.45012441e-02 1.59176826e-01 -2.74389356e-01 -2.34004781e-01 7.21103370e-01 5.19182861e-01 6.41307890e-01 2.54639834e-01 5.07449687e-01 2.39774734e-02 9.92183983e-01 -2.03698605e-01 1.05022562e+00 5.85859977e-02 -2.55081058e-01 8.47563863e-01 4.40912157e-01 -1.78739727e-02 -8.76228034e-01 -1.17553604e+00 -9.70129967e-02 4.94409084e-01 7.23170042e-01 -6.67559385e-01 -4.66059983e-01 1.91562474e-02 -1.89187229e-01 9.80836377e-02 -3.29937041e-01 1.13187224e-01 -6.32451177e-01 -9.51984763e-01 4.84924763e-02 2.52144396e-01 9.00396168e-01 -2.78676450e-01 -2.67160177e-01 3.29748988e-01 -4.16090459e-01 -1.05612683e+00 -4.48187321e-01 -5.07181227e-01 -8.35518837e-01 -1.07282269e+00 -1.17986631e+00 -6.54842615e-01 1.10000682e+00 1.02418613e+00 6.75931156e-01 1.75525978e-01 -2.42389515e-01 7.15574682e-01 -7.92652786e-01 -1.54689148e-01 -6.65620416e-02 -6.41393125e-01 2.61132538e-01 6.09094620e-01 4.91559170e-02 -1.37336671e-01 -9.82860506e-01 4.15313184e-01 -1.31565118e+00 1.13586456e-01 1.06691504e+00 8.50357831e-01 9.75882411e-01 2.82293675e-03 2.42575899e-01 -5.61229765e-01 5.93781590e-01 -1.75733835e-01 -8.17613006e-01 2.90978789e-01 -3.33473235e-01 3.12788449e-02 6.26115918e-01 -1.65564284e-01 -9.54010725e-01 2.50059634e-01 -9.20537487e-02 -4.35978323e-01 5.95644176e-01 8.36741149e-01 4.17747311e-02 -1.20289072e-01 2.51904190e-01 4.40478206e-01 2.33468294e-01 -4.21814889e-01 7.94463158e-01 4.53036129e-01 3.65379512e-01 -1.93182841e-01 1.25734115e+00 8.10550749e-01 4.17244673e-01 -1.15132952e+00 -4.26604658e-01 -8.05966198e-01 -6.37341380e-01 -2.10959688e-01 8.36356997e-01 -1.26164293e+00 -1.11795521e+00 4.69492614e-01 -9.47724342e-01 6.82025433e-01 1.68636322e-01 1.22118199e+00 -3.41571003e-01 1.19588161e+00 -5.63424349e-01 -7.04422534e-01 -6.87553212e-02 -1.14546263e+00 8.05146635e-01 2.77433068e-01 4.43017244e-01 -6.71860397e-01 1.82447001e-01 8.71026441e-02 -7.43336231e-02 2.04956323e-01 4.57224429e-01 2.88202465e-01 -7.53801763e-01 -2.37731576e-01 -4.85694051e-01 6.13175929e-01 1.52262509e-01 1.03870057e-01 -9.08833072e-02 -6.05678737e-01 -3.59989330e-02 -1.41844794e-01 6.06257141e-01 4.03758287e-02 4.76137102e-01 -1.56187505e-01 1.00881130e-01 5.50172985e-01 1.73963785e+00 4.48186100e-02 8.66118789e-01 5.02297461e-01 7.65985012e-01 4.19565663e-02 1.18884790e+00 9.40680802e-01 6.37098193e-01 4.50374335e-01 4.60527956e-01 -3.65489632e-01 2.33962476e-01 -2.80265566e-02 3.94525111e-01 1.58751035e+00 -5.16919613e-01 5.18952727e-01 -5.78224659e-01 2.21059635e-01 -1.89013255e+00 -7.18295157e-01 -4.77125436e-01 2.46426463e+00 7.37940252e-01 -3.09347332e-01 2.56171115e-02 3.22931290e-01 7.46622980e-01 1.75020188e-01 -3.79837215e-01 -1.72556326e-01 -9.46732461e-02 9.14299712e-02 5.97705007e-01 2.38363311e-01 -1.06701875e+00 5.72951853e-01 5.41955614e+00 6.94900692e-01 -9.26586509e-01 -1.90170467e-01 2.83335540e-02 5.84625959e-01 -2.34807685e-01 1.49684221e-01 -4.21685517e-01 1.41052589e-01 2.53433645e-01 -7.01165572e-02 5.78562319e-01 4.77411211e-01 1.95412323e-01 -3.93741816e-01 -5.45191467e-01 1.60806310e+00 3.19580704e-01 -8.69530439e-01 2.61642188e-01 -1.27146915e-01 7.36152172e-01 -3.23264122e-01 2.05784068e-01 1.50622323e-01 -4.68403585e-02 -4.80606616e-01 5.53429067e-01 5.85304797e-01 7.63247550e-01 -8.52418482e-01 6.23131871e-01 5.31170219e-02 -1.53527665e+00 3.30615431e-01 -8.95354271e-01 2.33889326e-01 -2.42478549e-02 5.97019315e-01 -6.51606560e-01 1.09474468e+00 5.12368023e-01 1.03400207e+00 -6.07318342e-01 1.08102214e+00 -5.01424074e-01 4.92406845e-01 -2.35385150e-01 -5.54110706e-02 1.95087180e-01 -1.18888581e+00 4.83626515e-01 9.78133738e-01 3.74166220e-01 6.52686775e-01 1.51999891e-01 4.71240819e-01 2.07054168e-01 5.78666210e-01 -5.76494336e-02 -1.47196889e-01 1.80605307e-01 1.50965106e+00 -8.00357163e-01 -1.74795896e-01 -7.15874553e-01 1.13115799e+00 -9.98239666e-02 5.32108486e-01 -7.33127415e-01 -7.34006047e-01 3.84282380e-01 -4.32895094e-01 4.98652637e-01 -8.32541108e-01 3.09617788e-01 -1.58327556e+00 -6.81622773e-02 -1.04423273e+00 3.01729113e-01 -7.48650074e-01 -1.06824422e+00 2.30249465e-01 -1.28543898e-01 -2.16578913e+00 2.94525586e-02 -6.60852551e-01 -1.38088346e-01 9.65369105e-01 -1.71008492e+00 -1.06007195e+00 -2.73454875e-01 9.32904363e-01 -1.74312517e-02 2.07661223e-02 6.75106943e-01 2.62647808e-01 -6.83315217e-01 1.16711490e-01 6.27532125e-01 2.44200960e-01 7.39562452e-01 -1.38831592e+00 -5.19446321e-02 1.15481210e+00 2.07821578e-01 9.58384633e-01 6.52772188e-01 -5.85543811e-01 -2.19164252e+00 -7.85569906e-01 4.20426220e-01 2.99614280e-01 5.59690177e-01 2.93550819e-01 -6.17603719e-01 4.73124355e-01 2.60792345e-01 -5.43115586e-02 8.70222092e-01 -3.09487969e-01 -3.41296315e-01 -5.32617569e-01 -6.30939364e-01 7.12937236e-01 3.38171631e-01 -4.66949821e-01 -4.96763676e-01 3.39394987e-01 1.52460501e-01 -3.31098914e-01 -1.24528587e+00 1.89142138e-01 3.75366807e-01 -1.04214442e+00 1.14124978e+00 -7.84065947e-02 -9.36039072e-03 -1.17530847e+00 -3.39078993e-01 -1.32439148e+00 -4.31390524e-01 -6.67951822e-01 2.99292266e-01 8.61631215e-01 -2.31740326e-01 -4.88757133e-01 3.65176767e-01 2.13734627e-01 1.58335865e-01 -4.60284829e-01 -1.05693471e+00 -5.55013120e-01 -3.16613406e-01 -1.20938249e-01 1.47122949e-01 6.43646479e-01 9.21995938e-02 2.66045660e-01 -5.86940467e-01 5.11765778e-01 9.99429762e-01 3.49144131e-01 7.90127993e-01 -7.93019593e-01 -8.40705186e-02 1.43384069e-01 -5.73802233e-01 -1.02088594e+00 -3.28731596e-01 -5.63231349e-01 1.00701898e-01 -1.82170129e+00 1.62429631e-01 -4.66599651e-02 -2.34958604e-01 2.19935738e-02 -4.93251652e-01 6.56908751e-01 6.09084785e-01 4.52751398e-01 -9.30801809e-01 9.09383118e-01 1.61100340e+00 -1.32951021e-01 1.75877646e-01 -2.58511990e-01 -3.72797579e-01 8.16763818e-01 2.78662205e-01 -9.35752392e-02 -3.11473638e-01 -1.66263029e-01 6.53317630e-01 2.73568094e-01 8.74917060e-02 -8.93973827e-01 1.32837728e-01 -1.65552273e-01 4.92534012e-01 -1.00576746e+00 5.77402890e-01 -6.95602417e-01 7.04562888e-02 6.96572185e-01 3.99881542e-01 2.73573607e-01 -2.32096940e-01 8.16011012e-01 -6.42609239e-01 -3.87422405e-02 7.66573131e-01 -2.49612346e-01 -9.58720446e-01 3.46256375e-01 -5.86281717e-01 -1.67211205e-01 9.11866963e-01 -1.12076320e-01 -1.09997205e-01 -4.67350900e-01 -6.69995129e-01 1.63576081e-01 1.82880357e-01 4.28949408e-02 1.30567741e+00 -1.61676610e+00 -7.87425637e-01 8.90869126e-02 7.56950155e-02 -1.14204764e-01 3.52513224e-01 9.57234919e-01 -1.09672976e+00 3.39498460e-01 -3.25560838e-01 -6.33047521e-01 -1.09947598e+00 4.11277771e-01 -1.36437342e-01 -4.47121337e-02 -3.30956191e-01 6.43776357e-01 5.48390895e-02 -7.18214959e-02 -1.30393282e-01 -1.56959295e-01 -4.55419213e-01 2.02457860e-01 5.33409059e-01 6.07462168e-01 1.35425082e-03 -1.25981569e+00 -4.25335050e-01 8.64754617e-01 -2.22186521e-02 -4.05135512e-01 1.29845870e+00 -3.96534771e-01 -6.73562884e-01 3.03387254e-01 1.29997766e+00 1.53819919e-01 -1.02564859e+00 -2.74990737e-01 -3.87396872e-01 -7.39923954e-01 5.04772812e-02 -1.01113789e-01 -9.66310263e-01 7.65190423e-01 6.47307098e-01 2.76445597e-02 1.41578531e+00 -6.87073588e-01 7.37643301e-01 5.83123386e-01 6.24030352e-01 -1.16965830e+00 3.91338557e-01 3.04337174e-01 1.08565605e+00 -1.23466063e+00 8.03400755e-01 -6.28792226e-01 -8.44674945e-01 1.34662545e+00 2.94339538e-01 -4.10040706e-01 7.47542799e-01 -7.10396588e-01 1.35698780e-01 2.38586068e-01 -1.38756320e-01 -3.72553796e-01 4.09859568e-01 3.12157780e-01 4.06518638e-01 1.16221376e-01 -9.34184313e-01 1.54788256e-01 1.64633617e-01 -1.19268276e-01 8.38615239e-01 1.13802505e+00 -2.97586977e-01 -1.25171506e+00 -1.02456093e+00 -9.15801898e-02 -3.05758893e-01 -4.43861783e-02 9.16776881e-02 6.16730869e-01 -4.95547839e-02 1.09314251e+00 -4.00403351e-01 -4.05149400e-01 5.53683102e-01 -7.06357300e-01 5.71112096e-01 -3.65755171e-01 1.24858342e-01 4.64472115e-01 -3.34068686e-01 -5.78024685e-01 -8.70545506e-01 -7.30330348e-01 -1.62901473e+00 -6.88267648e-02 -2.28634611e-01 4.38350528e-01 8.43763232e-01 5.00424027e-01 -5.89147955e-02 8.14507753e-02 1.03530276e+00 -8.39535892e-01 -7.51694500e-01 -6.36008799e-01 -1.27423215e+00 7.40201652e-01 1.68677434e-01 -6.89023674e-01 -1.31446078e-01 2.02953443e-01]
[10.823116302490234, -1.6898629665374756]
8e1bedbb-eec4-4ff6-a09b-ed6cf88f4cca
neural-laplace-control-for-continuous-time
2302.12604
null
https://arxiv.org/abs/2302.12604v2
https://arxiv.org/pdf/2302.12604v2.pdf
Neural Laplace Control for Continuous-time Delayed Systems
Many real-world offline reinforcement learning (RL) problems involve continuous-time environments with delays. Such environments are characterized by two distinctive features: firstly, the state x(t) is observed at irregular time intervals, and secondly, the current action a(t) only affects the future state x(t + g) with an unknown delay g > 0. A prime example of such an environment is satellite control where the communication link between earth and a satellite causes irregular observations and delays. Existing offline RL algorithms have achieved success in environments with irregularly observed states in time or known delays. However, environments involving both irregular observations in time and unknown delays remains an open and challenging problem. To this end, we propose Neural Laplace Control, a continuous-time model-based offline RL method that combines a Neural Laplace dynamics model with a model predictive control (MPC) planner--and is able to learn from an offline dataset sampled with irregular time intervals from an environment that has a inherent unknown constant delay. We show experimentally on continuous-time delayed environments it is able to achieve near expert policy performance.
['Mihaela van der Schaar', 'Hao Sun', 'Zhaozhi Qian', 'Alihan Hüyük', 'Samuel Holt']
2023-02-24
null
null
null
null
['offline-rl']
['playing-games']
[ 1.51218340e-01 2.41922781e-01 -2.24779144e-01 2.14972079e-01 -3.83727401e-01 -7.10290253e-01 7.64873207e-01 5.51131189e-01 -5.75306773e-01 1.21774805e+00 -4.04034436e-01 -4.78113353e-01 -5.29696107e-01 -7.54513502e-01 -9.15451348e-01 -8.78749728e-01 -9.79902387e-01 7.94967651e-01 8.58249515e-02 -3.15425247e-01 -6.46390468e-02 3.01821470e-01 -1.24349475e+00 -6.25761926e-01 8.72825623e-01 9.17772174e-01 2.89090931e-01 8.61040831e-01 3.41305971e-01 7.99504220e-01 -5.24060905e-01 6.59407735e-01 5.03772378e-01 -7.60055184e-02 -4.19164419e-01 1.64838135e-01 -4.98485506e-01 -3.86446625e-01 -5.28420925e-01 8.70473504e-01 2.42445096e-01 6.09460175e-01 4.27727014e-01 -1.23984563e+00 -3.63984965e-02 2.99552321e-01 -2.65120953e-01 1.67251900e-01 1.77613661e-01 5.52448988e-01 4.02107298e-01 3.09248567e-01 3.72592479e-01 1.11147594e+00 5.03495574e-01 4.69935149e-01 -1.47071648e+00 -1.74631223e-01 6.84078276e-01 1.55846938e-01 -1.03118634e+00 7.32533336e-02 4.93185222e-01 -3.01613927e-01 9.08359468e-01 -8.87210146e-02 8.59976590e-01 9.71038401e-01 6.50762022e-01 6.18720114e-01 1.29504454e+00 -8.43838602e-02 9.38775063e-01 -2.64505327e-01 -5.60480654e-01 3.63712043e-01 -1.06451333e-01 7.62693346e-01 9.66949984e-02 -4.62516770e-02 8.06478024e-01 -1.86626043e-03 -2.65207052e-01 -2.23644748e-02 -1.33360183e+00 6.53887868e-01 2.77590394e-01 -1.60820372e-02 -8.70153606e-01 2.68804818e-01 4.00410682e-01 1.06233120e+00 3.18087757e-01 5.96443594e-01 -7.01675713e-01 -2.22058728e-01 -4.26099598e-01 5.02025723e-01 1.08566308e+00 9.56398964e-01 5.34773469e-01 7.02831805e-01 -5.70399277e-02 8.11262876e-02 -5.24028875e-02 8.21358442e-01 3.26344222e-01 -1.11913037e+00 4.36692417e-01 -1.81177661e-01 1.00085390e+00 -7.76876152e-01 -6.49206519e-01 -5.64798236e-01 -7.88965106e-01 5.00765085e-01 6.33724034e-01 -7.42320836e-01 -6.60171866e-01 1.84846270e+00 4.88769174e-01 5.81102014e-01 3.13805610e-01 9.10788357e-01 -5.35843492e-01 9.54093933e-01 -2.88317621e-01 -8.01021874e-01 8.27500522e-01 -5.30787826e-01 -9.03191209e-01 -2.73914397e-01 2.54081547e-01 -2.64259160e-01 6.73394024e-01 5.92541873e-01 -1.05291283e+00 -2.32002497e-01 -8.01488161e-01 8.17016721e-01 -2.84966379e-01 -8.18696767e-02 1.13522261e-01 -7.65603855e-02 -9.85891521e-01 8.19056511e-01 -1.19710267e+00 -2.00245425e-01 -4.60391849e-01 5.84855914e-01 2.39567924e-02 2.33801886e-01 -1.44517875e+00 9.95156884e-01 4.60444540e-01 2.89624780e-01 -1.53118205e+00 -5.91090381e-01 -5.60011804e-01 -2.04125553e-01 1.23484862e+00 -3.80811661e-01 1.80590343e+00 -1.07063556e+00 -1.88104272e+00 -7.41818249e-02 1.50730059e-01 -8.47069085e-01 7.76662886e-01 3.69153246e-02 -4.85473484e-01 1.90295309e-01 -1.38536409e-01 -1.94784440e-02 1.08488405e+00 -1.06934035e+00 -8.20816040e-01 -2.86141902e-01 2.82445073e-01 4.62645382e-01 2.00407490e-01 -6.17747843e-01 2.69746423e-01 -4.43915486e-01 -2.01104283e-01 -1.35530865e+00 -6.33744597e-01 -7.97943100e-02 -2.59207990e-02 2.31743548e-02 9.47949469e-01 -4.42461103e-01 8.29583883e-01 -1.78770053e+00 2.89424419e-01 2.01718464e-01 -2.12051600e-01 1.82345897e-01 -1.30631953e-01 9.35682237e-01 2.19681710e-01 -2.47648939e-01 -1.53397426e-01 -7.20627978e-02 -5.02652153e-02 7.26681769e-01 -6.31677508e-01 6.25428498e-01 1.43781096e-01 2.01405123e-01 -1.30375862e+00 1.39511362e-01 2.50097543e-01 8.51578116e-02 -2.05159232e-01 3.17757726e-01 -1.09674311e+00 1.01008534e+00 -8.95261168e-01 2.72586435e-01 2.75472045e-01 5.61528280e-02 4.30361241e-01 6.27877295e-01 -7.46487260e-01 -1.02211013e-01 -1.43190610e+00 1.31643367e+00 -7.22469151e-01 5.77985823e-01 6.31945670e-01 -1.13987529e+00 8.09668660e-01 6.36234343e-01 6.44674659e-01 -8.94940853e-01 2.60572821e-01 1.91741422e-01 1.94393506e-04 -6.73392057e-01 4.55015004e-01 -2.53652632e-01 1.87435016e-01 3.64465445e-01 -3.75237823e-01 -5.20310342e-01 -4.86788861e-02 -1.20330229e-01 1.51092517e+00 6.60988828e-03 1.70937583e-01 -1.37469649e-01 3.93455297e-01 2.39796430e-01 8.61280203e-01 7.75310993e-01 -2.26222992e-01 -1.63074285e-01 7.00759470e-01 -4.18628544e-01 -1.01583326e+00 -7.27463484e-01 3.31663430e-01 5.85266709e-01 3.24401379e-01 1.83119029e-01 -1.30601481e-01 -1.98959529e-01 1.14760615e-01 8.73550534e-01 -7.51667738e-01 -1.26654297e-01 -6.27671897e-01 -2.16580719e-01 -6.60912842e-02 2.36565500e-01 2.74429172e-01 -9.33311939e-01 -7.92090237e-01 1.00620663e+00 8.87208432e-02 -1.03449368e+00 -2.87959963e-01 5.23199141e-01 -9.19061482e-01 -1.04377985e+00 -4.11403686e-01 -4.16089714e-01 6.77793741e-01 -7.44952559e-02 7.74864197e-01 -2.05399409e-01 -1.13111347e-01 9.69267428e-01 -1.77988812e-01 -6.15191519e-01 -5.15065551e-01 -3.05356592e-01 3.70622724e-01 1.99632302e-01 -5.63607037e-01 -4.09109831e-01 -4.54523742e-01 2.47203484e-01 -1.29418695e+00 -3.00275326e-01 1.26038820e-01 9.84403014e-01 8.32695007e-01 7.10197091e-01 6.61300540e-01 -4.33519185e-01 5.87445915e-01 -5.50364494e-01 -1.31791663e+00 1.93896145e-01 -4.53627110e-01 1.75157323e-01 1.25207281e+00 -8.98895085e-01 -8.83084297e-01 1.50473684e-01 3.04102123e-01 -4.07468498e-01 -1.16938397e-01 6.67912304e-01 2.79362440e-01 1.70180455e-01 2.76478797e-01 6.30459726e-01 4.61968362e-01 -2.89747477e-01 -1.05753923e-02 3.15084219e-01 3.95970464e-01 -1.01625097e+00 8.15750837e-01 4.35604304e-01 4.20392901e-01 -9.42827940e-01 -3.67899179e-01 -9.65934247e-02 -2.29706913e-01 -3.52488428e-01 4.67195481e-01 -1.05884969e+00 -1.09847832e+00 6.18749976e-01 -7.50697494e-01 -1.14078712e+00 -5.15031457e-01 6.58071637e-01 -1.11303508e+00 -3.45917456e-02 -5.37244081e-01 -1.33086848e+00 2.85291076e-01 -8.08454216e-01 6.67641401e-01 3.71355921e-01 2.84277111e-01 -1.45551288e+00 3.00114065e-01 -4.87289697e-01 5.89431405e-01 5.74652731e-01 7.01995730e-01 -3.67535859e-01 -5.31052649e-01 -1.23867027e-01 5.35567522e-01 1.75101578e-01 -2.17932053e-02 -1.59056440e-01 -3.15363854e-01 -9.06911254e-01 1.09466761e-01 -4.61567312e-01 1.27042428e-01 5.05035043e-01 9.40352201e-01 -7.56872535e-01 -2.45861709e-01 6.71809390e-02 1.65413761e+00 8.36842597e-01 2.03204732e-02 5.93770504e-01 -4.83477451e-02 5.07678866e-01 1.13693035e+00 1.02859449e+00 4.79697406e-01 5.87925375e-01 1.02623558e+00 9.87524912e-02 8.04597318e-01 -2.44959086e-01 4.47897136e-01 3.05569887e-01 -2.92452896e-04 -2.42995620e-01 -7.72596300e-01 8.14455211e-01 -2.00060511e+00 -8.88242364e-01 1.10552058e-01 2.79241228e+00 7.44388759e-01 1.27937943e-01 1.01704612e-01 -1.98914446e-02 5.62135577e-01 3.20198871e-02 -1.07354629e+00 -3.06298912e-01 8.15870091e-02 -1.99510023e-01 8.62638235e-01 5.92244804e-01 -9.00241852e-01 5.21418810e-01 5.27543402e+00 3.55671138e-01 -1.46240485e+00 -2.88113207e-01 2.69388288e-01 -8.29017907e-02 1.16378613e-01 6.08449765e-02 -4.98307794e-01 7.00408995e-01 1.19051135e+00 -4.13229853e-01 9.12812531e-01 6.00760579e-01 1.04695606e+00 -2.16189504e-01 -1.01392055e+00 4.23074543e-01 -6.67846143e-01 -8.01881015e-01 -6.81769133e-01 5.31120375e-02 8.24656844e-01 8.16803128e-02 1.11700475e-01 6.22070312e-01 5.82183123e-01 -5.32504439e-01 6.29112661e-01 6.99882150e-01 5.80382109e-01 -9.59138334e-01 3.64299953e-01 9.88505542e-01 -1.14337254e+00 -7.00953424e-01 -2.13523790e-01 -3.68263602e-01 2.95481592e-01 3.96761298e-01 -5.80792129e-01 5.62993050e-01 2.18901381e-01 6.17812812e-01 2.31550768e-01 1.18384278e+00 -2.38671944e-01 6.91454947e-01 -6.00996673e-01 -1.89923063e-01 7.32606828e-01 -4.28509444e-01 9.56426978e-01 5.15145123e-01 4.23389375e-01 3.18627119e-01 7.96049476e-01 5.00781238e-01 6.65777981e-01 -5.17291307e-01 -8.86425197e-01 -7.39604831e-02 4.37900186e-01 7.76767910e-01 -5.10331213e-01 -1.93899974e-01 -1.48028180e-01 6.04541838e-01 -2.93016620e-02 6.90097451e-01 -8.90482426e-01 -3.17784816e-01 7.64245629e-01 -1.87881906e-02 1.45170406e-01 -8.54923427e-01 5.40385306e-01 -1.01746178e+00 -2.22456008e-01 -8.65438581e-01 1.18932702e-01 -4.62112457e-01 -9.77525771e-01 3.88948739e-01 -2.62216538e-01 -1.63660610e+00 -5.60219288e-01 -2.37749755e-01 -6.05078518e-01 5.64627588e-01 -1.68345475e+00 -5.67071438e-01 2.54474998e-01 7.20806718e-01 7.29053855e-01 -4.73327450e-02 6.34066164e-01 -2.68630058e-01 -5.95933974e-01 -3.35974455e-01 8.42326105e-01 -3.52060467e-01 3.92769098e-01 -1.59787309e+00 6.56996146e-02 3.50039512e-01 -6.53550565e-01 9.12090912e-02 1.29784906e+00 -6.09073102e-01 -2.00359058e+00 -1.41299546e+00 2.68563598e-01 2.88321376e-01 1.11069286e+00 5.28006628e-02 -9.55807090e-01 7.93541312e-01 1.11078285e-01 1.20912150e-01 -1.64385304e-01 -5.53777218e-01 3.72572035e-01 -2.11139172e-01 -1.09461653e+00 4.51355129e-01 3.89142185e-01 -2.59169072e-01 -2.25544810e-01 4.90025908e-01 6.23158813e-01 -6.93760812e-01 -7.32086122e-01 3.24432850e-01 2.09024474e-01 -3.99543285e-01 5.34640968e-01 -6.94220543e-01 -1.16028696e-01 -3.01645875e-01 4.63859737e-02 -2.11282849e+00 1.22738229e-02 -1.30703402e+00 -2.50557154e-01 5.84188282e-01 1.70710608e-01 -1.10257518e+00 3.49752128e-01 5.11969388e-01 2.72562522e-02 -5.68250954e-01 -1.30297577e+00 -1.34390903e+00 4.26819324e-02 -1.92470118e-01 3.64202410e-01 7.42690623e-01 -1.28505662e-01 -1.69532254e-01 -5.46766043e-01 6.97450340e-01 6.26309752e-01 -2.61993445e-02 6.13340080e-01 -8.47861946e-01 -6.26016498e-01 5.57110868e-02 3.30741741e-02 -1.10416663e+00 4.21816140e-01 1.19757377e-01 6.55642331e-01 -1.28915465e+00 -5.64170420e-01 -7.73185790e-01 -9.92603153e-02 2.58487314e-01 1.61479011e-01 -7.94759035e-01 1.12793058e-01 -7.41574317e-02 -5.36403716e-01 9.58877265e-01 1.27905023e+00 -2.21027240e-01 -5.26675761e-01 6.63262248e-01 2.87009716e-01 4.12458807e-01 9.70744610e-01 -4.13980335e-01 -7.89493501e-01 -4.86395657e-01 1.60076275e-01 1.22909069e+00 1.99869648e-01 -1.13726580e+00 2.50307679e-01 -8.16715539e-01 -3.66651475e-01 -4.05112565e-01 3.32800090e-01 -1.19697464e+00 2.74925083e-01 9.99700189e-01 -4.80971843e-01 2.27756575e-01 3.28657746e-01 1.39828217e+00 -1.65211424e-01 6.61129057e-02 6.83709502e-01 -1.76551014e-01 -6.55201495e-01 5.53841233e-01 -8.63963187e-01 1.82540286e-02 1.20572174e+00 2.64984101e-01 -3.15637082e-01 -8.63931537e-01 -1.17587054e+00 8.76640022e-01 2.15868130e-01 2.84525245e-01 1.62115514e-01 -7.47132599e-01 -4.94362682e-01 1.07531443e-01 -5.18277526e-01 -3.45733277e-02 2.66227007e-01 9.60470557e-01 -1.32817134e-01 3.15312058e-01 -1.46303564e-01 -4.55471188e-01 -7.99063921e-01 6.84198141e-01 5.63345730e-01 -3.01181972e-01 -5.86453021e-01 1.70872182e-01 -2.49103516e-01 -3.37909639e-01 3.42939973e-01 -6.17292166e-01 -4.85179983e-02 9.09769908e-02 5.80766797e-01 4.35150206e-01 -9.03465301e-02 -1.19016752e-01 2.34243959e-01 2.60021865e-01 3.34767073e-01 -3.62913519e-01 1.47266972e+00 -2.87849456e-01 2.89066851e-01 8.79515290e-01 6.65745258e-01 -6.91118956e-01 -2.15546513e+00 -4.29734260e-01 -2.90626306e-02 -2.90373921e-01 3.20215411e-02 -7.90632367e-01 -8.88708293e-01 4.63722616e-01 3.68151516e-01 7.97783673e-01 1.07575989e+00 -7.21566617e-01 5.47477305e-01 6.14763856e-01 8.82596195e-01 -1.39492321e+00 -2.51267441e-02 1.03637123e+00 9.53933656e-01 -1.00628078e+00 -4.42906737e-01 2.33539268e-01 -7.56957293e-01 1.20256186e+00 5.08145690e-01 -4.46639448e-01 6.38304293e-01 4.83447820e-01 -8.98904130e-02 4.29461390e-01 -1.41904974e+00 -2.97154158e-01 -4.27824199e-01 6.66203439e-01 -2.40994349e-01 3.45589936e-01 -2.44310528e-01 1.18163135e-02 4.43386048e-01 1.49313256e-01 9.50280070e-01 1.30469656e+00 -5.41215539e-01 -8.30886424e-01 -6.51520908e-01 1.21988952e-01 -2.08778143e-01 6.21165633e-01 9.93234366e-02 9.64501143e-01 -2.22635463e-01 9.92139459e-01 1.39345586e-01 6.66903406e-02 3.72768193e-01 -1.78126767e-01 2.09312364e-01 -4.18943375e-01 -4.77123916e-01 3.26840907e-01 4.90465760e-02 -7.25289404e-01 3.38984095e-02 -8.14489186e-01 -1.55539417e+00 -2.04611242e-01 -1.34781823e-01 2.69597143e-01 8.93576622e-01 1.09309328e+00 2.86989480e-01 6.60142004e-01 1.15030360e+00 -1.03270888e+00 -1.34620547e+00 -6.67590320e-01 -1.07075489e+00 -3.67788076e-01 1.08432388e+00 -7.24767029e-01 -6.38138771e-01 -1.37463465e-01]
[4.548150062561035, 2.2391626834869385]
273cca4a-1486-4733-9b88-18b30ca49b30
counterfactual-multihop-qa-a-cause-effect
2210.07138
null
https://arxiv.org/abs/2210.07138v1
https://arxiv.org/pdf/2210.07138v1.pdf
Counterfactual Multihop QA: A Cause-Effect Approach for Reducing Disconnected Reasoning
Multi-hop QA requires reasoning over multiple supporting facts to answer the question. However, the existing QA models always rely on shortcuts, e.g., providing the true answer by only one fact, rather than multi-hop reasoning, which is referred as $\textit{disconnected reasoning}$ problem. To alleviate this issue, we propose a novel counterfactual multihop QA, a causal-effect approach that enables to reduce the disconnected reasoning. It builds upon explicitly modeling of causality: 1) the direct causal effects of disconnected reasoning and 2) the causal effect of true multi-hop reasoning from the total causal effect. With the causal graph, a counterfactual inference is proposed to disentangle the disconnected reasoning from the total causal effect, which provides us a new perspective and technology to learn a QA model that exploits the true multi-hop reasoning instead of shortcuts. Extensive experiments have conducted on the benchmark HotpotQA dataset, which demonstrate that the proposed method can achieve notable improvement on reducing disconnected reasoning. For example, our method achieves 5.8% higher points of its Supp$_s$ score on HotpotQA through true multihop reasoning. The code is available at supplementary material.
['Hanjiang Lai', 'Qinkang Gong', 'Wangzhen Guo']
2022-10-13
null
null
null
null
['counterfactual-inference']
['miscellaneous']
[-4.81827632e-02 5.94413221e-01 -4.94615674e-01 -5.03071487e-01 -1.10249507e+00 -5.20394683e-01 3.06861132e-01 8.24678838e-02 5.40434420e-02 1.27542830e+00 4.68315274e-01 -6.78940833e-01 -6.28774762e-01 -1.41437733e+00 -9.20441031e-01 -5.22900224e-01 1.79426745e-01 4.42817360e-01 3.71787697e-01 -5.39782941e-01 1.67285070e-01 -2.67391264e-01 -1.18873525e+00 5.18489301e-01 1.39099705e+00 7.96257615e-01 -3.14359188e-01 2.46119991e-01 -3.93564761e-01 1.33574152e+00 -6.87032819e-01 -9.57916796e-01 2.17421383e-01 -5.61097205e-01 -1.13009632e+00 -7.11807549e-01 4.56293911e-01 -5.29007614e-01 -3.74020249e-01 1.07950962e+00 2.18400225e-01 -1.36141166e-01 2.67822832e-01 -1.68303657e+00 -6.34292305e-01 1.15278029e+00 -9.54195559e-01 2.88516790e-01 7.88897514e-01 2.95675129e-01 1.59832215e+00 -1.89788759e-01 3.86602044e-01 1.57201147e+00 5.04707277e-01 1.85818136e-01 -9.34094489e-01 -9.37987626e-01 3.48839790e-01 6.51757240e-01 -1.13464093e+00 -9.08301324e-02 7.94374824e-01 4.56799567e-02 5.94018519e-01 4.18112874e-01 4.62669045e-01 7.92165041e-01 3.03153276e-01 7.41553068e-01 1.35818267e+00 -2.36481130e-01 8.44053626e-02 -2.10060731e-01 4.82266426e-01 9.23359931e-01 2.94780284e-01 1.55554950e-01 -7.18262196e-01 -3.73206913e-01 2.46237174e-01 -1.19352035e-01 -2.33913258e-01 -8.90050009e-02 -1.12400103e+00 8.49073291e-01 8.23452234e-01 -2.86348164e-01 -2.42387310e-01 2.68370062e-01 1.43896282e-01 3.79430979e-01 -1.25902206e-01 3.32390904e-01 -7.03882337e-01 1.59377992e-01 -5.80926955e-01 4.20595348e-01 7.40215003e-01 8.33230436e-01 9.96660233e-01 -5.24756134e-01 -3.90469521e-01 2.82897085e-01 3.80875826e-01 7.54406571e-01 -1.30727366e-01 -1.18833935e+00 9.16371584e-01 1.10424006e+00 3.01079720e-01 -1.11561644e+00 -3.14018309e-01 -2.37883538e-01 -6.29795134e-01 -1.23879984e-01 3.76495123e-01 -4.02465969e-01 -6.21808469e-01 1.99892879e+00 6.40727997e-01 3.48469853e-01 2.23749474e-01 9.26573992e-01 8.47325504e-01 4.54404086e-01 1.17822655e-01 -2.97340006e-01 1.33861840e+00 -8.97602677e-01 -8.08323264e-01 4.62379009e-02 6.23212636e-01 -4.19094175e-01 1.34727550e+00 4.14932251e-01 -9.47265446e-01 -8.60325396e-02 -1.00709236e+00 -7.96409845e-02 -2.17817545e-01 -3.12812269e-01 9.56847668e-01 5.92841446e-01 -5.15316010e-01 1.62035823e-01 -2.69016713e-01 1.26028687e-01 5.38811386e-01 2.24776357e-01 -2.74073035e-02 -6.97615921e-01 -1.97359300e+00 7.34957814e-01 3.18220794e-01 3.52824330e-02 -9.43445086e-01 -1.07412446e+00 -5.22469461e-01 2.63458759e-01 1.34374976e+00 -9.15660679e-01 1.06134951e+00 -4.55522597e-01 -1.25918519e+00 3.05552185e-01 -2.39027128e-01 -4.81427312e-01 7.83056974e-01 -3.72429103e-01 -4.87399936e-01 2.72279501e-01 5.36918461e-01 2.78672695e-01 3.58000487e-01 -1.18936551e+00 -7.27341831e-01 -4.50842977e-01 8.91532600e-01 1.50503844e-01 9.21940058e-02 -4.74612892e-01 -1.39572993e-01 -1.22831628e-01 6.09396957e-02 -6.03859127e-01 -9.52621922e-03 -3.01461250e-01 -7.69307077e-01 -4.99708384e-01 7.88918674e-01 -4.33506101e-01 1.17698157e+00 -1.70078528e+00 -1.04046084e-01 5.98435663e-02 4.13034171e-01 -2.08967198e-02 -1.49856238e-02 5.58916450e-01 1.69628546e-01 2.29631290e-01 -4.42125142e-01 6.26584828e-01 4.58243489e-02 2.07211852e-01 -6.57032549e-01 4.51625101e-02 1.43366084e-01 9.09794986e-01 -1.18740046e+00 -6.82120919e-01 -8.86342525e-02 -8.06905478e-02 -5.31306565e-01 -2.09490210e-02 -6.05075896e-01 1.98384732e-01 -6.71757698e-01 5.90272486e-01 1.06593132e+00 -2.92773038e-01 3.42986017e-01 -3.15545589e-01 9.95807871e-02 6.23714924e-01 -1.13499892e+00 1.75405312e+00 -2.98296094e-01 5.12402877e-02 -1.15327701e-01 -8.25153530e-01 6.57738328e-01 2.02126414e-01 3.29275638e-01 -9.25374925e-01 -4.18620259e-02 1.46312580e-01 8.40477720e-02 -7.36827135e-01 6.33208901e-02 -4.11645859e-01 -2.69861668e-01 4.80468512e-01 -3.20801139e-01 -2.04455648e-02 2.93818980e-01 7.60128975e-01 1.35964942e+00 5.75053394e-02 9.55369473e-02 -2.22543031e-01 6.22092664e-01 4.81690019e-01 9.16016161e-01 7.47511625e-01 -2.99979568e-01 1.03222236e-01 1.09030449e+00 -2.50102639e-01 -2.09194183e-01 -1.47058988e+00 2.28397295e-01 6.05743587e-01 7.34579504e-01 -4.82162625e-01 -3.70584965e-01 -1.45131648e+00 1.25934973e-01 1.07319927e+00 -5.89852273e-01 -3.27081174e-01 -5.14818549e-01 -6.65439129e-01 8.77582908e-01 2.99800307e-01 1.06461370e+00 -6.57135010e-01 -4.08100009e-01 -8.91671628e-02 -9.64609802e-01 -7.74761736e-01 -1.12830065e-02 -3.52708399e-01 -5.81541121e-01 -1.74465585e+00 -2.49105133e-02 -7.08602443e-02 3.27334851e-01 4.62879062e-01 1.18558919e+00 4.49706525e-01 1.04787491e-01 1.55502632e-01 -2.46402875e-01 -3.09802860e-01 4.20951247e-02 -1.80302665e-01 -2.58299619e-01 -3.36110175e-01 4.27476317e-01 -4.53240871e-01 -8.16588223e-01 3.13471138e-01 -7.44798720e-01 6.61877394e-02 8.18668902e-01 8.46099436e-01 4.40753877e-01 4.96291310e-01 1.04833281e+00 -1.25666571e+00 5.58503211e-01 -9.65354502e-01 -3.11994672e-01 6.81634724e-01 -7.63171852e-01 2.37542197e-01 8.83285046e-01 7.70630911e-02 -1.62745035e+00 -5.09386659e-01 -6.84744492e-02 -9.55370441e-02 -2.10987199e-02 6.78504825e-01 -5.56849301e-01 4.24288243e-01 5.06337583e-01 -7.42609650e-02 -4.28607851e-01 -8.18826631e-02 7.91439056e-01 3.32374275e-01 4.82693642e-01 -9.36428249e-01 8.44785154e-01 7.85458565e-01 1.64474189e-01 -1.04103662e-01 -1.33179343e+00 -1.94796562e-01 -2.33666241e-01 -4.64807749e-02 7.36605406e-01 -7.88321435e-01 -1.18744993e+00 -8.28527734e-02 -1.08899045e+00 -1.23106711e-01 -1.60605937e-01 2.93881655e-01 -3.82931411e-01 2.95356274e-01 -3.60953957e-01 -6.65672243e-01 -1.77480325e-01 -8.24189246e-01 6.91708446e-01 3.95143330e-01 1.73987627e-01 -7.79162824e-01 2.56746765e-02 9.31911170e-01 -1.48837745e-01 3.12159300e-01 1.31820905e+00 -4.29896146e-01 -9.75115359e-01 -1.64523721e-02 -6.18130028e-01 -1.12765118e-01 6.37694374e-02 -1.44519463e-01 -8.21923614e-01 9.75851715e-03 -3.01145483e-02 -4.46765602e-01 8.14290524e-01 7.53438398e-02 1.02921307e+00 -5.31201541e-01 -4.30440664e-01 2.57318513e-03 1.51620698e+00 -4.57514301e-02 7.58661985e-01 2.36005131e-02 5.70312142e-01 6.67871952e-01 9.90161598e-01 1.91976905e-01 9.25219953e-01 2.92663217e-01 6.67022705e-01 1.33367598e-01 -8.01793635e-02 -6.22917593e-01 7.57226273e-02 2.72328734e-01 7.50294551e-02 -2.28326812e-01 -9.44840133e-01 5.59672952e-01 -2.00632858e+00 -1.02695096e+00 -6.55930638e-01 1.96528757e+00 7.45376885e-01 2.69149005e-01 -4.01642499e-03 2.92633355e-01 7.01340795e-01 1.01495005e-01 -7.81279802e-01 -1.56856641e-01 -8.90592933e-02 -7.16924965e-02 1.66600630e-01 6.72135174e-01 -4.50766593e-01 7.38141239e-01 5.49792814e+00 7.83501625e-01 -6.46840692e-01 1.34097546e-01 3.62364471e-01 -1.14662103e-01 -9.53143895e-01 5.11296809e-01 -6.00799680e-01 5.49916029e-01 5.33989727e-01 -3.59489322e-01 2.86557138e-01 3.91347945e-01 2.37198427e-01 -4.01343137e-01 -9.28548753e-01 3.68904561e-01 -2.69909620e-01 -1.36436009e+00 4.74429220e-01 -1.01477169e-01 6.73754811e-01 -4.87041771e-01 -2.18301937e-01 5.76600015e-01 8.78044486e-01 -8.79588783e-01 4.58642453e-01 5.47961771e-01 6.49261355e-01 -8.64308953e-01 9.03362572e-01 5.50855517e-01 -1.20200515e+00 -3.97362322e-01 -1.11703388e-01 -3.61087024e-01 1.27309576e-01 9.65549111e-01 -5.20877600e-01 1.43308818e+00 7.62811303e-01 4.88980204e-01 -2.35259086e-01 7.97334611e-01 -7.94294119e-01 6.97911561e-01 -1.16431214e-01 3.51508241e-03 1.30555034e-01 -2.78146192e-02 4.41779941e-01 7.25555182e-01 8.33593979e-02 5.91198385e-01 -6.62603155e-02 9.97078061e-01 -2.90647000e-01 -2.56816715e-01 -3.87359560e-01 2.47540802e-01 6.70351148e-01 1.07383323e+00 -4.14596498e-01 -3.73365909e-01 -4.65132892e-01 5.06872296e-01 5.81932545e-01 3.52997750e-01 -1.22728884e+00 -5.49225986e-01 3.44988734e-01 -4.98757185e-03 2.66921204e-02 2.01354712e-01 -4.54934418e-01 -1.16252697e+00 1.87898308e-01 -8.14632177e-01 1.06070948e+00 -1.00754893e+00 -1.48744583e+00 1.03881925e-01 1.93413898e-01 -8.76018345e-01 2.57449448e-01 -1.95152625e-01 -9.78977561e-01 8.50966275e-01 -1.99912870e+00 -1.14163196e+00 -4.46471721e-01 7.06680357e-01 2.03373432e-01 4.06555146e-01 5.34611762e-01 1.54803559e-01 -5.36585569e-01 5.96966207e-01 -5.64094722e-01 -1.53938949e-01 8.19979966e-01 -1.29883528e+00 -2.89288044e-01 8.46362770e-01 -8.19352791e-02 7.31264710e-01 6.58944905e-01 -7.85622239e-01 -1.46620536e+00 -8.07351291e-01 9.27119076e-01 -6.28234744e-01 6.22656524e-01 1.79074407e-01 -8.33087623e-01 6.86036170e-01 4.15382296e-01 -3.22944671e-01 7.09019721e-01 4.58382308e-01 -7.73240507e-01 -4.50779378e-01 -1.33122611e+00 6.46321714e-01 1.16054165e+00 -2.01993838e-01 -1.12746239e+00 2.68114358e-01 1.23135090e+00 -1.63143665e-01 -6.27414763e-01 5.90210080e-01 3.94165933e-01 -1.28194547e+00 9.97426987e-01 -6.85835838e-01 9.67742801e-01 -5.23132503e-01 -1.14156686e-01 -1.10630822e+00 -9.20043364e-02 -4.85600531e-01 -3.78741235e-01 1.21552515e+00 6.31970942e-01 -6.62879348e-01 7.37184465e-01 4.80251551e-01 2.38570701e-02 -9.34441805e-01 -9.88823771e-01 -5.80659389e-01 1.27182394e-01 -3.35387468e-01 1.08351660e+00 1.24373436e+00 1.41137674e-01 4.98428047e-01 -2.92057782e-01 6.19268239e-01 7.68897831e-01 5.15628040e-01 5.65356910e-01 -1.11849117e+00 -3.28520596e-01 -5.08737452e-02 1.66669995e-01 -1.06768656e+00 6.89690188e-02 -7.09981680e-01 -5.97439446e-02 -2.01804709e+00 3.11219245e-01 -6.38478577e-01 -2.81064123e-01 5.32557487e-01 -6.14342928e-01 -2.65810430e-01 -2.13416517e-02 5.98441437e-02 -8.50398242e-01 5.62256277e-01 1.55653739e+00 -2.91134238e-01 1.31756589e-01 -8.62278640e-02 -1.13232398e+00 6.55999124e-01 6.71632290e-01 -5.29041827e-01 -8.63715291e-01 -5.78193307e-01 6.56264305e-01 6.07587934e-01 6.76390290e-01 -7.09216237e-01 4.01590914e-01 -5.91114223e-01 -1.02599360e-01 -5.44839561e-01 2.15815932e-01 -7.32453763e-01 -3.06693047e-01 6.30996883e-01 -4.08122629e-01 -9.23668742e-02 7.54271597e-02 1.02782321e+00 -1.12385616e-01 1.08890966e-01 2.18598038e-01 -1.78482920e-01 -5.65102816e-01 9.60727781e-02 1.55527219e-01 4.72041637e-01 1.05539596e+00 3.16961586e-01 -1.08797741e+00 -3.07418138e-01 -4.53800529e-01 8.20668519e-01 -1.23239540e-01 1.27422020e-01 6.19869590e-01 -1.19838417e+00 -8.13061297e-01 -3.34130913e-01 -6.99242949e-02 1.86040908e-01 6.68553114e-01 1.08013964e+00 -1.61767825e-02 3.50223064e-01 -1.00684211e-01 -2.28771716e-01 -9.73157585e-01 6.96435452e-01 2.87035346e-01 -5.27125120e-01 -3.02791148e-01 6.95900142e-01 1.04577161e-01 -5.45540154e-01 -1.94001213e-01 -1.48610607e-01 -1.25331670e-01 -1.18127339e-01 3.21345389e-01 8.44407439e-01 -1.20876797e-01 -4.50807363e-02 -5.17796218e-01 2.95558989e-01 2.03887727e-02 -8.73472989e-02 9.12730455e-01 -2.88940877e-01 -3.86168957e-01 2.65502423e-01 6.51812494e-01 3.41825366e-01 -9.51145291e-01 -1.38147727e-01 -2.27167532e-01 -7.32872605e-01 -1.81759849e-01 -1.47249162e+00 -9.31276321e-01 9.64478016e-01 -3.67300846e-02 5.53735256e-01 1.24079728e+00 2.78036781e-02 1.04979467e+00 3.98669422e-01 5.77912033e-01 -7.47665465e-01 2.89087254e-03 1.91635430e-01 8.33569109e-01 -1.27711391e+00 1.14793718e-01 -9.11718965e-01 -5.10583401e-01 7.71940112e-01 1.01062882e+00 -3.64676416e-02 4.47119117e-01 1.15111191e-03 8.41175243e-02 -6.31886482e-01 -9.08388734e-01 -3.93256173e-02 -9.54161137e-02 3.18386018e-01 1.83608055e-01 2.44679406e-01 -5.89233518e-01 9.96619344e-01 -2.79165298e-01 5.96197098e-02 5.65730810e-01 6.98681176e-01 -2.07633540e-01 -8.63281548e-01 -2.95218229e-01 5.75384974e-01 -1.03652768e-01 -1.36220962e-01 -6.06186271e-01 9.14963245e-01 3.86922389e-01 1.53244245e+00 -3.63559932e-01 -5.22849739e-01 4.48030353e-01 -2.61510313e-02 2.81950057e-01 -4.12583977e-01 -3.73058617e-01 -6.20314002e-01 1.54738232e-01 -7.05757797e-01 -4.41032171e-01 -3.18109274e-01 -1.69085932e+00 -7.80287266e-01 -3.69654864e-01 5.06223321e-01 7.96435401e-03 1.38373792e+00 4.29986745e-01 7.09991217e-01 4.87239897e-01 3.09229612e-01 -6.05025828e-01 -5.19532263e-01 -2.41782889e-01 2.68638283e-01 2.97602803e-01 -8.22449088e-01 -3.65739822e-01 -3.91575009e-01]
[9.951370239257812, 7.842447757720947]
1b42c65f-17de-4f93-892b-31d54c6beef3
causal-augmentation-for-causal-sentence
null
null
https://aclanthology.org/2021.cinlp-1.1
https://aclanthology.org/2021.cinlp-1.1.pdf
Causal Augmentation for Causal Sentence Classification
Scarcity of annotated causal texts leads to poor robustness when training state-of-the-art language models for causal sentence classification. In particular, we found that models misclassify on augmented sentences that have been negated or strengthened with respect to its causal meaning. This is worrying since minor linguistic differences in causal sentences can have disparate meanings. Therefore, we propose the generation of counterfactual causal sentences by creating contrast sets (Gardner et al., 2020) to be included during model training. We experimented on two model architectures and predicted on two out-of-domain corpora. While our strengthening schemes proved useful in improving model performance, for negation, regular edits were insufficient. Thus, we also introduce heuristics like shortening or multiplying root words of a sentence. By including a mixture of edits when training, we achieved performance improvements beyond the baseline across both models, and within and out of corpus’ domain, suggesting that our proposed augmentation can also help models generalize.
['Roger Zimmermann', 'Soujanya Poria', 'See-Kiong Ng', 'Devamanyu Hazarika', 'Fiona Anting Tan']
null
null
null
null
emnlp-cinlp-2021-11
['sentence-classification']
['natural-language-processing']
[ 5.36572158e-01 6.28514051e-01 -2.93834984e-01 -8.11847985e-01 -6.65937006e-01 -6.55201077e-01 1.21330094e+00 5.40009916e-01 -5.12595952e-01 1.28878248e+00 8.37183118e-01 -5.89573264e-01 -7.16883838e-02 -6.52962327e-01 -9.49951768e-01 -2.31754750e-01 -2.52971619e-01 2.96344161e-01 1.17932022e-01 -3.49929631e-01 4.66762513e-01 4.96239252e-02 -1.16555822e+00 7.91559458e-01 9.12591457e-01 1.61409035e-01 1.54824093e-01 5.60554147e-01 -5.20089082e-02 1.32472062e+00 -9.40846920e-01 -8.83776069e-01 -1.42655775e-01 -6.12215400e-01 -8.87439370e-01 -4.57122564e-01 4.82812405e-01 -2.50820369e-01 -1.34427264e-01 7.01784313e-01 3.55268925e-01 7.45256664e-03 8.73858750e-01 -1.19070828e+00 -1.02327120e+00 1.56503034e+00 -4.41794157e-01 3.41428071e-01 5.47441423e-01 1.01084113e-01 1.36016500e+00 -5.90442181e-01 8.49549711e-01 1.72179413e+00 8.25371623e-01 8.62201810e-01 -1.40126956e+00 -6.39436126e-01 5.25522768e-01 2.52259761e-01 -6.59298182e-01 -4.54647541e-01 8.03940654e-01 -3.48161221e-01 1.42034709e+00 4.29921031e-01 3.84058118e-01 1.68712914e+00 2.68540055e-01 6.39029860e-01 1.00135219e+00 -4.84810740e-01 1.69045076e-01 -7.36254454e-02 -1.64782941e-01 3.44946414e-01 3.02944928e-01 1.22047253e-01 -5.25312841e-01 -4.83859181e-01 2.04663381e-01 -6.92519963e-01 -2.67306983e-01 1.73856199e-01 -1.29728401e+00 1.08741117e+00 3.04824084e-01 2.72151381e-01 -3.63505512e-01 5.67382097e-01 5.13517022e-01 1.71706378e-01 7.19304979e-01 9.56818461e-01 -8.69081438e-01 -1.30051717e-01 -7.39603877e-01 6.68035686e-01 6.23247325e-01 5.46453118e-01 -5.35763688e-02 -2.71651208e-01 -3.54780823e-01 8.39436769e-01 1.68676421e-01 1.79014638e-01 3.00512582e-01 -9.69709039e-01 7.15669096e-01 5.14727294e-01 1.03499420e-01 -9.94910061e-01 -4.80535835e-01 -2.77929842e-01 -5.75752258e-01 -2.57856876e-01 5.49451053e-01 -3.75250578e-01 -7.11673319e-01 2.23738480e+00 7.63463005e-02 1.91291869e-01 1.15989417e-01 8.65550578e-01 5.57074249e-01 4.72213835e-01 7.87950397e-01 -4.50187415e-01 9.84626055e-01 -5.15139341e-01 -7.83807755e-01 -5.87010264e-01 1.04725373e+00 -7.47215867e-01 1.17967761e+00 9.62550342e-02 -1.00063324e+00 -2.05838144e-01 -1.01122880e+00 -7.43783936e-02 -1.22403182e-01 -3.51887345e-01 1.10016525e+00 5.17697513e-01 -6.77884042e-01 9.93842721e-01 -5.21029711e-01 -2.29755029e-01 3.88579935e-01 -5.21636866e-02 -3.25441122e-01 1.19517677e-01 -1.93552971e+00 1.25187385e+00 4.07207310e-01 -3.34131867e-02 -6.53484821e-01 -1.10042179e+00 -8.77061725e-01 -1.43052384e-01 2.87326634e-01 -8.83327186e-01 1.36583138e+00 -7.35067368e-01 -8.04273903e-01 7.55290985e-01 -2.36418322e-01 -7.37105489e-01 6.10719264e-01 -4.07909453e-01 -4.12209451e-01 -2.97176987e-01 3.62271488e-01 5.88610172e-01 5.67368507e-01 -1.20445466e+00 -5.52756786e-01 -8.39885548e-02 2.86179274e-01 1.05332412e-01 -1.42669857e-01 4.14147824e-01 3.96599561e-01 -9.07669127e-01 -3.78573120e-01 -5.52277327e-01 -2.43479446e-01 -5.16546786e-01 -5.62248290e-01 -5.02512097e-01 4.60228652e-01 -5.94525218e-01 1.43452823e+00 -1.77671516e+00 -1.58563275e-02 -1.71758369e-01 -1.07611425e-01 -5.29861823e-02 -2.68274963e-01 3.82436752e-01 -4.65059549e-01 9.02927279e-01 -4.39456910e-01 -3.34700376e-01 -1.10273272e-01 3.30705285e-01 -7.27635026e-01 1.65549845e-01 6.50584757e-01 7.26107061e-01 -1.26173210e+00 -5.33096850e-01 -1.40845403e-01 1.44732475e-01 -8.24462414e-01 -2.89083403e-02 -6.11955583e-01 3.34114224e-01 -1.38299257e-01 2.13314876e-01 3.48693341e-01 1.09348468e-01 3.86410505e-01 6.65212199e-02 5.70903234e-02 1.25765729e+00 -9.31605935e-01 1.42298913e+00 -5.62468946e-01 5.22298872e-01 -4.61336792e-01 -9.33361530e-01 5.02865970e-01 4.95453805e-01 7.67184943e-02 -4.93649989e-01 -8.74236450e-02 2.30390981e-01 5.13650656e-01 -5.44831693e-01 4.53047633e-01 -4.89060700e-01 -2.24446014e-01 6.17437541e-01 -1.76878795e-01 -3.43094051e-01 6.09220207e-01 3.98147106e-01 1.17783380e+00 1.37374163e-01 3.15521598e-01 -2.90755272e-01 2.65994668e-01 2.31536984e-01 6.74295485e-01 9.52064455e-01 -3.98637280e-02 4.46007788e-01 9.23864305e-01 -1.60961598e-01 -1.04546249e+00 -8.42486024e-01 -2.48243690e-01 9.88609970e-01 -4.14893925e-01 -5.47198772e-01 -5.86169958e-01 -1.09276712e+00 1.15879506e-01 1.65543544e+00 -8.46630037e-01 -3.02613050e-01 -8.57403696e-01 -1.08834696e+00 8.91238272e-01 6.21912062e-01 1.02116190e-01 -1.12499928e+00 -6.30789995e-01 4.34758693e-01 -2.98299998e-01 -7.86199808e-01 -2.38212466e-01 2.85654277e-01 -6.93755507e-01 -1.16186821e+00 -2.60686159e-01 -1.55495942e-01 2.67771870e-01 -3.03226143e-01 1.39969254e+00 1.28467157e-01 1.42050266e-01 -1.38544858e-01 -2.66661465e-01 -7.12943614e-01 -9.72798765e-01 -9.34110433e-02 1.56753156e-02 -5.88870287e-01 1.22706033e-01 -5.52863419e-01 -1.40113920e-01 -1.35407180e-01 -5.68760395e-01 9.75048989e-02 2.63340145e-01 9.65238929e-01 -6.25476167e-02 -1.59777507e-01 8.85165453e-01 -1.35968697e+00 1.10533977e+00 -5.11691630e-01 -4.39350121e-02 1.54899329e-01 -5.91102004e-01 4.30131912e-01 7.41727591e-01 -4.86888736e-01 -1.55625546e+00 -5.06295264e-01 -9.90033969e-02 2.68782109e-01 -1.23878904e-01 7.67729163e-01 6.28306493e-02 7.86386430e-01 1.02422023e+00 -5.37306428e-01 -3.37679803e-01 -2.07109138e-01 5.91876328e-01 3.47604871e-01 3.43773067e-01 -7.57753611e-01 5.61871529e-01 7.81131536e-02 -1.12586908e-01 -3.02993655e-01 -1.09248006e+00 1.06857911e-01 -4.07215148e-01 6.53946847e-02 6.59269214e-01 -8.35954309e-01 -3.62793446e-01 1.84663728e-01 -1.67199540e+00 -6.41654909e-01 -1.31610408e-01 4.02888954e-01 -2.04567343e-01 1.01534806e-01 -6.20979190e-01 -8.88074934e-01 3.39207463e-02 -6.62124693e-01 7.27422595e-01 -2.03560337e-01 -1.04632378e+00 -1.23108780e+00 4.53538187e-02 1.38082623e-01 2.56502360e-01 3.80129665e-01 1.36453497e+00 -8.21765721e-01 1.06759354e-01 -1.93569809e-03 -9.98120382e-03 1.88750565e-01 2.11971879e-01 2.56709754e-01 -9.20757651e-01 3.00626010e-01 -9.78414938e-02 -4.52048868e-01 1.07194519e+00 2.01543450e-01 1.03607404e+00 -6.35294974e-01 -4.72784489e-01 -9.58662480e-02 8.63500237e-01 1.64353445e-01 4.83238369e-01 3.64416361e-01 4.89454716e-01 8.06091130e-01 5.88356912e-01 2.77061045e-01 4.48148221e-01 4.05708581e-01 2.52210081e-01 1.63462702e-02 -6.28871024e-02 -5.21413863e-01 4.63248253e-01 1.73423141e-01 -5.11733294e-02 -4.40537423e-01 -9.24660087e-01 8.67073476e-01 -1.70048916e+00 -1.28311884e+00 -8.02444100e-01 1.80617034e+00 1.53682745e+00 6.16227031e-01 -2.53579050e-01 1.36993796e-01 5.06584525e-01 3.61342996e-01 -2.28761554e-01 -7.47403085e-01 -3.05210680e-01 1.49159849e-01 4.07387674e-01 6.52764499e-01 -1.04763591e+00 1.01791501e+00 6.46878672e+00 5.50289690e-01 -1.03635800e+00 1.46042109e-01 8.05615604e-01 -2.29945421e-01 -8.62911403e-01 3.58074486e-01 -5.40639341e-01 4.56335038e-01 1.04424703e+00 -1.80528536e-01 1.44285083e-01 4.97826755e-01 5.98018646e-01 -2.93699980e-01 -1.40742421e+00 7.86090717e-02 -1.03647336e-01 -1.55512238e+00 2.10384309e-01 -3.63289535e-01 7.88019955e-01 -2.08267555e-01 -3.53339344e-01 3.27171713e-01 5.96163750e-01 -1.05097246e+00 1.10361099e+00 2.54185081e-01 4.24554467e-01 -5.39263427e-01 8.62933338e-01 2.96766639e-01 -5.30140817e-01 3.86988604e-03 -1.18783019e-01 -6.93658054e-01 4.55922931e-01 8.61847401e-01 -1.17602241e+00 4.15524781e-01 5.02215147e-01 5.95206499e-01 -8.41483772e-01 3.26330006e-01 -8.99535596e-01 1.09136236e+00 -1.08060345e-01 -2.75103062e-01 -3.64091694e-02 4.80677098e-01 4.86406505e-01 1.47728837e+00 -8.62310976e-02 2.30879590e-01 -2.71163911e-01 1.08279192e+00 -1.32924825e-01 -1.23519704e-01 -6.51943386e-01 -1.94444254e-01 6.80613101e-01 7.89536893e-01 -2.75653481e-01 -4.35296625e-01 -2.64017612e-01 7.07712412e-01 4.20451045e-01 2.54326284e-01 -1.13548994e+00 -1.62930805e-02 5.44406533e-01 1.48378938e-01 -2.43395805e-01 7.38249421e-02 -9.27677572e-01 -9.63381231e-01 2.28405241e-02 -6.72393024e-01 4.48387504e-01 -8.69242847e-01 -1.42639005e+00 1.36110425e-01 3.21691781e-01 -5.57518899e-01 -5.09586334e-01 -3.94736350e-01 -8.42083097e-01 8.60815704e-01 -1.18567932e+00 -1.02747607e+00 3.77573222e-01 5.92189208e-02 4.59623158e-01 2.58035153e-01 7.87220418e-01 1.48781031e-01 -3.11553031e-01 5.40199816e-01 -6.14259601e-01 1.44394627e-02 1.20583165e+00 -1.42601657e+00 6.95875168e-01 9.41397667e-01 -2.30468325e-02 1.31965351e+00 1.26113749e+00 -1.00201869e+00 -7.02451885e-01 -1.14436460e+00 1.68945837e+00 -5.68971574e-01 9.53227401e-01 -4.38389182e-01 -1.00797749e+00 7.25829780e-01 5.56412756e-01 -6.15159333e-01 4.65269089e-01 5.75334430e-01 -5.99920809e-01 2.82699227e-01 -1.05608988e+00 9.26367462e-01 1.39137864e+00 -4.86442536e-01 -1.10822451e+00 4.18079913e-01 1.03465652e+00 -1.17891997e-01 -5.40765285e-01 5.00860572e-01 2.33548775e-01 -7.04575300e-01 6.97377443e-01 -1.11154187e+00 1.27693629e+00 -1.52965531e-01 1.51529703e-02 -1.74618304e+00 -2.07607120e-01 -3.38970125e-01 1.91542819e-01 1.65994191e+00 1.14968753e+00 -5.08219898e-01 2.54590869e-01 8.69518757e-01 -3.31036419e-01 -5.92315793e-01 -7.17887759e-01 -4.61531699e-01 3.57393950e-01 -8.90144289e-01 4.44018304e-01 1.39586568e+00 4.65455741e-01 7.08760858e-01 -1.97358459e-01 -6.52457103e-02 3.91903162e-01 -2.48363569e-01 4.07902181e-01 -1.06654501e+00 -2.36951023e-01 -4.60073084e-01 2.20066309e-01 -4.49452817e-01 7.07829714e-01 -9.42105114e-01 -2.31701229e-02 -1.63285863e+00 3.30240041e-01 -4.57568705e-01 -4.29294594e-02 8.55636835e-01 -7.46410072e-01 -4.24105003e-02 1.14248902e-01 -1.07155934e-01 2.27867365e-02 4.87148583e-01 1.08613956e+00 -2.34469801e-01 -2.09540930e-02 -3.45375091e-01 -1.00743353e+00 8.48238766e-01 8.98018301e-01 -7.11514294e-01 -4.10289794e-01 -5.73794663e-01 5.93544841e-01 -8.93996060e-02 7.77209878e-01 -3.03472579e-01 -4.57273908e-02 -5.63913882e-01 1.81805506e-01 -1.28527761e-01 -1.19361646e-01 -2.06728861e-01 6.02243980e-03 5.34312069e-01 -1.03278553e+00 1.07972778e-01 4.30543512e-01 4.25732762e-01 -7.53003582e-02 -2.63396144e-01 4.03995812e-01 -2.32144877e-01 -4.59926695e-01 -6.62414372e-01 -3.61440867e-01 2.82790571e-01 6.48618042e-01 2.98491478e-01 -7.25942135e-01 -3.04290116e-01 -2.73258269e-01 1.48457676e-01 2.59430468e-01 6.79592550e-01 3.46529335e-01 -1.04445994e+00 -1.00675094e+00 -3.68506581e-01 -3.33909281e-02 -2.48814449e-01 3.00296526e-02 8.17494869e-01 -1.88148499e-01 5.36149800e-01 2.30823070e-01 -1.51474282e-01 -1.03308487e+00 4.99654561e-01 1.38130367e-01 -2.90220141e-01 -1.01826757e-01 1.05246854e+00 -4.97313682e-03 -4.81145650e-01 -9.25930142e-02 -5.91670454e-01 -1.20876238e-01 2.15909153e-01 3.12028438e-01 3.81341912e-02 7.48829767e-02 -1.02752388e-01 -5.94118893e-01 -1.39770627e-01 -1.41176268e-01 -4.26198661e-01 1.29848313e+00 1.37326986e-01 -3.59641612e-01 6.86951458e-01 8.26780856e-01 3.33538860e-01 -9.09883201e-01 3.16401362e-01 3.57597917e-01 -2.66005605e-01 -1.30314216e-01 -1.32249904e+00 -3.22627008e-01 5.17782867e-01 -9.85269472e-02 2.02471346e-01 7.72417247e-01 1.20604798e-01 3.60172838e-01 2.03457475e-01 2.19851539e-01 -9.85567272e-01 -2.77527452e-01 6.59382701e-01 1.34159303e+00 -1.19361162e+00 1.82328582e-01 -5.41236460e-01 -6.50296271e-01 8.35136116e-01 4.92375940e-01 5.70813008e-02 6.79975376e-02 2.95575827e-01 -1.69471856e-02 -1.28630042e-01 -1.36085641e+00 1.73510402e-01 5.41132540e-02 3.65406483e-01 1.25204170e+00 1.58138424e-01 -1.14951873e+00 6.36750996e-01 -5.65727293e-01 -2.72591442e-01 8.72838676e-01 7.10855067e-01 4.18155901e-02 -1.14187074e+00 -3.24307352e-01 5.08644819e-01 -5.80331326e-01 -6.98078752e-01 -7.27878034e-01 9.96915400e-01 1.90116882e-01 1.27327645e+00 1.90171711e-02 -2.66863257e-01 3.60278159e-01 2.43648276e-01 4.90062356e-01 -7.27101564e-01 -7.75232136e-01 -3.41156870e-01 9.21854079e-01 -3.63529652e-01 -5.60858846e-01 -9.95186269e-01 -1.43885398e+00 -2.01156378e-01 -2.16627404e-01 1.15425266e-01 4.62037683e-01 1.18162048e+00 1.25826627e-01 7.57960737e-01 2.01644555e-01 -3.31813604e-01 -7.86539376e-01 -1.42696881e+00 -1.22153796e-02 6.53669477e-01 1.77071050e-01 -7.21525371e-01 -6.51131094e-01 3.56113642e-01]
[9.943744659423828, 8.109054565429688]
96230801-e78b-4385-9b2e-5e2f227ff6b2
multiple-riemannian-manifold-valued
1908.0195
null
https://arxiv.org/abs/1908.01950v1
https://arxiv.org/pdf/1908.01950v1.pdf
Multiple Riemannian Manifold-valued Descriptors based Image Set Classification with Multi-Kernel Metric Learning
The importance of wild video based image set recognition is becoming monotonically increasing. However, the contents of these collected videos are often complicated, and how to efficiently perform set modeling and feature extraction is a big challenge for set-based classification algorithms. In recent years, some proposed image set classification methods have made a considerable advance by modeling the original image set with covariance matrix, linear subspace, or Gaussian distribution. As a matter of fact, most of them just adopt a single geometric model to describe each given image set, which may lose some other useful information for classification. To tackle this problem, we propose a novel algorithm to model each image set from a multi-geometric perspective. Specifically, the covariance matrix, linear subspace, and Gaussian distribution are applied for set representation simultaneously. In order to fuse these multiple heterogeneous Riemannian manifoldvalued features, the well-equipped Riemannian kernel functions are first utilized to map them into high dimensional Hilbert spaces. Then, a multi-kernel metric learning framework is devised to embed the learned hybrid kernels into a lower dimensional common subspace for classification. We conduct experiments on four widely used datasets corresponding to four different classification tasks: video-based face recognition, set-based object categorization, video-based emotion recognition, and dynamic scene classification, to evaluate the classification performance of the proposed algorithm. Extensive experimental results justify its superiority over the state-of-the-art.
['Xiao-Jun Wu', 'Rui Wang', 'Josef Kittler']
2019-08-06
null
null
null
null
['object-categorization']
['computer-vision']
[-1.85561981e-02 -7.16509044e-01 4.48606648e-02 -4.69664574e-01 -4.97416437e-01 -4.01182353e-01 2.86977530e-01 -2.75131553e-01 -2.17308462e-01 2.04818204e-01 -2.16146678e-01 2.22745419e-01 -6.04377866e-01 -5.37133217e-01 -4.02834207e-01 -1.14563227e+00 1.30770132e-01 -1.56502426e-01 -1.60714149e-01 -1.86270759e-01 1.81449622e-01 3.54447424e-01 -1.54733109e+00 7.11509138e-02 7.89473057e-01 1.14166617e+00 1.17784023e-01 3.32814455e-02 -1.00800835e-01 6.33482456e-01 -2.09330246e-01 -3.46629024e-01 1.15819059e-01 -3.78688455e-01 -3.77661645e-01 6.98665023e-01 1.77830338e-01 -7.14294799e-03 -4.78785843e-01 1.38239706e+00 1.48974106e-01 3.96104991e-01 7.09808409e-01 -1.47654188e+00 -7.60238469e-01 7.82168061e-02 -4.98676211e-01 3.85131314e-02 1.24423325e-01 -4.01242683e-03 7.25740433e-01 -1.14771116e+00 3.33178282e-01 1.22060096e+00 1.06282689e-01 4.52944249e-01 -8.49529147e-01 -6.73437476e-01 1.65373087e-01 5.98273039e-01 -1.69827032e+00 -3.24186057e-01 1.24938011e+00 -5.44864893e-01 1.51856020e-01 4.16110098e-01 6.48555458e-01 6.71487272e-01 -1.16024844e-01 6.10366881e-01 1.03788161e+00 -5.83268180e-02 1.04088485e-01 3.71729314e-01 2.56908417e-01 8.41369748e-01 1.83752134e-01 -3.97463441e-01 -3.99806947e-01 -3.17809451e-03 4.57812726e-01 6.47020161e-01 -7.46861219e-01 -7.34111965e-01 -1.24640310e+00 6.99160695e-01 4.21652049e-01 4.86794204e-01 -3.18095982e-01 -2.74734050e-01 2.76371539e-01 2.11747885e-01 5.28099835e-01 -1.68067724e-01 -5.89127280e-02 5.45899048e-02 -4.90044832e-01 -7.54626002e-03 5.22570312e-01 7.14676082e-01 8.95740628e-01 -6.18356317e-02 1.01759508e-01 1.01323247e+00 5.48729956e-01 6.09177232e-01 5.12855530e-01 -5.14270782e-01 4.13274437e-01 9.28639591e-01 -9.42913890e-02 -1.68364275e+00 -2.35652432e-01 -2.79766113e-01 -1.13890803e+00 -1.51157156e-01 2.96181440e-01 1.92346573e-01 -2.66713053e-01 1.57089102e+00 5.11764526e-01 5.69255471e-01 6.02486692e-02 1.22212422e+00 5.80901682e-01 5.90917408e-01 -3.05862218e-01 -2.88840562e-01 1.19104791e+00 -5.73558211e-01 -6.14638090e-01 3.87595326e-01 8.41229498e-01 -5.09024441e-01 8.98598969e-01 2.69030482e-01 -5.38007319e-01 -4.79812443e-01 -1.05325103e+00 3.51992756e-01 -2.73313433e-01 2.95325220e-01 5.18016994e-01 7.65106559e-01 -6.09833717e-01 3.84637564e-01 -6.52671337e-01 -1.69687882e-01 5.39483726e-01 2.65192509e-01 -6.87311232e-01 -5.02394438e-01 -9.19733882e-01 4.73564357e-01 3.65948439e-01 4.69353914e-01 -5.35270333e-01 -3.59728456e-01 -9.62658703e-01 -2.55620219e-02 3.94219637e-01 -3.68401170e-01 3.85722011e-01 -8.45860898e-01 -1.36919069e+00 7.18956828e-01 1.28966510e-01 1.05151534e-01 1.20360315e-01 -2.95231808e-02 -6.45690799e-01 3.33822787e-01 -2.33987257e-01 -4.54704575e-02 1.20764887e+00 -1.12944555e+00 -2.44737908e-01 -8.46585095e-01 1.37354597e-01 3.86552781e-01 -1.12165415e+00 6.12573884e-02 -3.15526426e-01 -4.54967201e-01 3.10733467e-01 -9.82662916e-01 1.32993415e-01 -1.01534920e-02 -8.43488052e-02 -1.27898097e-01 1.14761567e+00 -4.47451890e-01 1.34777009e+00 -2.43654561e+00 8.77336860e-01 1.72081783e-01 2.63781697e-01 2.19321340e-01 -1.85896099e-01 7.64827654e-02 -1.70903593e-01 -9.54216719e-03 -4.65143651e-01 -2.49358967e-01 -2.64227569e-01 4.66485694e-02 -1.48752913e-01 7.84635246e-01 2.51414716e-01 4.73069906e-01 -9.06064868e-01 -5.48233688e-01 5.76360643e-01 6.35814130e-01 -5.04536390e-01 2.34219357e-01 2.34499395e-01 6.93311572e-01 -7.43947864e-01 5.05501807e-01 8.97621632e-01 -1.03321746e-01 8.03066697e-03 -5.40397584e-01 9.48807746e-02 -6.47785485e-01 -1.42242253e+00 1.77411580e+00 -3.75734121e-01 1.78176850e-01 7.45645389e-02 -1.60937202e+00 9.33400750e-01 1.30630463e-01 8.11567545e-01 -1.72287926e-01 2.75118172e-01 1.81501299e-01 1.65635213e-01 -6.97550476e-01 6.63187355e-02 5.63493520e-02 8.52296427e-02 1.99046314e-01 1.87727064e-01 5.46541065e-02 -9.84197389e-03 3.14644538e-02 7.85779893e-01 -2.26740036e-02 -3.57484706e-02 -3.00721943e-01 1.24421859e+00 -4.11329299e-01 5.64482868e-01 -6.92638159e-02 -1.40188575e-01 5.39754510e-01 1.18203737e-01 -2.39717126e-01 -4.87919241e-01 -6.66002333e-01 -2.62146115e-01 6.08250618e-01 4.97170240e-01 -3.98908675e-01 -9.68004823e-01 -7.12430954e-01 -1.72358453e-01 2.43333936e-01 -4.77753252e-01 -6.40098691e-01 -4.09308463e-01 -8.76695335e-01 7.70430490e-02 4.12553400e-02 8.19874704e-01 -6.25090778e-01 -7.82490820e-02 3.53011377e-02 -9.24310759e-02 -1.04174995e+00 -6.83596611e-01 -5.66923738e-01 -7.36586928e-01 -1.27990699e+00 -7.87769973e-01 -7.49788165e-01 7.41073668e-01 8.98500621e-01 3.69035900e-01 2.45171458e-01 -4.15814757e-01 8.64011049e-01 -4.99233007e-01 -1.37334317e-01 1.28163487e-01 -3.62980902e-01 5.12878835e-01 1.18334293e+00 3.34868342e-01 -4.16607291e-01 -6.02889419e-01 5.58845580e-01 -1.25540900e+00 -9.49125811e-02 4.11138088e-01 1.00568080e+00 3.32414538e-01 3.72794122e-01 3.60555977e-01 -2.90111810e-01 2.94663727e-01 -6.45604312e-01 -3.98438603e-01 2.65476435e-01 -3.31193134e-02 -1.74830317e-01 6.40159905e-01 -5.35072148e-01 -8.51372182e-01 -1.13898531e-01 3.84784997e-01 -1.03371119e+00 5.29256426e-02 7.19889700e-01 -6.32387280e-01 -3.32692266e-01 1.04367979e-01 5.83238423e-01 4.42089856e-01 -4.56857860e-01 3.04968923e-01 7.82057643e-01 4.91596162e-02 -3.85177135e-01 1.02802384e+00 6.13667667e-01 1.47806227e-01 -1.11804438e+00 -8.19110334e-01 -5.96133769e-01 -9.02377427e-01 -5.79934418e-01 9.17851090e-01 -6.55279338e-01 -6.83514118e-01 7.87726581e-01 -9.25531983e-01 2.50305802e-01 2.11871356e-01 6.65256500e-01 -4.15096045e-01 6.90854013e-01 -3.61600220e-01 -7.99944401e-01 -1.31255195e-01 -1.23180282e+00 9.44872379e-01 2.76193708e-01 5.83762109e-01 -1.03835797e+00 -2.30609700e-01 4.62185681e-01 5.25593795e-02 2.55038828e-01 8.37708950e-01 -3.75783265e-01 -6.08188450e-01 -2.33533159e-01 -2.34526813e-01 7.06092238e-01 4.92256403e-01 -3.87946032e-02 -5.84516168e-01 -3.66760194e-01 6.33743227e-01 -9.40694511e-02 6.91919148e-01 -5.33832498e-02 1.51289463e+00 -2.16150656e-01 -3.12866956e-01 6.93494201e-01 1.39323461e+00 1.98147446e-01 2.89968342e-01 8.19335207e-02 1.08193719e+00 6.44664049e-01 8.21391642e-01 6.00568354e-01 2.84025908e-01 7.23192096e-01 4.12809104e-01 3.46432447e-01 4.71250236e-01 1.44163534e-01 4.50585544e-01 1.26697099e+00 -8.57882798e-02 2.54297275e-02 -6.25591516e-01 7.28400471e-03 -1.97344065e+00 -1.14026904e+00 1.37854338e-01 2.49290657e+00 2.96230704e-01 -1.52752578e-01 3.73873040e-02 3.96650225e-01 8.80301952e-01 1.84681743e-01 -4.15610909e-01 3.28889430e-01 -1.07053652e-01 -3.07832092e-01 -7.60773420e-02 -1.26039639e-01 -1.21430469e+00 6.60110116e-01 4.00241375e+00 1.06400859e+00 -1.30712378e+00 7.79268593e-02 5.18781304e-01 1.08896852e-01 -4.76145260e-02 -7.89670646e-02 -4.72668797e-01 7.06985295e-01 5.15375912e-01 -2.69285738e-01 6.15822554e-01 8.88021350e-01 1.15075409e-01 2.57430196e-01 -9.66585577e-01 1.72064281e+00 4.85705793e-01 -1.04652274e+00 3.10122252e-01 2.82376796e-01 3.29380959e-01 -5.88766873e-01 3.58922780e-01 4.43696737e-01 -5.72338402e-01 -8.32848132e-01 4.54140544e-01 9.14268911e-01 5.35710692e-01 -7.96736479e-01 5.04400551e-01 4.07286942e-01 -1.19412911e+00 -1.78405121e-01 -6.01877213e-01 2.57869661e-02 -1.55176222e-01 4.95020241e-01 -1.36496276e-02 8.92735004e-01 6.57050610e-01 1.30317307e+00 -6.03419662e-01 9.80749071e-01 5.27160943e-01 4.66210395e-01 -1.78480804e-01 -1.72901824e-01 2.33113796e-01 -1.01721239e+00 7.25541234e-01 5.55349112e-01 4.42146540e-01 4.59650278e-01 2.96779960e-01 6.32094800e-01 -1.10339850e-01 5.43521523e-01 -7.87637830e-01 -2.57961601e-01 9.51076001e-02 1.75279140e+00 -7.10260212e-01 -1.95995629e-01 -5.80975890e-01 1.07431865e+00 3.53945196e-01 2.29024813e-01 -9.14688110e-01 -4.61269379e-01 9.71043169e-01 -3.24745595e-01 7.75766522e-02 -5.85401475e-01 3.91104251e-01 -1.76976359e+00 2.33878791e-01 -7.50942349e-01 1.80274025e-01 -4.72093403e-01 -1.09768248e+00 3.96378279e-01 -5.15295491e-02 -1.81939852e+00 1.95133224e-01 -8.96676481e-01 -5.79844713e-01 4.22626346e-01 -1.10363984e+00 -1.00882804e+00 -5.69516361e-01 8.74254882e-01 3.53871137e-01 -2.73717016e-01 6.65332317e-01 5.59580207e-01 -1.05923104e+00 3.92789274e-01 5.03303468e-01 3.50239605e-01 4.94806349e-01 -9.58867431e-01 -7.39639282e-01 4.47530478e-01 2.87410229e-01 6.20401442e-01 1.78674795e-02 -3.77344377e-02 -2.17460084e+00 -1.19499671e+00 -1.13811092e-02 -4.33693081e-01 6.54749513e-01 -4.21983689e-01 -1.12170887e+00 3.69238585e-01 -3.16701263e-01 3.48202229e-01 8.35275948e-01 -1.48056760e-01 -3.20690781e-01 -5.74200213e-01 -1.00811636e+00 6.32154346e-01 1.03058422e+00 -5.58767080e-01 -2.20518455e-01 7.30746269e-01 4.65726882e-01 -8.42969418e-02 -1.21791327e+00 3.37724388e-01 3.03810984e-01 -9.41234469e-01 7.86581933e-01 -6.06579006e-01 9.02343541e-02 -4.89816010e-01 -4.66480106e-01 -1.30831635e+00 -2.01295286e-01 -3.04453522e-01 5.94269559e-02 1.48707259e+00 -3.82712334e-01 -6.81300581e-01 5.08648455e-01 4.45394993e-01 -3.90367657e-02 -8.07865620e-01 -8.71236920e-01 -7.37517238e-01 -2.55393714e-01 -4.57196385e-01 5.58404326e-01 1.04132092e+00 6.59006611e-02 3.23340774e-01 -3.19059700e-01 1.53421208e-01 9.30075645e-01 2.68116534e-01 6.84815764e-01 -1.10281169e+00 8.28111451e-03 -5.69726288e-01 -1.03951597e+00 -6.12863958e-01 4.55643356e-01 -1.06913698e+00 -3.59363198e-01 -9.98373330e-01 2.97300637e-01 -4.09403950e-01 -6.15710437e-01 6.35016859e-02 -1.70604095e-01 1.86848536e-01 2.66318440e-01 3.96038383e-01 -7.48635650e-01 1.15021515e+00 1.12313092e+00 -3.13875943e-01 -3.78331263e-03 -8.94680545e-02 -3.45502436e-01 6.74382865e-01 4.87720937e-01 -1.21155217e-01 -4.71721083e-01 -3.13776374e-01 -2.91256994e-01 4.56164144e-02 4.90753174e-01 -1.24603391e+00 1.42148048e-01 -2.44235143e-01 2.10970670e-01 -1.13116197e-01 6.01119220e-01 -1.01019716e+00 9.94899869e-03 1.64538503e-01 7.52864257e-02 -4.21736181e-01 -6.11086655e-03 8.03308785e-01 -4.83375192e-01 -1.44077376e-01 8.68108094e-01 1.36174589e-01 -7.92025924e-01 8.74968529e-01 5.09089381e-02 -2.06154436e-01 1.30053961e+00 -1.88049823e-01 3.05281311e-01 -1.45848632e-01 -6.40071273e-01 1.31239414e-01 4.11162049e-01 7.34987378e-01 9.87011611e-01 -1.59463418e+00 -5.27676642e-01 3.11294615e-01 4.22692150e-01 -1.88121542e-01 7.77262270e-01 1.04752731e+00 -1.19671337e-01 1.94944978e-01 -1.64722562e-01 -9.04703736e-01 -1.27856088e+00 6.74901366e-01 4.76291329e-01 2.55698174e-01 -3.83754432e-01 5.84043443e-01 3.66537988e-01 -4.75988269e-01 -1.37683049e-01 4.23821136e-02 -4.69480485e-01 7.77394474e-02 6.45674825e-01 3.13844681e-01 -1.27383292e-01 -1.15999162e+00 -5.05034149e-01 1.05375266e+00 9.84499156e-02 1.73171833e-01 1.18411291e+00 -2.22740918e-01 -3.33196074e-01 5.36198378e-01 1.74190819e+00 -4.02241349e-01 -8.20790768e-01 -4.84656096e-01 -6.74418509e-02 -6.86943650e-01 2.08462313e-01 1.64933339e-01 -1.25465333e+00 1.09433138e+00 7.18611479e-01 6.23759031e-02 1.17247784e+00 -2.28200793e-01 4.28100616e-01 4.98681426e-01 7.47643948e-01 -8.16181779e-01 2.68714249e-01 2.11909041e-01 1.04668260e+00 -1.41361988e+00 -1.85913727e-01 -6.29222870e-01 -5.64761519e-01 1.20643246e+00 6.37540162e-01 -1.53539434e-01 1.22406805e+00 -5.38322270e-01 -3.22953045e-01 -1.35702878e-01 -2.57162988e-01 -3.56195122e-02 5.11255443e-01 2.45213866e-01 1.11672260e-01 8.26466829e-03 -1.19456090e-01 6.56693041e-01 1.90293193e-01 -1.04239859e-01 2.95991272e-01 6.77651227e-01 -3.45647424e-01 -8.65892887e-01 -4.80217189e-01 5.51017404e-01 -1.72935680e-01 2.93494046e-01 6.06743693e-02 5.33407986e-01 -3.57683077e-02 9.96605098e-01 -1.02991872e-01 -7.93408215e-01 1.26377985e-01 -8.81930664e-02 6.12800717e-01 -6.02047026e-01 3.89007367e-02 -1.65178284e-01 -6.01543546e-01 -4.68858033e-01 -5.82370520e-01 -7.97626734e-01 -1.08462131e+00 4.21991795e-02 -4.40494001e-01 3.05553049e-01 6.94219410e-01 8.96488011e-01 3.82156074e-01 1.78929120e-02 1.16727626e+00 -9.57050979e-01 -6.89145088e-01 -8.81567240e-01 -9.92690444e-01 8.64213109e-01 -5.46684600e-02 -1.20982623e+00 -5.42643011e-01 -3.15952562e-02]
[7.946136474609375, 4.074167728424072]
b26bbd1b-8351-4a2d-ad31-54ba14676806
opental-towards-open-set-temporal-action
2203.05114
null
https://arxiv.org/abs/2203.05114v1
https://arxiv.org/pdf/2203.05114v1.pdf
OpenTAL: Towards Open Set Temporal Action Localization
Temporal Action Localization (TAL) has experienced remarkable success under the supervised learning paradigm. However, existing TAL methods are rooted in the closed set assumption, which cannot handle the inevitable unknown actions in open-world scenarios. In this paper, we, for the first time, step toward the Open Set TAL (OSTAL) problem and propose a general framework OpenTAL based on Evidential Deep Learning (EDL). Specifically, the OpenTAL consists of uncertainty-aware action classification, actionness prediction, and temporal location regression. With the proposed importance-balanced EDL method, classification uncertainty is learned by collecting categorical evidence majorly from important samples. To distinguish the unknown actions from background video frames, the actionness is learned by the positive-unlabeled learning. The classification uncertainty is further calibrated by leveraging the guidance from the temporal localization quality. The OpenTAL is general to enable existing TAL models for open set scenarios, and experimental results on THUMOS14 and ActivityNet1.3 benchmarks show the effectiveness of our method. The code and pre-trained models are released at https://www.rit.edu/actionlab/opental.
['Yu Kong', 'Qi Yu', 'Wentao Bao']
2022-03-10
null
http://openaccess.thecvf.com//content/CVPR2022/html/Bao_OpenTAL_Towards_Open_Set_Temporal_Action_Localization_CVPR_2022_paper.html
http://openaccess.thecvf.com//content/CVPR2022/papers/Bao_OpenTAL_Towards_Open_Set_Temporal_Action_Localization_CVPR_2022_paper.pdf
cvpr-2022-1
['action-localization']
['computer-vision']
[ 2.36894011e-01 1.20398059e-01 -8.24123383e-01 -4.04418051e-01 -1.02847850e+00 -2.35675290e-01 6.43271327e-01 -3.29303980e-01 -7.59817883e-02 8.57302725e-01 3.94110143e-01 2.95625310e-02 -3.40779573e-01 -2.83437312e-01 -7.53942430e-01 -7.52403140e-01 -1.46447226e-01 2.58776367e-01 3.55583102e-01 1.89851269e-01 1.99943185e-01 -1.38331711e-01 -1.35526931e+00 4.64861542e-01 8.68973851e-01 1.63791752e+00 -1.13541521e-01 3.41148913e-01 -1.25328021e-04 1.50344229e+00 -1.86899319e-01 -9.06683803e-02 4.22117501e-01 -3.30842257e-01 -6.77332997e-01 2.98163116e-01 3.11629534e-01 -6.17696285e-01 -4.68835503e-01 8.85252357e-01 3.17756385e-01 2.60759503e-01 5.22121489e-01 -1.87750459e+00 -6.68668628e-01 8.56688619e-01 -6.32885039e-01 3.72568101e-01 1.92825839e-01 4.75526690e-01 1.02508855e+00 -9.76925015e-01 3.30464929e-01 1.41351211e+00 5.63015103e-01 5.03240585e-01 -7.00249374e-01 -6.28212869e-01 7.60172486e-01 7.06225455e-01 -1.11042488e+00 -5.50171375e-01 6.50780261e-01 -4.44330752e-01 4.82911199e-01 -6.46152571e-02 5.15078187e-01 1.44239390e+00 1.77239358e-01 1.42526853e+00 1.20569694e+00 -8.46266448e-02 4.61168379e-01 -3.84448081e-01 2.37128690e-01 5.91611505e-01 3.31529826e-02 2.32368663e-01 -6.33535206e-01 9.66022909e-02 7.58871257e-01 4.85693902e-01 -2.30040163e-01 -5.55139959e-01 -1.28675354e+00 4.13270235e-01 3.10111016e-01 3.11943181e-02 -2.76715875e-01 5.11750102e-01 5.40555120e-01 1.29860669e-01 5.87577701e-01 -2.64041498e-02 -6.71167195e-01 -5.46311796e-01 -6.25433981e-01 -1.60541713e-01 3.11235756e-01 1.06860828e+00 5.79989076e-01 7.20487684e-02 -6.03463531e-01 5.45186460e-01 4.60003585e-01 3.64040613e-01 5.23338139e-01 -1.40028608e+00 5.40364504e-01 5.46958148e-01 1.68462560e-01 -5.70524037e-01 -1.07662395e-01 -3.16208482e-01 -5.59044123e-01 2.09143296e-01 3.31076115e-01 -2.60105461e-01 -9.46621060e-01 1.75384092e+00 2.85512924e-01 8.38694990e-01 8.68138596e-02 7.44097114e-01 4.49957728e-01 5.06233096e-01 8.25055037e-03 -3.90738487e-01 7.90875673e-01 -1.36279380e+00 -1.00123382e+00 -2.50443041e-01 7.74568737e-01 -5.77190556e-02 1.07805145e+00 5.61673224e-01 -7.20407009e-01 -4.92932916e-01 -1.00162780e+00 1.34689942e-01 -2.84079630e-02 2.36479864e-01 6.52075827e-01 2.72945523e-01 -4.75990742e-01 5.25409162e-01 -1.18562770e+00 -1.79646462e-01 1.08884990e+00 3.43160741e-02 -2.08309680e-01 -3.30760866e-01 -1.18495309e+00 5.06737292e-01 5.47423542e-01 2.45102033e-01 -1.43479884e+00 -4.83634323e-01 -9.11424816e-01 -2.13068828e-01 1.24343526e+00 -2.06581220e-01 1.50256085e+00 -1.16797459e+00 -1.50798011e+00 2.34532565e-01 1.76002637e-01 -7.67437577e-01 7.93789029e-01 -5.83472192e-01 -4.35150117e-01 8.32454637e-02 4.38137442e-01 4.85666931e-01 9.52805161e-01 -1.10252285e+00 -7.84139454e-01 -2.76914150e-01 2.87468463e-01 2.31040612e-01 -2.53063470e-01 -3.42434287e-01 -4.19441640e-01 -6.44623697e-01 1.46906851e-02 -9.48900700e-01 -2.79453337e-01 3.25250596e-01 -2.28593528e-01 -3.21906805e-01 7.59987354e-01 -5.17153025e-01 1.33072710e+00 -2.27119517e+00 -7.66066648e-03 -1.97079062e-01 2.02399582e-01 4.35786881e-02 9.06876288e-03 2.51545221e-01 -8.42779502e-03 -4.19421494e-02 -2.46222630e-01 -2.54860431e-01 3.44495565e-01 3.83249998e-01 -4.12824512e-01 4.34363425e-01 1.82204574e-01 9.21534181e-01 -1.18476963e+00 -7.73931980e-01 3.14604849e-01 -6.62887935e-03 -3.98038238e-01 1.10680070e-02 -6.61188900e-01 6.27443552e-01 -8.15192938e-01 1.02811038e+00 4.26102191e-01 -3.78357649e-01 -4.85987812e-02 -1.15847871e-01 4.22082916e-02 -1.42346602e-02 -1.30193889e+00 2.00618649e+00 -1.55096218e-01 4.35320020e-01 -3.61501247e-01 -9.11719859e-01 4.89212215e-01 2.99060464e-01 7.84786463e-01 -4.81785029e-01 1.45993724e-01 1.19476251e-01 -7.42015913e-02 -5.87887943e-01 1.01608917e-01 1.98352233e-01 -9.81315598e-02 3.51731747e-01 1.56999156e-01 3.16327333e-01 1.18294254e-01 3.08081716e-01 1.22322381e+00 8.92669559e-01 3.59328926e-01 8.38783756e-02 4.29628640e-01 -1.04532823e-01 1.16326594e+00 6.94814265e-01 -8.72725010e-01 3.43335658e-01 5.91476917e-01 -2.86164582e-01 -3.01319778e-01 -1.04360592e+00 -1.25021696e-01 9.89832401e-01 4.13686484e-01 -4.75105822e-01 -5.93693018e-01 -1.24362481e+00 -1.18772633e-01 6.08609736e-01 -7.38823473e-01 -2.52019137e-01 -3.47482800e-01 -3.97115380e-01 3.74812901e-01 9.10594523e-01 8.54237258e-01 -1.03110743e+00 -3.28656882e-01 8.66902322e-02 -3.41570824e-01 -1.20188558e+00 -4.94997412e-01 5.35464138e-02 -7.85449743e-01 -1.18994212e+00 -3.91314834e-01 -1.77554026e-01 3.36405396e-01 2.10457310e-01 8.61734271e-01 -2.65578568e-01 -5.10364771e-02 6.82624280e-01 -5.93906820e-01 -4.12813276e-01 1.05167001e-01 -3.77064675e-01 4.06347036e-01 4.73542929e-01 4.59204257e-01 -5.70789397e-01 -6.63562357e-01 5.16328990e-01 -7.10667670e-01 -9.13587958e-02 8.01619172e-01 7.66470850e-01 9.43276525e-01 1.95826218e-01 7.66951442e-01 -4.44273710e-01 9.73864086e-03 -7.94002414e-01 -3.30010414e-01 3.49478066e-01 -6.47118986e-01 1.36270657e-01 1.70751274e-01 -5.46181917e-01 -1.28730309e+00 -2.04678234e-02 1.69449896e-01 -9.13560390e-01 -1.70624688e-01 4.44697469e-01 -5.59156775e-01 2.48570710e-01 3.84100407e-01 1.88009530e-01 -2.33240262e-01 -3.10798973e-01 4.25224543e-01 5.08152723e-01 4.41563010e-01 -7.94386923e-01 4.49884683e-01 7.44689524e-01 -1.70453668e-01 -2.01835409e-01 -1.40902293e+00 -3.10707867e-01 -6.39329135e-01 -5.50281584e-01 8.47361863e-01 -1.16968441e+00 -3.28060418e-01 5.51363170e-01 -6.38889551e-01 -6.06744647e-01 -6.74606204e-01 7.14515746e-01 -8.96582663e-01 5.42319417e-01 -3.69848460e-01 -9.85029638e-01 9.64624211e-02 -1.07275045e+00 1.18263662e+00 8.08726400e-02 2.11459026e-01 -8.17656577e-01 3.09583563e-02 6.57150626e-01 -1.24846458e-01 2.22757384e-01 1.56978697e-01 -7.37450302e-01 -1.07751203e+00 -1.14381336e-01 -2.55579185e-02 5.79864383e-01 2.21174240e-01 -8.06938782e-02 -1.04709864e+00 -1.59632824e-02 -1.59787561e-03 -7.78753877e-01 1.15597534e+00 5.44867456e-01 1.55790639e+00 -1.28327414e-01 -2.41631180e-01 4.29137588e-01 1.08358073e+00 1.96535960e-01 6.09112680e-01 2.91918784e-01 6.73525870e-01 2.49573365e-01 1.46852565e+00 8.16216707e-01 4.30074692e-01 4.84283715e-01 9.16718185e-01 3.43044639e-01 5.39418831e-02 -4.83208269e-01 8.06899607e-01 3.73865336e-01 -6.09442852e-02 -3.52272153e-01 -7.02366233e-01 4.80011046e-01 -2.46624398e+00 -1.28016686e+00 2.98580583e-02 2.00525999e+00 6.77718401e-01 3.42808366e-01 -9.78217926e-03 1.01830803e-01 6.03244841e-01 4.72069353e-01 -9.51642394e-01 3.77575248e-01 -2.67940480e-02 -4.27892238e-01 3.35182905e-01 2.45560750e-01 -1.41360998e+00 8.60089421e-01 5.02234936e+00 1.14574850e+00 -5.95355809e-01 3.36758554e-01 6.59592450e-01 -2.92443633e-01 4.31389958e-02 1.93671286e-01 -7.94802904e-01 6.80224538e-01 6.06583893e-01 -5.31453826e-02 1.08203858e-01 1.01760268e+00 3.46967250e-01 -1.98320001e-01 -1.30559254e+00 1.04785705e+00 4.20915969e-02 -1.17413354e+00 -1.80553406e-01 -1.70977842e-02 7.70771861e-01 4.16903347e-02 1.35725647e-01 8.79134536e-01 4.68939811e-01 -6.81001127e-01 7.76505232e-01 8.11273217e-01 5.54477155e-01 -3.93122166e-01 5.29724181e-01 5.69094837e-01 -1.31324720e+00 -6.64611399e-01 -1.47199839e-01 -2.31162757e-01 3.02143008e-01 5.12674928e-01 -2.75687158e-01 6.34396374e-01 8.49713624e-01 1.55008626e+00 -4.22195613e-01 8.78716171e-01 -4.94136482e-01 8.14031780e-01 -6.74332976e-02 2.93017209e-01 4.06962425e-01 -1.42713606e-01 5.09262979e-01 6.06810212e-01 1.71747863e-01 9.08497125e-02 6.42019212e-01 6.29133046e-01 -3.94248292e-02 -2.68192232e-01 -4.68566626e-01 -2.22969741e-01 3.63436759e-01 9.86567140e-01 -4.28624243e-01 -3.27165544e-01 -4.30227906e-01 8.66904557e-01 2.34024405e-01 2.92871892e-01 -1.35468471e+00 1.63997024e-01 6.14063501e-01 -1.89793587e-01 2.35593423e-01 -2.50067376e-02 5.19327372e-02 -1.39882612e+00 2.79612303e-01 -7.96494603e-01 6.86875165e-01 -9.26771581e-01 -1.37511706e+00 2.74567306e-01 2.51761466e-01 -1.83032203e+00 -2.59888619e-02 -5.44390202e-01 -5.93719840e-01 1.26759440e-01 -1.50425375e+00 -1.13539410e+00 -3.09169769e-01 7.25355268e-01 1.01949847e+00 -1.55799925e-01 3.37954342e-01 2.45159492e-01 -9.64289963e-01 2.76169956e-01 5.29568195e-02 9.08814091e-03 8.38107586e-01 -1.25235403e+00 -1.11816078e-01 8.78795385e-01 1.68059498e-01 1.05814405e-01 3.71673852e-01 -7.80417085e-01 -1.10070455e+00 -1.41360974e+00 1.84608027e-01 -7.77779043e-01 1.14261758e+00 -1.78043962e-01 -6.59191966e-01 1.10095477e+00 1.65834632e-02 5.33449650e-01 6.54816329e-01 -9.54116806e-02 -3.84955198e-01 -1.29044324e-01 -8.37836325e-01 5.60519934e-01 1.44954979e+00 -3.24448228e-01 -6.33192778e-01 5.93623936e-01 9.80716109e-01 -2.58330971e-01 -8.95140946e-01 5.12901604e-01 4.52990890e-01 -8.83970618e-01 7.58530438e-01 -7.50933230e-01 4.78927821e-01 -4.18439686e-01 -4.45088089e-01 -1.05028546e+00 -1.78552464e-01 -5.91057897e-01 -6.90861404e-01 1.23665750e+00 1.69330478e-01 -4.91971374e-01 7.30744481e-01 4.41818297e-01 -4.70207870e-01 -8.51286590e-01 -1.11064005e+00 -1.13090289e+00 -2.34184325e-01 -8.10487032e-01 3.90353173e-01 7.73445845e-01 -3.64260525e-02 2.52962977e-01 -7.35013247e-01 2.38138467e-01 7.50991940e-01 5.57117797e-02 6.57555223e-01 -1.12757266e+00 -5.56381643e-01 -4.03761072e-03 -4.12789315e-01 -1.39434886e+00 3.60782832e-01 -4.86403286e-01 2.57931203e-01 -1.49971187e+00 2.22538099e-01 -5.19622028e-01 -7.35562921e-01 6.94023967e-01 -1.86461806e-01 -1.52640000e-01 1.11827180e-01 3.37782681e-01 -1.52725828e+00 1.13230479e+00 1.18248403e+00 -2.14543968e-01 -3.63673866e-02 1.58923179e-01 -5.29866219e-01 1.15511799e+00 8.98583591e-01 -3.82324278e-01 -9.52113450e-01 -3.70111465e-01 4.92527557e-04 1.14272729e-01 5.73128104e-01 -1.23183048e+00 -1.67849492e-02 -6.20413542e-01 1.01343855e-01 -7.64735520e-01 6.26639545e-01 -1.00463605e+00 -2.59748161e-01 2.59810895e-01 -5.02639830e-01 -4.90704119e-01 -9.25753191e-02 1.29335809e+00 -7.90486857e-02 2.95624528e-02 5.47387540e-01 -1.72806196e-02 -1.24485195e+00 9.31369126e-01 -2.81724110e-02 3.83438200e-01 1.35221243e+00 -2.01334059e-01 -5.05584180e-01 -3.83999556e-01 -9.33353961e-01 7.12441266e-01 1.32307723e-01 4.13422346e-01 6.43763781e-01 -1.58231568e+00 -5.00385463e-01 -2.08825022e-01 4.76919085e-01 3.12350076e-02 4.97559428e-01 1.35089195e+00 1.73748657e-01 1.61214784e-01 -6.44871071e-02 -7.48486638e-01 -8.89484406e-01 7.55033016e-01 4.22671497e-01 -3.09239805e-01 -7.02173412e-01 7.72402406e-01 3.72280002e-01 -2.73127019e-01 5.54761469e-01 -4.00163710e-01 -1.97811976e-01 -2.22762302e-01 5.78437626e-01 5.46831310e-01 -3.43758762e-01 -3.98688287e-01 -3.60549480e-01 1.61239237e-01 9.57818702e-03 -1.43814057e-01 1.16346478e+00 -2.77236402e-01 2.93759584e-01 9.67972934e-01 7.21264899e-01 -2.86065936e-01 -2.04175186e+00 -4.80108798e-01 6.55051693e-02 -6.63049459e-01 1.25879705e-01 -7.60181785e-01 -9.88380313e-01 8.34040940e-01 7.12400615e-01 -1.65553197e-01 1.10572529e+00 -9.74615104e-03 6.57425046e-01 4.62960750e-01 6.76062465e-01 -1.23050666e+00 6.09314978e-01 3.84554446e-01 8.25405896e-01 -1.67089260e+00 -3.97203788e-02 -2.93860763e-01 -9.68093216e-01 6.88280821e-01 1.06690407e+00 3.10075795e-03 8.14640939e-01 7.50129968e-02 -2.02291355e-01 -9.14128423e-02 -1.06999946e+00 -3.61361623e-01 4.06310819e-02 6.03407145e-01 -7.97184557e-02 -3.05094998e-02 -9.00149345e-02 1.04897833e+00 7.24728763e-01 4.95724648e-01 4.05974418e-01 1.18485785e+00 -5.64176619e-01 -8.00097048e-01 -1.82198912e-01 4.59830046e-01 -2.98502833e-01 4.17166054e-02 -2.83516645e-01 6.37724161e-01 4.05703902e-01 9.86504197e-01 -1.65862381e-01 -4.56349075e-01 5.81892431e-02 -3.28918546e-02 3.08443487e-01 -5.71318150e-01 1.19109742e-01 1.86813734e-02 9.83215347e-02 -9.70134735e-01 -6.84727371e-01 -9.18966353e-01 -1.43394768e+00 1.77333698e-01 -4.09784704e-01 -1.06672728e-02 8.31436217e-02 1.16147625e+00 3.24114054e-01 6.98717594e-01 7.24578202e-01 -8.03997934e-01 -9.15197372e-01 -1.02723670e+00 -6.50329530e-01 1.74433872e-01 3.02013010e-01 -1.12920940e+00 -5.49957633e-01 1.12765640e-01]
[8.561345100402832, 0.7451103925704956]
c703ea97-a5c2-4304-b355-d21d5c1984c1
joint-bayesian-inference-of-graphical
2305.19366
null
https://arxiv.org/abs/2305.19366v1
https://arxiv.org/pdf/2305.19366v1.pdf
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network
Generative Flow Networks (GFlowNets), a class of generative models over discrete and structured sample spaces, have been previously applied to the problem of inferring the marginal posterior distribution over the directed acyclic graph (DAG) of a Bayesian Network, given a dataset of observations. Based on recent advances extending this framework to non-discrete sample spaces, we propose in this paper to approximate the joint posterior over not only the structure of a Bayesian Network, but also the parameters of its conditional probability distributions. We use a single GFlowNet whose sampling policy follows a two-phase process: the DAG is first generated sequentially one edge at a time, and then the corresponding parameters are picked once the full structure is known. Since the parameters are included in the posterior distribution, this leaves more flexibility for the local probability models of the Bayesian Network, making our approach applicable even to non-linear models parametrized by neural networks. We show that our method, called JSP-GFN, offers an accurate approximation of the joint posterior, while comparing favorably against existing methods on both simulated and real data.
['Yoshua Bengio', 'Laurent Charlin', 'Nikolay Malkin', 'Jithendaraa Subramanian', 'Mizu Nishikawa-Toomey', 'Tristan Deleu']
2023-05-30
null
null
null
null
['bayesian-inference']
['methodology']
[ 1.30465090e-01 3.86714756e-01 -9.49577689e-02 -3.83381337e-01 -2.83363461e-01 -4.92714345e-01 1.06303811e+00 -1.16932757e-01 -2.64570475e-01 8.17583263e-01 2.75109589e-01 -2.12734684e-01 -5.37606359e-01 -1.13849902e+00 -7.43583679e-01 -7.59425044e-01 -3.90619814e-01 1.18923044e+00 4.44831222e-01 5.59058785e-01 7.11471215e-02 6.78788841e-01 -1.14160907e+00 -3.96167219e-01 5.71156263e-01 4.33467209e-01 -2.13012025e-02 1.00560880e+00 -1.06956050e-01 6.72128797e-01 -4.66875553e-01 -4.28135574e-01 3.64658260e-03 -3.69792193e-01 -7.77600050e-01 1.35778993e-01 1.93230972e-01 -4.80228782e-01 -5.18909097e-01 1.20346463e+00 3.84641960e-02 2.60351688e-01 1.24248707e+00 -1.45147634e+00 7.33078420e-02 8.35475743e-01 -3.13282579e-01 9.06506702e-02 -2.53833067e-02 6.09597452e-02 1.05019653e+00 -3.91347200e-01 6.73642337e-01 1.64978731e+00 5.04771471e-01 6.11910596e-02 -1.85605788e+00 -4.49496478e-01 2.93369263e-01 3.59137915e-02 -1.37860107e+00 -2.88845122e-01 6.84297323e-01 -6.10855401e-01 3.32366318e-01 -1.80876747e-01 7.31711686e-01 1.21467745e+00 3.41288775e-01 6.93822682e-01 8.61946046e-01 -3.24624479e-01 7.76350558e-01 -1.77431643e-01 1.85159206e-01 6.60856187e-01 5.35255134e-01 2.00806290e-01 -5.22654116e-01 -6.46220505e-01 9.71344411e-01 1.95594817e-01 2.19107904e-02 -7.44451582e-01 -9.14732337e-01 8.48107040e-01 7.29634315e-02 -4.84144054e-02 -3.78932923e-01 4.73192334e-01 -2.37652157e-02 -1.73609123e-01 3.92320454e-01 -2.75462329e-01 -1.21223293e-02 -1.03482105e-01 -1.06109190e+00 5.02956748e-01 1.47716534e+00 9.27549183e-01 1.06565928e+00 -1.05169050e-01 -2.25652918e-01 4.45371389e-01 8.39801908e-01 4.74600285e-01 -3.41924250e-01 -1.15766513e+00 2.92732537e-01 1.60187557e-01 3.08329672e-01 -8.61760259e-01 -7.76968971e-02 -4.56590563e-01 -8.75299394e-01 1.06557831e-01 8.21441233e-01 -4.49191362e-01 -1.05779612e+00 2.01008415e+00 3.61471444e-01 3.44505042e-01 -2.20587566e-01 3.65032434e-01 6.84544593e-02 7.79214025e-01 9.40958932e-02 -8.38297307e-02 1.03302169e+00 -2.96090811e-01 -2.68098295e-01 -2.30428398e-01 -1.49958193e-01 -4.05258566e-01 3.64040405e-01 4.25898135e-01 -7.92827487e-01 -2.38679767e-01 -7.64126837e-01 3.97418499e-01 -4.26922515e-02 -5.99895827e-02 3.59218836e-01 7.42075562e-01 -1.16113555e+00 8.24693382e-01 -1.37195361e+00 -3.98631096e-01 3.96326512e-01 2.09429681e-01 6.72552139e-02 -4.72303927e-01 -9.28498566e-01 3.84607613e-01 5.04035830e-01 2.65540481e-01 -1.41148245e+00 -4.55528796e-01 -5.74690402e-01 3.76399040e-01 6.57578170e-01 -7.31624544e-01 1.16283989e+00 -3.61276656e-01 -1.49648380e+00 -7.01628625e-02 -3.83038342e-01 -4.18440819e-01 6.44734800e-01 8.52924436e-02 -1.55245895e-02 1.98339060e-01 -1.00160781e-02 5.52961111e-01 9.71539855e-01 -1.11528146e+00 -3.81007403e-01 -2.19413459e-01 3.72837931e-02 -1.12727910e-01 2.23690167e-01 -4.47364748e-01 -5.69169044e-01 -2.64492810e-01 1.14483923e-01 -9.75617588e-01 -4.55598056e-01 7.13452511e-03 -8.02644372e-01 -4.49669868e-01 5.42659104e-01 -4.45327371e-01 9.51305747e-01 -1.96795344e+00 2.19266281e-01 8.07393789e-01 2.54919589e-01 -2.70266831e-01 1.57654792e-01 7.06653118e-01 3.73523265e-01 -7.82764796e-03 -5.08663774e-01 -3.94673556e-01 2.06675395e-01 5.58795810e-01 -1.96843207e-01 6.91503525e-01 1.40419796e-01 3.54147404e-01 -9.77695286e-01 -4.47935343e-01 1.34536669e-01 4.93252873e-01 -5.14633060e-01 2.21303612e-01 -4.27801579e-01 1.70185193e-01 -6.88077688e-01 1.49197318e-03 6.43106997e-01 -3.46698403e-01 5.97023368e-01 1.01577908e-01 1.95815966e-01 1.87887415e-01 -1.71508527e+00 1.23916709e+00 -1.67107448e-01 5.03905058e-01 1.08113371e-01 -9.13784564e-01 9.02790725e-01 3.03008556e-01 3.79504710e-01 2.39826947e-01 -2.88506337e-02 -1.42289683e-01 1.97318316e-01 -9.00539234e-02 2.20920354e-01 -1.78906113e-01 8.84141549e-02 6.97070062e-01 4.37206239e-01 3.79599370e-02 6.11673176e-01 5.95224500e-01 1.02064300e+00 4.12902206e-01 6.70376793e-02 -4.87934500e-01 3.67254205e-02 -4.48543906e-01 6.70588195e-01 1.34350419e+00 3.12044263e-01 4.59432960e-01 1.22030973e+00 -1.98169723e-01 -1.06418800e+00 -1.49064589e+00 -1.71640068e-01 5.07895291e-01 -2.13332221e-01 -4.77943391e-01 -8.17127883e-01 -5.14755309e-01 5.50935902e-02 6.46498382e-01 -6.09601378e-01 4.64669131e-02 -2.73487628e-01 -1.01407456e+00 1.62826911e-01 3.83619964e-01 3.01866859e-01 -7.26278663e-01 -4.13033158e-01 5.61837375e-01 4.24011704e-03 -1.10570467e+00 -2.38680303e-01 1.32861629e-01 -1.11601436e+00 -1.22000313e+00 -4.22174096e-01 -4.02591676e-02 7.56785393e-01 -4.73014712e-01 1.01446688e+00 -4.64199513e-01 -5.10502085e-02 4.56697971e-01 2.27258712e-01 -1.41739726e-01 -6.12549305e-01 2.47302920e-01 -1.87006056e-01 4.02834564e-01 6.78611025e-02 -8.25259030e-01 -3.77038300e-01 1.75552368e-01 -1.00583315e+00 -2.92659570e-02 4.28836882e-01 4.99157995e-01 3.94738048e-01 1.90458119e-01 2.89430439e-01 -1.10636973e+00 4.75538403e-01 -6.77315652e-01 -1.01337290e+00 1.77240670e-01 -5.41569471e-01 4.51530606e-01 4.33635682e-01 -3.84178042e-01 -1.25637746e+00 1.00342010e-03 1.99717909e-01 -1.82653829e-01 -4.50026929e-01 5.51831305e-01 -3.03521961e-01 3.66200924e-01 3.01032543e-01 -5.64256720e-02 1.02913044e-01 -6.89864159e-01 3.38435173e-01 2.65465617e-01 5.43199360e-01 -8.81474614e-01 6.21804893e-01 6.12444818e-01 6.55017257e-01 -8.60938549e-01 -5.89533925e-01 -1.55422404e-01 -7.12595642e-01 -2.92457521e-01 5.66746235e-01 -6.27907157e-01 -7.61816323e-01 4.55223858e-01 -1.01866972e+00 -3.94828826e-01 -2.89630562e-01 7.01438487e-01 -5.42211592e-01 2.89186418e-01 -5.09857118e-01 -1.14260244e+00 3.79908860e-01 -9.76538777e-01 7.03104854e-01 2.87249029e-01 -1.30647600e-01 -1.35437405e+00 4.93144989e-01 -3.09025377e-01 1.93185776e-01 1.53934166e-01 9.96558785e-01 -5.95907271e-01 -9.53303933e-01 -2.80347139e-01 -1.02370322e-01 2.56374627e-01 -2.36317720e-02 6.07307196e-01 -7.17013419e-01 -2.35093325e-01 -3.09103489e-01 2.53097206e-01 9.27862585e-01 7.94321895e-01 9.23131108e-01 -3.27955067e-01 -5.77392042e-01 2.84854412e-01 1.36995506e+00 -8.77614468e-02 5.35018682e-01 -2.37369552e-01 4.89349514e-01 5.22128046e-01 -5.95419295e-02 5.93542099e-01 3.92158866e-01 3.66845042e-01 4.41898674e-01 3.10340405e-01 7.50874877e-02 -6.29345238e-01 2.61679351e-01 2.66034544e-01 1.08036257e-01 -5.78567266e-01 -8.80099118e-01 7.27549970e-01 -1.82991970e+00 -8.78746808e-01 4.00209166e-02 2.30325961e+00 5.84803402e-01 3.90130430e-01 4.18838114e-01 -1.82010621e-01 9.79070127e-01 2.85014510e-01 -6.08263016e-01 -1.30004687e-02 2.84755230e-01 1.65502638e-01 5.28674960e-01 8.43962669e-01 -7.47331440e-01 3.41360360e-01 7.07906866e+00 6.41271770e-01 -4.82453197e-01 -1.73863962e-01 5.69497347e-01 1.44517824e-01 -4.53755170e-01 6.24736667e-01 -1.09637904e+00 5.76500356e-01 1.23694599e+00 -3.37104611e-02 3.96327794e-01 5.03116906e-01 8.66420493e-02 -5.10755360e-01 -1.18110061e+00 2.09534779e-01 -3.38922620e-01 -1.10715318e+00 3.96471983e-03 4.86255080e-01 6.56693578e-01 1.65187210e-01 -3.05669099e-01 -1.10868558e-01 1.26131785e+00 -6.77828252e-01 6.07422173e-01 9.95624363e-01 3.24341387e-01 -8.52747917e-01 4.71963108e-01 5.47198534e-01 -8.61772299e-01 1.40686527e-01 -2.55555153e-01 1.46911055e-01 3.20586234e-01 1.12925184e+00 -1.17601418e+00 4.07774717e-01 3.90257210e-01 6.93295836e-01 -2.01302290e-01 1.24922526e+00 -3.75719726e-01 1.18985856e+00 -9.24377143e-01 -1.05403408e-01 1.24540009e-01 -4.72024471e-01 7.47165382e-01 1.03421676e+00 1.94899842e-01 -4.10541534e-01 3.61501217e-01 1.24971783e+00 3.15223932e-02 -4.92780238e-01 -3.30494285e-01 -1.22123115e-01 6.44675016e-01 1.08566451e+00 -1.14143097e+00 -3.12440008e-01 -1.08722635e-01 1.51695758e-01 2.74442166e-01 8.43355536e-01 -3.66622359e-01 -2.45775744e-01 3.97960186e-01 2.72916965e-02 6.69300914e-01 -3.30112934e-01 2.13816375e-01 -1.02394676e+00 -1.71279833e-01 -2.98139244e-01 4.49712396e-01 -4.60184455e-01 -1.33228374e+00 1.78194389e-01 7.77759492e-01 -6.07285261e-01 -9.04460073e-01 -4.11993325e-01 -6.40330017e-01 1.00936794e+00 -1.18426323e+00 -6.41322613e-01 1.24726959e-01 2.94343084e-01 6.85034618e-02 1.51988000e-01 5.29144347e-01 -1.86896592e-01 -5.52346230e-01 -2.02350095e-01 3.57532054e-01 2.48013467e-01 1.64357319e-01 -1.42741156e+00 6.06058240e-01 1.03094399e+00 2.82595366e-01 4.77942765e-01 9.66503501e-01 -9.48460877e-01 -1.01620996e+00 -8.37059379e-01 5.63714504e-01 -1.90204516e-01 6.57985747e-01 -6.15015030e-01 -8.02806556e-01 9.03124630e-01 -2.48692315e-02 7.15790763e-02 3.08002681e-01 3.50981265e-01 -1.82645053e-01 -1.26574248e-01 -9.99436200e-01 3.52476060e-01 6.87428057e-01 -2.16893211e-01 -6.57626316e-02 8.15057680e-02 2.17078328e-01 -9.03880522e-02 -7.96027064e-01 6.89746737e-02 5.19326627e-01 -1.00555539e+00 6.72849894e-01 -5.36773086e-01 9.65065658e-02 -4.37513471e-01 -4.74030189e-02 -1.31649470e+00 -3.26741189e-01 -8.08352113e-01 -3.36126417e-01 1.25220227e+00 3.04526508e-01 -7.09812522e-01 7.63585806e-01 4.70069736e-01 3.88698965e-01 -3.29103768e-01 -1.07193410e+00 -6.10992134e-01 -8.95595700e-02 -4.55952853e-01 6.91677034e-01 2.29983285e-01 -5.28246999e-01 2.07777992e-01 -3.65424901e-01 3.63953859e-01 1.23234737e+00 -2.41103657e-02 7.07966506e-01 -1.78979886e+00 -6.18795812e-01 -1.87458113e-01 -3.54081124e-01 -1.14441180e+00 2.22426653e-01 -5.40235162e-01 1.92837253e-01 -1.45666933e+00 4.10297513e-01 -3.46581489e-01 1.67889938e-01 1.27275333e-01 1.89459871e-03 -3.52945566e-01 -2.22711526e-02 1.32869139e-01 -3.56419206e-01 4.11206961e-01 9.16807115e-01 2.38531202e-01 4.89474051e-02 5.02578974e-01 -3.40193957e-01 7.48272061e-01 4.14105892e-01 -7.47344971e-01 -6.32049918e-01 -6.87047541e-02 2.13537380e-01 3.56026322e-01 5.90968788e-01 -7.51811743e-01 3.61713469e-01 -2.13561952e-01 3.20145011e-01 -6.50432646e-01 1.84181556e-01 -6.61496222e-01 5.71164668e-01 4.35173213e-01 -3.64686608e-01 -2.24808306e-01 -3.07458848e-01 1.10882056e+00 8.84770527e-02 -5.40061474e-01 6.12505972e-01 -7.50976354e-02 -6.65189251e-02 5.23358464e-01 -6.87602341e-01 1.99355751e-01 4.51012284e-01 1.71636477e-01 -1.51837602e-01 -7.28229165e-01 -1.10197854e+00 1.60181731e-01 2.37960413e-01 -1.20907612e-01 1.92450508e-01 -1.08671498e+00 -6.24616683e-01 2.77113408e-01 -3.21964324e-01 3.54972899e-01 1.37680322e-01 5.74418783e-01 -2.63988018e-01 2.05723599e-01 9.02230069e-02 -8.49545836e-01 -6.31803453e-01 1.11199036e-01 4.23760235e-01 -4.02205139e-01 -6.40327096e-01 3.97741765e-01 -1.17888320e-02 -2.90310770e-01 2.31615335e-01 -2.74268448e-01 3.14959586e-02 -6.85349703e-02 2.87006289e-01 6.71157420e-01 -2.90916115e-01 -2.54273921e-01 -3.54037397e-02 1.37291372e-01 -1.95594013e-01 -5.77950895e-01 1.34642601e+00 -1.09290041e-01 -2.16165736e-01 6.94252491e-01 8.44090879e-01 -3.09665442e-01 -1.88949752e+00 -5.47700465e-01 -1.06145509e-01 -3.79418194e-01 3.41470800e-02 -4.39328521e-01 -9.70748425e-01 7.68851340e-01 6.05773330e-02 5.44258893e-01 4.92251962e-01 2.65765369e-01 -2.94377804e-02 1.72287017e-01 3.00204068e-01 -7.32714355e-01 -1.85878232e-01 3.75392646e-01 2.18314141e-01 -5.19858837e-01 1.05181091e-01 -3.64510119e-01 -4.44512554e-02 1.17056823e+00 9.63535160e-02 -4.81703520e-01 1.01921415e+00 3.88434887e-01 -6.21716440e-01 -7.24049062e-02 -8.44434679e-01 1.74120739e-01 1.69757813e-01 7.05703676e-01 3.47335194e-03 7.34165013e-02 3.01059067e-01 3.92281683e-03 -5.84237613e-02 1.59160703e-01 8.18131149e-01 7.25531042e-01 -3.61148864e-01 -1.18327796e+00 -3.01017344e-01 6.19954228e-01 -3.30103070e-01 1.96854129e-01 -3.40576395e-02 7.47178078e-01 -2.30756819e-01 6.15260720e-01 4.22368526e-01 2.98122019e-01 -5.99454949e-03 1.35875836e-01 5.80765903e-01 -5.22990227e-01 2.62445450e-01 3.73533964e-01 1.23934038e-01 -3.69325966e-01 -4.33412045e-01 -1.19931901e+00 -7.00339377e-01 -3.85838509e-01 -1.85903564e-01 3.30275685e-01 6.12373710e-01 1.20651722e+00 2.06791729e-01 4.21676010e-01 4.10668224e-01 -7.65852153e-01 -7.77536392e-01 -1.06136250e+00 -9.05931950e-01 -2.09186390e-01 3.63562346e-01 -7.56331444e-01 -4.94813263e-01 7.27380300e-03]
[6.925859451293945, 4.280847072601318]
66def7bd-3e10-4cca-aa14-956b02ee78e4
guaranteed-non-convex-optimization-submodular
1606.05615
null
https://arxiv.org/abs/1606.05615v5
https://arxiv.org/pdf/1606.05615v5.pdf
Guaranteed Non-convex Optimization: Submodular Maximization over Continuous Domains
Submodular continuous functions are a category of (generally) non-convex/non-concave functions with a wide spectrum of applications. We characterize these functions and demonstrate that they can be maximized efficiently with approximation guarantees. Specifically, i) We introduce the weak DR property that gives a unified characterization of submodularity for all set, integer-lattice and continuous functions; ii) for maximizing monotone DR-submodular continuous functions under general down-closed convex constraints, we propose a Frank-Wolfe variant with $(1-1/e)$ approximation guarantee, and sub-linear convergence rate; iii) for maximizing general non-monotone submodular continuous functions subject to box constraints, we propose a DoubleGreedy algorithm with $1/3$ approximation guarantee. Submodular continuous functions naturally find applications in various real-world settings, including influence and revenue maximization with continuous assignments, sensor energy management, multi-resolution data summarization, facility location, etc. Experimental results show that the proposed algorithms efficiently generate superior solutions compared to baseline algorithms.
['Baharan Mirzasoleiman', 'Andreas Krause', 'Joachim M. Buhmann', 'Andrew An Bian']
2016-06-17
null
null
null
null
['data-summarization']
['miscellaneous']
[ 1.51432574e-01 3.32819611e-01 -5.45387506e-01 -4.87327397e-01 -9.34133530e-01 -1.04529858e+00 -4.62667346e-01 2.59336293e-01 -5.46373315e-02 1.19609261e+00 2.31376722e-01 1.16255119e-01 -8.78717244e-01 -8.77172232e-01 -1.14997172e+00 -8.99511278e-01 -4.86997247e-01 8.05642068e-01 -2.97159255e-01 -3.20941448e-01 3.80519144e-02 4.59273726e-01 -1.11923444e+00 -2.28018820e-01 1.08496737e+00 1.23693419e+00 5.13912499e-01 2.91157395e-01 1.84112772e-01 4.30203468e-01 -3.97732556e-01 5.75085059e-02 7.07282066e-01 -3.57732959e-02 -6.54183030e-01 4.86828476e-01 2.82578558e-01 -3.93857956e-01 -3.01502526e-01 1.22019696e+00 2.86824495e-01 9.61459056e-02 3.75003189e-01 -1.56669831e+00 -8.02066982e-01 8.48234117e-01 -1.16606748e+00 -2.56208908e-02 2.15089560e-01 -3.87340754e-01 1.43256950e+00 -6.48697138e-01 6.60423517e-01 1.32821500e+00 3.83573443e-01 2.69030988e-01 -1.17307532e+00 -5.05316019e-01 3.93566251e-01 -1.21528767e-01 -1.42685604e+00 -1.53895468e-01 4.03394610e-01 1.50247008e-01 7.54175305e-01 9.33575749e-01 3.16656411e-01 -8.01529661e-02 1.45659789e-01 9.11970973e-01 5.92697978e-01 1.20183118e-01 2.28218645e-01 1.54084012e-01 1.03888065e-01 5.00249445e-01 9.07885313e-01 -5.68803251e-01 -1.87056839e-01 -4.72299695e-01 3.24000508e-01 3.22367966e-01 -7.05595553e-01 -6.26869977e-01 -1.08353388e+00 8.71057272e-01 3.69680464e-01 -2.90254187e-02 -5.70617557e-01 6.60465002e-01 1.66376621e-01 6.30257726e-01 1.96134210e-01 3.50349456e-01 -5.93116403e-01 2.37928063e-01 -8.80174339e-01 6.50000989e-01 8.89332831e-01 1.75707364e+00 5.89346766e-01 -5.26525192e-02 -4.54519242e-01 7.08100379e-01 -2.24355701e-03 1.01804936e+00 -3.69378865e-01 -1.11359894e+00 9.86630738e-01 5.86246550e-01 5.86983621e-01 -1.06376994e+00 -6.70593202e-01 -2.94378161e-01 -8.72879028e-01 -4.21950877e-01 9.55519034e-04 -2.26916403e-01 -3.91970903e-01 1.78049505e+00 3.19683582e-01 -6.73659265e-01 -8.83536860e-02 8.57919157e-01 5.33667743e-01 1.14017069e+00 -7.25147486e-01 -1.29239190e+00 9.88714337e-01 -7.66319513e-01 -1.00914812e+00 1.56501383e-01 4.43115264e-01 -2.48891890e-01 7.00352073e-01 5.66777229e-01 -1.60545528e+00 3.89915079e-01 -1.00411820e+00 -1.77141968e-02 -3.36759835e-02 -3.05481017e-01 7.26800025e-01 7.34978139e-01 -1.05047107e+00 -3.11479475e-02 -3.39140058e-01 -1.36999995e-01 4.08475876e-01 8.14428270e-01 -4.96641435e-02 -5.06312132e-01 -4.25501376e-01 3.12443286e-01 3.99804831e-01 -1.97572280e-02 -8.94867063e-01 -8.37884784e-01 -7.18411386e-01 2.24940568e-01 8.17787647e-01 -5.14776409e-01 1.00044191e+00 -2.24116161e-01 -7.78793573e-01 6.98590875e-01 -2.28526756e-01 -2.59676516e-01 4.07635331e-01 8.39193836e-02 -9.86134782e-02 8.36521611e-02 9.06370133e-02 2.80904591e-01 3.55921656e-01 -1.46651149e+00 -8.02773476e-01 -9.23153758e-01 4.35273707e-01 5.89889467e-01 -7.53289282e-01 -2.15767965e-01 3.33269797e-02 -1.64216489e-01 2.74994791e-01 -5.35385013e-01 -5.10956883e-01 -2.80468427e-02 -4.82729048e-01 -2.46598616e-01 8.09553862e-01 -4.99190003e-01 1.36703575e+00 -1.94700503e+00 4.00371611e-01 5.52691877e-01 3.17357808e-01 -8.42747390e-01 -6.73755482e-02 6.08943522e-01 3.89551908e-01 -3.92788500e-02 -4.95501608e-01 -1.09464586e-01 3.95474017e-01 4.77811873e-01 -1.36243045e-01 9.35152709e-01 -5.87139308e-01 9.80083108e-01 -9.00992930e-01 -8.10444877e-02 -3.46254915e-01 -3.48986715e-01 -4.96075362e-01 -1.08439274e-01 -4.43375766e-01 -2.71308661e-01 -5.76532066e-01 1.21944308e+00 1.22656119e+00 -2.72467107e-01 5.06976545e-01 1.72785670e-01 4.94377455e-03 -5.83635747e-01 -1.60335290e+00 1.50151002e+00 -4.56706852e-01 1.32295460e-01 1.07319391e+00 -1.34391069e+00 9.94007647e-01 -5.48484400e-02 1.01341081e+00 -4.35323328e-01 7.58386105e-02 5.09001970e-01 -6.63863420e-01 -2.81494766e-01 8.30758870e-01 -1.95621192e-01 -3.99830341e-01 5.09427667e-01 -4.56822455e-01 -8.21411833e-02 3.60146940e-01 2.31852114e-01 1.16067445e+00 -7.89656579e-01 3.75579774e-01 -9.60586190e-01 4.42731172e-01 -6.99199513e-02 7.24150002e-01 6.38708055e-01 2.44301766e-01 5.88455081e-01 6.60662830e-01 -1.15538567e-01 -6.93305016e-01 -1.06825030e+00 -8.32825750e-02 1.34340656e+00 6.75356984e-01 1.39480889e-01 -4.07528341e-01 -3.77008945e-01 8.13372731e-01 6.97032392e-01 -4.28722620e-01 2.76425779e-01 -5.12306631e-01 -1.11936653e+00 -1.84732422e-01 3.62684876e-01 1.88386068e-01 -5.23226261e-01 -2.01854974e-01 3.45582485e-01 -6.17656037e-02 -9.56994772e-01 -1.35973299e+00 3.95115674e-01 -1.13757801e+00 -8.80468905e-01 -7.26112664e-01 -1.00663519e+00 1.18158722e+00 9.21830654e-01 9.91734684e-01 -1.91237509e-01 -1.96368366e-01 8.16563249e-01 -1.01903774e-01 -3.76009643e-01 3.48048180e-01 -3.02114010e-01 2.28872940e-01 6.23402279e-03 -7.79337361e-02 -4.57618386e-01 -5.34654200e-01 4.43479091e-01 -1.14016187e+00 -6.67501986e-01 3.45687091e-01 4.10664558e-01 1.25528765e+00 2.79347926e-01 9.42089319e-01 -9.08294320e-01 8.76911819e-01 -9.06455815e-01 -1.17690420e+00 5.79420924e-01 -7.36218214e-01 1.13518544e-01 7.18783200e-01 -4.00400609e-02 -7.74715126e-01 8.67576078e-02 5.21971464e-01 -1.71434641e-01 8.72275293e-01 3.67130309e-01 -5.95515311e-01 -3.91876400e-02 2.85224229e-01 5.36988497e-01 -7.49797374e-02 -2.41728425e-01 4.52507615e-01 7.43211031e-01 5.28887570e-01 -8.48168612e-01 8.83404911e-01 9.30555820e-01 3.50702047e-01 -6.80215538e-01 -7.58007944e-01 -7.36955106e-01 5.64729162e-02 1.00799881e-01 3.72481227e-01 -8.95484507e-01 -1.11911559e+00 -4.63779420e-02 -1.00397050e+00 1.19995706e-01 -5.71374595e-01 -7.65380859e-02 -7.80104816e-01 3.63243073e-01 -8.10799468e-03 -1.25208688e+00 -7.49044776e-01 -6.86523318e-01 8.70356083e-01 2.30422303e-01 4.51748163e-01 -7.93695271e-01 -1.75927207e-01 5.04812539e-01 3.04782838e-01 6.60456896e-01 7.57410407e-01 -2.31737465e-01 -1.05715990e+00 3.02630272e-02 -2.63774574e-01 2.49216139e-01 1.78259164e-01 -7.09044993e-01 -2.53824770e-01 -8.85874629e-01 -9.49247926e-02 -3.31408739e-01 5.71936905e-01 9.01853263e-01 1.64591205e+00 -9.57303643e-01 -5.10344803e-01 8.71550262e-01 1.65933728e+00 1.96566448e-01 3.70582163e-01 -2.67865565e-02 3.23151439e-01 4.59810585e-01 1.02195787e+00 1.16745114e+00 7.00396001e-01 2.93517739e-01 1.02083850e+00 2.51428485e-01 8.31791461e-01 1.27586396e-02 3.70047420e-01 5.66615224e-01 2.14783207e-01 -6.39421642e-01 2.64894566e-03 1.08016109e+00 -2.22980118e+00 -9.48417246e-01 -3.55786204e-01 2.41972184e+00 6.77143097e-01 -2.86210835e-01 4.85244185e-01 -4.89556082e-02 8.66310000e-01 2.60038167e-01 -8.82242739e-01 -6.81773365e-01 -5.64185262e-01 -1.85250878e-01 1.36476719e+00 4.12276864e-01 -5.32293737e-01 1.48262098e-01 6.43352270e+00 7.43338764e-01 -4.11471158e-01 2.81409770e-01 6.92060828e-01 -7.86211193e-01 -1.23202586e+00 -5.52149117e-01 -9.34437037e-01 3.62447828e-01 2.76578248e-01 -9.14056420e-01 8.93105388e-01 9.67562735e-01 4.01524454e-01 -5.05065545e-02 -1.19645429e+00 1.33093810e+00 -2.70266384e-02 -1.50107169e+00 -3.53743136e-01 5.77740610e-01 1.50346720e+00 -1.64084256e-01 -5.10091372e-02 -3.92856821e-02 1.19439192e-01 -1.13114142e+00 4.72062230e-01 4.12594788e-02 8.31349909e-01 -1.26289093e+00 5.29859066e-01 4.42079872e-01 -1.37495208e+00 -7.27606833e-01 -8.89465332e-01 2.22389817e-01 4.83536690e-01 9.31066990e-01 -4.80936021e-01 8.23713124e-01 6.71240985e-01 3.56014937e-01 5.15988290e-01 1.16661191e+00 5.30947864e-01 -7.69253867e-03 -8.12951148e-01 -4.19216275e-01 2.98643708e-01 -4.44267482e-01 6.92424834e-01 1.02457738e+00 5.05193293e-01 4.23296541e-01 2.87747920e-01 8.86874020e-01 -5.58152974e-01 2.76102751e-01 -6.37686253e-01 -8.06259960e-02 6.42356098e-01 1.44334972e+00 -4.91274923e-01 3.27289343e-01 -2.53218144e-01 7.13553548e-01 -1.58968419e-02 1.90502465e-01 -1.00240421e+00 -4.17751372e-01 8.41361403e-01 4.12580132e-01 4.17053014e-01 -2.57417679e-01 -7.17057109e-01 -6.21874869e-01 6.39983773e-01 -3.54204178e-01 8.55139434e-01 -1.36547565e-01 -1.06620622e+00 -5.62583581e-02 2.16345817e-01 -7.63285637e-01 2.79013067e-01 -4.09034759e-01 -4.29385364e-01 3.71671796e-01 -1.67261493e+00 -6.70032322e-01 -4.44800556e-01 7.24409103e-01 2.04064339e-01 -1.43769190e-01 1.99831054e-01 3.55145961e-01 -9.91399959e-02 5.52456081e-01 7.52674758e-01 -8.69079173e-01 2.76359431e-02 -1.53093290e+00 -5.04463792e-01 5.34334898e-01 -4.71529096e-01 2.14680761e-01 7.34694541e-01 -3.17804426e-01 -2.28113866e+00 -1.22034764e+00 5.69348216e-01 -2.21703853e-02 4.09366190e-01 -3.78128976e-01 -2.92798787e-01 6.62086904e-01 -4.86739278e-02 1.35551333e-01 4.23240483e-01 -2.25892827e-01 2.96167374e-01 -9.01272237e-01 -1.89095652e+00 7.41675869e-02 1.57365704e+00 3.62911344e-01 7.85710067e-02 9.96275842e-01 1.10753369e+00 -4.25261348e-01 -1.00396633e+00 4.33309019e-01 2.71710098e-01 -4.31488603e-01 9.06130612e-01 -3.43460798e-01 2.05708435e-03 -3.38473380e-01 -9.06381845e-01 -9.21728969e-01 -4.24241632e-01 -1.21942449e+00 -6.42085075e-01 8.38852167e-01 4.25177008e-01 -7.84624338e-01 8.29359412e-01 4.28098321e-01 -1.91097423e-01 -1.15131366e+00 -1.10450304e+00 -1.18530965e+00 -8.16026703e-02 4.85602543e-02 7.12315619e-01 6.71640217e-01 2.27796689e-01 -1.30087808e-01 -5.61358929e-01 3.70410472e-01 9.61968541e-01 6.23080373e-01 5.76650977e-01 -9.07591522e-01 -4.05618638e-01 -2.93841977e-02 1.13279326e-03 -1.74438405e+00 -2.45268434e-01 -1.11001110e+00 8.55596066e-02 -1.84932375e+00 6.88145459e-01 -6.01340234e-01 -2.38444611e-01 4.00485337e-01 4.25814718e-01 -1.08867466e-01 2.93307635e-03 -1.75217450e-01 -1.05282354e+00 6.98614061e-01 1.47094750e+00 -2.55269080e-01 -3.58673394e-01 2.47973904e-01 -1.36361825e+00 2.86843516e-02 4.33510154e-01 -3.94753218e-01 -7.63541639e-01 -4.89991546e-01 4.71515328e-01 5.36923945e-01 -2.76673347e-01 -3.06727648e-01 8.07789713e-02 -8.86831522e-01 -2.55277663e-01 -9.56978858e-01 1.66482717e-01 -1.24858797e+00 2.33805299e-01 5.12578487e-01 1.72614887e-01 1.77770957e-01 -1.34890839e-01 7.16761887e-01 5.01027405e-02 -4.74793166e-01 8.21765840e-01 -6.96045021e-03 -2.95634151e-01 7.88109362e-01 2.45675221e-01 3.49884540e-01 1.75803387e+00 -3.95463467e-01 -4.64118838e-01 -8.11641812e-01 -3.44710946e-01 1.21023345e+00 1.79400027e-01 1.82196081e-01 6.39193892e-01 -1.30131865e+00 -9.17828918e-01 -5.21598577e-01 -4.93939072e-02 5.03097832e-01 2.89596319e-01 9.77858424e-01 -5.43807328e-01 6.96631074e-01 1.88015357e-01 -5.03032386e-01 -1.02252138e+00 4.30073738e-01 1.84015319e-01 -4.08179075e-01 -3.04671079e-01 8.79593372e-01 3.01043123e-01 -5.24546504e-01 4.20537055e-01 -3.75833899e-01 4.47918385e-01 1.18301652e-01 3.65050077e-01 9.07290936e-01 -9.74434614e-02 8.92464891e-02 -4.96787816e-01 2.73635298e-01 -3.29370871e-02 3.00104171e-01 1.97872198e+00 -3.42539608e-01 -6.00250125e-01 -7.96655864e-02 1.26433218e+00 5.34568131e-02 -9.60651636e-01 -2.47960806e-01 -1.59290120e-01 -5.87862551e-01 -1.65896967e-01 -6.02566719e-01 -1.31315231e+00 -1.84202462e-01 9.00008455e-02 5.56192219e-01 1.54343832e+00 1.90852493e-01 1.06911862e+00 6.49472117e-01 1.01024342e+00 -1.41722059e+00 -2.14073151e-01 6.52754605e-02 1.33580124e+00 -8.81911039e-01 4.13303882e-01 -7.04844296e-01 -4.04368103e-01 1.09218216e+00 4.79288608e-01 -1.79744884e-01 6.30703211e-01 5.21338761e-01 -9.01232719e-01 -1.94363087e-01 -7.29913890e-01 1.22198716e-01 2.46582497e-02 2.90659636e-01 -7.49669448e-02 4.84995216e-01 -9.02880549e-01 8.88605475e-01 -1.20437473e-01 -1.81980118e-01 7.94477224e-01 8.32940459e-01 -1.07412791e+00 -6.46447480e-01 -6.06530428e-01 8.15787435e-01 -1.96754098e-01 2.28138193e-01 -7.23392814e-02 5.28889656e-01 -2.91848212e-01 9.99491692e-01 -2.69915685e-02 1.40509352e-01 3.93993586e-01 -7.63635695e-01 7.34091938e-01 -4.54927593e-01 -2.30972633e-01 -1.52714059e-01 1.06427604e-02 -4.15678024e-01 -1.95269976e-02 -8.19105089e-01 -1.61720610e+00 -4.71360117e-01 -2.81464219e-01 1.38200507e-01 5.49881995e-01 5.23618042e-01 1.64060265e-01 2.18301535e-01 1.21214855e+00 -1.69466466e-01 -1.44027102e+00 -5.64560294e-01 -1.29698420e+00 -2.72728540e-02 2.60975152e-01 -3.13115388e-01 -1.59014314e-01 -4.90062833e-01]
[6.579762935638428, 4.918125629425049]
c8c08455-99ee-4f8d-ab0b-18432391b931
active-source-free-domain-adaptation
2205.10711
null
https://arxiv.org/abs/2205.10711v1
https://arxiv.org/pdf/2205.10711v1.pdf
Active Source Free Domain Adaptation
Source free domain adaptation (SFDA) aims to transfer a trained source model to the unlabeled target domain without accessing the source data. However, the SFDA setting faces an effect bottleneck due to the absence of source data and target supervised information, as evidenced by the limited performance gains of newest SFDA methods. In this paper, for the first time, we introduce a more practical scenario called active source free domain adaptation (ASFDA) that permits actively selecting a few target data to be labeled by experts. To achieve that, we first find that those satisfying the properties of neighbor-chaotic, individual-different, and target-like are the best points to select, and we define them as the minimum happy (MH) points. We then propose minimum happy points learning (MHPL) to actively explore and exploit MH points. We design three unique strategies: neighbor ambient uncertainty, neighbor diversity relaxation, and one-shot querying, to explore the MH points. Further, to fully exploit MH points in the learning process, we design a neighbor focal loss that assigns the weighted neighbor purity to the cross-entropy loss of MH points to make the model focus more on them. Extensive experiments verify that MHPL remarkably exceeds the various types of baselines and achieves significant performance gains at a small cost of labeling.
['Yilong Yin', 'Zhiyan Zhang', 'Zhongyi Han', 'Fan Wang']
2022-05-22
null
null
null
null
['source-free-domain-adaptation']
['computer-vision']
[-1.96863934e-02 1.63049594e-01 -7.51212895e-01 -4.44924682e-01 -1.26805031e+00 -6.34598076e-01 6.03816986e-01 -2.27932930e-02 -1.60085693e-01 8.36903691e-01 2.18032226e-01 4.14886922e-02 -1.89459994e-01 -5.76340973e-01 -6.69724703e-01 -9.37704563e-01 1.89579621e-01 6.67614639e-01 3.33068430e-01 -2.04427149e-02 8.09590518e-02 3.80456835e-01 -1.17670047e+00 4.50246211e-04 1.10121357e+00 1.05466270e+00 2.02640682e-01 -1.41795874e-01 -2.47323886e-01 5.43976784e-01 -4.34167832e-01 -2.92546391e-01 3.71780813e-01 -5.96693218e-01 -6.68585956e-01 1.74098089e-01 8.83930698e-02 -4.58796710e-01 2.58155260e-02 9.77934599e-01 6.09858274e-01 4.46236044e-01 7.50314415e-01 -1.41827250e+00 -7.62578964e-01 6.42294586e-01 -6.93059564e-01 1.93535477e-01 1.25449076e-01 1.20941602e-01 9.22362566e-01 -1.26395535e+00 5.97405255e-01 1.22998250e+00 4.43716496e-01 7.44158030e-01 -1.23559129e+00 -8.07202995e-01 4.83047366e-01 1.09933056e-02 -1.34985423e+00 -7.19317436e-01 1.09657097e+00 -2.47710139e-01 3.47608447e-01 -9.43503976e-02 1.37994349e-01 1.30817235e+00 -3.72346073e-01 9.94239867e-01 8.75383914e-01 -5.82713842e-01 6.97595954e-01 4.81929064e-01 1.38746902e-01 4.76242065e-01 3.59975249e-02 1.08606569e-01 -5.82463384e-01 -3.89649600e-01 6.42689645e-01 2.04947740e-02 -3.13779235e-01 -9.53580976e-01 -1.29045904e+00 1.03874254e+00 4.50448185e-01 8.51019025e-02 -2.66730517e-01 -5.25723875e-01 1.60472468e-01 3.22413653e-01 5.74986577e-01 5.03614604e-01 -6.72410488e-01 1.89085037e-01 -6.79276586e-01 3.64682749e-02 5.47508001e-01 1.20585525e+00 1.01914895e+00 -2.25127771e-01 -2.78401494e-01 1.06983912e+00 3.11125457e-01 4.60699201e-01 6.29644275e-01 -1.01051748e+00 6.10826313e-01 7.64731824e-01 1.94440931e-01 -6.07786655e-01 6.94532767e-02 -5.22038341e-01 -6.07014060e-01 8.02976713e-02 3.02226633e-01 -2.10440904e-01 -9.36667502e-01 1.99395311e+00 7.06516504e-01 2.64903963e-01 2.43851289e-01 1.01003349e+00 4.73026067e-01 7.01849461e-01 1.23027787e-01 -3.69603604e-01 8.69935334e-01 -1.07506335e+00 -3.42163444e-01 -4.63629454e-01 7.42146432e-01 -3.57221693e-01 1.33603585e+00 1.33306921e-01 -7.23293483e-01 -4.77810353e-01 -1.04383028e+00 1.54207826e-01 -3.10293704e-01 5.75641654e-02 2.66882986e-01 3.79830569e-01 -5.67189932e-01 4.32858139e-01 -6.55502558e-01 -2.39477456e-01 6.92624986e-01 1.98542610e-01 -2.65499979e-01 -2.90931016e-01 -1.30276763e+00 5.68797350e-01 4.78223801e-01 -4.32933718e-01 -1.16493607e+00 -9.51452494e-01 -8.42871964e-01 -1.53493032e-01 7.27687955e-01 -5.21226048e-01 1.18444574e+00 -1.14223456e+00 -1.51730192e+00 7.83500791e-01 -3.49637538e-01 -3.98774773e-01 4.90904540e-01 -1.40427545e-01 -4.82575208e-01 4.96249534e-02 3.68495286e-01 8.63424659e-01 8.12197149e-01 -1.50036097e+00 -7.60267735e-01 -4.18523133e-01 -6.56556105e-03 4.55190867e-01 -6.39452457e-01 -2.60203034e-01 -4.48631406e-01 -5.79954445e-01 1.76318601e-01 -7.96261966e-01 -1.75622046e-01 6.86529502e-02 -3.95326048e-01 -4.62968349e-01 8.32356811e-01 -2.00806096e-01 1.16865611e+00 -2.43250036e+00 3.37913968e-02 2.92405456e-01 2.16232300e-01 4.07972455e-01 -2.59265512e-01 1.63608372e-01 8.86039734e-02 -6.46377876e-02 -4.76878136e-01 -4.74030435e-01 -8.46321732e-02 2.13075861e-01 -4.67748940e-01 2.40220502e-01 2.04777166e-01 7.41031647e-01 -1.13814843e+00 -5.41263103e-01 8.42135474e-02 2.61431992e-01 -4.06908631e-01 3.00614268e-01 -2.82415330e-01 5.27924418e-01 -8.56264770e-01 8.29644263e-01 7.88984597e-01 -4.75142479e-01 -9.46225598e-02 -5.01031950e-02 1.48535579e-01 2.71661937e-01 -1.10514402e+00 1.86056280e+00 -2.65358001e-01 9.44419485e-03 -3.54199223e-02 -9.07125652e-01 1.11478651e+00 1.27483368e-01 5.13818502e-01 -6.21696174e-01 -1.40922844e-01 4.67295200e-01 -2.92699069e-01 -3.42991427e-02 1.00764237e-01 -7.41278529e-02 -1.87850371e-01 3.28604996e-01 1.96201935e-01 3.33421379e-01 -1.34802759e-01 2.42776915e-01 8.23007703e-01 1.70770571e-01 4.63619560e-01 -1.49538472e-01 4.38348353e-01 1.42457902e-01 9.06693161e-01 5.39707124e-01 -6.64647639e-01 7.15290070e-01 3.90945911e-01 -5.25723957e-02 -8.84723365e-01 -1.28856611e+00 8.46650172e-03 1.27845705e+00 4.20547545e-01 1.03035577e-01 -6.84496224e-01 -1.25571072e+00 -4.09525223e-02 9.36480224e-01 -5.85220575e-01 -5.37188828e-01 -5.55184662e-01 -4.65295881e-01 2.11921617e-01 4.67614174e-01 5.62321305e-01 -8.57052028e-01 -1.68611422e-01 1.77348658e-01 -1.99288502e-01 -7.59389341e-01 -8.01747680e-01 3.65501106e-01 -8.45910311e-01 -7.14883268e-01 -1.02674627e+00 -8.94650996e-01 6.52077615e-01 4.57069606e-01 1.03017449e+00 -5.55131137e-01 4.71097231e-01 -5.81996813e-02 -4.96344537e-01 -1.95063263e-01 -2.13302240e-01 3.28481436e-01 9.90240201e-02 4.68625352e-02 7.68409014e-01 -5.64081967e-01 -5.79125762e-01 5.28296530e-01 -6.22456610e-01 -2.87115484e-01 7.76278913e-01 8.32345486e-01 1.02230418e+00 -2.69709062e-02 1.01268184e+00 -1.01450121e+00 4.70290869e-01 -9.35258448e-01 -4.06805128e-01 3.33900094e-01 -8.42683494e-01 2.48750485e-02 7.67653584e-01 -6.32715464e-01 -1.10796714e+00 2.75196493e-01 2.00917348e-01 -9.24434721e-01 -2.82665759e-01 2.85100490e-01 -7.38254547e-01 1.61500499e-01 8.44833791e-01 1.82486847e-01 -3.99627462e-02 -5.63816249e-01 3.71886969e-01 7.07770288e-01 3.04926127e-01 -6.36957169e-01 7.28565216e-01 3.72549593e-01 -4.82358754e-01 -4.21719164e-01 -1.31155336e+00 -7.11647153e-01 -6.25124633e-01 2.22916290e-01 3.96233022e-01 -1.02951300e+00 7.34114125e-02 1.75606653e-01 -7.45073438e-01 -2.98545390e-01 -7.32698798e-01 3.79059345e-01 -5.09883821e-01 2.44409814e-01 1.17170596e-02 -6.57938540e-01 -2.02228740e-01 -9.72146094e-01 1.06603205e+00 3.08297664e-01 -1.03746139e-01 -1.00938797e+00 1.73875913e-01 1.70816258e-01 1.76526755e-01 1.43652096e-01 8.06162715e-01 -1.15555632e+00 -4.35264349e-01 1.96823776e-02 -1.08766474e-01 4.21648771e-01 3.43437701e-01 -6.05212450e-01 -8.88196766e-01 -3.63132477e-01 5.05983084e-02 -5.13885379e-01 8.28693390e-01 3.49441946e-01 1.07078111e+00 -3.14176321e-01 -6.24139309e-01 5.69372416e-01 1.23253632e+00 4.08739001e-01 2.99709320e-01 3.32529038e-01 6.31444037e-01 5.50874770e-01 8.79554808e-01 3.96668762e-01 4.14144635e-01 6.10733330e-01 3.04453313e-01 -1.79920439e-02 -1.36755005e-01 -6.60562813e-01 5.18355370e-01 6.51542842e-01 6.19790137e-01 -3.74687374e-01 -8.51760864e-01 8.21907699e-01 -1.79733264e+00 -6.60328329e-01 4.40329224e-01 2.45863366e+00 1.02356350e+00 1.94365725e-01 3.28211159e-01 -6.75510019e-02 8.93779457e-01 1.20359831e-01 -1.12854576e+00 1.41713992e-01 -1.80341706e-01 -1.48761839e-01 3.49489659e-01 3.57408166e-01 -1.37157297e+00 9.13293242e-01 5.54325199e+00 1.14415371e+00 -9.54164088e-01 2.03212783e-01 7.49825716e-01 -1.36654779e-01 -3.66365105e-01 4.74145822e-02 -9.81169701e-01 6.58145428e-01 7.97050416e-01 -1.77077904e-01 2.99044847e-01 1.21825254e+00 1.39727043e-02 2.97639340e-01 -1.17863643e+00 6.09449565e-01 -5.42191155e-02 -9.94552612e-01 1.46567270e-01 3.69110629e-02 8.13169837e-01 5.65732419e-02 2.80072410e-02 4.99972910e-01 5.51838279e-01 -5.94824970e-01 4.77208167e-01 2.47053131e-01 7.67718017e-01 -9.38154697e-01 4.79846925e-01 6.83835089e-01 -9.62136447e-01 -3.03979844e-01 -5.16981781e-01 4.92368281e-01 1.94172971e-02 7.40509868e-01 -7.17582226e-01 4.13382888e-01 5.09249866e-01 8.45930278e-01 -2.80156970e-01 9.64324534e-01 -9.83289406e-02 7.12596059e-01 -3.27163011e-01 1.48802847e-01 3.41022551e-01 -1.05674274e-01 6.46000326e-01 8.11461866e-01 4.84227777e-01 1.00193642e-01 4.52253461e-01 9.33146060e-01 -2.15091735e-01 1.44688919e-01 -5.80384493e-01 7.32318088e-02 1.12216890e+00 9.57571208e-01 -3.90931219e-01 -2.30731025e-01 -2.53620058e-01 1.01857007e+00 3.96588624e-01 4.01121110e-01 -6.15073919e-01 -3.77312362e-01 6.08338952e-01 2.03951031e-01 3.56461257e-01 1.42881587e-01 -1.83399305e-01 -1.17167580e+00 1.53650209e-01 -8.05020154e-01 6.33758664e-01 -4.22075748e-01 -1.78242505e+00 4.32366878e-01 4.68619242e-02 -1.62295318e+00 -1.57887444e-01 -1.94705516e-01 -5.70615053e-01 8.75004232e-01 -1.67772138e+00 -1.08835626e+00 -1.52254980e-02 8.42914701e-01 7.57705212e-01 -4.06480283e-01 6.80771351e-01 1.97610900e-01 -4.89528149e-01 9.47277844e-01 4.31099415e-01 8.93339291e-02 9.30416286e-01 -1.22380614e+00 1.57441795e-01 7.18877375e-01 1.36679383e-02 5.91976166e-01 2.84353286e-01 -5.28609455e-01 -9.54388797e-01 -1.41466534e+00 8.11089098e-01 -4.20973778e-01 3.71723890e-01 -3.88105631e-01 -1.17323053e+00 6.29188001e-01 -1.34001553e-01 1.55879393e-01 6.23422742e-01 6.03138171e-02 -5.41608751e-01 -2.64760435e-01 -1.44887626e+00 4.46081161e-01 1.02914417e+00 -2.70718604e-01 -6.86385393e-01 3.42392743e-01 1.09900093e+00 -1.66924044e-01 -7.38737762e-01 4.75164264e-01 1.64741054e-02 -8.43374252e-01 1.10218787e+00 -3.24013025e-01 2.11789876e-01 -3.97040844e-01 -1.76545963e-01 -1.59597552e+00 -4.87161666e-01 -4.58995908e-01 -3.25894922e-01 1.66075087e+00 6.13508463e-01 -7.56493092e-01 9.00038183e-01 4.18591052e-01 -1.92440912e-01 -7.15029776e-01 -9.87983763e-01 -9.78212059e-01 4.10300285e-01 6.63586706e-02 8.90748143e-01 1.23162937e+00 -1.07959196e-01 4.31610972e-01 -3.41177613e-01 2.01261163e-01 8.13738763e-01 2.90994704e-01 5.42915404e-01 -1.35563481e+00 -2.70891428e-01 -3.27226162e-01 1.14182845e-01 -1.42186916e+00 1.96016476e-01 -7.84544528e-01 1.61576197e-01 -1.20556557e+00 1.91744298e-01 -9.55930531e-01 -7.01493561e-01 5.67074716e-01 -2.89006889e-01 -1.76877230e-01 -2.18082275e-02 7.31687963e-01 -8.52217138e-01 7.51069725e-01 1.24437881e+00 4.50781994e-02 -5.15014052e-01 1.70721680e-01 -1.10393143e+00 5.48514545e-01 7.80792177e-01 -6.17941558e-01 -8.50830853e-01 -3.52695614e-01 -3.00548106e-01 -3.33704948e-02 6.56364262e-02 -9.01777506e-01 9.91077125e-02 -4.42194045e-01 4.33388114e-01 -5.39363325e-01 3.10113966e-01 -8.52145851e-01 -2.67104030e-01 2.32675541e-02 -7.42574215e-01 -5.57765424e-01 -2.24663720e-01 7.24970102e-01 -2.34954491e-01 -1.39061794e-01 1.08263040e+00 -3.32735330e-02 -9.49426174e-01 5.23218989e-01 1.92965388e-01 3.76961559e-01 1.24756980e+00 -1.81107074e-01 -3.30470979e-01 -2.10810244e-01 -5.83479583e-01 5.27604222e-01 5.29332995e-01 4.22876120e-01 4.79999989e-01 -1.56949866e+00 -6.03288352e-01 1.86741307e-01 5.75094759e-01 4.11091655e-01 7.87533820e-02 5.48196435e-01 2.44716853e-01 2.48327568e-01 4.95783947e-02 -6.11416459e-01 -6.09758079e-01 7.65006006e-01 3.51797640e-01 -2.35131189e-01 -6.23258650e-01 9.92742658e-01 4.65120554e-01 -8.26694965e-01 3.49912196e-01 1.09988309e-01 -2.01074466e-01 3.99408070e-03 5.02050638e-01 4.11441922e-01 -4.80041057e-02 -4.93527949e-01 -3.63787085e-01 3.70015442e-01 -2.72846580e-01 6.05069883e-02 1.06263661e+00 -4.51831937e-01 3.90519887e-01 4.30192381e-01 1.32528532e+00 3.37604843e-02 -1.72229826e+00 -7.95012355e-01 1.34585708e-01 -5.16448081e-01 3.66402580e-03 -1.07581520e+00 -1.07107592e+00 7.31771588e-01 6.74670756e-01 6.24660887e-02 1.24591923e+00 2.50981569e-01 9.80514765e-01 2.92416453e-01 3.31746936e-01 -1.14098728e+00 1.33720100e-01 3.54664534e-01 4.99395579e-01 -1.46431506e+00 -3.63984793e-01 -3.30429733e-01 -1.00142574e+00 6.42486155e-01 9.71889555e-01 -6.51146248e-02 6.22692049e-01 -8.58115032e-02 9.38959494e-02 7.89343119e-02 -7.40837514e-01 -1.95308998e-01 1.26702592e-01 8.76940846e-01 1.65210962e-02 -1.04716318e-02 6.14814833e-02 8.00922096e-01 2.24607185e-01 3.75970677e-02 9.17821527e-02 8.03107440e-01 -6.84510767e-01 -1.15395463e+00 -2.29006693e-01 3.95214975e-01 -1.21282563e-01 8.99063498e-02 -5.07125258e-01 6.25788569e-01 2.23802313e-01 9.12647724e-01 -1.47249058e-01 -2.47892067e-01 4.18028653e-01 1.89258605e-01 -3.86048034e-02 -6.01452708e-01 -1.51267633e-01 1.01458803e-01 -2.71181583e-01 -2.79526234e-01 -2.96655387e-01 -6.08545542e-01 -1.34597921e+00 4.27587144e-02 -3.85859877e-01 3.61582220e-01 3.46627384e-01 9.45678473e-01 6.97679520e-01 1.22726932e-01 1.08414984e+00 -4.49218124e-01 -9.02828395e-01 -7.22602546e-01 -6.35407746e-01 3.86391908e-01 4.54210818e-01 -8.83983970e-01 -5.98442018e-01 -9.19563398e-02]
[10.344001770019531, 3.101552963256836]
b0216dfb-2b0c-4b53-999f-d2a1349c96f0
tupa-at-mrp-2019-a-multi-task-baseline-system
null
null
https://aclanthology.org/K19-2002
https://aclanthology.org/K19-2002.pdf
TUPA at MRP 2019: A Multi-Task Baseline System
This paper describes the TUPA system submission to the shared task on Cross-Framework Meaning Representation Parsing (MRP) at the 2019 Conference for Computational Language Learning (CoNLL). Because it was prepared by one of the task co-organizers, TUPA provides a baseline point of comparison and is not considered in the official ranking of participating systems. While originally developed for UCCA only, TUPA has been generalized to support all MRP frameworks included in the task, and trained using multi-task learning to parse them all with a shared model. It is a transition-based parser with a BiLSTM encoder, augmented with BERT contextualized embeddings.
['Daniel Hershcovich', 'Ofir Arviv']
2019-11-01
null
null
null
conll-2019-11
['ucca-parsing']
['natural-language-processing']
[ 4.7898299e-01 5.8247954e-01 -3.1645378e-01 -3.8282838e-01 -1.4751624e+00 -6.3894677e-01 6.1059588e-01 1.9379853e-01 -4.8311278e-01 5.3806180e-01 5.7622308e-01 -6.8271106e-01 2.0127875e-01 -3.6527613e-01 -6.2643951e-01 -2.7767128e-01 5.0763838e-02 5.9220588e-01 1.4302313e-01 -7.4695848e-02 -9.1707855e-02 -9.5136419e-02 -1.1494145e+00 9.9613124e-01 2.6208326e-01 6.9691062e-01 4.0078434e-01 9.7141725e-01 -4.8309514e-01 1.0113955e+00 -5.2245051e-01 -6.3879037e-01 -1.3372028e-01 -1.9985950e-01 -1.4691091e+00 -6.4941537e-01 5.1528120e-01 1.7127255e-01 1.8387939e-01 5.6081259e-01 2.6794541e-01 1.4220177e-02 2.8980783e-01 -1.0344712e+00 -8.0783480e-01 1.1073562e+00 -1.9435863e-01 3.5522026e-01 5.4395396e-01 -6.8913841e-01 1.7679992e+00 -6.9654506e-01 8.0445927e-01 1.5815611e+00 6.1497009e-01 9.6809292e-01 -1.1920373e+00 -4.7355634e-01 4.0080768e-01 -4.4514947e-02 -6.3777608e-01 -4.4694117e-01 5.6997925e-01 -2.2347888e-01 2.0249140e+00 -2.4266539e-02 1.6235596e-01 1.3044925e+00 3.8599017e-01 1.2159541e+00 8.7606460e-01 -8.5794139e-01 6.6589236e-02 -2.7055433e-01 6.3538414e-01 5.6483960e-01 2.5223926e-01 -3.2542008e-01 -4.4848731e-01 -3.8320276e-01 5.4610008e-01 -6.5256202e-01 2.6313403e-01 -4.4468021e-01 -1.0411481e+00 9.4646746e-01 -5.0194528e-02 8.5901105e-01 -4.6160683e-02 5.7033730e-01 8.4261471e-01 4.3302795e-01 4.5782274e-01 2.1961609e-01 -1.0960286e+00 -5.1737314e-01 -6.4723068e-01 3.5073152e-01 1.0257934e+00 9.1136038e-01 3.5564098e-01 -3.7775807e-02 7.1722530e-02 1.0095055e+00 3.7204516e-01 5.6272529e-02 6.2021959e-01 -1.0732582e+00 8.3110070e-01 4.3300062e-01 -2.8187886e-01 -3.1228930e-01 -3.2881689e-01 6.3468650e-02 -2.1960458e-01 -2.1434560e-01 4.4216341e-01 -3.3489698e-01 -6.3013881e-01 1.6846608e+00 -1.8442550e-01 6.2469305e-03 5.6349087e-01 8.9624882e-02 9.9842614e-01 4.2476630e-01 7.9504848e-01 4.0096369e-02 1.4898089e+00 -1.0779916e+00 -7.6301759e-01 -4.7561947e-01 1.2531884e+00 -8.3558792e-01 8.7043113e-01 4.5289001e-01 -9.9898010e-01 -6.9145060e-01 -1.0200670e+00 -5.3873312e-01 -5.9122527e-01 9.2640415e-02 9.4277865e-01 7.9604298e-01 -1.2583379e+00 3.7923911e-01 -9.9556321e-01 -5.3612310e-01 2.1954997e-01 4.7812577e-02 -4.7982389e-01 -1.8639825e-01 -1.3242322e+00 1.0382143e+00 6.7053682e-01 -3.0285120e-01 -5.5822420e-01 -4.8669776e-01 -1.0864893e+00 -1.9138327e-01 5.5644117e-02 -5.6069034e-01 1.5290217e+00 -7.3277533e-01 -1.4009343e+00 1.2803118e+00 -3.3505902e-01 -7.4673611e-01 -2.7877957e-02 -7.0695776e-01 -5.0923461e-01 -1.7452632e-01 4.0134338e-01 1.0043287e+00 3.5471234e-01 -1.0523684e+00 -7.8480041e-01 -1.4848660e-01 4.8091474e-01 9.9700138e-02 2.5125530e-01 7.1309739e-01 -2.0147389e-01 -4.3462104e-01 -2.3556324e-02 -7.6401782e-01 -2.4152693e-01 -1.0375488e+00 -1.5451188e-01 -7.6115185e-01 8.4699339e-01 -8.2290912e-01 1.1737832e+00 -1.9162302e+00 8.5335635e-02 -6.3188607e-01 -1.5612435e-01 9.7256705e-02 -2.8275362e-01 5.6095010e-01 -5.0357908e-01 4.8199281e-01 -4.5672199e-01 -7.8856397e-01 1.2817474e-01 6.7775577e-01 -4.0029925e-01 -1.7176044e-01 4.5270440e-01 8.6956483e-01 -1.1424590e+00 -5.8099389e-01 2.4250239e-01 4.5609662e-01 -4.2933679e-01 -1.2124503e-02 -3.5229182e-01 2.3899943e-01 -6.3076198e-01 4.2400724e-01 4.2256624e-01 4.5639977e-02 6.1450577e-01 2.8182494e-02 -1.7107269e-01 8.1032532e-01 -8.5983670e-01 2.3121591e+00 -8.8210607e-01 3.7971759e-01 1.2030933e-02 -1.0414528e+00 8.3169985e-01 8.4750462e-01 4.0752095e-01 -2.5704190e-01 -2.5436035e-01 3.5809758e-01 -1.7667253e-03 -3.2300975e-02 6.7094415e-01 -1.9909552e-01 -7.5999373e-01 4.3390465e-01 6.7316538e-01 -3.8144243e-01 2.2981735e-01 2.0440754e-01 1.4683932e+00 8.4244150e-01 5.7581329e-01 -3.5977983e-01 7.2418642e-01 5.1190648e-02 6.1392945e-01 4.9061480e-01 -2.8874898e-01 5.5845368e-01 6.8918276e-01 -6.0583997e-01 -8.0807900e-01 -1.0072603e+00 -3.7756830e-01 1.6229296e+00 -4.9205896e-01 -8.8284034e-01 -7.2896975e-01 -1.1605657e+00 -4.8938128e-01 1.1020533e+00 -4.7153711e-01 5.3664196e-01 -8.4067702e-01 -5.6887656e-01 9.3389624e-01 6.3257468e-01 3.4634236e-01 -1.4284402e+00 -7.2746140e-01 5.1781839e-01 -2.3584355e-01 -1.4917245e+00 -3.3245079e-02 8.3176553e-01 -8.2591611e-01 -1.3156916e+00 -3.0376628e-01 -1.2467681e+00 -6.7898192e-02 -1.9008197e-01 1.6141448e+00 -1.6257837e-01 1.9746091e-02 6.6939712e-01 -6.6390252e-01 -5.5017036e-01 -5.5187082e-01 3.3246329e-01 -6.8403238e-01 -6.5185255e-01 6.2965894e-01 -2.5645536e-01 1.9978435e-01 -3.5535523e-01 -6.5293354e-01 1.3237740e-01 3.2017952e-01 9.2786252e-01 7.0047051e-01 -4.0858239e-01 7.4876273e-01 -1.3174014e+00 7.0060766e-01 -4.0407345e-01 -2.2459109e-01 5.3968334e-01 -7.5437009e-02 5.6457687e-02 4.2013288e-01 2.9168934e-01 -1.5695732e+00 3.3423632e-01 -4.7191510e-01 2.0943113e-01 -6.2920183e-01 3.0311394e-01 -5.2225637e-01 3.6034679e-01 9.7783908e-02 -1.6641816e-01 -7.8203601e-01 -7.8687668e-01 7.7575940e-01 4.3081796e-01 4.5109522e-01 -1.0455071e+00 1.3022655e-01 -7.2757035e-02 -1.3600944e-01 -8.0246156e-01 -1.0987029e+00 -4.7576153e-01 -1.0912447e+00 4.5028797e-01 1.4541724e+00 -1.1460305e+00 3.2230014e-01 7.8783385e-02 -1.8653266e+00 -3.7925825e-01 -3.4952018e-01 1.7062052e-01 -6.6368765e-01 3.7950462e-01 -7.4634969e-01 -6.4744228e-01 -4.9082777e-01 -1.0033208e+00 1.0637732e+00 -3.0855787e-01 -3.7863731e-01 -1.5186396e+00 4.5883611e-01 3.5845959e-01 1.0472078e-01 3.5798019e-01 1.2786434e+00 -1.1672909e+00 1.5426530e-01 -4.9532153e-02 -1.5143606e-01 6.3637990e-01 9.7870417e-02 -4.5133706e-02 -1.3168792e+00 4.9074519e-02 -1.2683371e-01 -4.9924409e-01 1.0385610e+00 5.1325977e-01 8.3985132e-01 3.4085041e-01 -3.4928852e-01 1.7323858e-01 1.3847897e+00 1.7491056e-01 4.2121500e-01 5.7937056e-01 6.3160729e-01 7.3647326e-01 3.5633168e-01 -9.3385056e-02 7.6570559e-01 4.0403131e-01 3.6296538e-01 2.2252667e-01 -3.4593585e-01 -2.3900367e-01 6.6389829e-01 1.1236609e+00 7.1836412e-02 -1.9363531e-01 -1.0949427e+00 6.3810301e-01 -1.8085246e+00 -5.7532924e-01 -4.1996989e-01 1.9014635e+00 4.7397265e-01 2.4267289e-01 -2.8934065e-01 -3.1884667e-01 5.4234976e-01 6.1909682e-01 7.6740861e-02 -1.3195983e+00 -1.7187914e-01 8.9387733e-01 1.7243488e-01 5.6500477e-01 -1.3876287e+00 1.4134603e+00 7.5242715e+00 5.1583278e-01 -2.5504351e-01 7.8794813e-01 6.0500681e-01 4.0692922e-01 -2.9225439e-01 4.8923707e-01 -8.9226121e-01 -9.9709667e-02 1.5875297e+00 -8.7497741e-02 1.2514279e-02 1.0202888e+00 -3.9841089e-01 8.6522691e-02 -1.3196641e+00 4.9487373e-01 1.4217111e-02 -1.0792577e+00 3.1394757e-02 -1.8058640e-01 4.0917084e-01 6.7998677e-01 -4.1224408e-01 9.3119639e-01 9.2165697e-01 -9.2638707e-01 4.7000921e-01 -7.6045714e-02 7.7455467e-01 -7.4224621e-01 9.9382114e-01 -9.4446748e-02 -1.6082833e+00 7.4519373e-02 -5.2396369e-01 -2.1021003e-01 4.4775426e-01 1.2236435e-01 -1.9605179e-01 9.6170408e-01 4.7351906e-01 7.1529931e-01 -4.4789922e-01 3.0192834e-01 -5.5949229e-01 8.5277402e-01 -3.4622751e-02 3.2490295e-01 3.6553296e-01 1.4351022e-01 4.5186296e-01 1.6396345e+00 -1.5869522e-02 -2.4220096e-01 4.8255852e-01 3.5762602e-01 -9.7278744e-02 2.4595881e-01 -5.9853077e-01 -1.7186713e-01 4.0353483e-01 1.1948594e+00 -6.2378037e-01 -5.1289940e-01 -7.7285057e-01 8.7697661e-01 4.5901936e-01 -1.3697165e-01 -5.8864677e-01 -2.1399014e-01 5.5585909e-01 -3.8961306e-01 2.9032463e-01 -2.3003542e-01 -1.3764688e-01 -1.1850241e+00 -2.9598272e-01 -4.6999419e-01 8.3982909e-01 -6.2319309e-01 -1.2649866e+00 1.0650059e+00 3.8070610e-01 -5.6855994e-01 -4.4347748e-01 -9.8986000e-01 -7.5504136e-01 9.3394345e-01 -1.5846581e+00 -1.6858476e+00 5.8614892e-01 3.6477298e-01 8.5907549e-01 -2.8569043e-01 1.6098385e+00 7.2329611e-02 -5.2416515e-01 4.6371165e-01 -3.4734607e-01 9.6528791e-02 5.7309598e-01 -1.7622430e+00 9.4997948e-01 8.6725497e-01 4.8407194e-01 5.8219492e-01 4.3092319e-01 -4.4017360e-01 -1.1514494e+00 -1.0232209e+00 1.7296270e+00 -7.4793261e-01 1.0884302e+00 -3.6287814e-01 -7.5953591e-01 1.3274471e+00 6.9655108e-01 4.6191294e-02 9.9471289e-01 5.2393872e-01 -3.6400038e-01 3.9586562e-01 -8.6219192e-01 -8.1336580e-02 7.9439533e-01 -5.0256127e-01 -1.3976958e+00 3.2249776e-01 1.1275724e+00 -4.2245179e-01 -1.0283835e+00 -5.8132466e-03 4.5662424e-01 -5.7875186e-01 7.6990247e-01 -6.3762003e-01 6.3138187e-01 2.1927238e-01 -6.7776126e-01 -9.7811973e-01 -2.1376853e-01 -3.8866958e-01 9.9223651e-02 1.6182945e+00 5.1585513e-01 -7.4606591e-01 5.7382774e-01 3.1835774e-01 -6.5779805e-01 -4.1855451e-01 -1.4335256e+00 -5.9338820e-01 8.5022330e-01 -1.0599779e+00 3.9116460e-01 7.2289050e-01 8.7281957e-02 7.0611691e-01 -4.3210145e-02 -1.6602349e-01 5.6527776e-01 -1.6466513e-01 5.1689547e-01 -1.2072686e+00 -4.0796354e-01 -3.0499765e-01 -7.9868883e-02 -8.5303855e-01 6.7989635e-01 -1.3687192e+00 -7.8979306e-02 -1.9236526e+00 4.3044038e-02 -2.6098946e-01 -8.2162929e-01 9.0945750e-01 -2.3662081e-02 -2.6618761e-01 4.3285662e-01 3.3278234e-02 -8.1050324e-01 4.8982717e-02 7.6866674e-01 9.6614502e-02 8.5924454e-02 -8.3299913e-02 -9.3717444e-01 8.4207410e-01 6.5905625e-01 -7.3566628e-01 -2.5697502e-01 -7.6832277e-01 1.3386275e-01 4.4563673e-03 5.3365119e-02 -1.0184296e+00 -4.1221112e-01 1.4588451e-01 2.4763092e-02 -6.6068834e-01 2.0736223e-01 -5.2049673e-01 -2.3207825e-01 3.0466706e-01 -4.7916055e-01 2.7359924e-01 5.2513295e-01 1.3802785e-01 -4.5117071e-01 -5.6384736e-01 3.1003150e-01 -5.6263870e-01 -9.4504160e-01 -1.6484591e-01 -4.8664778e-01 2.3599601e-01 5.9959120e-01 -1.4342461e-02 -1.3036133e-01 2.3400538e-01 -9.2136252e-01 1.8821250e-01 2.4804631e-03 6.1606675e-01 2.5158265e-01 -1.0385787e+00 -6.8040270e-01 -1.7650136e-01 1.6585435e-01 -4.8796106e-02 1.5644360e-01 1.3758087e-01 -1.8030252e-01 9.0833008e-01 4.4310577e-03 -2.7152199e-01 -1.2649959e+00 1.0426120e-01 -6.2216446e-02 -1.3473730e+00 -7.3603356e-01 8.4217042e-01 1.1041149e-01 -9.2184985e-01 -9.1694199e-02 -6.2151915e-01 -5.6564033e-01 1.2688225e-02 5.6607884e-01 2.9171264e-02 1.8487443e-01 -6.6135734e-01 -4.5893461e-01 2.9403263e-01 -4.1259535e-02 -1.1074546e-01 1.5402569e+00 1.2752163e-01 -1.2953313e-01 8.6877525e-01 1.1718538e+00 -1.3587216e-01 -8.4834081e-01 -6.6675968e-02 7.9904151e-01 2.9303092e-01 4.7477156e-02 -1.0430422e+00 -5.9264350e-01 1.1688805e+00 3.8517162e-01 -6.5980405e-02 7.9268926e-01 7.7043153e-02 9.2625350e-01 5.0605279e-01 5.1635474e-01 -9.6084213e-01 -2.8052130e-01 1.1594707e+00 9.0841556e-01 -8.9790398e-01 -2.0124745e-01 -2.7459928e-01 -7.4935573e-01 1.4294614e+00 4.0081373e-01 -3.7336656e-01 5.9345233e-01 4.8192236e-01 -1.2564315e-02 7.0557736e-02 -1.1993394e+00 -9.0377010e-02 -1.2403861e-01 8.9257908e-01 1.1855611e+00 3.6802992e-01 -6.0477221e-01 1.1663930e+00 -2.8017068e-01 -6.4173095e-02 4.3714702e-01 1.1566082e+00 -4.1889438e-01 -1.9517375e+00 1.6383484e-01 1.7782307e-01 -9.2316079e-01 -4.1031471e-01 -2.6924071e-01 1.0826520e+00 3.5616204e-01 9.7503835e-01 3.5735302e-02 -1.2889221e-01 3.6768165e-01 6.2759614e-01 5.8802807e-01 -1.1672966e+00 -1.0020188e+00 -7.3802747e-02 8.8174832e-01 -5.0264895e-01 -5.7660067e-01 -8.9038002e-01 -1.3687148e+00 3.3529410e-01 9.4677418e-02 3.7458256e-01 7.1415091e-01 1.0255226e+00 7.4728958e-02 7.0382899e-01 -2.7099729e-04 -8.4056258e-01 -1.9991827e-01 -1.1761367e+00 -3.7940931e-01 9.0562589e-02 -1.7691018e-01 -4.7766933e-01 -2.2495188e-01 2.0246148e-01]
[10.361757278442383, 9.494482040405273]
821d5fb3-4731-4e72-97d1-c15fc4294168
improving-simultaneous-machine-translation
2212.01188
null
https://arxiv.org/abs/2212.01188v1
https://arxiv.org/pdf/2212.01188v1.pdf
Improving Simultaneous Machine Translation with Monolingual Data
Simultaneous machine translation (SiMT) is usually done via sequence-level knowledge distillation (Seq-KD) from a full-sentence neural machine translation (NMT) model. However, there is still a significant performance gap between NMT and SiMT. In this work, we propose to leverage monolingual data to improve SiMT, which trains a SiMT student on the combination of bilingual data and external monolingual data distilled by Seq-KD. Preliminary experiments on En-Zh and En-Ja news domain corpora demonstrate that monolingual data can significantly improve translation quality (e.g., +3.15 BLEU on En-Zh). Inspired by the behavior of human simultaneous interpreters, we propose a novel monolingual sampling strategy for SiMT, considering both chunk length and monotonicity. Experimental results show that our sampling strategy consistently outperforms the random sampling strategy (and other conventional typical NMT monolingual sampling strategies) by avoiding the key problem of SiMT -- hallucination, and has better scalability. We achieve +0.72 BLEU improvements on average against random sampling on En-Zh and En-Ja. Data and codes can be found at https://github.com/hexuandeng/Mono4SiMT.
['Min Zhang', 'DaCheng Tao', 'Meishan Zhang', 'Xuebo Liu', 'Liang Ding', 'Hexuan Deng']
2022-12-02
null
null
null
null
['nmt']
['computer-code']
[-4.53547947e-03 9.51221958e-02 -5.93075395e-01 -1.67975813e-01 -1.61748743e+00 -6.69016302e-01 7.23298311e-01 -2.47256413e-01 -5.63164294e-01 1.32235634e+00 5.07918239e-01 -8.59717488e-01 3.12271178e-01 -3.95462692e-01 -1.04664564e+00 -3.92923176e-01 4.77918029e-01 9.97802258e-01 -3.16255510e-01 -3.78163248e-01 -2.23019067e-03 -2.50306129e-01 -6.65015519e-01 3.82900029e-01 1.58659351e+00 2.26962984e-01 5.92404008e-01 4.02800500e-01 -1.87388316e-01 7.34531760e-01 -6.00459695e-01 -5.69863737e-01 3.57551783e-01 -9.57526684e-01 -1.10607123e+00 -3.91984642e-01 5.37512779e-01 -2.38663763e-01 -1.85333803e-01 1.00669539e+00 7.96818852e-01 -2.20202759e-01 2.47791722e-01 -7.14975238e-01 -8.22739065e-01 1.24909282e+00 -4.63026643e-01 1.20103158e-01 4.32869405e-01 2.72731423e-01 1.10387576e+00 -1.09227443e+00 9.67245340e-01 1.24406111e+00 7.82430768e-01 5.87062240e-01 -1.34175622e+00 -7.70216882e-01 -2.14022309e-01 2.13171780e-01 -1.30763245e+00 -6.81107104e-01 1.81764707e-01 -8.99065956e-02 1.24032295e+00 3.03220868e-01 5.49599946e-01 1.37707961e+00 2.95114726e-01 1.24240792e+00 1.53743589e+00 -5.86854398e-01 -7.32946321e-02 2.58178741e-01 -2.44145095e-01 5.41953862e-01 -7.47871399e-02 4.57797274e-02 -9.24876630e-01 -1.06398329e-01 6.20858610e-01 -5.74861825e-01 -4.21681672e-01 1.19973615e-01 -1.83592212e+00 7.00147688e-01 3.38419043e-02 3.59874070e-01 -3.66694599e-01 -2.09675953e-01 4.55942720e-01 7.90949643e-01 6.41880035e-01 7.02947438e-01 -6.06855094e-01 -5.40289342e-01 -1.22401536e+00 1.18641682e-01 8.38606954e-01 1.28186893e+00 7.43025184e-01 7.28772208e-02 -2.54731894e-01 1.05377269e+00 -1.78752616e-01 1.01511955e+00 7.41932213e-01 -8.53080094e-01 9.28559065e-01 1.17736638e-01 -4.92145196e-02 -2.09417343e-01 4.57948521e-02 -5.30218005e-01 -7.92570114e-01 -5.61239541e-01 4.63878244e-01 -3.16778958e-01 -7.18970597e-01 1.86657858e+00 9.16402042e-02 -1.24383159e-01 3.62813562e-01 9.40284252e-01 5.51166594e-01 9.15393114e-01 -3.47859144e-01 -5.15145540e-01 1.04312456e+00 -1.23236620e+00 -8.81531715e-01 -4.19335246e-01 9.42216218e-01 -1.21341538e+00 1.36822629e+00 1.88516617e-01 -1.42791307e+00 -3.28372002e-01 -7.83660471e-01 -1.67537346e-01 8.25804770e-02 2.03217626e-01 3.81101578e-01 2.94289082e-01 -1.25524950e+00 5.57609379e-01 -7.51706839e-01 -6.45192921e-01 7.33285397e-02 2.34199494e-01 -2.79904395e-01 -3.88680071e-01 -1.51126087e+00 1.21430421e+00 3.73309582e-01 8.74595810e-03 -8.65655780e-01 -7.52450883e-01 -6.99310422e-01 -4.43431824e-01 3.98426056e-01 -8.25065434e-01 1.69665849e+00 -9.60541666e-01 -1.79084742e+00 6.80288911e-01 -4.96816427e-01 -4.17905033e-01 8.10180366e-01 -3.33629876e-01 -1.94722444e-01 -1.03456013e-01 5.09018779e-01 5.98652065e-01 3.24843347e-01 -9.69834507e-01 -4.22291696e-01 -7.41838515e-02 -3.40958565e-01 7.09254622e-01 -1.42003283e-01 1.83013737e-01 -5.53624034e-01 -6.47309184e-01 1.31205255e-02 -9.85031903e-01 -4.55982983e-02 -7.86659479e-01 -5.79053521e-01 -1.68835044e-01 1.79519176e-01 -1.17771804e+00 1.16416979e+00 -1.72498465e+00 4.02022421e-01 -1.92415431e-01 -9.77699906e-02 3.03871185e-01 -4.31024760e-01 7.42698133e-01 2.56759048e-01 -3.28870863e-02 -2.20648110e-01 -4.06031668e-01 -8.12776759e-02 3.48853648e-01 -2.38429114e-01 3.01332951e-01 -6.50004223e-02 1.28182471e+00 -1.11600888e+00 -4.02528793e-01 -1.58525109e-01 8.46631676e-02 -3.32637280e-01 1.52832523e-01 -3.77218068e-01 8.15439165e-01 -1.95685611e-03 6.73115551e-01 4.78212029e-01 -2.16679230e-01 7.17753708e-01 2.90463507e-01 -1.46783665e-01 9.81659830e-01 -5.76957941e-01 2.11513567e+00 -6.40011311e-01 6.66130602e-01 -1.05230637e-01 -6.04758263e-01 7.60239303e-01 5.32316804e-01 -2.28967480e-02 -1.11170387e+00 -8.88280869e-02 8.29433322e-01 1.57679543e-01 -2.27399603e-01 7.19472945e-01 -3.73757929e-01 -1.65485829e-01 7.50445545e-01 2.87891150e-01 -7.25755095e-02 2.57249385e-01 3.10399503e-01 7.87543416e-01 2.22429425e-01 3.43436092e-01 -5.34369707e-01 1.37083322e-01 3.92376393e-01 8.68864894e-01 7.47382641e-01 -1.06701776e-02 3.92207295e-01 3.35155725e-01 -8.16338137e-02 -1.40494597e+00 -1.05027223e+00 9.62536111e-02 9.57543492e-01 -1.35413468e-01 -4.68651325e-01 -9.78980482e-01 -5.64539254e-01 -1.98499098e-01 1.00824642e+00 -2.24018440e-01 9.35521349e-02 -1.04756486e+00 -8.05469215e-01 7.84261584e-01 3.58041912e-01 5.37235975e-01 -9.06961024e-01 1.51841998e-01 2.14227691e-01 -9.29814219e-01 -1.20002651e+00 -9.24963713e-01 1.24946553e-02 -9.39475477e-01 -4.60702270e-01 -8.60569119e-01 -7.52531469e-01 3.58178288e-01 3.23086262e-01 1.34722817e+00 -2.96101779e-01 3.42022806e-01 -1.64825425e-01 -3.34062576e-01 -2.81201005e-02 -8.85147870e-01 6.26907885e-01 3.54506642e-01 -4.75336760e-01 5.10089576e-01 -4.76418704e-01 -2.41499916e-01 2.64901429e-01 -4.41908389e-01 6.16981208e-01 9.68264222e-01 1.10824573e+00 4.97068435e-01 -7.20622599e-01 5.77789664e-01 -9.41267312e-01 8.22074294e-01 -4.87483740e-01 -3.08768272e-01 4.47064131e-01 -8.98274601e-01 1.39124975e-01 7.64388978e-01 -5.12848020e-01 -9.84033227e-01 -6.70524597e-01 -2.37124767e-02 -2.44467676e-01 1.35902107e-01 7.68216729e-01 -8.92796665e-02 3.42082947e-01 6.87197208e-01 8.22978020e-01 1.62024051e-01 -5.62311292e-01 4.39595968e-01 9.62178171e-01 4.55947101e-01 -7.64864445e-01 5.77357769e-01 -1.06991276e-01 -7.39063203e-01 -6.15539312e-01 -7.57305562e-01 -2.74995446e-01 -4.17248726e-01 5.11855036e-02 5.06983638e-01 -1.24753582e+00 -1.58744305e-01 4.15728807e-01 -1.24901295e+00 -8.25740695e-01 -1.05179414e-01 8.48960936e-01 -6.79067314e-01 2.74859816e-01 -1.16266143e+00 -3.54796916e-01 -6.76753759e-01 -1.31417429e+00 9.61977541e-01 -1.35559440e-01 -4.54847604e-01 -1.01346028e+00 3.06244135e-01 7.84746349e-01 5.04350722e-01 -3.66444439e-01 8.48503292e-01 -6.32046342e-01 -6.40806794e-01 3.38719279e-01 -1.33511081e-01 4.12695199e-01 -8.54112953e-02 -5.99856555e-01 -5.11017919e-01 -6.09058678e-01 -5.05960584e-02 -5.05115390e-01 5.96077025e-01 1.98499635e-01 2.77284682e-01 -5.87562621e-01 -3.55118774e-02 6.34054840e-01 1.35460210e+00 3.14694010e-02 4.36877608e-01 4.86170709e-01 6.05000138e-01 3.24724108e-01 5.86879671e-01 6.71339035e-02 7.01194048e-01 7.11680472e-01 -3.00282001e-01 -1.30152134e-02 -3.90875250e-01 -6.13472700e-01 9.24423277e-01 1.87107527e+00 -9.73823816e-02 -1.06067389e-01 -1.13120151e+00 6.72491431e-01 -1.90482187e+00 -7.97995508e-01 -1.27321690e-01 2.20378494e+00 1.53473973e+00 -7.67632276e-02 7.27466196e-02 -4.62721288e-01 6.39243662e-01 -1.02993719e-01 -4.85790253e-01 -5.47333241e-01 -5.08782148e-01 1.72877267e-01 6.49943769e-01 9.40434515e-01 -3.92984629e-01 1.46953022e+00 5.91690683e+00 1.13886595e+00 -1.02265513e+00 6.16119981e-01 3.34055334e-01 -2.86541134e-01 -5.50919235e-01 1.06417790e-01 -9.14947510e-01 4.58581060e-01 1.28845620e+00 -4.65168685e-01 8.77348781e-01 2.71368742e-01 2.95011401e-01 2.13858783e-02 -1.03916752e+00 7.17058957e-01 1.77733183e-01 -1.29852450e+00 1.13910399e-01 1.43335655e-01 1.07910359e+00 6.07510269e-01 -6.15930893e-02 6.29450321e-01 6.12193644e-01 -7.90996253e-01 8.39437068e-01 1.64480835e-01 1.10058808e+00 -6.13375902e-01 7.97206521e-01 8.04457366e-01 -6.11527324e-01 3.13644856e-01 -3.60795021e-01 -1.09749012e-01 1.74987793e-01 6.15401685e-01 -1.20519066e+00 1.00393784e+00 3.90423179e-01 7.95130789e-01 -1.46205485e-01 5.91375709e-01 -5.79974473e-01 9.60872889e-01 -1.88726425e-01 1.69033483e-02 3.70889872e-01 -3.59615177e-01 6.23455584e-01 1.37244797e+00 5.17838478e-01 -3.61561686e-01 1.03586905e-01 6.90062940e-01 -3.80131215e-01 4.31985855e-01 -5.35192966e-01 -8.62591788e-02 6.69476211e-01 7.67466307e-01 -5.87674603e-02 -6.71117127e-01 -4.29101676e-01 1.40061128e+00 6.12060785e-01 4.49478984e-01 -7.18583524e-01 -1.02627933e-01 6.31952345e-01 -8.78178775e-02 7.92345777e-02 -3.70321900e-01 -2.73271561e-01 -1.55702698e+00 2.80398846e-01 -1.53920543e+00 -6.20763935e-02 -5.82959414e-01 -1.12607217e+00 8.39638412e-01 -9.49544236e-02 -1.23392022e+00 -5.76474369e-01 -1.83302373e-01 -1.95608437e-01 1.21717811e+00 -1.43575633e+00 -1.24568856e+00 3.90465230e-01 3.84833902e-01 9.06560004e-01 -2.15015441e-01 8.15656900e-01 3.18692356e-01 -5.80750942e-01 9.06649351e-01 6.48869336e-01 9.85813960e-02 1.14198935e+00 -1.27116442e+00 7.79983282e-01 9.25216138e-01 1.45727605e-01 9.12899911e-01 6.37495160e-01 -8.94951224e-01 -1.58328259e+00 -1.08533931e+00 1.70405316e+00 -5.73073864e-01 7.94726551e-01 -4.59774464e-01 -6.97944880e-01 9.36615348e-01 8.67083669e-01 -7.43456900e-01 7.58314073e-01 3.71339440e-01 -4.52114195e-01 1.38058454e-01 -7.36539364e-01 8.74564648e-01 1.11581743e+00 -6.85719550e-01 -7.29987562e-01 5.59839725e-01 8.05525899e-01 -5.33409536e-01 -9.77016449e-01 2.48620689e-01 4.12796766e-01 -6.66306078e-01 5.49300253e-01 -4.80847716e-01 5.00246942e-01 -1.48830846e-01 -2.00220615e-01 -1.80397570e+00 -1.57758579e-01 -1.07025278e+00 -3.67090032e-02 9.55818474e-01 8.06897104e-01 -7.37794638e-01 4.10940975e-01 -4.99692932e-02 -2.83825874e-01 -6.79606140e-01 -1.00514293e+00 -1.25546420e+00 6.59274578e-01 -2.43026197e-01 5.54602981e-01 1.29876518e+00 3.65833849e-01 8.19247425e-01 -7.79933929e-01 -1.67993397e-01 6.71249092e-01 2.09595546e-01 8.17717075e-01 -5.62234759e-01 -6.18070722e-01 -3.80288631e-01 4.31489557e-01 -1.48341811e+00 1.90158829e-01 -1.39606047e+00 1.13667242e-01 -1.57885826e+00 4.48487788e-01 -1.61331192e-01 8.83828029e-02 5.56181073e-01 -4.03383166e-01 2.01239586e-01 2.92317301e-01 5.88113606e-01 -4.69649851e-01 5.92906296e-01 1.58326960e+00 3.62549946e-02 -1.17470473e-01 -3.33883703e-01 -7.00875163e-01 1.83738127e-01 1.06034386e+00 -4.36594129e-01 -1.82053804e-01 -1.02841985e+00 1.85958549e-01 4.18860346e-01 -2.18684420e-01 -5.71405411e-01 2.45280251e-01 -1.39183342e-01 -3.16477306e-02 -3.98358941e-01 3.21814194e-02 -1.68151855e-01 1.52154520e-01 4.55234438e-01 -3.83887917e-01 2.96998769e-01 1.65862799e-01 6.35640696e-02 -2.58365840e-01 7.87987709e-02 4.60557550e-01 -4.02875751e-01 -3.06021065e-01 -6.67894781e-02 -4.34744447e-01 2.81063050e-01 5.52505076e-01 5.61457239e-02 -5.87769508e-01 -3.07976544e-01 -3.71424079e-01 3.91306669e-01 5.08573234e-01 3.50250065e-01 3.34096402e-01 -1.44097316e+00 -1.33019423e+00 1.88929841e-01 5.60477488e-02 -2.29042873e-01 -1.41221820e-03 1.45170903e+00 -3.42042804e-01 6.70301139e-01 -2.89938878e-02 -4.59017903e-01 -1.07059431e+00 1.99997365e-01 1.06465444e-01 -4.96044964e-01 -4.21511382e-01 7.26114988e-01 -2.29594782e-01 -1.09536064e+00 -7.40025491e-02 -1.52555138e-01 5.64777195e-01 -2.03348890e-01 3.67894679e-01 3.27970207e-01 1.63060412e-01 -5.02020001e-01 -1.25782952e-01 1.26431122e-01 -3.77735734e-01 -5.31112850e-01 1.04044783e+00 -3.10646594e-01 -3.92725140e-01 5.49125910e-01 1.08977056e+00 2.62285531e-01 -6.95720732e-01 -7.15550780e-01 1.17522962e-02 -4.38180536e-01 -2.58268803e-01 -1.16932523e+00 -4.65570778e-01 7.18385696e-01 4.34267148e-02 -3.63809913e-01 8.97009492e-01 -4.46672505e-03 1.20547283e+00 4.81080025e-01 5.56267500e-01 -1.16203344e+00 -3.54189336e-01 8.76818895e-01 6.58989310e-01 -1.21092618e+00 -3.49549949e-01 -1.81459598e-02 -7.71455050e-01 7.24703968e-01 5.26755869e-01 3.09521556e-01 -1.05242454e-01 1.89923599e-01 5.00753462e-01 3.18605721e-01 -1.04273796e+00 -3.31506394e-02 -1.31756244e-02 1.69521376e-01 7.89828479e-01 4.26179469e-01 -6.21780872e-01 2.09020093e-01 -5.86423278e-01 7.16642216e-02 4.18392628e-01 7.64723063e-01 -3.41095924e-01 -1.53571236e+00 -3.78159344e-01 2.19255298e-01 -3.99359196e-01 -7.58604825e-01 -3.99884582e-01 7.26142824e-01 -1.69015393e-01 8.04635882e-01 -2.83724368e-01 -5.04007638e-01 9.78173465e-02 3.06887895e-01 5.94802082e-01 -6.04125500e-01 -7.39073932e-01 3.61085296e-01 4.20956403e-01 -4.98018563e-01 -2.41889983e-01 -9.75879848e-01 -8.68040144e-01 -6.93729997e-01 -1.39411256e-01 5.18681705e-01 4.60618794e-01 9.64311898e-01 4.02199894e-01 1.99761778e-01 4.70499903e-01 -4.21151668e-01 -8.79152894e-01 -1.43961477e+00 -2.39726529e-01 9.97614563e-02 1.84360698e-01 -1.32840434e-02 -2.01660618e-01 -1.28738075e-01]
[11.599058151245117, 10.285199165344238]
86564557-7b6f-494c-94be-48a0fcb5ddaa
the-curse-of-dimensionality-in-operator
2306.15924
null
https://arxiv.org/abs/2306.15924v1
https://arxiv.org/pdf/2306.15924v1.pdf
The curse of dimensionality in operator learning
Neural operator architectures employ neural networks to approximate operators mapping between Banach spaces of functions; they may be used to accelerate model evaluations via emulation, or to discover models from data. Consequently, the methodology has received increasing attention over recent years, giving rise to the rapidly growing field of operator learning. The first contribution of this paper is to prove that for general classes of operators which are characterized only by their $C^r$- or Lipschitz-regularity, operator learning suffers from a curse of dimensionality, defined precisely here in terms of representations of the infinite-dimensional input and output function spaces. The result is applicable to a wide variety of existing neural operators, including PCA-Net, DeepONet and the FNO. The second contribution of the paper is to prove that the general curse of dimensionality can be overcome for solution operators defined by the Hamilton-Jacobi equation; this is achieved by leveraging additional structure in the underlying solution operator, going beyond regularity. To this end, a novel neural operator architecture is introduced, termed HJ-Net, which explicitly takes into account characteristic information of the underlying Hamiltonian system. Error and complexity estimates are derived for HJ-Net which show that this architecture can provably beat the curse of dimensionality related to the infinite-dimensional input and output function spaces.
['Andrew M. Stuart', 'Samuel Lanthaler']
2023-06-28
null
null
null
null
['operator-learning']
['miscellaneous']
[ 1.97441027e-01 3.77757519e-01 4.56115194e-02 1.31633624e-01 -1.85867772e-01 -1.47391200e-01 1.54469088e-01 -1.69358198e-02 -5.07133424e-01 6.51770949e-01 -8.75245333e-02 -3.22530806e-01 -5.82405388e-01 -6.08888328e-01 -7.71054804e-01 -7.67363787e-01 -4.05813038e-01 3.75439785e-02 -2.10287273e-01 -3.73822689e-01 -8.40613022e-02 6.99807227e-01 -1.37388599e+00 -3.02216977e-01 9.21183765e-01 1.34064257e+00 -1.33835897e-01 5.04553080e-01 1.99349457e-03 8.25757146e-01 -1.07847536e-02 -4.22225669e-02 4.81331021e-01 -6.79256022e-01 -9.47073519e-01 -3.66529115e-02 -1.26540894e-03 1.08359300e-01 -5.37517011e-01 1.46998239e+00 4.82308328e-01 3.55812818e-01 7.25933909e-01 -1.09615564e+00 -8.17041874e-01 4.54203814e-01 9.93484408e-02 2.22334117e-02 -7.56487343e-03 -6.97236061e-02 1.07295156e+00 -1.02818882e+00 4.37788516e-01 9.71720159e-01 1.07893503e+00 6.15598023e-01 -1.61338806e+00 -1.46396443e-01 -3.13409567e-01 2.18966901e-01 -1.52200699e+00 3.18871811e-02 1.05915415e+00 -6.26463830e-01 7.41116703e-01 3.25955570e-01 6.99477732e-01 8.11638474e-01 3.28018904e-01 7.33114839e-01 1.08393037e+00 -6.24544442e-01 4.89761174e-01 2.66534239e-01 1.59628004e-01 1.09398925e+00 -4.49892208e-02 2.27036148e-01 -1.43400490e-01 -4.66635674e-02 9.02079582e-01 -1.84933484e-01 -8.90116990e-01 -6.81963861e-01 -1.13144445e+00 1.28631246e+00 6.18184626e-01 7.24926710e-01 -5.17682195e-01 2.91586220e-02 6.08044088e-01 4.80704367e-01 4.18462902e-01 9.10006940e-01 -1.81248695e-01 -2.65671331e-02 -5.88455141e-01 3.06676090e-01 1.05936170e+00 8.52557182e-01 7.50228941e-01 2.52935767e-01 1.41603732e-02 4.47303981e-01 -3.62623185e-02 3.16891670e-01 5.86712480e-01 -1.19875193e+00 1.99289963e-01 6.20725989e-01 6.93974495e-02 -1.06029987e+00 -7.79872000e-01 -4.65104997e-01 -1.45416355e+00 3.48064601e-01 4.23116624e-01 -1.57330468e-01 -4.15440232e-01 1.96406269e+00 1.04226813e-01 2.38187723e-02 8.96880478e-02 8.90240371e-01 7.76324943e-02 5.22625804e-01 -3.91579151e-01 -4.83593553e-01 9.10943747e-01 -5.62960923e-01 -9.32248533e-01 3.56207311e-01 7.75457740e-01 -1.35585845e-01 1.14225805e+00 2.99205601e-01 -1.35397935e+00 -5.41493475e-01 -1.18126869e+00 3.86552922e-02 -4.93173182e-01 -1.01010323e-01 5.18778145e-01 2.38042340e-01 -1.31300235e+00 1.14793468e+00 -6.36462450e-01 -1.87062517e-01 3.67188424e-01 4.86005515e-01 -3.43263298e-01 3.23280036e-01 -1.54223263e+00 1.04607689e+00 6.35731995e-01 6.37867510e-01 -3.25882047e-01 -9.48670268e-01 -8.16968918e-01 2.06393808e-01 1.41242370e-01 -6.10059619e-01 1.07803607e+00 -1.06069064e+00 -1.58175874e+00 6.90699816e-01 1.23226002e-01 -7.45455563e-01 7.32455850e-01 1.22896507e-01 -3.13923389e-01 2.13368222e-01 -1.36182547e-01 2.50675380e-01 9.43165839e-01 -7.57037640e-01 -1.49748266e-01 -2.40280405e-01 2.12890446e-01 -2.48060912e-01 -7.12324083e-01 -3.13638091e-01 3.07575732e-01 -6.66182041e-01 6.46782070e-02 -9.11207199e-01 -3.98545682e-01 1.16208248e-01 -2.00301245e-01 -3.60416412e-01 7.45979309e-01 -4.27510142e-01 1.42829466e+00 -2.05721045e+00 9.12047446e-01 3.20324481e-01 3.21090698e-01 3.37726355e-01 4.95396256e-02 4.38691318e-01 -4.84794319e-01 6.46857619e-02 -8.34671557e-01 -1.02448404e-01 3.06822330e-01 3.11558545e-01 -3.56960475e-01 8.36716235e-01 4.75176752e-01 9.73716855e-01 -7.21250832e-01 -2.38142774e-01 1.76035866e-01 5.10967970e-01 -5.29205918e-01 3.02390680e-02 -1.59185410e-01 4.80786353e-01 -3.09761196e-01 6.70287311e-02 4.66735482e-01 -2.31577903e-01 -3.57826054e-01 -1.69777378e-01 -2.90732503e-01 -2.06294090e-01 -1.23731160e+00 1.66396177e+00 -6.24551713e-01 6.25053883e-01 4.85884160e-01 -1.87095642e+00 6.59021497e-01 6.37237549e-01 7.87878871e-01 -4.68209445e-01 4.06484932e-01 6.64531052e-01 6.56673834e-02 -6.23678505e-01 -5.81697077e-02 -6.77771330e-01 7.03552365e-02 2.98857480e-01 2.40545515e-02 5.23614623e-02 2.55626291e-01 -3.09344172e-01 1.09034812e+00 -2.99036205e-01 2.19993398e-01 -8.15294862e-01 1.17809868e+00 -2.68577844e-01 2.57318556e-01 6.16793454e-01 -2.64178276e-01 1.54172018e-01 7.62728512e-01 -6.67723656e-01 -1.01897621e+00 -1.08752263e+00 -6.56953514e-01 5.24366677e-01 -3.43091100e-01 8.73332247e-02 -8.59098136e-01 -3.95013034e-01 1.50482124e-02 3.49366009e-01 -9.43115234e-01 -5.81006408e-01 -7.37161815e-01 -3.30601305e-01 5.77075243e-01 5.15866995e-01 6.31121874e-01 -1.35330629e+00 -6.78557277e-01 2.77649224e-01 5.92318811e-02 -9.34632719e-01 -4.12601918e-01 5.20886958e-01 -8.96452248e-01 -8.64483774e-01 -1.17480254e+00 -8.95162165e-01 5.33740997e-01 -5.53064823e-01 7.36747444e-01 -2.52835751e-01 -2.69003302e-01 6.57619417e-01 6.71275184e-02 -3.45379084e-01 -4.84232038e-01 1.49855688e-01 5.01877367e-01 3.59053850e-01 1.19295031e-01 -9.11053717e-01 -2.61423707e-01 1.74494982e-01 -1.16267478e+00 -1.18622772e-01 3.91263962e-01 1.12920606e+00 5.37706017e-01 3.13499123e-01 6.57784522e-01 -5.27607560e-01 7.81232715e-01 -3.29275072e-01 -8.60645890e-01 -5.31775504e-02 -5.62300801e-01 5.91647565e-01 1.12231159e+00 -5.27817547e-01 -5.55081427e-01 8.86214599e-02 -1.58742964e-01 -7.33586729e-01 3.06668043e-01 8.25546324e-01 6.46621408e-03 -3.54320854e-01 8.05505633e-01 2.06435308e-01 2.00586766e-01 -3.64187002e-01 1.85807616e-01 5.06038010e-01 6.97272301e-01 -4.77193266e-01 8.11838150e-01 4.60750580e-01 6.55497253e-01 -9.85715806e-01 -9.50848699e-01 -4.45332259e-01 -7.59091794e-01 -9.87009630e-02 9.42763925e-01 -2.60826081e-01 -1.08832550e+00 3.29067200e-01 -1.33045208e+00 -4.27534401e-01 -8.25550199e-01 6.00378156e-01 -1.03497660e+00 2.41506264e-01 -8.41387272e-01 -1.06673348e+00 -2.15630159e-01 -1.16876340e+00 4.58124280e-01 -2.43885264e-01 2.43493076e-02 -1.47408509e+00 3.48571278e-02 -3.96928936e-01 5.72459698e-01 4.40233707e-01 1.03614128e+00 -1.85557693e-01 -1.31022960e-01 -3.58903915e-01 -1.13120884e-01 9.34159219e-01 -1.63627148e-01 -7.22705185e-01 -7.51113057e-01 -2.81459242e-01 7.99543738e-01 -1.73638508e-01 8.56783688e-01 4.10245121e-01 1.27279222e+00 -4.56375748e-01 1.93259701e-01 6.88434958e-01 1.38422310e+00 -1.18097989e-02 2.75512636e-01 -1.56680904e-02 6.73111260e-01 6.88353837e-01 -2.13101089e-01 1.94792569e-01 -2.50952423e-01 5.85584164e-01 3.54490370e-01 3.03809028e-02 3.96992832e-01 6.53355196e-02 3.05766791e-01 1.01409936e+00 -2.57772535e-01 4.22006607e-01 -7.60074019e-01 3.54301840e-01 -2.01878238e+00 -9.33119595e-01 -1.41074732e-01 2.19042277e+00 7.05616355e-01 9.08349976e-02 2.77648807e-01 6.70426965e-01 5.81918299e-01 1.11981984e-02 -6.39183044e-01 -7.12616205e-01 -2.90072560e-01 4.86448139e-01 5.13762832e-01 7.05768108e-01 -9.48545814e-01 3.51877898e-01 5.92453623e+00 5.45938432e-01 -1.19113612e+00 3.77828293e-02 2.12200671e-01 4.00470644e-01 1.17005119e-02 -4.07923520e-01 -2.51429945e-01 2.37417549e-01 1.12844718e+00 -3.12989920e-01 7.77619958e-01 8.65085304e-01 2.61671692e-01 4.58483219e-01 -1.32621539e+00 1.08500433e+00 -1.16011143e-01 -1.45228946e+00 -2.48405844e-01 4.25353527e-01 7.14634657e-01 -2.04999492e-01 1.55733839e-01 4.15546894e-01 -3.63883287e-01 -1.21282327e+00 6.14020586e-01 6.55768156e-01 8.09716702e-01 -8.68235528e-01 8.22089374e-01 3.74895632e-01 -1.16539896e+00 -4.14606273e-01 -4.47085381e-01 -4.27576780e-01 1.82730436e-01 4.25344110e-01 -2.93766081e-01 4.05888408e-01 3.33096921e-01 8.44762623e-01 -7.77334049e-02 7.89616406e-01 2.24519968e-01 2.67214775e-01 -1.91679850e-01 -1.32314399e-01 5.21397889e-01 -5.37130773e-01 6.02203906e-01 1.01028955e+00 4.15906131e-01 5.28998971e-02 7.94946402e-02 1.27310073e+00 -1.63335100e-01 2.06757993e-01 -8.46740365e-01 -2.61948347e-01 -2.69594222e-01 1.02136517e+00 -3.98671627e-01 -3.95233333e-02 -2.30239168e-01 1.11954641e+00 4.91693676e-01 5.47350824e-01 -7.65719414e-01 -6.74991310e-01 4.86486673e-01 6.62078336e-02 2.71284908e-01 -1.32138550e-01 -2.38724038e-01 -1.09972894e+00 3.54329705e-01 -4.34103429e-01 2.69239753e-01 -2.44308382e-01 -1.17347741e+00 4.30511773e-01 -9.99525422e-04 -1.02447820e+00 -2.42249578e-01 -1.23382664e+00 -4.80057329e-01 1.04450500e+00 -1.16715229e+00 -5.30709982e-01 1.09040089e-01 7.26356149e-01 -6.69379625e-03 -1.39699783e-02 1.08040643e+00 3.74410838e-01 -4.41944212e-01 4.40854043e-01 3.04521173e-01 2.54071712e-01 -1.76431745e-01 -1.71811414e+00 -9.84574631e-02 6.08675420e-01 1.16052190e-02 4.85632867e-01 7.89806187e-01 1.60483997e-02 -1.54694164e+00 -9.74217296e-01 8.83272469e-01 -2.16052637e-01 1.03643119e+00 -4.73057896e-01 -1.16320121e+00 5.74631810e-01 -1.40123963e-01 5.56918263e-01 2.58372635e-01 -9.76319313e-02 -1.12973705e-01 -1.78353921e-01 -1.00426424e+00 6.91397130e-01 1.00869882e+00 -8.68323624e-01 -3.46612364e-01 4.07330930e-01 7.54590154e-01 -2.57643551e-01 -1.09650135e+00 3.67126584e-01 2.47701213e-01 -8.03485036e-01 8.60413313e-01 -8.78575504e-01 3.65038007e-01 -3.72094736e-02 -9.97365415e-02 -1.22940373e+00 -3.19506854e-01 -1.05749583e+00 -6.38973117e-01 4.67479110e-01 3.29790533e-01 -7.97461867e-01 4.04981554e-01 3.46393287e-01 -4.20507759e-01 -1.18459606e+00 -1.45923388e+00 -9.90867853e-01 5.64771295e-01 -6.61522448e-01 6.63787946e-02 9.39400733e-01 5.45383275e-01 3.91735792e-01 -3.65245074e-01 -4.63818610e-02 4.78111655e-01 -2.46275708e-01 1.53034851e-01 -1.34306955e+00 -4.72525269e-01 -9.97441888e-01 -6.50854468e-01 -8.71670425e-01 6.51823759e-01 -1.25773895e+00 1.34413302e-01 -1.06859624e+00 -5.10917425e-01 -1.54268831e-01 -5.97292244e-01 4.77546342e-02 2.43910804e-01 1.46841556e-01 7.07844794e-02 -5.34905344e-02 -3.98663878e-01 8.29731166e-01 1.33183944e+00 -3.61566506e-02 -2.90923834e-01 1.24034867e-01 -2.94854194e-01 9.13962901e-01 6.21766031e-01 -7.49088544e-03 -3.78778607e-01 1.46985734e-02 4.12286222e-01 1.18887849e-01 5.79875886e-01 -1.43507433e+00 2.15052024e-01 2.82292306e-01 -2.07880400e-02 4.63588610e-02 2.24115506e-01 -9.37810302e-01 -2.13871136e-01 7.85164893e-01 -6.41409576e-01 2.13787854e-01 7.25733861e-02 7.55795717e-01 -2.54198849e-01 -4.28741634e-01 8.48790467e-01 -2.92103011e-02 -2.45531276e-01 3.52734298e-01 -3.66326541e-01 3.41758162e-01 8.19978774e-01 1.86388846e-02 4.60694075e-01 -2.33936310e-01 -9.38172817e-01 -9.23239738e-02 2.73761973e-02 -3.96999083e-02 3.76627326e-01 -1.63454485e+00 -3.99487972e-01 3.67078900e-01 -1.47606470e-02 -7.82052279e-02 1.67833269e-01 1.33103633e+00 -4.10041124e-01 6.21021628e-01 -2.28705574e-02 -5.73786438e-01 -4.52185571e-01 9.18340623e-01 7.71184504e-01 -4.14343178e-01 -9.51515853e-01 5.97031713e-01 4.77859825e-02 -4.17042285e-01 4.42337930e-01 -7.52221942e-01 1.79844141e-01 -2.10488319e-01 4.91337746e-01 4.38336849e-01 -9.47538242e-02 -6.86643004e-01 -2.79149432e-02 3.77052724e-01 4.17158216e-01 -1.55181736e-01 1.10950053e+00 1.84613258e-01 -3.27532470e-01 9.83135939e-01 1.84355378e+00 -4.08117175e-01 -1.13441217e+00 -3.80036354e-01 2.90841162e-01 3.27050924e-01 7.79342279e-02 -1.94791064e-01 -8.95434558e-01 1.04956663e+00 5.72877049e-01 7.94515431e-01 1.21757984e+00 -1.44490585e-01 8.14868450e-01 6.46190405e-01 1.68019295e-01 -1.26509345e+00 -1.19615443e-01 7.74551511e-01 1.18801105e+00 -1.07902575e+00 -5.95210254e-01 -5.64258061e-02 1.47855142e-03 1.34543765e+00 3.43798473e-02 -4.79942828e-01 9.99267101e-01 -4.36687768e-02 -4.60882425e-01 -1.19669579e-01 -7.47899860e-02 -1.61746413e-01 4.99385685e-01 3.84948194e-01 3.54229182e-01 -1.14010118e-01 -4.34851468e-01 4.70310569e-01 -1.60084084e-01 7.32860267e-02 4.07295525e-01 5.69205225e-01 -2.74850905e-01 -7.70819426e-01 -1.86609551e-01 3.14207166e-01 -3.23791713e-01 4.94535454e-02 -1.17196620e-01 9.35488641e-01 1.10497445e-01 4.09655333e-01 -1.54172286e-01 -1.24212041e-01 4.18149114e-01 3.97937417e-01 4.04307276e-01 -2.16056839e-01 -2.10201219e-01 -4.65463191e-01 -4.48106617e-01 -5.69412827e-01 -4.28257823e-01 -3.94804388e-01 -1.20377636e+00 -1.19063705e-01 -1.34717241e-01 4.45622176e-01 4.12597567e-01 1.02408254e+00 1.95233617e-02 6.08541191e-01 5.44056833e-01 -9.84590590e-01 -1.20360887e+00 -9.50704038e-01 -8.53469849e-01 3.35841030e-01 8.41652274e-01 -6.81389809e-01 -8.37967217e-01 -2.53690004e-01]
[7.526030540466309, 3.7129886150360107]
193b167a-e1d3-4989-bf9b-faf60f3a77e3
ref-rotation-equivariant-features-for-local
2203.05206
null
https://arxiv.org/abs/2203.05206v1
https://arxiv.org/pdf/2203.05206v1.pdf
ReF -- Rotation Equivariant Features for Local Feature Matching
Sparse local feature matching is pivotal for many computer vision and robotics tasks. To improve their invariance to challenging appearance conditions and viewing angles, and hence their usefulness, existing learning-based methods have primarily focused on data augmentation-based training. In this work, we propose an alternative, complementary approach that centers on inducing bias in the model architecture itself to generate `rotation-specific' features using Steerable E2-CNNs, that are then group-pooled to achieve rotation-invariant local features. We demonstrate that this high performance, rotation-specific coverage from the steerable CNNs can be expanded to all rotation angles by combining it with augmentation-trained standard CNNs which have broader coverage but are often inaccurate, thus creating a state-of-the-art rotation-robust local feature matcher. We benchmark our proposed methods against existing techniques on HPatches and a newly proposed UrbanScenes3D-Air dataset for visual place recognition. Furthermore, we present a detailed analysis of the performance effects of ensembling, robust estimation, network architecture variations, and the use of rotation priors.
['K. Madhava Krishna', 'Sourav Garg', 'Michael Milford', 'Avneesh Mishra', 'Kinal Mehta', 'Abhishek Peri']
2022-03-10
null
null
null
null
['visual-place-recognition']
['computer-vision']
[ 1.19602151e-01 -9.35091749e-02 -1.93172559e-01 -5.44021130e-01 -5.25464892e-01 -4.50558275e-01 1.01439619e+00 -2.78032601e-01 -4.04379517e-01 5.29854536e-01 3.11967254e-01 -9.76303741e-02 -9.08600315e-02 -6.40158832e-01 -1.00345993e+00 -6.71424031e-01 4.72672936e-03 2.24011704e-01 2.10152194e-01 -5.09376347e-01 1.13840364e-01 1.15082467e+00 -1.87999773e+00 3.46146338e-02 6.15950763e-01 9.49093223e-01 8.09908062e-02 3.64881426e-01 4.67254013e-01 6.29274905e-01 -2.69983530e-01 1.56779200e-01 6.61685348e-01 3.08601502e-02 -5.60679257e-01 -5.89755736e-03 9.94189382e-01 -3.74529123e-01 -5.68362534e-01 7.96383619e-01 5.17730832e-01 4.12210464e-01 5.46235502e-01 -1.06659222e+00 -6.74046993e-01 2.29102775e-01 -4.86655772e-01 -5.66408746e-02 2.64256358e-01 5.27323894e-02 8.85122538e-01 -1.06775463e+00 8.51295531e-01 1.15227664e+00 8.87417078e-01 4.21519190e-01 -1.11799765e+00 -6.27400875e-01 2.48318046e-01 2.45519400e-01 -1.54078686e+00 -8.96011233e-01 1.01552093e+00 -3.07038724e-01 1.20806015e+00 1.96924686e-01 5.37405849e-01 1.17241478e+00 -1.16304673e-01 6.39116406e-01 9.55581307e-01 -5.48047900e-01 1.57741532e-01 -1.34192467e-01 -2.67464995e-01 6.64006174e-01 1.99001446e-01 5.31341016e-01 -5.03854871e-01 1.05438888e-01 1.12215507e+00 1.68055549e-01 -3.67424935e-01 -1.11491954e+00 -1.50648201e+00 7.31841922e-01 1.21295691e+00 1.70504823e-01 -4.31276590e-01 3.22127342e-01 1.59666896e-01 2.03002125e-01 4.29989189e-01 5.49312651e-01 -5.31900942e-01 3.61156762e-01 -9.31239605e-01 5.06031871e-01 3.81951332e-01 1.14277411e+00 1.09055197e+00 4.06229556e-01 -4.35380824e-02 9.16719019e-01 4.67537224e-01 4.25456256e-01 5.00498652e-01 -6.92166567e-01 3.67575198e-01 5.49493790e-01 1.41971469e-01 -1.33189261e+00 -7.19462216e-01 -6.82333112e-01 -9.17325258e-01 2.18407691e-01 2.26930201e-01 5.00864647e-02 -1.32647955e+00 1.83608067e+00 2.56832093e-01 1.41636744e-01 -1.97366662e-02 1.15916395e+00 8.51033509e-01 3.62280279e-01 -2.48667896e-01 4.98302042e-01 9.24282014e-01 -1.17994905e+00 -3.41896772e-01 -4.91458744e-01 5.47775686e-01 -7.14306295e-01 6.21258080e-01 -3.86959054e-02 -5.51863432e-01 -7.61590600e-01 -1.29692030e+00 -1.95721000e-01 -5.22206008e-01 4.34729129e-01 7.00402141e-01 3.67945880e-01 -1.29944038e+00 5.94847381e-01 -7.28553891e-01 -7.36474514e-01 4.84716803e-01 3.91188473e-01 -7.52262294e-01 -2.94924915e-01 -7.52494276e-01 1.17704368e+00 1.35726810e-01 3.86412114e-01 -8.81436050e-01 -4.65697557e-01 -1.29436791e+00 -1.48664355e-01 8.72433484e-02 -7.36985147e-01 9.17154372e-01 -7.59871840e-01 -1.56100750e+00 8.15345943e-01 -1.06565103e-01 -5.01332283e-01 3.06537747e-01 -3.45468730e-01 -2.23618239e-01 -1.21321753e-01 -7.83312693e-02 1.14726925e+00 9.63846207e-01 -1.38615584e+00 -3.20165515e-01 -5.05668342e-01 -7.32801929e-02 3.66251707e-01 -6.33280501e-02 -1.28034204e-01 -2.11292177e-01 -6.13690436e-01 4.93264288e-01 -1.21287107e+00 -5.88370621e-01 8.92214030e-02 -3.13796341e-01 1.95114881e-01 8.33403170e-01 -5.23589969e-01 5.41915417e-01 -2.18942285e+00 1.57061577e-01 4.22367841e-01 3.60232592e-02 2.35565051e-01 -4.88021642e-01 2.58645058e-01 -3.03629667e-01 -2.03241616e-01 -1.25014121e-02 -3.11869502e-01 -1.62379786e-01 1.23322792e-01 -2.24503517e-01 1.00459743e+00 3.47574443e-01 1.03811419e+00 -7.45623171e-01 1.68736745e-02 6.55179441e-01 6.95151329e-01 -5.48723936e-01 4.79608513e-02 6.51967674e-02 5.51102161e-01 -3.22343439e-01 7.46149063e-01 7.10568666e-01 1.34182319e-01 -1.81178600e-01 -4.88921642e-01 -4.27010298e-01 1.71810299e-01 -1.17418742e+00 2.03529596e+00 -6.41795635e-01 8.33959579e-01 3.49878147e-02 -1.12351573e+00 1.35377312e+00 -4.60267738e-02 3.48220348e-01 -6.55304909e-01 2.89239526e-01 2.92133242e-01 -1.19086079e-01 4.79273461e-02 7.12272108e-01 2.58713543e-01 6.37063757e-02 -1.54143780e-01 4.00602788e-01 -1.86761558e-01 -2.98996061e-01 -3.33429754e-01 9.34070826e-01 5.94984055e-01 3.36528897e-01 -2.99990475e-01 4.06354725e-01 -5.56818061e-02 3.02285641e-01 7.02234626e-01 -1.88791141e-01 1.06959260e+00 -3.19516063e-01 -7.66720891e-01 -1.33761418e+00 -6.53909683e-01 -2.08406180e-01 8.94350290e-01 1.92321226e-01 -5.70384823e-02 -3.29873025e-01 -4.90483552e-01 6.68651536e-02 2.82609373e-01 -7.04375923e-01 -2.85899520e-01 -6.58899784e-01 -4.08133328e-01 5.01005709e-01 6.85191751e-01 7.74509072e-01 -1.02334964e+00 -7.06596851e-01 1.31178617e-01 -6.34787604e-02 -1.19346261e+00 -7.07894266e-02 4.39509451e-01 -7.19458103e-01 -8.26235592e-01 -8.47786605e-01 -7.65630186e-01 8.05089772e-01 5.50947309e-01 8.25584888e-01 -1.83754966e-01 -1.93988219e-01 3.33345652e-01 -5.92661917e-01 -2.80790776e-01 1.47316918e-01 3.68415624e-01 1.16881721e-01 7.57871345e-02 1.11762479e-01 -6.85268044e-01 -5.47298491e-01 4.65932935e-01 -6.17670715e-01 1.01760052e-01 8.52961898e-01 9.71307516e-01 4.33631867e-01 -7.56542385e-01 3.27881962e-01 -4.24787909e-01 1.47791535e-01 -2.01878071e-01 -5.82904160e-01 3.13085839e-02 -2.48510167e-01 2.71732956e-01 5.77915609e-01 -2.74920881e-01 -8.90998781e-01 5.08298635e-01 -1.05682135e-01 -5.51736414e-01 -5.24707556e-01 4.00788516e-01 -1.18339576e-01 -7.55583882e-01 1.09499454e+00 2.05129668e-01 -6.74786270e-02 -3.85462672e-01 7.31292188e-01 3.77260208e-01 7.07071304e-01 -4.11853701e-01 1.17496061e+00 5.96497834e-01 1.81824610e-01 -9.57661033e-01 -5.63589036e-01 -7.78173506e-01 -7.80036211e-01 -6.58106282e-02 6.52532637e-01 -1.17443156e+00 -2.07966596e-01 7.05503464e-01 -1.12852716e+00 -2.70549715e-01 -2.91005194e-01 5.43163180e-01 -6.69090450e-01 4.91643474e-02 -1.49295673e-01 -4.07623529e-01 -2.56488889e-01 -1.12808847e+00 1.23539019e+00 2.74270177e-01 -6.06292300e-03 -7.28053629e-01 2.80014068e-01 2.90515218e-02 8.28446627e-01 4.61616874e-01 2.99720258e-01 -8.10015798e-01 -7.21639097e-01 -4.27487552e-01 -3.60683978e-01 2.58552969e-01 -5.13050370e-02 -1.80062026e-01 -1.18866479e+00 -4.39262480e-01 -5.17524123e-01 -5.09180129e-01 1.00728524e+00 3.99283797e-01 8.35018754e-01 -1.98763028e-01 -4.36512321e-01 1.07299626e+00 1.40813136e+00 -1.57989368e-01 7.34833717e-01 6.67472184e-01 9.40893650e-01 4.00409669e-01 5.36058128e-01 2.99679339e-01 4.24996287e-01 9.99050617e-01 6.67724788e-01 -4.33851212e-01 -2.66962767e-01 -2.56931007e-01 2.04877466e-01 4.37337339e-01 -4.61628199e-01 2.74751242e-02 -8.36960196e-01 8.39547455e-01 -2.03136349e+00 -8.86544228e-01 1.86916307e-01 2.25896621e+00 4.24231142e-01 -3.50129336e-01 -1.59283385e-01 -1.00308605e-01 7.05653012e-01 5.00562787e-01 -3.05791944e-01 -1.62824810e-01 -1.99253380e-01 3.62559915e-01 7.94377804e-01 3.68253410e-01 -1.38021815e+00 1.23554897e+00 6.26329374e+00 5.85840702e-01 -1.52499247e+00 -2.33407244e-01 3.29901099e-01 2.49926776e-01 -1.24731466e-01 9.99658480e-02 -7.31173813e-01 -3.13187480e-01 6.08833671e-01 5.50164759e-01 5.02390325e-01 1.14795816e+00 1.55918784e-02 1.28005549e-01 -1.06545389e+00 9.61804688e-01 3.10542643e-01 -1.32985497e+00 -1.28127754e-01 -6.10312484e-02 9.82788265e-01 6.16579473e-01 2.07035569e-03 3.38526130e-01 2.51973748e-01 -1.02553630e+00 6.88678384e-01 3.87833208e-01 6.60162508e-01 -6.71800196e-01 6.36091411e-01 7.83569515e-02 -1.14385533e+00 -6.95353746e-02 -5.51864564e-01 -1.27378181e-02 -1.52887136e-01 3.82474899e-01 -9.77949679e-01 8.48338366e-01 7.68711805e-01 9.81042624e-01 -8.03307176e-01 1.24725091e+00 -2.02287555e-01 9.63061899e-02 -5.67133188e-01 1.05964899e-01 2.62272835e-01 1.31018488e-02 5.33978224e-01 1.09221101e+00 3.72699499e-01 -4.44575012e-01 1.13970242e-01 8.42870057e-01 7.51458283e-04 5.84445372e-02 -1.12578487e+00 5.03708363e-01 5.22328794e-01 1.54092419e+00 -4.56662029e-01 -1.71032488e-01 -3.97720635e-01 8.07340324e-01 5.73208630e-01 4.74756449e-01 -5.50170600e-01 -4.35319006e-01 6.33965731e-01 -1.23505304e-02 6.48239493e-01 -4.62045044e-01 -1.03863090e-01 -1.35239685e+00 -2.47189798e-03 -9.04115558e-01 -2.39904389e-01 -8.74723017e-01 -7.88395047e-01 6.37284458e-01 -6.68465300e-03 -1.31668997e+00 -4.03676152e-01 -6.68321013e-01 -4.92453307e-01 7.84334481e-01 -1.90750134e+00 -1.73316097e+00 -6.98732674e-01 7.41665542e-01 2.51164079e-01 -2.66472220e-01 7.69186020e-01 2.40242049e-01 -2.84299284e-01 5.74784279e-01 9.53640118e-02 1.71401247e-01 9.07453179e-01 -8.91297817e-01 5.40735781e-01 1.08602500e+00 2.34132424e-01 6.85250103e-01 6.82980657e-01 -2.64132023e-01 -1.19297934e+00 -1.33805716e+00 5.68691134e-01 -2.23224312e-01 3.38629007e-01 -5.37277758e-01 -5.75164795e-01 8.39879811e-01 8.88079181e-02 5.75394213e-01 2.02009693e-01 2.38382936e-01 -6.79569185e-01 -3.62848967e-01 -1.17377818e+00 7.17956424e-01 1.22732770e+00 -5.65029502e-01 -4.43871915e-01 9.29793045e-02 5.50050735e-01 -5.28047025e-01 -6.15083933e-01 7.63363719e-01 5.98135948e-01 -9.71809506e-01 1.24120593e+00 -4.53711599e-01 2.24309310e-01 -4.34586614e-01 -3.44481975e-01 -1.58444333e+00 -5.28829396e-01 -3.87859017e-01 1.45533115e-01 9.48789477e-01 2.63992369e-01 -6.65458381e-01 6.95756137e-01 1.90868303e-01 -5.59044361e-01 -4.71417069e-01 -9.87509847e-01 -6.80227697e-01 -1.31697923e-01 -1.78250343e-01 5.62232673e-01 1.15764451e+00 -2.08271533e-01 1.26618564e-01 -5.78681648e-01 2.74425387e-01 2.80213267e-01 1.00489082e-02 1.10438943e+00 -1.10201705e+00 3.56206782e-02 -2.71557331e-01 -9.59282756e-01 -1.17239404e+00 1.65007934e-01 -7.69703865e-01 4.35614467e-01 -1.27746511e+00 -1.22328207e-01 -5.15266240e-01 -1.61030874e-01 7.95058370e-01 2.26781711e-01 4.97328609e-01 1.12824745e-01 1.83877498e-01 -5.37147224e-01 8.42681408e-01 1.21176827e+00 6.40714541e-02 -2.56984979e-01 -1.48597270e-01 -4.73612040e-01 5.65090835e-01 7.55738556e-01 -1.43507197e-01 -2.94314951e-01 -4.12911475e-01 3.06616902e-01 -4.17074442e-01 7.26120353e-01 -1.34977818e+00 2.08691120e-01 -6.09199852e-02 6.11685991e-01 -6.69775486e-01 4.40164864e-01 -9.26876724e-01 -3.07027418e-02 2.36768156e-01 -1.92137867e-01 1.21422999e-01 3.36206734e-01 4.60238367e-01 -3.44405860e-01 1.11425892e-01 7.87433207e-01 -8.10369700e-02 -8.78828287e-01 3.68219078e-01 -2.39444360e-01 -4.71379757e-01 8.47736180e-01 -3.04847062e-01 -4.74116981e-01 -3.54355872e-01 -4.59569752e-01 -1.47851795e-01 6.95742726e-01 5.64028025e-01 8.13586593e-01 -1.50982583e+00 -5.82101762e-01 6.21249497e-01 4.15116668e-01 4.51333165e-01 3.67752276e-02 7.64011323e-01 -6.66786969e-01 6.36562824e-01 -6.26940191e-01 -6.71625912e-01 -8.76839459e-01 4.73900646e-01 4.65612710e-01 3.70259248e-02 -5.10839105e-01 6.89546764e-01 6.31895959e-02 -1.06366003e+00 1.81898102e-02 -4.57220763e-01 -3.97340536e-01 -1.92932412e-01 6.89289719e-02 1.31067157e-01 3.98907751e-01 -8.98427427e-01 -5.58853865e-01 7.52453864e-01 3.29127908e-02 2.98593659e-02 1.61050141e+00 -2.57590674e-02 6.45831376e-02 -8.34425017e-02 1.17069376e+00 -3.32025439e-02 -1.30207598e+00 -3.88843685e-01 -2.81959444e-01 -4.98223245e-01 2.37595394e-01 -4.78255391e-01 -1.14653635e+00 6.41832471e-01 7.58667767e-01 -3.51086169e-01 9.07025695e-01 -1.27807707e-01 1.92895636e-01 8.16591263e-01 4.60280478e-01 -7.96465099e-01 -1.08150057e-01 7.67286897e-01 1.21958017e+00 -1.31854403e+00 9.33848768e-02 -3.01138997e-01 -3.65060806e-01 1.12600589e+00 6.70304120e-01 -5.79704165e-01 6.25154674e-01 -1.61679223e-01 1.52775496e-01 -1.41952485e-01 -2.65593737e-01 -3.57688755e-01 6.08009219e-01 1.00370932e+00 2.20991954e-01 -1.77712530e-01 2.29653910e-01 6.07051924e-02 -1.90476924e-01 -1.81489930e-01 2.69993782e-01 9.89652038e-01 -3.25387388e-01 -8.75170827e-01 -4.68145370e-01 5.01379222e-02 9.39227641e-02 -1.54926836e-01 -3.03295642e-01 9.11437869e-01 -9.20758992e-02 4.95732158e-01 3.35163921e-02 -5.41442335e-01 3.05708528e-01 -1.23408601e-01 6.71354413e-01 -4.54701543e-01 -3.06476474e-01 -2.01106623e-01 1.68585315e-01 -7.27261901e-01 -7.82472730e-01 -7.38090217e-01 -7.16150880e-01 -1.08956657e-01 -5.79838037e-01 -4.49013710e-01 9.49739635e-01 9.89534199e-01 6.61281407e-01 3.40423942e-01 6.11360312e-01 -1.65973139e+00 -5.33159912e-01 -1.05656040e+00 -2.16886073e-01 3.66776019e-01 5.55999339e-01 -9.30566013e-01 -1.77029893e-01 -1.80597037e-01]
[7.795804023742676, -1.972265362739563]
2e64de5f-c3c1-4efd-bde6-7c5913b544f6
qursim-a-corpus-for-evaluation-of-relatedness
null
null
https://aclanthology.org/L12-1051
https://aclanthology.org/L12-1051.pdf
QurSim: A corpus for evaluation of relatedness in short texts
This paper presents a large corpus created from the original Quranic text, where semantically similar or related verses are linked together. This corpus will be a valuable evaluation resource for computational linguists investigating similarity and relatedness in short texts. Furthermore, this dataset can be used for evaluation of paraphrase analysis and machine translation tasks. Our dataset is characterised by: (1) superior quality of relatedness assignment; as we have incorporated relations marked by well-known domain experts, this dataset could thus be considered a gold standard corpus for various evaluation tasks, (2) the size of our dataset; over 7,600 pairs of related verses are collected from scholarly sources with several levels of degree of relatedness. This dataset could be extended to over 13,500 pairs of related verses observing the commutative property of strongly related pairs. This dataset was incorporated into online query pages where users can visualize for a given verse a network of all directly and indirectly related verses. Empirical experiments showed that only 33{\%} of related pairs shared root words, emphasising the need to go beyond common lexical matching methods, and incorporate -in addition- semantic, domain knowledge, and other corpus-based approaches.
['Abdul-Baquee Sharaf', 'Eric Atwell']
2012-05-01
null
null
null
lrec-2012-5
['text-clustering']
['natural-language-processing']
[-7.75703117e-02 5.25246840e-03 -3.68557900e-01 -4.45300192e-02 -7.77937949e-01 -1.05623853e+00 8.76049101e-01 6.85098112e-01 -4.72152084e-01 7.83659220e-01 7.31904626e-01 -1.14481449e-01 -5.76828778e-01 -8.71275306e-01 -1.87174052e-01 -3.31579328e-01 7.36805424e-02 8.04935098e-01 3.53693575e-01 -1.08777773e+00 7.70423770e-01 5.02666354e-01 -1.54487479e+00 2.03383476e-01 9.97283340e-01 5.07967114e-01 2.93311685e-01 1.21501714e-01 -2.32687265e-01 7.55015254e-01 -7.75544882e-01 -9.68976438e-01 4.00923081e-02 -7.72612691e-01 -1.22630143e+00 -5.55912435e-01 5.90390503e-01 4.56822842e-01 -3.14602554e-01 1.05406678e+00 5.56241095e-01 3.73403043e-01 5.34623504e-01 -1.18259096e+00 -6.10436738e-01 9.40122604e-01 -6.10310212e-02 5.73064685e-01 9.62123096e-01 -4.58907992e-01 1.68738961e+00 -8.14250886e-01 1.25119197e+00 1.02530241e+00 3.79267663e-01 1.53593123e-01 -8.42465937e-01 -5.48062265e-01 -8.61792624e-01 7.85787940e-01 -1.37760615e+00 -1.03255257e-01 8.92407060e-01 -3.71252686e-01 9.04643357e-01 4.57400382e-01 6.69137836e-01 1.09142649e+00 -1.11779660e-01 2.42498726e-01 1.08314741e+00 -6.64975464e-01 -1.60191625e-01 3.35483074e-01 1.58712193e-01 3.40711206e-01 1.49250366e-02 -2.85461396e-01 -7.68932879e-01 -2.14282334e-01 4.20711070e-01 -5.26348889e-01 -3.82809609e-01 -1.35077223e-01 -1.57953501e+00 7.43268073e-01 4.89931047e-01 1.11099052e+00 -1.54076383e-01 -1.51236266e-01 7.07354665e-01 7.38068223e-01 8.73513967e-02 1.12440288e+00 -5.96219338e-02 -4.41483140e-01 -7.44896531e-01 4.27857846e-01 1.03919733e+00 9.63387609e-01 7.81597376e-01 -6.43818021e-01 1.39581650e-01 9.73905444e-01 -1.09665059e-01 1.36657238e-01 7.43449628e-01 -1.05855632e+00 7.60852158e-01 7.59166598e-01 -2.60090232e-01 -1.49013495e+00 -2.35320121e-01 -3.47494632e-01 -4.54580635e-01 -4.15646285e-01 5.48501313e-01 3.61132413e-01 1.81549206e-01 1.66234827e+00 5.42311631e-02 -2.92194784e-01 8.65850896e-02 8.51402342e-01 1.07196701e+00 6.04494095e-01 -2.83494264e-01 -3.15022141e-01 1.58382154e+00 -6.56311750e-01 -7.77413309e-01 1.58919424e-01 8.40976954e-01 -1.35878634e+00 1.23688245e+00 1.60750002e-01 -1.22684634e+00 -5.98077655e-01 -1.08999074e+00 -2.52790123e-01 -6.08906746e-01 -4.67254639e-01 3.78540218e-01 4.51694041e-01 -8.14786136e-01 1.17464018e+00 -1.83106765e-01 -8.95838022e-01 8.64164531e-02 -1.36599867e-02 -3.68028462e-01 -8.56555626e-03 -1.64352369e+00 1.64682817e+00 5.74839950e-01 -3.72356474e-01 -1.10396847e-01 -6.29014432e-01 -6.35589063e-01 -5.63602597e-02 4.06054437e-01 -4.76457328e-01 5.29295683e-01 -6.69197202e-01 -9.29760098e-01 1.31918132e+00 8.33691284e-02 -1.19930282e-01 2.32115462e-01 -3.83179821e-02 -7.67573655e-01 5.17862499e-01 4.01000530e-01 1.79497704e-01 1.20107993e-01 -8.94577742e-01 -2.67275512e-01 -2.43192002e-01 2.37545818e-01 4.84543860e-01 -7.01497138e-01 5.72149932e-01 -3.32637668e-01 -1.02430832e+00 2.07609177e-01 -8.66657794e-01 3.30368876e-01 -1.21242605e-01 1.59897618e-02 -6.53366387e-01 5.73684394e-01 -8.39583218e-01 1.54136026e+00 -1.66235280e+00 5.10191321e-01 3.38634163e-01 1.19802222e-01 -2.30168607e-02 -2.65329689e-01 1.30556440e+00 -6.87856004e-02 1.05033211e-01 -1.90257519e-01 2.56628394e-01 3.12778614e-02 2.63233244e-01 -9.85179916e-02 3.20834279e-01 -2.04848677e-01 9.60139871e-01 -1.21164751e+00 -9.66381371e-01 2.88488176e-02 1.24984242e-01 -6.68413341e-02 4.01696824e-02 1.03493407e-01 9.10632312e-02 -3.87465209e-01 5.49189270e-01 -5.46598844e-02 -1.03002854e-01 2.54618555e-01 -4.28465933e-01 1.43268391e-01 7.86525965e-01 -8.67915750e-01 2.18022013e+00 -5.01751125e-01 1.09667838e+00 -5.92999518e-01 -8.84778619e-01 1.23152590e+00 3.95615131e-01 5.35098016e-01 -9.16514993e-01 1.27244651e-01 4.37748611e-01 1.52785435e-01 -7.12282121e-01 8.69087160e-01 -2.31084064e-01 -2.63902605e-01 6.69671476e-01 1.33816496e-01 -5.42058110e-01 8.11079204e-01 5.54250002e-01 1.00805819e+00 2.46654063e-01 5.18447280e-01 -6.69860899e-01 6.94143951e-01 4.17620540e-01 1.46940738e-01 2.58361995e-01 7.54420608e-02 2.58375853e-01 4.69740421e-01 -2.36388713e-01 -1.17258251e+00 -9.90050912e-01 -4.63685930e-01 1.15664744e+00 4.68433052e-01 -8.51187885e-01 -3.71588737e-01 -2.95102984e-01 -2.90748656e-01 7.66711295e-01 -4.78767395e-01 6.53118314e-03 -9.26719606e-01 -4.00685310e-01 9.27616000e-01 2.36576825e-01 1.74227521e-01 -1.11938465e+00 -4.15413052e-01 2.00364202e-01 -8.41402292e-01 -9.27825809e-01 -2.58999795e-01 -1.67882130e-01 -6.26802981e-01 -1.28379118e+00 -5.82510591e-01 -9.04432058e-01 9.34195518e-03 7.66498670e-02 1.64358282e+00 4.71337378e-01 -7.18025491e-02 -4.83040586e-02 -7.44311690e-01 8.55509490e-02 -8.22106481e-01 2.15011671e-01 -4.87132519e-02 -5.46422541e-01 4.64873374e-01 -9.01952624e-01 -2.60316283e-01 6.24187231e-01 -7.13611245e-01 -2.94425011e-01 1.66717753e-01 6.60664260e-01 7.61533976e-02 -4.05025929e-01 6.66903198e-01 -6.31009936e-01 8.86649489e-01 -6.67591393e-01 -1.44972458e-01 4.41061705e-01 -5.39443612e-01 -9.40532051e-03 6.71853244e-01 -3.24890345e-01 -7.32547164e-01 -6.88010037e-01 -8.71246606e-02 1.91377133e-01 2.55657673e-01 6.89927936e-01 -6.46768957e-02 -6.53948784e-02 1.03127980e+00 -5.62471412e-02 -1.01734668e-01 -5.58700502e-01 5.30900836e-01 8.30088973e-01 6.55238688e-01 -8.67097974e-01 7.97964454e-01 1.09224349e-01 2.62274444e-01 -6.84787989e-01 -6.14480257e-01 -8.51973295e-01 -8.01352143e-01 -2.75022924e-01 4.70859706e-01 -6.77333057e-01 -7.07396567e-01 -3.53928447e-01 -9.99143958e-01 2.29133174e-01 -2.83655465e-01 5.04189074e-01 -5.70727706e-01 7.96711743e-01 -6.44362628e-01 4.62569483e-02 -2.79020756e-01 -6.84478104e-01 6.38348579e-01 1.52770072e-01 -9.75039303e-01 -1.29997015e+00 3.33808213e-01 7.58104503e-01 2.19205767e-01 3.70987296e-01 1.28874588e+00 -1.09713030e+00 -8.93631577e-03 -1.16841510e-01 -6.28767759e-02 1.06768608e-01 2.29814053e-01 -5.00682592e-02 -4.04540867e-01 -2.21389994e-01 -1.75962195e-01 -6.75032079e-01 2.20016226e-01 -5.31490445e-01 4.64115590e-01 -1.73891306e-01 -1.48616061e-01 -6.04117801e-03 1.43299377e+00 -8.12424049e-02 7.41288066e-01 7.68383682e-01 5.55682778e-01 1.10013652e+00 7.26889789e-01 2.38651291e-01 3.71988565e-01 1.05307007e+00 2.08277479e-01 3.26657623e-01 -3.53846818e-01 -2.26592451e-01 1.02287546e-01 1.42381620e+00 -4.45086420e-01 -2.73400486e-01 -1.02216971e+00 7.71503508e-01 -1.64175522e+00 -1.36369753e+00 -5.36055863e-01 1.98572850e+00 1.09774470e+00 2.51953509e-02 2.49156550e-01 3.14521223e-01 6.62509561e-01 1.37492418e-01 1.62341222e-01 -4.45998222e-01 -4.81710941e-01 4.97455984e-01 2.27700826e-02 3.16288620e-01 -4.54465896e-01 9.10868764e-01 6.03240871e+00 1.26311374e+00 -6.85715616e-01 -2.99868826e-03 -8.55671540e-02 1.18385695e-01 -6.45395041e-01 3.34922671e-01 -4.74094659e-01 3.65068555e-01 7.06283927e-01 -6.09848320e-01 2.76239783e-01 4.33703274e-01 -7.66962953e-03 9.84158274e-03 -1.14670432e+00 8.43946159e-01 4.29266036e-01 -1.67020357e+00 6.71190694e-02 -3.00970115e-02 6.79122388e-01 -5.40919900e-02 -5.62526703e-01 5.80842793e-03 6.47286624e-02 -9.95335400e-01 5.99857211e-01 3.86983484e-01 6.37312710e-01 -7.39546061e-01 8.09428155e-01 2.64521599e-01 -1.13912702e+00 3.53904337e-01 -3.89936388e-01 -1.44311294e-01 1.12462237e-01 2.27347715e-03 -4.74705309e-01 9.56246972e-01 5.57239532e-01 1.03154290e+00 -9.20405984e-01 7.89717793e-01 -3.73864263e-01 3.67576420e-01 -3.33722621e-01 -6.69152200e-01 2.93900430e-01 -4.59443986e-01 6.89867616e-01 1.28587365e+00 2.73827255e-01 -4.16136570e-02 -2.84910083e-01 7.56754696e-01 -1.86569080e-01 7.25388467e-01 -4.19738919e-01 -8.72460660e-03 1.01559091e+00 1.26891398e+00 -7.67861664e-01 -2.54147202e-01 -2.95497209e-01 9.90119934e-01 3.32097322e-01 -1.48359776e-01 -6.98834717e-01 -8.17194998e-01 3.64940375e-01 1.65460438e-01 -1.50840819e-01 -1.03363164e-01 -1.61398664e-01 -9.79599893e-01 1.62629202e-01 -1.01353049e+00 7.23502457e-01 -9.75794375e-01 -1.66448367e+00 8.54700387e-01 1.82218090e-01 -1.34643281e+00 -3.33456665e-01 -3.19094241e-01 -3.74976277e-01 9.48072612e-01 -1.09381652e+00 -9.72048163e-01 -2.11827978e-01 6.88933551e-01 3.69728357e-01 -2.37733260e-01 9.32744920e-01 4.68892545e-01 -3.55767123e-02 3.93590629e-01 7.90377483e-02 2.72762477e-01 8.71631265e-01 -1.11439598e+00 1.21181756e-01 6.18227422e-01 6.89122021e-01 7.40013123e-01 8.80010605e-01 -4.15401191e-01 -1.07634008e+00 -3.93498600e-01 1.68516648e+00 -7.09370673e-01 1.26690269e+00 -7.42614567e-02 -1.08314359e+00 2.45906129e-01 6.92005336e-01 -4.15509492e-01 1.03882098e+00 9.64425057e-02 -4.83086526e-01 -1.19982706e-02 -8.98508966e-01 6.28216803e-01 1.38099182e+00 -6.64249241e-01 -1.40035045e+00 6.85130656e-01 5.37597895e-01 -2.09098592e-01 -1.49963939e+00 1.64467245e-01 3.99983823e-01 -9.02012289e-01 9.49202836e-01 -6.56383395e-01 8.91164839e-01 -1.73936188e-01 -2.95793235e-01 -1.15521181e+00 -1.16728023e-01 -8.28442812e-01 2.08936766e-01 1.48580897e+00 4.02418941e-01 -1.46339163e-01 5.49509645e-01 2.53217578e-01 -1.42697334e-01 -4.74026293e-01 -1.11456215e+00 -9.83182907e-01 4.84560013e-01 -2.08382890e-01 3.82093877e-01 1.49164760e+00 7.22337484e-01 7.28108048e-01 -1.51373306e-02 -5.20299733e-01 3.08666855e-01 4.28766698e-01 4.53717113e-01 -1.16330028e+00 -2.16157168e-01 -8.60013068e-01 -5.63714266e-01 -8.56191933e-01 1.28713459e-01 -1.33783519e+00 -4.92894292e-01 -1.52228987e+00 1.13141224e-01 -5.67538142e-01 1.31160706e-01 2.54503250e-01 -9.47757438e-03 7.45547056e-01 1.56516075e-01 7.21017063e-01 -2.91352063e-01 3.61299038e-01 1.33978844e+00 2.13506952e-01 2.54039336e-02 -3.98251981e-01 -5.55243552e-01 5.62381625e-01 6.10403776e-01 -6.83728933e-01 -2.30160534e-01 -1.46856219e-01 8.47754538e-01 1.39770761e-01 1.53056324e-01 -6.05925977e-01 3.34061801e-01 -2.91523308e-01 -2.96173513e-01 -4.46278870e-01 2.73988456e-01 -8.74767840e-01 3.01504493e-01 4.35010076e-01 -4.82941061e-01 4.06247914e-01 -1.70305535e-01 8.13200995e-02 -4.86857086e-01 -7.20025659e-01 4.96468663e-01 -2.12171495e-01 -7.71027148e-01 -3.87381554e-01 -2.29884565e-01 5.72425842e-01 9.72877502e-01 -5.05839646e-01 -3.57798100e-01 -3.08755547e-01 -5.21281242e-01 -6.96931854e-02 5.11160553e-01 6.37312770e-01 2.57723004e-01 -1.51941419e+00 -1.08533788e+00 -6.86125040e-01 6.11926675e-01 -6.58088148e-01 -2.40224838e-01 5.84741950e-01 -7.65609801e-01 1.29055798e-01 -5.05972207e-01 -2.44891644e-01 -1.40805900e+00 4.33177859e-01 -8.71497020e-02 -2.00788692e-01 -5.41592002e-01 5.77419102e-01 -6.99697852e-01 -3.17222744e-01 -7.98428506e-02 2.29304597e-01 -4.76412147e-01 6.08276606e-01 2.28907615e-01 6.31713808e-01 1.23677298e-01 -1.09891307e+00 -4.54013348e-01 7.42257059e-01 3.72733444e-01 -1.81835607e-01 1.38893533e+00 -3.85726720e-01 -6.35583460e-01 5.80330670e-01 1.37099326e+00 3.37638021e-01 -1.99982896e-02 -5.01854181e-01 5.16429126e-01 -5.99652469e-01 -4.66512561e-01 -7.66487122e-01 -5.15330315e-01 6.24034286e-01 -2.04849377e-01 2.68488795e-01 9.73230302e-01 4.29314584e-01 7.71071672e-01 6.95311546e-01 2.86936164e-01 -9.31994379e-01 3.45285892e-01 3.51905704e-01 9.91133273e-01 -9.73729312e-01 2.80530542e-01 -4.78869885e-01 -6.31567657e-01 1.47546804e+00 1.81286588e-01 -1.01466693e-01 1.88912839e-01 -5.04685864e-02 9.65270028e-03 -4.01454836e-01 -4.33085114e-01 -2.11652339e-01 6.80111945e-01 4.21129555e-01 7.39941895e-01 -3.93949181e-01 -1.22457623e+00 2.11331517e-01 -8.42690051e-01 -4.09968823e-01 6.20274007e-01 7.05488563e-01 -2.92712152e-01 -1.55892265e+00 -2.52010047e-01 1.03851013e-01 -3.50662857e-01 -5.25388479e-01 -5.90049386e-01 1.04533505e+00 8.32701996e-02 9.82088089e-01 7.95537010e-02 -1.74159527e-01 2.17659250e-01 -1.80072173e-01 7.30823755e-01 -4.17062104e-01 -1.17959321e+00 -5.03286302e-01 5.74039698e-01 -3.12190503e-01 -7.86572635e-01 -5.93999445e-01 -1.03916156e+00 -6.60193324e-01 -4.12526011e-01 5.62677085e-01 6.13719821e-01 1.08802855e+00 4.17547533e-03 8.76085311e-02 5.50154805e-01 -2.40983337e-01 -3.44521046e-01 -1.11097372e+00 -4.14301604e-01 1.03908920e+00 -5.23345709e-01 -3.61395150e-01 -2.94617206e-01 2.75553703e-01]
[10.868712425231934, 9.353446006774902]
ee860e6f-c3ab-4aa5-89aa-b6fc33ca7a85
a-general-framework-for-information
1904.03296
null
http://arxiv.org/abs/1904.03296v1
http://arxiv.org/pdf/1904.03296v1.pdf
A General Framework for Information Extraction using Dynamic Span Graphs
We introduce a general framework for several information extraction tasks that share span representations using dynamically constructed span graphs. The graphs are constructed by selecting the most confident entity spans and linking these nodes with confidence-weighted relation types and coreferences. The dynamic span graph allows coreference and relation type confidences to propagate through the graph to iteratively refine the span representations. This is unlike previous multi-task frameworks for information extraction in which the only interaction between tasks is in the shared first-layer LSTM. Our framework significantly outperforms the state-of-the-art on multiple information extraction tasks across multiple datasets reflecting different domains. We further observe that the span enumeration approach is good at detecting nested span entities, with significant F1 score improvement on the ACE dataset.
['Mari Ostendorf', 'Yi Luan', 'Hannaneh Hajishirzi', 'Dave Wadden', 'Amy Shah', 'Luheng He']
2019-04-05
a-general-framework-for-information-1
https://aclanthology.org/N19-1308
https://aclanthology.org/N19-1308.pdf
naacl-2019-6
['joint-entity-and-relation-extraction']
['natural-language-processing']
[ 1.04594275e-01 9.83974636e-01 -6.28211379e-01 -3.03186655e-01 -1.02975321e+00 -7.36900508e-01 4.09716368e-01 7.26009429e-01 -4.11858439e-01 1.05736208e+00 5.36469340e-01 -6.97934031e-02 -4.20473695e-01 -9.26509380e-01 -7.52307773e-01 1.21929727e-01 -6.89449370e-01 7.33476162e-01 2.69418478e-01 -7.46759698e-02 -4.58520651e-02 2.94636905e-01 -9.16309416e-01 6.40895307e-01 6.88936293e-01 1.02385700e+00 -3.25125456e-01 3.83952081e-01 -2.22668558e-01 7.67466843e-01 -4.72766012e-01 -8.46705556e-01 9.74103808e-02 2.09831491e-01 -1.43391728e+00 -6.49828017e-01 4.84323591e-01 -8.97254571e-02 -4.72119033e-01 7.99962759e-01 1.73496246e-01 2.31705785e-01 4.50155228e-01 -1.15795112e+00 -4.71352041e-01 1.78060806e+00 -6.64815545e-01 4.04546648e-01 7.37472653e-01 -4.64261532e-01 1.78956294e+00 -7.96795130e-01 1.00490010e+00 1.26286030e+00 9.14264858e-01 1.63732350e-01 -1.53227723e+00 -7.82637656e-01 5.36010981e-01 2.28616968e-01 -1.31310439e+00 -3.52206975e-01 5.40424228e-01 -1.08458482e-01 1.78382301e+00 1.18990645e-01 3.41731757e-01 1.18540013e+00 -1.53274537e-04 7.48190403e-01 5.22990286e-01 -4.89766449e-01 -3.36956382e-01 -2.88046569e-01 6.76148474e-01 8.65301728e-01 6.90767169e-01 -7.82564953e-02 -8.54665637e-01 -3.66229862e-01 3.82590115e-01 -4.33976859e-01 -1.18055701e-01 4.76080589e-02 -1.23581982e+00 7.85917759e-01 6.00360870e-01 4.14708644e-01 -4.55375463e-01 1.95736930e-01 5.53018093e-01 3.60538542e-01 4.28392857e-01 8.89541030e-01 -9.15249228e-01 2.99808443e-01 -1.20627749e+00 3.52280438e-01 1.22939932e+00 1.29266191e+00 6.03702605e-01 -3.81953418e-01 -5.60251057e-01 6.16587579e-01 2.11622059e-01 -1.08380280e-01 -5.82309961e-02 -1.07080126e+00 9.59599793e-01 6.24679625e-01 -3.46785448e-02 -8.06856096e-01 -9.28759336e-01 -5.95191419e-01 -4.30222690e-01 -2.81191170e-01 4.41889942e-01 -6.07188284e-01 -8.11977923e-01 2.13426089e+00 1.68848932e-01 1.53052747e-01 6.63247108e-02 3.37725520e-01 1.08144045e+00 2.32197344e-01 5.63364685e-01 -2.28902280e-01 1.70816934e+00 -8.44594002e-01 -7.10199535e-01 -4.78871554e-01 6.99756265e-01 -3.16461086e-01 2.49416962e-01 1.47682667e-01 -1.13555801e+00 -3.27805161e-01 -1.25100994e+00 -3.52392524e-01 -5.18020451e-01 -2.83362240e-01 9.35535073e-01 -5.96144870e-02 -8.59439194e-01 9.27032471e-01 -5.78963339e-01 -2.35298991e-01 3.09692651e-01 2.06982017e-01 -6.97308958e-01 3.14170629e-01 -1.95890057e+00 1.44078124e+00 1.16891396e+00 -1.10232189e-01 -5.73704123e-01 -9.10416543e-01 -1.36773443e+00 5.15467644e-01 6.97460175e-01 -8.92325759e-01 1.25142705e+00 -1.49367034e-01 -5.86956918e-01 9.33700383e-01 -1.75411448e-01 -1.05718541e+00 2.26787463e-01 -6.36081874e-01 -6.78878665e-01 7.98083320e-02 2.55351245e-01 8.37605357e-01 2.53863752e-01 -1.09160507e+00 -7.16330528e-01 -1.88510388e-01 8.21306631e-02 9.40419659e-02 1.76130593e-01 1.29619524e-01 -3.02525043e-01 -3.15165162e-01 2.58317832e-02 -6.01491868e-01 -1.68516263e-01 -4.87555891e-01 -8.22589576e-01 -8.08417499e-01 4.34463352e-01 -9.05228674e-01 1.73186731e+00 -1.42138731e+00 1.13865778e-01 3.27544451e-01 5.25729179e-01 -1.35506228e-01 -1.21848144e-01 6.87009454e-01 -2.30574548e-01 2.97426701e-01 2.18216865e-03 -3.15398365e-01 8.30919296e-02 -6.09263368e-02 -2.85729915e-01 2.19607074e-02 4.26823437e-01 1.01608372e+00 -1.00678444e+00 -8.65030408e-01 -3.81314039e-01 1.75707266e-01 -2.95771271e-01 8.62425193e-03 -4.81585592e-01 -1.58345670e-01 -3.32752407e-01 3.77582163e-01 3.57990861e-01 -6.10179007e-01 6.67583704e-01 -5.07081032e-01 3.19021530e-02 1.10091400e+00 -1.02268720e+00 1.99767375e+00 -2.55497783e-01 4.71864074e-01 -1.08566210e-01 -7.86290646e-01 8.75040889e-01 5.96646905e-01 4.86873269e-01 -2.03344628e-01 -2.13797882e-01 -5.84194763e-03 1.27829770e-02 -4.12344843e-01 6.88354611e-01 2.58966833e-01 -5.28699458e-01 4.80962276e-01 6.10086799e-01 3.28744471e-01 7.19817758e-01 7.49160647e-01 1.23812115e+00 2.56817222e-01 6.29862607e-01 -1.95684761e-01 2.72736549e-01 -2.23786980e-01 8.92735898e-01 7.06859887e-01 1.37965590e-01 6.29520565e-02 8.37840497e-01 -4.62692350e-01 -7.41398573e-01 -1.16842997e+00 -1.67938843e-01 1.23738837e+00 -2.56648302e-01 -8.41192842e-01 -4.46975917e-01 -1.29943085e+00 3.30827624e-01 9.74856973e-01 -8.52998376e-01 8.69562402e-02 -7.45636284e-01 -1.39588386e-01 1.02300096e+00 8.67292285e-01 4.73475128e-01 -1.27333581e+00 -3.86200070e-01 5.24026275e-01 -5.64158499e-01 -1.36197770e+00 -3.21265042e-01 4.72285360e-01 -6.37639165e-01 -1.40918291e+00 -3.17751504e-02 -9.55353200e-01 1.51881814e-01 -5.59289217e-01 1.79601443e+00 4.41539427e-03 7.33704641e-02 -9.25248787e-02 -1.09448649e-01 -2.33190402e-01 -2.05447767e-02 7.50078440e-01 -2.55158037e-01 -7.22092271e-01 7.16008186e-01 -6.55954361e-01 -4.25942391e-01 -1.83355033e-01 -3.72774899e-01 4.63713035e-02 3.99357110e-01 7.65344977e-01 2.79358357e-01 -4.04440850e-01 9.37409878e-01 -1.49136174e+00 6.54212892e-01 -7.94399917e-01 -2.36189276e-01 6.86907709e-01 -8.43715131e-01 4.57393378e-01 1.83465868e-01 -7.11096600e-02 -1.08290708e+00 -2.07327992e-01 1.06447041e-02 -2.94908974e-02 -6.17260747e-02 9.73757327e-01 9.60092917e-02 5.12863457e-01 6.70110226e-01 -5.58592498e-01 -6.52018130e-01 -4.55228269e-01 6.57594323e-01 1.66273087e-01 6.58378720e-01 -9.26105678e-01 4.86496180e-01 -3.92932966e-02 3.02088615e-02 -2.00803712e-01 -1.46664262e+00 -2.13410571e-01 -8.04147720e-01 2.62525737e-01 6.71174943e-01 -9.34805512e-01 -7.06032395e-01 -1.45518526e-01 -1.48196435e+00 3.66060473e-02 -3.37789714e-01 3.18628430e-01 -3.39725703e-01 3.48049223e-01 -1.21325970e+00 -6.06553793e-01 -7.99317241e-01 -4.68889147e-01 9.17563260e-01 3.27406049e-01 -9.45858896e-01 -1.08337760e+00 1.26642063e-01 4.19162102e-02 6.72679469e-02 6.11181498e-01 1.19621789e+00 -1.15655446e+00 -2.61895239e-01 -2.37683654e-02 -4.47133064e-01 -5.83439708e-01 -7.61472955e-02 -9.50782597e-02 -9.67413664e-01 -6.36570230e-02 -7.00534642e-01 -5.75313330e-01 1.27011883e+00 2.25639701e-01 9.79849875e-01 -4.93081361e-01 -1.01906204e+00 5.46503067e-01 1.21187532e+00 -7.73110464e-02 2.15476587e-01 3.10657740e-01 3.85331839e-01 6.35152876e-01 4.71619576e-01 2.25295126e-01 6.23917341e-01 3.20888966e-01 1.15884528e-01 4.74218056e-02 -1.39480159e-02 -7.49954283e-01 -7.43754301e-03 2.70183653e-01 -5.93998022e-02 -2.31967136e-01 -7.82921195e-01 7.39880145e-01 -1.96123946e+00 -1.10371125e+00 2.23075170e-02 1.81275916e+00 1.40721881e+00 6.30003035e-01 8.14300850e-02 2.38293670e-02 6.88291192e-01 4.71750587e-01 -5.47398150e-01 -4.44490194e-01 -1.26232766e-02 4.55742806e-01 4.55684304e-01 8.30591440e-01 -1.35721529e+00 1.13178599e+00 6.86816740e+00 4.28651780e-01 -3.77885371e-01 -1.39442578e-01 4.03476477e-01 -1.38643667e-01 -4.76770639e-01 1.55958995e-01 -1.14173782e+00 8.37012082e-02 9.50970054e-01 -2.80084461e-01 2.06844330e-01 6.21109486e-01 -4.67638642e-01 1.54751716e-02 -1.63375914e+00 3.84035230e-01 -2.47358292e-01 -1.42466533e+00 -1.03360236e-01 -2.86264718e-01 4.61002141e-01 2.41254270e-01 -4.18368131e-01 5.69324493e-01 1.04648066e+00 -1.12617147e+00 3.67408752e-01 5.81426203e-01 1.19434571e+00 -7.22997427e-01 5.45989811e-01 9.08557177e-02 -1.56804347e+00 1.09734982e-02 -8.53940845e-02 2.72439420e-01 5.26562572e-01 7.54047453e-01 -9.28534865e-01 8.76038134e-01 6.39148653e-01 5.78289688e-01 -5.08204877e-01 8.22598994e-01 -6.45102978e-01 4.36200202e-01 -3.90913039e-01 2.81719059e-01 8.72179717e-02 1.80245697e-01 6.45383537e-01 1.82730305e+00 9.69638973e-02 -1.50683776e-01 2.36817479e-01 1.06164992e+00 -5.59218526e-01 -2.62221158e-01 -6.73449993e-01 -7.54686669e-02 1.10930073e+00 1.46915770e+00 -5.39248228e-01 -5.06187320e-01 -4.19030696e-01 4.88136649e-01 1.16153026e+00 4.27949011e-01 -6.36372805e-01 -7.65063047e-01 4.75492358e-01 -1.72581047e-01 3.87541860e-01 -2.55994916e-01 -4.70161706e-01 -9.50055540e-01 -2.67733663e-01 -5.66223860e-01 1.40639675e+00 -4.54920053e-01 -1.26198101e+00 7.08653808e-01 3.46763968e-01 -3.90029132e-01 -6.67030513e-01 -2.80800045e-01 -6.08403146e-01 8.22732627e-01 -1.36156881e+00 -1.43523288e+00 7.52556771e-02 3.16552341e-01 2.04181775e-01 1.94741756e-01 1.21712768e+00 -7.07333162e-02 -3.70942116e-01 8.09404969e-01 -7.39562452e-01 6.91391349e-01 7.42310524e-01 -1.46913266e+00 8.20806086e-01 8.87445450e-01 4.76300240e-01 9.03516412e-01 7.33596981e-01 -1.08067989e+00 -6.23239934e-01 -8.53964627e-01 1.49823034e+00 -4.26896930e-01 6.73700869e-01 -3.70551586e-01 -9.93585229e-01 1.42655432e+00 7.62849510e-01 -1.41562074e-01 7.01443732e-01 1.04991794e+00 -1.07002294e+00 1.25311971e-01 -1.18712842e+00 2.26438656e-01 1.52033794e+00 -4.46737766e-01 -1.08505762e+00 1.78636521e-01 1.26573443e+00 -3.97222489e-01 -1.37257624e+00 8.05352211e-01 5.13502479e-01 -5.42130888e-01 8.19483221e-01 -1.08856761e+00 3.64373833e-01 1.71733961e-01 1.88935980e-01 -1.37948751e+00 -6.56641483e-01 -7.57609427e-01 -1.06549931e+00 1.34133244e+00 1.29266226e+00 -4.03508693e-01 6.55112684e-01 7.29152381e-01 6.46684840e-02 -8.86641920e-01 -6.25808537e-01 -4.18481320e-01 -2.27342565e-02 -2.43147224e-01 7.87466049e-01 9.66847718e-01 7.20846951e-01 9.38394785e-01 -6.25533313e-02 1.90656364e-01 7.28475094e-01 5.86757362e-01 1.09190652e-02 -1.65425074e+00 -4.08100337e-01 -3.62087101e-01 3.08572859e-01 -6.67796433e-01 4.73702252e-01 -1.10879207e+00 -1.72300622e-01 -1.83727944e+00 1.69534937e-01 -3.69495571e-01 -6.46402776e-01 8.73510957e-01 -4.31410879e-01 -2.91772723e-01 1.38859143e-02 -3.12965751e-01 -9.43165064e-01 -4.08952124e-02 6.34289265e-01 -1.19116388e-01 -1.57165498e-01 -2.14485034e-01 -1.09287882e+00 7.23860919e-01 7.57622540e-01 -5.07912993e-01 -2.68431365e-01 -5.35568357e-01 6.26427650e-01 4.26693231e-01 -2.40866423e-01 -7.82149553e-01 4.14323032e-01 1.09028727e-01 7.58525372e-01 -7.58487642e-01 2.97507048e-01 -3.98647636e-01 9.07135382e-02 3.36695254e-01 -9.39178884e-01 8.69608298e-02 3.56433302e-01 3.72391403e-01 9.64630488e-03 -1.14368081e-01 3.94499809e-01 -2.37344012e-01 -4.79079694e-01 3.51468295e-01 9.72926803e-03 5.89590609e-01 6.91053331e-01 2.37532452e-01 -7.18912780e-01 -3.30281258e-01 -1.02150655e+00 7.10094690e-01 -1.91383347e-01 4.80994612e-01 4.73154694e-01 -1.17338824e+00 -8.77729714e-01 -1.57851093e-02 1.92524232e-02 3.32048237e-01 -1.77812472e-01 4.69364375e-01 1.44596070e-01 5.69556475e-01 -3.21613178e-02 -1.13605184e-03 -1.23999691e+00 6.99083686e-01 1.79272786e-01 -1.26908958e+00 -6.27637446e-01 1.10983920e+00 -3.05425823e-01 -2.28716373e-01 3.76800597e-01 -4.91342157e-01 -5.75624764e-01 4.23544168e-01 4.60932910e-01 3.94982040e-01 7.07185864e-02 -1.22553326e-01 -5.26456475e-01 9.20284167e-02 -5.24801016e-01 -2.05591887e-01 1.40837872e+00 1.81104504e-02 -1.30379096e-01 2.20245391e-01 7.13678479e-01 1.07216820e-01 -9.26822126e-01 -6.04965806e-01 9.77989316e-01 1.83759496e-01 -4.54261422e-01 -1.03235900e+00 -7.98763454e-01 3.20505381e-01 -4.19261336e-01 4.55961615e-01 5.95234990e-01 3.33809316e-01 8.56744707e-01 5.23798883e-01 4.58930254e-01 -1.16293299e+00 -4.01908159e-01 6.75665081e-01 1.03370893e+00 -9.13561404e-01 1.85673982e-01 -6.09213889e-01 -6.23846471e-01 1.03783166e+00 9.18586195e-01 -2.22171828e-01 6.80711985e-01 7.31624246e-01 -4.53232616e-01 -4.83690739e-01 -1.27216339e+00 -2.99833387e-01 5.99966049e-01 4.83432621e-01 9.46928799e-01 7.60361478e-02 -4.61244345e-01 1.01661563e+00 -3.78007561e-01 -1.94268897e-01 -6.17126338e-02 5.07691443e-01 -4.72896725e-01 -9.54105616e-01 1.66514054e-01 7.22758710e-01 -7.74807870e-01 -3.77997994e-01 -5.36470413e-01 8.01996648e-01 2.28116717e-02 1.10542643e+00 1.40217483e-01 -3.77936482e-01 2.06211701e-01 7.08902180e-01 6.71393812e-01 -7.33315110e-01 -7.96236038e-01 -3.64648223e-01 1.06078100e+00 -7.80978799e-01 -1.86353683e-01 -5.93266189e-01 -1.50013995e+00 -9.53100845e-02 -4.34268236e-01 5.42047560e-01 -1.62993511e-03 9.64520752e-01 5.14387429e-01 5.65476358e-01 1.31676510e-01 -3.47207218e-01 -4.06130195e-01 -1.42484462e+00 -2.96177626e-01 4.24482942e-01 3.11628968e-01 -7.07300544e-01 4.00910489e-02 -3.46180588e-01]
[9.33401870727539, 8.968188285827637]
6e8372cc-71be-4ae6-ac05-251f8cfaa642
active-learning-with-gaussian-processes-for
1901.06803
null
http://arxiv.org/abs/1901.06803v1
http://arxiv.org/pdf/1901.06803v1.pdf
Active Learning with Gaussian Processes for High Throughput Phenotyping
A looming question that must be solved before robotic plant phenotyping capabilities can have significant impact to crop improvement programs is scalability. High Throughput Phenotyping (HTP) uses robotic technologies to analyze crops in order to determine species with favorable traits, however, the current practices rely on exhaustive coverage and data collection from the entire crop field being monitored under the breeding experiment. This works well in relatively small agricultural fields but can not be scaled to the larger ones, thus limiting the progress of genetics research. In this work, we propose an active learning algorithm to enable an autonomous system to collect the most informative samples in order to accurately learn the distribution of phenotypes in the field with the help of a Gaussian Process model. We demonstrate the superior performance of our proposed algorithm compared to the current practices on sorghum phenotype data collection.
['Katia Sycara', 'Sumit Kumar', 'George Kantor', 'Wenhao Luo']
2019-01-21
null
null
null
null
['plant-phenotyping']
['computer-vision']
[ 2.96213269e-01 1.43852979e-01 -3.42469096e-01 -1.89428285e-01 4.48205806e-02 -1.02848208e+00 -3.42966676e-01 5.34131050e-01 2.86944360e-02 8.01585138e-01 -4.69819635e-01 -5.43297827e-01 -5.82730711e-01 -1.15582454e+00 -4.65904176e-01 -1.00034904e+00 -1.90926984e-01 7.27111518e-01 2.06966162e-01 -1.83676526e-01 -2.54586083e-03 6.60270870e-01 -1.64782643e+00 -2.09739208e-01 1.38963282e+00 6.70365393e-01 1.11445773e+00 7.53797829e-01 -1.55006543e-01 1.38229683e-01 -3.69036496e-01 3.23003858e-01 2.57204771e-01 -8.40830728e-02 -4.82639402e-01 -2.83372719e-02 -3.55174750e-01 -4.55089718e-01 4.56355155e-01 9.74400103e-01 6.30992532e-01 -1.84033334e-01 4.62650210e-01 -1.23053098e+00 -6.86674893e-01 9.30100143e-01 -7.48356819e-01 -4.72154975e-01 -7.09088705e-03 8.05518106e-02 6.45064235e-01 -2.11992070e-01 6.89661860e-01 9.78893518e-01 5.09073734e-01 -3.64013277e-02 -1.32048559e+00 -3.13443691e-01 3.45544852e-02 2.06237927e-01 -1.09213269e+00 -1.21952951e-01 5.02378404e-01 -3.37507963e-01 4.34647739e-01 6.99293092e-02 1.01790571e+00 5.59052944e-01 2.73988366e-01 8.12245011e-01 5.35075963e-01 -3.00558358e-01 8.95424724e-01 -1.46448746e-01 1.84972718e-01 4.54868466e-01 7.75508523e-01 6.35436624e-02 -2.27827847e-01 -2.25793108e-01 5.54304957e-01 -8.04956555e-02 -2.45247483e-02 -1.04912317e+00 -6.83265567e-01 7.60943115e-01 4.49398369e-01 5.54771647e-02 -9.73710775e-01 -1.76533133e-01 2.01968774e-01 -1.08868301e-01 1.40125796e-01 8.25316429e-01 -8.81633222e-01 -2.18104422e-01 -6.69561148e-01 1.44994199e-01 9.36275721e-01 1.23152399e+00 6.70880377e-01 -6.43816665e-02 9.50360373e-02 6.05707049e-01 3.41918558e-01 6.69519663e-01 -1.55167254e-02 -1.07251120e+00 -2.80350804e-01 9.41339493e-01 4.51828957e-01 -8.45024467e-01 -5.14222205e-01 -5.47523834e-02 -5.04190505e-01 3.73944849e-01 3.83693159e-01 -5.38796782e-01 -6.22390389e-01 1.32668817e+00 4.07959610e-01 -3.32225621e-01 1.93722248e-01 4.62236583e-01 4.92358446e-01 6.21832907e-01 2.23246306e-01 -2.67800003e-01 1.00181508e+00 -1.50571227e-01 -6.52277291e-01 -1.84853002e-02 8.17157626e-01 -7.62435079e-01 7.62989759e-01 5.81705034e-01 -5.30211926e-01 -4.91911530e-01 -1.13703120e+00 4.39451903e-01 -6.55238509e-01 7.92411149e-01 1.34624636e+00 8.87810409e-01 -8.75388324e-01 6.41367316e-01 -1.19612348e+00 -8.87637496e-01 5.81969202e-01 3.24423283e-01 -3.27953845e-01 -1.56962067e-01 -4.51062322e-01 9.19157922e-01 7.79127717e-01 6.09164834e-01 -1.05324638e+00 -7.92289436e-01 -4.68561232e-01 1.66118309e-01 6.39000714e-01 -1.98376596e-01 8.02446902e-01 -4.53703135e-01 -2.03854227e+00 5.86020410e-01 3.66621800e-02 -2.82031447e-01 -8.23703557e-02 -4.71350789e-01 2.60744914e-02 -6.16464950e-02 -2.20843464e-01 8.28700602e-01 3.54380608e-01 -1.01837289e+00 -7.34539270e-01 -6.68983757e-01 -6.12927899e-02 -1.13264648e-02 -3.11544210e-01 -1.05183661e-01 2.75976449e-01 8.65398124e-02 5.46095490e-01 -1.41916156e+00 -4.27974194e-01 3.57700437e-01 -2.21579045e-01 2.80854464e-01 1.35950565e+00 -7.28090525e-01 3.14741641e-01 -1.93832326e+00 1.53105572e-01 -3.03967088e-01 -2.19858944e-01 5.20018876e-01 -1.80919021e-01 5.19675970e-01 2.77636498e-01 -1.70401767e-01 -1.54097289e-01 5.87730110e-01 -2.68669128e-01 3.83657277e-01 -5.33136129e-02 3.51674050e-01 4.45481002e-01 6.25438869e-01 -9.45523202e-01 -6.35473132e-02 3.66554648e-01 4.61737067e-02 -2.54416615e-01 3.75391275e-01 -5.03309131e-01 4.56222385e-01 -7.42695749e-01 9.85246658e-01 1.31127012e+00 1.38629884e-01 3.87225568e-01 1.01748221e-01 -6.22750938e-01 -5.43986082e-01 -1.07914305e+00 1.65700245e+00 -7.81943724e-02 1.99586555e-01 4.61614788e-01 -1.20224881e+00 1.43409705e+00 2.03413785e-01 7.83957601e-01 2.41872191e-01 6.74963603e-03 1.66126609e-01 3.42696965e-01 -7.17111051e-01 4.79208291e-01 6.93196535e-01 2.07289428e-01 2.06094936e-01 2.94556230e-01 -3.10050964e-01 3.78416598e-01 -1.34802967e-01 1.03314960e+00 8.00379515e-01 3.67936164e-01 -6.98732495e-01 6.60989583e-02 6.64983869e-01 9.83812511e-01 6.55877650e-01 -5.60025990e-01 1.20704025e-01 6.83999956e-01 -8.17462280e-02 -9.22096610e-01 -8.55022669e-01 -1.76309615e-01 1.09565055e+00 2.72816837e-01 2.18196899e-01 -4.70891267e-01 -4.87816989e-01 2.64992505e-01 8.12434793e-01 -2.68188775e-01 -1.72652006e-01 4.39997464e-02 -1.52234280e+00 5.15629232e-01 4.27669376e-01 5.61705053e-01 -1.08421433e+00 -1.06466568e+00 4.31977540e-01 1.30127221e-01 -8.33935857e-01 7.50088513e-01 7.48738587e-01 -8.89390349e-01 -8.63105118e-01 -6.66760147e-01 -7.06988454e-01 5.09879649e-01 3.88145626e-01 5.95248401e-01 -5.33392668e-01 -7.50990868e-01 -2.61964202e-01 -7.74783969e-01 -1.20721412e+00 -5.11639714e-01 4.64495718e-01 -2.44778603e-01 -4.77948070e-01 4.36007172e-01 -6.60374284e-01 -2.91007727e-01 2.35297874e-01 -4.46795791e-01 -1.03046089e-01 9.01341915e-01 7.72091329e-01 3.73463005e-01 4.03098315e-01 7.19519734e-01 -7.88543046e-01 2.21331045e-01 -5.28281629e-01 -1.17922640e+00 9.24184322e-01 -2.37060636e-01 -7.41662979e-02 5.26960790e-01 -5.03229380e-01 -1.20285487e+00 6.91085935e-01 3.16821545e-01 4.72297192e-01 -6.91446304e-01 6.65421367e-01 -5.95609426e-01 -1.07871160e-01 5.22036433e-01 -7.58056641e-02 2.19536602e-01 -3.22557926e-01 4.90141779e-01 5.77763021e-01 3.50195199e-01 -6.22107983e-01 5.04307389e-01 1.66268140e-01 3.91983211e-01 -1.04642117e+00 -4.08395827e-01 -5.39344609e-01 -1.11744678e+00 -1.45435527e-01 5.87158024e-01 -5.47316253e-01 -9.73584771e-01 5.47622979e-01 -7.19855189e-01 -4.77901608e-01 -2.45400965e-01 9.87049341e-01 -7.00035095e-01 -1.22891106e-01 -1.82282194e-01 -1.00870013e+00 -3.76006454e-01 -1.10881186e+00 8.56042922e-01 6.56740367e-01 -9.03383493e-02 -5.79803169e-01 1.46522552e-01 -1.09835871e-01 6.68407798e-01 3.17776442e-01 1.13218331e+00 -2.84493148e-01 -5.16241491e-01 -4.76648152e-01 -3.03719401e-01 9.34465900e-02 4.22854304e-01 7.27143764e-01 -9.35908377e-01 -6.50503263e-02 -2.02756241e-01 -4.92651761e-01 6.55390918e-02 8.81891906e-01 9.49698389e-01 6.05471551e-01 -4.35482740e-01 5.47158539e-01 1.48610961e+00 6.11304760e-01 6.61229432e-01 7.55408630e-02 3.25278282e-01 9.24206197e-01 1.32731092e+00 4.63664860e-01 -2.09331751e-01 2.49135479e-01 5.40429235e-01 -6.83011860e-02 2.89256036e-01 -8.80878791e-02 9.11655575e-02 2.35506147e-01 -1.29228473e-01 -3.90882939e-01 -1.17239952e+00 4.70477641e-01 -2.14444160e+00 -8.19082558e-01 -2.22336709e-01 2.15596962e+00 5.07687569e-01 -2.18151331e-01 -2.53551662e-01 1.67631075e-01 7.61901498e-01 -3.36027503e-01 -9.37541246e-01 -2.24530354e-01 -3.30283225e-01 4.08254527e-02 1.00037539e+00 3.72359785e-03 -1.12093651e+00 1.11765146e+00 6.84409952e+00 3.12437326e-01 -1.18675208e+00 -3.89834642e-01 3.52810174e-01 4.97219712e-01 3.25948238e-01 6.96403861e-01 -8.73906612e-01 -4.54164818e-02 6.22489631e-01 -6.80587590e-02 3.02163571e-01 1.19087303e+00 5.53653598e-01 -6.29217148e-01 -7.05725789e-01 3.35392743e-01 -4.62533921e-01 -7.89394915e-01 -4.19951409e-01 6.09674677e-02 6.00948095e-01 -3.04640085e-01 -2.44195566e-01 4.94590029e-02 1.01950562e+00 -6.09003603e-01 1.82507351e-01 4.07299846e-01 3.07305396e-01 -5.46691358e-01 7.53456473e-01 5.71204960e-01 -9.00536060e-01 -3.55917811e-01 -1.03060758e+00 -9.85163227e-02 2.06500441e-01 8.75172675e-01 -1.50342715e+00 8.26804459e-01 5.97619712e-01 5.59683442e-01 -5.93605936e-01 1.35161221e+00 -9.91001576e-02 9.82837796e-01 -5.02118230e-01 -2.80147642e-01 -3.49022076e-02 -4.89293665e-01 3.75554860e-01 4.70632672e-01 8.36494446e-01 -1.63062587e-01 2.84911871e-01 9.76567984e-01 4.94299471e-01 2.41096407e-01 -5.78045428e-01 -4.41046625e-01 6.94465935e-01 1.49752772e+00 -1.13589871e+00 1.48229346e-01 1.87120046e-02 8.78218830e-01 1.30145460e-01 1.31551549e-01 -3.59614462e-01 -4.84887958e-01 1.85319260e-01 -2.42298484e-01 3.76082093e-01 -4.98770356e-01 -5.00967383e-01 -3.87354434e-01 -3.46442163e-01 -5.57379544e-01 -1.21089086e-01 -9.21165586e-01 -8.71415317e-01 -2.68533409e-01 -4.18751389e-02 -7.08195806e-01 -1.45602286e-01 -8.45273316e-01 -4.86750424e-01 1.01830077e+00 -9.31708276e-01 -1.24521136e+00 -6.77428126e-01 -2.13734433e-01 2.37461507e-01 -3.74924213e-01 1.51085293e+00 -1.75158963e-01 -7.92063415e-01 4.70363721e-02 7.05981135e-01 -4.27528888e-01 6.16211236e-01 -1.14022338e+00 1.01242959e-01 9.29482639e-01 -4.10190403e-01 2.84769177e-01 7.44064510e-01 -1.10305715e+00 -1.98762417e+00 -9.85932648e-01 2.53352493e-01 1.03073224e-01 5.64812541e-01 -3.15970004e-01 -6.30327404e-01 4.15448219e-01 -1.66615963e-01 -1.59340993e-01 5.33599555e-01 4.64909405e-01 3.86357009e-01 -3.08583140e-01 -1.34233570e+00 1.70790076e-01 6.45436227e-01 1.26331419e-01 2.04670161e-01 1.70874119e-01 4.89041448e-01 5.51839881e-02 -8.95500362e-01 6.02060556e-01 6.99632525e-01 -1.54211894e-01 6.18019938e-01 -4.72963452e-01 1.43932298e-01 -3.63782018e-01 -2.64388025e-01 -1.43925583e+00 -5.94448864e-01 -6.79909527e-01 2.30589271e-01 1.49696946e+00 3.74176413e-01 -5.72607815e-01 9.23725665e-01 3.90669674e-01 1.20148599e-01 -2.19334513e-01 -5.61831333e-02 -6.67974949e-01 -8.33897144e-02 1.26451463e-01 9.20727372e-01 7.59735763e-01 -1.22439705e-01 -1.91739753e-01 -1.26098186e-01 7.17368782e-01 5.82908750e-01 1.59208670e-01 8.98480833e-01 -1.62605679e+00 -1.54523775e-01 3.92225012e-02 -6.54817522e-01 -3.69601011e-01 -4.92075160e-02 -5.04788160e-01 6.00592911e-01 -1.30290246e+00 3.22496474e-01 -1.04265392e+00 2.30311289e-01 3.42513740e-01 -4.69906181e-01 -6.72779202e-01 -2.45509252e-01 -2.01579973e-01 9.71140712e-02 2.10508868e-01 9.08804238e-01 1.07848294e-01 -6.65761709e-01 2.36495361e-01 -7.09659219e-01 5.81078589e-01 1.07833838e+00 -4.80722368e-01 -8.86288881e-01 -4.77813214e-01 8.33420306e-02 9.51994956e-02 8.69405642e-02 -9.36299086e-01 3.60865518e-02 -5.48313081e-01 5.48439145e-01 -9.90101755e-01 1.09738901e-01 -7.28929520e-01 4.38687742e-01 5.14847696e-01 -4.01071995e-01 -1.03645129e-02 2.20992073e-01 4.24037367e-01 2.11698174e-01 -7.01278985e-01 5.35685658e-01 4.45660651e-02 -8.41178775e-01 1.99894145e-01 -5.54499269e-01 -6.63679004e-01 1.38927960e+00 1.27627254e-01 -4.54006612e-01 -3.27051413e-04 -5.72712839e-01 2.17367426e-01 4.36975926e-01 3.70037496e-01 1.66107431e-01 -7.00369418e-01 -8.98677707e-01 8.83446261e-02 1.36945948e-01 -6.83647618e-02 2.52980471e-01 4.71044481e-01 -1.35090029e+00 4.16506261e-01 -9.47405338e-01 -9.03376460e-01 -1.17225611e+00 6.83141291e-01 -1.47177085e-01 -6.24617524e-02 -3.63545656e-01 5.52011013e-01 -1.25446677e-01 -6.71943545e-01 1.64167047e-01 -2.04494759e-01 -4.35699701e-01 4.48932908e-02 2.74482787e-01 3.80411685e-01 7.47150108e-02 -1.40720233e-01 -8.91302302e-02 8.26399401e-02 2.17061549e-01 -4.11724970e-02 1.61625612e+00 1.96358282e-02 -1.63734794e-01 7.21313477e-01 3.22833180e-01 -3.82304192e-01 -1.21023703e+00 3.35329980e-01 3.05293560e-01 -4.49058354e-01 2.00370923e-01 -8.39565516e-01 -7.35349000e-01 6.05941594e-01 1.12366688e+00 3.22818041e-01 1.09170818e+00 -4.45492774e-01 -4.65971185e-03 7.81939924e-01 6.11742020e-01 -1.21251380e+00 -6.71793342e-01 1.94882527e-01 5.46296597e-01 -1.31413543e+00 -1.78321972e-02 -8.64595413e-01 -4.84167784e-01 1.08880186e+00 3.36667150e-01 -1.34841725e-01 7.48331726e-01 7.40488112e-01 -5.42188324e-02 7.86990002e-02 -6.99931979e-01 -2.16636181e-01 -6.54238939e-01 1.33034420e+00 6.54262185e-01 7.16764390e-01 -3.07616770e-01 2.48401642e-01 -9.12460983e-02 3.87809217e-01 6.23339057e-01 1.39261210e+00 -6.44213259e-01 -1.20527279e+00 -5.96334934e-01 4.96850938e-01 6.05618395e-02 3.76618952e-01 -4.91894901e-01 3.69835943e-01 2.57692844e-01 9.31422293e-01 -2.67485589e-01 3.90597582e-02 1.06649823e-01 -7.08964420e-03 5.42114556e-01 -6.06034279e-01 5.56344464e-02 -1.48853108e-01 -4.72756922e-02 -2.98125505e-01 -1.71890229e-01 -9.58296418e-01 -7.28729606e-01 -3.03865254e-01 -7.40807593e-01 -1.06942333e-01 1.28802466e+00 4.08846617e-01 5.72072148e-01 4.77207243e-01 6.55154169e-01 -5.88790238e-01 -5.16348302e-01 -1.15610588e+00 -1.00292456e+00 -2.55940586e-01 -3.36909235e-01 -8.42107713e-01 2.77490109e-01 9.62089971e-02]
[9.119287490844727, -1.5927984714508057]
ea855aa2-82b4-4273-9aee-05e8087abc90
park-detect-towards-efficient-multi-task
2302.13263
null
https://arxiv.org/abs/2302.13263v1
https://arxiv.org/pdf/2302.13263v1.pdf
PaRK-Detect: Towards Efficient Multi-Task Satellite Imagery Road Extraction via Patch-Wise Keypoints Detection
Automatically extracting roads from satellite imagery is a fundamental yet challenging computer vision task in the field of remote sensing. Pixel-wise semantic segmentation-based approaches and graph-based approaches are two prevailing schemes. However, prior works show the imperfections that semantic segmentation-based approaches yield road graphs with low connectivity, while graph-based methods with iterative exploring paradigms and smaller receptive fields focus more on local information and are also time-consuming. In this paper, we propose a new scheme for multi-task satellite imagery road extraction, Patch-wise Road Keypoints Detection (PaRK-Detect). Building on top of D-LinkNet architecture and adopting the structure of keypoint detection, our framework predicts the position of patch-wise road keypoints and the adjacent relationships between them to construct road graphs in a single pass. Meanwhile, the multi-task framework also performs pixel-wise semantic segmentation and generates road segmentation masks. We evaluate our approach against the existing state-of-the-art methods on DeepGlobe, Massachusetts Roads, and RoadTracer datasets and achieve competitive or better results. We also demonstrate a considerable outperformance in terms of inference speed.
['Ming Wu', 'Chuang Zhang', 'Junli Yang', 'Zhenglin Xian', 'Wanfeng Zheng', 'Shenwei Xie']
2023-02-26
null
null
null
null
['road-segementation', 'keypoint-detection']
['computer-vision', 'computer-vision']
[ 4.59758013e-01 1.10008689e-02 -9.94201973e-02 -3.62382531e-01 -7.88095713e-01 -5.56493521e-01 5.65543830e-01 -2.42603421e-02 -3.86763722e-01 5.66613734e-01 -1.79884449e-01 -7.24111557e-01 -3.95969301e-01 -1.45898044e+00 -7.96759605e-01 -4.57748622e-01 -2.53069490e-01 4.28726196e-01 8.15326333e-01 -2.74303496e-01 3.35997224e-01 8.03915620e-01 -1.50596023e+00 -1.90326050e-01 1.26242387e+00 7.36082554e-01 3.57709408e-01 7.41317630e-01 -2.02947780e-01 3.51724237e-01 1.80262715e-01 -9.45325717e-02 4.26124603e-01 -1.99967548e-02 -9.84957457e-01 8.93696174e-02 8.06679428e-01 -5.05661368e-01 -3.98958951e-01 1.13573885e+00 3.10573816e-01 1.43766388e-01 5.09557605e-01 -1.02200520e+00 -3.15910697e-01 4.46292251e-01 -1.03738379e+00 3.27439189e-01 -2.10098833e-01 1.94110833e-02 1.28241670e+00 -8.47293317e-01 4.89411861e-01 1.24780059e+00 8.75018239e-01 -1.93527892e-01 -1.08757651e+00 -5.37159681e-01 5.50388157e-01 2.00943172e-01 -1.80682218e+00 -1.85869053e-01 7.75775731e-01 -4.17560130e-01 8.63718688e-01 1.80460081e-01 4.93297368e-01 1.41747385e-01 -1.04460597e-01 6.84013486e-01 1.11620152e+00 2.88766548e-02 -3.38596776e-02 -3.81763905e-01 2.28245154e-01 8.61914039e-01 2.28079125e-01 -6.83943257e-02 3.79513390e-02 1.61705524e-01 1.09327066e+00 1.12247944e-01 -1.44266337e-01 -1.97974727e-01 -1.08709776e+00 8.76248300e-01 1.04321361e+00 2.84831226e-02 -7.49413490e-01 2.63433725e-01 2.65503563e-02 -1.53752893e-01 5.72351754e-01 -3.84648368e-02 -2.30909288e-01 5.33810914e-01 -1.38037729e+00 3.75732809e-01 4.81880933e-01 6.80471957e-01 1.34873366e+00 -1.22248717e-01 1.64008856e-01 7.78459132e-01 3.41352969e-01 5.84519804e-01 -3.45741749e-01 -7.85452127e-01 7.13115215e-01 9.11958456e-01 -6.30055293e-02 -1.44202363e+00 -6.84972465e-01 -4.04526263e-01 -7.14722514e-01 2.67978162e-01 3.19132209e-01 -1.35844037e-01 -1.41878796e+00 1.12824750e+00 4.69849259e-01 3.95791888e-01 -8.86552632e-02 9.76838648e-01 9.10298288e-01 6.86448514e-01 2.25063056e-01 4.57472354e-01 1.34149194e+00 -9.94978786e-01 -2.38000676e-01 -6.14517033e-01 4.07126337e-01 -4.03934240e-01 8.81015539e-01 1.36459025e-03 -5.79648852e-01 -5.13903499e-01 -8.19954634e-01 -8.28534886e-02 -6.91815734e-01 3.08081627e-01 7.90367424e-01 3.74905527e-01 -1.27743638e+00 4.43475902e-01 -5.52966058e-01 -4.96934265e-01 7.97000170e-01 4.90532257e-02 -1.81497678e-01 -1.94603667e-01 -1.20485926e+00 8.98686528e-01 3.85696083e-01 5.64830244e-01 -9.75884974e-01 -5.82989335e-01 -9.20595050e-01 -3.76489013e-02 5.63868046e-01 -4.73662078e-01 6.71985745e-01 -5.07809877e-01 -8.53023708e-01 9.32225347e-01 -1.09994650e-01 -5.41463614e-01 5.33459306e-01 -6.30398169e-02 -2.09443957e-01 4.13279772e-01 5.76491833e-01 1.07202172e+00 4.94324267e-01 -1.30905664e+00 -1.21298182e+00 -3.58661532e-01 4.13697511e-02 4.71712887e-01 3.52586746e-01 -2.73514718e-01 -5.63280761e-01 -3.22305620e-01 5.65917373e-01 -8.02116632e-01 -7.62671530e-01 1.00032225e-01 -7.73406148e-01 -2.64990509e-01 9.96787906e-01 -8.04246366e-01 1.26615369e+00 -1.93353403e+00 -3.03438395e-01 5.72493911e-01 4.39072698e-01 2.21172944e-01 -1.74139768e-01 2.08803624e-01 2.54077435e-01 4.17744964e-01 -6.95197940e-01 3.60834152e-01 -2.41850585e-01 2.39720464e-01 -1.42485082e-01 3.49851459e-01 3.49128306e-01 1.11357868e+00 -8.85355771e-01 -6.85268283e-01 4.18181390e-01 3.49032104e-01 -1.47665247e-01 -1.76714420e-01 -1.69251725e-01 2.45935991e-01 -9.18779075e-01 9.42800760e-01 9.96258378e-01 -2.12190270e-01 -1.26990955e-02 -3.61175418e-01 -5.21259248e-01 1.95662290e-01 -1.22375941e+00 1.35484326e+00 -2.16758832e-01 6.29232526e-01 1.69449061e-01 -1.20072103e+00 1.08630145e+00 -2.65874892e-01 3.09565157e-01 -7.81670332e-01 -3.35927606e-01 1.57067403e-01 -2.28072852e-01 -4.22180891e-01 8.12480927e-01 2.75085270e-01 1.32145897e-01 8.33892971e-02 -5.04008174e-01 -3.43941480e-01 1.05215870e-01 2.48503417e-01 8.60813558e-01 4.36211377e-01 9.13508907e-02 -2.48523965e-01 3.11289698e-01 6.27729475e-01 3.67029756e-01 7.51638830e-01 -1.56322584e-01 6.44856691e-01 3.50024134e-01 -5.81103027e-01 -9.70611453e-01 -9.52110648e-01 -1.07896566e-01 9.14015770e-01 4.14367735e-01 3.41260992e-02 -6.62943006e-01 -7.13085830e-01 2.64842659e-01 3.96151036e-01 -4.35281277e-01 6.51060820e-01 -6.60278141e-01 -9.75713313e-01 7.44661272e-01 4.93607789e-01 1.00169516e+00 -8.14847231e-01 -5.35565376e-01 4.63909000e-01 -3.21476102e-01 -1.34009635e+00 4.80981693e-02 -6.37860000e-02 -9.07027543e-01 -1.20146334e+00 -6.38280153e-01 -6.65507674e-01 7.32197821e-01 9.63244438e-01 9.39644694e-01 1.28073409e-01 -2.90734023e-01 -1.18553832e-01 -1.26323223e-01 -1.76425353e-02 1.60928965e-01 3.13624144e-01 -8.98819327e-01 -9.94020328e-02 1.21819809e-01 -5.15661776e-01 -8.77831221e-01 5.47699273e-01 -6.29105210e-01 1.32729545e-01 9.35374260e-01 3.28478992e-01 9.73627508e-01 3.71002764e-01 3.92092228e-01 -8.71022522e-01 1.65958390e-01 -5.94879270e-01 -7.67623425e-01 2.62435555e-01 -5.38013935e-01 -2.33670652e-01 3.98175120e-02 2.69218951e-01 -9.38581288e-01 4.73871380e-01 -1.06622063e-01 -7.63305724e-02 -3.03834438e-01 7.09007204e-01 -1.05814107e-01 -3.79000932e-01 5.40962458e-01 2.94431388e-01 -1.10045463e-01 -2.92465627e-01 7.65142262e-01 6.35438263e-01 6.05053127e-01 -1.97848991e-01 9.42280531e-01 8.74812245e-01 5.31422906e-02 -1.05158293e+00 -8.10785353e-01 -7.35280812e-01 -7.91922033e-01 -4.74627495e-01 9.55438435e-01 -1.25476658e+00 -3.35327804e-01 6.16406262e-01 -8.51142585e-01 -4.78503317e-01 2.60852754e-01 1.76297769e-01 -2.69942820e-01 3.53592247e-01 -1.78896621e-01 -7.39596784e-01 -4.97316957e-01 -1.02408504e+00 1.34117913e+00 3.94555151e-01 3.35866362e-01 -8.85186732e-01 -1.70717672e-01 4.78512853e-01 3.94639343e-01 5.29203296e-01 7.04515398e-01 -3.38184506e-01 -1.13665080e+00 2.91086943e-03 -1.00258374e+00 8.04412179e-03 -2.88967863e-02 1.62748858e-01 -8.10738325e-01 2.63616323e-01 -9.29317594e-01 1.38302833e-01 1.37244153e+00 7.66631126e-01 9.89543319e-01 -8.52790102e-02 -7.32577324e-01 6.59397244e-01 1.74655974e+00 -1.06658556e-01 9.50197756e-01 5.52115619e-01 1.22865069e+00 9.01141167e-01 7.26703584e-01 1.53203560e-02 1.09609199e+00 3.03370118e-01 8.87738526e-01 -7.09594846e-01 -1.60889447e-01 -3.68978262e-01 -1.50308579e-01 -4.49911430e-02 -2.40824640e-01 -1.82633907e-01 -1.33303821e+00 1.10686803e+00 -1.94849646e+00 -9.59252119e-01 -8.90088618e-01 1.81546295e+00 3.26138198e-01 1.57653987e-01 1.79434046e-01 -8.04041326e-02 1.05512416e+00 3.72676969e-01 -5.80969751e-01 9.92638543e-02 -2.85677969e-01 1.21337175e-01 1.39902461e+00 6.08207524e-01 -1.54935253e+00 1.67698824e+00 5.89941502e+00 7.92170048e-01 -9.81713414e-01 -2.40041129e-02 6.37671471e-01 5.28304636e-01 -3.36824089e-01 2.77819157e-01 -9.56261039e-01 -4.47051376e-02 4.63398069e-01 4.32882279e-01 1.69592291e-01 7.72018611e-01 4.64413047e-01 -6.68379128e-01 -2.10707888e-01 5.73151767e-01 -3.19587469e-01 -1.42562735e+00 2.13074580e-01 1.73546746e-01 7.17057109e-01 7.01530516e-01 -3.06150377e-01 -8.67736116e-02 5.59903204e-01 -9.74068105e-01 5.85016251e-01 4.84454334e-01 6.10598505e-01 -6.51639223e-01 5.08911848e-01 1.98645458e-01 -1.80443776e+00 1.31226843e-02 -3.00028294e-01 2.04635244e-02 3.29335600e-01 8.04751098e-01 -8.50602865e-01 8.81857693e-01 8.47456515e-01 1.01208448e+00 -6.53151751e-01 1.22651815e+00 -5.57108223e-01 6.75189137e-01 -4.72746760e-01 2.75021315e-01 8.50577950e-01 -5.75891554e-01 3.85674864e-01 1.31061172e+00 1.83235973e-01 1.54508963e-01 5.30594409e-01 9.12884712e-01 1.59568295e-01 -5.33560887e-02 -7.92239606e-01 1.78433567e-01 5.68684042e-01 1.62123382e+00 -1.22361326e+00 -3.40810984e-01 -3.95159990e-01 5.87603092e-01 1.23373993e-01 4.87742215e-01 -7.45762765e-01 -6.41717494e-01 6.13240361e-01 3.36574733e-01 5.07685304e-01 -5.85892677e-01 -5.37339628e-01 -5.90997756e-01 -8.23808536e-02 -3.86646777e-01 2.81279117e-01 -8.01444888e-01 -7.95989037e-01 3.37603271e-01 -5.53185157e-02 -1.01864922e+00 3.05898309e-01 -2.70432204e-01 -8.13899755e-01 9.65297043e-01 -2.47818446e+00 -1.62240934e+00 -7.43917167e-01 4.87147719e-01 5.41357577e-01 4.51145947e-01 2.57998794e-01 2.08791316e-01 -4.62792993e-01 -1.75429538e-01 -7.67764971e-02 4.34372008e-01 9.92042273e-02 -1.11767530e+00 1.05139565e+00 1.22489679e+00 -9.91603509e-02 7.30932504e-02 1.59647986e-01 -9.26951826e-01 -9.96458471e-01 -1.52238429e+00 8.34359705e-01 1.64855609e-03 8.35132599e-01 1.74755510e-02 -1.08064437e+00 4.45734501e-01 -2.59900659e-01 2.40131430e-02 -1.05713559e-02 -1.02111205e-01 -9.12939757e-02 -1.74499705e-01 -9.54207063e-01 5.16052723e-01 1.39406395e+00 -5.24536252e-01 -4.55111444e-01 3.22836071e-01 3.87065738e-01 -1.75708279e-01 -5.29911399e-01 5.01009643e-01 4.30065066e-01 -8.82034719e-01 1.17062545e+00 7.23319054e-02 3.15118730e-01 -7.62673914e-01 6.53357506e-02 -1.15568376e+00 -2.78363764e-01 -2.48581499e-01 6.65748775e-01 9.68990207e-01 6.37169003e-01 -7.42687285e-01 7.32780337e-01 1.78436842e-02 -3.38108033e-01 -4.21143144e-01 -7.22496152e-01 -5.97815156e-01 -1.39373004e-01 -3.56685370e-01 5.52301168e-01 8.29615116e-01 -7.88053036e-01 2.94502586e-01 -4.63119671e-02 7.08240449e-01 8.23942482e-01 3.51535141e-01 8.82280350e-01 -1.50735724e+00 5.89167595e-01 -5.64285934e-01 -3.94172162e-01 -1.20491433e+00 1.32137865e-01 -8.47507834e-01 2.09097996e-01 -2.24317670e+00 -1.06087774e-01 -8.26303959e-01 4.63827401e-02 8.25300992e-01 -3.67994517e-01 3.39195907e-01 -1.87747940e-01 2.99268216e-01 -5.15146911e-01 2.54846156e-01 1.23655057e+00 -2.64658451e-01 -3.74357551e-01 -4.90515530e-02 -5.21242559e-01 6.76161647e-01 8.67094278e-01 -3.54460984e-01 -4.46626216e-01 -5.66718936e-01 3.45321059e-01 -1.99992001e-01 8.63268971e-01 -9.17138755e-01 3.45866591e-01 -1.95790738e-01 1.10966172e-02 -1.21305180e+00 -7.91557804e-02 -5.76091349e-01 1.09275103e-01 3.00354391e-01 9.07841474e-02 -1.51194856e-01 1.46721244e-01 7.63338208e-01 -1.70884371e-01 1.45622700e-01 6.44136786e-01 -2.99242228e-01 -1.45555389e+00 5.61771154e-01 -3.27343643e-01 -2.67743114e-02 1.01281822e+00 -6.27511382e-01 -4.07783926e-01 -4.06524949e-02 -5.92418551e-01 7.42870271e-01 1.81118786e-01 1.61143154e-01 7.49657154e-01 -6.48899317e-01 -1.00824225e+00 1.95310041e-02 1.46274060e-01 3.79103780e-01 2.73744076e-01 9.28784847e-01 -8.83681238e-01 3.03358108e-01 -1.32053569e-01 -8.05305004e-01 -1.08529854e+00 -6.36304077e-03 4.44758892e-01 -1.22399665e-01 -9.06780481e-01 6.91477478e-01 2.27932483e-01 -5.46296477e-01 -3.48123729e-01 -3.63499433e-01 -4.52636600e-01 3.89302492e-01 5.37646860e-02 4.66233611e-01 8.56556185e-03 -8.43469203e-01 -5.30012429e-01 1.12798083e+00 1.38810933e-01 -2.89598275e-02 1.40521288e+00 -3.66751611e-01 -4.53940518e-02 -1.32951856e-01 6.84195399e-01 -4.14992929e-01 -1.45215690e+00 -3.63400400e-01 2.24069193e-01 -4.48191792e-01 5.84766746e-01 -7.43021846e-01 -1.28250694e+00 9.09287632e-01 4.94421095e-01 2.07909122e-01 1.00813544e+00 9.88074988e-02 8.14593554e-01 3.06350708e-01 3.08983862e-01 -1.18767452e+00 -5.47042608e-01 4.62366402e-01 4.98681277e-01 -1.46079981e+00 1.64641425e-01 -9.12035525e-01 -6.26188099e-01 1.03179681e+00 4.12007987e-01 -1.96067989e-01 7.30860710e-01 -3.52450460e-02 -1.36113842e-03 -6.45242691e-01 1.36748217e-02 -1.17317212e+00 2.19776303e-01 6.91631198e-01 -8.55610818e-02 4.52377051e-01 -1.13836393e-01 -1.33565366e-01 1.09351717e-01 -1.21710278e-01 2.16080770e-01 7.49641597e-01 -1.00730503e+00 -6.11262918e-01 -3.44817787e-01 5.78620136e-01 -8.57546702e-02 -4.51572835e-01 -3.13183665e-01 9.57757175e-01 -6.68082461e-02 9.13595319e-01 1.95810392e-01 -2.86377072e-01 4.26132858e-01 -3.37458491e-01 -5.54633401e-02 -4.53798771e-01 -3.09592158e-01 7.69250169e-02 3.51672232e-01 -5.80995739e-01 -6.88822269e-01 -5.36080778e-01 -1.54438019e+00 -2.37265021e-01 -3.74590456e-01 -6.92275465e-02 8.64485681e-01 1.03404582e+00 5.61226070e-01 2.87085831e-01 7.32630730e-01 -9.61782217e-01 9.43451375e-02 -6.03768468e-01 -5.57086706e-01 -1.12300724e-01 2.63772577e-01 -5.54737449e-01 -1.80749625e-01 -7.30708390e-02]
[8.980910301208496, -1.4865748882293701]
73e820bf-44ec-4ec9-82e8-53a6fde6bb21
efficient-regional-memory-network-for-video
2103.12934
null
https://arxiv.org/abs/2103.12934v2
https://arxiv.org/pdf/2103.12934v2.pdf
Efficient Regional Memory Network for Video Object Segmentation
Recently, several Space-Time Memory based networks have shown that the object cues (e.g. video frames as well as the segmented object masks) from the past frames are useful for segmenting objects in the current frame. However, these methods exploit the information from the memory by global-to-global matching between the current and past frames, which lead to mismatching to similar objects and high computational complexity. To address these problems, we propose a novel local-to-local matching solution for semi-supervised VOS, namely Regional Memory Network (RMNet). In RMNet, the precise regional memory is constructed by memorizing local regions where the target objects appear in the past frames. For the current query frame, the query regions are tracked and predicted based on the optical flow estimated from the previous frame. The proposed local-to-local matching effectively alleviates the ambiguity of similar objects in both memory and query frames, which allows the information to be passed from the regional memory to the query region efficiently and effectively. Experimental results indicate that the proposed RMNet performs favorably against state-of-the-art methods on the DAVIS and YouTube-VOS datasets.
['Wenxiu Sun', 'Shengping Zhang', 'Shangchen Zhou', 'Hongxun Yao', 'Haozhe Xie']
2021-03-24
null
http://openaccess.thecvf.com//content/CVPR2021/html/Xie_Efficient_Regional_Memory_Network_for_Video_Object_Segmentation_CVPR_2021_paper.html
http://openaccess.thecvf.com//content/CVPR2021/papers/Xie_Efficient_Regional_Memory_Network_for_Video_Object_Segmentation_CVPR_2021_paper.pdf
cvpr-2021-1
['one-shot-visual-object-segmentation']
['computer-vision']
[-1.26718611e-01 -4.81045008e-01 -5.70664227e-01 -2.49864861e-01 -3.26442838e-01 -1.66467890e-01 2.02147007e-01 -2.83814445e-02 -6.12828195e-01 6.46788359e-01 3.15582976e-02 4.68871623e-01 5.96140735e-02 -7.64926970e-01 -6.03745580e-01 -6.23603642e-01 -4.91666794e-02 9.32104141e-03 1.07073236e+00 1.93769440e-01 4.70746934e-01 5.48565149e-01 -1.69893897e+00 4.24962670e-01 5.18384337e-01 1.33535993e+00 8.67928267e-01 4.71798241e-01 -3.96570355e-01 9.69581902e-01 -5.86728275e-01 2.87367970e-01 3.82952720e-01 -4.33708102e-01 -8.11452806e-01 2.03073621e-01 8.51720095e-01 -6.26416028e-01 -8.56792152e-01 1.03256559e+00 3.05332333e-01 6.37570143e-01 2.29468998e-02 -1.22312117e+00 -3.38370055e-01 1.07709214e-01 -3.79254580e-01 7.77494013e-01 2.76164919e-01 2.18705520e-01 6.77656531e-01 -1.13163698e+00 1.13207233e+00 1.35683823e+00 1.28345087e-01 3.79282027e-01 -6.98328853e-01 -8.85437191e-01 5.48744142e-01 6.35692060e-01 -1.60758913e+00 -6.55574918e-01 8.69395137e-01 -4.13649559e-01 7.65701652e-01 -5.40403649e-03 8.44218910e-01 2.77348697e-01 1.86130375e-01 1.08443379e+00 5.17016649e-01 2.13820245e-02 2.41054278e-02 -7.99165964e-02 -8.14141482e-02 9.30420160e-01 -1.45652786e-01 2.58828849e-01 -9.55886006e-01 2.52004853e-03 1.23042023e+00 3.23749572e-01 -5.58949709e-01 -5.29403925e-01 -1.48415017e+00 5.12840271e-01 6.27342224e-01 3.91061991e-01 -4.99425560e-01 8.35660994e-02 3.73342365e-01 1.30224258e-01 3.89621466e-01 -2.48621069e-02 -2.95781344e-01 1.27605870e-01 -1.30927145e+00 7.39388540e-02 4.83328432e-01 9.49567378e-01 1.01941884e+00 1.99447125e-01 -2.50322908e-01 5.04904628e-01 5.02557039e-01 3.70702028e-01 4.70219523e-01 -1.20698535e+00 7.55988777e-01 5.18593013e-01 3.13406795e-01 -1.52438378e+00 -1.18594207e-01 -3.64869446e-01 -6.67394578e-01 -8.38881284e-02 4.45225120e-01 2.14686766e-01 -9.87885535e-01 1.56910062e+00 4.74955380e-01 9.09252703e-01 1.19885504e-01 1.32434714e+00 1.15969610e+00 9.12082732e-01 1.88555762e-01 -5.25300741e-01 8.56150150e-01 -1.29060650e+00 -8.07485998e-01 -4.25943553e-01 3.97916257e-01 -8.46114993e-01 4.19566423e-01 -1.74000427e-01 -1.20499861e+00 -1.14213300e+00 -9.27258015e-01 1.27648547e-01 -1.38961285e-01 6.20012134e-02 1.88230470e-01 -1.73124541e-02 -9.54964757e-01 7.22353160e-01 -8.86729896e-01 -2.12961406e-01 4.71796066e-01 2.29219854e-01 -2.61801720e-01 -2.75422186e-01 -1.17247415e+00 5.47624111e-01 7.92282641e-01 3.92359406e-01 -1.11234319e+00 -4.77528542e-01 -1.03529370e+00 4.99325171e-02 5.30346096e-01 -5.66224694e-01 8.04900348e-01 -1.12834299e+00 -1.04846561e+00 5.51456034e-01 -6.81426466e-01 -4.17089820e-01 4.46847111e-01 -5.21114506e-02 -3.16788375e-01 6.51562095e-01 2.60761619e-01 1.12213945e+00 9.79429185e-01 -9.88228679e-01 -1.02800894e+00 -1.07764557e-01 -1.04880199e-01 3.59083354e-01 -3.08274273e-02 -7.79396743e-02 -9.04664457e-01 -7.81607866e-01 5.85252523e-01 -7.02661991e-01 -2.20440421e-02 4.18945789e-01 -6.15804829e-02 -3.05100322e-01 1.33288431e+00 -6.95283055e-01 1.31215537e+00 -2.22080517e+00 1.34450287e-01 1.70973297e-02 1.42344490e-01 5.92988670e-01 -2.59698391e-01 -9.28615108e-02 6.76231533e-02 -2.34998643e-01 9.74433795e-02 -2.86116511e-01 -5.83014727e-01 4.05608177e-01 -2.75380522e-01 6.01058066e-01 -5.86108752e-02 9.63642180e-01 -1.13638020e+00 -1.08647323e+00 5.37594378e-01 3.94400299e-01 -2.05084518e-01 5.35620153e-01 -8.55698958e-02 7.08387792e-01 -4.49568331e-01 7.24506080e-01 5.70395470e-01 -2.22720236e-01 -2.53461540e-01 -3.57235789e-01 -1.52068451e-01 2.07165867e-01 -1.45689499e+00 1.86836874e+00 5.51129654e-02 8.20759892e-01 -1.01880019e-03 -8.37213874e-01 8.93482983e-01 2.84703493e-01 6.37789965e-01 -8.75296652e-01 -3.16946656e-02 2.53798217e-01 -2.86472499e-01 -6.64217651e-01 5.39652050e-01 2.76465863e-01 4.43197817e-01 2.14639992e-01 9.97510254e-02 3.61446112e-01 5.19050658e-01 1.91704035e-01 3.95038038e-01 2.60268509e-01 1.60000116e-01 2.43557002e-02 8.42953444e-01 -2.24023014e-02 1.21976209e+00 7.51206160e-01 -7.33226001e-01 6.84748948e-01 -8.90569463e-02 -7.52888799e-01 -6.76558435e-01 -8.73132169e-01 1.89876333e-01 8.91100347e-01 9.44552600e-01 -3.47136438e-01 -4.20447290e-01 -5.83732307e-01 -1.26880646e-01 1.00894764e-01 -2.57411182e-01 -1.25187531e-01 -1.01046252e+00 1.86773874e-02 3.29004824e-02 7.00684488e-01 1.00986862e+00 -1.34751654e+00 -8.71540189e-01 5.02323329e-01 -5.55257022e-01 -1.28329229e+00 -1.00126791e+00 -4.14570689e-01 -1.27794719e+00 -1.03937185e+00 -9.97851431e-01 -1.03748524e+00 5.92598259e-01 7.74497807e-01 8.99524987e-01 4.72675294e-01 -9.25701410e-02 2.58452028e-01 -7.81258792e-02 2.10166082e-01 -1.86816335e-01 -3.10172856e-01 -1.28533378e-01 3.27365458e-01 7.18631819e-02 -2.51118690e-01 -9.52729702e-01 7.86444247e-01 -8.94319177e-01 2.29538366e-01 4.24795747e-01 6.28306031e-01 9.42396402e-01 -9.86992344e-02 5.16590357e-01 -3.40809405e-01 -2.18476638e-01 -2.86266923e-01 -5.35897791e-01 3.41243207e-01 -3.06191504e-01 -1.63858280e-01 1.49256408e-01 -6.10466182e-01 -1.02783561e+00 2.77096093e-01 3.22509855e-01 -9.33950961e-01 -1.42757550e-01 3.30076516e-01 -1.42539963e-01 -2.39703268e-01 8.83896053e-02 5.73269486e-01 -8.86225402e-02 -3.75536621e-01 1.20855212e-01 3.64699543e-01 7.59064317e-01 -3.16334009e-01 4.34533447e-01 7.12499797e-01 -1.14494585e-01 -6.34739876e-01 -7.43977547e-01 -9.12125647e-01 -9.10121500e-01 -5.13293505e-01 9.50912356e-01 -1.09348738e+00 -4.10118282e-01 6.19773924e-01 -1.41907883e+00 -4.07730639e-02 -2.51860350e-01 5.17836511e-01 -4.45415318e-01 6.10154092e-01 -7.46106505e-01 -5.80677330e-01 -1.62161022e-01 -1.17397785e+00 8.14806759e-01 6.79020226e-01 -1.66508500e-02 -1.00237560e+00 -2.88814247e-01 1.47864699e-01 3.36280078e-01 2.82782763e-02 4.08243448e-01 -3.22987080e-01 -1.34957862e+00 1.93734244e-01 -4.53648925e-01 1.89561263e-01 1.60402209e-01 -2.02089086e-01 -6.76649809e-01 -4.58351672e-01 8.48156735e-02 2.25020811e-01 1.05505443e+00 4.75576490e-01 7.18217373e-01 -1.62381083e-01 -5.41971028e-01 6.16915584e-01 1.24706459e+00 5.16393840e-01 5.18793941e-01 3.25305521e-01 1.01562560e+00 5.08439541e-01 1.13202584e+00 2.18335941e-01 3.67709190e-01 7.07540393e-01 3.96260023e-01 -1.86812095e-02 -4.50653195e-01 -2.73149818e-01 3.10531884e-01 7.26361096e-01 1.87660053e-01 -7.62897655e-02 -5.79639316e-01 9.79510248e-01 -2.22957015e+00 -1.07748008e+00 1.17510326e-01 2.24474573e+00 5.30213118e-01 9.86121669e-02 -8.06554556e-02 -2.53081858e-01 1.11198223e+00 6.89964890e-01 -7.26466060e-01 2.57861286e-01 -2.84254581e-01 -3.37196022e-01 2.81787515e-01 4.18759376e-01 -1.15467274e+00 1.09036303e+00 5.78343201e+00 8.26069117e-01 -1.28280985e+00 2.33159199e-01 5.97921789e-01 -1.37139827e-01 2.62654871e-01 1.51324674e-01 -9.25382912e-01 4.63768870e-01 4.69110638e-01 -5.95212728e-02 2.09169447e-01 7.17772663e-01 3.39669317e-01 -5.68003178e-01 -1.11572683e+00 1.29024291e+00 2.86034077e-01 -1.58601427e+00 2.04429001e-01 -2.14123338e-01 9.09782112e-01 -3.67680229e-02 -7.01329261e-02 -2.71743238e-02 -5.67405999e-01 -5.82000196e-01 9.28304851e-01 7.10226834e-01 4.28392529e-01 -6.15584731e-01 6.35609567e-01 3.28905910e-01 -1.85265648e+00 -3.79318520e-02 -5.94485164e-01 4.73315679e-02 3.58456194e-01 2.90783793e-01 -5.54434538e-01 3.91656786e-01 8.10083687e-01 1.15220094e+00 -5.00609457e-01 1.31203055e+00 1.08026654e-01 2.30565608e-01 -2.25589022e-01 3.88513803e-01 3.29544246e-01 -4.09341790e-02 8.32990646e-01 1.00402188e+00 2.39097357e-01 1.11617468e-01 6.94987178e-01 9.57100630e-01 1.35325611e-01 7.27576613e-02 -2.57554710e-01 1.14637703e-01 4.89112973e-01 9.06296670e-01 -9.35911298e-01 -8.19958210e-01 -4.30562317e-01 9.42098796e-01 1.70887470e-01 6.56646609e-01 -5.57701290e-01 -3.54049385e-01 5.75354397e-01 7.11937696e-02 5.86647630e-01 -4.44751471e-01 1.91651821e-01 -1.21586204e+00 1.22801997e-01 -3.11814398e-01 6.48339272e-01 -9.21698332e-01 -8.46369386e-01 4.54745203e-01 -1.08712234e-01 -1.47878408e+00 -2.27660105e-01 -1.25744920e-02 -5.68494260e-01 8.69838655e-01 -1.85483563e+00 -8.07936847e-01 -5.64131916e-01 8.50322425e-01 7.21565187e-01 -7.39840642e-02 1.42688408e-01 4.97420162e-01 -3.19363832e-01 1.62580922e-01 -2.62096941e-01 6.30820990e-01 7.93673813e-01 -6.42408371e-01 1.43952042e-01 1.10038209e+00 3.74939233e-01 4.84749258e-01 3.48986745e-01 -9.79115009e-01 -1.00429225e+00 -1.15932345e+00 9.69104826e-01 -3.73657458e-02 2.40670756e-01 2.26636231e-01 -1.25666797e+00 5.26481807e-01 -5.14762290e-02 5.74922442e-01 1.73341166e-02 -8.20754230e-01 -5.80361113e-02 -2.17567354e-01 -9.05469358e-01 2.91897178e-01 1.07479441e+00 -7.58121133e-01 -5.41567385e-01 8.09271932e-02 7.39769757e-01 -7.89685249e-01 -6.45831168e-01 3.48545879e-01 4.42405462e-01 -1.04276586e+00 1.06507111e+00 -3.91765088e-01 1.56866327e-01 -7.81622469e-01 -1.66859701e-01 -8.16889524e-01 -1.04052395e-01 -4.59235728e-01 -3.68735939e-01 1.14193630e+00 -2.02383831e-01 -3.47826153e-01 8.68867457e-01 6.73818111e-01 -5.27674183e-02 -6.41163826e-01 -1.17509162e+00 -7.06141233e-01 -5.52932382e-01 -2.03396752e-01 4.27166522e-01 7.89596021e-01 -4.48314935e-01 -1.96298003e-01 -4.84831154e-01 2.74239570e-01 5.43381512e-01 6.58202529e-01 6.50179207e-01 -1.09281611e+00 -8.00394937e-02 -1.90438882e-01 -8.14471424e-01 -1.76119924e+00 3.01466674e-01 -6.64484560e-01 1.36213347e-01 -1.41671073e+00 2.05879882e-01 -3.78659487e-01 -5.13316214e-01 2.36832067e-01 -3.75442386e-01 3.16772580e-01 6.21082067e-01 6.97361469e-01 -1.05162954e+00 4.31211650e-01 1.62651002e+00 -2.27030739e-01 -5.86318493e-01 -1.04913197e-01 6.23924993e-02 7.12054431e-01 4.65684593e-01 -5.71554363e-01 -1.67997211e-01 -3.88700396e-01 -3.41980815e-01 5.22994816e-01 5.71728349e-01 -1.20283127e+00 8.51657271e-01 -2.70704567e-01 5.32276392e-01 -9.87481296e-01 5.25970757e-01 -7.53944099e-01 1.33438379e-01 5.10235965e-01 -2.13794619e-01 1.58277765e-01 2.67716572e-02 8.75913203e-01 -7.01057494e-01 -1.66511595e-01 7.39908993e-01 -3.28011394e-01 -1.50703263e+00 7.04295456e-01 -2.76744273e-02 7.69528896e-02 1.02620494e+00 -5.38004518e-01 -1.48940518e-01 -3.90688092e-01 -8.81131172e-01 3.84709537e-01 2.83398658e-01 6.76387906e-01 1.05229676e+00 -1.30229223e+00 -3.44428867e-01 3.79367977e-01 -1.92784145e-02 2.42824137e-01 5.38783848e-01 9.10999060e-01 -3.37103605e-01 5.15455544e-01 -4.03788596e-01 -1.03795874e+00 -1.44084775e+00 7.28189170e-01 5.10033906e-01 1.70934752e-01 -6.42832696e-01 7.27884352e-01 4.51556474e-01 1.97009757e-01 4.25909191e-01 -3.13920289e-01 -2.76088834e-01 1.09095164e-01 6.49397194e-01 4.70200747e-01 -3.54793280e-01 -1.21537769e+00 -3.11517447e-01 9.25450265e-01 -1.79701485e-02 7.18540400e-02 9.42151368e-01 -6.83713973e-01 -1.56462952e-01 5.18104613e-01 1.28293920e+00 -3.91081661e-01 -1.62231505e+00 -9.07819450e-01 -6.92265108e-02 -1.13184071e+00 7.47245625e-02 -1.62781537e-01 -1.71420360e+00 8.54248941e-01 7.77775884e-01 -3.59058142e-01 1.05569601e+00 -1.26806468e-01 1.26452231e+00 1.49916351e-01 4.84381378e-01 -1.06236422e+00 2.39661410e-01 3.69156331e-01 4.69216406e-01 -1.21095741e+00 4.93649468e-02 -4.89405751e-01 -4.35950726e-01 1.19650888e+00 9.11137819e-01 -7.58501738e-02 6.22807503e-01 -2.58421659e-01 1.65257692e-01 1.79429371e-02 -4.75563616e-01 -1.72371879e-01 4.85871077e-01 4.33542073e-01 -2.38913093e-02 -4.04311776e-01 5.88838607e-02 2.04827376e-02 5.16545057e-01 2.90475916e-02 2.62453824e-01 1.08576620e+00 -6.51885509e-01 -7.94998705e-01 -5.05136967e-01 1.90117493e-01 -2.50191450e-01 1.04675584e-01 -1.93577248e-03 6.40440583e-01 1.80555344e-01 9.55341578e-01 3.82646739e-01 -1.55965328e-01 7.69020766e-02 -1.80336051e-02 2.25122720e-01 -3.94325733e-01 -3.63489747e-01 3.73477668e-01 -3.25034767e-01 -9.89452243e-01 -9.56947446e-01 -5.01879513e-01 -1.53077531e+00 -1.84912220e-01 -3.47588867e-01 1.98216382e-02 1.45181254e-01 1.10890245e+00 6.30888462e-01 3.47702295e-01 3.35161448e-01 -1.24362409e+00 1.30780235e-01 -5.85393071e-01 -4.37854767e-01 5.30099750e-01 6.04601562e-01 -7.73767233e-01 -1.73818290e-01 1.69803396e-01]
[9.28734016418457, -0.2322259396314621]
dbf3e1ab-2e11-4b0b-a306-55275bec8d89
image-differential-invariants
1911.05327
null
https://arxiv.org/abs/1911.05327v2
https://arxiv.org/pdf/1911.05327v2.pdf
Rotation Differential Invariants of Images Generated by Two Fundamental Differential Operators
In this paper, we design two fundamental differential operators for the derivation of rotation differential invariants of images. Each differential invariant obtained by using the new method can be expressed as a homogeneous polynomial of image partial derivatives, which preserve their values when the image is rotated by arbitrary angles. We produce all possible instances of homogeneous invariants up to the given order and degree, and discuss the independence of them in detail. As far as we know, no previous papers have published so many explicit forms of high-order rotation differential invariants of images. In the experimental part, texture classification and image patch verification are carried out on popular real databases. These rotation differential invariants are used as image feature vector. We mainly evaluate the effects of various factors on the performance of them. The experimental results also validate that they have better performance than some commonly used image features in some cases.
['Hanlin Mo', 'Hua Li']
2019-11-13
null
null
null
null
['texture-classification']
['computer-vision']
[-9.06277969e-02 -3.65529180e-01 -3.68191093e-01 -2.47612983e-01 2.69802734e-02 -4.14599776e-01 4.70793009e-01 -3.85235727e-01 -3.44881833e-01 3.59180897e-01 -3.62040013e-01 -1.22969776e-01 -3.61852229e-01 -4.63962615e-01 -1.89373538e-01 -9.14778233e-01 -4.02544349e-01 1.31394908e-01 4.62624401e-01 -3.76912832e-01 4.74161565e-01 1.13856816e+00 -1.51759648e+00 -2.89074183e-01 6.06544614e-01 7.26027966e-01 -3.22633237e-01 7.42681324e-01 3.84415835e-01 5.18903136e-01 -6.58397317e-01 -2.05995917e-01 5.01897991e-01 -3.59360725e-01 -1.10250521e+00 5.67313671e-01 1.14308335e-01 -1.84252620e-01 -4.76068199e-01 1.13106120e+00 3.88674200e-01 -1.05220377e-01 9.52431738e-01 -1.09755445e+00 -9.46093559e-01 2.40626037e-01 -6.25955582e-01 4.24023002e-01 5.69787562e-01 -3.81646901e-01 6.24989748e-01 -7.42290199e-01 8.28287542e-01 1.12731290e+00 6.50935531e-01 1.57680675e-01 -1.22157180e+00 -9.69728380e-02 -4.09388900e-01 4.75483984e-01 -1.64826155e+00 -4.32634279e-02 1.04506886e+00 -3.00204545e-01 4.63105738e-01 5.94121575e-01 4.70187634e-01 3.30273300e-01 7.64217079e-01 6.12057924e-01 1.23167181e+00 -6.62720740e-01 -3.30516815e-01 2.78614879e-01 4.47693735e-01 9.11793709e-01 3.95085514e-01 -2.41456181e-01 1.97891951e-01 -4.52205874e-02 1.22826648e+00 -8.04442540e-02 -3.45536321e-01 -5.60508609e-01 -1.17944336e+00 5.10897040e-01 3.06050926e-01 8.61946821e-01 -9.74834338e-02 -4.35152292e-01 1.78539708e-01 5.69481194e-01 2.36700088e-01 3.68031234e-01 -2.46489853e-01 3.11545402e-01 -3.65200102e-01 -4.42920811e-02 7.79168725e-01 8.50737333e-01 9.11821604e-01 -7.82192200e-02 1.48890493e-02 6.65861070e-01 -1.86595209e-02 6.88136578e-01 6.15582526e-01 -5.73293269e-01 -5.06608605e-01 4.28576529e-01 -8.75708759e-02 -1.47283316e+00 -4.43217427e-01 -9.46247298e-03 -7.89876044e-01 2.58689731e-01 1.70357093e-01 1.84292465e-01 -6.87058151e-01 1.02074313e+00 3.25805932e-01 -1.45181969e-01 1.38972953e-01 8.80748808e-01 7.21374214e-01 4.80229855e-01 -3.58570278e-01 -3.31069708e-01 1.36667562e+00 -6.10153854e-01 -8.90872121e-01 7.77495861e-01 1.85944036e-01 -1.35568058e+00 4.12128627e-01 3.64967853e-01 -6.40743017e-01 -7.67486215e-01 -1.24012208e+00 -1.00533850e-02 -3.03662628e-01 4.30220127e-01 8.12647939e-01 6.01473451e-01 -1.08250034e+00 6.79491699e-01 -6.86006188e-01 -4.02603567e-01 -3.51625770e-01 4.56094712e-01 -7.00947464e-01 4.74990070e-01 -1.03457260e+00 1.05747664e+00 -2.12316643e-02 2.60887057e-01 -2.19448715e-01 -2.85654962e-01 -7.39230335e-01 -4.02424902e-01 -3.69610190e-01 -2.22202569e-01 1.09689426e+00 -1.17601073e+00 -1.50388634e+00 1.14241540e+00 -1.67490527e-01 3.88068496e-03 4.22669530e-01 2.74365097e-01 -8.44111562e-01 4.09450203e-01 -9.73036289e-02 1.25347212e-01 9.16211665e-01 -1.15496504e+00 -2.42594197e-01 -3.28030080e-01 1.94208488e-01 -4.84577194e-02 7.34206736e-02 1.11402467e-01 -3.98399979e-01 -4.30104792e-01 5.81522167e-01 -1.20171762e+00 -1.77606985e-01 -1.29116371e-01 -2.68930852e-01 -2.26813912e-01 1.15667999e+00 -6.88981354e-01 1.03412855e+00 -2.27660418e+00 2.08184943e-01 4.92578477e-01 -2.14029744e-01 4.22603428e-01 5.65573871e-02 2.50539541e-01 -4.72581744e-01 -2.23676991e-02 2.09598586e-01 3.12164932e-01 -2.63841569e-01 4.06835586e-01 -9.63148475e-02 9.76251960e-01 3.25044453e-01 3.81999642e-01 -5.19539535e-01 -7.36760378e-01 2.94536680e-01 9.27815676e-01 -2.03827932e-01 -8.27941075e-02 5.67479372e-01 4.42993701e-01 -8.29816401e-01 6.57087147e-01 1.14415574e+00 3.19531381e-01 3.84056494e-02 -6.83251143e-01 -3.57969910e-01 -5.20619512e-01 -1.42763937e+00 7.47938514e-01 -6.40681088e-02 8.47566485e-01 -3.76888514e-01 -1.12109661e+00 1.15447199e+00 2.88065016e-01 8.62498283e-01 -3.98894399e-01 2.18270689e-01 1.95723012e-01 9.77928191e-02 -8.10971975e-01 5.53501248e-01 7.35018253e-02 2.11809471e-01 9.97303799e-02 1.69552416e-01 -1.34548798e-01 4.35746282e-01 -1.62658229e-01 5.63137293e-01 -2.42731459e-02 3.89298111e-01 -6.54665172e-01 1.22736573e+00 -4.55201194e-02 3.44555050e-01 2.54475683e-01 -2.78434604e-01 5.26711047e-01 7.46899307e-01 -6.49989367e-01 -1.20485723e+00 -6.78647578e-01 -8.50783825e-01 3.04118574e-01 5.02730370e-01 1.16806157e-01 -7.28934407e-01 -2.04172060e-01 3.36057134e-02 -2.70797968e-01 -4.77877080e-01 -3.14342566e-02 -5.76984823e-01 -8.88396859e-01 6.25704288e-01 1.32668957e-01 8.02076817e-01 -6.84816360e-01 -3.37383270e-01 -2.11904615e-01 2.49107406e-01 -1.24183559e+00 -2.97331512e-01 -2.64361113e-01 -9.02886808e-01 -1.32019353e+00 -8.50420058e-01 -1.16178918e+00 1.08145809e+00 6.32396579e-01 6.78027153e-01 1.89624339e-01 -6.51005268e-01 6.66573584e-01 -4.41149592e-01 -2.10905686e-01 -4.62795943e-01 -3.58502492e-02 1.58984348e-01 3.26818377e-01 2.27913484e-01 -4.19179857e-01 -3.92023414e-01 8.04165483e-01 -1.07359290e+00 -5.46933055e-01 7.75217235e-01 6.29488111e-01 6.73204839e-01 2.44198382e-01 1.50750186e-02 -5.56976378e-01 5.37415087e-01 5.49685434e-02 -8.30181539e-01 3.41343254e-01 -5.08792758e-01 5.89390278e-01 3.98415744e-01 -5.81206441e-01 -9.76238847e-01 2.19226882e-01 1.87325045e-01 -1.20685980e-01 5.64808585e-03 2.82228768e-01 1.17409222e-01 -8.76275480e-01 6.36453986e-01 1.63840532e-01 2.62696266e-01 -5.50073981e-01 4.44787070e-02 6.42902792e-01 6.28224909e-01 -5.71988046e-01 9.50657129e-01 6.22021377e-01 6.96762562e-01 -1.48923516e+00 -4.13373351e-01 -7.09340394e-01 -1.00093508e+00 -1.99725226e-01 8.29742789e-01 -4.25068170e-01 -6.45475745e-01 9.17799890e-01 -9.99159694e-01 4.16862071e-01 8.27401876e-02 6.34069562e-01 -4.65485066e-01 8.45652759e-01 -4.68247712e-01 -5.93814552e-01 -9.57436711e-02 -1.37054789e+00 8.29619348e-01 4.35151845e-01 3.56912702e-01 -1.22094858e+00 3.11973751e-01 -3.54175389e-01 3.41464400e-01 4.14622396e-01 7.11586475e-01 -2.86253452e-01 -4.76146370e-01 -4.98664796e-01 3.62337902e-02 6.27366841e-01 2.84674883e-01 8.36543024e-01 -5.85696578e-01 -1.12289809e-01 2.40309328e-01 4.37373698e-01 5.56888998e-01 2.73616165e-01 7.31007040e-01 -2.21638139e-02 -3.43791366e-01 8.37230086e-01 1.56588280e+00 3.63663703e-01 9.27674055e-01 3.17650169e-01 3.93377006e-01 8.92282128e-02 6.55798554e-01 1.08223006e-01 -3.91609333e-02 7.78944731e-01 -1.22614102e-02 -3.69537771e-01 2.14310307e-02 3.80722731e-01 4.04566735e-01 9.14726555e-01 -8.55833530e-01 4.65026319e-01 -5.19546926e-01 3.89966458e-01 -1.51340795e+00 -1.21961188e+00 -5.41837096e-01 2.23159981e+00 7.11130679e-01 -2.72679210e-01 -9.30044055e-02 5.14113545e-01 9.60280538e-01 2.06155419e-01 -7.98161328e-02 -7.13986754e-01 -5.03169954e-01 4.57721770e-01 7.28946030e-01 6.31449580e-01 -1.42871535e+00 7.16432095e-01 7.61281109e+00 3.63805264e-01 -1.59084415e+00 -2.70096272e-01 1.28330126e-01 8.35595369e-01 -1.08770125e-01 2.89152890e-01 -6.31250024e-01 -1.01930931e-01 2.34102860e-01 -4.19780046e-01 5.31567782e-02 9.18319881e-01 -2.54083544e-01 -2.16956288e-01 -6.85087860e-01 1.06014776e+00 2.39383206e-01 -6.06079817e-01 1.05084457e-01 -9.47791189e-02 9.24849570e-01 -4.72487092e-01 2.50113100e-01 -2.79986024e-01 -4.08111840e-01 -6.28716350e-01 1.91029444e-01 8.94325137e-01 5.26212871e-01 -9.47377980e-01 9.00147021e-01 -2.41294056e-01 -1.11143339e+00 4.05877769e-01 -8.00089777e-01 8.08258802e-02 -1.85699120e-01 5.75676799e-01 -6.08786702e-01 9.09053326e-01 2.15777919e-01 6.10482275e-01 -8.59606922e-01 1.10788643e+00 -3.07973087e-01 9.05462727e-03 -1.55778736e-01 -1.61371589e-01 3.32643725e-02 -6.26322150e-01 6.68675184e-01 1.04480004e+00 2.64661908e-01 2.03986049e-01 -8.93664882e-02 3.56312841e-01 5.36537766e-01 4.47628826e-01 -7.57922351e-01 2.03753054e-01 -9.93182436e-02 1.43650424e+00 -6.18422449e-01 -1.58587620e-01 -3.45404297e-01 1.13385594e+00 -3.32898766e-01 4.52394873e-01 -7.79163063e-01 -7.57611632e-01 8.14877510e-01 -1.49428621e-01 2.72481710e-01 -4.72730041e-01 2.93978781e-01 -1.37392831e+00 -6.30954141e-03 -6.64419711e-01 1.78819150e-01 -5.78116298e-01 -8.91381025e-01 6.87687159e-01 3.10074896e-01 -1.33452713e+00 -3.65378708e-01 -1.16727209e+00 -3.85850072e-01 7.99208760e-01 -1.17285132e+00 -9.23076034e-01 -2.09207967e-01 7.79352725e-01 -7.52802268e-02 -2.57571101e-01 9.30985332e-01 2.58609205e-01 -5.03169596e-01 5.46367407e-01 2.95745432e-01 3.81739616e-01 7.51340151e-01 -9.56315875e-01 -5.76630533e-02 8.64397109e-01 1.34103730e-01 5.72473586e-01 9.38019812e-01 -1.39171809e-01 -1.58715570e+00 -1.65773481e-01 8.15514445e-01 -2.67912030e-01 4.77467895e-01 3.69828761e-01 -7.96332300e-01 8.44911218e-01 1.30961299e-01 2.41264924e-01 3.10735583e-01 -3.60521466e-01 -2.16315195e-01 -3.20660204e-01 -1.15578604e+00 3.86552513e-01 6.34964764e-01 -4.65923071e-01 -5.33096492e-01 3.22273612e-01 2.09938720e-01 -4.79676366e-01 -1.24172544e+00 5.29244661e-01 7.08692729e-01 -1.04324639e+00 9.91771460e-01 -5.21991551e-01 -3.60348560e-02 -7.00001180e-01 1.06361806e-01 -9.95572448e-01 -4.21990484e-01 -6.55256093e-01 5.20797014e-01 8.56753349e-01 7.88676664e-02 -9.18525577e-01 2.97367685e-02 1.61579937e-01 2.22269759e-01 -4.89346892e-01 -7.69807696e-01 -9.17083621e-01 -3.20891857e-01 1.17615506e-01 5.06040514e-01 1.17472315e+00 1.24408014e-01 1.18082695e-01 -2.84703642e-01 3.51570815e-01 4.70988184e-01 1.32769421e-01 8.60041022e-01 -1.22835732e+00 -7.79997604e-03 -2.75502861e-01 -1.62944007e+00 -6.96819186e-01 2.93197870e-01 -6.80983067e-01 -4.95361507e-01 -9.64086711e-01 2.05811843e-01 -2.81110972e-01 -1.33820415e-01 1.79383829e-01 1.79205000e-01 2.83348680e-01 -2.31345192e-01 2.77906656e-01 -1.49317250e-01 -2.80770436e-02 1.59179556e+00 3.21344770e-02 -8.94051492e-02 6.45384490e-02 -2.66916335e-01 9.08408463e-01 7.70780921e-01 -1.27519920e-01 -2.43714258e-01 -1.26907840e-01 -2.61257917e-01 -3.21729183e-01 1.90165147e-01 -1.08609343e+00 -4.68499921e-02 -2.87091404e-01 3.52729678e-01 -3.33791047e-01 -6.17079735e-02 -8.47226739e-01 4.63709384e-01 6.27868772e-01 1.63212910e-01 5.81091285e-01 -1.71278909e-01 -2.15912402e-01 -6.20022237e-01 -5.13381124e-01 1.12350142e+00 1.58022687e-01 -1.03253734e+00 1.55703023e-01 -2.41333216e-01 -5.23681164e-01 1.11718810e+00 -1.93361625e-01 -2.72406012e-01 -2.81108797e-01 -5.44828415e-01 -5.76300621e-01 6.33600652e-01 3.02948326e-01 3.87942225e-01 -1.51915371e+00 -4.73539144e-01 5.70224464e-01 -1.29528016e-01 -4.02024090e-01 1.76373288e-01 1.20587063e+00 -1.31352139e+00 5.33196867e-01 -7.73434877e-01 -7.33642101e-01 -1.52094781e+00 9.10668969e-01 6.88517570e-01 9.66418814e-03 -3.60061258e-01 1.69491664e-01 -1.98827818e-01 6.51059523e-02 -2.56270975e-01 -3.87293011e-01 -3.90380591e-01 -1.29761353e-01 5.14983773e-01 4.54508066e-01 -1.12392381e-02 -1.32349670e+00 -3.91900808e-01 1.31076932e+00 1.79244995e-01 -1.02705918e-01 1.02333868e+00 1.97993070e-01 -8.00997555e-01 1.63879782e-01 1.59284449e+00 2.71534830e-01 -5.28341889e-01 -1.32809877e-01 -2.83786774e-01 -6.00222528e-01 -2.97443777e-01 8.14735796e-03 -1.17371452e+00 3.41441602e-01 7.85942554e-01 5.42074502e-01 1.32421911e+00 -1.33927122e-01 2.44851589e-01 4.98041183e-01 3.02394539e-01 -8.32245409e-01 -2.25456506e-01 6.49670660e-01 9.99703288e-01 -8.52867424e-01 4.09172505e-01 -7.14184225e-01 -4.57496017e-01 1.58744109e+00 2.50527114e-01 -7.35813260e-01 9.09613550e-01 8.06538388e-02 3.31740946e-01 1.34781361e-01 -1.34737715e-01 -3.68726492e-01 6.85212731e-01 7.49929965e-01 6.75712466e-01 5.87849803e-02 -1.19077277e+00 -1.50911823e-01 -9.49873403e-02 -2.91682214e-01 6.57793939e-01 8.16903889e-01 -4.13761407e-01 -1.31445336e+00 -7.02382982e-01 -3.67901534e-01 -6.73309863e-01 5.80386281e-01 -3.64165038e-01 1.27803290e+00 -4.72628772e-02 4.43638355e-01 7.31801391e-02 -3.66866171e-01 5.07004797e-01 -1.35572463e-01 8.95276964e-01 1.99021310e-01 1.85700301e-02 -1.33104160e-01 -2.22612172e-01 -2.75654346e-01 -9.90027726e-01 -7.28662312e-01 -1.18520188e+00 -4.00560766e-01 -2.47242376e-01 2.33407900e-01 8.31505835e-01 6.47830486e-01 7.70727694e-02 1.34460345e-01 1.11082220e+00 -7.98014581e-01 -8.32234085e-01 -8.77388895e-01 -8.27081501e-01 6.05756938e-01 3.75065088e-01 -6.40030980e-01 -4.91626978e-01 3.06450039e-01]
[9.5503511428833, -1.671940803527832]
4d10f362-936c-4b6b-b15e-671387fee453
swin-unet-unet-like-pure-transformer-for
2105.05537
null
https://arxiv.org/abs/2105.05537v1
https://arxiv.org/pdf/2105.05537v1.pdf
Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation
In the past few years, convolutional neural networks (CNNs) have achieved milestones in medical image analysis. Especially, the deep neural networks based on U-shaped architecture and skip-connections have been widely applied in a variety of medical image tasks. However, although CNN has achieved excellent performance, it cannot learn global and long-range semantic information interaction well due to the locality of the convolution operation. In this paper, we propose Swin-Unet, which is an Unet-like pure Transformer for medical image segmentation. The tokenized image patches are fed into the Transformer-based U-shaped Encoder-Decoder architecture with skip-connections for local-global semantic feature learning. Specifically, we use hierarchical Swin Transformer with shifted windows as the encoder to extract context features. And a symmetric Swin Transformer-based decoder with patch expanding layer is designed to perform the up-sampling operation to restore the spatial resolution of the feature maps. Under the direct down-sampling and up-sampling of the inputs and outputs by 4x, experiments on multi-organ and cardiac segmentation tasks demonstrate that the pure Transformer-based U-shaped Encoder-Decoder network outperforms those methods with full-convolution or the combination of transformer and convolution. The codes and trained models will be publicly available at https://github.com/HuCaoFighting/Swin-Unet.
['Manning Wang', 'Qi Tian', 'Xiaopeng Zhang', 'Dongsheng Jiang', 'Joy Chen', 'Yueyue Wang', 'Hu Cao']
2021-05-12
null
null
null
null
['cardiac-segmentation']
['medical']
[ 1.01556897e-01 -1.62021741e-02 -5.15922531e-02 -4.47152436e-01 -5.84899247e-01 -1.28132492e-01 8.92042965e-02 -9.30353999e-02 -2.98915803e-01 4.47784573e-01 1.70467213e-01 -3.09594780e-01 4.81139794e-02 -9.51786995e-01 -7.10051179e-01 -7.68446565e-01 1.64063185e-01 -3.44895981e-02 5.88490248e-01 -6.07900135e-02 -8.74930173e-02 1.22573525e-01 -9.57400501e-01 7.00928152e-01 7.29095757e-01 1.37399161e+00 5.74477255e-01 3.58061880e-01 -2.90291488e-01 6.66834593e-01 -2.74791509e-01 -1.00290887e-01 1.56507552e-01 -6.43826187e-01 -7.36823916e-01 -1.74901277e-01 4.32792399e-03 -3.48613769e-01 -5.37767768e-01 9.66753066e-01 7.91779816e-01 -2.36415535e-01 2.23392278e-01 -6.99199915e-01 -9.08180475e-01 4.62188184e-01 -5.25991738e-01 4.52570409e-01 -4.16611247e-02 3.68941426e-02 6.46544516e-01 -8.50683808e-01 3.08276206e-01 1.04908931e+00 9.41173851e-01 4.81215239e-01 -8.56735170e-01 -7.38867819e-01 -1.19361363e-01 3.45814884e-01 -1.43570125e+00 5.96839897e-02 6.04133844e-01 -2.22526312e-01 9.57662106e-01 1.02862686e-01 7.38636255e-01 5.59372067e-01 5.97237945e-01 8.03286552e-01 9.01542246e-01 -8.45719203e-02 -2.35259548e-01 -1.02070943e-01 -9.71453935e-02 9.75092113e-01 -2.64085889e-01 2.05286462e-02 -2.85954505e-01 1.96448252e-01 1.35658228e+00 5.05573094e-01 -4.02471274e-01 3.01475767e-02 -1.38498652e+00 7.88494885e-01 1.12898576e+00 6.37013495e-01 -2.86692917e-01 1.17626488e-01 6.88021004e-01 3.26169759e-01 4.36541706e-01 2.00454772e-01 -6.14836156e-01 1.74571663e-01 -9.03963625e-01 -1.54516324e-01 4.89151292e-02 9.26359773e-01 6.24152064e-01 1.70815196e-02 -4.72613961e-01 1.00174606e+00 -9.91497561e-02 1.95944190e-01 9.32532072e-01 -5.07713974e-01 2.64860332e-01 7.80668318e-01 -5.10669410e-01 -6.86303139e-01 -5.85000813e-01 -8.37969482e-01 -1.33999574e+00 -1.36795267e-01 1.46980152e-01 -2.01562613e-01 -1.21598339e+00 1.45231366e+00 2.90220290e-01 3.45501989e-01 5.04934043e-02 1.03705895e+00 1.22013736e+00 8.13471317e-01 -3.54916528e-02 1.02896743e-01 1.80217028e+00 -1.13112819e+00 -7.48850465e-01 -6.19489588e-02 7.13976681e-01 -8.31364572e-01 1.06478167e+00 3.91870178e-02 -9.41150665e-01 -7.83899248e-01 -1.03191316e+00 -5.57634234e-01 -2.95720249e-01 2.88167417e-01 1.70156077e-01 1.93455145e-01 -9.88713920e-01 5.99192023e-01 -9.30109739e-01 -2.09254563e-01 9.27950859e-01 2.41891474e-01 -3.79894078e-01 -1.51936129e-01 -1.36458457e+00 7.06507802e-01 2.52179414e-01 2.99330801e-01 -7.91711628e-01 -7.68910527e-01 -8.13023210e-01 2.52197981e-01 5.98980710e-02 -7.26932108e-01 1.16421676e+00 -9.28554416e-01 -1.17951143e+00 6.77705884e-01 -1.14174291e-01 -4.38969016e-01 2.95222908e-01 4.08193655e-02 -2.03772455e-01 2.52511591e-01 3.21917832e-01 7.19789028e-01 5.21286488e-01 -4.89318401e-01 -5.90089440e-01 -3.87524456e-01 -1.87128171e-01 2.28399515e-01 -3.77341121e-01 1.32806391e-01 -4.32043195e-01 -9.77430642e-01 3.92365932e-01 -5.93478084e-01 -2.71522075e-01 2.42611691e-01 -4.37114865e-01 -2.94231959e-02 1.06844151e+00 -7.66537786e-01 1.24464834e+00 -2.39012098e+00 -1.48018837e-01 -7.45096877e-02 2.50967562e-01 2.92834312e-01 -7.14136660e-02 2.72224873e-01 -3.13377917e-01 3.79791521e-02 -4.35164005e-01 -3.10726855e-02 -5.29914439e-01 2.16256082e-01 3.24519277e-02 2.85429120e-01 2.06997484e-01 1.11733067e+00 -8.04074943e-01 -5.92411995e-01 2.57069618e-01 6.09786332e-01 -5.03402591e-01 1.27199829e-01 6.64316863e-02 6.25308931e-01 -6.02895439e-01 6.36582077e-01 6.72962070e-01 -4.38094765e-01 -9.73746032e-02 -4.52494711e-01 -1.45542428e-01 2.40469709e-01 -5.44217944e-01 1.92624116e+00 -4.49526697e-01 5.54241061e-01 3.59471999e-02 -1.32555473e+00 8.82160783e-01 6.06416166e-01 5.27128518e-01 -1.06142819e+00 2.80412078e-01 3.97602290e-01 1.01605512e-01 -6.55718207e-01 -5.60744330e-02 -4.79547560e-01 8.83537009e-02 1.29886314e-01 1.58329114e-01 2.95671910e-01 -1.11464463e-01 -1.46162525e-01 9.92297173e-01 -2.71822382e-02 1.99886218e-01 -4.42587912e-01 6.56534374e-01 -1.10454559e-01 7.52014756e-01 1.98952138e-01 1.33495545e-03 9.95536804e-01 5.53753495e-01 -6.72217190e-01 -1.00989830e+00 -8.92355323e-01 -4.94357854e-01 7.98583090e-01 1.69679567e-01 -3.29907060e-01 -8.07844043e-01 -5.51037073e-01 -3.62391442e-01 1.09566025e-01 -6.47456408e-01 -2.78857440e-01 -7.15961933e-01 -8.57296109e-01 6.91886902e-01 8.75169814e-01 1.10289574e+00 -1.15740287e+00 -7.57762909e-01 4.19433236e-01 -3.27829242e-01 -1.03650510e+00 -9.12473261e-01 2.83522516e-01 -1.09518695e+00 -1.06034410e+00 -1.13804460e+00 -1.23802102e+00 8.11751246e-01 1.63641334e-01 6.61470473e-01 1.70142367e-01 -5.88668704e-01 -3.96239579e-01 -3.79182339e-01 -1.31383240e-01 1.57856941e-01 1.95282117e-01 -7.04939842e-01 -2.22332235e-02 2.05107927e-01 -6.25334918e-01 -1.06370544e+00 4.54806417e-01 -9.34238136e-01 3.85131985e-01 7.22184956e-01 1.09894753e+00 7.28285432e-01 -6.22944497e-02 5.13747275e-01 -8.24169934e-01 4.05325323e-01 -3.39150459e-01 -2.03307569e-01 1.00593090e-01 -2.92136908e-01 9.78693832e-03 8.70649815e-01 -2.23626897e-01 -8.02737534e-01 -1.93428531e-01 -6.81729317e-01 -6.55094564e-01 1.45759091e-01 5.34643471e-01 -3.60063575e-02 6.38442487e-02 5.09557068e-01 5.74849486e-01 1.00188412e-01 -5.00409722e-01 -1.18881755e-01 5.91538310e-01 4.42875803e-01 -3.42363060e-01 3.47576827e-01 4.26713377e-01 -2.22642601e-01 -5.75875938e-01 -8.79116774e-01 -1.70413047e-01 -4.30647433e-01 7.00390562e-02 1.31851459e+00 -8.80675733e-01 -3.41555983e-01 7.31757224e-01 -1.11671996e+00 -3.62091392e-01 -3.03759724e-01 4.92937148e-01 -2.98776597e-01 1.55897409e-01 -9.80716586e-01 -1.51581168e-02 -7.00731158e-01 -1.46436679e+00 9.43343818e-01 4.91199374e-01 2.07104087e-01 -9.12740767e-01 -4.39721376e-01 1.32643312e-01 6.85316324e-01 1.53464586e-01 1.04125261e+00 -4.55882192e-01 -5.82157373e-01 -4.22560982e-03 -5.69762588e-01 5.55547118e-01 2.59451568e-01 -5.61735511e-01 -7.20522523e-01 -2.08191141e-01 7.37072676e-02 -1.48353562e-01 9.69839394e-01 7.83167481e-01 1.62173510e+00 -1.39747754e-01 -3.83245528e-01 1.10511339e+00 1.50739026e+00 4.12049443e-01 8.25615466e-01 2.44775504e-01 6.56289279e-01 1.51460171e-01 2.96433270e-01 2.34751701e-01 3.28562587e-01 3.28133285e-01 3.48592371e-01 -6.82597280e-01 -3.17457348e-01 -2.27489367e-01 -1.01900123e-01 7.69556761e-01 -4.19821478e-02 1.79193541e-01 -8.10919821e-01 5.17167687e-01 -1.68617678e+00 -7.37106979e-01 1.02381958e-02 1.89084077e+00 9.32814240e-01 7.68150836e-02 -1.88120574e-01 -6.19558729e-02 7.87852407e-01 1.67766720e-01 -6.23975456e-01 -2.18962789e-01 -7.21178995e-03 4.30321217e-01 5.48814595e-01 2.97840774e-01 -9.29402590e-01 7.22475708e-01 5.38687658e+00 1.02995718e+00 -1.42909241e+00 4.93239313e-01 8.88173580e-01 8.90158191e-02 -1.03486240e-01 -1.91191286e-01 -5.73367774e-01 4.61821049e-01 4.71993595e-01 1.61489844e-01 1.07003108e-03 5.85246503e-01 1.36956379e-01 1.97579950e-01 -6.54921174e-01 9.22170341e-01 -2.00229123e-01 -1.52795041e+00 -2.16782615e-02 -1.63396776e-01 4.47342724e-01 2.32313588e-01 1.23457283e-01 1.37188286e-01 -2.06933513e-01 -1.03820109e+00 6.08189523e-01 2.85275549e-01 1.28336096e+00 -6.44911766e-01 9.53586459e-01 2.68862516e-01 -1.55625761e+00 -1.99415475e-01 -4.38681453e-01 4.76374775e-02 4.89596277e-02 7.08103180e-01 -4.89138454e-01 5.30699790e-01 9.39688981e-01 9.79340017e-01 -2.77059704e-01 9.51576352e-01 -2.49153213e-03 5.09185612e-01 -2.04375654e-01 1.56395018e-01 5.01300514e-01 -1.51312277e-01 1.93599254e-01 1.26282394e+00 5.61963320e-01 2.78467059e-01 5.38504049e-02 8.08303356e-01 -1.56781912e-01 6.20679185e-02 -2.26091623e-01 2.10262373e-01 2.67688841e-01 1.22075987e+00 -8.62004697e-01 -4.07697618e-01 -5.43585360e-01 9.21762109e-01 7.64105543e-02 2.94485986e-01 -9.48284924e-01 -7.02274978e-01 5.27879775e-01 4.58410650e-01 5.54166675e-01 1.74498722e-01 -3.28809738e-01 -1.01816344e+00 6.03967942e-02 -6.03336811e-01 3.44148993e-01 -7.75252640e-01 -1.03233016e+00 9.88140881e-01 -1.96510509e-01 -1.29155672e+00 3.61155778e-01 -5.72037697e-01 -8.09348226e-01 9.63477671e-01 -1.64634418e+00 -1.19605672e+00 -4.23781246e-01 8.73622894e-01 6.05588615e-01 -7.87876919e-02 7.40673602e-01 5.65274179e-01 -5.37511408e-01 5.11118889e-01 1.03420474e-01 5.82005501e-01 5.90917051e-01 -8.97893071e-01 1.81054443e-01 5.32416224e-01 -3.35991234e-01 6.33520842e-01 1.80686072e-01 -5.22950351e-01 -7.85297096e-01 -1.26929414e+00 6.89053118e-01 2.54838139e-01 2.44806454e-01 -2.54704922e-01 -8.82641375e-01 7.49956310e-01 5.16378999e-01 5.71614981e-01 4.38095152e-01 -2.39680618e-01 -2.22536698e-01 -3.81210595e-01 -1.12356889e+00 1.47221267e-01 9.20437813e-01 -4.14743364e-01 -4.67229456e-01 3.35367560e-01 7.55352020e-01 -7.68436909e-01 -1.03062236e+00 5.36397576e-01 5.00239670e-01 -1.08847773e+00 1.02031946e+00 -8.45488757e-02 8.01466167e-01 -3.08920532e-01 3.54031473e-02 -1.13764930e+00 -4.44569170e-01 -1.88820437e-01 5.72935879e-01 7.28006124e-01 3.61996800e-01 -8.85972857e-01 6.90899372e-01 -2.32720509e-01 -7.01790869e-01 -1.50027788e+00 -1.17322612e+00 -3.07505816e-01 2.77272135e-01 -2.07957476e-02 5.83195508e-01 7.10238218e-01 -1.00004546e-01 3.13519001e-01 -1.68712392e-01 -1.30363762e-01 3.33961487e-01 2.45500237e-01 3.67238373e-02 -7.47519672e-01 -1.33492559e-01 -3.78457218e-01 -3.98838103e-01 -1.42796302e+00 -3.93391967e-01 -1.03768539e+00 -1.36748999e-01 -1.74369180e+00 2.80430645e-01 -4.64989245e-01 -5.13382852e-01 7.82635033e-01 -1.14595443e-01 4.71025854e-01 -1.29832178e-02 1.30171210e-01 -1.83387369e-01 5.09597957e-01 1.88406289e+00 -1.85255662e-01 9.48631391e-02 -2.97935214e-02 -5.75443268e-01 5.52802801e-01 9.57254231e-01 -3.81286860e-01 -4.86507624e-01 -6.95196867e-01 -1.05740868e-01 2.41994143e-01 5.56282938e-01 -1.06050694e+00 3.00529420e-01 2.80973762e-01 6.88983500e-01 -6.38639271e-01 1.90903425e-01 -7.35162914e-01 -2.37844065e-02 8.35037768e-01 -3.84889930e-01 3.04713160e-01 1.67135298e-01 1.47890329e-01 -6.44418955e-01 -2.71855611e-02 9.50405896e-01 -4.99287426e-01 -4.51962620e-01 7.96185017e-01 -1.82983711e-01 6.00353368e-02 9.15305674e-01 -3.31182837e-01 -1.93532065e-01 3.70138958e-02 -8.31132352e-01 2.21591666e-01 6.64720908e-02 2.09686384e-01 9.79088783e-01 -1.36587048e+00 -6.53753102e-01 5.43716908e-01 -1.31476924e-01 4.13068831e-01 8.29838574e-01 1.23689926e+00 -8.21736693e-01 4.94617134e-01 -4.35915142e-01 -6.83195412e-01 -1.12712967e+00 3.65124851e-01 7.69512594e-01 -4.07199591e-01 -1.16065979e+00 9.86721933e-01 7.00406253e-01 -3.86844695e-01 -5.15350290e-02 -5.19218564e-01 -3.76377515e-02 -2.99230993e-01 4.17310685e-01 -1.18856564e-01 9.16999802e-02 -3.93097013e-01 -3.07615936e-01 6.50885582e-01 -1.93564102e-01 2.74386019e-01 1.38430762e+00 4.38360265e-03 -3.68236810e-01 1.07414685e-01 1.54768825e+00 -4.91617918e-01 -1.14330709e+00 -4.35252279e-01 -5.12031138e-01 -2.46278659e-01 1.69130534e-01 -6.35139704e-01 -1.68422019e+00 1.25033760e+00 6.80658042e-01 -2.86269933e-02 1.45136774e+00 -1.16780382e-02 1.40606117e+00 -1.82952225e-01 4.99231219e-02 -7.05979466e-01 3.68364044e-02 3.75871330e-01 7.44308293e-01 -9.11048710e-01 -2.59592861e-01 -3.92903507e-01 -4.94285434e-01 1.22669935e+00 7.03159392e-01 -3.12164873e-01 9.61046040e-01 6.13718331e-01 1.32223845e-01 -2.69684225e-01 -6.18862569e-01 -4.40625697e-02 1.54225761e-02 3.81352454e-01 7.02524960e-01 -5.69266528e-02 -3.51610005e-01 7.31644630e-01 -1.10231087e-01 1.75193086e-01 1.17830358e-01 8.37297142e-01 -3.80211800e-01 -9.17017281e-01 -2.10664153e-01 7.34493911e-01 -5.87230027e-01 -3.78292412e-01 3.18585157e-01 5.44439137e-01 5.39362907e-01 4.40708667e-01 1.47394612e-01 -4.56238836e-01 3.53905708e-01 -1.62219703e-01 3.69652450e-01 -5.41877449e-01 -8.10819566e-01 4.09905702e-01 -2.99872369e-01 -5.42770684e-01 -2.71842808e-01 -4.48413998e-01 -1.61995471e+00 -2.89881639e-02 -1.69478357e-01 1.17795743e-01 2.30215237e-01 8.60629380e-01 3.43130231e-01 1.10971570e+00 4.03154820e-01 -4.16710794e-01 -3.26657146e-01 -1.06817782e+00 -5.75069845e-01 8.35226774e-02 4.65495855e-01 -3.55957657e-01 3.23593132e-02 4.25366266e-03]
[14.549463272094727, -2.5909957885742188]
46a26cf1-24fc-4046-aa71-766db36f87a0
mrn-a-locally-and-globally-mention-based
null
null
https://aclanthology.org/2021.findings-acl.117
https://aclanthology.org/2021.findings-acl.117.pdf
MRN: A Locally and Globally Mention-Based Reasoning Network for Document-Level Relation Extraction
null
['Donghong Ji', 'Yafeng Ren', 'Hao Fei', 'Fei Li', 'Kang Xu', 'Jingye Li']
null
null
null
null
findings-acl-2021-8
['document-level-relation-extraction']
['natural-language-processing']
[-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01 -8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01 -2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00 -3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01 -9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01 7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01 7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00 -1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01 3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01 9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01 5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00 -5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01 1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00 7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01 -1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02 -1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01 1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00 1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01 3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01 8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01 9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01 -9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01 -1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01 -2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01 -8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00 1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01 8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00 -6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01 -6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01 3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01 4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02 4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01 1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01 9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01 -1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01 -7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00 -1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02 1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01 -1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01 -1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01 -4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01 -1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01 6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01 -1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00 -7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01 -1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01 3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01 -1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01 1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01 3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00 -2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01 2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01 -1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01 4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01 2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00 1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01 -3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00 7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01 3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01 -2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01 7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01 -2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01 6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00 7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00 -3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01 -6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00 3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01 1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01 -5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01 -5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01 -2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01 -1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01 5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01 -2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01 -4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01 5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01 -6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00 1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01 8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02 -6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01 -1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01 1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01 8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03 3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01 8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01 -1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01 6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01 -9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01 -1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00 -5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02 -5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01 1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01 -4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01 1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01 6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01 5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01 1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01 1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01 1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01 1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00 -8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01 -1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01 6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01 4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00 -1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00 -7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00 2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01 -4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02 1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01 3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01 9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01 7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01 6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01 1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01 -1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00 3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01 9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01 -4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01 4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00 2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01 5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01 2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01 -2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01 -6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01 -1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01 -5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01 -1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00 -6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01 -1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01 1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02 1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01 5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01 -4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01 -1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01 6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01 7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01 1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01 1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01 8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01 8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00 -4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01 -5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02 5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01 -2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00 -3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01 6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01 5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00 3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01 -8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00 -8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01 3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01 -3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05 -1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01 8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02 6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01 5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00 1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01 2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02 -1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01 -4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02 9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01 -8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02 7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01 -3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01 -1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01 -1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01 -2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01 1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03 6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01 -4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01 9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01 8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01 1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01 -1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01 8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01 5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01 9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01 -4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01 1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01 -9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00 5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01 -7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00 -6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01 -5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01 -5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01 4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01 -9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00 -8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00 -5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01 -2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00 -3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02 2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01]
[-7.357705593109131, 3.7358553409576416]
e46f73ca-26bc-44e9-8e04-85d8a56071b0
logical-tasks-for-measuring-extrapolation-and
2211.07727
null
https://arxiv.org/abs/2211.07727v1
https://arxiv.org/pdf/2211.07727v1.pdf
Logical Tasks for Measuring Extrapolation and Rule Comprehension
Logical reasoning is essential in a variety of human activities. A representative example of a logical task is mathematics. Recent large-scale models trained on large datasets have been successful in various fields, but their reasoning ability in arithmetic tasks is limited, which we reproduce experimentally. Here, we recast this limitation as not unique to mathematics but common to tasks that require logical operations. We then propose a new set of tasks, termed logical tasks, which will be the next challenge to address. This higher point of view helps the development of inductive biases that have broad impact beyond the solution of individual tasks. We define and characterize logical tasks and discuss system requirements for their solution. Furthermore, we discuss the relevance of logical tasks to concepts such as extrapolation, explainability, and inductive bias. Finally, we provide directions for solving logical tasks.
['Ryota Kanai', 'Ippei Fujisawa']
2022-11-14
null
null
null
null
['logical-reasoning']
['reasoning']
[ 1.29481256e-01 4.05861676e-01 -7.07569271e-02 -5.82177579e-01 -2.19988599e-01 -4.85483766e-01 7.48125136e-01 2.71265626e-01 -1.22152641e-01 8.71678948e-01 1.78951502e-01 -7.03865647e-01 -6.55147135e-01 -1.01380694e+00 -9.17264640e-01 -2.19227687e-01 -7.89881200e-02 6.09800994e-01 -8.99201259e-02 -3.32940310e-01 7.53627419e-01 4.65522528e-01 -1.30065262e+00 5.93112767e-01 1.17577648e+00 8.20873082e-01 -1.58908680e-01 3.96930844e-01 -1.44671187e-01 1.58732665e+00 -6.34325504e-01 -5.05123138e-01 -1.31121427e-01 -3.45898628e-01 -1.29869604e+00 -5.06535411e-01 5.97673893e-01 -3.26236755e-01 -9.69785079e-03 1.02676475e+00 1.64892018e-01 2.61288166e-01 8.66654932e-01 -1.65369022e+00 -9.59295273e-01 1.05075943e+00 1.30579352e-01 3.57857614e-04 5.64595282e-01 2.22037052e-04 1.16954875e+00 -7.70982325e-01 4.29436058e-01 1.52537763e+00 8.15926313e-01 4.75428075e-01 -1.25416446e+00 -6.09633029e-01 4.08105701e-01 5.94007671e-01 -1.15512288e+00 -3.58930588e-01 7.01607823e-01 -4.68300849e-01 1.03362155e+00 2.33426318e-01 7.43663192e-01 9.36799407e-01 3.41801077e-01 8.10362399e-01 1.40741932e+00 -4.50331122e-01 4.44793880e-01 -8.83474723e-02 5.08838058e-01 6.72299922e-01 5.86455166e-01 -1.21006288e-01 -7.02024817e-01 3.76124606e-02 7.81269610e-01 -3.87875289e-01 -1.87324852e-01 -3.50414544e-01 -1.34889197e+00 8.30773115e-01 3.19286197e-01 2.73593187e-01 -1.79625198e-01 5.33102691e-01 1.48907647e-01 4.94736224e-01 9.89225134e-02 1.05767429e+00 -4.12805647e-01 2.28216246e-01 -7.04397559e-01 7.65329301e-01 1.03711069e+00 9.82442498e-01 3.32998812e-01 -1.43305257e-01 -1.73670724e-01 1.93205550e-01 2.88980186e-01 3.18161368e-01 4.72815381e-03 -1.30422831e+00 4.06925350e-01 5.71645677e-01 4.77345884e-02 -8.76185834e-01 -6.75535142e-01 -3.68287414e-01 -6.39136732e-01 2.09580630e-01 7.20727444e-01 2.81195432e-01 -3.26036036e-01 1.88151133e+00 3.39374617e-02 3.54509540e-02 -1.01635214e-02 5.44653773e-01 7.87683666e-01 3.16797197e-01 4.19980884e-01 -8.73069465e-03 1.26460719e+00 -6.71077490e-01 -8.43535006e-01 -2.62155622e-01 7.78567016e-01 -5.13192177e-01 1.17462218e+00 6.91264153e-01 -1.47575319e+00 -4.23111647e-01 -9.76535976e-01 -5.48223972e-01 -6.33218586e-01 -1.23207845e-01 1.32933986e+00 5.21950781e-01 -1.02660942e+00 6.32431328e-01 -4.12648708e-01 -2.36268893e-01 4.85345095e-01 2.54069090e-01 7.51324371e-02 -2.44713575e-02 -1.50949240e+00 1.56520069e+00 4.66437221e-01 7.49768913e-02 -6.69228017e-01 -9.12208140e-01 -9.16993558e-01 3.76485288e-01 4.21921253e-01 -9.44892108e-01 1.29577672e+00 -5.04515886e-01 -1.00797355e+00 9.70993698e-01 -3.10313076e-01 -6.42862856e-01 5.69777906e-01 -2.85292059e-01 -1.27932459e-01 -9.55063924e-02 -2.25510914e-02 6.51582181e-01 4.82418835e-01 -1.14936042e+00 -1.97896972e-01 -1.03761248e-01 5.89076757e-01 9.36721340e-02 -4.74734977e-02 6.84521198e-02 3.85905027e-01 -6.15572631e-01 2.63195246e-01 -5.43794096e-01 2.14440413e-02 1.58853382e-01 -2.80755877e-01 -6.60396397e-01 2.39853695e-01 -2.83952802e-01 1.40809691e+00 -1.74549890e+00 3.09483498e-01 1.53589904e-01 4.30372745e-01 -2.33298615e-01 4.54401933e-02 2.39529356e-01 -2.26215795e-01 4.44018036e-01 -9.70383584e-02 1.00152723e-01 5.92599273e-01 -1.62308998e-02 -6.31848276e-01 1.35106668e-02 4.32869136e-01 1.32790279e+00 -1.02734673e+00 -7.17226803e-01 1.16498679e-01 -1.32423893e-01 -6.51035130e-01 6.29721656e-02 -6.95955038e-01 2.35476792e-02 -3.06450278e-01 6.31811798e-01 5.60689449e-01 -5.33532858e-01 3.00474018e-01 -2.53246650e-02 1.51316926e-01 8.29775512e-01 -1.12145686e+00 1.36010396e+00 -4.19896811e-01 6.52883530e-01 -3.04645181e-01 -1.08350074e+00 6.69805348e-01 6.14318140e-02 -7.69429281e-02 -3.93162429e-01 1.04757965e-01 1.34613112e-01 4.47370768e-01 -6.93964064e-01 5.18295109e-01 -4.13745493e-01 -1.38093129e-01 7.70583391e-01 -7.78886825e-02 -8.55452836e-01 4.10813481e-01 3.57181281e-01 1.01519907e+00 3.47239166e-01 5.87592542e-01 -4.96698827e-01 4.98313725e-01 1.61423236e-01 2.07536802e-01 9.82704461e-01 -1.87751636e-01 6.12500459e-02 8.15361261e-01 -5.59702218e-01 -8.59726429e-01 -1.18373048e+00 -3.41475874e-01 1.16273844e+00 1.24738842e-01 -4.35750365e-01 -5.32898068e-01 -4.62920487e-01 2.03099847e-01 1.15416384e+00 -5.44789612e-01 -2.66063809e-01 -6.19389653e-01 -5.69063842e-01 6.99648499e-01 6.82594836e-01 4.13526118e-01 -1.19101357e+00 -5.89406371e-01 -4.20188084e-02 -3.78742903e-01 -1.10842705e+00 4.67821985e-01 3.33301395e-01 -1.16039002e+00 -1.33684540e+00 8.26030746e-02 -7.03557432e-01 6.61998391e-01 -4.22020443e-03 1.66877437e+00 4.24482852e-01 8.44533518e-02 3.95117730e-01 -8.28856155e-02 -7.55472839e-01 -3.09402704e-01 -1.62259750e-02 -8.72646794e-02 -8.08687866e-01 6.57474935e-01 -5.00660956e-01 -2.36007734e-03 1.02253050e-01 -6.96483195e-01 2.97748595e-01 4.33096230e-01 6.73941493e-01 1.28125370e-01 2.53210694e-01 6.10478818e-01 -9.29118037e-01 1.00064266e+00 -4.80829418e-01 -4.40837890e-01 5.87721527e-01 -4.72973675e-01 2.27901205e-01 6.30649269e-01 -4.01372641e-01 -1.11515701e+00 -4.69056934e-01 1.80795699e-01 1.62486687e-01 -1.53205525e-02 6.19993627e-01 -7.48073906e-02 -1.39872795e-02 6.77484751e-01 -8.69137943e-02 -2.61521995e-01 -1.66453123e-02 3.70686710e-01 -1.83907934e-02 1.34870097e-01 -1.49320090e+00 7.68319786e-01 3.04507822e-01 5.19105196e-01 -6.53153479e-01 -1.25115967e+00 3.16413373e-01 -5.08022845e-01 -1.44520715e-01 6.56527877e-01 -8.30304623e-01 -1.15018868e+00 2.77496397e-01 -1.36395657e+00 -7.98422337e-01 -3.73367667e-01 4.30528849e-01 -8.21296453e-01 2.02152893e-01 -6.32537365e-01 -8.59169066e-01 1.15083404e-01 -9.22575235e-01 7.15946496e-01 3.78361046e-02 -9.82752204e-01 -1.33956981e+00 -4.09927964e-01 4.39248383e-01 3.58990520e-01 2.33303811e-02 1.64364159e+00 -6.40674651e-01 -9.92638052e-01 1.93837121e-01 -3.96913320e-01 1.83455780e-01 -4.41822201e-01 -5.30306846e-02 -8.29878211e-01 3.15339327e-01 1.55779123e-01 -9.25082505e-01 8.83116961e-01 3.87948066e-01 1.58090341e+00 3.94597761e-02 -1.90160260e-01 4.68734086e-01 1.05787003e+00 -4.55715246e-02 7.96191216e-01 4.06688541e-01 3.79566014e-01 7.94802964e-01 6.85621202e-01 1.95419982e-01 7.58034110e-01 2.36758932e-01 9.04688761e-02 2.49410033e-01 -8.87049828e-03 -2.99817830e-01 1.54092610e-01 5.47069848e-01 -4.17642444e-01 9.69998015e-04 -1.15350485e+00 2.86023051e-01 -1.89094198e+00 -1.18582630e+00 -2.94387937e-01 1.87523544e+00 1.09882665e+00 4.07910854e-01 -2.66409814e-01 4.00142789e-01 3.37593853e-01 8.54758769e-02 -3.16289008e-01 -6.41764581e-01 -9.17233229e-02 5.92228115e-01 -1.62073210e-01 7.32411623e-01 -8.80857408e-01 1.16154349e+00 8.04996395e+00 5.18604636e-01 -6.25723898e-01 -1.35788590e-01 5.99978566e-01 2.50848513e-02 -5.81734180e-01 1.90215498e-01 -6.57470822e-01 4.96863462e-02 7.29500055e-01 -1.35248005e-01 5.93130589e-01 8.84149253e-01 -1.82569902e-02 -3.79547626e-01 -1.96149242e+00 4.71946567e-01 1.11205034e-01 -1.15592229e+00 1.84601694e-01 -2.25424424e-01 6.73249006e-01 -7.02197909e-01 8.99505243e-02 6.25035763e-01 5.85985601e-01 -1.53223026e+00 8.91608238e-01 4.92835730e-01 5.39347589e-01 -3.82970661e-01 5.97526431e-01 3.36661518e-01 -8.07075083e-01 -1.15400836e-01 -3.45647693e-01 -1.00689471e+00 -4.22336459e-02 5.90830564e-01 -4.21747833e-01 1.28320888e-01 4.26272988e-01 5.66904247e-01 -6.47672892e-01 7.12249041e-01 -9.95122552e-01 1.85910329e-01 -7.61864260e-02 -3.91518384e-01 -1.65870696e-01 -5.62691092e-02 -2.11234726e-02 1.05377424e+00 1.56005502e-01 2.64407128e-01 -1.92584962e-01 1.40693820e+00 8.06351751e-03 -3.59525770e-01 -7.10000336e-01 -6.75306171e-02 7.70883322e-01 7.49657035e-01 -4.95132118e-01 -5.02954245e-01 -2.47410983e-01 4.53293025e-01 6.55569732e-01 3.93003553e-01 -1.13917160e+00 -1.98189795e-01 7.03656912e-01 -1.83071829e-02 -3.42991680e-01 -3.49443436e-01 -1.09644902e+00 -1.35280204e+00 -9.30522289e-03 -1.03624809e+00 2.99284816e-01 -1.10230434e+00 -1.33878565e+00 -2.00948745e-01 4.56148773e-01 -6.55900538e-01 -2.97785729e-01 -1.10222936e+00 -5.88166296e-01 7.80914187e-01 -1.56658769e+00 -9.82748508e-01 -5.15940905e-01 3.72130066e-01 2.92414010e-01 1.14993028e-01 8.88675570e-01 -2.27749377e-01 -1.85157418e-01 2.95909435e-01 -4.94108498e-01 1.42014831e-01 6.89746201e-01 -1.38578987e+00 3.69750589e-01 6.01177573e-01 -2.22334549e-01 1.16182899e+00 5.82144260e-01 -5.53129792e-01 -1.44582152e+00 -6.98950171e-01 1.52492654e+00 -8.18600118e-01 9.33682263e-01 -3.59197915e-01 -7.65486538e-01 1.19361305e+00 -7.58962557e-02 -3.59020084e-01 5.70719779e-01 6.96218610e-01 -6.02673709e-01 1.50060683e-01 -1.11488724e+00 8.43945205e-01 1.42309916e+00 -6.78931057e-01 -1.30559719e+00 4.55676377e-01 5.56368649e-01 -5.21467566e-01 -8.06629777e-01 3.81533653e-01 7.21865952e-01 -1.05263090e+00 1.32134473e+00 -9.54808652e-01 1.06575739e+00 -1.46480441e-01 1.23572710e-03 -1.15689385e+00 -5.55132151e-01 -1.85112283e-01 -3.35648447e-01 9.02272284e-01 2.98118234e-01 -7.08715618e-01 5.46763420e-01 9.48940396e-01 4.40467857e-02 -6.38520241e-01 -4.46171343e-01 -8.12462807e-01 6.66448951e-01 -7.80341387e-01 7.19327748e-01 1.31411684e+00 6.42533183e-01 3.46871853e-01 1.23484895e-01 -1.74189761e-01 7.48164356e-01 3.40439290e-01 6.33660257e-01 -1.54275453e+00 -4.16667126e-02 -7.94824600e-01 -1.12760760e-01 -1.00807261e+00 7.29447484e-01 -1.20851636e+00 -1.52871430e-01 -1.74017274e+00 2.23280475e-01 -6.94997072e-01 -1.12888731e-01 3.78452033e-01 -2.41673112e-01 -1.80472329e-01 2.76125610e-01 -1.74597859e-01 -6.90952659e-01 1.93359703e-01 1.31338036e+00 -2.02736914e-01 2.17748970e-01 -2.66291350e-01 -1.03959846e+00 9.86936271e-01 1.01585937e+00 -2.11482748e-01 -4.62402165e-01 -6.38039172e-01 8.45248520e-01 -2.73837715e-01 5.71457922e-01 -1.03579843e+00 2.23110959e-01 -7.31542110e-01 6.50455773e-01 -3.56053472e-01 2.52804101e-01 -7.08530009e-01 -2.18292654e-01 5.31192005e-01 -6.94205165e-01 9.30926725e-02 1.62657067e-01 5.30524831e-03 -3.85308191e-02 -3.56628776e-01 6.32238209e-01 -3.77318859e-01 -6.94641232e-01 -4.83510882e-01 -3.40059698e-01 3.27239633e-01 9.91428256e-01 1.28312223e-02 -7.69066811e-01 -2.95637846e-01 -6.71575665e-01 5.44840097e-01 3.12469095e-01 8.31744522e-02 6.71595633e-01 -1.28490102e+00 -5.79626262e-01 -8.06969479e-02 -9.26300064e-02 2.26167873e-01 -8.16888884e-02 8.64369035e-01 -6.02292836e-01 7.39044487e-01 -3.21959376e-01 -2.00401306e-01 -9.46836531e-01 6.98968112e-01 2.25416079e-01 -4.44618732e-01 -1.55034825e-01 8.53749692e-01 2.79173732e-01 -5.05676687e-01 4.10555720e-01 -9.14325118e-01 -5.21291345e-02 -3.91092077e-02 4.79708165e-01 4.96790111e-01 -2.36181244e-01 1.40154719e-01 -4.45279568e-01 5.63129127e-01 2.40023777e-01 6.79985955e-02 1.12257910e+00 2.35798389e-01 -6.73085093e-01 6.76125526e-01 3.79200369e-01 -3.11096400e-01 -5.45013368e-01 -1.47250384e-01 2.25350067e-01 -2.12056175e-01 -3.25346112e-01 -1.03266454e+00 -2.01108620e-01 1.20781159e+00 -3.31374466e-01 1.99708790e-01 9.75422263e-01 2.73474716e-02 1.77587181e-01 1.00038517e+00 4.76909578e-01 -1.14503539e+00 8.23484138e-02 1.01078534e+00 9.80699599e-01 -1.36998570e+00 5.14349461e-01 -6.96720541e-01 -3.52338314e-01 1.30562711e+00 8.06922495e-01 -1.04515284e-01 5.38009107e-01 4.13424134e-01 -3.90895128e-01 -3.40584815e-01 -9.86432254e-01 -1.66855663e-01 3.68689932e-02 6.05177462e-01 9.65578556e-01 1.05090469e-01 -4.86644715e-01 6.77988172e-01 -5.81779122e-01 4.11549807e-01 4.38708037e-01 1.07502222e+00 -4.59456116e-01 -9.03278887e-01 -6.28432930e-01 3.60679746e-01 -5.73736541e-02 -3.96757931e-01 -6.20382071e-01 9.85992134e-01 2.47275710e-01 8.30515921e-01 2.01940045e-01 -1.08212046e-01 1.22454502e-02 4.45399612e-01 1.18612230e+00 -5.36898017e-01 -6.26771867e-01 -7.45648265e-01 3.57232600e-01 -4.40524429e-01 -3.10272992e-01 -5.74369788e-01 -1.28386319e+00 -8.94232571e-01 8.49517807e-02 -1.99727342e-02 3.19633216e-01 1.11805475e+00 -1.85684696e-01 7.05410600e-01 -2.45232597e-01 -5.80271423e-01 -8.26027334e-01 -8.77468228e-01 -3.38639885e-01 3.70589495e-01 -1.05704218e-02 -7.11361349e-01 -4.12314773e-01 1.29221261e-01]
[9.416400909423828, 7.257997989654541]
1724840a-c545-4cb3-935e-65a9b8257bba
beyond-statistical-similarity-rethinking
2302.02913
null
https://arxiv.org/abs/2302.02913v3
https://arxiv.org/pdf/2302.02913v3.pdf
Beyond Statistical Similarity: Rethinking Metrics for Deep Generative Models in Engineering Design
Deep generative models, such as Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), Diffusion Models, and Transformers, have shown great promise in a variety of applications, including image and speech synthesis, natural language processing, and drug discovery. However, when applied to engineering design problems, evaluating the performance of these models can be challenging, as traditional statistical metrics based on likelihood may not fully capture the requirements of engineering applications. This paper doubles as a review and a practical guide to evaluation metrics for deep generative models (DGMs) in engineering design. We first summarize well-accepted `classic' evaluation metrics for deep generative models grounded in machine learning theory and typical computer science applications. Using case studies, we then highlight why these metrics seldom translate well to design problems but see frequent use due to the lack of established alternatives. Next, we curate a set of design-specific metrics which have been proposed across different research communities and can be used for evaluating deep generative models. These metrics focus on unique requirements in design and engineering, such as constraint satisfaction, functional performance, novelty, and conditioning. We structure our review and discussion as a set of practical selection criteria and usage guidelines. Throughout our discussion, we apply the metrics to models trained on simple 2-dimensional example problems. Finally, to illustrate the selection process and classic usage of the presented metrics, we evaluate three deep generative models on a multifaceted bicycle frame design problem considering performance target achievement, design novelty, and geometric constraints. We publicly release the code for the datasets, models, and metrics used throughout the paper at decode.mit.edu/projects/metrics/.
['Faez Ahmed', 'Dan Gutfreund', 'Akash Srivastava', 'Lyle Regenwetter']
2023-02-06
null
null
null
null
['speech-synthesis']
['speech']
[ 1.09597392e-01 -7.17855478e-03 -1.21663019e-01 1.21939415e-02 -4.77004915e-01 -6.16173029e-01 6.21743083e-01 -3.89384985e-01 2.20553741e-01 8.76197934e-01 1.14284150e-01 -2.94538945e-01 -5.44838071e-01 -7.25212514e-01 -5.12697935e-01 -7.38700509e-01 1.83076844e-01 2.92457551e-01 -2.68287599e-01 -1.62636355e-01 1.09235235e-01 6.54658079e-01 -1.38316703e+00 3.58434208e-02 6.83910191e-01 1.04229391e+00 -7.68357813e-02 4.45852965e-01 2.47003406e-01 5.63373744e-01 -8.32848012e-01 -4.80410010e-01 -6.96242154e-02 -8.07769060e-01 -4.77194190e-01 1.42323785e-02 -1.95245042e-01 -1.16667025e-01 -2.83934534e-01 6.62902534e-01 9.81716871e-01 -1.60171855e-02 1.18189681e+00 -1.35226142e+00 -1.15129149e+00 4.27940130e-01 4.62439544e-02 -9.82328877e-02 3.42204422e-01 3.46078962e-01 1.02331018e+00 -9.83133435e-01 4.91601646e-01 9.24143076e-01 7.47400522e-01 7.95022309e-01 -1.15986443e+00 -4.24917847e-01 -7.26113841e-02 4.89203222e-02 -1.41610777e+00 -4.35763568e-01 9.35040891e-01 -7.26307094e-01 1.02151680e+00 3.47752869e-01 6.77760899e-01 1.34787476e+00 5.51489115e-01 7.27926016e-01 8.38106871e-01 -3.19506168e-01 5.72836339e-01 6.63244724e-02 -2.58645028e-01 4.63289648e-01 1.30999073e-01 4.99820173e-01 -3.46384943e-01 -1.13801651e-01 9.71222937e-01 -1.70954540e-01 -1.70773089e-01 -4.33343083e-01 -8.31516385e-01 1.04349709e+00 1.21761322e-01 4.70373839e-01 -4.02939528e-01 5.54598033e-01 1.66845396e-01 2.31475055e-01 2.15287149e-01 6.52642548e-01 -2.01457903e-01 -2.89486915e-01 -8.15114260e-01 5.17290533e-01 7.21942782e-01 1.15653765e+00 3.44585419e-01 7.23742247e-01 -2.46664494e-01 9.24280584e-01 5.23345709e-01 4.05417860e-01 2.04646587e-01 -8.91966939e-01 -2.27473184e-01 5.19280508e-02 -5.32761700e-02 -9.19141114e-01 -3.33703458e-01 -6.91414952e-01 -8.50698113e-01 2.17875823e-01 -4.88729142e-02 -3.99664015e-01 -8.93021822e-01 1.66981912e+00 5.81642240e-02 -2.80618042e-01 -1.59513444e-01 7.75289595e-01 1.15656650e+00 4.48632747e-01 -8.86065662e-02 -2.82830417e-01 9.96505201e-01 -5.70625007e-01 -7.29422569e-01 3.15064117e-02 1.81849003e-01 -1.03361356e+00 8.91300380e-01 4.41789150e-01 -1.18972325e+00 -5.42805493e-01 -1.08018136e+00 2.65545338e-01 -3.73780102e-01 8.14964026e-02 7.42614985e-01 1.18337047e+00 -9.77557540e-01 6.62253678e-01 -7.34567404e-01 -1.79638892e-01 4.56119299e-01 2.87622660e-01 3.44192952e-01 9.68603864e-02 -1.14694929e+00 9.09808338e-01 -1.82204098e-01 1.02387629e-01 -1.41942811e+00 -9.30774868e-01 -7.48623550e-01 -3.38616110e-02 3.02753210e-01 -1.05257142e+00 1.15136003e+00 -5.01965582e-01 -1.84749603e+00 4.30872381e-01 3.42138678e-01 -1.33622408e-01 4.34369475e-01 -2.93561727e-01 -4.74409014e-01 -4.78622705e-01 -3.09450448e-01 3.92812937e-01 7.10534811e-01 -1.26254225e+00 -9.27466005e-02 1.22140795e-01 1.82921037e-01 -3.01713318e-01 -6.54948950e-02 -8.36603791e-02 -7.39235431e-02 -9.46668267e-01 -3.39278847e-01 -9.21406090e-01 -3.68973464e-01 -2.20750645e-01 -6.97571099e-01 -1.18120819e-01 6.46902263e-01 -3.36120307e-01 1.66221571e+00 -1.93492389e+00 4.82726902e-01 2.86245286e-01 8.27108696e-02 1.40018657e-01 9.03667882e-02 8.12781036e-01 -1.42332926e-01 1.96878538e-01 -4.11364526e-01 -4.30850834e-02 3.99519682e-01 1.05474554e-01 -9.95754078e-02 4.55995530e-01 3.46479058e-01 1.32978022e+00 -4.99537706e-01 2.21010707e-02 4.13951755e-01 7.26164103e-01 -7.87690878e-01 5.68863870e-05 -4.02077228e-01 3.70119691e-01 -5.17004073e-01 7.14334011e-01 1.34095863e-01 -1.71570599e-01 1.21341668e-01 -2.86935389e-01 1.61467895e-01 8.73273835e-02 -1.11073184e+00 1.47576809e+00 -6.69321120e-01 6.09193921e-01 -3.20397466e-01 -9.99590397e-01 9.62738931e-01 3.50769132e-01 6.66612923e-01 -5.74269533e-01 3.25464070e-01 2.84532934e-01 1.56581745e-01 -3.32389176e-01 1.93615377e-01 -2.95835286e-01 -3.04770738e-01 4.86120164e-01 1.13780767e-01 -5.35840631e-01 1.30647436e-01 -2.00340644e-01 1.02468419e+00 2.31118023e-01 1.46792337e-01 -2.92059809e-01 3.59320492e-01 -3.37478042e-01 3.49191815e-01 3.60569537e-01 1.40475288e-01 7.40158916e-01 5.83861887e-01 -2.29461759e-01 -1.32865334e+00 -1.05774498e+00 -1.62270412e-01 6.31971419e-01 -2.29096666e-01 -5.45750916e-01 -7.23345935e-01 -2.14757994e-01 -6.62011513e-03 8.83978724e-01 -7.49436200e-01 -4.42624450e-01 -3.81674200e-01 -9.75018442e-01 4.70460445e-01 7.07771599e-01 7.36657977e-02 -9.32114482e-01 -6.06915891e-01 3.49248677e-01 3.55502307e-01 -7.97867835e-01 -2.85314500e-01 2.79909838e-02 -5.39095640e-01 -9.04237866e-01 -8.89268339e-01 -5.42045832e-01 2.80993164e-01 -4.15527940e-01 1.25622964e+00 -2.59045437e-02 -5.79620719e-01 6.67795956e-01 -2.06646487e-01 -4.00652587e-01 -7.40577459e-01 -6.21275492e-02 1.11608423e-01 -3.14646333e-01 1.73339415e-02 -7.84104407e-01 -6.99625611e-01 5.61832905e-01 -9.66279745e-01 -1.46275371e-01 5.52759230e-01 1.01340222e+00 5.90263128e-01 -4.40791585e-02 8.77204835e-01 -5.50552666e-01 9.75653708e-01 -3.75437975e-01 -4.22389537e-01 1.85238495e-01 -8.55551541e-01 3.96564342e-02 3.27196598e-01 -4.30550635e-01 -7.34766245e-01 -3.35834652e-01 -5.37446797e-01 -4.89318430e-01 4.63813879e-02 7.38895595e-01 -4.00409549e-01 -2.30584876e-03 7.51974404e-01 8.31014141e-02 4.59634745e-03 -3.54565769e-01 5.08572698e-01 4.08992141e-01 1.25525564e-01 -7.73593903e-01 6.76103532e-01 1.42317349e-02 1.92908332e-01 -8.33074629e-01 -2.17831597e-01 2.51903057e-01 -1.65549517e-01 -3.52947295e-01 6.86337411e-01 -4.55280423e-01 -7.74430811e-01 2.62733281e-01 -1.02758551e+00 -2.49194294e-01 -6.60631716e-01 2.85407007e-01 -1.10144484e+00 2.70714555e-02 -5.64365268e-01 -8.19218636e-01 -2.99987525e-01 -1.50531256e+00 9.00879443e-01 1.92906797e-01 -5.22691905e-01 -1.23723483e+00 3.70490067e-02 -7.31427073e-02 7.61902809e-01 7.05767393e-01 1.23758698e+00 -2.30209514e-01 -5.69446325e-01 -1.31879300e-01 4.51991051e-01 5.38032949e-01 2.13869840e-01 3.41229200e-01 -8.30767393e-01 -5.76888397e-02 -2.45869830e-02 -6.08841889e-02 3.96759659e-01 9.15042102e-01 1.00591183e+00 -1.60507113e-01 -2.27452740e-01 4.98647362e-01 1.41379678e+00 6.23944044e-01 8.99304807e-01 -1.10296952e-02 5.60509801e-01 4.48654234e-01 2.05601051e-01 6.15816772e-01 -2.18075305e-01 7.79555261e-01 3.40604514e-01 -3.73511552e-03 -2.55308956e-01 -4.93632965e-02 3.45757723e-01 7.41348863e-01 -3.63461554e-01 -5.39139152e-01 -6.19334996e-01 3.12332690e-01 -1.57688129e+00 -8.07841957e-01 9.20542330e-02 2.00123429e+00 5.77659905e-01 1.18639663e-01 3.26208115e-01 2.00715825e-01 5.54491043e-01 -9.20420140e-02 -6.15157902e-01 -5.71917534e-01 -5.69177791e-02 6.29051208e-01 2.04745904e-01 2.80781537e-01 -7.09143102e-01 5.86490035e-01 7.56061172e+00 1.11800528e+00 -1.10305548e+00 1.90075308e-01 8.38613451e-01 -2.61082292e-01 -7.82965660e-01 -1.70149088e-01 -5.58023214e-01 3.05521846e-01 1.00121868e+00 -3.58448744e-01 3.38100672e-01 8.74652624e-01 1.88576415e-01 3.23017597e-01 -1.45695233e+00 9.54938054e-01 -1.54776707e-01 -1.66185737e+00 -7.72647262e-02 3.36974561e-01 9.43027079e-01 -4.19892907e-01 6.31260395e-01 1.55652285e-01 1.90341696e-01 -1.44353831e+00 8.69665444e-01 5.31940877e-01 1.03507411e+00 -9.12583232e-01 4.47457105e-01 -1.47328079e-01 -8.58092427e-01 1.05109503e-02 -8.49689767e-02 1.03636928e-01 4.89581347e-01 6.99130952e-01 -3.90375376e-01 6.17289722e-01 3.16877127e-01 5.92534661e-01 2.41120812e-02 9.14270282e-01 -2.09453717e-01 5.19997716e-01 -2.59350896e-01 -4.08439726e-01 1.44683868e-01 -1.08192042e-01 5.68231642e-01 9.37406063e-01 5.41959584e-01 -8.26523006e-02 -3.41277063e-01 1.64996159e+00 2.29004592e-01 -5.71169294e-02 -5.79838932e-01 -3.93460035e-01 3.97447050e-01 7.95608997e-01 -4.61038738e-01 1.14675783e-01 -3.33661109e-01 4.56290334e-01 -6.14096045e-01 5.81351757e-01 -1.42977667e+00 -2.64829993e-01 1.01242769e+00 2.22207516e-01 1.58144295e-01 -3.51266742e-01 -4.51372653e-01 -6.02187276e-01 -1.68106169e-01 -1.08109343e+00 -7.74661377e-02 -6.34289861e-01 -1.16044545e+00 5.56333184e-01 2.93803781e-01 -1.29510128e+00 -6.79459453e-01 -7.99167752e-01 -4.73145485e-01 7.81731129e-01 -8.79029512e-01 -1.03702235e+00 -2.93028336e-02 8.08831006e-02 6.18725002e-01 -4.88325477e-01 7.77023792e-01 5.76066911e-01 -7.39191532e-01 6.63193047e-01 1.72601759e-01 -2.13553265e-01 1.22563548e-01 -8.84199977e-01 6.08691514e-01 5.94385564e-01 6.10223301e-02 6.39802873e-01 9.57865536e-01 -4.67843145e-01 -1.58220518e+00 -7.69935548e-01 2.12185025e-01 -3.62514943e-01 4.80543137e-01 -2.38639995e-01 -5.06512642e-01 4.35161024e-01 2.27367222e-01 -5.03025532e-01 8.01067591e-01 3.24423588e-03 1.95476532e-01 1.22034132e-01 -9.99905527e-01 6.53754890e-01 1.16202509e+00 -3.06107193e-01 -9.60481390e-02 3.22182655e-01 5.57507038e-01 -4.92454797e-01 -1.36760080e+00 5.40085495e-01 7.34858096e-01 -9.30379927e-01 1.12123251e+00 -6.33417904e-01 6.86496198e-01 -2.03830197e-01 -2.79295921e-01 -1.31799066e+00 -5.55570841e-01 -9.61552799e-01 -2.51672059e-01 1.21257210e+00 5.57012022e-01 -3.82032603e-01 6.57203078e-01 6.64162815e-01 -5.02316117e-01 -1.33222508e+00 -8.36107552e-01 -8.20622861e-01 3.25515002e-01 -6.94317997e-01 8.16788733e-01 6.43857002e-01 -2.84490526e-01 4.20556068e-01 -4.77758795e-01 -3.14627558e-01 3.00635070e-01 -6.84032440e-02 6.58409476e-01 -9.32907760e-01 -4.25505966e-01 -9.27129805e-01 -5.93440115e-01 -9.10413563e-01 -2.34160095e-01 -6.43134892e-01 -1.63456336e-01 -1.63427007e+00 -1.31236494e-01 -3.54233682e-01 4.31352807e-03 1.04781143e-01 2.93110818e-01 1.43159315e-01 9.36424360e-03 -1.32206842e-01 8.42727870e-02 9.03098464e-01 1.29282606e+00 -2.55573720e-01 -6.58653527e-02 1.10060208e-01 -8.18567872e-01 4.37408268e-01 6.18965268e-01 -8.78492370e-02 -6.04340494e-01 -1.30646601e-01 4.37898338e-01 -9.05394033e-02 3.98355186e-01 -1.05765212e+00 -1.83102280e-01 -3.01700652e-01 3.61238092e-01 -1.94195941e-01 3.64961505e-01 -6.93639815e-01 9.30088043e-01 5.41295230e-01 -9.78862941e-02 6.39270693e-02 2.85001248e-01 3.21439594e-01 -3.45515050e-02 -2.41778255e-01 8.43991756e-01 1.38714880e-01 -5.41208982e-01 3.00318509e-01 -4.52593148e-01 -1.30213737e-01 1.05135810e+00 -3.45426202e-01 -7.07616806e-02 -5.81583381e-01 -9.61818278e-01 -1.09154105e-01 3.43047470e-01 5.72559476e-01 8.17742646e-01 -1.61758184e+00 -7.10286200e-01 7.72672668e-02 -8.95574316e-02 -1.81875393e-01 3.03364515e-01 6.82784617e-01 -6.19779408e-01 5.88813305e-01 -2.08525747e-01 -6.44986808e-01 -7.25366831e-01 6.46774113e-01 6.27638876e-01 -5.44781722e-02 -2.52666593e-01 6.74848557e-01 4.26524401e-01 7.82519355e-02 -1.23840887e-02 -5.63512266e-01 1.42346725e-01 -1.91158131e-01 6.74221218e-02 4.00727630e-01 1.94310263e-01 -3.41259390e-01 -4.16995943e-01 6.65178657e-01 3.90500367e-01 -1.13049923e-02 1.44500887e+00 8.88395011e-02 2.36844987e-01 2.45939329e-01 9.66747999e-01 -3.16836119e-01 -1.03297770e+00 1.79383278e-01 -3.36517692e-01 1.67212337e-02 6.40151650e-02 -6.98473275e-01 -1.39886999e+00 8.21466148e-01 6.60321772e-01 3.17478865e-01 1.13736618e+00 1.17762983e-01 6.67376220e-01 -1.75906628e-01 2.76271641e-01 -1.01512051e+00 3.59603941e-01 3.66624117e-01 1.23456931e+00 -4.89849895e-01 2.98174494e-03 -3.40976536e-01 -4.72310871e-01 8.58854353e-01 3.78426909e-01 -9.47468206e-02 1.03036869e+00 5.07547081e-01 -4.18523997e-01 -3.06667477e-01 -6.25498235e-01 -1.96313597e-02 5.28472245e-01 7.67128646e-01 7.80887008e-01 1.07704513e-02 -4.20025021e-01 7.80576050e-01 -3.85568678e-01 -4.01223190e-02 2.58532852e-01 8.98005247e-01 -2.24061221e-01 -1.28218055e+00 -2.50023156e-01 4.03520405e-01 -3.49356681e-01 -8.03899914e-02 -2.68522024e-01 7.81342924e-01 1.46656990e-01 7.97517240e-01 -1.70251563e-01 -6.13041222e-01 6.10724628e-01 -9.38039795e-02 8.20364654e-01 -5.02464771e-01 -4.36253250e-01 1.95795089e-01 6.44627884e-02 -2.57694036e-01 -4.32612240e-01 -5.54306686e-01 -7.93205917e-01 -6.43993735e-01 -4.71618116e-01 -2.17940356e-03 7.49489307e-01 8.95953894e-01 4.35622066e-01 1.12073123e+00 4.23487872e-01 -6.68899894e-01 -3.50824922e-01 -8.64521444e-01 -5.15759230e-01 -1.36120860e-02 -1.83727499e-02 -1.06510282e+00 -2.37885490e-02 1.20523691e-01]
[5.833241939544678, 3.3213672637939453]
5532328a-d07b-4274-8d44-e036aa0202c6
nowcasting-the-2022-mpox-outbreak-in-england
2302.09076
null
https://arxiv.org/abs/2302.09076v1
https://arxiv.org/pdf/2302.09076v1.pdf
Nowcasting the 2022 mpox outbreak in England
In May 2022, a cluster of mpox cases were detected in the UK that could not be traced to recent travel history from an endemic region. Over the coming months, the outbreak grew, with over 3000 total cases reported in the UK, and similar outbreaks occurring worldwide. These outbreaks appeared linked to sexual contact networks between gay, bisexual and other men who have sex with men. Following the COVID-19 pandemic, local health systems were strained, and therefore effective surveillance for mpox was essential for managing public health policy. However, the mpox outbreak in the UK was characterised by substantial delays in the reporting of the symptom onset date and specimen collection date for confirmed positive cases. These delays led to substantial backfilling in the epidemic curve, making it challenging to interpret the epidemic trajectory in real-time. Many nowcasting models exist to tackle this challenge in epidemiological data, but these lacked sufficient flexibility. We have developed a novel nowcasting model using generalised additive models to correct the mpox epidemic curve in England, and provide real-time characteristics of the state of the epidemic, including the real-time growth rate. This model benefited from close collaboration with individuals involved in collecting and processing the data, enabling temporal changes in the reporting structure to be built into the model, which improved the robustness of the nowcasts generated.
['Thomas Ward', 'Charlie Turner', 'Rob Paton', 'Owen Jones', 'Julie Day', 'Fergus Cumming', 'Rachel Christie', 'Sam Abbott', 'Christopher E. Overton']
2023-02-17
null
null
null
null
['additive-models']
['methodology']
[ 1.93856955e-01 4.65963706e-02 5.29034296e-03 -1.75670177e-01 -4.42614913e-01 -6.05681539e-01 9.55768287e-01 8.48001063e-01 -7.04583049e-01 7.27136433e-01 6.32241666e-01 -4.97895598e-01 -6.21421874e-01 -9.37215686e-01 -3.16246986e-01 -5.00812471e-01 -8.89794707e-01 8.63145709e-01 2.50324845e-01 -3.02476227e-01 -1.35154977e-01 2.98880160e-01 -7.79632628e-01 4.08870913e-02 6.16413116e-01 2.18899220e-01 2.72266567e-01 9.32159901e-01 8.03874135e-02 3.75568122e-01 -7.58216619e-01 -2.53851473e-01 1.69177413e-01 -2.70483404e-01 -3.39971185e-01 -3.95300359e-01 -5.43468118e-01 -5.42024970e-01 -3.07670116e-01 3.14796090e-01 2.81396091e-01 -7.22210035e-02 5.65362096e-01 -1.30993974e+00 -1.24813192e-01 4.03587781e-02 -5.35727978e-01 6.09203339e-01 6.10446036e-01 2.85304964e-01 2.00593308e-01 -1.84254095e-01 1.09982026e+00 1.10909188e+00 1.25461864e+00 1.28337011e-01 -1.25232232e+00 -6.43129945e-01 -1.70704901e-01 -2.53355056e-01 -1.23566568e+00 -2.18485236e-01 1.69219859e-02 -4.37168926e-01 1.12479854e+00 6.11976802e-01 1.06785262e+00 1.00321651e+00 5.29646873e-01 -3.41955543e-01 1.07272410e+00 1.71396390e-01 -1.65547773e-01 -2.25706324e-02 -4.91873622e-01 7.85601735e-02 2.75207192e-01 4.43094224e-01 -1.51860505e-01 -8.86788130e-01 6.87286019e-01 5.80204606e-01 -1.72696427e-01 2.20959723e-01 -1.16533542e+00 9.84387875e-01 5.11885226e-01 1.26856253e-01 -8.18766296e-01 -7.40218610e-02 4.71930057e-01 2.73835033e-01 8.43104482e-01 -2.75635272e-02 -4.83617812e-01 -4.31539059e-01 -9.20538366e-01 4.15774316e-01 5.70602477e-01 2.62745410e-01 1.16328925e-01 -3.46406221e-01 2.69089937e-01 4.88515556e-01 4.52731818e-01 1.09079742e+00 -4.07615274e-01 -9.24642920e-01 5.84140360e-01 5.07473528e-01 3.77186179e-01 -1.48777270e+00 -8.44853997e-01 -8.38116258e-02 -8.47961724e-01 -2.58977085e-01 6.67454004e-01 -6.01365030e-01 -9.70102966e-01 1.52432680e+00 4.34919953e-01 3.23303938e-01 -6.22978905e-06 6.32501304e-01 -1.74530260e-02 1.18611288e+00 3.34722966e-01 -5.13895988e-01 1.26599586e+00 2.41303563e-01 -7.51710832e-01 -4.96246777e-02 5.86133063e-01 -8.27945828e-01 -1.67718425e-01 -4.33183797e-02 -9.40148175e-01 1.20120890e-01 -4.76578653e-01 8.48840237e-01 -4.67942446e-01 -9.74168479e-01 6.05666578e-01 6.03068888e-01 -1.13766181e+00 4.22039449e-01 -1.08415806e+00 -1.23023510e+00 1.50357574e-01 3.89328063e-01 -3.69714797e-01 -2.48792470e-01 -1.50681829e+00 8.57424021e-01 2.37463549e-01 4.68499959e-01 -2.76359797e-01 -9.30479050e-01 -7.81487226e-01 -2.72275388e-01 1.62129968e-01 -5.17841280e-01 8.53602648e-01 -1.95714742e-01 -3.82909358e-01 4.45365906e-01 -4.85319309e-02 -3.74956071e-01 5.65444291e-01 5.01525939e-01 -1.00453055e+00 3.16542871e-02 2.64583379e-01 2.11657569e-01 1.50270388e-01 -9.41350520e-01 -9.60073054e-01 -6.02159619e-01 -3.81227493e-01 5.15076444e-02 5.47507942e-01 6.44560754e-01 -2.31561184e-01 -5.96676171e-01 -4.81884658e-01 -8.24601889e-01 -5.57545543e-01 -4.51640844e-01 3.43932360e-01 2.03858495e-01 6.82142496e-01 -1.17938638e+00 1.10996783e+00 -1.97183204e+00 -4.91388112e-01 4.88326699e-01 8.64872113e-02 3.31362277e-01 1.22993156e-01 1.36330366e+00 4.04710323e-01 -2.32745428e-02 -3.20508748e-01 1.36543840e-01 -1.95633098e-01 6.86362505e-01 -3.65782380e-01 8.38149607e-01 2.80996859e-01 6.10313237e-01 -1.48521292e+00 -8.48021582e-02 1.28294855e-01 7.27067292e-01 -3.47548068e-01 1.90804020e-01 2.27821469e-01 5.15608132e-01 -1.06520392e-01 2.80859590e-01 8.84358287e-01 -1.89183634e-02 4.74524617e-01 8.41012180e-01 -3.95576000e-01 8.83757770e-02 -9.30782735e-01 6.64987504e-01 -2.29463652e-01 4.04933274e-01 7.35900104e-01 -4.57711846e-01 6.51953518e-01 6.48447216e-01 7.20279932e-01 -6.84500754e-01 -2.05832303e-01 2.29278460e-01 1.47836700e-01 -4.59938169e-01 6.49881423e-01 -2.09045514e-01 -9.06153172e-02 7.99608588e-01 -5.59801817e-01 1.22596428e-01 1.55645072e-01 3.61756414e-01 1.09640360e+00 -2.64824182e-01 6.21196590e-02 -2.55409777e-01 -2.42784008e-01 5.81963122e-01 6.22483194e-01 5.42483985e-01 -7.37016127e-02 2.16541499e-01 4.79320258e-01 -5.37681639e-01 -9.94729936e-01 -1.26402390e+00 -3.62454683e-01 7.07058609e-01 -2.98018515e-01 -4.16376948e-01 -2.73352653e-01 -6.84598014e-02 3.94538008e-02 5.00484228e-01 -8.77541065e-01 5.81662767e-02 -7.36436903e-01 -1.38111687e+00 5.69908977e-01 1.11918353e-01 2.86450654e-01 -8.53146791e-01 -7.53331482e-01 8.30338001e-01 -1.74259529e-01 -6.73732579e-01 -3.63662392e-01 -2.47501656e-02 -6.59055889e-01 -1.38744783e+00 -1.11163223e+00 -3.08711201e-01 8.47884595e-01 -1.17119374e-02 6.59311831e-01 8.79999548e-02 -5.44054627e-01 5.07752657e-01 9.47903693e-02 -6.52695954e-01 -6.70398355e-01 -4.55530703e-01 1.26940355e-01 -3.42952818e-01 2.14486033e-01 5.61413318e-02 -8.32910597e-01 1.99356019e-01 -1.04742157e+00 -3.94129366e-01 9.14879143e-02 3.51762384e-01 -1.02558911e-01 1.79191809e-02 9.47863400e-01 -8.62635612e-01 8.43608379e-01 -1.19428957e+00 -3.91233653e-01 -1.59053609e-01 -4.83373910e-01 -6.49477243e-01 2.05634281e-01 -2.44855449e-01 -1.08500135e+00 -6.26723230e-01 -1.12455912e-01 4.39734727e-01 -3.83504815e-02 8.12369347e-01 8.65855694e-01 5.82791686e-01 1.94291085e-01 8.18811655e-02 4.45588738e-01 -4.21242833e-01 -1.31150141e-01 9.32096243e-01 4.40443814e-01 1.31959110e-01 6.26276553e-01 6.99375510e-01 -1.43542081e-01 -1.19601083e+00 2.18284041e-01 -8.26287150e-01 -1.36808693e-01 -2.50795484e-01 7.30994582e-01 -7.31717229e-01 -7.55576849e-01 6.70555353e-01 -1.15546608e+00 -4.89615500e-01 1.33365884e-01 5.88074148e-01 -1.38157699e-03 -9.67265442e-02 -6.48243427e-01 -1.06064856e+00 -1.16741378e-02 -6.46339953e-01 6.42507553e-01 -1.52118087e-01 -7.44250476e-01 -1.60791337e+00 9.21217382e-01 -6.34332076e-02 9.69876528e-01 6.90497041e-01 7.66468763e-01 -6.04305685e-01 -1.24092102e-01 -2.97963351e-01 -5.58496177e-01 -4.52421486e-01 5.10506392e-01 4.63981787e-03 -2.83204257e-01 -5.97839177e-01 -1.89146698e-01 3.37301761e-01 3.76029134e-01 3.22881699e-01 -1.40827432e-01 -7.25472927e-01 -9.35763299e-01 2.10584328e-01 1.10154688e+00 5.68965554e-01 3.25540245e-01 1.69524372e-01 7.54792942e-03 1.05097997e+00 3.74860168e-01 5.20783603e-01 5.78378320e-01 6.38291895e-01 2.37007856e-01 -2.64985323e-01 3.60222936e-01 -6.90015405e-02 2.07092658e-01 6.63047910e-01 -4.76610661e-01 -1.42920122e-01 -1.28698349e+00 8.73567283e-01 -1.49624312e+00 -1.16029227e+00 -5.72787821e-01 2.38771200e+00 6.65123582e-01 -9.20218602e-03 4.39322919e-01 -4.66531932e-01 5.44336498e-01 1.90679118e-01 3.83545309e-02 -7.93470800e-01 3.41147840e-01 -2.35088214e-01 9.29282188e-01 7.29022324e-01 -6.55855238e-01 1.57023445e-02 7.54169464e+00 1.42700896e-01 -1.00351965e+00 8.29051808e-02 4.90760803e-01 4.90988083e-02 -2.45285317e-01 -1.29766315e-02 -4.40343380e-01 6.73451185e-01 1.54803288e+00 -2.96327591e-01 3.29569340e-01 -2.35469505e-01 8.78043175e-01 -2.86347985e-01 -2.12013736e-01 2.53821820e-01 -1.51178226e-01 -1.34864438e+00 -5.87980807e-01 6.58986270e-01 6.73918605e-01 4.30734098e-01 -2.83709437e-01 -2.35554371e-02 4.98386025e-01 -8.58202875e-01 -9.46716368e-02 7.03032553e-01 7.34651089e-01 -1.03145266e+00 9.36918318e-01 3.82734507e-01 -1.10291183e+00 1.03566796e-01 6.77597076e-02 -1.55822381e-01 8.77197087e-01 2.89858401e-01 -1.35524356e+00 3.54148358e-01 6.72229767e-01 2.99476594e-01 -2.02825904e-01 9.23022389e-01 4.23313230e-01 6.95918083e-01 -7.09050059e-01 2.67191619e-01 5.90374172e-01 -2.97595441e-01 6.52309179e-01 1.17676961e+00 4.37594026e-01 1.47313863e-01 -1.95737332e-01 3.85360628e-01 3.26528192e-01 -3.69025230e-01 -8.49971414e-01 -1.60668939e-01 1.77108735e-01 8.19393158e-01 -8.14613461e-01 -4.41170074e-02 -4.13791984e-01 7.24019051e-01 -2.69265473e-01 5.80376983e-01 -7.39971936e-01 -4.21421081e-01 9.14022982e-01 8.75085473e-01 1.09945893e-01 -2.06676230e-01 5.68606794e-01 -3.84901255e-01 -3.49203110e-01 -5.03897071e-01 5.45236826e-01 -3.19823891e-01 -9.39875245e-01 4.57879126e-01 4.11406815e-01 -5.33237934e-01 -9.05317783e-01 -7.03179045e-03 -7.22625494e-01 1.03601742e+00 -1.03856921e+00 -9.53036249e-01 3.87370229e-01 2.00036630e-01 2.66219527e-02 4.19612736e-01 9.47920084e-01 2.04938143e-01 -1.32833317e-01 -1.73506990e-01 7.34204173e-01 -6.30230084e-02 6.10449255e-01 -9.74944174e-01 6.89000487e-01 3.63389522e-01 -6.31752789e-01 1.05822277e+00 8.19642663e-01 -1.43566322e+00 -1.09907770e+00 -1.35414433e+00 1.59128845e+00 -4.36578184e-01 1.08759522e+00 -5.09816110e-01 -7.77738333e-01 9.13294375e-01 4.28362340e-01 -5.10132372e-01 6.39850736e-01 -7.22975954e-02 1.96865216e-01 1.59968212e-01 -1.34531498e+00 4.06329453e-01 5.79008520e-01 -2.61212140e-01 -5.55089116e-01 4.13968682e-01 5.08501172e-01 1.28086498e-02 -9.08759534e-01 2.06446648e-01 5.41326582e-01 -5.35601497e-01 8.72694314e-01 -4.83798444e-01 -2.89208770e-01 8.43842253e-02 3.92115742e-01 -1.56316781e+00 -2.38832578e-01 -9.56976771e-01 4.10689563e-01 1.16547573e+00 2.89352804e-01 -1.15458739e+00 3.18351835e-01 6.27763033e-01 3.43520552e-01 -4.53814477e-01 -1.23826516e+00 -7.10000336e-01 -2.20032841e-01 -2.97693163e-01 6.35358810e-01 8.51233840e-01 -1.43794388e-01 -3.08040172e-01 -4.44495499e-01 3.54529947e-01 6.04589581e-01 -2.55988330e-01 4.28424448e-01 -1.19120646e+00 2.56446563e-02 1.05731308e-01 -2.86910266e-01 -2.18091056e-01 -9.12550271e-01 -5.17943203e-01 -2.98620015e-01 -1.73937261e+00 1.72285914e-01 -6.70524001e-01 2.05910802e-01 2.18360588e-01 3.99083458e-02 3.72147858e-01 1.73511833e-01 2.33659998e-01 -3.25537100e-02 -4.20500152e-02 8.56121123e-01 1.94106977e-02 -4.77622807e-01 2.03575104e-01 -2.64003485e-01 5.28762579e-01 8.41449201e-01 -7.68761277e-01 -3.08301061e-01 -3.37584823e-01 7.28601396e-01 3.89616728e-01 6.43004000e-01 -5.73752403e-01 2.10068688e-01 -3.62853199e-01 3.90786350e-01 -8.97625446e-01 3.72616142e-01 -1.01803291e+00 1.07890368e+00 1.11013436e+00 2.46627718e-01 5.41695356e-01 4.56657529e-01 7.09046662e-01 2.44631842e-01 1.23656094e-01 1.71827763e-01 -3.89219671e-02 -3.54783945e-02 1.68868884e-01 -1.09461081e+00 1.60457358e-01 1.15946031e+00 -1.38864368e-01 -6.24249220e-01 -4.60713655e-01 -6.75010204e-01 6.01039112e-01 5.78122020e-01 3.21696937e-01 3.58296245e-01 -9.59538460e-01 -1.11280262e+00 2.88316250e-01 -1.55410618e-01 -3.69850695e-01 4.62289423e-01 1.09608066e+00 -9.80404556e-01 8.85971129e-01 -1.81852043e-01 -2.01953381e-01 -9.15535808e-01 6.51411057e-01 2.66862772e-02 -4.98583585e-01 -4.91995931e-01 3.89039479e-02 -2.59678155e-01 -7.97967553e-01 -9.23274606e-02 -1.49329320e-01 -1.05872964e-02 4.31858689e-01 9.14028704e-01 6.83665872e-01 -2.73489475e-01 -1.03346670e+00 -6.71020269e-01 9.09342915e-02 1.50460824e-02 -3.05715412e-01 1.72165024e+00 -4.00986254e-01 -2.39991397e-02 4.07384992e-01 1.18053353e+00 2.09617447e-02 -1.35417783e+00 1.95875674e-01 -1.25290543e-01 -3.11781645e-01 -2.94704854e-01 -8.55049133e-01 -6.81571364e-01 2.85872579e-01 3.20074797e-01 6.82899773e-01 7.77324617e-01 2.05871537e-02 1.06158304e+00 -3.37918162e-01 3.53889197e-01 -6.39962077e-01 -8.84861767e-01 9.01730806e-02 8.03498566e-01 -8.39487970e-01 4.78217155e-02 -6.75250888e-02 -2.82978266e-01 6.75077736e-01 -3.62161726e-01 1.51807889e-01 7.61882424e-01 3.57132316e-01 2.09971189e-01 -5.42961478e-01 -7.98085690e-01 2.18054086e-01 -1.75392911e-01 1.31904364e+00 -4.02685367e-02 1.90775841e-01 -4.41076428e-01 1.36960715e-01 2.54469484e-01 1.76954150e-01 4.90197539e-01 1.09313548e+00 -3.31073254e-02 -9.68779147e-01 -8.12803566e-01 7.48304784e-01 -5.75641632e-01 -1.54767530e-02 -2.74109125e-01 1.18851924e+00 1.68334976e-01 9.35692251e-01 6.72607780e-01 2.08701134e-01 2.88801402e-01 -2.32261330e-01 4.94680740e-02 -1.50222838e-01 -7.95291245e-01 1.62721917e-01 2.87739635e-01 -4.05610025e-01 -3.78032327e-01 -9.32668984e-01 -1.15741134e+00 -9.79951084e-01 8.59022811e-02 4.73764479e-01 5.73203444e-01 6.21524513e-01 3.30396563e-01 2.36919880e-01 5.67909062e-01 -7.06033349e-01 -1.28960639e-01 -8.62751365e-01 -7.29326844e-01 2.07820624e-01 5.93365312e-01 -1.92767143e-01 -4.82875347e-01 -1.72172129e-01]
[5.954069137573242, 4.386684894561768]
60e3c5be-b782-463d-be27-f6312ee47be1
advancements-in-arabic-grammatical-error
2305.14734
null
https://arxiv.org/abs/2305.14734v1
https://arxiv.org/pdf/2305.14734v1.pdf
Advancements in Arabic Grammatical Error Detection and Correction: An Empirical Investigation
Grammatical error correction (GEC) is a well-explored problem in English with many existing models and datasets. However, research on GEC in morphologically rich languages has been limited due to challenges such as data scarcity and language complexity. In this paper, we present the first results on Arabic GEC by using two newly developed Transformer-based pretrained sequence-to-sequence models. We address the task of multi-class Arabic grammatical error detection (GED) and present the first results on multi-class Arabic GED. We show that using GED information as auxiliary input in GEC models improves GEC performance across three datasets spanning different genres. Moreover, we also investigate the use of contextual morphological preprocessing in aiding GEC systems. Our models achieve state-of-the-art results on two Arabic GEC shared tasks datasets and establish a strong benchmark on a newly created dataset.
['Nizar Habash', 'Christian Khairallah', 'Go Inoue', 'Bashar Alhafni']
2023-05-24
null
null
null
null
['grammatical-error-detection', 'grammatical-error-correction']
['natural-language-processing', 'natural-language-processing']
[ 9.65224206e-02 -3.33042651e-01 4.73977685e-01 -4.61098403e-01 -1.00535500e+00 -7.09806442e-01 1.31753981e-01 5.58422387e-01 -7.84660578e-01 4.99957561e-01 6.38453737e-02 -4.29365098e-01 3.70666683e-01 -5.65874517e-01 -9.41366315e-01 -2.50832647e-01 -2.42208734e-01 8.29770863e-01 9.78557095e-02 -1.03305364e+00 5.40163159e-01 1.86513830e-02 -1.28104997e+00 7.67751813e-01 1.62543547e+00 4.55831856e-01 1.70732781e-01 6.70766532e-01 1.70675457e-01 2.83946276e-01 -8.31545055e-01 -1.15950882e+00 -1.77465767e-01 -6.32756948e-01 -8.61520767e-01 -2.21410736e-01 3.68163794e-01 8.01382735e-02 6.25568092e-01 1.07028306e+00 6.07498407e-01 9.09430254e-03 6.97308183e-01 -8.59784067e-01 -1.21888995e+00 1.08901107e+00 -3.35919738e-01 4.31173714e-03 4.86569703e-01 -9.83970761e-02 1.07198644e+00 -1.42113221e+00 9.31171536e-01 1.35464466e+00 1.07357979e+00 8.43670607e-01 -8.02602112e-01 -8.70746747e-02 1.79649353e-01 6.67165756e-01 -1.14580464e+00 -5.02324104e-01 4.07390118e-01 2.66981274e-01 1.70306432e+00 1.83827087e-01 2.15782255e-01 8.96944642e-01 -1.45394877e-01 1.02712119e+00 1.17579257e+00 -1.15669692e+00 -6.94956705e-02 -2.03642040e-01 1.96881890e-01 1.12575853e+00 4.59497385e-02 -3.34496647e-01 -5.24668396e-01 4.68914926e-01 -1.88157201e-01 -8.87207448e-01 -3.94958138e-01 6.56778991e-01 -9.53709006e-01 8.76636267e-01 1.62410751e-01 3.19384575e-01 1.56008989e-01 -2.43249424e-02 6.55845821e-01 7.14556336e-01 6.01850808e-01 3.51652354e-01 -7.40463614e-01 -4.87091064e-01 -7.03143358e-01 2.45324120e-01 9.76875663e-01 1.13906658e+00 1.65899277e-01 3.28451514e-01 2.32624352e-01 1.20324779e+00 4.21786696e-01 7.68313825e-01 4.60730731e-01 -3.87631536e-01 1.07899523e+00 5.49387455e-01 -1.93767726e-01 -9.86213923e-01 -5.13901651e-01 -2.32887894e-01 -5.02307177e-01 -1.52872577e-01 8.13028812e-01 4.28098552e-02 -6.73265576e-01 1.49416339e+00 -2.00615618e-02 -5.19707918e-01 6.92223236e-02 8.07389498e-01 9.08508658e-01 6.39797270e-01 1.57905906e-01 6.46404549e-02 1.26494777e+00 -1.08367908e+00 -8.10639977e-01 -4.33885604e-01 1.21050501e+00 -1.04559112e+00 1.56302142e+00 6.61980093e-01 -1.11605334e+00 -1.94805831e-01 -9.86041307e-01 -5.17263949e-01 -8.56987178e-01 7.91921437e-01 1.60786837e-01 1.11860740e+00 -8.11754525e-01 6.27277195e-01 -9.00439382e-01 -5.15105426e-01 1.01294951e-03 -2.48297770e-02 -4.08786982e-01 -4.55532044e-01 -1.16237617e+00 1.44003999e+00 6.97740078e-01 3.28419447e-01 -5.51467240e-01 -4.70110476e-01 -8.97214115e-01 -2.54335821e-01 1.43703669e-01 3.92555520e-02 1.06013989e+00 -7.42891550e-01 -1.34945524e+00 1.22919810e+00 -1.10500805e-01 -4.97284532e-01 2.51453221e-01 -5.38790643e-01 -8.96282673e-01 -1.98714435e-01 -2.53457308e-01 6.00158632e-01 6.01131678e-01 -1.23928368e+00 -6.88968241e-01 -4.90047455e-01 -3.35275084e-01 1.68052077e-01 -2.73847319e-02 8.23435485e-01 -2.89424688e-01 -1.09818137e+00 5.15905656e-02 -1.02370775e+00 2.79564261e-01 -5.32358229e-01 -1.63220599e-01 -4.32733119e-01 5.91039658e-01 -1.54178786e+00 1.72421646e+00 -1.87174916e+00 5.61140358e-01 -3.30167562e-02 -5.78275442e-01 5.25400639e-01 -5.83557189e-01 3.96118343e-01 4.04226109e-02 3.85019064e-01 -7.74607480e-01 -8.42392802e-01 1.90959543e-01 3.91719103e-01 -8.19589850e-03 2.06683427e-01 9.50769663e-01 1.08326983e+00 -8.94956112e-01 -2.18824446e-01 -3.54685068e-01 1.31528392e-01 -7.97591329e-01 -2.27351248e-01 -4.48426187e-01 1.89158455e-01 5.60380816e-01 1.24973905e+00 8.53592277e-01 2.36942142e-01 4.35888827e-01 1.39928728e-01 -1.48016764e-02 6.63652420e-01 -1.09700918e+00 1.76652920e+00 -5.31928957e-01 9.30232778e-02 -1.95874125e-01 -9.65258479e-01 7.57786155e-01 6.36004284e-02 -4.34349746e-01 -7.29028106e-01 3.30455273e-01 1.14095914e+00 3.68616670e-01 -9.91206467e-02 1.09733772e+00 2.54450720e-02 -3.74684870e-01 5.62219799e-01 5.21328628e-01 -2.15849072e-01 7.46707678e-01 9.83129144e-02 6.46304071e-01 3.93319726e-01 2.90412128e-01 -3.39048296e-01 5.39468765e-01 2.46916562e-01 3.99596214e-01 4.86987293e-01 -1.23039179e-01 7.43924081e-01 1.81642473e-01 -1.68416157e-01 -7.03275442e-01 -6.40099704e-01 3.92160565e-02 1.47639883e+00 -2.84736842e-01 -9.04999197e-01 -1.13814712e+00 -1.21978843e+00 -2.04092428e-01 9.12524641e-01 -5.42239428e-01 -6.55225152e-03 -1.28466320e+00 -1.37223256e+00 1.20825195e+00 4.70313430e-01 3.17786217e-01 -1.25676131e+00 -1.07015833e-01 6.50762141e-01 -7.51512170e-01 -1.16257691e+00 -5.08989930e-01 1.46807596e-01 -8.17796350e-01 -1.20175219e+00 -3.57856035e-01 -1.08723998e+00 4.29850757e-01 -3.11555505e-01 1.73019683e+00 6.03273392e-01 3.61807421e-02 5.91058284e-02 -1.12113535e+00 -8.39048207e-01 -9.18384492e-01 4.07609820e-01 -8.97603631e-02 -5.27425945e-01 5.72779894e-01 1.80389836e-01 2.64020622e-01 1.40132546e-01 -5.74639380e-01 -3.61869127e-01 6.40152618e-02 8.53634596e-01 4.89550889e-01 -4.43932861e-01 8.40531588e-01 -1.13944566e+00 4.87897158e-01 -3.69848371e-01 -4.43996131e-01 6.95073187e-01 -4.90427047e-01 5.48878312e-02 6.03926599e-01 -4.48569655e-02 -1.11848438e+00 -2.97124416e-01 -7.12520540e-01 6.42787039e-01 1.45882785e-01 9.82206821e-01 -4.53575939e-01 -6.23887107e-02 6.92678273e-01 1.28974512e-01 -1.64293930e-01 -8.30808342e-01 4.90083963e-01 6.45432651e-01 5.67889869e-01 -1.04060113e+00 1.84547037e-01 -2.22400770e-01 -2.11710304e-01 -5.61540246e-01 -7.67292559e-01 2.12099135e-01 -7.85364211e-01 7.13940663e-03 4.20340389e-01 -9.15099919e-01 -3.32529247e-01 1.11632085e+00 -1.44836199e+00 -3.36966753e-01 1.16840407e-01 -1.51085094e-01 -2.73535699e-01 6.08406782e-01 -1.11630535e+00 -3.68404269e-01 -6.24824464e-01 -1.05676234e+00 1.13590407e+00 -2.83541381e-01 5.35075143e-02 -1.19912636e+00 -2.79908013e-02 1.27138481e-01 4.17188317e-01 2.78335158e-02 1.33705282e+00 -5.27661264e-01 -3.96417379e-01 2.14886874e-01 -4.50443244e-03 5.30523419e-01 -1.50389314e-01 5.62455691e-02 -5.97613513e-01 -4.53721285e-01 -4.19556230e-01 -4.82980788e-01 9.97731149e-01 -6.34500310e-02 8.54169846e-01 -1.44616485e-01 3.18642706e-01 6.42363489e-01 1.44962060e+00 -4.40235473e-02 9.75128412e-01 5.79135537e-01 6.26748145e-01 5.45391917e-01 8.52901816e-01 3.17882180e-01 7.58487463e-01 4.61404085e-01 5.64037502e-01 4.56513822e-01 -4.78797913e-01 -7.49829784e-02 7.22072482e-01 1.63978839e+00 -3.90361130e-01 -8.44133019e-01 -1.20803082e+00 8.13780546e-01 -1.57039380e+00 -3.09120834e-01 -7.81908810e-01 1.77344763e+00 1.22447300e+00 -3.66214722e-01 -1.17086411e-01 3.97367328e-01 5.39208174e-01 -4.68394846e-01 2.31007174e-01 -9.28214610e-01 -9.10040855e-01 7.59631753e-01 1.94172204e-01 4.33883011e-01 -1.31821060e+00 1.53009927e+00 5.80865288e+00 9.64275718e-01 -6.59136236e-01 4.97619808e-01 3.73039246e-01 2.92878777e-01 -2.13543624e-01 -1.02795355e-01 -1.27690279e+00 6.05974078e-01 1.12161839e+00 5.07634759e-01 4.10094261e-01 3.75956148e-01 -2.41857350e-01 -1.27589941e-01 -8.91644955e-01 7.96757400e-01 6.46867454e-01 -1.06109178e+00 2.10600480e-01 -4.25750464e-01 8.34399819e-01 2.10586097e-02 -1.55712366e-01 5.70004344e-01 4.01525438e-01 -1.08930898e+00 1.15739095e+00 2.08117545e-01 1.05236554e+00 -9.75927114e-01 8.93101871e-01 -4.11177762e-02 -8.37276816e-01 6.42614812e-02 -4.54115570e-01 -3.83188650e-02 2.43550763e-01 2.83098996e-01 -4.07258928e-01 7.94189870e-01 8.42421532e-01 1.13695967e+00 -1.41142344e+00 8.29785824e-01 -7.75718510e-01 1.05620003e+00 -2.91797876e-01 -5.31191118e-02 2.29955137e-01 -2.77799308e-01 5.95972657e-01 1.73589730e+00 5.94336629e-01 -2.16583982e-02 -1.63084120e-01 3.98807138e-01 -2.30225205e-01 5.65738618e-01 -8.82117748e-02 -1.60842109e-02 4.20224190e-01 9.04807031e-01 -5.68231761e-01 -2.38365754e-02 -3.48937303e-01 1.36913586e+00 8.83388638e-01 -2.82740235e-01 -6.92525268e-01 -6.65387034e-01 3.29330742e-01 -3.06832314e-01 4.39215928e-01 -3.96845102e-01 -4.53835934e-01 -1.40590835e+00 1.42881781e-01 -1.52721143e+00 7.57195890e-01 -4.71929610e-01 -1.47008932e+00 6.38994634e-01 -6.01549029e-01 -1.05109417e+00 -1.37203872e-01 -1.25080943e+00 -3.19754153e-01 8.94184768e-01 -1.84658766e+00 -1.79031479e+00 1.10020459e-01 5.23043394e-01 5.56951523e-01 -5.07322669e-01 1.18236125e+00 6.92746282e-01 -4.82767850e-01 1.15684021e+00 3.98752093e-01 3.48713636e-01 1.23722243e+00 -1.65517139e+00 7.58509755e-01 1.51315689e+00 2.52407253e-01 5.11478126e-01 1.60812676e-01 -8.07169557e-01 -1.26141858e+00 -1.14086795e+00 1.60671616e+00 -9.76517439e-01 6.65594041e-01 -4.25081223e-01 -1.27340138e+00 7.87367225e-01 2.22751290e-01 -1.38441667e-01 4.74898189e-01 3.29873174e-01 -4.53203857e-01 4.56756502e-01 -1.00971699e+00 3.30104947e-01 1.22889328e+00 -4.24425453e-01 -5.54477930e-01 1.30428031e-01 5.57244480e-01 -7.90520847e-01 -8.20898175e-01 3.22116196e-01 1.96979329e-01 -4.26123321e-01 6.04384601e-01 -1.06304944e+00 7.48664260e-01 -3.63296121e-01 -5.33238232e-01 -2.13381243e+00 -1.46048004e-02 -3.80126178e-01 -6.32750690e-02 1.56449842e+00 7.44669557e-01 -2.29168579e-01 1.50003925e-01 -2.67310530e-01 -9.34536695e-01 -2.86002189e-01 -7.39375949e-01 -9.66126084e-01 7.27139831e-01 -7.00814664e-01 6.84911489e-01 1.13269973e+00 2.57506985e-02 1.03690192e-01 -1.78829640e-01 2.96463877e-01 2.06604987e-01 -1.52108938e-01 8.09483230e-02 -9.76337135e-01 -1.05977230e-01 -2.18683138e-01 -1.08086288e-01 -3.97525698e-01 3.02289218e-01 -1.39583385e+00 3.53647560e-01 -1.14473498e+00 -3.23926985e-01 -6.89207852e-01 1.44644424e-01 7.91132212e-01 -6.38785601e-01 5.71336150e-01 5.60562074e-01 -2.08024740e-01 -4.60882127e-01 5.23867607e-01 6.84804142e-01 7.04848382e-04 4.43300232e-02 -6.16457224e-01 -5.00657260e-01 5.80367506e-01 1.05417526e+00 -6.36794925e-01 3.34855884e-01 -1.27324188e+00 8.83924246e-01 -5.58190882e-01 2.41343137e-02 -7.42892504e-01 -8.56335536e-02 2.84304172e-01 4.72565293e-02 -3.96918982e-01 -2.76667982e-01 -3.44999284e-01 -5.48226118e-01 3.46869290e-01 1.92519709e-01 7.53445745e-01 4.65466887e-01 3.62457223e-02 -3.42706740e-01 -7.01872826e-01 8.37969720e-01 -1.72134578e-01 -1.11113644e+00 -2.30047241e-01 -4.70921725e-01 7.58595765e-01 1.76020399e-01 1.70845166e-01 -7.19487846e-01 1.76259682e-01 -6.64058447e-01 1.14071943e-01 3.53639185e-01 6.88982069e-01 6.40608311e-01 -1.20998764e+00 -1.37110496e+00 2.80245006e-01 6.26456201e-01 -5.01111507e-01 -1.76453769e-01 7.30882108e-01 -8.20864916e-01 1.72605991e-01 -3.10719252e-01 -2.29272559e-01 -1.51194990e+00 1.15945645e-01 3.30093682e-01 -4.68333781e-01 -4.49425913e-03 1.07272530e+00 -9.78598416e-01 -1.43413448e+00 -1.24408007e-01 -2.54698366e-01 -3.31411630e-01 1.62970468e-01 5.21617413e-01 6.81211412e-01 1.10958350e+00 -8.95661116e-01 -5.51652312e-01 3.30058008e-01 -2.25307599e-01 4.62614931e-02 1.37992668e+00 -2.53098339e-01 -5.99755287e-01 -7.48789590e-03 7.47718871e-01 1.55560821e-01 -4.97682542e-01 -1.98610127e-01 6.78583622e-01 -2.92964816e-01 -3.82357746e-01 -1.61129653e+00 -7.41144598e-01 1.05553961e+00 4.75606352e-01 -6.00230455e-01 1.10164654e+00 -3.19334090e-01 7.60279775e-01 5.92088878e-01 5.33779085e-01 -1.58502126e+00 -1.90645736e-02 1.81697202e+00 1.12907052e+00 -1.56091905e+00 -5.14934957e-01 -6.83673501e-01 -8.73390257e-01 1.11087215e+00 6.29871786e-01 -8.46272036e-02 5.37951708e-01 1.17597111e-01 5.65273613e-02 -1.06550246e-01 -4.32934523e-01 -4.21707064e-01 4.92903888e-01 8.77175570e-01 9.37791288e-01 2.21181810e-01 -9.72566068e-01 1.17871809e+00 -5.00849485e-01 -3.70659381e-01 8.90208840e-01 1.07104576e+00 -1.29202485e-01 -1.70880115e+00 -1.50430530e-01 1.55889153e-01 -6.43370390e-01 -7.93461323e-01 -3.15326601e-01 1.03463852e+00 3.24845940e-01 1.08126020e+00 -2.57865116e-02 6.20932616e-02 4.68826652e-01 4.29240972e-01 9.85312462e-01 -7.64364004e-01 -1.00661588e+00 -3.56243759e-01 5.44251919e-01 -4.15996045e-01 -3.18798572e-01 -9.09305334e-01 -1.34282160e+00 -3.87740582e-01 -4.00683880e-01 -1.23506762e-01 8.00291419e-01 1.00463545e+00 3.30898732e-01 2.34147966e-01 -4.04054783e-02 -4.51338440e-01 -4.29757893e-01 -1.37934566e+00 -6.00840271e-01 5.59971213e-01 -1.46708891e-01 -2.71487415e-01 -8.01477507e-02 3.76520395e-01]
[11.072563171386719, 10.721488952636719]
256bc072-7859-41a8-b0ff-15bf2a183ef2
improving-speech-emotion-recognition
2305.14402
null
https://arxiv.org/abs/2305.14402v1
https://arxiv.org/pdf/2305.14402v1.pdf
Improving Speech Emotion Recognition Performance using Differentiable Architecture Search
Speech Emotion Recognition (SER) is a critical enabler of emotion-aware communication in human-computer interactions. Deep Learning (DL) has improved the performance of SER models by improving model complexity. However, designing DL architectures requires prior experience and experimental evaluations. Encouragingly, Neural Architecture Search (NAS) allows automatic search for an optimum DL model. In particular, Differentiable Architecture Search (DARTS) is an efficient method of using NAS to search for optimised models. In this paper, we propose DARTS for a joint CNN and LSTM architecture for improving SER performance. Our choice of the CNN LSTM coupling is inspired by results showing that similar models offer improved performance. While SER researchers have considered CNNs and RNNs separately, the viability of using DARTs jointly for CNN and LSTM still needs exploration. Experimenting with the IEMOCAP dataset, we demonstrate that our approach outperforms best-reported results using DARTS for SER.
['Björn Schuller', 'Berrak Sisman', 'Sara Khalifa', 'Rajib Rana', 'Thejan Rajapakshe']
2023-05-23
null
null
null
null
['architecture-search', 'speech-emotion-recognition']
['methodology', 'speech']
[ 2.71330010e-02 1.12806924e-01 -1.47685325e-02 -3.63007396e-01 -6.76645041e-01 -3.82411003e-01 4.20508802e-01 -2.18827873e-01 -4.68855321e-01 2.82335222e-01 3.60178798e-01 -3.72326732e-01 2.26790622e-01 -7.53166005e-02 -4.70238417e-01 -3.19531947e-01 -2.79639155e-01 1.41590521e-01 -4.66164798e-01 -3.33129853e-01 5.14188036e-02 6.42205596e-01 -1.37180710e+00 5.61628938e-01 4.39262122e-01 1.41211331e+00 1.08429961e-01 1.02984512e+00 -2.42681295e-01 1.16018188e+00 -7.72277296e-01 -3.50679278e-01 -1.02933124e-01 -5.71659207e-01 -1.04269218e+00 -2.77531564e-01 -9.11920518e-03 6.64707646e-02 -6.75659180e-02 6.29381537e-01 7.10849583e-01 3.95534039e-01 1.95844293e-01 -1.40081775e+00 -3.78563285e-01 7.68775403e-01 3.71078998e-02 3.55838418e-01 5.09366468e-02 1.03167124e-01 1.24458516e+00 -9.28074896e-01 2.67864078e-01 1.38205814e+00 6.24283373e-01 1.00564241e+00 -1.04966068e+00 -5.69613159e-01 4.32852447e-01 1.72884256e-01 -1.28598559e+00 -9.89423156e-01 8.35568309e-01 1.30724952e-01 1.96073663e+00 4.31520522e-01 7.82439649e-01 1.46936274e+00 2.33339414e-01 1.29727030e+00 7.61086941e-01 -4.83251333e-01 4.23592657e-01 3.32015544e-01 -6.20071106e-02 5.63470364e-01 -5.11823416e-01 1.17577419e-01 -9.00343180e-01 -3.22382569e-01 5.21129549e-01 -4.19959754e-01 -9.04182345e-02 4.57366966e-02 -8.26797187e-01 6.10607743e-01 4.22105908e-01 6.47127032e-01 -6.76659524e-01 5.24425507e-01 7.83968985e-01 6.70737565e-01 6.61778867e-01 1.07362914e+00 -8.82474244e-01 -7.33908832e-01 -8.44320297e-01 -1.80332795e-01 9.81852889e-01 6.68653369e-01 2.33743981e-01 6.09165967e-01 6.79050460e-02 1.19388235e+00 1.28741115e-01 -2.18318671e-01 5.15532255e-01 -1.15964305e+00 2.02580646e-01 3.91819626e-01 -2.17487663e-01 -8.26017201e-01 -5.50873041e-01 -8.51375699e-01 -6.81755364e-01 -9.60169286e-02 -1.72113329e-01 -4.23698545e-01 -6.08317316e-01 1.83225441e+00 -2.32580036e-01 4.11904901e-01 4.94676620e-01 7.96851575e-01 7.00330853e-01 7.93652236e-01 3.74452382e-01 -7.98321441e-02 1.07424140e+00 -1.17396331e+00 -7.75804818e-01 -5.61534882e-01 8.98458004e-01 -3.54924768e-01 9.83897567e-01 7.65050650e-01 -1.24897933e+00 -2.29653373e-01 -9.82956171e-01 1.61454663e-01 -1.87464744e-01 2.74051338e-01 7.81276882e-01 6.63175702e-01 -1.63916409e+00 4.18998122e-01 -9.19241667e-01 -5.79343140e-01 3.34046930e-01 6.74448192e-01 -1.75868813e-02 6.00086212e-01 -1.27335012e+00 1.12654376e+00 2.78505772e-01 4.52631712e-01 -8.87833297e-01 -3.65577936e-01 -6.76764369e-01 3.78608227e-01 1.95095554e-01 -6.79491103e-01 1.66880834e+00 -1.54894471e+00 -2.10899448e+00 5.03911078e-01 -4.16704625e-01 -1.05006742e+00 -1.50689781e-01 -2.45688751e-01 -6.54586554e-01 1.11655168e-01 -9.24655020e-01 1.09170330e+00 8.59825015e-01 -1.15274882e+00 -5.32662928e-01 4.47477773e-02 3.37700732e-02 3.76145422e-01 -9.33569193e-01 3.26191843e-01 -3.05653095e-01 -3.83386731e-01 -1.87961236e-01 -8.79923165e-01 -4.11776066e-01 -3.59847367e-01 -1.57205686e-01 -3.40429366e-01 7.39944041e-01 -6.02807641e-01 1.53839719e+00 -2.08499551e+00 1.38212755e-01 2.18808889e-01 2.16860622e-01 3.15725893e-01 -4.62913394e-01 1.84271529e-01 -1.80006608e-01 5.25296569e-01 1.50704280e-01 -8.24294984e-01 6.58007413e-02 2.67686784e-01 -1.97839200e-01 -4.05601859e-02 4.48903650e-01 1.16269052e+00 -4.34952110e-01 -2.68467367e-01 1.33525357e-01 8.31879795e-01 -7.55352199e-01 2.44758993e-01 -2.34823644e-01 1.62340075e-01 -2.39184663e-01 6.70346260e-01 3.93641293e-02 -3.80622298e-01 2.05963314e-01 -1.78105637e-01 -6.75114170e-02 6.02651417e-01 -5.39131641e-01 1.53630579e+00 -9.31411684e-01 1.01843548e+00 3.15536380e-01 -8.34403396e-01 1.09738064e+00 7.16091394e-01 3.84312540e-01 -9.64032352e-01 4.57118630e-01 1.34446025e-01 2.07354859e-01 -3.59223425e-01 5.26554763e-01 -5.89733310e-02 7.29716048e-02 4.01234984e-01 7.76707381e-02 1.67615160e-01 -5.07357955e-01 -6.17388822e-02 1.24971592e+00 -2.79758543e-01 1.20301887e-01 -1.45394742e-01 2.90383607e-01 -2.77079433e-01 4.02026832e-01 5.58846951e-01 -4.88369465e-01 2.23190576e-01 3.40068758e-01 -4.34653223e-01 -8.44831169e-01 -5.74268222e-01 2.76895314e-01 1.31687713e+00 -2.58756965e-01 -3.88457924e-01 -9.20661092e-01 -5.45059681e-01 -6.84088826e-01 1.00186980e+00 -5.31828761e-01 -2.89959639e-01 -7.17570066e-01 -5.90965986e-01 8.54480565e-01 5.21656573e-01 4.71540987e-01 -1.53131461e+00 -9.08797264e-01 4.60729718e-01 -3.19566190e-01 -1.23909533e+00 -3.35468203e-01 5.84115088e-01 -8.97206783e-01 -3.11767846e-01 -4.88377810e-01 -7.08659351e-01 2.27094457e-01 -7.13882670e-02 1.21862495e+00 2.64610261e-01 1.41414357e-02 5.61318398e-01 -3.55864793e-01 -3.93598944e-01 -5.39218485e-01 5.61943173e-01 -9.66740120e-03 -1.16412774e-01 2.61442572e-01 -5.82822978e-01 -4.57981765e-01 1.44300357e-01 -5.87435305e-01 1.05921485e-01 5.70249617e-01 7.47519195e-01 1.45396456e-01 -7.30401576e-02 8.34403694e-01 -3.05020481e-01 1.21453261e+00 -3.93878430e-01 2.13143658e-02 1.89703315e-01 -8.00303638e-01 2.50070393e-01 3.29443187e-01 -4.76796299e-01 -1.01478827e+00 -8.46691802e-02 -4.66595858e-01 -7.24674582e-01 -3.24337393e-01 7.16354430e-01 1.21460326e-01 -8.09271783e-02 5.14088750e-01 -3.70167121e-02 -2.95836627e-02 -3.91042084e-01 -3.20324004e-02 6.74625874e-01 1.81246519e-01 -4.96144980e-01 -2.02534914e-01 -8.43760222e-02 -5.28951466e-01 -9.07045424e-01 -4.45040435e-01 -1.13367870e-01 -9.14944801e-03 -3.60009938e-01 8.37590277e-01 -8.65740001e-01 -9.97425199e-01 1.23452723e-01 -1.33696127e+00 -6.13831401e-01 5.90012670e-02 3.29156250e-01 -4.45555508e-01 -1.59473553e-01 -8.05479527e-01 -1.36486185e+00 -7.62447953e-01 -1.24014986e+00 8.48963678e-01 1.00475319e-01 -7.96667457e-01 -1.37329268e+00 -2.45360568e-01 2.02018380e-01 8.49232852e-01 -1.34628341e-02 8.46461236e-01 -1.02563024e+00 -1.60649166e-01 -6.75731301e-02 2.02193260e-01 5.87907672e-01 -2.79823095e-01 -1.10439762e-01 -1.42875969e+00 -1.96813270e-01 1.70800626e-01 -4.57856268e-01 6.19381070e-01 4.08708334e-01 1.39512670e+00 -5.37411273e-01 -2.03171283e-01 3.84025127e-01 9.30542469e-01 6.24119818e-01 6.28542960e-01 5.41751266e-01 5.83866537e-01 5.31800866e-01 2.43518040e-01 4.01402384e-01 5.27803600e-01 5.75275540e-01 4.59402025e-01 -3.54845405e-01 1.38162270e-01 5.95352240e-03 8.26142192e-01 1.10710502e+00 1.83263928e-01 -6.34989679e-01 -1.02742493e+00 6.10969365e-01 -1.79058063e+00 -7.86011696e-01 4.27073270e-01 1.70256186e+00 5.27046144e-01 1.97601140e-01 1.29407510e-01 6.03353269e-02 4.79407161e-01 6.00287616e-02 -6.56872690e-01 -1.27359724e+00 -1.68412715e-01 4.38653082e-01 1.70899928e-01 4.99924481e-01 -7.99176037e-01 1.21507430e+00 6.81421566e+00 7.42643833e-01 -1.39455485e+00 1.76636770e-01 1.03780532e+00 -5.67670941e-01 -2.86511630e-01 -2.88924813e-01 -5.13153553e-01 4.49291021e-02 1.55899453e+00 7.79417828e-02 7.42460489e-01 8.54468465e-01 3.23158622e-01 3.04426134e-01 -1.13850498e+00 1.26854551e+00 4.35567833e-02 -1.32659817e+00 -1.45726100e-01 4.17650342e-02 3.57320547e-01 2.27987215e-01 2.53337771e-01 5.68506658e-01 1.56913206e-01 -1.29339135e+00 9.13743496e-01 3.54536027e-01 3.05405706e-01 -1.07484627e+00 5.49138129e-01 2.18076885e-01 -1.10503364e+00 -3.80847216e-01 9.03566480e-02 -2.04063840e-02 -3.94059531e-02 -4.48634326e-02 -1.13205624e+00 1.41755536e-01 8.11181128e-01 5.95604539e-01 -3.92732888e-01 6.77884519e-01 1.69974193e-01 9.12360847e-01 -2.57791698e-01 -3.83488476e-01 5.68385720e-01 3.24794948e-01 5.56982100e-01 1.53229451e+00 3.06298465e-01 -8.05020053e-03 -9.37326849e-02 8.00529838e-01 -1.07858598e-01 5.81117906e-03 -5.43586016e-01 -4.95500922e-01 6.10901833e-01 1.22573304e+00 -5.13440907e-01 -1.46933958e-01 6.58429265e-02 1.00846398e+00 4.02545333e-01 6.03881836e-01 -7.11812794e-01 -6.56417087e-02 1.04891753e+00 -3.74350905e-01 1.17615685e-01 -3.22665900e-01 -5.21821618e-01 -7.18911886e-01 -2.73770362e-01 -1.21769822e+00 3.56594354e-01 -8.64460766e-01 -1.03930247e+00 1.28707027e+00 -2.97859639e-01 -9.46889877e-01 -5.63328505e-01 -4.27936465e-01 -6.31797969e-01 6.21004999e-01 -1.32657981e+00 -1.02605140e+00 1.12095788e-01 4.19247746e-01 9.56775486e-01 -2.77579337e-01 1.05595684e+00 7.44902864e-02 -8.86861324e-01 9.76722658e-01 -5.12111604e-01 -1.42940328e-01 2.90416241e-01 -9.39948916e-01 6.35191679e-01 5.30221403e-01 1.65750518e-01 6.51445031e-01 9.06124473e-01 -2.66691953e-01 -1.52877116e+00 -7.21184731e-01 7.53194153e-01 -3.65362823e-01 5.38980663e-01 -5.17040610e-01 -7.83175290e-01 6.46713734e-01 7.53046334e-01 -4.82886583e-01 6.30728662e-01 3.95126671e-01 -2.67028902e-02 1.30077645e-01 -9.31077719e-01 8.92137289e-01 9.68375444e-01 -6.75417423e-01 -2.51606125e-02 -2.73186713e-01 9.55744088e-01 -3.66385967e-01 -9.99733984e-01 3.54900151e-01 5.18071353e-01 -8.54800761e-01 8.22780550e-01 -5.13222277e-01 1.28637731e-01 1.98617890e-01 -2.31556892e-01 -1.57779658e+00 1.09617636e-02 -9.01253104e-01 -3.83447140e-01 1.05473197e+00 9.05350804e-01 -6.25228345e-01 7.06229210e-01 1.04783833e+00 -6.46489918e-01 -1.15964484e+00 -1.03896153e+00 -6.61889076e-01 -8.82743075e-02 -9.97685492e-01 5.64474404e-01 9.28045392e-01 1.75257385e-01 3.78719032e-01 -4.11860377e-01 1.11743510e-01 4.83189337e-02 -6.24951243e-01 4.49533135e-01 -9.23315287e-01 -2.74656922e-01 -9.36246037e-01 -6.75431415e-02 -9.75610912e-01 5.67759454e-01 -7.64966786e-01 1.32196888e-01 -1.42577863e+00 -2.30433911e-01 -3.38644207e-01 -6.61368608e-01 8.87803078e-01 3.05521101e-01 -1.78012460e-01 2.70324588e-01 -7.74039924e-02 -7.74223387e-01 7.78838813e-01 8.29061210e-01 -5.24381967e-03 -5.66790462e-01 -3.21142375e-01 -8.18143487e-01 6.24789774e-01 1.29812181e+00 -2.84449637e-01 -4.69488442e-01 -5.20650446e-01 3.93726319e-01 9.29693207e-02 3.58461380e-01 -9.82239068e-01 4.52525884e-01 1.33658707e-01 2.31858030e-01 -1.72799692e-01 7.99922705e-01 -7.57919729e-01 3.13286111e-02 2.24419162e-01 -8.27180624e-01 2.96978593e-01 7.90611982e-01 1.94260105e-01 -2.25783125e-01 8.76110699e-03 5.71110070e-01 -4.16666362e-03 -8.63936007e-01 9.96733382e-02 -7.69592106e-01 -1.94442108e-01 3.91514570e-01 -3.06980729e-01 -1.23518199e-01 -7.16935039e-01 -9.10859108e-01 2.95811236e-01 -3.35405841e-02 8.43314409e-01 1.02763462e+00 -1.22479749e+00 -2.94250578e-01 8.60108659e-02 -7.13176429e-02 -5.92748821e-01 6.23043366e-02 8.90191615e-01 2.90137604e-02 4.59740907e-01 3.18692103e-02 -4.25791919e-01 -1.46197617e+00 2.57644197e-03 9.16518629e-01 -2.83554167e-01 -3.30991805e-01 1.12497735e+00 -1.12664133e-01 -4.50736552e-01 6.62205517e-01 -3.15476447e-01 -1.37308612e-01 -1.80474415e-01 3.58029753e-01 2.54343033e-01 2.82882094e-01 -2.56420493e-01 -4.68622774e-01 -1.44777372e-01 -2.41071388e-01 -5.09724557e-01 1.41098690e+00 -2.72894084e-01 -5.61262146e-02 6.27418399e-01 1.33884108e+00 -6.69625580e-01 -1.13742924e+00 -3.53229381e-02 4.21135604e-01 2.12869748e-01 5.97010553e-01 -1.01675129e+00 -1.06368661e+00 9.22715425e-01 7.39897013e-01 2.22600058e-01 1.33870935e+00 -5.69505244e-02 9.99536395e-01 6.79891109e-01 2.40684107e-01 -1.30816007e+00 3.86743814e-01 8.95763755e-01 1.02705026e+00 -9.79642212e-01 -7.00493693e-01 2.44674161e-01 -1.09304178e+00 1.11471617e+00 9.31984961e-01 2.02337757e-01 5.24062157e-01 5.13679802e-01 2.32300788e-01 -3.94688874e-01 -1.55257678e+00 -4.28327620e-02 2.93982804e-01 1.14647880e-01 7.51051486e-01 -5.97060435e-02 3.19628596e-01 7.09080637e-01 -3.74730915e-01 -1.36582628e-01 5.95506132e-02 8.96978974e-01 -3.20564806e-01 -1.06372440e+00 -2.83546299e-02 2.57414669e-01 -4.84154433e-01 -4.44624245e-01 -6.73363447e-01 5.16364515e-01 -1.88902199e-01 1.25572133e+00 2.39351690e-01 -8.84243131e-01 3.40540498e-01 3.97268623e-01 2.45233238e-01 -3.53039682e-01 -1.32757080e+00 1.98008791e-01 5.72178483e-01 -7.28046477e-01 -2.35267311e-01 -4.45117295e-01 -1.44663429e+00 -1.81743920e-01 -2.88507462e-01 2.69973099e-01 9.14832115e-01 1.08199060e+00 8.15156579e-01 8.00048828e-01 5.71947575e-01 -8.15990210e-01 -1.01534911e-01 -7.54788816e-01 -8.33240002e-02 -3.03189784e-01 4.22109336e-01 -2.11930513e-01 -3.37524593e-01 -2.69980758e-01]
[14.117558479309082, 6.089045524597168]
cea6d348-df1f-49e3-8525-0b0d9ac37008
a-large-scale-japanese-dataset-for-aspect
null
null
https://aclanthology.org/2022.lrec-1.758
https://aclanthology.org/2022.lrec-1.758.pdf
A Large-Scale Japanese Dataset for Aspect-based Sentiment Analysis
There has been significant progress in the field of sentiment analysis. However, aspect-based sentiment analysis (ABSA) has not been explored in the Japanese language even though it has a huge scope in many natural language processing applications such as 1) tracking sentiment towards products, movies, politicians etc; 2) improving customer relation models. The main reason behind this is that there is no standard Japanese dataset available for ABSA task. In this paper, we present the first standard Japanese dataset for the hotel reviews domain. The proposed dataset contains 53,192 review sentences with seven aspect categories and two polarity labels. We perform experiments on this dataset using popular ABSA approaches and report error analysis. Our experiments show that contextual models such as BERT works very well for the ABSA task in the Japanese language and also show the need to focus on other NLP tasks for better performance through our error analysis.
['Ikuko Hardaway', 'Sudha Bhingardive', 'Gautam Kumar', 'Koji Murakami', 'Yuki Nakayama']
null
null
null
null
lrec-2022-6
['aspect-based-sentiment-analysis']
['natural-language-processing']
[ 3.92062450e-03 -1.23785459e-01 -1.94110379e-01 -8.48595619e-01 -7.74760246e-01 -5.53710163e-01 5.41866839e-01 3.47314298e-01 -5.41991234e-01 6.59490943e-01 3.39610636e-01 -5.49669445e-01 1.06136329e-01 -6.66221082e-01 -3.23543698e-01 -6.38669431e-01 4.52280939e-01 4.62879360e-01 3.14188540e-01 -6.42093956e-01 5.90366185e-01 7.70397335e-02 -1.13228965e+00 4.95010465e-01 6.29587352e-01 1.00979567e+00 1.19680114e-01 4.45714593e-01 -4.24985319e-01 9.82646644e-01 -7.26870418e-01 -1.06612670e+00 -1.42414672e-02 -3.58591646e-01 -1.04346049e+00 1.14922345e-01 2.83855051e-02 4.04065788e-01 6.21692359e-01 1.08770514e+00 2.97835588e-01 5.67089096e-02 5.01648903e-01 -1.04491270e+00 -7.34433055e-01 8.41179550e-01 -6.63821995e-01 1.30305663e-01 2.78597295e-01 -5.09340107e-01 1.44000995e+00 -8.64671588e-01 6.44296944e-01 1.08283591e+00 5.88896096e-01 2.38384232e-01 -4.92935687e-01 -3.40713322e-01 4.26750898e-01 1.44229725e-01 -8.20625365e-01 5.44356219e-02 9.30429280e-01 -2.74802178e-01 1.35856760e+00 2.88774580e-01 6.60982370e-01 7.51569033e-01 4.46294934e-01 9.81493533e-01 1.44414735e+00 -6.92239285e-01 9.34850797e-02 7.62748599e-01 7.68464148e-01 3.20033461e-01 3.55026901e-01 -8.08528960e-01 -3.88004243e-01 1.35316938e-01 -1.14522159e-01 -2.07219005e-01 2.62512475e-01 -7.04048052e-02 -1.04720104e+00 1.11332154e+00 -1.11882407e-02 5.72922885e-01 -2.87940353e-01 -3.28357577e-01 6.79762423e-01 4.91127312e-01 8.18185806e-01 8.23802054e-01 -1.23935008e+00 -2.67175049e-01 -4.82499689e-01 3.72718930e-01 1.09164631e+00 1.03433216e+00 5.58578789e-01 -1.44657418e-01 2.94729650e-01 9.42219317e-01 3.97701293e-01 6.90552711e-01 5.30347705e-01 -5.88986933e-01 7.38644898e-01 8.85409057e-01 1.42535970e-01 -1.17322409e+00 -4.97486532e-01 -1.46299958e-01 -3.35027307e-01 -3.52813043e-02 2.52763778e-01 -2.85747051e-01 -6.93451703e-01 1.12932312e+00 1.17734790e-01 -8.59104931e-01 4.48712856e-01 6.61152482e-01 9.88786519e-01 8.34687889e-01 1.81100483e-03 -3.43052477e-01 1.94960439e+00 -1.36681855e+00 -1.01762021e+00 -4.77049619e-01 1.12513626e+00 -1.36390078e+00 1.19985569e+00 7.20897973e-01 -8.46697867e-01 -3.08445454e-01 -7.89292753e-01 -1.75543591e-01 -9.78669643e-01 2.76230603e-01 9.91427362e-01 8.60521197e-01 -7.27663517e-01 -1.49869293e-01 -5.45592606e-01 -6.99329317e-01 9.19642076e-02 2.98049420e-01 -2.56744057e-01 -2.04536989e-02 -1.19685018e+00 1.09643507e+00 -5.57912790e-05 2.69333214e-01 -6.26694039e-02 -4.99868616e-02 -1.13772237e+00 -2.44255021e-01 4.94123489e-01 -3.09393823e-01 1.41116571e+00 -1.19506681e+00 -1.46307862e+00 9.72747207e-01 -4.83615845e-01 -3.59613329e-01 -2.47504309e-01 -4.95404899e-01 -6.88186407e-01 -2.58109897e-01 3.38654608e-01 3.04436713e-01 3.21284473e-01 -1.07768714e+00 -9.23891366e-01 -5.44957161e-01 3.69384378e-01 2.43204430e-01 -3.31253797e-01 6.93802536e-01 -3.64813536e-01 -6.66819572e-01 -1.59643322e-01 -1.19981551e+00 -4.87521857e-01 -8.83492231e-01 -4.71879929e-01 -4.87897187e-01 6.56668484e-01 -4.11249220e-01 1.45723689e+00 -1.85739660e+00 -2.43013054e-01 1.65141508e-01 -4.13200080e-01 1.73042372e-01 8.91742781e-02 5.38634300e-01 -7.82758519e-02 2.50464469e-01 -2.54166007e-01 -4.50137138e-01 -1.50239334e-01 2.24809110e-01 -5.53355694e-01 -2.72502955e-02 1.26110926e-01 7.94770300e-01 -7.66778886e-01 -5.54455042e-01 -1.12408683e-01 2.22592086e-01 -4.44657475e-01 -1.31384656e-01 -6.95954785e-02 1.69498354e-01 -8.00236225e-01 9.56610203e-01 4.01290804e-01 -1.43224880e-01 1.06630892e-01 -9.18928683e-02 -4.47503626e-01 7.87166297e-01 -8.80249679e-01 1.37057209e+00 -6.37621462e-01 7.37674654e-01 -1.86183050e-01 -1.02243054e+00 1.03020728e+00 2.47048512e-01 2.50430375e-01 -6.01121664e-01 4.25895065e-01 3.01254243e-01 1.95589721e-01 -6.59364522e-01 1.15811145e+00 -3.80632192e-01 -5.87664485e-01 3.22778493e-01 -2.22979262e-01 -5.61051130e-01 7.34586060e-01 1.32489324e-01 5.42674899e-01 1.37871522e-02 4.47670013e-01 -5.27499914e-01 7.89872587e-01 6.72546029e-01 4.76247609e-01 3.98434341e-01 -2.37188280e-01 5.67585886e-01 7.88075686e-01 -5.81301332e-01 -7.93546855e-01 -1.24422699e-01 -2.86484629e-01 1.04722297e+00 -2.63292324e-02 -7.56699026e-01 -4.95993793e-01 -9.59597468e-01 -4.70436960e-01 7.76265085e-01 -6.11067891e-01 5.07095397e-01 -4.69735265e-01 -1.21133232e+00 -8.15269500e-02 4.32510048e-01 3.80770087e-01 -1.38697863e+00 -2.08307773e-01 1.57129869e-01 -1.49373904e-01 -1.33992386e+00 -3.09336483e-01 3.86941910e-01 -8.74514163e-01 -9.33857143e-01 -3.92676294e-01 -1.16540277e+00 6.28448904e-01 3.72688860e-01 1.24358845e+00 -4.23221529e-01 1.45504281e-01 1.96281672e-01 -8.37368429e-01 -1.04240525e+00 -2.56528288e-01 4.60928172e-01 -7.03352988e-02 -2.33748749e-01 1.02504778e+00 6.56448901e-02 -3.16637218e-01 4.13826287e-01 -7.35317528e-01 -1.62983134e-01 5.61776161e-01 4.58211035e-01 4.83758688e-01 2.41774529e-01 7.51879156e-01 -1.69972157e+00 9.26162958e-01 -2.01955482e-01 -5.59715807e-01 9.78792682e-02 -8.50422204e-01 -2.21303165e-01 5.78024924e-01 1.03989266e-01 -1.17473233e+00 -1.54738918e-01 -4.10364747e-01 7.11811960e-01 -1.80477545e-01 1.01777577e+00 -9.25436392e-02 3.65637273e-01 3.44988227e-01 -1.87839821e-01 -3.27998549e-01 -3.28204185e-01 7.33455494e-02 8.56700897e-01 -2.25848988e-01 -1.98551685e-01 2.97123730e-01 3.60598743e-01 -1.56144023e-01 -8.71941447e-01 -1.46453929e+00 -9.26918685e-01 -4.43666339e-01 1.27920657e-01 1.05623329e+00 -9.80351031e-01 -4.76901740e-01 4.39221978e-01 -1.08262885e+00 1.26586467e-01 -1.60855845e-01 7.03524053e-01 -2.15530381e-01 3.00756186e-01 -6.45007491e-01 -8.90524924e-01 -5.94118893e-01 -1.50280333e+00 9.40053582e-01 2.73847431e-01 -4.55309182e-01 -1.01340353e+00 2.48953536e-01 8.60089004e-01 3.12650204e-01 -3.33859831e-01 8.15860331e-01 -9.09383357e-01 -1.89034402e-01 -5.26283383e-01 1.52085036e-01 6.26736462e-01 2.14142486e-01 1.73600689e-01 -9.23089921e-01 1.93468168e-01 2.81973958e-01 -4.26607877e-01 6.83316231e-01 4.54186648e-01 5.98849595e-01 1.51975239e-02 -1.47849405e-02 -1.66727498e-01 1.21667683e+00 5.96795261e-01 6.46139979e-01 8.27178717e-01 5.78865111e-01 1.04358268e+00 1.29076898e+00 1.21939331e-01 6.92128181e-01 3.42731595e-01 2.04041615e-01 -1.86369084e-02 3.51794571e-01 2.11044699e-01 6.25670731e-01 1.73566628e+00 -4.33449633e-02 -4.34622854e-01 -7.71004856e-01 9.00125682e-01 -1.82296860e+00 -6.95095658e-01 -6.58534408e-01 1.78539157e+00 7.03785539e-01 3.76216769e-01 -7.74777448e-03 1.07425667e-01 2.64533848e-01 2.85132736e-01 1.21169098e-01 -1.22915959e+00 -3.75122964e-01 -5.86432731e-03 2.44595915e-01 5.31445742e-01 -1.41215098e+00 1.17260635e+00 5.66433954e+00 5.67839622e-01 -7.81436026e-01 3.98077443e-02 8.29247177e-01 3.90246481e-01 -3.38013887e-01 2.06577435e-01 -1.14275599e+00 1.22248389e-01 7.81963825e-01 2.64831543e-01 -1.69593826e-01 1.27781522e+00 1.62579015e-01 -4.76244748e-01 -5.19590974e-01 6.36737585e-01 4.09560561e-01 -9.15201366e-01 1.20889224e-01 -9.00002196e-02 1.01978028e+00 -4.22325321e-02 -4.41622585e-02 5.55459321e-01 5.84041588e-02 -6.45198107e-01 3.63859981e-01 6.97832704e-02 4.02207449e-02 -8.98978710e-01 1.54812610e+00 8.60966220e-02 -8.74006331e-01 2.92415202e-01 -5.87805033e-01 -1.93881929e-01 4.46272135e-01 7.50952542e-01 -6.95891976e-01 5.24114668e-01 9.00484800e-01 1.00056601e+00 -6.86691046e-01 6.16161406e-01 -3.56105894e-01 7.67061532e-01 -2.99044456e-02 -5.93172073e-01 5.58263540e-01 -6.20988667e-01 3.24116498e-01 1.32054186e+00 2.13129729e-01 -5.93831316e-02 -1.04132563e-01 -5.21742254e-02 -1.21932859e-02 7.14156926e-01 -7.70213485e-01 -2.22294509e-01 -3.30107182e-01 1.51122332e+00 -1.16837585e+00 -3.06168705e-01 -9.78615046e-01 6.16878748e-01 -7.20565841e-02 1.54985040e-01 -5.12736559e-01 -7.00914323e-01 4.35365647e-01 -1.25450850e-01 3.91988605e-01 -3.43312845e-02 -6.05525374e-01 -1.31024301e+00 1.56051554e-02 -1.00665987e+00 3.69278878e-01 -1.00338268e+00 -1.34010863e+00 1.04587090e+00 -1.94736645e-01 -1.13613701e+00 -1.11174069e-01 -1.17137313e+00 -4.35918659e-01 6.43292367e-01 -1.77174425e+00 -1.15580177e+00 3.09072316e-01 2.95182794e-01 9.49023008e-01 -2.04164073e-01 8.54650259e-01 2.98876941e-01 -5.41341305e-01 6.61738366e-02 -1.51395187e-01 -9.63601342e-04 1.06332314e+00 -1.41425467e+00 3.15575212e-01 7.91665196e-01 1.79032519e-01 9.00660872e-01 8.80549073e-01 -5.83787084e-01 -1.22484744e+00 -5.81949592e-01 1.88639486e+00 -9.42767441e-01 9.74141359e-01 -2.97333032e-01 -5.94422936e-01 7.81235993e-01 6.59137249e-01 -4.99799818e-01 1.06666374e+00 6.78717494e-01 -2.43408512e-02 -3.71485323e-01 -6.72554731e-01 4.96242106e-01 2.65743881e-01 -3.73923033e-01 -7.74673879e-01 3.82095933e-01 7.58854091e-01 -1.05781786e-01 -6.66532397e-01 4.18542475e-01 3.36360335e-01 -7.11478651e-01 5.18689871e-01 -6.33346558e-01 7.37142801e-01 -4.80905205e-01 -2.31781468e-01 -1.23223460e+00 8.17414671e-02 -6.96323514e-02 5.13047934e-01 1.38967192e+00 1.15123737e+00 -5.54708481e-01 6.69309199e-01 7.43157566e-01 -2.94299662e-01 -9.98031557e-01 -4.27652448e-01 -2.40272462e-01 -6.10487759e-02 -9.41630721e-01 3.59305471e-01 9.71845746e-01 1.67926177e-01 9.27631736e-01 -3.48878860e-01 -9.67844501e-02 -9.02452841e-02 6.57115936e-01 7.60605991e-01 -9.46216285e-01 6.35376945e-02 -2.96804816e-01 -9.42321047e-02 -8.35105777e-01 -6.44582091e-03 -5.01043439e-01 3.34773213e-02 -1.73261094e+00 2.43991107e-01 -3.89189184e-01 -2.48601779e-01 3.09100479e-01 -3.02986950e-01 4.75627869e-01 9.06551331e-02 -9.80434380e-03 -9.19126093e-01 3.36467594e-01 1.28128052e+00 1.40645914e-02 -1.78708881e-01 3.17979962e-01 -1.22474730e+00 1.00795519e+00 9.12529290e-01 -6.22994602e-01 -3.38920116e-01 -3.97862256e-01 1.12550879e+00 -4.34241533e-01 -5.77518165e-01 -2.57550180e-01 2.81768236e-02 -1.37488812e-01 2.53054556e-02 -9.14692104e-01 1.65750936e-01 -1.06732917e+00 -4.64154243e-01 8.96080732e-02 -2.20603153e-01 6.13762558e-01 4.25001010e-02 3.97718638e-01 -6.87334359e-01 -6.23416483e-01 2.87223935e-01 -1.90415710e-01 -7.21105933e-01 -2.20009983e-01 -7.05562532e-01 5.51868454e-02 8.75264406e-01 5.59556112e-02 -3.14558059e-01 -2.60978431e-01 -5.49372077e-01 2.66198516e-01 2.83052802e-01 5.29562533e-01 3.03542465e-01 -8.85589778e-01 -3.23314905e-01 -9.56614539e-02 4.51469719e-01 1.94338113e-02 2.56619006e-02 8.65410805e-01 -6.49808466e-01 9.38854635e-01 2.57921398e-01 -2.87475765e-01 -1.30015123e+00 6.67398870e-01 -2.65421987e-01 -7.48644412e-01 -1.03457803e-02 6.53509915e-01 2.09040105e-01 -6.77305162e-01 -6.90262243e-02 -6.24260783e-01 -1.07341337e+00 4.93849725e-01 5.14696538e-01 5.59337996e-02 3.23141813e-01 -9.30086792e-01 -4.88937289e-01 7.62260914e-01 -4.23577219e-01 -4.73196991e-02 1.35861516e+00 -4.48363394e-01 -4.64749694e-01 9.39968705e-01 1.04955113e+00 5.16939640e-01 -2.47090772e-01 1.37606356e-02 4.04256284e-01 -2.10084692e-01 -6.55270517e-02 -8.98127437e-01 -9.29037094e-01 7.73956954e-01 -6.25739768e-02 6.26080811e-01 1.10023475e+00 9.66058001e-02 8.35474372e-01 6.40811503e-01 4.03335899e-01 -1.42939579e+00 -2.14258969e-01 9.44238663e-01 6.93256199e-01 -1.70559442e+00 1.64213225e-01 -4.82137680e-01 -1.48760545e+00 9.98992562e-01 4.60039675e-01 5.67867130e-04 8.59094620e-01 1.37677714e-01 7.16476381e-01 -5.60385168e-01 -7.05871165e-01 -2.62170970e-01 2.04033926e-01 1.78828254e-01 8.98585141e-01 4.27872948e-02 -9.08848703e-01 9.96216834e-01 -3.44268024e-01 -2.70606220e-01 8.73810470e-01 1.06234729e+00 -2.92205334e-01 -1.39219499e+00 -1.42412454e-01 4.52524036e-01 -1.24039674e+00 -4.27168041e-01 -5.16925931e-01 9.29653049e-01 -1.41321942e-01 1.26539588e+00 -3.14828336e-01 -6.00919360e-03 5.18122077e-01 6.63455129e-02 -8.92121531e-03 -8.90195310e-01 -8.56488943e-01 2.76601791e-01 6.24399602e-01 -2.20795020e-01 -1.17576373e+00 -8.57967377e-01 -1.00444508e+00 2.77085863e-02 -5.93472600e-01 6.88496947e-01 1.12043142e+00 1.03994083e+00 5.77349588e-02 3.17039013e-01 6.10550582e-01 -1.24363989e-01 1.75029993e-01 -1.19667065e+00 -6.57326996e-01 1.98898181e-01 7.73730502e-02 -1.75958097e-01 -3.55804712e-01 1.19556203e-01]
[11.341278076171875, 6.772342681884766]
cd3da91e-d7bc-42f8-8898-ee5c355b0e7a
learning-combinatorial-prompts-for-universal
2303.06338
null
https://arxiv.org/abs/2303.06338v2
https://arxiv.org/pdf/2303.06338v2.pdf
Learning Combinatorial Prompts for Universal Controllable Image Captioning
Controllable Image Captioning (CIC) -- generating natural language descriptions about images under the guidance of given control signals -- is one of the most promising directions towards next-generation captioning systems. Till now, various kinds of control signals for CIC have been proposed, ranging from content-related control to structure-related control. However, due to the format and target gaps of different control signals, all existing CIC works (or architectures) only focus on one certain control signal, and overlook the human-like combinatorial ability. By ``combinatorial", we mean that our humans can easily meet multiple needs (or constraints) simultaneously when generating descriptions. To this end, we propose a novel prompt-based framework for CIC by learning Combinatorial Prompts, dubbed as ComPro. Specifically, we directly utilize a pretrained language model GPT-2 as our language model, which can help to bridge the gap between different signal-specific CIC architectures. Then, we reformulate the CIC as a prompt-guide sentence generation problem, and propose a new lightweight prompt generation network to generate the combinatorial prompts for different kinds of control signals. For different control signals, we further design a new mask attention mechanism to realize the prompt-based CIC. Due to its simplicity, our ComPro can easily be extended to more complex combined control signals by concatenating these prompts. Extensive experiments on two prevalent CIC benchmarks have verified the effectiveness and efficiency of our ComPro on both single and combined control signals.
['Long Chen', 'Jian Shao', 'Fei Gao', 'Lei Chen', 'Jun Xiao', 'Zhen Wang']
2023-03-11
null
null
null
null
['controllable-image-captioning']
['computer-vision']
[ 5.39256990e-01 -1.76468298e-01 -2.42831498e-01 -4.71338391e-01 -6.90295219e-01 -5.41154802e-01 7.70775318e-01 -3.64331543e-01 -4.33319807e-02 4.98084158e-01 6.17723763e-01 -2.96149760e-01 1.50946364e-01 -7.38223612e-01 -8.29224110e-01 -6.28478885e-01 5.85705638e-01 1.24258481e-01 2.20464319e-01 -5.38646042e-01 1.81295767e-01 5.30061917e-03 -1.10480535e+00 4.19459105e-01 1.07286441e+00 8.38153481e-01 6.48319066e-01 2.93884128e-01 -3.27382892e-01 8.15316677e-01 -6.79850399e-01 -1.92159131e-01 1.84445037e-03 -7.68412888e-01 -4.29243743e-01 3.56358767e-01 1.44155785e-01 -2.28721574e-01 -4.51310128e-01 9.99469459e-01 6.38162076e-01 -1.14513308e-01 4.96253103e-01 -1.39202988e+00 -1.36862552e+00 6.89947188e-01 -5.20340145e-01 -1.39417589e-01 6.51913702e-01 7.09866881e-01 9.42544580e-01 -6.55619323e-01 3.75814766e-01 1.49553752e+00 2.15814248e-01 9.77571905e-01 -1.24502909e+00 -7.06504107e-01 7.55908310e-01 1.61879078e-01 -1.21940219e+00 -3.38466704e-01 9.55988526e-01 -2.28646919e-01 5.24675548e-01 2.58007586e-01 4.19637054e-01 1.31823778e+00 -2.51657873e-01 1.26667738e+00 9.77954268e-01 -2.10139364e-01 1.26318410e-02 -3.70838083e-02 -1.46535918e-01 4.10553992e-01 -6.21141717e-02 -1.54854357e-01 -1.00033246e-01 2.20391482e-01 9.36815798e-01 -1.78074002e-01 -7.42795348e-01 -9.17655900e-02 -1.71808350e+00 7.10933864e-01 5.07652819e-01 7.00496808e-02 -7.79202580e-02 2.46806949e-01 4.61302459e-01 1.29029706e-01 3.81227732e-02 6.13181114e-01 -2.06872702e-01 1.37903824e-01 -4.40979809e-01 3.68230313e-01 4.44721133e-01 1.47360146e+00 5.45568526e-01 1.60192147e-01 -1.08813095e+00 8.34604144e-01 1.73396274e-01 5.78711033e-01 5.85287571e-01 -4.87036586e-01 8.93175125e-01 6.18203759e-01 3.29072773e-01 -1.08991647e+00 -2.16973156e-01 -3.35815698e-01 -1.08178651e+00 -5.66196084e-01 7.11689563e-03 -3.47381294e-01 -1.02694798e+00 2.15791774e+00 -2.06697006e-02 2.92936653e-01 3.32414061e-02 1.24273252e+00 9.57692921e-01 1.17574191e+00 7.46786743e-02 -2.83740640e-01 1.41393018e+00 -1.22921383e+00 -7.53648341e-01 -2.77123779e-01 2.12084860e-01 -5.20510614e-01 1.70222723e+00 5.84003627e-02 -7.09456921e-01 -6.85859859e-01 -1.01695204e+00 -1.46453276e-01 3.56067307e-02 2.52375484e-01 5.40272772e-01 2.03341156e-01 -9.85922933e-01 -1.46918014e-01 -3.70936483e-01 1.12824682e-02 2.90878534e-01 1.74510479e-01 -5.87528571e-02 -2.45305389e-01 -1.41791296e+00 3.73866349e-01 4.01974976e-01 2.48259589e-01 -9.35091257e-01 -5.96223533e-01 -9.87784505e-01 2.26708144e-01 7.67764211e-01 -7.44342148e-01 1.39443243e+00 -8.84183884e-01 -1.51684070e+00 3.97111088e-01 -1.71481043e-01 -1.15350634e-01 3.68942976e-01 -1.97784360e-02 -4.42300141e-01 1.10019453e-01 2.91117191e-01 1.10846150e+00 7.92141616e-01 -1.33137095e+00 -3.52557510e-01 3.21755558e-01 4.72356796e-01 2.48859227e-01 -4.05774891e-01 7.13296533e-02 -8.83284390e-01 -9.41902637e-01 -2.23408625e-01 -8.25470865e-01 -3.98448557e-01 -4.78635170e-02 -7.02050328e-01 -4.10192251e-01 5.53449929e-01 -1.31577581e-01 1.35558796e+00 -2.17847085e+00 2.61075914e-01 -2.73719788e-01 7.73082152e-02 3.34481150e-01 -6.46302462e-01 3.70415449e-01 -9.75233167e-02 3.64331216e-01 -3.59346569e-01 -2.18252569e-01 2.09010497e-01 1.79484040e-01 -5.50405264e-01 -2.71847337e-01 7.15595245e-01 1.21964681e+00 -1.15198052e+00 -5.36316872e-01 6.88199550e-02 2.30770543e-01 -5.62533438e-01 4.41861272e-01 -9.02203381e-01 4.92159158e-01 -8.16872001e-01 4.61632490e-01 6.58275604e-01 -4.40133601e-01 -1.16054609e-01 -4.15300190e-01 -9.26422700e-02 1.92515522e-01 -8.61189604e-01 1.66566336e+00 -6.44547462e-01 2.38442630e-01 -2.45747101e-02 -8.47236753e-01 1.09320414e+00 3.26838404e-01 3.03905942e-02 -7.95194566e-01 -1.67132530e-03 1.63642526e-01 1.20479716e-02 -7.07660317e-01 3.82340848e-01 -1.40998080e-01 -3.95493984e-01 2.32139230e-01 -2.38356173e-01 -1.71640962e-01 3.52307111e-01 2.11837813e-01 8.41138601e-01 2.28773788e-01 3.15095745e-02 -6.47251531e-02 8.65296602e-01 -2.05347925e-01 8.23083937e-01 6.61623657e-01 -1.79701850e-01 1.14611995e+00 9.23434138e-01 -3.02202046e-01 -8.92823398e-01 -7.47927547e-01 3.54786307e-01 8.24072182e-01 4.85831141e-01 -3.03939581e-01 -7.39310145e-01 -7.30805576e-01 -3.19138438e-01 7.03155696e-01 -3.79297525e-01 -2.18148693e-01 -7.11238384e-01 -5.43296456e-01 4.14622188e-01 5.78459263e-01 9.23592687e-01 -1.38731897e+00 -2.13721275e-01 3.12791318e-01 -5.73806643e-01 -1.37104952e+00 -1.27214718e+00 -2.66856074e-01 -1.60833985e-01 -6.46810591e-01 -1.04297519e+00 -1.16155565e+00 7.69849658e-01 4.24110770e-01 1.00654590e+00 2.18560636e-01 2.45144933e-01 9.30189118e-02 -4.95690256e-01 -1.92376181e-01 -3.15285444e-01 1.93036675e-01 -2.36460045e-01 3.82100493e-01 6.67294115e-02 -4.50745046e-01 -7.50318408e-01 5.31225920e-01 -1.22896492e+00 6.57674193e-01 8.71201873e-01 9.90599275e-01 5.28495967e-01 -3.07277769e-01 9.41524506e-01 -6.29375577e-01 1.03141224e+00 -4.66662288e-01 -5.76784134e-01 5.33016264e-01 -1.65811956e-01 3.39693367e-01 1.10664880e+00 -8.53093207e-01 -1.02220106e+00 7.80271692e-03 -9.36869159e-02 -5.77189267e-01 -2.34828249e-01 6.99109793e-01 -8.12400877e-01 3.26845169e-01 2.99465984e-01 7.15796590e-01 -1.50370792e-01 -1.94780976e-01 4.56864923e-01 7.42216587e-01 7.47744560e-01 -9.37858939e-01 7.17311740e-01 3.99620123e-02 -1.87754631e-01 -2.60629654e-01 -8.99750650e-01 -1.99154206e-02 3.69990282e-02 3.11713312e-02 1.04308236e+00 -8.20703447e-01 -6.75916433e-01 5.48598766e-01 -1.52618086e+00 -2.77266592e-01 1.26505688e-01 6.10458851e-02 -5.06261945e-01 3.47657055e-01 -5.72346091e-01 -5.54346859e-01 -3.73093218e-01 -1.67411959e+00 1.20237565e+00 4.98093873e-01 1.23026423e-01 -6.03576183e-01 -3.65128219e-01 1.71504363e-01 5.84012866e-01 2.42813647e-01 1.00506032e+00 -3.17976475e-01 -7.71164179e-01 5.05446307e-02 -6.00704670e-01 3.23080778e-01 2.42685124e-01 -2.33858928e-01 -5.52612782e-01 3.75041887e-02 -7.95021746e-03 -3.76312822e-01 6.66495085e-01 1.69518255e-02 1.40208888e+00 -5.26001215e-01 -1.80818513e-01 4.49223906e-01 1.28706217e+00 3.21950793e-01 7.97736883e-01 1.94585919e-01 8.13321829e-01 5.06271124e-01 6.80161774e-01 2.12721363e-01 6.46676660e-01 8.33315730e-01 4.65239733e-01 -1.56469688e-01 -1.16548106e-01 -8.30248415e-01 4.81388360e-01 8.61957490e-01 3.68753999e-01 -5.58040082e-01 -6.19444191e-01 5.66328049e-01 -1.94322038e+00 -8.07516515e-01 -8.95681977e-03 1.76437116e+00 1.07000053e+00 2.25344807e-01 -1.39059380e-01 -2.00349152e-01 1.04292870e+00 3.83697271e-01 -6.50744796e-01 -1.25082463e-01 -1.31050572e-01 -1.92680076e-01 7.67796412e-02 1.77081153e-01 -1.02622461e+00 9.68686938e-01 4.98280573e+00 1.15226781e+00 -1.45025551e+00 -2.38861784e-01 7.95180559e-01 1.16592586e-01 -8.12572479e-01 8.17303173e-03 -7.53926635e-01 9.87145603e-01 3.85315686e-01 -3.03042382e-01 3.94693047e-01 7.63117373e-01 6.30175173e-01 3.72566640e-01 -1.09907866e+00 1.15510666e+00 1.21091954e-01 -1.41597176e+00 6.17777824e-01 -3.30567509e-01 7.38373160e-01 -4.10311103e-01 1.50550291e-01 5.80630839e-01 -1.62827242e-02 -9.21363056e-01 9.33387399e-01 3.48330885e-01 1.10247684e+00 -4.46198523e-01 6.03132248e-01 3.40686679e-01 -1.30559862e+00 -1.06683001e-01 -2.08935127e-01 -6.97509274e-02 4.00983542e-01 3.52463514e-01 -4.04541194e-01 6.97344244e-01 5.95109444e-03 6.49436474e-01 -5.25204599e-01 9.57019508e-01 -6.48759007e-01 5.27963936e-01 -1.17660671e-01 -4.27646756e-01 4.35558200e-01 -4.40582186e-02 3.45920384e-01 1.03498125e+00 3.59843016e-01 2.76519120e-01 4.55364108e-01 1.22697186e+00 -1.79136768e-01 1.20729385e-02 -3.36584270e-01 -1.09514147e-01 7.34264135e-01 1.18414009e+00 -4.62102324e-01 -3.27433497e-01 -4.88611698e-01 1.00473392e+00 5.70255369e-02 4.43836600e-01 -1.12372112e+00 -6.22107327e-01 3.26397717e-01 8.66988748e-02 2.78002441e-01 -2.06128418e-01 -7.51993284e-02 -1.49244356e+00 3.44912291e-01 -1.18936384e+00 7.52894357e-02 -1.21872020e+00 -1.29916298e+00 7.41574228e-01 2.41126984e-01 -1.45316422e+00 -7.41666332e-02 -4.71092463e-01 -1.03018630e+00 7.55055189e-01 -1.66929758e+00 -1.27895832e+00 -4.18316156e-01 5.06515265e-01 8.54803205e-01 7.55303875e-02 4.50376600e-01 2.64026552e-01 -7.72147715e-01 7.13972032e-01 -6.41989470e-01 5.72072268e-02 5.92765033e-01 -1.10949099e+00 6.05860353e-01 9.57778096e-01 -1.06829472e-01 7.05332041e-01 5.58507383e-01 -3.80611748e-01 -1.48270738e+00 -1.28708351e+00 7.52792478e-01 -4.07878682e-02 4.60776359e-01 -6.08069599e-01 -8.89613748e-01 4.28382218e-01 4.13503945e-01 -8.67489353e-02 2.18177140e-01 -4.76047426e-01 -2.98089415e-01 -2.32946128e-01 -6.87968850e-01 1.01837254e+00 1.17610586e+00 -2.92475671e-01 -5.02740264e-01 3.32361639e-01 1.54566526e+00 -4.48457211e-01 -3.16792428e-01 5.29106379e-01 1.37203470e-01 -6.89866364e-01 6.99088037e-01 -2.94833243e-01 7.67520964e-01 -8.07133794e-01 5.57591580e-02 -1.24798155e+00 -4.21446115e-01 -8.94109130e-01 3.34864080e-01 1.61728132e+00 4.92393196e-01 -4.07458186e-01 4.99929160e-01 5.28936923e-01 -6.22440755e-01 -9.41770852e-01 -5.06878793e-01 -7.20468938e-01 -1.35355443e-01 -4.15166348e-01 1.10299170e+00 7.76986241e-01 -1.45252958e-01 6.98184967e-01 -6.19528055e-01 3.85551415e-02 3.49869691e-02 2.88982660e-01 8.71584058e-01 -5.43201804e-01 -4.03530210e-01 -4.46092278e-01 -1.11682460e-01 -1.85805869e+00 5.76721020e-02 -7.71119237e-01 3.50627482e-01 -1.64522088e+00 1.87512204e-01 -5.51635861e-01 -3.86177860e-02 7.12099195e-01 -5.97301960e-01 -4.18329574e-02 5.22566617e-01 1.53769851e-01 -6.14880383e-01 9.56210196e-01 1.85111701e+00 -2.55758792e-01 -3.17669436e-02 -3.58322740e-01 -1.21534288e+00 3.70395541e-01 6.05856001e-01 7.35775055e-03 -8.46283853e-01 -8.46530020e-01 1.24513187e-01 2.38049537e-01 3.38898927e-01 -8.40105951e-01 2.06957877e-01 -5.80083966e-01 -1.60816893e-01 -4.04853851e-01 1.43952528e-02 -4.94173020e-01 -1.16790242e-01 1.59153521e-01 -5.75780928e-01 1.52180478e-01 1.04312925e-02 5.07468104e-01 -4.11755919e-01 5.42525807e-03 4.38556701e-01 -1.48637578e-01 -8.18587065e-01 5.52631736e-01 -7.11712539e-02 2.51275510e-01 9.42085624e-01 1.90330788e-01 -5.11865139e-01 -6.32549942e-01 -2.72460550e-01 8.74558210e-01 3.04033399e-01 7.42639124e-01 7.39743590e-01 -1.64551568e+00 -8.59587908e-01 2.42580444e-01 4.11664546e-01 4.01681304e-01 2.68905729e-01 6.16253674e-01 -3.10538530e-01 4.30514723e-01 8.69668946e-02 -6.63035393e-01 -6.22238576e-01 8.38031471e-01 1.88370824e-01 -2.58197516e-01 -4.51878875e-01 6.82938159e-01 6.68311834e-01 -2.62278914e-01 5.43140396e-02 -4.99226153e-01 -1.83675900e-01 -4.00721371e-01 6.00520372e-01 -4.17292804e-01 -4.11532432e-01 -3.66486758e-01 -5.43282107e-02 4.73033875e-01 -1.87319517e-01 -7.00551644e-02 9.89741027e-01 -1.50596589e-01 -6.70760199e-02 6.46347851e-02 1.01748943e+00 -2.80199051e-01 -1.40338147e+00 -9.95099023e-02 -2.10617676e-01 -3.60578984e-01 -3.36847961e-01 -8.01694632e-01 -1.14803851e+00 9.25129294e-01 -5.93873067e-03 1.13578357e-01 1.40844393e+00 -1.04773611e-01 9.11551356e-01 1.67689115e-01 3.11794758e-01 -6.11837327e-01 3.52477729e-01 3.80336642e-01 1.28492451e+00 -1.08102214e+00 -4.81094003e-01 -5.62689245e-01 -8.73854697e-01 8.85013402e-01 1.13147616e+00 -4.11818502e-03 2.31407750e-02 2.12657023e-02 1.06460918e-02 7.96642303e-02 -1.00613606e+00 -1.49591967e-01 1.20145179e-01 6.96139395e-01 3.14811945e-01 -4.94358130e-02 -6.25923514e-01 9.02713180e-01 1.60096120e-02 2.63452232e-01 6.51419222e-01 5.33390939e-01 -1.21443957e-01 -1.23294246e+00 -2.35067055e-01 3.08952332e-01 -4.76884395e-02 -3.33256334e-01 -2.38599211e-01 5.93669415e-01 2.47563601e-01 1.07984257e+00 -1.17301211e-01 -4.74213719e-01 5.35830796e-01 -2.88801014e-01 1.36604920e-01 -7.76701033e-01 -2.85411716e-01 1.49050653e-01 -3.24059613e-02 -3.54595006e-01 -3.60075474e-01 -3.52063358e-01 -1.17278087e+00 1.30157843e-01 -3.64525199e-01 1.80007502e-01 1.48592740e-01 8.23121488e-01 5.41223586e-01 6.18799567e-01 8.40193570e-01 -7.22939789e-01 -6.46286190e-01 -1.01228285e+00 -3.53586264e-02 5.08583248e-01 2.09570095e-01 -5.00910282e-01 -9.96267423e-02 5.27480394e-02]
[10.883955001831055, 0.9230377078056335]
77542786-3730-42e6-92b3-f0de35ca6b47
nfresnet-multi-scale-and-u-shaped-networks
2212.05909
null
https://arxiv.org/abs/2212.05909v1
https://arxiv.org/pdf/2212.05909v1.pdf
NFResNet: Multi-scale and U-shaped Networks for Deblurring
Multi-Scale and U-shaped Networks are widely used in various image restoration problems, including deblurring. Keeping in mind the wide range of applications, we present a comparison of these architectures and their effects on image deblurring. We also introduce a new block called as NFResblock. It consists of a Fast Fourier Transformation layer and a series of modified Non-Linear Activation Free Blocks. Based on these architectures and additions, we introduce NFResnet and NFResnet+, which are modified multi-scale and U-Net architectures, respectively. We also use three different loss functions to train these architectures: Charbonnier Loss, Edge Loss, and Frequency Reconstruction Loss. Extensive experiments on the Deep Video Deblurring dataset, along with ablation studies for each component, have been presented in this paper. The proposed architectures achieve a considerable increase in Peak Signal to Noise (PSNR) ratio and Structural Similarity Index (SSIM) value.
['Aarya Makwana', 'Esha Pahwa', 'Preyansh Agrawal', 'Tanish Mittal']
2022-12-12
null
null
null
null
['deblurring']
['computer-vision']
[ 3.77994686e-01 -4.97662634e-01 1.31242722e-01 -8.49645659e-02 -5.35154581e-01 -4.07482907e-02 4.14513707e-01 -5.20780623e-01 -3.67242128e-01 6.96525395e-01 5.83467305e-01 -1.04217075e-01 1.20248817e-01 -4.15543079e-01 -7.53418505e-01 -9.21680689e-01 -2.42279708e-01 -7.05644190e-01 3.15485567e-01 -2.77671248e-01 2.91939974e-01 5.15742123e-01 -1.06814909e+00 2.12036744e-01 1.00709748e+00 1.05062366e+00 2.53887266e-01 6.12172961e-01 5.57882309e-01 1.00195372e+00 -5.14315486e-01 -2.78876871e-01 3.09345841e-01 -5.90210855e-01 -6.61810338e-01 -7.29093775e-02 7.13141382e-01 -9.30394292e-01 -1.10601151e+00 1.22179890e+00 9.76803958e-01 4.37124968e-01 5.37157297e-01 -7.24830568e-01 -1.22552109e+00 4.61447120e-01 -9.25430238e-01 8.99773717e-01 1.00947879e-01 3.05221118e-02 4.82389688e-01 -9.02303100e-01 4.09083009e-01 1.17136478e+00 1.12910736e+00 4.25578535e-01 -1.09929466e+00 -6.70767963e-01 -2.14214578e-01 8.41239631e-01 -1.34305918e+00 -5.63011885e-01 8.37032795e-01 -1.38852432e-01 9.11680758e-01 2.17332557e-01 3.43407989e-01 9.86997128e-01 5.81256032e-01 7.76376963e-01 1.06530797e+00 -3.95936489e-01 4.00120858e-03 -5.14822483e-01 1.38933837e-01 3.00155610e-01 1.49825215e-01 4.17035580e-01 -2.47764990e-01 8.12606514e-02 1.19077182e+00 -5.99537529e-02 -1.08231604e+00 -1.54123574e-01 -1.20372009e+00 4.49037135e-01 8.30742538e-01 3.32852840e-01 -4.08050537e-01 4.35350537e-01 4.36970770e-01 4.83776480e-01 5.21243930e-01 1.46756753e-01 -1.73341885e-01 3.27223659e-01 -1.06275654e+00 2.34399736e-02 1.05155118e-01 5.87920725e-01 4.75039244e-01 4.36124891e-01 -1.94662899e-01 1.26100993e+00 1.44069731e-01 2.95095742e-01 9.42942381e-01 -8.80109251e-01 1.25300691e-01 -1.05031624e-01 1.02484629e-01 -1.27412510e+00 -3.29289675e-01 -6.06779754e-01 -1.62461698e+00 1.94347441e-01 -1.57061021e-03 -1.32399768e-01 -9.99817371e-01 1.67396295e+00 -2.20870301e-02 8.52977991e-01 -2.75317137e-03 1.32683921e+00 8.42454910e-01 6.83015525e-01 -1.49966851e-01 -2.15458080e-01 1.16714001e+00 -1.20358336e+00 -1.07615137e+00 -1.40725523e-01 2.52826661e-01 -7.74710238e-01 7.98317730e-01 3.15073937e-01 -1.33799815e+00 -7.00532436e-01 -1.33977222e+00 -3.52983713e-01 6.76867664e-02 1.97076395e-01 3.24216008e-01 5.24903595e-01 -1.50518954e+00 1.05749273e+00 -7.74178624e-01 -1.32079542e-01 4.63320315e-01 1.94425121e-01 -2.65443802e-01 -1.48829192e-01 -1.42371082e+00 9.81994808e-01 4.03304733e-02 4.50496972e-01 -1.06563270e+00 -5.84705174e-01 -8.45177352e-01 1.44308686e-01 -3.59140448e-02 -7.60572135e-01 8.53264213e-01 -1.00896871e+00 -1.45496953e+00 6.41160309e-01 1.91407830e-01 -5.15222251e-01 4.45385545e-01 -4.49169546e-01 -7.01297045e-01 1.90331295e-01 -1.97613969e-01 6.01166010e-01 1.19901860e+00 -1.01900196e+00 -2.11503819e-01 -1.62049741e-01 -1.72360942e-01 1.33734882e-01 -2.83724308e-01 3.35864842e-01 -2.51439452e-01 -1.60952365e+00 9.91826206e-02 -6.24137342e-01 -1.42011076e-01 7.68917501e-02 -1.39845580e-01 3.02401811e-01 9.20684814e-01 -1.41307008e+00 1.43125105e+00 -2.18092322e+00 3.85738820e-01 -2.60843039e-01 2.63734877e-01 4.88943905e-01 -7.43933797e-01 -3.08114439e-02 -7.12019861e-01 7.11722523e-02 -5.24594605e-01 -8.23017359e-02 -5.41740596e-01 -2.43382394e-01 -2.99582809e-01 9.66946304e-01 1.02469176e-02 8.77902031e-01 -6.27136528e-01 1.40195385e-01 2.26312190e-01 8.95747304e-01 -5.45695245e-01 3.53715420e-02 3.26821417e-01 2.85777539e-01 -7.86467455e-03 4.65208143e-01 1.08795154e+00 -2.09369555e-01 -2.01184273e-01 -6.39010787e-01 1.07340127e-01 -2.17787623e-02 -9.61845100e-01 1.76762891e+00 -4.96921927e-01 1.01789010e+00 3.34100634e-01 -9.12581682e-01 5.08235455e-01 4.39880282e-01 3.30984592e-01 -6.28506541e-01 2.63254315e-01 2.92431146e-01 -4.06865366e-02 -4.99884188e-01 6.17885411e-01 -7.03526810e-02 6.02196872e-01 3.08462501e-01 2.71453802e-02 2.23500833e-01 2.42152438e-02 -4.93304851e-03 9.84812975e-01 -8.37281998e-03 1.54280514e-01 -5.24372935e-01 8.50690782e-01 -5.68967104e-01 4.11189348e-01 4.52693552e-01 -3.93776864e-01 1.11432445e+00 2.43541777e-01 -5.87460279e-01 -1.24465251e+00 -8.40011179e-01 -1.03524499e-01 6.49367034e-01 5.86546004e-01 -1.65222481e-01 -7.50592113e-01 -4.38485563e-01 -5.00873625e-01 4.60681736e-01 -5.30409813e-01 -3.01901281e-01 -9.59428549e-01 -1.15281546e+00 4.55177188e-01 4.44422662e-01 9.50754583e-01 -1.04438567e+00 -1.89194039e-01 1.31798998e-01 -5.57835102e-01 -9.80096161e-01 -1.11718464e+00 -2.29613110e-01 -1.04108334e+00 -1.02056563e+00 -1.49547839e+00 -1.07611167e+00 5.92605054e-01 7.78245211e-01 9.98079360e-01 9.65520963e-02 -1.42065883e-01 -2.29552034e-02 -4.09731388e-01 4.26921636e-01 -5.04412711e-01 -2.37517685e-01 -6.36103749e-02 -6.40788898e-02 -3.14473242e-01 -9.95277703e-01 -1.16347361e+00 6.57958269e-01 -1.36283600e+00 -9.06284992e-03 6.49141848e-01 1.13027000e+00 3.41982841e-01 1.10965706e-01 6.86688066e-01 -1.68685228e-01 8.52884412e-01 -2.21238092e-01 -3.66312891e-01 1.40916720e-01 -5.50743818e-01 -2.36412883e-01 5.01116872e-01 -6.10901654e-01 -8.82343352e-01 -3.89244944e-01 -2.37992138e-01 -7.02337861e-01 1.99004531e-01 3.67451102e-01 -5.69143193e-03 -5.31609654e-01 8.18648577e-01 5.10889649e-01 1.05261572e-01 -5.95948756e-01 3.57840121e-01 7.46815026e-01 7.99772561e-01 -3.53323221e-02 6.25915825e-01 3.19125175e-01 -2.64398217e-01 -8.70222986e-01 -3.51771623e-01 -1.84079960e-01 -1.98856413e-01 -1.39738053e-01 6.74736381e-01 -1.15276659e+00 -3.49877775e-01 1.37922561e+00 -1.32389390e+00 -2.92626381e-01 -5.77417202e-02 5.18610358e-01 -3.78224164e-01 1.03049564e+00 -1.05267835e+00 -9.83040258e-02 -6.78446233e-01 -1.31281722e+00 5.48321128e-01 3.30464542e-01 3.85836929e-01 -9.28780496e-01 -8.85168314e-02 2.00665355e-01 1.01257718e+00 -6.19348232e-03 7.40505874e-01 -1.11228041e-01 -3.93288165e-01 -1.04791038e-01 -6.90379381e-01 1.04170990e+00 2.33146071e-01 -6.67722106e-01 -7.34938920e-01 -8.62478435e-01 3.97176147e-01 -1.62202179e-01 1.23186159e+00 8.58470380e-01 1.27964509e+00 -3.27441216e-01 -4.90647592e-02 9.76502955e-01 1.33741021e+00 9.35164317e-02 1.33225644e+00 4.42833155e-01 6.67302132e-01 4.64601777e-02 -2.83888727e-01 6.71482906e-02 1.11518309e-01 8.34421873e-01 4.17992145e-01 -2.85263926e-01 -9.16917562e-01 3.41821849e-01 5.96394718e-01 9.34657693e-01 -1.69102624e-01 -4.03464019e-01 -5.43468595e-01 5.21413982e-01 -1.56004941e+00 -9.94808555e-01 -2.74442360e-02 1.99812746e+00 9.39277589e-01 -3.84881049e-01 -2.74885476e-01 -7.41421729e-02 1.14057958e+00 5.13317585e-01 -7.04157352e-01 3.39959264e-02 -5.33903539e-01 5.90004101e-02 6.14925504e-01 6.54238343e-01 -1.32675791e+00 7.86719739e-01 6.67158651e+00 1.14697647e+00 -1.26912928e+00 3.18883955e-01 1.05727828e+00 2.25197241e-01 -3.74631025e-02 -3.42137516e-01 -1.62438750e-01 3.80572319e-01 7.69871950e-01 1.04407690e-01 8.66230845e-01 3.18482786e-01 3.43127429e-01 -1.78011395e-02 -6.64860725e-01 1.16434836e+00 2.46343896e-01 -1.37396622e+00 1.05843686e-01 -4.11529094e-01 9.77059960e-01 1.85967281e-01 7.82680213e-02 -1.09008156e-01 8.28394368e-02 -1.09512925e+00 5.92401862e-01 2.75079668e-01 1.11813939e+00 -5.07900834e-01 7.80247569e-01 -1.50972307e-01 -8.95722389e-01 -5.52631989e-02 -3.40018868e-01 2.60662109e-01 3.62108648e-01 6.23655200e-01 1.88906103e-01 6.87734008e-01 8.16705823e-01 1.04874837e+00 -2.59069413e-01 1.42922473e+00 -2.49756753e-01 5.09858191e-01 -2.73150653e-02 6.15225554e-01 -4.09598351e-02 -2.03546152e-01 8.30737352e-01 1.11997890e+00 5.71668923e-01 1.26320362e-01 -5.65533698e-01 7.50505030e-01 -2.95278281e-01 -2.27523327e-01 1.61649019e-01 4.81527537e-01 9.85388756e-02 1.04574239e+00 -4.32426423e-01 -3.25160325e-01 -3.40926170e-01 1.46420109e+00 -2.88622171e-01 6.13396108e-01 -8.72891545e-01 -6.59593165e-01 8.63972425e-01 1.06268495e-01 3.08134407e-01 -1.57273158e-01 -5.36826029e-02 -1.48334336e+00 -5.95951974e-02 -1.13656139e+00 -1.12304715e-02 -1.01088619e+00 -1.33787954e+00 8.30968440e-01 -1.59077138e-01 -1.32054174e+00 1.76676199e-01 -3.27064484e-01 -5.15447021e-01 1.19739056e+00 -2.00260997e+00 -7.83358574e-01 -4.79730725e-01 5.03378928e-01 6.27945721e-01 -1.67568102e-01 2.99052924e-01 7.30786562e-01 -7.32246459e-01 6.75105691e-01 4.67839718e-01 2.18117431e-01 8.86208892e-01 -6.78969145e-01 8.70159566e-01 1.21851480e+00 -4.27017093e-01 4.85190958e-01 7.30249107e-01 -5.68922937e-01 -1.15724361e+00 -1.10233283e+00 3.73172432e-01 3.05146664e-01 5.52913129e-01 2.79130816e-01 -1.20875573e+00 5.15553832e-01 5.46711683e-01 3.90272230e-01 7.35364854e-02 -6.41801953e-01 -3.81600797e-01 -2.23200731e-02 -1.28794384e+00 5.77666283e-01 9.78883445e-01 -3.19810569e-01 -3.08666199e-01 1.59419358e-01 6.65116608e-01 -5.28329194e-01 -7.09265590e-01 6.76199138e-01 4.51819241e-01 -1.33189094e+00 1.32453012e+00 -2.61896998e-01 7.80285954e-01 -3.20434064e-01 -2.85478998e-02 -1.63207817e+00 -8.23621511e-01 -8.31348777e-01 -1.99913874e-01 7.71852612e-01 -1.00162297e-01 -6.64350271e-01 4.48451072e-01 -1.15334112e-02 -4.56007957e-01 -6.67492986e-01 -1.00857866e+00 -7.78897285e-01 3.00628841e-01 6.59097731e-02 2.66183704e-01 9.81787503e-01 -4.22432691e-01 1.06629781e-01 -9.45019424e-01 2.35425368e-01 6.83371902e-01 -3.92147392e-01 1.79624274e-01 -5.79515100e-01 -1.27692610e-01 -5.51880717e-01 -3.62818897e-01 -1.66485405e+00 -5.01663126e-02 -6.67193234e-01 -3.66233289e-02 -1.47916770e+00 2.72439450e-01 -1.08481333e-01 -4.58252192e-01 2.14441434e-01 -3.24082881e-01 6.47275865e-01 -7.19583035e-02 5.41149020e-01 -2.53652688e-02 9.54142988e-01 1.52168846e+00 -2.62528270e-01 -1.78518027e-01 -1.50518939e-01 -5.26286244e-01 6.76246822e-01 6.79006577e-01 -8.32575560e-02 -2.63916731e-01 -8.33400905e-01 -6.84636384e-02 2.26466835e-01 4.66831267e-01 -1.15952373e+00 1.30785629e-01 1.87886134e-01 4.11395818e-01 -2.52227157e-01 1.87081963e-01 -7.02505946e-01 2.74596632e-01 4.08660442e-01 -3.40230078e-01 2.14732900e-01 3.35481077e-01 5.15465677e-01 -4.13109660e-01 -3.11630480e-02 1.38592815e+00 1.09628402e-01 -6.60487354e-01 1.79204419e-01 -4.00053680e-01 -3.13637525e-01 8.02702487e-01 -3.54286402e-01 -6.04363620e-01 -5.48831701e-01 -6.11803472e-01 -1.55427724e-01 3.53636354e-01 4.54424530e-01 8.97022128e-01 -1.50796425e+00 -1.10875845e+00 3.36028725e-01 -5.27564466e-01 -3.95869344e-01 8.62209797e-01 1.16934085e+00 -8.55747819e-01 2.08878815e-01 -6.17100477e-01 -8.23898017e-02 -1.09646499e+00 4.72156197e-01 7.54314065e-01 -1.54807732e-01 -8.67390871e-01 8.97421420e-01 4.80315208e-01 4.81791086e-02 1.71723679e-01 -2.73484260e-01 -1.38739765e-01 -2.51262456e-01 9.12657261e-01 8.12307894e-01 1.14561498e-01 -7.50576615e-01 -1.52074650e-01 6.18216157e-01 -2.26579502e-01 2.16139406e-01 1.37070823e+00 -5.46150029e-01 -5.03233075e-01 -4.28658128e-01 1.27395678e+00 -1.35673836e-01 -1.49551404e+00 -3.43415320e-01 -4.29882586e-01 -6.26060665e-01 6.47617579e-01 -9.50335503e-01 -1.73292410e+00 7.21018970e-01 1.19188833e+00 1.57551689e-03 1.72574532e+00 -3.96301389e-01 1.28911376e+00 -2.64900714e-01 -6.55365065e-02 -4.79223847e-01 1.63130388e-01 4.22204882e-01 1.44565821e+00 -1.02045214e+00 1.10600002e-01 -2.76858628e-01 -4.14116122e-02 1.09556615e+00 4.71159518e-01 -4.40663695e-01 6.15176797e-01 2.31792152e-01 1.68271065e-01 3.37666005e-01 -2.93330401e-01 3.52515668e-01 3.45300376e-01 5.08032143e-01 4.61803466e-01 -4.41751122e-01 -5.84897161e-01 3.34216326e-01 2.48699963e-01 2.57639468e-01 8.01225483e-01 3.56387675e-01 -3.83321643e-01 -7.34771550e-01 -6.35498285e-01 2.51204342e-01 -7.74961948e-01 -4.85980958e-01 2.14095756e-01 2.92338997e-01 -1.17240384e-01 8.37634087e-01 -1.32704809e-01 -5.37834823e-01 1.78577989e-01 -6.44891322e-01 4.43079114e-01 1.47678137e-01 -5.12163758e-01 1.72389075e-01 -2.68645525e-01 -5.81811607e-01 -5.52032173e-01 -2.50346810e-01 -7.30220497e-01 -5.19442916e-01 -5.57537675e-01 -2.97452480e-01 4.85004574e-01 4.41022843e-01 5.43545008e-01 7.50174165e-01 5.20360231e-01 -1.27291787e+00 -6.77230775e-01 -1.25724137e+00 -5.88991642e-01 1.61610276e-01 8.81583333e-01 -3.88991475e-01 -4.95921075e-01 3.63274485e-01]
[11.44458293914795, -2.4874396324157715]
66e2ade7-aea3-437a-b09b-e80e7cb0414b
syntax-aware-hybrid-prompt-model-for-few-shot
2306.01312
null
https://arxiv.org/abs/2306.01312v1
https://arxiv.org/pdf/2306.01312v1.pdf
Syntax-aware Hybrid prompt model for Few-shot multi-modal sentiment analysis
Multimodal Sentiment Analysis (MSA) has been a popular topic in natural language processing nowadays, at both sentence and aspect level. However, the existing approaches almost require large-size labeled datasets, which bring about large consumption of time and resources. Therefore, it is practical to explore the method for few-shot sentiment analysis in cross-modalities. Previous works generally execute on textual modality, using the prompt-based methods, mainly two types: hand-crafted prompts and learnable prompts. The existing approach in few-shot multi-modality sentiment analysis task has utilized both methods, separately. We further design a hybrid pattern that can combine one or more fixed hand-crafted prompts and learnable prompts and utilize the attention mechanisms to optimize the prompt encoder. The experiments on both sentence-level and aspect-level datasets prove that we get a significant outperformance.
['Zikai Zhou']
2023-06-02
null
null
null
null
['multimodal-sentiment-analysis', 'sentiment-analysis', 'multimodal-sentiment-analysis']
['computer-vision', 'natural-language-processing', 'natural-language-processing']
[ 2.06905231e-01 -1.89592123e-01 -1.86659947e-01 -5.81809163e-01 -1.22890401e+00 -5.59618473e-01 5.85643768e-01 1.29616439e-01 -6.43802881e-01 4.63343322e-01 4.19466525e-01 -2.34759733e-01 2.38300219e-01 -5.87314367e-01 -3.32782924e-01 -6.71148300e-01 5.62246323e-01 -3.27836201e-02 2.46761620e-01 -5.50961614e-01 4.10568833e-01 -4.20735508e-01 -1.50010872e+00 5.31995714e-01 7.12269545e-01 8.77700865e-01 2.03227520e-01 6.74646080e-01 -7.53314734e-01 9.85831380e-01 -3.70975792e-01 -6.69641495e-01 3.18796672e-02 -5.34929752e-01 -7.35653162e-01 -6.13773800e-03 -2.21512526e-01 -8.17733333e-02 1.78712919e-01 1.01013994e+00 9.69442487e-01 3.22794825e-01 4.04905498e-01 -1.25655234e+00 -6.52963936e-01 7.43509293e-01 -1.04141092e+00 2.85674274e-01 6.39036477e-01 2.23309040e-01 1.09798336e+00 -8.62900972e-01 3.41002285e-01 1.23769987e+00 4.63448524e-01 6.01194918e-01 -5.94839573e-01 -4.75973189e-01 4.93135959e-01 3.42806220e-01 -9.32995081e-01 -5.71909428e-01 1.07396078e+00 -2.75234580e-01 8.73426795e-01 5.92529625e-02 2.53306508e-01 1.20083332e+00 9.31639299e-02 1.17470443e+00 1.12783098e+00 -7.31328905e-01 1.11392118e-01 2.86432594e-01 4.08499300e-01 5.53465486e-01 -3.60757709e-01 -4.29030329e-01 -7.34736502e-01 7.29106441e-02 1.39549300e-01 2.78615206e-01 -1.23365745e-01 1.84703767e-01 -1.26837826e+00 7.74085402e-01 -1.67951092e-01 3.64428759e-01 -2.80731261e-01 -2.46242628e-01 9.71794724e-01 3.89103413e-01 5.64701080e-01 2.47098342e-01 -8.19849491e-01 -6.08892322e-01 -7.94844389e-01 -1.09076284e-01 5.32262266e-01 1.00427377e+00 7.26747215e-01 -1.37183219e-01 -5.29867351e-01 8.85932565e-01 3.91370118e-01 5.97475648e-01 8.06904554e-01 -1.64213598e-01 9.07455623e-01 9.25232708e-01 6.55676275e-02 -1.02035213e+00 -5.18475294e-01 1.59791753e-01 -5.56279898e-01 -3.31564456e-01 8.15922320e-02 -7.04235137e-01 -7.59937644e-01 1.75106919e+00 5.23591816e-01 -7.44392201e-02 2.31847271e-01 1.02316737e+00 1.15188003e+00 8.70154560e-01 3.07378054e-01 -4.13936913e-01 1.90972281e+00 -1.33662498e+00 -1.12558234e+00 -1.39103040e-01 7.88806677e-01 -1.00114179e+00 1.80912709e+00 3.27099949e-01 -9.27470863e-01 -4.68782604e-01 -1.01540875e+00 -2.95673370e-01 -6.33448422e-01 1.69717744e-01 5.47410131e-01 7.36583352e-01 -5.99812210e-01 1.81730941e-01 -6.07515633e-01 -3.31006676e-01 2.85944402e-01 1.67767450e-01 -2.32026175e-01 -1.08929933e-03 -1.42528129e+00 6.84020400e-01 4.47890908e-02 2.32530445e-01 -6.33268356e-01 -4.04232234e-01 -8.21136653e-01 1.22259922e-01 7.19899893e-01 -3.73296916e-01 1.52138627e+00 -1.21837831e+00 -1.77583158e+00 6.40461862e-01 -3.86628062e-01 2.13611126e-01 2.63555720e-02 -2.62860894e-01 -5.77564955e-01 1.52962789e-01 1.08653679e-01 3.86708647e-01 8.35782588e-01 -9.14065778e-01 -7.19415903e-01 -3.21630746e-01 4.75636929e-01 4.10665631e-01 -1.01298916e+00 5.48003614e-01 -4.26231593e-01 -4.21339482e-01 -2.67675668e-01 -5.20263433e-01 -2.80814588e-01 -5.44064760e-01 -5.43610811e-01 -4.79185432e-01 7.96052337e-01 -6.17639780e-01 1.47838855e+00 -2.11833668e+00 1.64877772e-01 -3.46941501e-01 -1.47695333e-01 1.72483891e-01 -2.99664259e-01 6.37918890e-01 1.91139672e-02 6.78719953e-02 -7.64890537e-02 -7.13393152e-01 2.08050162e-01 -1.33407205e-01 -3.24463010e-01 2.85015106e-02 2.35427707e-01 9.21970844e-01 -1.01433420e+00 -7.85772622e-01 1.00706637e-01 1.90622658e-01 -2.31507167e-01 3.87241453e-01 -2.46762395e-01 4.57644850e-01 -7.73875356e-01 8.90688539e-01 5.00851274e-01 -2.67267168e-01 -1.57594323e-01 -3.54947895e-01 -2.17351899e-01 7.26073086e-02 -1.00352800e+00 1.99984777e+00 -6.94009185e-01 2.53125042e-01 -1.72701493e-01 -8.55015457e-01 7.25268960e-01 7.59502649e-01 3.67755115e-01 -6.44982338e-01 5.86178184e-01 6.40952811e-02 -2.83314168e-01 -1.18119228e+00 6.77674353e-01 -4.28994954e-01 -4.47152525e-01 5.98406374e-01 2.26094380e-01 3.07834536e-01 3.22149575e-01 2.72523820e-01 1.07612860e+00 2.92734265e-01 2.47504458e-01 6.63529634e-02 9.03009415e-01 7.66251609e-02 3.87278527e-01 4.86654550e-01 -2.77571172e-01 7.08628118e-01 8.60798359e-01 -3.89753014e-01 -8.26149821e-01 -2.14967325e-01 3.16370726e-01 1.60853899e+00 3.38457346e-01 -6.15997672e-01 -7.02536702e-01 -9.36467946e-01 -6.20637655e-01 5.12653172e-01 -5.74939609e-01 -1.63050830e-01 -1.32783547e-01 -8.66435349e-01 3.51620525e-01 5.29743373e-01 3.98934871e-01 -1.26513088e+00 -5.52458704e-01 2.25077555e-01 -4.07128066e-01 -1.18498969e+00 -5.39981306e-01 1.72817767e-01 -6.18797660e-01 -8.13496351e-01 -7.59788334e-01 -6.76765203e-01 6.30488634e-01 4.34098065e-01 7.80380607e-01 -3.59312855e-02 3.47595438e-02 4.99274403e-01 -1.04654527e+00 -6.26203477e-01 2.90571928e-01 2.68800706e-01 -1.38568923e-01 4.22336698e-01 8.03549111e-01 -3.97053838e-01 -5.45390487e-01 3.95596996e-02 -9.33506846e-01 1.22083738e-01 7.31133461e-01 8.75713587e-01 3.03285331e-01 -1.92201763e-01 8.73074293e-01 -1.04650450e+00 1.00155592e+00 -5.85577250e-01 -2.45326445e-01 4.72220272e-01 -4.07678753e-01 -6.99832216e-02 9.47052717e-01 -4.80515897e-01 -1.37780881e+00 8.99185836e-02 -2.34229267e-01 -4.31586623e-01 -2.72638351e-01 9.22376633e-01 -3.61657649e-01 3.20567787e-01 2.71149784e-01 2.31686458e-01 -1.93729252e-01 -3.76813918e-01 4.72640127e-01 9.51767921e-01 8.64851347e-04 -6.03540301e-01 5.23766994e-01 2.88444459e-01 -4.97019529e-01 -5.08523464e-01 -1.03748429e+00 -6.97768569e-01 -3.39081794e-01 -3.86967391e-01 1.13718796e+00 -8.47427905e-01 -8.25777709e-01 3.61115366e-01 -1.27908313e+00 1.58746522e-02 -4.86514978e-02 3.97228271e-01 -3.54057401e-01 3.10083568e-01 -4.30305511e-01 -1.00498164e+00 -6.36328340e-01 -1.24630940e+00 1.48408127e+00 5.78302622e-01 -2.68433746e-02 -8.73217702e-01 2.25270972e-01 4.88262892e-01 3.15559268e-01 -3.76618467e-02 8.39897573e-01 -8.42087030e-01 -2.31124178e-01 -4.54526365e-01 -1.39811277e-01 3.86558548e-02 8.35469551e-03 -1.13835521e-02 -1.26242101e+00 -3.68444510e-02 1.34248927e-01 -7.46886432e-01 6.06821656e-01 1.28179893e-01 1.10784864e+00 -2.56898731e-01 -1.21169597e-01 1.16807468e-01 1.39116538e+00 2.68200219e-01 5.19905925e-01 2.93322116e-01 6.43173933e-01 7.24418819e-01 9.30759072e-01 5.90498149e-01 6.80458784e-01 2.90415525e-01 1.16735466e-01 -6.23993650e-02 3.28294277e-01 -1.50126770e-01 4.62690204e-01 1.31020808e+00 -1.67640373e-01 -4.06633407e-01 -7.21067429e-01 6.03850782e-01 -2.24242544e+00 -1.00436985e+00 1.41816124e-01 1.64646411e+00 9.40658033e-01 1.06753513e-01 1.00677274e-01 2.31515393e-01 7.13650882e-01 3.18277031e-01 -3.27560902e-01 -4.54649925e-01 -1.12787876e-02 -9.20721367e-02 -4.15944345e-02 2.74932355e-01 -1.05122173e+00 9.02135968e-01 5.35048532e+00 1.03934145e+00 -1.20696187e+00 3.45217407e-01 5.75864494e-01 -3.23907673e-01 -4.93731380e-01 7.06904978e-02 -8.75626624e-01 7.24914014e-01 9.28975403e-01 -8.94166157e-02 1.60834298e-01 7.44914532e-01 3.69329035e-01 -1.81252062e-01 -8.73257816e-01 1.04882884e+00 2.70372331e-01 -9.20340955e-01 -1.44736245e-01 -5.14880896e-01 5.87031901e-01 -3.86337966e-01 -9.56890583e-02 7.01787889e-01 -1.22128904e-01 -5.83411634e-01 5.00649929e-01 5.18986166e-01 5.41392148e-01 -7.02124417e-01 1.06663013e+00 4.44377244e-01 -1.27931118e+00 2.38939617e-02 -3.00171643e-01 -2.34638125e-01 6.39792919e-01 3.98962170e-01 -2.45322391e-01 7.76795149e-01 5.61173439e-01 8.12948346e-01 -4.96997565e-01 6.55533552e-01 -3.12142998e-01 6.17345631e-01 1.07078468e-02 -5.61160982e-01 3.34475130e-01 -1.95762232e-01 2.33189911e-01 1.11877561e+00 1.80868343e-01 3.13506782e-01 2.37726495e-01 1.88059300e-01 6.83915839e-02 5.70008159e-01 -3.66187781e-01 -3.21399927e-01 2.35910162e-01 1.85422409e+00 -8.08293104e-01 -4.54517663e-01 -1.02615714e+00 6.82842970e-01 1.70863286e-01 2.83716023e-01 -9.52331781e-01 -8.32087815e-01 -5.26236854e-02 -4.60247248e-01 3.11380148e-01 7.02845007e-02 -2.74119228e-01 -1.44855595e+00 1.43647254e-01 -1.08857703e+00 5.18877804e-01 -9.57365811e-01 -1.53117990e+00 6.99874043e-01 -1.67124003e-01 -1.42513263e+00 -3.06038596e-02 -5.91497540e-01 -8.48964393e-01 7.06806660e-01 -1.64215744e+00 -1.36534500e+00 -1.60972536e-01 7.23138452e-01 9.03301537e-01 -1.38224706e-01 8.44258606e-01 6.82617426e-01 -9.55443919e-01 6.04902446e-01 -2.87278295e-01 -2.96408832e-02 9.00220454e-01 -9.58350360e-01 -2.71735102e-01 8.12197566e-01 -1.25059649e-01 6.52731895e-01 6.81202769e-01 -3.28499556e-01 -1.73074651e+00 -5.41436911e-01 9.73106146e-01 -4.48579729e-01 7.45232403e-01 -3.20747674e-01 -7.26801395e-01 6.19826913e-01 7.71708429e-01 -2.69251704e-01 1.04477406e+00 3.68481934e-01 -2.55257413e-02 -2.55415142e-01 -9.46766436e-01 6.38862550e-01 5.64336300e-01 -5.34820974e-01 -7.55956054e-01 3.39838058e-01 1.01497054e+00 -2.96756268e-01 -6.54584706e-01 2.99726993e-01 4.63986427e-01 -6.53893650e-01 5.18021822e-01 -8.41360688e-01 9.89237249e-01 -4.02713120e-01 -6.83813542e-03 -1.18045735e+00 8.50871652e-02 -4.62136179e-01 -7.66036138e-02 1.79722476e+00 6.36813879e-01 -4.08057213e-01 5.17088234e-01 7.60332882e-01 -1.84885502e-01 -9.12472248e-01 -5.73712289e-01 -2.72628009e-01 -4.68610793e-01 -3.94171208e-01 6.14603281e-01 1.00870895e+00 5.85911334e-01 1.01979387e+00 -6.45911217e-01 -8.18180665e-02 1.46051915e-02 2.88607627e-01 8.05307269e-01 -7.25835979e-01 -1.28139570e-01 -3.33652973e-01 -3.64015345e-03 -1.01025558e+00 -4.90197055e-02 -4.54885602e-01 2.74811149e-01 -1.40163386e+00 3.81174594e-01 -7.39291534e-02 -4.94536847e-01 6.82116151e-01 -6.33132994e-01 -7.93768093e-02 4.39035818e-02 -5.10951057e-02 -1.17111337e+00 7.13679135e-01 1.35866082e+00 -2.70024687e-02 -1.85910389e-01 -2.15744019e-01 -9.84201252e-01 6.78992391e-01 7.48972237e-01 -3.95228863e-01 -6.50159061e-01 -6.04586303e-01 7.05110848e-01 1.22292168e-01 -2.37307131e-01 -5.57071745e-01 4.87856746e-01 -4.41997319e-01 -2.81766243e-02 -8.37316215e-01 3.73727620e-01 -8.12847018e-01 -5.17047346e-01 -5.84428012e-02 -4.40565139e-01 3.16042453e-01 1.58048004e-01 5.93699753e-01 -5.51597595e-01 -5.13357401e-01 3.03068131e-01 -2.74008870e-01 -9.29613352e-01 3.22621644e-01 -3.20556939e-01 8.63267407e-02 9.78759766e-01 4.72964346e-02 -3.92542452e-01 -3.66470218e-01 -2.98317045e-01 4.79639471e-01 -1.12045981e-01 6.19542062e-01 4.61805791e-01 -1.26163256e+00 -2.75256693e-01 5.57421148e-03 3.89027447e-01 -1.48361340e-01 6.32082582e-01 1.14771128e+00 -5.45187518e-02 2.40887314e-01 -3.52509767e-02 -3.38968009e-01 -1.11475575e+00 7.58309543e-01 -1.28865376e-01 -2.38086179e-01 -1.71864048e-01 9.03368771e-01 -1.34741053e-01 -5.43530226e-01 9.38201845e-02 2.32605282e-02 -8.05216610e-01 5.34877956e-01 7.88609564e-01 8.33371282e-02 -7.40984082e-02 -5.28057933e-01 -2.56032228e-01 7.23706782e-01 -8.07882994e-02 -3.13956618e-01 1.19797862e+00 -4.99984056e-01 -2.27161452e-01 9.30741370e-01 1.12104881e+00 2.13598944e-02 -8.59037399e-01 -3.52784991e-01 2.24177036e-02 -3.72591972e-01 -2.99784038e-02 -7.63755977e-01 -9.50920701e-01 1.12698996e+00 3.81290644e-01 4.64798927e-01 1.25879216e+00 -8.67267549e-02 1.08626449e+00 4.22367662e-01 3.76795560e-01 -1.27100575e+00 3.09372067e-01 4.54057068e-01 4.51497078e-01 -1.58867395e+00 -1.77027613e-01 -2.31016606e-01 -1.05286717e+00 1.08616328e+00 9.73387837e-01 2.10220978e-01 4.98928189e-01 1.84906185e-01 5.14732063e-01 -2.25700334e-01 -9.89657223e-01 -1.86192796e-01 1.28217161e-01 1.89892113e-01 7.41858304e-01 -1.82775840e-01 -7.31626034e-01 1.39118099e+00 1.60828039e-01 1.77741036e-01 4.20598924e-01 1.26490605e+00 -4.07505691e-01 -1.18211949e+00 -3.11261117e-01 4.50030327e-01 -5.54246008e-01 -3.53549391e-01 -2.30044592e-02 2.92652875e-01 1.41483903e-01 1.20608759e+00 -1.90618411e-01 -5.04994273e-01 4.85916018e-01 3.05902988e-01 2.33418554e-01 -6.73758686e-01 -7.73461342e-01 6.65410829e-04 3.83841507e-02 -3.89896959e-01 -8.90873015e-01 -5.41522861e-01 -1.02462363e+00 -1.18513919e-01 -7.10155427e-01 1.72850028e-01 5.07702708e-01 1.31873131e+00 3.10767174e-01 6.49880826e-01 8.00272465e-01 -6.74070299e-01 -4.55871493e-01 -1.21735418e+00 -4.23075855e-01 3.15157950e-01 2.59422600e-01 -5.33264577e-01 -2.33332455e-01 2.65311480e-01]
[12.984673500061035, 5.494215488433838]
829e319c-34cb-42b3-9745-69f988165688
improving-diffusion-based-image-translation
2306.04396
null
https://arxiv.org/abs/2306.04396v1
https://arxiv.org/pdf/2306.04396v1.pdf
Improving Diffusion-based Image Translation using Asymmetric Gradient Guidance
Diffusion models have shown significant progress in image translation tasks recently. However, due to their stochastic nature, there's often a trade-off between style transformation and content preservation. Current strategies aim to disentangle style and content, preserving the source image's structure while successfully transitioning from a source to a target domain under text or one-shot image conditions. Yet, these methods often require computationally intense fine-tuning of diffusion models or additional neural networks. To address these challenges, here we present an approach that guides the reverse process of diffusion sampling by applying asymmetric gradient guidance. This results in quicker and more stable image manipulation for both text-guided and image-guided image translation. Our model's adaptability allows it to be implemented with both image- and latent-diffusion models. Experiments show that our method outperforms various state-of-the-art models in image translation tasks.
['Jong Chul Ye', 'Gihyun Kwon']
2023-06-07
null
null
null
null
['image-manipulation']
['computer-vision']
[ 6.96267009e-01 -1.06038839e-01 -3.38270158e-01 -2.27050737e-01 -6.39353335e-01 -7.22076595e-01 9.83272612e-01 -1.60259247e-01 -4.59061861e-01 5.15413821e-01 2.30182499e-01 -3.92987877e-01 3.15895259e-01 -6.25502884e-01 -4.98290718e-01 -5.92187464e-01 5.26537180e-01 4.08850104e-01 2.81116396e-01 -1.61579043e-01 4.34197366e-01 4.43694174e-01 -1.10956383e+00 2.97537684e-01 8.59948158e-01 6.15954518e-01 5.26710093e-01 7.27657735e-01 -3.96920383e-01 7.93977380e-01 -3.94764870e-01 -4.64895040e-01 3.06494445e-01 -9.36276555e-01 -8.56328309e-01 2.56031334e-01 6.27347708e-01 -3.82394493e-01 -3.26444954e-01 1.35506368e+00 5.84331274e-01 3.80005711e-03 6.98925376e-01 -1.03852391e+00 -1.30772853e+00 4.00776982e-01 -7.24903524e-01 2.46709377e-01 3.12399715e-01 3.89877647e-01 6.31858051e-01 -7.33135819e-01 1.11587310e+00 1.27138829e+00 2.86982566e-01 7.13414311e-01 -1.75850248e+00 -5.34796000e-01 1.25246540e-01 -4.00028452e-02 -9.32180285e-01 -6.85824156e-01 8.63830745e-01 -3.89164299e-01 7.31028438e-01 1.26532882e-01 7.03026056e-01 1.36219859e+00 4.23743725e-01 7.75210798e-01 1.52053034e+00 -5.16061723e-01 1.06935173e-01 3.25071126e-01 -5.31908989e-01 6.96376026e-01 -1.85473040e-02 1.30775213e-01 -6.40033364e-01 3.58587354e-02 1.02937984e+00 -2.54058242e-01 -2.88803607e-01 -6.97039664e-01 -1.55272758e+00 6.72942758e-01 2.08243325e-01 3.04055333e-01 -3.41180682e-01 1.13762923e-01 2.42258713e-01 7.15137839e-01 6.17770791e-01 5.47081590e-01 5.72959147e-02 -1.75942212e-01 -1.27928245e+00 3.12252253e-01 6.52203858e-01 1.00888503e+00 6.51597917e-01 5.19554727e-02 -3.97661626e-01 8.55263114e-01 4.85739931e-02 6.84910059e-01 5.57815194e-01 -9.84244764e-01 3.81269246e-01 3.46689761e-01 9.97796804e-02 -1.08267844e+00 8.34953338e-02 -2.44754374e-01 -8.42269540e-01 5.09241045e-01 4.99574631e-01 1.16912536e-01 -1.16159582e+00 1.87856567e+00 1.87596008e-01 -1.63152352e-01 -1.05375484e-01 8.69121194e-01 3.34762096e-01 6.08753562e-01 1.05458431e-01 -1.79490656e-01 1.20315790e+00 -1.22810519e+00 -7.62485325e-01 -3.23349118e-01 4.16268587e-01 -1.08692718e+00 1.42127657e+00 6.34305552e-02 -1.51088870e+00 -4.51665401e-01 -9.21647310e-01 -3.40272844e-01 -2.46094808e-01 2.79716775e-02 2.21022412e-01 5.85930109e-01 -1.29268539e+00 5.43634832e-01 -7.19684839e-01 -5.83442628e-01 5.57077765e-01 2.61421502e-01 -3.23257208e-01 -1.40299261e-01 -8.40771258e-01 9.40154374e-01 4.41264361e-02 -2.71643728e-01 -7.77584136e-01 -6.41939938e-01 -5.69364488e-01 -6.81155100e-02 2.07910731e-01 -1.05424821e+00 1.26666987e+00 -1.45237982e+00 -1.99424505e+00 1.16649151e+00 -1.90643460e-01 -2.86555022e-01 9.47544932e-01 -6.77833483e-02 -1.28992066e-01 1.94570050e-01 1.34485826e-01 1.07336426e+00 1.37636435e+00 -1.19936180e+00 -5.17531097e-01 -1.73583224e-01 -9.62350443e-02 3.99379253e-01 -4.96955991e-01 1.50740370e-01 -6.38588786e-01 -9.05631185e-01 -1.20760864e-02 -1.15848029e+00 -1.32352382e-01 5.39903104e-01 -2.42294610e-01 3.31345677e-01 1.01176453e+00 -4.73065704e-01 1.08905923e+00 -2.08490705e+00 5.69553018e-01 -5.92722557e-02 2.95152366e-01 3.18986773e-01 -5.06113589e-01 3.00911158e-01 1.44904152e-01 -1.03997551e-02 -3.28527868e-01 -5.76312184e-01 -1.38062447e-01 2.64087990e-02 -4.09453839e-01 3.33543658e-01 7.03398362e-02 1.14799953e+00 -9.77393746e-01 -5.87127328e-01 2.15682425e-02 4.36770260e-01 -5.87159276e-01 1.98478967e-01 -3.08568358e-01 7.12522626e-01 -2.41169944e-01 3.65281165e-01 5.76503158e-01 -2.78608918e-01 1.77996621e-01 -1.35133132e-01 -7.64666796e-02 1.19271830e-01 -8.79785836e-01 1.99916387e+00 -4.70844954e-01 8.50744903e-01 2.08397761e-01 -6.26460791e-01 7.60131896e-01 8.17957222e-02 2.52416432e-01 -1.06351399e+00 3.61259095e-02 3.29604983e-01 -6.80293292e-02 -3.25624466e-01 6.53392613e-01 -2.44330212e-01 3.28525960e-01 9.13414240e-01 -1.64624959e-01 -4.90448266e-01 1.96994543e-01 3.25112104e-01 7.18081772e-01 3.89488637e-01 -9.67043489e-02 -3.55225772e-01 3.69097441e-01 9.18829143e-02 2.64900506e-01 8.23597372e-01 -2.19766527e-01 8.05472493e-01 3.03827763e-01 -3.14932853e-01 -1.37859797e+00 -9.72055912e-01 3.91182333e-01 1.06037474e+00 1.91596821e-01 -5.95837906e-02 -1.04486144e+00 -6.38294160e-01 -2.63414264e-01 7.42552519e-01 -5.87959290e-01 -2.77846783e-01 -6.73958361e-01 -5.05307972e-01 5.35557210e-01 1.61930770e-01 5.55565774e-01 -1.07177806e+00 -6.74950838e-01 3.12801957e-01 -2.85191089e-01 -9.78298008e-01 -1.04320812e+00 -1.62016734e-01 -9.51477587e-01 -5.16792297e-01 -1.31194699e+00 -8.50114763e-01 8.73453617e-01 6.26864195e-01 1.07922637e+00 -1.13160066e-01 -1.14342988e-01 3.89208615e-01 -1.51468232e-01 -8.88586566e-02 -9.14623022e-01 3.89452875e-01 -1.44582927e-01 6.53695539e-02 7.98319560e-03 -5.99220395e-01 -8.02313566e-01 3.85918349e-01 -1.31712627e+00 4.14035618e-01 6.69419944e-01 8.81291628e-01 5.44181764e-01 -2.66314715e-01 2.07103819e-01 -9.16828752e-01 1.11170793e+00 -2.60710008e-02 -6.31825149e-01 3.73627305e-01 -9.35221195e-01 3.09530735e-01 4.34675515e-01 -8.41746688e-01 -1.22057617e+00 2.27532443e-02 2.05420032e-01 -4.88466561e-01 8.05599466e-02 2.54694492e-01 1.05656244e-01 -2.72978097e-01 7.70969331e-01 5.19720614e-01 2.96282798e-01 -2.94144690e-01 6.97236776e-01 4.91007745e-01 4.60592806e-01 -6.11990511e-01 8.12324524e-01 7.72395730e-01 -2.62679309e-01 -7.16128886e-01 -4.96327877e-01 7.40920603e-02 -6.95828736e-01 -6.04379214e-02 8.44053030e-01 -6.58474743e-01 -1.14511572e-01 6.89973295e-01 -1.16399503e+00 -6.50686145e-01 -3.70456010e-01 1.33894935e-01 -7.76807487e-01 3.89858663e-01 -5.72036505e-01 -3.46938014e-01 -3.61982524e-01 -1.48051858e+00 9.92476225e-01 6.97920993e-02 -4.66630131e-01 -1.05827236e+00 7.16895238e-02 1.55414984e-01 9.40338075e-01 -1.24024138e-01 1.02699935e+00 3.04895155e-02 -7.55658746e-01 5.90640493e-02 -4.30563271e-01 1.53123900e-01 3.08282942e-01 -8.36910903e-02 -6.08392835e-01 -4.58248973e-01 -1.29417442e-02 -3.15429837e-01 7.89733529e-01 3.12325001e-01 6.65059686e-01 -3.09305012e-01 -2.46102527e-01 8.20142090e-01 1.18950450e+00 4.99575809e-02 6.76190972e-01 5.78436017e-01 6.13181710e-01 5.35265923e-01 3.72859120e-01 -4.94450666e-02 3.74899447e-01 7.75640130e-01 -3.98221798e-02 -3.44130844e-01 -6.62524879e-01 -4.68488902e-01 4.00697201e-01 6.08906388e-01 1.37041241e-01 -3.28029513e-01 -7.00342476e-01 5.37771702e-01 -1.68252397e+00 -1.02435148e+00 1.84784785e-01 2.08043242e+00 1.03672576e+00 1.97081506e-01 1.16334192e-01 -3.58835042e-01 4.37051743e-01 3.70846301e-01 -7.46492147e-01 -5.29753089e-01 -2.98644811e-01 -2.20050305e-01 5.05894363e-01 5.89843094e-01 -8.11479330e-01 1.31261086e+00 6.92216253e+00 7.88148999e-01 -1.57106459e+00 1.94741249e-01 8.35254252e-01 -1.36362955e-01 -5.19852996e-01 -1.64654832e-02 -5.19578218e-01 3.42751265e-01 6.35889590e-01 -2.41735697e-01 7.03773141e-01 4.99897927e-01 3.13893259e-01 -1.50766283e-01 -9.63060498e-01 9.44676995e-01 1.17788494e-01 -1.54369342e+00 3.37995946e-01 1.35778740e-01 9.43250120e-01 -4.48826998e-02 4.68021065e-01 -2.02224016e-01 4.30264533e-01 -7.71250606e-01 1.12268519e+00 3.94375235e-01 1.13199794e+00 -3.38008046e-01 6.74793422e-02 2.31264323e-01 -7.66101599e-01 1.62898049e-01 -2.72527426e-01 2.43368059e-01 2.44715542e-01 3.80222291e-01 -3.16634595e-01 1.36898026e-01 3.97106677e-01 6.02202296e-01 -4.65518266e-01 6.20157719e-01 -2.26488203e-01 2.72028357e-01 -3.95338461e-02 1.04963280e-01 2.88722634e-01 -4.66916561e-01 6.23432398e-01 1.22355545e+00 4.29902643e-01 -1.32507965e-01 7.05060810e-02 1.15781736e+00 -9.28014368e-02 1.45408615e-01 -7.79404342e-01 -2.41476908e-01 1.61997557e-01 9.85711396e-01 -1.07092798e+00 -4.30365413e-01 -3.36094230e-01 1.72284245e+00 3.55701029e-01 5.61256349e-01 -7.14317381e-01 -6.84061870e-02 5.54991305e-01 2.34521315e-01 2.55033910e-01 -4.95596409e-01 -4.12680060e-01 -1.32479334e+00 -1.21477962e-01 -1.10517490e+00 -1.65563315e-01 -8.53769958e-01 -1.07089806e+00 8.24597478e-01 -6.27879575e-02 -9.52363253e-01 -4.51463275e-02 -2.72071153e-01 -4.24030840e-01 1.00039756e+00 -1.54570448e+00 -1.32262850e+00 -3.28698158e-02 6.09805048e-01 7.07769275e-01 -8.40292498e-02 6.50587201e-01 2.54536062e-01 -2.54298955e-01 5.67295969e-01 2.52647460e-01 -1.75349414e-01 1.02652752e+00 -1.04584324e+00 6.99483037e-01 9.03184354e-01 1.45689443e-01 6.32869303e-01 8.78881156e-01 -7.73965299e-01 -1.45375264e+00 -8.53412449e-01 9.20689225e-01 -3.62757027e-01 6.37620807e-01 -3.34109426e-01 -8.17018270e-01 3.98640096e-01 5.76435924e-01 -2.59301603e-01 3.33278060e-01 -2.70774633e-01 -5.18402874e-01 1.10753290e-01 -1.02342498e+00 1.14408529e+00 1.17592263e+00 -7.38477468e-01 -2.51424998e-01 2.10191473e-01 4.68071669e-01 -5.03206372e-01 -5.02614319e-01 -1.57055810e-01 6.37830079e-01 -9.08625126e-01 9.37069356e-01 -3.91872317e-01 7.02770114e-01 -2.35778958e-01 4.25872207e-02 -1.48495817e+00 -5.47873616e-01 -9.85431254e-01 9.14004222e-02 1.06819010e+00 4.77950156e-01 -4.89016175e-01 6.80777073e-01 5.97328484e-01 3.18306506e-01 -4.24588859e-01 -6.08663082e-01 -7.94901788e-01 2.43066281e-01 -3.13328728e-02 4.20823246e-01 9.30283964e-01 -2.71169990e-01 4.16944593e-01 -5.62299550e-01 -3.27874601e-01 5.81384122e-01 2.27589950e-01 7.78910518e-01 -7.73596525e-01 -2.40171224e-01 -9.41645145e-01 -6.18369617e-02 -1.30009663e+00 3.89089389e-03 -7.49192953e-01 -3.49827521e-02 -1.48831785e+00 2.22638279e-01 -3.69499534e-01 -7.10317194e-02 3.44356447e-01 -1.22538865e-01 4.94857877e-01 3.80580008e-01 6.11098766e-01 -3.05688262e-01 5.01922071e-01 1.71431446e+00 -3.00886214e-01 -3.61607313e-01 -2.67336369e-01 -7.76514590e-01 3.79009664e-01 7.99928188e-01 -5.27753234e-01 -7.44028568e-01 -8.25273812e-01 2.47185767e-01 -1.18730199e-02 1.39837056e-01 -6.56389713e-01 3.13971937e-01 -3.65941197e-01 1.75250113e-01 -1.18922934e-01 1.65659055e-01 -6.63955033e-01 1.68616727e-01 5.03316224e-01 -7.24875629e-01 4.04759824e-01 8.80709067e-02 6.90786600e-01 -8.93138275e-02 -5.05186617e-02 1.16960967e+00 -2.45058119e-01 -4.75718558e-01 3.07995111e-01 -5.26453495e-01 -6.05499893e-02 8.84893656e-01 -4.01843637e-01 -2.07921892e-01 -5.76952815e-01 -5.53676367e-01 -2.39714935e-01 1.03423357e+00 6.61845624e-01 5.85866213e-01 -1.28949189e+00 -6.91757917e-01 4.56919342e-01 1.99704038e-04 -3.79768699e-01 6.60636872e-02 9.38813925e-01 -6.30231738e-01 1.99312866e-01 -4.18519706e-01 -6.26985312e-01 -1.27631414e+00 6.32099390e-01 2.73076534e-01 -3.21061790e-01 -7.73371220e-01 7.20801115e-01 2.93852627e-01 -2.29982331e-01 8.53319243e-02 -1.20413713e-01 2.87115008e-01 -1.09792426e-01 5.50802290e-01 1.06684841e-01 -2.05072671e-01 -6.84639573e-01 6.89627677e-02 6.44871116e-01 -4.43759650e-01 -6.17921174e-01 1.12288618e+00 -6.90029323e-01 -1.64254993e-01 2.07153529e-01 1.08447552e+00 -1.08125405e-02 -1.56735945e+00 -4.74671334e-01 -9.77702662e-02 -6.95625305e-01 1.72662273e-01 -8.64544272e-01 -1.10114491e+00 9.30072725e-01 7.26595044e-01 5.07092811e-02 1.19022214e+00 -2.46811047e-01 9.33392346e-01 1.70612097e-01 2.61459321e-01 -1.14384770e+00 2.93493599e-01 3.36305290e-01 8.46600413e-01 -1.25627005e+00 -8.76384303e-02 -1.60552040e-01 -7.49731421e-01 9.45348203e-01 2.97210276e-01 6.87173977e-02 3.83291155e-01 2.48315096e-01 4.50025022e-01 -6.39429092e-02 -6.48728371e-01 1.18351437e-01 3.36506426e-01 6.98534966e-01 4.68473405e-01 -1.37883529e-01 -1.63068324e-01 -4.50833082e-01 1.49094518e-02 1.70418441e-01 4.61439818e-01 9.92597342e-01 -3.27660143e-01 -1.40681338e+00 -3.14956009e-01 1.32917300e-01 -3.68329376e-01 -2.54914939e-01 -4.83959287e-01 4.69590038e-01 -3.24065685e-01 6.99911594e-01 -2.18396932e-01 -1.16848471e-02 1.21906750e-01 5.77065675e-03 7.69571960e-01 -4.11413312e-01 -4.78317231e-01 3.44803959e-01 -2.81004488e-01 -5.78457296e-01 -4.85290706e-01 -6.33625090e-01 -6.92943692e-01 -4.72022831e-01 -1.10276476e-01 -2.53543347e-01 7.65651524e-01 7.68678188e-01 6.51962817e-01 3.74864399e-01 3.36696148e-01 -8.53454411e-01 -4.98340726e-01 -6.37619078e-01 -3.48751336e-01 6.14986360e-01 1.96777537e-01 -2.96648830e-01 7.69182593e-02 4.19333279e-01]
[11.383232116699219, -0.3142123222351074]
4db3cb4c-a2b1-46d8-9166-1751cd44cb45
prior-guided-dropout-for-robust-visual
null
null
http://openaccess.thecvf.com/content_ICCV_2019/html/Huang_Prior_Guided_Dropout_for_Robust_Visual_Localization_in_Dynamic_Environments_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/papers/Huang_Prior_Guided_Dropout_for_Robust_Visual_Localization_in_Dynamic_Environments_ICCV_2019_paper.pdf
Prior Guided Dropout for Robust Visual Localization in Dynamic Environments
Camera localization from monocular images has been a long-standing problem, but its robustness in dynamic environments is still not adequately addressed. Compared with classic geometric approaches, modern CNN-based methods (e.g. PoseNet) have manifested the reliability against illumination or viewpoint variations, but they still have the following limitations. First, foreground moving objects are not explicitly handled, which results in poor performance and instability in dynamic environments. Second, the output for each image is a point estimate without uncertainty quantification. In this paper, we propose a framework which can be generally applied to existing CNN-based pose regressors to improve their robustness in dynamic environments. The key idea is a prior guided dropout module coupled with a self-attention module which can guide CNNs to ignore foreground objects during both training and inference. Additionally, the dropout module enables the pose regressor to output multiple hypotheses from which the uncertainty of pose estimates can be quantified and leveraged in the following uncertainty-aware pose-graph optimization to improve the robustness further. We achieve an average accuracy of 9.98m/3.63deg on RobotCar dataset, which outperforms the state-of-the-art method by 62.97%/47.08%. The source code of our implementation is available at https://github.com/zju3dv/RVL-dynamic.
[' Guofeng Zhang', ' Hujun Bao', ' Xiaowei Zhou', ' Jianping Shi', ' Yan Xu', 'Zhaoyang Huang']
2019-10-01
null
null
null
iccv-2019-10
['camera-localization']
['computer-vision']
[-1.49228215e-01 -1.01804480e-01 7.94001855e-03 -2.67845809e-01 -6.14987671e-01 -4.96778607e-01 3.67030650e-01 -4.26890671e-01 -5.77280819e-01 6.10248327e-01 -2.87175745e-01 -1.09669760e-01 2.14309722e-01 -5.70019960e-01 -1.22865200e+00 -8.60488296e-01 3.77060264e-01 1.48294449e-01 4.78921682e-01 1.32654130e-01 1.83219388e-01 4.97478038e-01 -1.32019663e+00 -3.42983305e-01 1.00923944e+00 1.16911662e+00 3.62271518e-01 4.33293909e-01 2.08553255e-01 5.68824410e-01 -5.43693125e-01 -2.72017062e-01 2.03891978e-01 -2.63936762e-02 -2.57204413e-01 -4.75173257e-02 8.26296329e-01 -5.67394674e-01 -7.37176538e-01 1.38753343e+00 4.79558319e-01 2.07050622e-01 3.84289920e-01 -1.16555059e+00 -7.40433395e-01 2.14511588e-01 -7.55435169e-01 5.66710485e-03 8.16864967e-02 4.44400549e-01 5.98086953e-01 -1.02945566e+00 4.95014876e-01 1.33224332e+00 6.08646810e-01 4.75925416e-01 -9.68113005e-01 -8.67727518e-01 6.38937235e-01 3.47609073e-01 -1.59088540e+00 -4.00270283e-01 7.75752604e-01 -3.49375874e-01 8.20085764e-01 -1.89560473e-01 5.73075235e-01 1.22658777e+00 3.42345297e-01 9.11157429e-01 7.48490512e-01 1.52912587e-01 5.96807711e-02 -6.14160001e-02 -9.88375172e-02 8.96994829e-01 4.67335194e-01 1.86480731e-01 -3.62283647e-01 3.83303940e-01 9.83001173e-01 1.64442271e-01 -4.10428703e-01 -7.07965672e-01 -1.14862764e+00 6.58756614e-01 1.04307151e+00 -1.90390751e-01 -6.98759183e-02 5.16014814e-01 1.33005217e-01 -1.20824158e-01 4.74401802e-01 3.09886336e-01 -4.63578999e-01 7.14426339e-02 -7.18146920e-01 3.60988557e-01 4.56324756e-01 1.38397443e+00 7.79643655e-01 3.13417196e-01 1.48919970e-01 5.57973325e-01 6.50498390e-01 7.79088676e-01 -2.87314504e-02 -8.88164103e-01 6.20798945e-01 5.63544869e-01 9.87255052e-02 -1.25822616e+00 -5.26879787e-01 -7.58016229e-01 -7.15046644e-01 3.20280910e-01 5.19671023e-01 -1.46361724e-01 -1.04124331e+00 1.72887695e+00 3.21787238e-01 3.14698488e-01 -2.50898868e-01 1.28271568e+00 8.87801707e-01 5.04270792e-01 -2.32708737e-01 2.55633205e-01 1.05774319e+00 -1.27178323e+00 -6.49867415e-01 -5.43895245e-01 2.34304443e-01 -6.91016078e-01 8.86624634e-01 3.90007168e-01 -8.20877373e-01 -5.22298932e-01 -1.29313254e+00 -2.36119553e-01 -3.40560734e-01 3.15692514e-01 4.70143497e-01 2.99751639e-01 -9.77091312e-01 3.92305255e-01 -1.12464356e+00 -2.48957634e-01 5.33557713e-01 4.12256747e-01 -2.37811938e-01 -2.48373359e-01 -9.02535141e-01 9.73259628e-01 2.82321513e-01 4.48595017e-01 -1.06112790e+00 -5.47169149e-01 -1.15408361e+00 -1.77531540e-01 7.65139043e-01 -7.45620430e-01 1.12704194e+00 -6.21693790e-01 -1.65383470e+00 4.96800303e-01 -6.19798414e-02 -3.70582104e-01 8.37184787e-01 -7.32838452e-01 -5.81805781e-02 1.01909088e-02 7.79940635e-02 8.94063830e-01 8.98259163e-01 -1.33395553e+00 -5.22683144e-01 -4.55296338e-01 2.51224279e-01 3.49370331e-01 8.69659781e-02 -2.48490542e-01 -1.00621760e+00 -4.75328594e-01 4.10217762e-01 -1.19500601e+00 -1.58951715e-01 3.07893604e-01 -5.55378079e-01 1.48794442e-01 8.20394933e-01 -5.15922725e-01 8.76010299e-01 -1.99223804e+00 2.14129284e-01 -2.85592943e-01 1.03546314e-01 2.17503399e-01 -2.58586742e-02 1.00360718e-02 2.71389157e-01 -6.11739829e-02 -1.95584700e-01 -6.98578537e-01 -5.97529188e-02 2.77792178e-02 -1.59540236e-01 8.98955107e-01 5.53545415e-01 1.11342728e+00 -8.94889116e-01 -2.40017056e-01 7.68833935e-01 8.32384348e-01 -4.58128273e-01 8.20531249e-02 -2.77325004e-01 8.19884062e-01 -4.05742586e-01 8.80254924e-01 1.00531900e+00 -2.27177382e-01 -3.62100631e-01 -3.07570308e-01 -2.87570566e-01 2.22042710e-01 -1.28219521e+00 1.89030313e+00 -3.06210935e-01 7.98154533e-01 1.60580277e-01 -6.01107121e-01 7.67120540e-01 -4.19539437e-02 1.34705216e-01 -4.83930558e-01 4.54840839e-01 9.90372673e-02 -5.49909286e-02 -3.20935220e-01 5.23937881e-01 4.28719491e-01 4.33647409e-02 -3.13265502e-01 3.66679765e-02 -2.19629064e-01 -6.07572086e-02 3.87746766e-02 8.66035461e-01 6.46498263e-01 -1.31552488e-01 -1.03750482e-01 5.25328159e-01 -1.13913886e-01 8.78673792e-01 6.41516030e-01 -2.34097824e-01 1.07468653e+00 2.47645319e-01 -2.98156679e-01 -8.19673002e-01 -1.03295517e+00 -2.35586494e-01 6.02150440e-01 6.90224171e-01 2.05892250e-02 -5.74643135e-01 -5.05029857e-01 3.14610526e-02 5.00461519e-01 -3.67234558e-01 -2.37263456e-01 -6.73077047e-01 -6.49328828e-01 3.06820899e-01 7.62138069e-01 6.67591572e-01 -7.73027122e-01 -6.30217135e-01 2.16132820e-01 -7.32690245e-02 -1.44515288e+00 -4.21128273e-01 1.33203954e-01 -8.53950918e-01 -1.12258852e+00 -7.03213096e-01 -5.93067408e-01 7.03507006e-01 4.14617747e-01 9.27127182e-01 -7.60331452e-02 -1.74229667e-01 1.77586511e-01 -2.24355131e-01 -4.48811233e-01 1.57463387e-01 2.68929273e-01 1.96046919e-01 -6.93747401e-02 8.78512487e-02 -4.39210206e-01 -7.86063194e-01 4.33549911e-01 -6.72110260e-01 6.27672523e-02 6.55944824e-01 8.10100734e-01 6.32016063e-01 -3.34354967e-01 2.40896493e-01 -5.93539178e-01 -9.84306037e-02 -3.64437044e-01 -1.15943205e+00 -1.05565622e-01 -4.58462954e-01 -7.06214607e-02 5.46572983e-01 -5.48015356e-01 -9.16690469e-01 3.51685107e-01 -6.81427717e-02 -8.17166388e-01 -1.17073514e-01 3.80127519e-01 -4.55648750e-01 -3.93864065e-01 3.27960968e-01 1.48314729e-01 -5.53189516e-02 -3.95602405e-01 3.17366838e-01 1.52867928e-01 6.94718659e-01 -3.12167823e-01 1.08570468e+00 5.05497038e-01 -3.41920368e-02 -7.09225059e-01 -8.95330369e-01 -3.83001626e-01 -6.16339743e-01 -3.20087880e-01 9.37765241e-01 -1.37755346e+00 -8.35546672e-01 7.63660014e-01 -1.23158956e+00 -3.57803851e-01 3.29955012e-01 5.97971320e-01 -3.70806932e-01 2.91571409e-01 -5.64675748e-01 -7.56358981e-01 -8.32433030e-02 -1.43144548e+00 1.17583299e+00 5.23020148e-01 3.59913945e-01 -7.48989105e-01 -4.57976371e-01 2.45419621e-01 4.09508616e-01 3.86717141e-01 2.79718697e-01 -1.72557846e-01 -1.28678823e+00 -2.37626791e-01 -4.63976175e-01 3.47951442e-01 -2.00821504e-01 9.83177200e-02 -1.05191207e+00 -4.74460661e-01 -5.95436618e-03 -2.81891227e-01 1.00440025e+00 5.90929627e-01 1.07103109e+00 -2.90693138e-02 -3.52304757e-01 1.15059102e+00 1.42193830e+00 1.25793427e-01 6.82491124e-01 5.32125890e-01 1.16195869e+00 2.25813955e-01 7.48070717e-01 1.79092109e-01 5.48800588e-01 7.17906296e-01 9.97242749e-01 -2.26114932e-02 -1.08236291e-01 -1.96798757e-01 4.08842981e-01 6.02575779e-01 2.04043135e-01 -3.45543861e-01 -8.05618882e-01 3.53332639e-01 -2.12948394e+00 -5.68705797e-01 -2.73007482e-01 2.01145029e+00 4.48559791e-01 3.28641057e-01 -3.60375404e-01 -3.10922623e-01 6.27394676e-01 3.64660352e-01 -9.46258008e-01 2.95269877e-01 -5.67520820e-02 -3.25627327e-01 8.87120366e-01 5.75040460e-01 -1.31176412e+00 1.12711275e+00 4.84625244e+00 4.15844023e-01 -1.26303017e+00 -7.12095350e-02 5.19659102e-01 -2.09176064e-01 2.33077392e-01 -7.87483081e-02 -1.11210120e+00 4.62767571e-01 4.55270678e-01 2.19516158e-01 2.79464424e-01 1.02251327e+00 1.40210077e-01 -3.14486980e-01 -1.02127552e+00 1.15727043e+00 1.50758192e-01 -1.13075793e+00 -3.11132371e-01 1.38256764e-02 8.11930358e-01 4.25100386e-01 3.49862725e-01 2.88901716e-01 7.30179325e-02 -9.83082414e-01 1.00332475e+00 4.85184431e-01 6.65961444e-01 -7.99584210e-01 9.01242912e-01 3.70446652e-01 -1.22691488e+00 -2.80800276e-02 -6.25331700e-01 -4.67767790e-02 2.63025224e-01 6.51395500e-01 -5.67811072e-01 7.36392498e-01 8.59190226e-01 9.50316489e-01 -6.77249551e-01 1.27861738e+00 -5.72655678e-01 3.40426534e-01 -4.86516654e-01 4.45755422e-02 3.41252595e-01 -3.02338660e-01 6.54686630e-01 9.56489503e-01 2.25454181e-01 -1.95910990e-01 2.69795477e-01 1.18551230e+00 -8.05773586e-02 -3.31268966e-01 -5.22081077e-01 3.86666805e-01 5.43837428e-01 1.35497475e+00 -6.15667820e-01 -5.68909124e-02 -5.04843652e-01 9.13731933e-01 4.17487383e-01 4.03366983e-01 -1.21561778e+00 -3.32004011e-01 7.54704714e-01 -6.47138730e-02 4.38970178e-01 -5.55005193e-01 -3.18071902e-01 -1.44353914e+00 3.30921173e-01 -7.16985524e-01 -8.04035217e-02 -8.50814998e-01 -1.08029819e+00 6.32160962e-01 -5.69309369e-02 -1.19349682e+00 5.21997213e-02 -8.73172879e-01 -4.73419845e-01 7.68312633e-01 -1.67817116e+00 -1.20123446e+00 -6.47642732e-01 3.28033119e-01 5.33493221e-01 1.01475291e-01 2.83918649e-01 4.46453571e-01 -9.69591618e-01 5.64861417e-01 3.11847404e-02 3.15044701e-01 7.39251494e-01 -1.25901699e+00 5.80786169e-01 1.20288384e+00 -1.03240855e-01 6.55861616e-01 6.54074967e-01 -6.10684276e-01 -1.66702592e+00 -1.44099033e+00 3.81131023e-01 -6.66594326e-01 6.72969222e-01 -5.91820180e-01 -9.28713441e-01 6.40099525e-01 -3.97239216e-02 3.28880221e-01 -1.16622038e-01 -2.08724678e-01 -2.97566682e-01 -1.13734849e-01 -8.01074922e-01 8.05974126e-01 1.21096373e+00 -4.09784138e-01 -1.88359931e-01 1.06391959e-01 8.99695516e-01 -9.60208297e-01 -5.46716392e-01 5.33730924e-01 3.35549861e-01 -9.54959154e-01 9.74713147e-01 4.22036126e-02 1.44141287e-01 -7.15925694e-01 -9.48090628e-02 -1.07913637e+00 -2.29591310e-01 -5.52266359e-01 -3.51700157e-01 1.08774543e+00 2.98027575e-01 -7.40411282e-01 7.97688544e-01 5.17195821e-01 -4.53931659e-01 -8.44119549e-01 -8.71515691e-01 -9.06019092e-01 -3.59575190e-02 -4.73580986e-01 4.38179255e-01 5.65705776e-01 -6.31140709e-01 3.00779641e-01 -4.19890583e-01 6.46333456e-01 8.09112132e-01 -8.20801035e-02 9.11957204e-01 -9.56578910e-01 -7.46653602e-02 -3.66613179e-01 -4.65253532e-01 -1.50937760e+00 2.02764198e-01 -5.87948740e-01 3.88362974e-01 -1.47864652e+00 -3.58799845e-02 -2.39479065e-01 -8.16294849e-02 2.03139916e-01 -2.72234261e-01 1.95236921e-01 2.74723440e-01 5.14755286e-02 -7.19624519e-01 7.75116980e-01 1.26796675e+00 -1.14856884e-01 -1.64552748e-01 4.05452177e-02 -4.28878456e-01 8.15053105e-01 8.48941863e-01 -4.13672358e-01 -3.58366638e-01 -7.24844635e-01 1.08661197e-01 -1.47193447e-01 7.92797506e-01 -1.31279278e+00 4.40213710e-01 1.04175046e-01 6.35965049e-01 -9.56606686e-01 4.88047421e-01 -8.10087681e-01 5.60186319e-02 4.66369122e-01 9.53357071e-02 2.25760892e-01 2.41404861e-01 7.77846992e-01 -1.41222849e-01 9.50087886e-03 8.91531229e-01 -2.37687640e-02 -8.46170664e-01 6.81846261e-01 -4.35312577e-02 6.70973361e-02 8.20188224e-01 -2.03135371e-01 -3.97923470e-01 -3.59123468e-01 -2.61440128e-01 4.03143704e-01 7.40173161e-01 6.70851529e-01 7.62211442e-01 -1.23474801e+00 -5.31616032e-01 8.80793035e-02 1.23059765e-01 7.18047857e-01 1.76021039e-01 1.03062010e+00 -7.00380564e-01 3.84258389e-01 3.42592262e-02 -9.61226702e-01 -8.33962262e-01 5.96203327e-01 4.40167338e-01 1.33001566e-01 -7.33474195e-01 9.46353197e-01 4.03787404e-01 -4.03745830e-01 6.79590046e-01 -5.20046949e-01 7.40524158e-02 -2.00595811e-01 3.62347811e-01 2.01987863e-01 -3.03287711e-02 -6.39797151e-01 -6.16913855e-01 7.68456936e-01 -7.96634331e-02 8.24469402e-02 1.31084144e+00 -2.96766639e-01 1.41388446e-01 3.11458796e-01 1.35052502e+00 -3.01730245e-01 -1.94561124e+00 -2.09914044e-01 -1.00407712e-01 -5.38238764e-01 1.25898406e-01 -6.15447283e-01 -1.34963357e+00 9.17839110e-01 5.72157323e-01 -4.63008672e-01 8.07457387e-01 -1.11336924e-01 5.59925258e-01 4.21326518e-01 4.59344149e-01 -9.41208482e-01 2.12559015e-01 9.85837519e-01 9.13597882e-01 -1.60778940e+00 6.56783953e-02 -5.08157015e-01 -5.39337039e-01 9.14021909e-01 1.04168129e+00 -4.45646644e-01 5.16577780e-01 3.02804619e-01 2.18811288e-01 -9.32981893e-02 -5.16060352e-01 -2.78939426e-01 4.63878214e-01 5.87890685e-01 2.43618995e-01 -2.36813888e-01 2.18120426e-01 3.92142117e-01 -9.70357656e-03 -3.94846410e-01 3.54879975e-01 7.64733434e-01 -3.52020860e-01 -5.10669708e-01 -3.98027331e-01 4.53971922e-02 -3.09221804e-01 -5.71978018e-02 -2.16497123e-01 9.37136889e-01 3.67966294e-02 8.67230475e-01 -1.68432062e-03 -3.90964240e-01 4.26913798e-01 -2.52997279e-01 3.85621279e-01 -6.19082630e-01 -3.21813166e-01 2.23962620e-01 -1.88388422e-01 -8.82432282e-01 -2.23026872e-01 -6.67486966e-01 -1.20117903e+00 -2.03620121e-01 -6.34791672e-01 -4.38410908e-01 7.68823743e-01 7.05837727e-01 3.88118267e-01 7.56670058e-01 3.73971164e-01 -1.32072663e+00 -5.41640162e-01 -8.60680819e-01 -1.21968940e-01 4.62988429e-02 5.08040905e-01 -1.00330162e+00 -3.92105222e-01 -2.23993614e-01]
[7.978815078735352, -2.15317702293396]
926c5294-0686-4b73-b73b-e876cbc47050
3dn-3d-deformation-network
1903.03322
null
http://arxiv.org/abs/1903.03322v1
http://arxiv.org/pdf/1903.03322v1.pdf
3DN: 3D Deformation Network
Applications in virtual and augmented reality create a demand for rapid creation and easy access to large sets of 3D models. An effective way to address this demand is to edit or deform existing 3D models based on a reference, e.g., a 2D image which is very easy to acquire. Given such a source 3D model and a target which can be a 2D image, 3D model, or a point cloud acquired as a depth scan, we introduce 3DN, an end-to-end network that deforms the source model to resemble the target. Our method infers per-vertex offset displacements while keeping the mesh connectivity of the source model fixed. We present a training strategy which uses a novel differentiable operation, mesh sampling operator, to generalize our method across source and target models with varying mesh densities. Mesh sampling operator can be seamlessly integrated into the network to handle meshes with different topologies. Qualitative and quantitative results show that our method generates higher quality results compared to the state-of-the art learning-based methods for 3D shape generation. Code is available at github.com/laughtervv/3DN.
['Weiyue Wang', 'Duygu Ceylan', 'Ulrich Neumann', 'Radomir Mech']
2019-03-08
3dn-3d-deformation-network-1
http://openaccess.thecvf.com/content_CVPR_2019/html/Wang_3DN_3D_Deformation_Network_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_3DN_3D_Deformation_Network_CVPR_2019_paper.pdf
cvpr-2019-6
['3d-shape-generation']
['computer-vision']
[ 3.30500811e-01 4.25820053e-01 2.86920458e-01 -2.51362622e-01 -6.39411271e-01 -5.52381754e-01 4.35650885e-01 -3.12836505e-02 1.67035669e-01 4.78341848e-01 -1.18765414e-01 -2.35989764e-01 9.49333310e-02 -1.15226972e+00 -1.04597688e+00 -1.10665821e-01 4.66528125e-02 7.87560940e-01 3.62776339e-01 -2.73213178e-01 2.58205712e-01 1.17541337e+00 -1.52436185e+00 -4.49231863e-02 6.29688501e-01 9.79955196e-01 3.44648540e-01 5.31253159e-01 -3.30636322e-01 -1.68994278e-01 -3.58981401e-01 -3.23915929e-01 6.45887077e-01 -1.98524445e-01 -7.12635934e-01 3.58439833e-01 7.44093955e-01 -1.76098779e-01 -8.19616243e-02 1.02277398e+00 7.07886815e-01 -3.45136859e-02 5.50523818e-01 -1.03759313e+00 -6.44215405e-01 8.29939917e-02 -6.43858790e-01 -4.02084887e-01 5.53298056e-01 -2.14436844e-01 3.87985438e-01 -1.21843469e+00 1.12583697e+00 1.34227681e+00 8.13555598e-01 5.66223860e-01 -1.34684587e+00 -4.13266987e-01 1.15382440e-01 -3.90185028e-01 -1.37644958e+00 -2.86926657e-01 1.17288864e+00 -4.49903995e-01 5.20125926e-01 3.37712288e-01 9.64795232e-01 8.74309897e-01 3.27649981e-01 3.64440501e-01 7.77571678e-01 -5.15848935e-01 1.72674671e-01 1.38671517e-01 -4.85657424e-01 7.03007996e-01 -3.03218924e-02 1.80888280e-01 -2.50445575e-01 -3.02799463e-01 1.58406544e+00 1.17455507e-02 -3.93237174e-01 -1.02988565e+00 -1.24871886e+00 5.17725825e-01 5.64395249e-01 -9.88141969e-02 -4.20051366e-01 8.09105113e-02 1.68199092e-01 3.09946120e-01 7.89805174e-01 3.68608713e-01 -6.40977144e-01 2.17778049e-03 -6.32272124e-01 4.46337700e-01 7.30537415e-01 1.09170640e+00 9.06551659e-01 1.08099490e-01 3.67277771e-01 8.12237024e-01 4.37725872e-01 4.52901661e-01 -5.63013367e-02 -1.23190200e+00 1.68511420e-01 7.21708894e-01 1.73641160e-01 -9.70950842e-01 -2.02460229e-01 -2.13467583e-01 -9.83735204e-01 7.24096715e-01 -1.60961635e-02 1.22712836e-01 -1.17280638e+00 1.41690564e+00 9.87712085e-01 2.96871662e-01 -3.28172475e-01 8.47287297e-01 9.80903625e-01 4.65999186e-01 -6.92419410e-01 -5.40967379e-03 8.23110461e-01 -6.29027247e-01 -3.79918933e-01 9.32717696e-02 3.63481939e-01 -8.24240685e-01 1.13884616e+00 2.32800186e-01 -1.48538160e+00 -4.64808613e-01 -9.53444779e-01 -1.35867313e-01 -3.47073674e-01 -2.73790151e-01 2.42966026e-01 3.53862464e-01 -1.26452684e+00 9.61104929e-01 -8.27754498e-01 -3.07016522e-01 5.34581006e-01 2.90026993e-01 -4.03942674e-01 1.98751613e-02 -8.62135053e-01 9.61251140e-01 8.90006274e-02 7.44710937e-02 -5.57868540e-01 -1.10690475e+00 -1.00475454e+00 -3.12736988e-01 2.87075996e-01 -1.08276904e+00 1.28028834e+00 -7.76747167e-01 -1.74924624e+00 1.20614338e+00 -2.88789906e-02 8.24720506e-03 7.67345905e-01 1.75373703e-01 -6.81427494e-03 -1.16433119e-02 6.22645728e-02 6.90576494e-01 8.22648644e-01 -1.92760849e+00 -2.43070260e-01 -3.79105031e-01 1.97318792e-01 2.48989686e-01 2.63017744e-01 -3.79625946e-01 -5.11933982e-01 -6.55992985e-01 5.31347215e-01 -7.17161655e-01 -3.51201504e-01 8.58538687e-01 -4.79019701e-01 1.60253480e-01 1.15043056e+00 -5.55119812e-01 7.33405292e-01 -1.93401027e+00 3.78695965e-01 5.30106068e-01 3.31720144e-01 1.42283738e-01 -1.50955081e-01 4.24285561e-01 -2.15793908e-01 1.93778694e-01 -5.96551359e-01 -6.28039062e-01 -4.25457358e-02 1.79862157e-01 -1.15135023e-02 3.96231979e-01 1.14897884e-01 6.66992426e-01 -9.81058240e-01 -3.98386240e-01 5.42055905e-01 9.47279692e-01 -4.54665512e-01 1.31550029e-01 -2.83372462e-01 7.14567780e-01 -2.74778783e-01 6.77203476e-01 9.86056805e-01 -2.75301605e-01 -8.10680464e-02 -3.12200874e-01 -1.57908827e-01 9.32322592e-02 -1.57111251e+00 2.25459862e+00 -6.94842875e-01 1.93134338e-01 3.97192627e-01 -6.85887158e-01 1.16854107e+00 3.04172665e-01 4.22243595e-01 -4.65044558e-01 1.35436878e-01 3.49093646e-01 -4.24157172e-01 -1.50545120e-01 3.71431530e-01 -1.22991703e-01 1.45850271e-01 3.85048747e-01 -2.89406747e-01 -8.52098167e-01 -2.52759457e-01 9.47176963e-02 6.75958097e-01 5.17767549e-01 9.62963030e-02 -9.10563394e-02 3.96835864e-01 -1.80154264e-01 4.00887579e-01 2.98270196e-01 4.42192614e-01 1.01850092e+00 2.25623980e-01 -6.66501939e-01 -1.27811003e+00 -1.41116655e+00 -3.70007575e-01 3.07465434e-01 3.03931564e-01 -1.83058262e-01 -5.05214930e-01 -4.39757854e-01 2.10636720e-01 5.56362927e-01 -7.09070086e-01 7.95637295e-02 -7.52601445e-01 -1.47226620e-02 -8.70608911e-02 4.44292784e-01 2.59892732e-01 -9.34091926e-01 -5.74288368e-01 1.25388831e-01 2.32836083e-01 -7.67108262e-01 -6.92132890e-01 -1.54318884e-01 -1.17269218e+00 -9.03033137e-01 -7.05746353e-01 -9.39193547e-01 9.96832311e-01 1.22618742e-01 1.31092799e+00 2.96190023e-01 -1.40295878e-01 4.57280397e-01 -1.73572600e-01 -3.00788164e-01 -7.78913856e-01 -2.70009246e-02 -4.43737209e-02 -1.45945698e-01 -5.60155094e-01 -1.15318263e+00 -4.59087849e-01 2.94049948e-01 -1.13631225e+00 5.75214267e-01 1.43628925e-01 5.59789777e-01 1.20885992e+00 -3.06169301e-01 3.43952626e-01 -7.38689959e-01 3.57115537e-01 -1.81637362e-01 -7.45973885e-01 -1.23246806e-02 -3.42328250e-01 -1.00536376e-01 4.50633526e-01 -5.51254690e-01 -7.69947588e-01 3.11411232e-01 -3.45622063e-01 -9.07893598e-01 -9.23070312e-02 5.20141065e-01 -3.34272206e-01 -2.70660669e-01 6.52012467e-01 -2.41317954e-02 4.06480491e-01 -7.69942582e-01 4.79977131e-01 4.13235277e-01 5.10372996e-01 -4.81274396e-01 1.05570972e+00 6.66365504e-01 2.39869431e-01 -7.46656835e-01 -5.40798962e-01 -7.14170337e-02 -1.14438689e+00 -2.21140712e-01 4.50954229e-01 -5.58607697e-01 -4.28194016e-01 5.27845263e-01 -1.49674213e+00 -5.90026081e-01 -5.76892257e-01 4.74846270e-03 -7.04480410e-01 1.49585515e-01 -3.27441543e-01 -5.03494322e-01 -4.00088072e-01 -1.00387061e+00 1.43522632e+00 1.62012456e-03 -2.15078175e-01 -1.16491151e+00 1.65363014e-01 -1.96834758e-01 3.33591580e-01 9.57965672e-01 9.26865399e-01 2.89611481e-02 -7.40962923e-01 -2.54079878e-01 -8.89435932e-02 2.15774372e-01 5.79448879e-01 2.88478434e-01 -6.47517681e-01 -1.58070937e-01 -2.42509663e-01 -2.99088284e-02 1.81739002e-01 4.25772786e-01 1.28414702e+00 -2.35582575e-01 -4.75077301e-01 8.19218159e-01 1.45203912e+00 1.07935324e-01 7.02104628e-01 1.34672925e-01 1.01940012e+00 3.96245480e-01 2.66893059e-01 3.59039426e-01 4.34458703e-01 9.25099611e-01 7.04267204e-01 -3.44175279e-01 -2.18178704e-01 -4.11845475e-01 -2.20261157e-01 8.73974681e-01 -7.57415295e-02 6.04434907e-02 -9.33322251e-01 3.24254364e-01 -1.67928183e+00 -6.41241610e-01 -1.70871913e-01 2.60214472e+00 8.04717422e-01 1.81747019e-01 -4.97107431e-02 7.11462796e-02 7.81683505e-01 3.20141278e-02 -7.66021729e-01 -3.76600653e-01 2.01258585e-01 3.71898770e-01 1.59385443e-01 7.44919062e-01 -7.25637496e-01 6.85726345e-01 5.70432806e+00 5.59122860e-01 -1.39452755e+00 -1.08736865e-02 3.41050178e-01 -1.19555734e-01 -7.22777486e-01 -2.05385655e-01 -3.44388515e-01 2.55369127e-01 4.88800049e-01 -3.91824573e-01 3.32512885e-01 7.58179784e-01 3.85237068e-01 1.09173410e-01 -1.16240776e+00 1.04713428e+00 1.43272895e-02 -1.90302372e+00 3.10253292e-01 2.53656328e-01 8.99889886e-01 -8.56202021e-02 -2.46419609e-01 -1.89909905e-01 3.04985076e-01 -8.74141097e-01 9.49740589e-01 8.50204885e-01 1.27350426e+00 -6.77664280e-01 3.16719174e-01 4.45755810e-01 -1.36090171e+00 6.66433096e-01 -1.54666170e-01 1.47105247e-01 5.67747951e-01 6.18133128e-01 -7.01065063e-01 6.81409657e-01 6.04894161e-01 7.16812134e-01 -2.31190756e-01 1.18067741e+00 9.57637355e-02 -1.04273029e-01 -4.32517469e-01 3.90499532e-01 -2.14411899e-01 -3.24550986e-01 7.77933776e-01 6.53028429e-01 6.03029013e-01 1.57002900e-02 2.77900577e-01 1.17807531e+00 -2.62719661e-01 9.73078236e-03 -1.01052153e+00 3.80517751e-01 7.18297184e-01 1.18060255e+00 -8.87232482e-01 -2.97321290e-01 -1.55866563e-01 1.09162259e+00 2.18118116e-01 9.09339041e-02 -6.43563867e-01 -3.27602029e-01 5.01963735e-01 6.24699414e-01 2.52134860e-01 -3.52543563e-01 -3.53487343e-01 -9.12974656e-01 2.19000369e-01 -6.42955422e-01 -2.42228076e-01 -1.13320351e+00 -1.33289516e+00 7.89243817e-01 1.53386131e-01 -1.51393652e+00 -1.33138031e-01 -4.01076287e-01 -6.28853142e-01 1.02525008e+00 -1.21575534e+00 -1.16239929e+00 -6.38543844e-01 3.11949164e-01 5.07991195e-01 2.70196676e-01 9.08624053e-01 2.40312397e-01 -7.76640251e-02 2.39005908e-01 -7.09269792e-02 -1.21693112e-01 3.94631892e-01 -1.14003134e+00 8.78629625e-01 3.88832629e-01 -7.96172395e-02 2.57584244e-01 4.58486885e-01 -8.40958238e-01 -1.42762899e+00 -1.14160526e+00 6.16553187e-01 -6.27182662e-01 2.33469397e-01 -4.50896382e-01 -1.18421209e+00 6.99494064e-01 -9.09596831e-02 2.12516069e-01 6.42870888e-02 -3.56648684e-01 -5.13991341e-02 6.57419786e-02 -1.49512351e+00 6.45294845e-01 1.51487505e+00 -2.87105918e-01 -2.96181709e-01 2.28995353e-01 9.58179593e-01 -1.42988122e+00 -1.02074540e+00 4.76825863e-01 5.28791726e-01 -9.09626424e-01 1.13508022e+00 -2.10923612e-01 5.01711071e-01 -4.02341694e-01 -3.09215933e-02 -1.70023918e+00 -1.55185714e-01 -7.60334313e-01 -2.33470634e-01 7.91898310e-01 3.77630055e-01 -7.18343556e-01 8.08343887e-01 5.62951386e-01 -5.38878918e-01 -1.17299294e+00 -1.14180005e+00 -7.18080163e-01 2.00879291e-01 -3.93731177e-01 9.63334441e-01 1.09249413e+00 -5.26813865e-01 8.22797120e-02 2.93240771e-02 3.39108586e-01 6.94498658e-01 2.45105758e-01 9.97456491e-01 -1.64790916e+00 1.94382757e-01 -3.47927690e-01 -4.24169421e-01 -1.15356147e+00 1.59532931e-02 -9.43632364e-01 -1.04379393e-01 -2.03179932e+00 -4.55269575e-01 -8.30539405e-01 5.32901943e-01 2.85099834e-01 3.47485781e-01 2.42872089e-01 -1.50653347e-02 7.44385570e-02 1.63496003e-01 6.86836779e-01 1.88933957e+00 1.89849913e-01 -6.63314819e-01 5.17640412e-02 -4.65112776e-01 8.01240265e-01 6.14468157e-01 -3.23690027e-01 -4.37830418e-01 -5.13932109e-01 3.05255651e-01 3.66843134e-01 5.72208107e-01 -7.50956237e-01 -6.76673427e-02 -1.23492233e-01 4.06915247e-01 -8.55838954e-01 6.13447964e-01 -9.33531821e-01 7.03874648e-01 5.52224368e-02 -2.88204905e-02 2.73402184e-01 3.71085912e-01 3.22969407e-01 2.45019987e-01 -8.91149640e-02 7.41734982e-01 -3.65614206e-01 -1.32129684e-01 7.50300229e-01 2.05156907e-01 -1.51115581e-01 8.70793521e-01 -7.55184650e-01 1.03142731e-01 -3.59905183e-01 -9.19682562e-01 6.93629533e-02 9.66862321e-01 4.63257194e-01 1.05113995e+00 -1.79420221e+00 -6.65000618e-01 4.17911977e-01 -1.54679686e-01 8.66427839e-01 1.83095858e-01 5.43399692e-01 -7.25782752e-01 -2.47827157e-01 -1.35413751e-01 -7.19105184e-01 -1.03788292e+00 2.67918974e-01 8.37487102e-01 5.05339168e-02 -9.91978824e-01 6.06616199e-01 -4.04934324e-02 -1.08992934e+00 1.20471619e-01 -4.96087164e-01 2.37056077e-01 -2.58320481e-01 2.05055982e-01 3.15069050e-01 2.62524784e-01 -6.96996331e-01 -2.28868619e-01 8.38981807e-01 2.16051057e-01 -9.82888341e-02 1.50142074e+00 -7.19521344e-02 -8.11589360e-02 5.83012760e-01 1.21608198e+00 4.92389388e-02 -1.42017961e+00 -1.62012413e-01 -6.06276572e-01 -7.31046379e-01 4.03784066e-02 -5.83464444e-01 -1.34125984e+00 5.28912425e-01 5.06039083e-01 3.52981508e-01 7.43907034e-01 2.26971895e-01 9.11700130e-01 -3.55243161e-02 7.34912694e-01 -7.18353927e-01 7.94323161e-02 4.33497041e-01 1.54301679e+00 -9.78905916e-01 2.95916907e-02 -7.16082335e-01 -1.09420709e-01 1.11338079e+00 5.59310317e-01 -2.43711874e-01 1.10706854e+00 2.62657195e-01 1.69486791e-01 -5.20552456e-01 -3.13555151e-01 2.92329341e-01 3.58265400e-01 7.83626437e-01 1.46682575e-01 -6.25609383e-02 1.51349485e-01 -7.19667003e-02 -4.21633720e-01 3.22434716e-02 5.82501650e-01 1.07271111e+00 -2.89951116e-02 -1.26448333e+00 -5.33648729e-01 5.07757008e-01 9.54893231e-02 1.42273784e-01 -2.24007234e-01 7.76475966e-01 -2.11818912e-03 2.71879792e-01 4.43375021e-01 -2.89189845e-01 7.86406577e-01 -1.38686568e-01 7.17586458e-01 -9.31005836e-01 -2.17526361e-01 -2.49091582e-03 -8.59149545e-02 -5.40702879e-01 -5.06846786e-01 -5.00188231e-01 -1.35645068e+00 -4.04224038e-01 -2.37508178e-01 -2.73212284e-01 7.50100434e-01 5.30623496e-01 7.55931675e-01 2.60848224e-01 8.20783198e-01 -1.78594112e+00 -1.55966327e-01 -6.86599433e-01 -4.90370750e-01 3.26310515e-01 3.75420213e-01 -8.47221315e-01 -3.43107641e-01 2.57723927e-01]
[8.78897762298584, -3.574474811553955]
ba4b4a7a-3974-43a4-9e7f-9abc51cf3265
exploiting-method-names-to-improve-code
2103.11448
null
https://arxiv.org/abs/2103.11448v2
https://arxiv.org/pdf/2103.11448v2.pdf
Exploiting Method Names to Improve Code Summarization: A Deliberation Multi-Task Learning Approach
Code summaries are brief natural language descriptions of source code pieces. The main purpose of code summarization is to assist developers in understanding code and to reduce documentation workload. In this paper, we design a novel multi-task learning (MTL) approach for code summarization through mining the relationship between method code summaries and method names. More specifically, since a method's name can be considered as a shorter version of its code summary, we first introduce the tasks of generation and informativeness prediction of method names as two auxiliary training objectives for code summarization. A novel two-pass deliberation mechanism is then incorporated into our MTL architecture to generate more consistent intermediate states fed into a summary decoder, especially when informative method names do not exist. To evaluate our deliberation MTL approach, we carried out a large-scale experiment on two existing datasets for Java and Python. The experiment results show that our technique can be easily applied to many state-of-the-art neural models for code summarization and improve their performance. Meanwhile, our approach shows significant superiority when generating summaries for methods with non-informative names.
['Shikun Zhang', 'Jinan Sun', 'Wei Ye', 'Rui Xie']
2021-03-21
null
null
null
null
['code-summarization']
['computer-code']
[ 3.72708619e-01 1.55691102e-01 -5.20334542e-01 -4.44660664e-01 -9.45449889e-01 -3.47191006e-01 3.11058581e-01 3.90988886e-01 -7.28113949e-03 5.82003295e-01 6.88453853e-01 -3.62300158e-01 2.60976821e-01 -3.94327730e-01 -7.38647521e-01 -2.13444501e-01 1.95828229e-01 -5.93005531e-02 2.12163180e-01 8.30237120e-02 7.76964366e-01 -1.18365027e-01 -1.49650371e+00 8.22298706e-01 1.41347253e+00 1.77237481e-01 5.66957176e-01 7.27457166e-01 -7.18971848e-01 1.20961487e+00 -1.01875579e+00 -4.19212133e-01 -2.99286187e-01 -6.72782958e-01 -1.07074857e+00 -5.96885867e-02 3.68231446e-01 -2.61235833e-01 1.51032656e-01 1.16226614e+00 5.77847362e-01 1.04574978e-01 5.31364501e-01 -1.00812435e+00 -6.74357533e-01 1.41189170e+00 -9.09366131e-01 2.03805536e-01 5.44700563e-01 2.95773316e-02 1.09272063e+00 -6.37241960e-01 5.02859950e-01 1.04669297e+00 7.56768227e-01 7.78267562e-01 -1.11795270e+00 -4.19873923e-01 2.10933208e-01 7.40607232e-02 -8.49773288e-01 -5.91926396e-01 8.52554202e-01 -5.13355076e-01 1.49377441e+00 3.35865170e-01 2.96906948e-01 8.43636513e-01 4.44070995e-01 1.06049645e+00 2.40338519e-01 -3.75396520e-01 1.30038559e-01 1.83560356e-01 4.93280739e-01 8.14794958e-01 6.06561780e-01 -7.48035848e-01 -3.90202790e-01 -4.64201838e-01 9.57426950e-02 4.05441448e-02 -1.38912857e-01 7.46440217e-02 -1.30136335e+00 7.58723915e-01 5.43295518e-02 4.13916737e-01 -3.07060748e-01 3.85039240e-01 8.99910450e-01 1.57258958e-02 3.12367618e-01 6.45894170e-01 -4.73484993e-01 -4.42838758e-01 -1.13425231e+00 3.27059507e-01 9.56348956e-01 1.28443837e+00 8.89217556e-01 1.54330298e-01 -7.14154124e-01 1.11375725e+00 2.38669083e-01 1.86357632e-01 9.43874061e-01 -9.21184123e-01 9.14027631e-01 1.03082764e+00 -7.92633072e-02 -9.04828250e-01 -2.30621785e-01 -3.51157606e-01 -6.55960083e-01 -2.80397862e-01 -2.75409877e-01 -2.43268326e-01 -4.09160078e-01 1.55690253e+00 -1.82135344e-01 -2.38725662e-01 2.13849738e-01 1.55061945e-01 1.24986267e+00 8.53354037e-01 -8.57586861e-02 -4.77201194e-01 1.26799798e+00 -1.32077968e+00 -6.23775423e-01 -5.23191094e-01 9.39300656e-01 -7.80132890e-01 1.01248443e+00 4.44742516e-02 -1.05664849e+00 -5.40935636e-01 -8.24936390e-01 -1.65581688e-01 2.06862703e-01 6.74444854e-01 5.83149910e-01 2.95223922e-01 -9.04889107e-01 5.54336429e-01 -9.73644435e-01 -3.10304582e-01 4.41949785e-01 2.04195548e-02 1.01078965e-01 2.32743979e-01 -5.03946245e-01 7.08661973e-01 7.13357091e-01 -2.94575632e-01 -8.08308125e-01 -5.90709567e-01 -1.09061790e+00 4.64288265e-01 4.13585871e-01 -6.95178986e-01 1.77667975e+00 -8.69292855e-01 -1.27028358e+00 4.78341132e-01 -5.44606447e-01 -2.57438511e-01 -7.54279550e-03 -2.56491631e-01 -1.02424823e-01 -2.34551877e-01 5.17920196e-01 3.08969915e-01 4.39766079e-01 -1.29907286e+00 -7.47803569e-01 -2.86930092e-02 4.97101620e-02 -6.85916170e-02 -4.50181156e-01 1.63143948e-01 -4.63771820e-01 -7.25709021e-01 -3.49399030e-01 -6.45561874e-01 -3.31487626e-01 -6.92999959e-01 -8.24838936e-01 -5.62353790e-01 3.57291430e-01 -1.02173901e+00 1.96556067e+00 -2.01779485e+00 2.18172580e-01 -3.55430990e-01 2.35768288e-01 4.15961802e-01 -3.35046083e-01 6.44358933e-01 8.52243528e-02 2.44576439e-01 -5.28068185e-01 -3.78450781e-01 -8.21402203e-03 -2.04722926e-01 -4.10570621e-01 -2.45579332e-02 2.19837815e-01 8.20302963e-01 -9.19168293e-01 -7.18955457e-01 -3.32755625e-01 -7.79172033e-02 -9.92985368e-01 3.82939816e-01 -5.77256203e-01 1.01832747e-01 -8.14601898e-01 5.02260804e-01 5.34247577e-01 -3.82127702e-01 1.31323636e-02 2.43128780e-02 -2.50877559e-01 6.30935252e-01 -7.51266479e-01 2.03660560e+00 -8.28188360e-01 6.15143239e-01 -5.01936078e-01 -9.08583581e-01 9.71553862e-01 1.22876488e-01 1.31468028e-01 -5.31892180e-01 -1.48984328e-01 1.72792152e-01 1.35043776e-02 -9.68043983e-01 7.15581596e-01 4.49890882e-01 -4.34034079e-01 9.34973598e-01 -7.13459849e-02 -8.91365483e-02 7.12309361e-01 3.90060961e-01 1.33619189e+00 3.26359689e-01 8.30845952e-01 -2.07812309e-01 7.96678543e-01 4.53262255e-02 9.02561069e-01 9.35399473e-01 1.93221360e-01 3.49948853e-01 9.27351534e-01 -3.82489145e-01 -9.38192070e-01 -5.25760710e-01 4.06800300e-01 1.20200336e+00 -1.21559180e-01 -9.42214847e-01 -9.23936188e-01 -9.59852040e-01 -2.28500247e-01 1.21180439e+00 -4.34420794e-01 -3.60665798e-01 -8.80145669e-01 -7.69508898e-01 7.85926819e-01 5.21336257e-01 6.14620626e-01 -1.33852303e+00 -8.74148309e-01 3.70665848e-01 -3.77420276e-01 -5.62477529e-01 -8.17463040e-01 2.31006537e-02 -9.07159150e-01 -9.57710683e-01 -5.34974933e-01 -9.32928383e-01 6.55992627e-01 1.92959517e-01 1.19895613e+00 2.66643077e-01 7.35693499e-02 -6.79963231e-02 -4.25843716e-01 -3.25336486e-01 -1.08437371e+00 5.24468005e-01 -5.13237894e-01 -5.51496863e-01 3.82117480e-01 -6.30966187e-01 -2.63751417e-01 -1.45260647e-01 -8.69810283e-01 4.63200629e-01 9.66099203e-01 6.93445981e-01 1.83498815e-01 -3.41370434e-01 7.98453867e-01 -1.25170124e+00 1.00579369e+00 -5.82410038e-01 -4.47768420e-01 6.70851886e-01 -5.07496834e-01 6.92906559e-01 1.00592256e+00 -4.06271607e-01 -1.45719826e+00 1.14118196e-01 -1.78761676e-01 3.14860046e-01 1.06620893e-01 9.18840528e-01 -9.46511421e-03 3.88688713e-01 7.90855110e-01 7.24143803e-01 -1.64214611e-01 -7.55041420e-01 2.48417273e-01 9.95759904e-01 3.18944186e-01 -6.39328122e-01 5.28612494e-01 -3.03625558e-02 -5.66169858e-01 -4.83063519e-01 -8.07450175e-01 -3.32353055e-01 -3.36031258e-01 1.67286724e-01 5.72132230e-01 -7.04420745e-01 -4.97087479e-01 3.49104404e-01 -1.76522231e+00 -9.85109955e-02 1.74615514e-02 9.98189077e-02 -5.36418378e-01 7.63676226e-01 -5.81667006e-01 -4.44927692e-01 -8.72404397e-01 -1.45188618e+00 1.02258146e+00 4.93270189e-01 -4.76833850e-01 -8.01943839e-01 3.59191567e-01 1.63691059e-01 5.24048865e-01 -1.53200538e-03 1.31745636e+00 -1.03523719e+00 -4.15184170e-01 1.14426650e-01 -1.30701751e-01 3.34860623e-01 3.61047953e-01 3.20594639e-01 -5.81859469e-01 -2.67066121e-01 1.02183176e-02 -2.34393835e-01 9.66886818e-01 1.57528803e-01 1.31903780e+00 -8.62386644e-01 -4.84532893e-01 5.20393252e-01 1.31304550e+00 3.22591990e-01 3.52229863e-01 3.36787045e-01 9.20694172e-01 3.54978383e-01 4.13004071e-01 6.97473943e-01 6.25375330e-01 6.00907266e-01 2.29556456e-01 3.93188745e-01 -2.31940717e-01 -1.43975735e-01 7.17222869e-01 1.42605817e+00 2.82911003e-01 -1.53329998e-01 -1.12206626e+00 7.61526108e-01 -1.88958991e+00 -1.08370984e+00 -3.17772597e-01 1.99389708e+00 1.37618566e+00 -7.56775290e-02 3.56118865e-02 -3.52448046e-01 8.60122740e-01 1.81854352e-01 -6.46325648e-01 -6.91708207e-01 3.63062114e-01 -2.73051947e-01 7.88890012e-03 1.67298287e-01 -8.66013408e-01 7.49776423e-01 5.50098324e+00 9.31325078e-01 -8.46241415e-01 8.08264837e-02 2.65200287e-01 4.98770811e-02 -7.52603412e-01 2.20915481e-01 -9.25878525e-01 7.45398641e-01 8.60747457e-01 -9.02967513e-01 3.11623156e-01 1.17854130e+00 1.62143245e-01 -2.30056241e-01 -1.41062951e+00 7.30609477e-01 4.24047321e-01 -1.55113816e+00 4.61892337e-01 -4.00109202e-01 1.08089566e+00 -1.38409287e-02 -4.66952652e-01 6.30948603e-01 2.37901926e-01 -5.33477843e-01 7.57328331e-01 3.85867327e-01 5.00241756e-01 -6.56993270e-01 7.71572769e-01 6.58096969e-01 -1.12619495e+00 -1.82285860e-01 -4.80738491e-01 5.40242307e-02 -5.63439243e-02 5.91836929e-01 -9.16234314e-01 6.28970444e-01 3.14313143e-01 1.03852332e+00 -9.63447034e-01 1.30371213e+00 -2.40363821e-01 4.44945186e-01 2.77301013e-01 -4.06925857e-01 4.79491465e-02 2.09556386e-01 5.70194304e-01 1.65005279e+00 3.30938905e-01 -2.71637112e-01 1.65114447e-01 1.25246871e+00 -2.97466695e-01 1.57699317e-01 -5.52821040e-01 -3.11085284e-01 5.62880576e-01 1.07893944e+00 -5.99538624e-01 -5.82883000e-01 -7.05390632e-01 8.12079608e-01 4.00090963e-01 2.71225870e-01 -9.30976748e-01 -1.03343272e+00 3.69772762e-01 -4.31531221e-01 3.01143855e-01 1.76556855e-01 -4.87621784e-01 -1.37750244e+00 3.98292720e-01 -1.01876366e+00 2.51329482e-01 -6.32104397e-01 -7.97286212e-01 7.47621000e-01 3.64571102e-02 -1.23702598e+00 -4.60606635e-01 1.09004125e-01 -1.10100329e+00 6.68537796e-01 -1.32799280e+00 -9.20926094e-01 -3.45559567e-01 -9.96319652e-02 1.06961560e+00 -4.73684341e-01 7.14861572e-01 2.44769976e-01 -8.30422997e-01 6.59974277e-01 2.13841677e-01 1.37703136e-01 4.55025911e-01 -1.19666457e+00 8.53998303e-01 1.41415536e+00 -1.29232213e-01 1.18056870e+00 6.94021225e-01 -9.90782201e-01 -1.27499092e+00 -1.36203754e+00 1.03456450e+00 -2.07480043e-01 4.01590407e-01 -1.21701017e-01 -1.05813730e+00 7.95227170e-01 3.77066076e-01 -6.43972278e-01 6.44022644e-01 -3.75681855e-02 -2.29169235e-01 -1.91567838e-02 -6.29803121e-01 4.82412189e-01 7.07557559e-01 -4.28234160e-01 -9.98420238e-01 3.49893808e-01 9.90054250e-01 -4.09423977e-01 -5.17674387e-01 1.69147521e-01 3.36102039e-01 -8.84489715e-01 4.29360926e-01 -4.44980055e-01 1.14181030e+00 -2.83690065e-01 2.43164808e-01 -1.37373924e+00 -1.06848277e-01 -7.09039092e-01 -2.55257696e-01 1.73219645e+00 4.72517163e-01 -2.21467450e-01 4.93201196e-01 1.52041882e-01 -5.40591836e-01 -6.71878278e-01 -5.09860933e-01 -5.39042473e-01 -2.23526716e-01 -1.04975186e-01 7.16670871e-01 7.03004539e-01 3.17353189e-01 4.87132311e-01 -2.30423853e-01 -2.20323339e-01 3.90490532e-01 5.12796581e-01 8.64556611e-01 -9.26802814e-01 -5.10162055e-01 -6.89427376e-01 1.26473576e-01 -1.18985045e+00 5.22195280e-01 -1.19222295e+00 3.66456568e-01 -1.88630700e+00 1.05534565e+00 5.29888608e-02 1.03842206e-01 7.41908371e-01 -6.28523707e-01 -4.73053783e-01 4.39797938e-02 3.19696605e-01 -1.00706863e+00 5.99960208e-01 8.07729244e-01 -4.29717451e-01 -4.34330046e-01 4.24483120e-01 -1.03326476e+00 5.80877721e-01 6.71399534e-01 -8.80893111e-01 -4.76857811e-01 -8.42504621e-01 3.47357094e-01 3.56839001e-01 -2.32270688e-01 -8.74685585e-01 3.55245918e-01 -1.58911988e-01 -2.33746901e-01 -6.03360474e-01 -4.89275187e-01 -2.31618375e-01 1.82109214e-02 6.94426000e-01 -7.30838478e-01 2.80510515e-01 3.32971036e-01 2.63363272e-01 -2.36046821e-01 -7.84983218e-01 5.75966358e-01 -2.92169303e-01 -7.43581235e-01 -8.29131007e-02 -5.23509264e-01 3.19175243e-01 8.58904541e-01 -1.14694953e-01 -7.01930165e-01 7.53344446e-02 -1.14877904e-02 3.40890676e-01 6.29467010e-01 5.51441371e-01 6.46938980e-01 -1.15478444e+00 -9.38268661e-01 6.62749931e-02 4.11478668e-01 7.42077678e-02 1.45120814e-01 6.40608311e-01 -7.05852807e-01 4.99089658e-01 -2.67864704e-01 -3.55973512e-01 -1.25849831e+00 3.94244760e-01 6.77814856e-02 -3.73569906e-01 -5.75965464e-01 7.32231677e-01 1.11491360e-01 -4.05515403e-01 2.43142679e-01 -6.16895676e-01 -4.41338748e-01 -8.19338411e-02 7.80332685e-01 3.92166555e-01 8.31036195e-02 -2.66586274e-01 -5.31411350e-01 3.90977472e-01 -5.05621433e-01 3.81529272e-01 1.67564392e+00 6.42217845e-02 -6.88639820e-01 5.47716320e-01 1.28238463e+00 2.35321596e-01 -9.88160133e-01 -2.47586414e-01 5.45272171e-01 -2.40449876e-01 -3.66486013e-01 -7.89743543e-01 -9.18359101e-01 6.92290425e-01 -8.38905722e-02 7.56327882e-02 1.01225948e+00 1.35597512e-01 7.51037717e-01 8.02412450e-01 2.23311514e-01 -7.73628414e-01 2.25595042e-01 5.67435861e-01 8.53894651e-01 -1.04290569e+00 1.80778608e-01 -1.46601781e-01 -7.29202449e-01 1.32120502e+00 8.90462995e-01 1.92452416e-01 -2.36678168e-01 1.91679269e-01 -3.00140709e-01 -1.91212758e-01 -9.72848713e-01 2.47016832e-01 2.30685115e-01 2.80586660e-01 8.45359921e-01 -2.97094017e-01 -6.18054926e-01 9.04128075e-01 -5.27810818e-03 -8.22478756e-02 1.15560174e+00 1.02978432e+00 -6.70495033e-01 -1.07585049e+00 1.05082750e-01 8.99848521e-01 -5.83369374e-01 -4.12654817e-01 -2.82349259e-01 2.81507671e-01 -1.54700130e-01 8.52060318e-01 -2.67278880e-01 -3.55727285e-01 3.21662217e-01 -1.29525410e-02 1.04164205e-01 -1.35808313e+00 -9.12564397e-01 -3.40852886e-01 1.56125203e-01 -5.34147799e-01 -3.33984464e-01 -7.01017022e-01 -1.35863853e+00 -1.67505026e-01 -4.10943210e-01 4.64187145e-01 5.52255213e-01 9.00286376e-01 6.05176568e-01 9.69178796e-01 5.96723616e-01 -6.19307876e-01 -6.90491140e-01 -1.09261692e+00 -6.12977566e-03 2.72984117e-01 4.59408134e-01 -2.36573696e-01 -1.47675619e-01 4.40822214e-01]
[7.628077983856201, 7.941091537475586]
63a7e85f-588c-4fa9-a813-989e767fded2
unsupervised-foreign-object-detection-based
2104.05326
null
https://arxiv.org/abs/2104.05326v1
https://arxiv.org/pdf/2104.05326v1.pdf
Unsupervised foreign object detection based on dual-energy absorptiometry in the food industry
X-ray imaging is a widely used technique for non-destructive inspection of agricultural food products. One application of X-ray imaging is the autonomous, in-line detection of foreign objects in food samples. Examples of such inclusions are bone fragments in meat products, plastic and metal debris in fish, fruit infestations. This article presents a processing methodology for unsupervised foreign object detection based on dual-energy X-ray absorptiometry (DEXA). A foreign object is defined as a fragment of material with different X-ray attenuation properties than those belonging to the food product. A novel thickness correction model is introduced as a pre-processing technique for DEXA data. The aim of the model is to homogenize regions in the image that belong to the food product and enhance contrast where the foreign object is present. In this way, the segmentation of the foreign object is more robust to noise and lack of contrast. The proposed methodology was applied to a dataset of 488 samples of meat products. The samples were acquired from a conveyor belt in a food processing factory. Approximately 60\% of the samples contain foreign objects of different types and sizes, while the rest of the samples are void of foreign objects. The results show that samples without foreign objects are correctly identified in 97% of cases, the overall accuracy of foreign object detection reaches 95%.
['Kees Joost Batenburg', 'Tristan van Leeuwen', 'Robert van Liere', 'Vladyslav Andriiashen']
2021-04-12
null
null
null
null
['line-detection']
['computer-vision']
[ 2.93798357e-01 -4.11638543e-02 1.87332078e-03 -1.41632214e-01 -2.10808650e-01 -3.30165356e-01 -1.71194226e-02 8.19247961e-01 -7.34178424e-02 8.43922049e-02 -5.01842976e-01 1.82345137e-02 -2.19849810e-01 -1.19952750e+00 -8.13611329e-01 -9.56910968e-01 -5.91904717e-03 7.86995173e-01 6.22014105e-01 -8.06964859e-02 -4.68237959e-02 6.48853242e-01 -1.53319526e+00 4.70590472e-01 7.22879469e-01 1.01893961e+00 7.79131114e-01 3.94616097e-01 -3.86418216e-02 2.85968989e-01 -4.38570917e-01 -6.94946432e-03 3.28785747e-01 -5.90039670e-01 -6.51906848e-01 7.69210935e-01 -1.06374472e-01 -2.92954117e-01 2.60916054e-01 1.36652601e+00 -1.69218741e-02 6.00055829e-02 1.06765485e+00 -7.69200742e-01 -5.65901637e-01 4.94924217e-01 -8.68092120e-01 3.76657695e-01 2.02294022e-01 1.18489087e-01 2.90691465e-01 -6.55598164e-01 6.67988002e-01 1.17702675e+00 3.39060068e-01 1.25131637e-01 -9.10963416e-01 -4.86916184e-01 -2.90968508e-01 3.12670380e-01 -1.02386141e+00 2.85793453e-01 6.48008883e-01 -5.93005598e-01 4.84160125e-01 4.28554982e-01 6.41064167e-01 2.05680370e-01 9.13494468e-01 6.90524936e-01 1.14305758e+00 -6.71817362e-01 1.81250513e-01 2.29372054e-01 4.18193996e-01 5.82047045e-01 5.98188519e-01 1.54010087e-01 9.94008109e-02 -7.13171437e-03 4.33330923e-01 3.31778049e-01 -1.08890891e-01 -2.76639998e-01 -7.42038071e-01 7.61499345e-01 3.32582474e-01 6.07851624e-01 -7.99693108e-01 -5.87457538e-01 4.49271590e-01 1.98897555e-01 7.54504979e-01 -9.11432132e-03 -4.22731280e-01 5.00195801e-01 -4.49667841e-01 1.31163478e-01 5.41611791e-01 6.51233196e-01 4.78847384e-01 -2.04161093e-01 5.35647810e-01 7.20113039e-01 5.28792799e-01 9.31203485e-01 4.36641902e-01 -2.24133492e-01 -5.26172034e-02 8.43430102e-01 -1.93192169e-01 -1.06410444e+00 -2.35253960e-01 -1.97518840e-01 -4.25709963e-01 6.23733103e-01 5.87847173e-01 2.27451280e-01 -1.10797930e+00 7.10005879e-01 1.03877640e+00 -4.49762017e-01 -7.45729683e-03 1.29729247e+00 8.99496734e-01 1.08629656e+00 4.77590784e-03 -2.52443880e-01 2.13177896e+00 -5.65733969e-01 -8.03975046e-01 7.88345337e-02 1.64788991e-01 -1.24059927e+00 6.31995618e-01 8.09185505e-01 -1.16542375e+00 -6.55675888e-01 -1.15340030e+00 6.05541170e-01 -3.03613275e-01 3.88464391e-01 4.04083669e-01 4.88358229e-01 3.33864205e-02 5.21466613e-01 -9.46129739e-01 -6.30378902e-01 4.26279418e-02 3.46080333e-01 -3.99270236e-01 -1.02685556e-01 -4.06316161e-01 6.61018729e-01 5.70835829e-01 3.33137810e-01 -6.43516302e-01 -7.41453528e-01 -6.79864883e-01 -1.71673030e-01 6.31255865e-01 -8.93759280e-02 9.12296951e-01 -1.25918198e+00 -1.26178992e+00 1.12627900e+00 4.56240416e-01 -9.70000476e-02 3.79002541e-01 -3.50472987e-01 -4.81910616e-01 6.74159229e-01 3.26885611e-01 -6.33344501e-02 7.13664055e-01 -1.69825828e+00 -7.60508597e-01 -7.61119068e-01 -2.66654998e-01 -1.73734620e-01 3.79072845e-01 3.80546272e-01 -7.43252784e-03 -6.40312970e-01 8.05984378e-01 -6.71239734e-01 8.58601257e-02 2.96707265e-02 -3.94122243e-01 -1.57343000e-01 1.29980886e+00 -8.85436356e-01 3.94660026e-01 -2.24969006e+00 -4.20205772e-01 5.41230261e-01 -1.26508564e-01 1.68164417e-01 2.40510717e-01 2.72227407e-01 -2.38491207e-01 -4.80044723e-01 -3.97660702e-01 5.69864213e-01 -3.08105081e-01 1.38803571e-01 2.32906014e-01 8.50529671e-01 1.11617029e-01 1.74164668e-01 -7.98942327e-01 -6.00716710e-01 2.97807932e-01 2.92978883e-01 8.67685750e-02 1.87542904e-02 -3.42156917e-01 3.19606364e-01 -5.49884021e-01 1.19603097e+00 1.11115324e+00 2.25923374e-01 -8.84734467e-02 -6.04075372e-01 -2.63239175e-01 -4.76475328e-01 -1.55002093e+00 9.27618265e-01 4.62470017e-02 7.60988984e-03 8.76774669e-01 -9.68951941e-01 1.03560650e+00 3.37205052e-01 7.77566135e-01 -6.97937310e-01 5.89372039e-01 2.86772996e-01 3.09685785e-02 -1.04580867e+00 1.82281435e-01 -4.48243797e-01 6.24286056e-01 4.69139040e-01 -2.64709026e-01 -2.27282360e-01 5.31809568e-01 -3.02250892e-01 5.31919181e-01 -1.65483952e-02 2.02354416e-01 -7.61893213e-01 4.37663615e-01 4.65217263e-01 2.56645977e-01 2.36480266e-01 2.36883685e-01 4.58332747e-01 -1.62031278e-01 -5.01586378e-01 -8.80033612e-01 -1.31501722e+00 -6.08990729e-01 8.54176641e-01 4.28068787e-01 4.86742407e-01 -9.89440918e-01 -4.15373415e-01 1.57451779e-01 2.25668088e-01 -5.00356436e-01 -1.32548168e-01 -7.34208465e-01 -1.10778296e+00 -2.24546254e-01 1.51084095e-01 7.50578046e-01 -1.34601593e+00 -1.03050280e+00 3.47125977e-01 -7.56634539e-03 -7.33967781e-01 -5.06913960e-02 3.60330969e-01 -1.21143425e+00 -1.45955622e+00 -6.06246293e-01 -1.12665451e+00 1.00744712e+00 3.25135738e-01 1.02692139e+00 3.09931844e-01 -8.47758770e-01 2.36054078e-01 -8.22544873e-01 -5.90930760e-01 -1.10373259e+00 -4.88642514e-01 -1.61244527e-01 1.04472131e-01 5.40202320e-01 3.03970575e-01 -6.03747249e-01 5.31237483e-01 -1.33176196e+00 -5.24220288e-01 5.22766888e-01 7.02867806e-01 9.55728590e-01 8.83713186e-01 -5.51096648e-02 -9.94915605e-01 1.66214049e-01 -5.43899417e-01 -6.01669490e-01 -4.97700050e-02 -2.80500859e-01 -4.67339456e-01 4.39708203e-01 -6.72425687e-01 -1.07805765e+00 -2.39921376e-01 -2.08029762e-01 8.63827094e-02 -7.11697876e-01 4.77711707e-01 -2.46541664e-01 1.15651153e-01 6.12884760e-01 -1.39022395e-01 3.10794234e-01 -7.32849121e-01 -4.67074513e-01 5.28635740e-01 6.65911913e-01 -3.61968160e-01 3.21984202e-01 5.40820062e-01 2.30345130e-02 -1.19059169e+00 -1.77213520e-01 -6.38373077e-01 -4.66789812e-01 -3.63061100e-01 1.01825047e+00 -4.01292503e-01 -6.57388806e-01 6.15464270e-01 -7.30375230e-01 -3.69734764e-02 -4.47611660e-01 1.19347060e+00 -3.02881211e-01 4.39088643e-01 -1.10259497e+00 -6.12937450e-01 -4.86487925e-01 -1.25941539e+00 7.92835832e-01 1.53571323e-01 1.43663839e-01 -6.12708032e-01 -3.25167358e-01 3.51524830e-01 -1.08087942e-01 5.07951438e-01 1.25250602e+00 -4.50545639e-01 -3.19758296e-01 -4.03676212e-01 2.62475252e-01 4.53040272e-01 3.90436560e-01 3.10008079e-01 -5.36491096e-01 -2.74669975e-01 7.24871635e-01 1.21820427e-01 6.03015840e-01 8.96665931e-01 4.36774909e-01 -3.59441247e-03 -5.09935141e-01 2.12361455e-01 1.72871256e+00 8.00099254e-01 4.07265604e-01 4.17251319e-01 1.71890095e-01 1.00587964e+00 1.36523998e+00 2.64769107e-01 -3.80966067e-01 4.57290441e-01 6.94967151e-01 -4.76769298e-01 -7.87611082e-02 3.48334551e-01 2.55577415e-01 6.29271090e-01 -2.75299251e-01 -2.94480890e-01 -4.79605526e-01 4.81196344e-01 -1.06615782e+00 -8.99543703e-01 -9.39548671e-01 1.80432534e+00 4.89726216e-01 4.81562614e-02 2.73598582e-01 7.76044428e-01 8.89383733e-01 -8.41101289e-01 -3.16035122e-01 -2.92439640e-01 1.78927220e-02 3.95336330e-01 4.97716486e-01 4.31200355e-01 -1.04646850e+00 3.06134224e-01 5.91324091e+00 7.59925902e-01 -1.16087258e+00 1.47957325e-01 4.29235280e-01 4.40293103e-01 7.56858587e-02 -4.99420404e-01 -3.90929163e-01 6.13430142e-01 8.46284926e-02 5.78112483e-01 -2.79544830e-01 7.51466215e-01 1.64929077e-01 -1.08518672e+00 -6.77698195e-01 5.16493917e-01 1.39632255e-01 -6.62469029e-01 -1.62441090e-01 -1.19269326e-01 4.16168332e-01 -3.63522172e-01 -9.38890427e-02 -5.61448753e-01 -7.49595091e-02 -4.29639935e-01 1.22401261e+00 2.02372849e-01 4.02691603e-01 -8.32849741e-01 1.03866708e+00 1.84099421e-01 -1.07424331e+00 9.70835146e-03 -3.78754944e-01 1.53773069e-01 2.22076133e-01 1.00057495e+00 -6.02718592e-01 5.15242994e-01 1.06786942e+00 -5.07992133e-02 -2.79384404e-01 9.90880311e-01 1.80030957e-01 5.98628998e-01 -6.59708500e-01 1.24574162e-01 2.70269692e-01 -8.61932635e-01 4.61522430e-01 1.13676000e+00 3.98659557e-01 4.37367976e-01 2.31543168e-01 9.41915929e-01 5.98280966e-01 6.23265266e-01 -3.79236102e-01 1.95432410e-01 -6.58946335e-02 1.02265847e+00 -1.71209514e+00 -3.27133685e-01 -3.36900234e-01 7.89548516e-01 -7.77960837e-01 -6.81741685e-02 -6.76172376e-01 -1.34044826e-01 -9.48256776e-02 6.67671025e-01 3.89950246e-01 -2.50239447e-02 -1.08670294e-01 -3.63296866e-01 1.85135394e-01 -8.36242616e-01 4.79465842e-01 -6.95331931e-01 -1.30398500e+00 4.74197894e-01 3.84601444e-01 -1.13564956e+00 8.61866586e-03 -9.45932746e-01 -3.86055917e-01 5.82301378e-01 -8.70399594e-01 -1.31224680e+00 -3.81024122e-01 2.58583754e-01 7.33859777e-01 -3.34716681e-03 5.46639621e-01 2.71948546e-01 -1.77229851e-01 -5.88925928e-02 4.11162972e-01 -1.74110174e-01 7.79103935e-02 -1.08568549e+00 -5.32606483e-01 7.43548393e-01 -3.36456180e-01 2.21028164e-01 1.18316138e+00 -1.03871059e+00 -1.37836671e+00 -7.22148776e-01 4.22614157e-01 7.26776272e-02 1.62675530e-01 -3.00675146e-02 -9.78598058e-01 3.82571340e-01 1.41500071e-01 1.25659168e-01 6.00521982e-01 -6.28850996e-01 4.22171831e-01 -1.91031396e-03 -1.78897238e+00 -3.42525691e-01 2.20163658e-01 1.65380523e-01 -4.86334443e-01 4.53921884e-01 -2.34535318e-02 -5.16544163e-01 -1.00505602e+00 4.13240045e-01 4.66085881e-01 -1.05489850e+00 1.11817491e+00 -2.19214633e-02 3.56699079e-01 -4.29641545e-01 9.85972881e-02 -8.79077077e-01 -3.24723810e-01 2.27464035e-01 3.40991139e-01 1.13884032e+00 -7.95138627e-02 -3.33096266e-01 7.24507451e-01 -5.80481775e-02 -4.51460510e-01 -3.54931742e-01 -5.96788168e-01 -7.72546411e-01 -1.00701042e-01 3.78187597e-02 4.51863140e-01 7.69611180e-01 -2.85811871e-01 -2.09750518e-01 3.23416054e-01 3.83689940e-01 6.96191788e-01 3.63512486e-01 2.99335152e-01 -1.31411648e+00 -3.87134552e-01 2.45366199e-03 -5.31523705e-01 -4.14560825e-01 -3.01386327e-01 -7.27288544e-01 1.25360727e-01 -1.51011360e+00 1.98091000e-01 -5.93117774e-01 2.83190042e-01 6.67144135e-02 -1.46608585e-02 5.54245234e-01 7.20968693e-02 2.34604701e-01 3.15095603e-01 -9.67462510e-02 1.44050872e+00 -4.10095751e-01 -3.04112464e-01 4.37097132e-01 3.07076145e-03 9.78998303e-01 6.90932691e-01 -4.42135125e-01 -1.14638649e-01 -2.50936568e-01 -2.02186123e-01 -5.63464537e-02 3.41532022e-01 -8.83868456e-01 -2.85454333e-01 -1.61456853e-01 4.74566579e-01 -1.11705422e+00 2.60631349e-02 -1.53410792e+00 7.10242212e-01 1.07896304e+00 3.83854747e-01 -5.00104972e-04 1.44883916e-01 1.49807602e-01 -2.17847213e-01 -9.52500224e-01 1.12821817e+00 -5.38590074e-01 -4.61202353e-01 -1.52411118e-01 -5.53449571e-01 -6.93574190e-01 1.54390109e+00 -5.32152891e-01 1.02374166e-01 4.96827453e-01 -8.90495300e-01 -3.20777923e-01 4.25808191e-01 1.65281929e-02 5.23772955e-01 -1.08985305e+00 -7.31100023e-01 6.56760156e-01 4.11273204e-02 1.18435793e-01 3.46673071e-01 7.69702733e-01 -1.28663301e+00 -4.22014147e-02 -4.45242316e-01 -7.20128894e-01 -1.72395086e+00 7.74593890e-01 2.50596315e-01 1.35942414e-01 -9.95298028e-01 4.92531538e-01 2.33780131e-01 8.59427229e-02 -3.08659613e-01 -9.88724947e-01 -3.98734659e-01 9.77727994e-02 6.04360104e-01 7.86784470e-01 4.71349210e-01 -9.45507109e-01 -8.53049979e-02 8.28802466e-01 7.66680622e-03 3.49657565e-01 1.48022974e+00 -8.73882920e-02 -3.58710498e-01 5.22282779e-01 8.63268256e-01 1.09278716e-01 -8.65938544e-01 -2.72656921e-02 -3.06602120e-01 -5.29564142e-01 -6.98635448e-03 -8.03784311e-01 -1.33981204e+00 5.32622457e-01 1.10872996e+00 5.67288935e-01 1.24603748e+00 3.82824242e-01 6.56222045e-01 -1.72461063e-01 3.20770323e-01 -1.26541650e+00 -4.76482091e-03 -8.33006725e-02 6.84248030e-01 -1.05721939e+00 1.96789876e-01 -1.14468646e+00 -2.37863317e-01 1.34608483e+00 4.50505912e-01 -4.51225281e-01 7.39070773e-01 5.45125782e-01 1.66761339e-01 -7.86450744e-01 7.03851506e-02 -8.10631439e-02 -5.20689087e-03 9.56058741e-01 1.79814041e-01 2.01324046e-01 -5.84174335e-01 5.97040057e-01 5.95146827e-02 -1.17889822e-01 2.61724621e-01 1.31648910e+00 -7.36784756e-01 -5.30670226e-01 -1.21798599e+00 5.24454474e-01 -8.72024775e-01 5.44258833e-01 2.00385526e-01 8.53575170e-01 7.27204680e-01 1.00704968e+00 3.31883430e-01 2.98352242e-01 5.16691327e-01 -3.37857544e-01 7.71532178e-01 -4.01872069e-01 -8.26625824e-01 6.10802174e-01 -3.79546285e-01 -5.19901626e-02 -5.44870138e-01 -7.67360747e-01 -1.66105354e+00 -1.61839217e-01 -8.10188234e-01 1.41723156e-01 9.59938407e-01 7.96187222e-01 -6.68329775e-01 5.11959851e-01 5.77014089e-01 -4.05906081e-01 -3.37775588e-01 -9.90305781e-01 -1.38660550e+00 6.76171780e-01 9.26737338e-02 -8.51148963e-01 -3.29913616e-01 7.54580140e-01]
[7.379330635070801, 1.7867361307144165]
7ee7aad1-697d-41e6-b107-be8ef96b49a2
intrinsic-relationship-reasoning-for-small
2009.00833
null
https://arxiv.org/abs/2009.00833v1
https://arxiv.org/pdf/2009.00833v1.pdf
Intrinsic Relationship Reasoning for Small Object Detection
The small objects in images and videos are usually not independent individuals. Instead, they more or less present some semantic and spatial layout relationships with each other. Modeling and inferring such intrinsic relationships can thereby be beneficial for small object detection. In this paper, we propose a novel context reasoning approach for small object detection which models and infers the intrinsic semantic and spatial layout relationships between objects. Specifically, we first construct a semantic module to model the sparse semantic relationships based on the initial regional features, and a spatial layout module to model the sparse spatial layout relationships based on their position and shape information, respectively. Both of them are then fed into a context reasoning module for integrating the contextual information with respect to the objects and their relationships, which is further fused with the original regional visual features for classification and regression. Experimental results reveal that the proposed approach can effectively boost the small object detection performance.
['Lin Ma', 'Yonghong Tian', 'Kui Fu', 'Kai Mu', 'Jia Li']
2020-09-02
null
null
null
null
['small-object-detection']
['computer-vision']
[ 6.86886385e-02 -2.37066790e-01 -7.62946308e-02 -4.24154460e-01 1.84610542e-02 -3.23103130e-01 3.12704355e-01 5.19269407e-01 9.66560915e-02 2.99689740e-01 2.21895456e-01 2.83698589e-01 -3.65358263e-01 -8.19962919e-01 -6.36504233e-01 -6.45974398e-01 -8.81552026e-02 1.77091673e-01 6.49301171e-01 6.67438805e-02 3.00450534e-01 3.63732785e-01 -1.79956782e+00 3.90590787e-01 9.79431510e-01 1.32026911e+00 5.28878808e-01 2.94430047e-01 -3.65312845e-01 1.09112811e+00 -5.68351448e-01 6.01382144e-02 -8.15476105e-03 -3.63008231e-01 -2.65406787e-01 5.17040193e-01 5.09260774e-01 -2.40549952e-01 -3.05515975e-01 1.09423912e+00 2.64582992e-01 2.82074422e-01 4.80644047e-01 -1.03930807e+00 -6.94698155e-01 4.04851526e-01 -9.89220440e-01 4.23661143e-01 4.41554338e-01 -1.08839776e-02 9.38602448e-01 -1.04316223e+00 3.60440165e-01 1.43427157e+00 3.98210734e-01 -6.06911629e-02 -8.72985482e-01 -7.76827455e-01 7.13366628e-01 5.07563591e-01 -1.78935349e+00 -2.91477382e-01 9.74971950e-01 -3.38170499e-01 4.60713297e-01 2.88448423e-01 9.64241624e-01 5.91353059e-01 -4.29379284e-01 9.62450564e-01 7.93521106e-01 -3.08473408e-01 1.01921365e-01 4.04890060e-01 1.15312465e-01 7.65906394e-01 4.79101539e-01 -2.88147330e-01 -4.80859250e-01 8.00458342e-02 8.14959705e-01 4.39868629e-01 -8.11122432e-02 -5.25681555e-01 -1.18673587e+00 5.22759378e-01 8.74372542e-01 4.19492811e-01 -1.79632410e-01 -7.34314620e-02 1.42834457e-02 -3.00459653e-01 2.33478025e-01 -1.03105359e-01 -7.43684024e-02 4.97012109e-01 -8.55063498e-01 6.95992187e-02 4.02888477e-01 1.33636725e+00 9.88342464e-01 -3.79969150e-01 -2.23532245e-01 9.04992700e-01 5.63903987e-01 4.79339987e-01 2.03362241e-01 -7.13701844e-01 6.91069543e-01 1.21114099e+00 7.48158619e-02 -1.75536275e+00 -3.18227381e-01 -6.00521624e-01 -6.45443976e-01 -2.92546093e-01 1.88472942e-01 2.30311438e-01 -4.66900826e-01 1.61558425e+00 7.04872608e-01 6.81643724e-01 -1.43596038e-01 9.87026155e-01 1.19510221e+00 5.27936876e-01 1.77681103e-01 -1.38118312e-01 1.68576610e+00 -1.03931510e+00 -6.34549081e-01 -5.38161039e-01 3.80685061e-01 -7.09793746e-01 7.79980063e-01 -7.28853745e-03 -8.81386697e-01 -8.12113822e-01 -9.60919619e-01 -9.47265401e-02 -3.51402342e-01 6.76865041e-01 5.78718603e-01 3.20699364e-01 -5.45176208e-01 9.76838097e-02 -2.96568960e-01 -3.43910575e-01 6.64393961e-01 2.33273491e-01 -1.89653009e-01 -2.22205862e-01 -8.26766074e-01 3.39446545e-01 6.72071815e-01 4.55589861e-01 -6.46228909e-01 -4.73006248e-01 -9.40905333e-01 2.78962731e-01 7.36249387e-01 -6.52375698e-01 5.47234654e-01 -9.03160870e-01 -5.55865288e-01 6.16865218e-01 -3.46903741e-01 9.20768455e-02 1.99456826e-01 1.16517954e-01 -5.04649580e-01 3.56205761e-01 3.66135299e-01 6.29421115e-01 9.63121772e-01 -1.56843328e+00 -1.12447250e+00 -6.31344259e-01 2.55696326e-01 5.92885196e-01 -6.44106746e-01 1.16258308e-01 -7.17911899e-01 -7.94002175e-01 4.82399970e-01 -4.82735366e-01 -8.43333304e-02 2.70148873e-01 -4.26109493e-01 -2.96325475e-01 1.06311727e+00 -6.85490966e-01 1.32876968e+00 -2.29624224e+00 2.30873957e-01 5.03240347e-01 3.13318610e-01 4.68386412e-02 -7.70409629e-02 1.81356762e-02 5.68613261e-02 -2.83086568e-01 -5.51733859e-02 -7.71096870e-02 -2.79185861e-01 1.23115949e-01 -1.45058215e-01 2.55348325e-01 9.05278623e-02 9.14483428e-01 -1.11164045e+00 -8.61681700e-01 4.67660636e-01 4.45481300e-01 -2.86396027e-01 2.06808224e-01 -1.67962804e-01 3.82717133e-01 -7.94744670e-01 8.70425463e-01 9.05027032e-01 -2.40545705e-01 1.95082426e-01 -4.98800963e-01 1.86346486e-01 -2.53484964e-01 -1.52293825e+00 1.52411032e+00 -1.83131695e-01 3.46209764e-01 1.27430543e-01 -1.18440962e+00 1.07472610e+00 -5.89529760e-02 3.83956432e-01 -6.35001183e-01 5.55156618e-02 -3.97039726e-02 -1.80445135e-01 -7.28495657e-01 3.68636727e-01 1.83093220e-01 6.08117320e-02 2.62052137e-02 -1.68718472e-01 2.68845588e-01 2.55907327e-01 2.94879943e-01 5.70811987e-01 5.12106642e-02 3.41501981e-01 -1.72494039e-01 9.01024461e-01 -2.33714625e-01 6.57382548e-01 4.83549893e-01 -7.22826943e-02 4.69495773e-01 2.53659695e-01 -3.41444612e-01 -6.74922287e-01 -1.17048657e+00 -3.05700824e-02 1.00187159e+00 9.21747744e-01 -6.57092154e-01 -6.40108824e-01 -6.46675169e-01 1.05962798e-01 3.12875301e-01 -7.84988761e-01 -1.51469573e-01 -4.52889532e-01 -4.90004331e-01 1.79785937e-02 9.43883121e-01 6.19163573e-01 -9.81496096e-01 -3.58990043e-01 4.01395140e-03 -2.86492229e-01 -1.25699461e+00 -5.32414436e-01 -2.71656901e-01 -7.74042130e-01 -1.20171213e+00 -4.43886399e-01 -1.02542818e+00 1.18555403e+00 9.00334001e-01 6.36997759e-01 5.34867227e-01 -5.18362999e-01 2.64523506e-01 -3.92931372e-01 -3.31500173e-01 3.15822721e-01 -3.40017349e-01 4.07558819e-03 3.92620951e-01 3.84936422e-01 -5.94322443e-01 -8.85654211e-01 5.85033476e-01 -6.76845551e-01 1.55912384e-01 7.63505757e-01 5.89352131e-01 6.39651358e-01 5.12316942e-01 2.32599929e-01 -6.18579805e-01 1.98475823e-01 -5.66388309e-01 -3.34563643e-01 4.96927351e-01 2.23340057e-02 -3.78081590e-01 4.26139385e-01 -5.23437560e-01 -1.23225701e+00 -6.32416010e-02 4.66483802e-01 -6.78305686e-01 -3.89766395e-01 3.33505541e-01 -5.65240264e-01 -1.07114360e-01 2.60951787e-01 4.52915311e-01 -3.43188405e-01 -5.88045835e-01 2.99252778e-01 5.59866607e-01 3.14053148e-01 -6.64957464e-01 8.72394025e-01 6.54551923e-01 8.42411220e-02 -7.55192339e-01 -1.08666956e+00 -6.52139425e-01 -1.04197872e+00 -2.26357937e-01 8.76868069e-01 -1.17755902e+00 -5.52688539e-01 2.60519505e-01 -8.26104105e-01 2.53552347e-01 -2.65083104e-01 3.29473287e-01 -1.94341481e-01 6.25250518e-01 -4.28104013e-01 -7.07702398e-01 1.89246476e-01 -8.54230642e-01 1.17554581e+00 6.88121080e-01 7.50833675e-02 -9.34370816e-01 -6.36879325e-01 5.99418700e-01 3.87239046e-02 5.60493469e-02 8.47477973e-01 -3.51257592e-01 -9.50819910e-01 -1.53870046e-01 -8.35215986e-01 -6.06840104e-02 3.21548998e-01 -8.22950676e-02 -7.91691542e-01 -9.08774659e-02 -7.84226656e-02 1.55705750e-01 6.72260523e-01 3.34743977e-01 1.45754206e+00 -2.77061343e-01 -7.07719982e-01 5.77766955e-01 1.24298680e+00 1.80657208e-01 2.29839072e-01 -3.16151492e-02 1.23309362e+00 9.88408148e-01 1.07505631e+00 4.91755277e-01 4.42280501e-01 6.08578265e-01 2.86625892e-01 -4.62202467e-02 -2.82313913e-01 -5.08216560e-01 7.11111277e-02 7.49975920e-01 -1.50674090e-01 1.79880291e-01 -6.64786100e-01 4.16497737e-01 -2.11023927e+00 -1.06561434e+00 -2.12732792e-01 1.94105899e+00 3.60955685e-01 -1.37707135e-02 6.47764951e-02 -1.07610315e-01 9.96880114e-01 1.10399768e-01 -5.57898521e-01 3.22159231e-01 -3.16021264e-01 -4.53431875e-01 1.26690581e-01 -7.16418251e-02 -9.91991639e-01 8.87462020e-01 5.50874805e+00 1.25724089e+00 -5.71633101e-01 5.31856455e-02 5.51713407e-01 -9.79568884e-02 -2.75456637e-01 1.22010380e-01 -8.42392683e-01 6.03281140e-01 3.27581614e-02 -5.53392153e-03 3.17295521e-01 8.57193530e-01 2.07996666e-01 -3.44079524e-01 -9.32353258e-01 1.00163579e+00 2.64936596e-01 -1.03165174e+00 3.35750818e-01 -1.81239862e-02 6.90337300e-01 -7.88414717e-01 1.14727020e-03 -1.30544195e-03 -8.58724043e-02 -9.59948480e-01 9.63628531e-01 6.29050434e-01 4.74382371e-01 -8.15935314e-01 5.47335207e-01 5.69372892e-01 -1.92862630e+00 -5.71568429e-01 -6.48646116e-01 -8.40448439e-02 -2.14884773e-01 4.18846309e-01 -4.69542623e-01 6.30831957e-01 8.39473367e-01 1.18614626e+00 -9.11285937e-01 1.05273807e+00 -4.49186921e-01 1.40295446e-01 -2.56894737e-01 -9.22143683e-02 -4.37057018e-02 -4.49043453e-01 4.66642559e-01 9.58570302e-01 2.78587312e-01 2.51697063e-01 4.98592645e-01 1.10998869e+00 2.56383240e-01 2.88829684e-01 -3.53163749e-01 2.79880345e-01 7.28075922e-01 1.36875963e+00 -1.07762718e+00 -5.79676807e-01 -7.63810754e-01 7.95333862e-01 4.07619447e-01 4.19298768e-01 -8.76878202e-01 -3.44443828e-01 4.87546921e-01 1.43968523e-01 6.14555776e-01 -9.92314741e-02 -2.51265317e-01 -1.28282166e+00 4.12329555e-01 -4.54237163e-01 5.43501675e-01 -9.92941320e-01 -1.19333744e+00 7.88050368e-02 2.01465651e-01 -1.34335828e+00 4.08640295e-01 -4.30113435e-01 -7.12964654e-01 6.96653426e-01 -1.45551789e+00 -1.56843102e+00 -7.19219148e-01 7.08861172e-01 6.11818314e-01 -9.82712060e-02 3.92492294e-01 2.66052365e-01 -7.64554083e-01 2.82080173e-01 -1.14411160e-01 2.51052171e-01 2.84894019e-01 -9.10091043e-01 -2.50088245e-01 8.42969179e-01 2.74094224e-01 9.19202566e-01 2.59081960e-01 -8.11860859e-01 -1.13709593e+00 -1.18439364e+00 5.21280050e-01 -2.91844189e-01 4.26621258e-01 -5.21104395e-01 -9.03919578e-01 5.55418849e-01 -3.02326173e-01 2.83532828e-01 5.47479808e-01 1.96008489e-01 -4.03978795e-01 -3.35325330e-01 -1.00886977e+00 5.26100338e-01 1.53436863e+00 -5.58775067e-01 -7.61176705e-01 2.56133556e-01 6.47105634e-01 -2.02437177e-01 -6.68531418e-01 4.85602021e-01 4.66190696e-01 -1.03643632e+00 1.49135661e+00 -2.14843139e-01 2.70346910e-01 -8.02118063e-01 -2.50741512e-01 -9.77374017e-01 -5.72450101e-01 2.42333636e-01 -1.55761644e-01 1.50068521e+00 -6.92060515e-02 -2.64251471e-01 6.69623733e-01 2.86368638e-01 1.66608542e-01 -5.07700741e-01 -6.35726511e-01 -5.64773738e-01 -5.83486617e-01 -3.00461888e-01 7.76989341e-01 9.82619703e-01 -4.78892289e-02 3.65291089e-01 -1.31783679e-01 4.60775882e-01 8.43647599e-01 7.66080439e-01 5.48356473e-01 -1.23791885e+00 -1.97462097e-01 -4.53771144e-01 -6.97914660e-01 -1.14482379e+00 -5.77067845e-02 -6.94543481e-01 -1.20212607e-01 -1.44604683e+00 6.85947359e-01 -7.14642525e-01 -4.85659480e-01 2.94096202e-01 -5.06771803e-01 2.70989239e-01 1.80243831e-02 2.63689071e-01 -1.02506471e+00 6.12945914e-01 1.20669937e+00 -2.80770689e-01 -7.03926086e-02 -1.01097651e-01 -8.35149407e-01 8.17267418e-01 4.38007861e-01 -9.15191621e-02 -5.98977864e-01 -3.40931296e-01 -9.73614454e-02 -8.20314214e-02 7.94410467e-01 -1.28911674e+00 3.78547847e-01 -3.19725722e-01 1.01190519e+00 -7.66484976e-01 3.40571880e-01 -1.10169971e+00 -1.03886850e-01 2.52081752e-01 -1.50208861e-01 -4.73741323e-01 4.94291447e-02 9.21203792e-01 -2.77211100e-01 -2.33069524e-01 4.75058913e-01 -2.63850689e-01 -1.00938463e+00 3.78894717e-01 5.30151166e-02 -1.28168806e-01 1.42802846e+00 -4.77012128e-01 -1.02824308e-01 -9.99881253e-02 -8.79679263e-01 4.98270899e-01 4.03121352e-01 5.35970271e-01 9.29890573e-01 -1.42876673e+00 -4.36584383e-01 4.90752995e-01 4.43668962e-01 1.94053754e-01 6.74795508e-01 7.85545886e-01 -2.09893420e-01 2.60234535e-01 -1.93098202e-01 -8.00046504e-01 -1.57511675e+00 9.72263098e-01 1.36168718e-01 3.32901239e-01 -4.99892056e-01 9.40521419e-01 8.85047376e-01 -1.89520791e-01 2.00065091e-01 -3.88336271e-01 -6.24667704e-01 2.49115646e-01 6.74390435e-01 2.55437106e-01 -4.74750072e-01 -1.02239382e+00 -4.71510708e-01 1.12223959e+00 9.78403986e-02 5.19809961e-01 1.22808492e+00 -5.54596841e-01 -3.12111586e-01 3.67988944e-01 9.18635190e-01 1.88517824e-01 -1.23648643e+00 -7.41238177e-01 -3.61071452e-02 -1.04553044e+00 -1.96230084e-01 -4.26400781e-01 -1.22304535e+00 1.01201046e+00 4.02207017e-01 5.76274060e-02 1.23779547e+00 4.56744939e-01 4.44331855e-01 1.02546364e-01 4.13916022e-01 -1.02910542e+00 3.61198962e-01 -1.22389654e-02 6.13892913e-01 -1.11783421e+00 2.34143123e-01 -1.14076757e+00 -4.14027035e-01 1.01620746e+00 9.33451712e-01 -1.13053963e-01 5.50210416e-01 1.06369801e-01 -4.45745021e-01 -3.01420659e-01 -3.94465804e-01 -4.29122657e-01 5.57240903e-01 8.64210308e-01 6.17605001e-02 9.35698226e-02 6.48539737e-02 8.39511693e-01 2.61078000e-01 -1.88091710e-01 -2.03061640e-01 6.68477714e-01 -7.14113057e-01 -7.26532340e-01 -5.90127409e-01 3.97610843e-01 1.84079424e-01 -1.05719939e-02 -3.79887700e-01 4.14350152e-01 7.00984001e-01 9.28657115e-01 3.59368056e-01 -3.68838012e-01 3.92592937e-01 -5.03000796e-01 4.90411878e-01 -6.69861794e-01 -1.93625212e-01 1.21047519e-01 -1.48064792e-01 -4.46630388e-01 -4.41559345e-01 -7.82641828e-01 -1.37854469e+00 -1.58111863e-02 -3.81532311e-01 4.36492823e-03 2.08586439e-01 8.87161791e-01 2.77410954e-01 5.65655768e-01 5.79192936e-01 -6.71072543e-01 -5.77934645e-02 -7.02499151e-01 -8.29604566e-01 6.65027201e-01 1.35328576e-01 -9.28709745e-01 -8.87837484e-02 -2.50399653e-02]
[10.0711669921875, 1.6962300539016724]
1ee84cdf-ba70-46cd-a623-9aa88d3ecf8c
automatic-road-crack-detection-using-random
null
null
https://ieeexplore.ieee.org/document/7471507/similar#similar
https://ieeexplore.ieee.org/document/7471507/similar#similar
Automatic Road Crack Detection Using Random Structured Forests
Cracks are a growing threat to road conditions and have drawn much attention to the construction of intelligent transportation systems. However, as the key part of an intelli- gent transportation system, automatic road crack detection has been challenged because of the intense inhomogeneity along the cracks, the topology complexity of cracks, the inference of noises with similar texture to the cracks, and so on. In this paper , we propose CrackForest, a novel road crack detection framework based on random structured forests, to address these issues. Our contributions are shown as follows: 1) apply the integral channel features to redefine the tokens that constitute a crack and get better representation of the cracks with intensity inhomogeneity; 2) introduce random structured forests to generate a high- performance crack detector, which can identify arbitrarily com- plex cracks; and 3) propose a new crack descriptor to characterize cracks and discern them from noises effectively. In addition, our method is faster and easier to parallel. Experimental results prove the state-of-the-art detection precision of CrackForest compared with competing methods.
['and Zhensong Chen', 'Fan Meng', 'Zhiquan Qi', 'Limeng Cui', 'Yong Shi']
2016-05-18
null
null
null
ieee-transactions-on-intelligent-17
['crack-segmentation']
['computer-vision']
[ 1.19499221e-01 -4.25676167e-01 8.47844779e-02 9.35539417e-03 -4.81310457e-01 -3.70960444e-01 2.81491816e-01 -6.59305006e-02 5.23293298e-03 4.70210016e-01 3.44753452e-02 -2.83095688e-01 7.64781311e-02 -1.35448897e+00 -5.62628210e-01 -7.59357750e-01 3.41559172e-01 2.83873022e-01 1.06831491e+00 -3.09742957e-01 7.54251301e-01 6.82628810e-01 -1.91737008e+00 2.72005618e-01 1.22889066e+00 8.38294387e-01 2.79159337e-01 5.08376241e-01 -2.33151510e-01 3.25252742e-01 3.65119316e-02 4.99713719e-02 -2.40949579e-02 -4.86305691e-02 -5.86438715e-01 1.40078172e-01 3.83810282e-01 -3.42063904e-01 -3.98236185e-01 9.72784877e-01 4.13762182e-01 -2.39510357e-01 1.00213373e+00 -1.01255143e+00 -1.79754272e-01 3.76233876e-01 -9.01047826e-01 1.98837072e-01 3.11875671e-01 5.39573766e-02 8.10440540e-01 -1.31426203e+00 4.78537202e-01 1.25744462e+00 8.99011970e-01 1.76806644e-01 -7.64332414e-01 -8.32112849e-01 8.02390724e-02 5.05511820e-01 -1.45415199e+00 -2.54041702e-01 1.06624556e+00 -5.58297813e-01 2.44029269e-01 2.20948756e-01 5.98537087e-01 7.31761396e-01 2.79502198e-02 6.52474642e-01 1.07614279e+00 -3.65780771e-01 4.91899252e-02 -2.15623841e-01 3.94234806e-01 1.18121731e+00 5.10434091e-01 8.75962339e-03 -1.07334174e-01 -4.71200533e-02 6.38822496e-01 5.87244593e-02 -2.46535495e-01 -2.34893769e-01 -9.16977823e-01 8.64519954e-01 5.25292814e-01 1.72439083e-01 -1.42937869e-01 1.70541659e-01 1.50216147e-01 -1.32087037e-01 8.30654427e-02 -2.63974577e-01 1.77150995e-01 1.42312184e-01 -7.06193209e-01 3.83523285e-01 3.48424643e-01 5.91155231e-01 1.15146387e+00 -1.91569135e-01 1.86433747e-01 8.16048682e-01 5.82563758e-01 9.11525190e-01 -2.34140661e-02 -7.74158716e-01 6.84696376e-01 7.86215305e-01 -4.60095517e-02 -1.35885870e+00 -4.78424042e-01 -1.25134557e-01 -9.57864404e-01 3.38641822e-01 4.77034271e-01 5.40478267e-02 -9.21375215e-01 7.19377100e-01 4.78681862e-01 3.10890019e-01 -3.28674734e-01 6.72670007e-01 7.97785699e-01 5.39754748e-01 -4.56933856e-01 2.33313948e-01 1.33008587e+00 -8.67155910e-01 -4.40808892e-01 -4.72012013e-02 2.93814987e-01 -8.20101023e-01 1.34148824e+00 3.47797334e-01 -5.27119100e-01 -4.91961390e-01 -1.08814788e+00 2.23414466e-01 -4.48713094e-01 1.59547791e-01 3.35448772e-01 7.28867054e-01 -4.72303957e-01 8.25817361e-02 -7.50922740e-01 -2.73916483e-01 5.85645199e-01 -2.24284977e-01 1.29616559e-01 -4.55033690e-01 -1.17290127e+00 6.92930400e-01 -8.81658271e-02 5.02380669e-01 -7.14673817e-01 -3.07633758e-01 -7.16730595e-01 -2.24992082e-01 4.99410719e-01 -1.76863775e-01 7.07277358e-01 -7.59444684e-02 -1.15000832e+00 3.92470032e-01 -3.19197744e-01 2.01024935e-01 4.55394655e-01 -3.40545699e-02 -3.95513415e-01 2.52979517e-01 3.78756464e-01 1.58462711e-02 8.45027566e-01 -1.66666961e+00 -7.87705719e-01 -3.03258508e-01 -3.63664776e-01 -1.39213711e-01 4.28083465e-02 -2.50854611e-01 -2.91730762e-01 -3.49175960e-01 5.83602011e-01 -8.07911932e-01 -3.48416179e-01 1.62315995e-01 -8.78994584e-01 -2.64602751e-01 1.28212464e+00 -3.28633785e-01 1.34245241e+00 -1.97196269e+00 -3.91356498e-01 7.62610137e-01 4.55033958e-01 1.95593014e-01 1.67394236e-01 6.58273518e-01 2.61955887e-01 2.17050448e-01 -7.18952417e-01 2.29092374e-01 -3.35021764e-01 3.03299814e-01 -2.75689960e-01 4.48492795e-01 2.85952479e-01 2.72006929e-01 -7.40476251e-01 -7.86548257e-01 1.33017719e-01 1.46915019e-01 -2.16059640e-01 -1.33942276e-01 1.76963776e-01 7.63411447e-02 -8.45990419e-01 1.08394170e+00 1.14221990e+00 1.90247819e-01 -6.36781037e-01 -3.72006655e-01 -6.97599769e-01 -3.01053703e-01 -1.52185786e+00 9.53955948e-01 -7.89893419e-02 3.99764031e-01 1.88218340e-01 -7.75769472e-01 1.03122568e+00 4.69425023e-02 2.22342521e-01 -3.91946793e-01 -3.39206867e-02 3.79972100e-01 -4.75479156e-01 -1.10063195e+00 3.90226960e-01 1.11892432e-01 1.52390942e-01 2.25681931e-01 -8.90218079e-01 -4.46753412e-01 1.50020257e-01 1.26837537e-01 1.01068509e+00 -2.41043568e-01 -6.44612312e-01 -2.50823468e-01 5.84135175e-01 1.47104293e-01 3.02094966e-01 5.43962419e-01 -1.25135809e-01 7.02804625e-01 2.24752501e-01 -6.37083173e-01 -6.76235378e-01 -1.14768004e+00 -2.54642248e-01 4.11967218e-01 7.12767482e-01 1.73275217e-01 -6.55593455e-01 -6.91335917e-01 3.64016145e-01 7.50180706e-02 -6.16145730e-01 2.43047878e-01 -7.02742875e-01 -8.75046670e-01 7.78810382e-01 5.03437817e-01 8.27281713e-01 -6.48373783e-01 -5.49771845e-01 3.57575044e-02 -6.11840546e-01 -9.05903637e-01 -5.40503442e-01 -2.69952983e-01 -6.32174611e-01 -1.55547571e+00 -4.59434450e-01 -9.56890702e-01 6.92458630e-01 7.72994101e-01 5.84862530e-01 5.55253506e-01 -6.73788249e-01 1.09796055e-01 -4.05596077e-01 -2.36904368e-01 -5.34294322e-02 3.09463274e-02 -3.82707685e-01 3.77986252e-01 -1.43272549e-01 -3.62856001e-01 -7.46215820e-01 6.09425843e-01 -7.85760164e-01 -1.63862437e-01 6.58863246e-01 6.27915323e-01 6.72594130e-01 6.21149957e-01 3.36974710e-01 -9.52797830e-01 5.92399836e-01 -5.71030498e-01 -4.79073942e-01 8.67203102e-02 -7.67962456e-01 6.16286416e-03 1.16654471e-01 -1.78983107e-01 -1.17416549e+00 2.93384522e-01 -2.86618501e-01 3.36699001e-02 -1.42224178e-01 5.54616988e-01 -9.85624865e-02 -2.90788442e-01 5.89562476e-01 2.14654252e-01 9.80181247e-02 -3.87262464e-01 3.56855005e-01 8.69255006e-01 5.30941248e-01 -6.81707382e-01 1.26901829e+00 9.67173874e-01 1.82461306e-01 -1.38811505e+00 -4.60875660e-01 -6.69776499e-01 -6.05676413e-01 -7.69466043e-01 7.71883070e-01 -5.42288303e-01 -5.92111349e-01 1.03357804e+00 -1.18192255e+00 2.62611210e-02 1.68772385e-01 2.11859450e-01 -5.45541681e-02 9.49017644e-01 -6.35029852e-01 -9.72869456e-01 -1.23417445e-01 -1.17564464e+00 9.51736510e-01 3.79462481e-01 4.94682461e-01 -5.15849590e-01 2.65619308e-01 5.30754507e-01 5.27450681e-01 3.82723927e-01 9.96317327e-01 4.49946284e-01 -9.04962420e-01 -1.41791835e-01 -6.74175084e-01 6.50140271e-02 8.51335824e-02 8.66580725e-01 -9.53572810e-01 1.65156916e-01 -4.70960617e-01 -2.67653428e-02 1.34494746e+00 1.49895266e-01 7.54308522e-01 2.26522669e-01 -7.42466271e-01 1.57117210e-02 1.42559361e+00 -1.19206280e-01 9.40805852e-01 2.61342585e-01 7.73320735e-01 7.76157260e-01 5.90219021e-01 3.07755798e-01 6.92566276e-01 3.82303715e-01 8.64791155e-01 -3.17858219e-01 -2.74225354e-01 -3.58271420e-01 1.28551394e-01 8.35495651e-01 -3.69199663e-01 3.80713940e-02 -1.02144504e+00 8.06478798e-01 -1.64489067e+00 -1.14308214e+00 -1.23250079e+00 1.95209587e+00 4.21597421e-01 2.52158880e-01 2.16038510e-01 5.99863410e-01 1.12303269e+00 3.56472731e-02 -2.72083431e-01 8.16354379e-02 -1.35768026e-01 -3.56465615e-02 6.44585252e-01 5.27878404e-01 -9.61219549e-01 7.73546875e-01 6.07064629e+00 9.32863891e-01 -1.01497984e+00 -1.09214634e-01 1.74604654e-01 8.93440366e-01 -5.19518733e-01 2.68296525e-03 -8.07367027e-01 5.21046340e-01 4.00786586e-02 5.18184662e-01 1.85218588e-01 5.86647928e-01 2.68099040e-01 -2.99480349e-01 -1.79008573e-01 6.79908097e-01 -1.98702261e-01 -1.12459552e+00 -3.99924256e-02 -1.05219865e-02 5.54535031e-01 1.66379154e-01 -6.02384470e-02 -1.59467191e-01 1.52723089e-01 -7.88047910e-01 8.21169078e-01 6.30235136e-01 7.64391363e-01 -6.26870096e-01 6.59657478e-01 3.16260338e-01 -1.73684919e+00 -1.89644635e-01 -4.87193584e-01 -4.95120212e-02 1.21758573e-01 1.10247684e+00 -5.94089866e-01 5.30323327e-01 8.01546156e-01 7.05097079e-01 -5.28892338e-01 1.28468752e+00 -1.63710728e-01 8.30385029e-01 -5.63926041e-01 -1.36798725e-01 1.31336033e-01 -1.34973451e-01 2.59970248e-01 1.26506805e+00 3.62333417e-01 -4.09499928e-02 4.10107136e-01 7.43020415e-01 2.94353753e-01 1.08087733e-01 -6.84917092e-01 4.30437475e-01 8.99630189e-01 1.07146025e+00 -1.02789855e+00 -4.03573401e-02 -5.35541415e-01 3.88289213e-01 1.27164572e-02 1.41133979e-01 -8.32958817e-01 -8.31755340e-01 3.42123657e-01 6.08453870e-01 3.20180058e-01 -3.29283208e-01 -5.21658540e-01 -8.92454803e-01 -3.86339538e-02 -4.71403837e-01 2.76279207e-02 -4.69046175e-01 -1.36766362e+00 4.03128147e-01 -2.94182152e-01 -1.24360442e+00 7.00972736e-01 -4.50033993e-01 -9.60440218e-01 4.68046576e-01 -1.94612145e+00 -1.37299788e+00 -8.62990677e-01 7.77513206e-01 5.81191063e-01 4.55130011e-01 2.70073324e-01 5.95060647e-01 -6.43983483e-01 2.62418568e-01 1.31490976e-01 3.82474542e-01 4.16567922e-01 -8.77199233e-01 1.68723792e-01 9.84131694e-01 -2.51058310e-01 8.19848627e-02 4.18736726e-01 -8.45597863e-01 -1.23595536e+00 -1.15865862e+00 6.92504048e-01 -2.39566281e-01 6.87826157e-01 -5.10837547e-02 -9.18033361e-01 2.52519120e-02 -1.22414380e-01 1.90188162e-04 1.23134730e-02 -1.98744237e-01 -4.83253360e-01 -3.20079565e-01 -1.08217669e+00 3.01543832e-01 8.88599336e-01 -4.42836821e-01 -3.22768718e-01 7.56337047e-02 2.57930547e-01 -2.28245363e-01 -5.25290549e-01 4.97365654e-01 9.01158810e-01 -1.18281388e+00 9.05830145e-01 3.08469683e-01 3.25841963e-01 -6.14018917e-01 6.71750233e-02 -8.79749894e-01 -3.41480792e-01 -1.38408631e-01 4.31699008e-01 1.08584905e+00 4.69907761e-01 -8.79442871e-01 1.02939749e+00 -2.49349903e-02 -3.41053098e-01 -7.70564616e-01 -9.94318128e-01 -4.80724186e-01 -9.49004218e-02 -4.86732900e-01 7.38233328e-01 7.98094094e-01 -2.06812978e-01 2.13952065e-01 -1.24784693e-01 6.72506988e-01 8.47274840e-01 3.31043482e-01 6.50261879e-01 -1.82436883e+00 3.13719600e-01 -5.53435206e-01 -2.12812692e-01 -1.13527894e+00 -3.80305529e-01 -3.20780665e-01 5.53248763e-01 -1.60596418e+00 1.75996915e-01 -1.12297404e+00 8.79875273e-02 2.87503153e-01 -2.22338527e-01 1.95402920e-01 -3.32424849e-01 3.99746537e-01 -2.48370603e-01 3.67390573e-01 1.43647802e+00 -4.82804894e-01 7.99908713e-02 4.86678511e-01 -2.77322054e-01 7.36381114e-01 7.25999296e-01 -4.69633818e-01 -2.43447468e-01 -3.20782930e-01 2.44832844e-01 1.72766112e-02 3.37348044e-01 -1.32707202e+00 2.10199654e-01 -2.39998519e-01 -5.66666126e-02 -1.09259403e+00 4.21911851e-02 -9.44389224e-01 -6.43592924e-02 7.75232375e-01 2.48643517e-01 4.08259444e-02 -1.82233512e-01 9.49130297e-01 -1.27359733e-01 -3.64120722e-01 9.08601344e-01 2.46755369e-02 -5.10562122e-01 1.38203397e-01 -8.92835975e-01 3.93435620e-02 1.03620994e+00 -5.16114116e-01 -6.37529254e-01 -1.12019755e-01 -1.83475852e-01 2.96171039e-01 5.04755020e-01 1.07748963e-01 9.67167199e-01 -1.08469677e+00 -7.92576075e-01 4.29343671e-01 1.55895606e-01 2.61460125e-01 2.15584978e-01 5.88310838e-01 -1.00207424e+00 -1.69119909e-02 -4.32152674e-02 -6.71024203e-01 -1.21960223e+00 2.61212617e-01 1.62278458e-01 -1.46335453e-01 -5.38951755e-01 7.64161289e-01 -9.65881273e-02 -3.68652403e-01 3.76820490e-02 -8.13404620e-01 -3.78669143e-01 3.46549451e-02 1.64919600e-01 1.01167679e+00 9.43339840e-02 -6.94424033e-01 -3.05307150e-01 1.41959167e+00 1.90048143e-01 2.50014484e-01 1.02727878e+00 -2.46974543e-01 -2.95670688e-01 2.53984869e-01 5.71683705e-01 4.51188207e-01 -9.56255198e-01 -9.07789394e-02 -1.14288673e-01 -4.99897897e-01 -1.07041923e-02 -4.20274645e-01 -1.38383877e+00 1.04671574e+00 7.12662637e-01 4.91033792e-01 8.59143138e-01 -9.55325291e-02 1.25129533e+00 2.01613918e-01 5.41532993e-01 -1.16403401e+00 2.49218792e-01 4.11375403e-01 5.37633002e-01 -9.80821490e-01 -7.84214735e-02 -1.03106904e+00 -3.32153171e-01 1.32686853e+00 5.00038087e-01 -1.14737310e-01 1.00810587e+00 3.48266482e-01 1.14181995e-01 -5.15048802e-01 -9.05126741e-04 -4.62923974e-01 -2.08853573e-01 6.93906903e-01 -3.05990338e-01 -4.49809767e-02 -1.26069590e-01 2.18722612e-01 4.55822885e-01 -9.16557014e-02 6.45635009e-01 9.98780847e-01 -1.23610330e+00 -1.01490068e+00 -7.97697127e-01 5.11805952e-01 1.28564075e-01 9.30716544e-02 -1.06422052e-01 7.08933532e-01 4.70407039e-01 1.21435571e+00 -3.68610412e-01 -6.91266596e-01 5.25325775e-01 -3.00387293e-01 9.64645147e-02 -3.25885862e-01 5.82818054e-02 -2.79099286e-01 -8.43147188e-02 -3.34168792e-01 -2.98235953e-01 -6.67824030e-01 -1.45565748e+00 -9.99079496e-02 -8.14508796e-01 2.56651193e-01 6.50434256e-01 8.95976663e-01 2.64948428e-01 9.43208933e-02 1.00718594e+00 -7.98816085e-01 -3.70439678e-01 -7.13160157e-01 -7.38720655e-01 5.33269569e-02 3.54453892e-01 -1.09350431e+00 -4.30588186e-01 7.76740238e-02]
[7.501223564147949, 1.3390380144119263]
be8626a4-e288-4f30-8027-84aff949aef0
siamese-contrastive-embedding-network-for-1
2206.14475
null
https://arxiv.org/abs/2206.14475v1
https://arxiv.org/pdf/2206.14475v1.pdf
Siamese Contrastive Embedding Network for Compositional Zero-Shot Learning
Compositional Zero-Shot Learning (CZSL) aims to recognize unseen compositions formed from seen state and object during training. Since the same state may be various in the visual appearance while entangled with different objects, CZSL is still a challenging task. Some methods recognize state and object with two trained classifiers, ignoring the impact of the interaction between object and state; the other methods try to learn the joint representation of the state-object compositions, leading to the domain gap between seen and unseen composition sets. In this paper, we propose a novel Siamese Contrastive Embedding Network (SCEN) (Code: https://github.com/XDUxyLi/SCEN-master) for unseen composition recognition. Considering the entanglement between state and object, we embed the visual feature into a Siamese Contrastive Space to capture prototypes of them separately, alleviating the interaction between state and object. In addition, we design a State Transition Module (STM) to increase the diversity of training compositions, improving the robustness of the recognition model. Extensive experiments indicate that our method significantly outperforms the state-of-the-art approaches on three challenging benchmark datasets, including the recent proposed C-QGA dataset.
['Muli Yang', 'Cheng Deng', 'Kun Wei', 'Xu Yang', 'Xiangyu Li']
2022-06-29
siamese-contrastive-embedding-network-for
http://openaccess.thecvf.com//content/CVPR2022/html/Li_Siamese_Contrastive_Embedding_Network_for_Compositional_Zero-Shot_Learning_CVPR_2022_paper.html
http://openaccess.thecvf.com//content/CVPR2022/papers/Li_Siamese_Contrastive_Embedding_Network_for_Compositional_Zero-Shot_Learning_CVPR_2022_paper.pdf
cvpr-2022-1
['compositional-zero-shot-learning']
['computer-vision']
[ 1.23374298e-01 -4.18148428e-01 -1.68498382e-01 9.31394622e-02 -3.94961566e-01 -5.90742826e-01 8.27175677e-01 -2.53256977e-01 -5.07002473e-02 3.13784331e-01 2.48367414e-01 1.29303992e-01 7.02084675e-02 -5.15256643e-01 -7.54923820e-01 -1.23588502e+00 3.14361751e-01 5.01397789e-01 2.14367554e-01 -6.32072613e-02 -3.42218764e-02 2.31206313e-01 -1.64334321e+00 3.25689316e-01 6.80981815e-01 1.07016528e+00 1.17962167e-01 4.25156265e-01 -2.39811555e-01 1.02560198e+00 -4.75784361e-01 -3.88275325e-01 3.90971243e-01 -7.16258347e-01 -3.69339913e-01 2.53629923e-01 6.83063626e-01 -1.29830718e-01 -6.98097527e-01 1.38003838e+00 3.74316841e-01 2.26040661e-01 7.19791353e-01 -1.57409120e+00 -1.19841027e+00 4.40575063e-01 -1.37567371e-01 9.94651020e-02 2.39881679e-01 6.48485065e-01 1.21319270e+00 -8.14180613e-01 8.13584507e-01 1.10531688e+00 -4.99134436e-02 8.86210620e-01 -1.30296457e+00 -8.78969133e-01 2.58589149e-01 8.24590206e-01 -1.37913001e+00 -5.55114388e-01 1.20020080e+00 -5.58138490e-01 6.24681890e-01 3.17491621e-01 7.94508398e-01 1.52267230e+00 -8.37057605e-02 1.04437089e+00 9.82922435e-01 -1.59717336e-01 4.44943368e-01 1.67466551e-01 2.13185534e-01 1.00553346e+00 2.06958711e-01 3.84113491e-01 -7.46252060e-01 -1.41705483e-01 2.48532042e-01 2.22761124e-01 -5.22340000e-01 -1.13357711e+00 -1.31539285e+00 4.13316429e-01 6.42864227e-01 1.58002332e-01 9.53048542e-02 4.28428948e-02 1.37279361e-01 2.92924285e-01 -4.37912829e-02 4.29148644e-01 2.53458414e-02 2.00517830e-02 -5.02743900e-01 -5.31419776e-02 8.38006318e-01 8.30512285e-01 8.53988230e-01 2.61766136e-01 -3.00515503e-01 3.91777635e-01 3.16916138e-01 3.46786082e-01 6.63762331e-01 -4.25972402e-01 3.98167312e-01 9.63655412e-01 -1.61135644e-01 -4.79905605e-01 1.85874447e-01 -4.63027894e-01 -8.87347519e-01 2.28044346e-01 1.78819686e-01 2.39140257e-01 -1.09963000e+00 1.69867563e+00 3.86689812e-01 6.35054290e-01 2.05600634e-01 1.22361708e+00 9.28626120e-01 8.09765995e-01 -6.49941117e-02 1.07391573e-01 1.20031536e+00 -1.26704109e+00 -6.27050042e-01 -1.09174982e-01 1.97730392e-01 -4.30211246e-01 9.09174204e-01 2.05370739e-01 -7.39155412e-01 -5.53306460e-01 -1.41673684e+00 -2.07609646e-02 -4.59810436e-01 2.05659643e-01 3.89535218e-01 3.08918417e-01 -3.77331555e-01 5.80584109e-01 -9.32185829e-01 3.85272987e-02 4.06731874e-01 2.83016384e-01 -4.74879444e-01 -2.04357892e-01 -1.01747608e+00 7.29888916e-01 5.94318986e-01 1.13845624e-01 -1.41140902e+00 -6.30867481e-01 -9.52279747e-01 2.97653884e-01 5.93171895e-01 -5.26959479e-01 7.49036789e-01 -1.04969645e+00 -1.68593299e+00 4.29459333e-01 -3.96597497e-02 1.02264486e-01 3.66789639e-01 3.28124911e-01 -5.17832518e-01 1.05249099e-01 -3.92896026e-01 2.74901390e-01 1.06484663e+00 -1.35365510e+00 -1.77441299e-01 -4.05141681e-01 -1.40140980e-01 2.20149800e-01 -3.03834975e-01 -2.37106293e-01 -2.97103584e-01 -2.82329172e-01 3.19567919e-01 -8.87355745e-01 2.57940531e-01 2.69934833e-01 -4.58490044e-01 -3.28580827e-01 1.01027286e+00 -2.74689168e-01 8.44524860e-01 -2.54651451e+00 7.11044729e-01 -9.21131521e-02 3.44746739e-01 3.78839225e-01 -4.73468900e-01 4.58384812e-01 -2.16543645e-01 -1.80176809e-01 -2.66710192e-01 -4.32313293e-01 3.99638087e-01 4.47506666e-01 -4.07870799e-01 8.02828908e-01 3.73375088e-01 1.06299412e+00 -9.73181129e-01 -3.59141260e-01 2.28623480e-01 3.19705218e-01 -2.69043744e-01 4.33529139e-01 -2.85636753e-01 5.08385658e-01 -7.34888241e-02 7.62808681e-01 5.84393442e-01 -3.93338829e-01 3.01686555e-01 -4.61299539e-01 1.11466542e-01 1.19086221e-01 -1.32817435e+00 1.74294281e+00 -2.41150297e-02 2.51172572e-01 -1.55796498e-01 -9.27811861e-01 6.15826547e-01 3.02972257e-01 2.38105327e-01 -5.90047300e-01 2.52965301e-01 1.00854427e-01 4.28211600e-01 -4.96730566e-01 6.00526258e-02 -1.85658783e-01 -8.08650106e-02 4.15677249e-01 7.78023839e-01 2.68520135e-02 1.01292841e-01 2.19768032e-01 9.15227056e-01 7.91123360e-02 2.14372784e-01 -5.87041900e-02 4.73797858e-01 -4.04117405e-01 7.99624801e-01 4.77684945e-01 -5.68656683e-01 4.34678227e-01 6.31648600e-01 -3.49328905e-01 -1.05272269e+00 -1.48013604e+00 9.35010612e-02 7.79494166e-01 8.21811557e-01 -3.89224231e-01 -3.19776684e-01 -8.64597857e-01 1.78786740e-02 4.81331497e-01 -6.47329926e-01 -6.32355332e-01 -3.76408577e-01 -4.32768136e-01 2.10289314e-01 2.55421519e-01 4.89632159e-01 -9.03410912e-01 -2.00894132e-01 -9.21826810e-02 1.03576988e-01 -1.01846385e+00 -6.99300885e-01 1.58888489e-01 -3.56850058e-01 -1.00848651e+00 -4.06091541e-01 -8.26603234e-01 7.73452282e-01 2.41468847e-02 5.80311656e-01 -1.48290917e-01 -3.79739493e-01 1.02125384e-01 -3.15161109e-01 1.96642876e-01 -4.60412353e-01 -1.19374909e-01 3.44828479e-02 5.87923646e-01 1.31711379e-01 -5.20268381e-01 -5.49656570e-01 2.05924675e-01 -1.05634391e+00 2.48943537e-01 5.59317291e-01 1.07984197e+00 3.17409933e-01 -1.61285549e-01 -4.64563631e-02 -4.56826359e-01 1.60047308e-01 -5.57930470e-01 -5.63673913e-01 6.54151857e-01 -4.19978470e-01 5.72256386e-01 8.65902126e-01 -9.83813643e-01 -9.37905073e-01 2.09406614e-01 3.24010670e-01 -1.12049842e+00 -6.38830438e-02 2.71950453e-03 -5.37160575e-01 -7.75005072e-02 3.95787627e-01 6.43569827e-01 2.31621742e-01 -4.99660313e-01 3.85990113e-01 4.46601450e-01 5.01870930e-01 -6.16652966e-01 9.64297771e-01 4.80056942e-01 9.65714920e-03 -5.11340797e-01 -7.40939021e-01 -4.63742346e-01 -3.76578480e-01 -2.72396058e-02 7.51806200e-01 -7.79372513e-01 -8.22183132e-01 5.27408302e-01 -9.23003852e-01 -2.37027571e-01 -4.91743177e-01 3.22855324e-01 -2.52105087e-01 5.47543705e-01 -6.82308435e-01 -5.89768529e-01 -9.56261829e-02 -1.40018833e+00 8.52345347e-01 2.57878721e-01 1.66093022e-01 -6.73768342e-01 2.67899781e-01 3.60435218e-01 1.41007766e-01 1.11174189e-01 1.03656113e+00 -4.83655840e-01 -1.10883093e+00 -1.68732647e-02 -1.02659889e-01 4.17137891e-01 4.61905487e-02 1.63570076e-01 -8.04415286e-01 -4.67911959e-01 -1.42464088e-02 -3.99652213e-01 1.12206829e+00 -4.95250106e-01 9.03472841e-01 -4.47483301e-01 -8.91085118e-02 6.17939234e-01 1.41588557e+00 2.06598476e-01 4.82264608e-01 -1.71778917e-01 9.70109224e-01 3.12265515e-01 -1.83835998e-03 2.03321084e-01 2.57135063e-01 6.82942033e-01 4.74974662e-01 4.04935956e-01 -4.59016234e-01 -5.83352089e-01 7.53360450e-01 1.17530203e+00 2.31985196e-01 -3.40315908e-01 -5.88499546e-01 4.09891874e-01 -1.94965398e+00 -1.03996694e+00 3.75771284e-01 1.85778224e+00 5.27165174e-01 -2.07635328e-01 -2.40428656e-01 -4.20880206e-02 5.94864786e-01 4.72658247e-01 -8.71750951e-01 -1.01508317e-03 -2.32842609e-01 3.04912120e-01 9.19487998e-02 2.67858624e-01 -8.28666389e-01 9.03429747e-01 4.81482887e+00 9.38550830e-01 -1.39037180e+00 3.93997908e-01 4.56689894e-02 -3.40555668e-01 -3.83290887e-01 2.83735245e-01 -6.07458293e-01 7.68089652e-01 5.14946461e-01 9.06886440e-03 6.85515344e-01 6.58929408e-01 -5.23838580e-01 1.15736358e-01 -1.24317849e+00 9.02054429e-01 4.40851301e-01 -1.24969292e+00 2.33249113e-01 -5.35252877e-02 9.81570780e-01 -1.13698892e-01 3.58895361e-01 4.91417944e-01 1.25307649e-01 -5.53963065e-01 9.74200010e-01 6.02199435e-01 6.25070810e-01 -2.80372113e-01 4.06673193e-01 3.34822297e-01 -1.18027639e+00 -3.68787855e-01 -1.81016937e-01 1.58646315e-01 -1.75706357e-01 1.26515940e-01 -4.14295793e-01 5.99482656e-01 2.88291335e-01 7.91006684e-01 -6.32960796e-01 9.16121125e-01 -4.44461852e-01 3.94372344e-01 3.47812325e-02 -2.81745017e-01 1.49929136e-01 -4.68396127e-01 8.79298389e-01 5.20208716e-01 1.57453045e-01 -1.13136292e-01 2.11377725e-01 1.44386053e+00 -1.95591614e-01 -3.27570915e-01 -3.12035382e-01 -4.90354449e-01 1.45484000e-01 1.11144567e+00 -2.61391878e-01 -5.82422495e-01 -2.59773880e-01 1.27518165e+00 6.38272643e-01 5.68207204e-01 -8.93637419e-01 -1.59413368e-01 9.66984987e-01 -3.66034687e-01 6.28933549e-01 -2.72182345e-01 2.31396079e-01 -1.89405060e+00 1.65557057e-01 -9.69952941e-01 2.30798230e-01 -5.26797652e-01 -1.39514065e+00 3.92974108e-01 -2.56828129e-01 -1.43020046e+00 3.50005120e-01 -6.82329059e-01 -6.80160463e-01 5.61645269e-01 -1.34485841e+00 -1.11555505e+00 -3.51266295e-01 4.76271063e-01 3.18169147e-01 -3.46323609e-01 7.26459444e-01 3.47847968e-01 -1.02834892e+00 5.60203850e-01 2.49072328e-01 1.53832883e-01 5.45002580e-01 -1.08194435e+00 1.38607845e-01 8.31857264e-01 6.22896135e-01 5.90637505e-01 4.08352286e-01 -5.14461696e-01 -1.94048977e+00 -8.94275367e-01 3.76347750e-01 -3.72726619e-01 7.90527225e-01 -8.98251891e-01 -8.88198614e-01 3.98558825e-01 2.01206073e-01 5.06346107e-01 6.01555645e-01 -2.10702643e-01 -8.60302866e-01 -3.05995047e-01 -7.78160155e-01 8.26082468e-01 1.15399897e+00 -9.63000596e-01 -5.43385625e-01 3.51846144e-02 6.52834833e-01 -2.48673081e-01 -5.33508062e-01 2.02140346e-01 6.61548376e-01 -8.19164455e-01 6.64771795e-01 -7.15407133e-01 3.57923180e-01 -6.82720423e-01 -1.61947563e-01 -1.42737341e+00 -4.28763449e-01 -4.38284427e-01 -7.68567502e-01 9.14849520e-01 1.19520679e-01 -6.78397059e-01 6.74301207e-01 4.72595930e-01 -8.74030292e-02 -6.98842645e-01 -1.05037439e+00 -1.09634578e+00 -2.42331371e-01 1.52029231e-01 7.77601898e-01 8.45433474e-01 2.62080245e-02 4.20582175e-01 -3.47820729e-01 2.59932190e-01 7.54906952e-01 5.66616297e-01 5.26058793e-01 -8.39856982e-01 -5.47339082e-01 -4.42593575e-01 -8.38793099e-01 -8.06812227e-01 5.40539086e-01 -1.17203486e+00 -2.20477600e-02 -9.81169999e-01 5.51916897e-01 -1.85811862e-01 -6.90837383e-01 3.90721560e-01 -1.88069627e-01 9.23286602e-02 5.08629203e-01 3.03886116e-01 -8.05882633e-01 1.16093493e+00 1.50495362e+00 -7.09640145e-01 2.01825291e-01 -5.35545528e-01 -3.54154378e-01 7.73703605e-02 4.39679831e-01 -5.04017413e-01 -3.25672925e-01 -2.91219383e-01 -1.53003052e-01 -1.42238259e-01 6.42906606e-01 -1.10341322e+00 4.15594041e-01 -1.39242277e-01 1.70644715e-01 -1.78443879e-01 7.59645700e-01 -8.12719822e-01 5.01499474e-01 6.08490765e-01 -2.75621057e-01 -4.86604899e-01 -1.73080131e-01 7.80378759e-01 -2.18863666e-01 -3.44484359e-01 8.32248390e-01 -7.03077242e-02 -7.35498667e-01 6.83195949e-01 2.31252052e-02 -1.39923289e-01 1.22695017e+00 1.80332421e-03 -7.07526147e-01 3.40196192e-02 -6.27360940e-01 1.28640413e-01 6.56860113e-01 4.87987578e-01 5.67688167e-01 -1.49471581e+00 -2.33963758e-01 6.15728438e-01 5.05296588e-01 -2.32854754e-01 6.14235878e-01 6.50250852e-01 -2.09467337e-01 1.01412103e-01 -4.00656998e-01 -4.67284530e-01 -1.10631931e+00 8.12638640e-01 4.23904359e-01 -3.47546451e-02 -4.55748260e-01 8.51313174e-01 4.01023030e-01 -4.18432504e-01 1.92156583e-01 -2.63524264e-01 2.03111976e-01 -7.53850862e-03 3.60705733e-01 2.98887670e-01 -3.49860549e-01 -7.17687607e-01 -2.34872654e-01 4.10751790e-01 -1.95319295e-01 2.46000327e-02 9.41260219e-01 3.19923073e-01 -1.50209889e-01 7.02744722e-01 1.66138244e+00 -3.08834165e-01 -1.48592579e+00 -4.66988504e-01 -2.10009858e-01 -4.60677356e-01 -1.16805814e-01 -5.64360797e-01 -1.02357554e+00 1.01257527e+00 8.30846786e-01 -5.24695814e-02 7.46331990e-01 2.77818948e-01 7.47757256e-01 2.84721464e-01 1.15431190e-01 -7.80794978e-01 4.85786557e-01 2.21922308e-01 7.52756774e-01 -1.33633661e+00 -9.94322002e-02 -7.96851814e-02 -7.03491330e-01 9.18840945e-01 8.08247566e-01 -2.18688026e-01 4.65528458e-01 -3.31125148e-02 -1.93181112e-01 -2.80185968e-01 -9.71113622e-01 -3.51495862e-01 5.31153083e-01 1.28611982e-01 -3.43168795e-01 2.87294477e-01 1.83062881e-01 4.34216052e-01 1.32793739e-01 -4.09671456e-01 2.55538076e-01 8.88633609e-01 8.52520298e-03 -1.24636257e+00 3.71052064e-02 1.42458424e-01 2.01247931e-01 1.54662207e-01 -4.96135056e-01 3.44496757e-01 4.45529431e-01 5.00668287e-01 2.36365706e-01 -5.27075291e-01 2.99646109e-02 3.05155039e-01 7.55105674e-01 -6.63662016e-01 -3.94419521e-01 -1.92143962e-01 -3.42011422e-01 -5.25652885e-01 -2.30026096e-01 -5.85267603e-01 -9.13911283e-01 -7.79002458e-02 -3.84157896e-01 2.12992877e-02 5.63438535e-01 7.23145664e-01 4.81323957e-01 4.47546810e-01 6.84780002e-01 -6.18175626e-01 -9.20514345e-01 -7.32867181e-01 -6.87318683e-01 7.50928521e-01 6.42081738e-01 -8.99823010e-01 -5.41263998e-01 -1.49637312e-01]
[10.217557907104492, 2.302574872970581]
8f3d6532-0894-4600-a0b1-a76566245e78
formulation-graphs-for-mapping-structure
2307.03811
null
https://arxiv.org/abs/2307.03811v1
https://arxiv.org/pdf/2307.03811v1.pdf
Formulation Graphs for Mapping Structure-Composition of Battery Electrolytes to Device Performance
Advanced computational methods are being actively sought for addressing the challenges associated with discovery and development of new combinatorial material such as formulations. A widely adopted approach involves domain informed high-throughput screening of individual components that can be combined into a formulation. This manages to accelerate the discovery of new compounds for a target application but still leave the process of identifying the right 'formulation' from the shortlisted chemical space largely a laboratory experiment-driven process. We report a deep learning model, Formulation Graph Convolution Network (F-GCN), that can map structure-composition relationship of the individual components to the property of liquid formulation as whole. Multiple GCNs are assembled in parallel that featurize formulation constituents domain-intuitively on the fly. The resulting molecular descriptors are scaled based on respective constituent's molar percentage in the formulation, followed by formalizing into a combined descriptor that represents a complete formulation to an external learning architecture. The use case of proposed formulation learning model is demonstrated for battery electrolytes by training and testing it on two exemplary datasets representing electrolyte formulations vs battery performance -- one dataset is sourced from literature about Li/Cu half-cells, while the other is obtained by lab-experiments related to lithium-iodide full-cell chemistry. The model is shown to predict the performance metrics like Coulombic Efficiency (CE) and specific capacity of new electrolyte formulations with lowest reported errors. The best performing F-GCN model uses molecular descriptors derived from molecular graphs that are informed with HOMO-LUMO and electric moment properties of the molecules using a knowledge transfer technique.
['Young-Hye La', 'Daniele Congiu', 'Linda Sundberg', 'Khanh Nugyuen', 'Andy Tek', 'Dmitry Zubarev', 'Maxwell Giammona', 'Vidushi Sharma']
2023-07-07
null
null
null
null
['transfer-learning']
['miscellaneous']
[ 3.73723537e-01 -3.37443024e-01 -3.51178348e-01 -3.73751372e-01 -6.56875014e-01 -7.85496414e-01 5.15089631e-01 9.85814810e-01 -3.83556187e-01 1.32670355e+00 -1.36512116e-01 -4.16596383e-01 -5.05325258e-01 -9.77818489e-01 -9.80277479e-01 -1.19330561e+00 -1.35237500e-01 7.91083872e-01 -3.29448611e-01 -3.32063973e-01 5.66194475e-01 8.30324411e-01 -1.37313008e+00 3.64940763e-01 1.09303391e+00 1.35181856e+00 2.46059328e-01 4.21489090e-01 -3.52602541e-01 2.77158469e-01 -2.79489726e-01 -5.71545064e-02 6.38533980e-02 -1.89422503e-01 -3.73566896e-01 -2.88963526e-01 2.36138195e-01 2.25932032e-01 4.87812189e-03 8.36438239e-01 6.97934568e-01 -1.01718707e-02 1.14525199e+00 -1.00940132e+00 -5.87661088e-01 4.48612869e-01 2.22156018e-01 -1.31995350e-01 4.07521993e-01 2.20105991e-01 8.49711835e-01 -8.63328755e-01 7.61330605e-01 9.39170063e-01 7.00826645e-01 1.77566290e-01 -1.30881000e+00 -8.21816802e-01 -1.57745883e-01 1.51773393e-01 -1.41611278e+00 -1.93999425e-01 5.84983289e-01 -4.83816803e-01 1.44540501e+00 3.10040414e-01 6.55358672e-01 5.14695048e-01 4.72365201e-01 3.58351022e-01 1.10076940e+00 -2.18546122e-01 6.32802963e-01 3.32788229e-01 3.16640139e-01 4.16511804e-01 7.01536775e-01 2.93417126e-02 -6.77022934e-01 -4.89931218e-02 5.35599776e-02 -1.78249940e-01 -2.31950760e-01 -7.59970427e-01 -5.81666648e-01 7.93641031e-01 6.97875857e-01 3.53070110e-01 -5.80070794e-01 7.94212595e-02 4.12110656e-01 8.42650533e-02 1.44308209e-01 6.65451884e-01 -4.87345695e-01 2.10565835e-01 -7.77978837e-01 7.11010814e-01 1.19582999e+00 8.69961858e-01 1.06483829e+00 1.67920947e-01 -1.65662199e-01 1.85947612e-01 3.99361461e-01 4.72675174e-01 2.01273307e-01 -1.52005687e-01 3.74433935e-01 9.75785613e-01 3.14579785e-01 -3.87794793e-01 -5.33472300e-01 -4.70221192e-01 -4.73298520e-01 9.36724991e-02 8.35997537e-02 -1.68050706e-01 -1.00467575e+00 1.35856330e+00 3.18899125e-01 -2.20010191e-01 3.52286786e-01 5.64326584e-01 1.08011556e+00 6.74071968e-01 5.67250013e-01 -2.08007038e-01 9.44922686e-01 -4.99880552e-01 -5.39265037e-01 3.29799026e-01 5.71221411e-01 -1.83827311e-01 3.65165442e-01 4.76517320e-01 -9.58439171e-01 -4.20287877e-01 -1.54461300e+00 4.04972956e-02 -1.30975473e+00 1.14229538e-01 6.71163619e-01 8.06237817e-01 -8.82486820e-01 1.13484371e+00 -4.78160441e-01 -1.96442455e-01 5.25383532e-01 1.35884178e+00 -4.47017342e-01 -4.08800261e-04 -1.15293264e+00 1.06255448e+00 7.69658267e-01 2.98183322e-01 -1.20528769e+00 -9.67185616e-01 -6.67515576e-01 9.91288349e-02 2.86326613e-02 -4.80079830e-01 6.30237401e-01 -6.51517510e-01 -1.36759555e+00 4.22501832e-01 2.49256263e-03 -5.16120791e-01 1.46028534e-01 3.61922793e-02 -5.80210268e-01 -1.44001648e-01 -3.37988399e-02 6.12320960e-01 3.94001722e-01 -1.47256064e+00 -3.42030078e-01 -3.47187996e-01 -6.14203811e-02 2.28204742e-01 -3.49190533e-01 -5.47238767e-01 6.70855865e-02 1.20952010e-01 -3.28847408e-01 -6.11263812e-01 -4.38412353e-02 -2.93661594e-01 -3.79262030e-01 -2.60426491e-01 5.39160788e-01 -4.98100847e-01 1.04649603e+00 -1.65314150e+00 4.07921433e-01 6.76938176e-01 2.29387134e-01 5.08626997e-01 -6.57105148e-02 1.00104630e+00 -4.26471651e-01 7.94108436e-02 -2.27635637e-01 1.07426375e-01 2.00873777e-01 -3.20133157e-02 8.66986513e-02 5.73862016e-01 4.85289246e-01 1.13898838e+00 -8.91739249e-01 7.18008056e-02 2.70405829e-01 7.33526289e-01 -2.48257458e-01 1.18696563e-01 -6.42172813e-01 3.54447871e-01 -5.53262889e-01 7.57219076e-01 1.01849818e+00 -3.65651101e-02 3.70179296e-01 -6.04530871e-01 -3.57518584e-01 2.79984266e-01 -1.05644488e+00 1.45319474e+00 -1.49534121e-01 1.67365059e-01 -2.96316445e-01 -1.04027033e+00 1.12350023e+00 1.67626180e-02 4.08525556e-01 -1.01106822e+00 3.03984195e-01 6.11594796e-01 1.40620098e-01 -4.44021493e-01 3.09964627e-01 -3.79846334e-01 1.59491926e-01 -9.10258666e-02 3.14088076e-01 3.18052694e-02 5.04317403e-01 -8.09208080e-02 6.75640643e-01 3.92485410e-01 1.81306645e-01 -6.94325984e-01 8.26067746e-01 1.42114952e-01 -2.07632687e-02 4.22743917e-01 3.15755397e-01 -3.54105458e-02 4.01990741e-01 -3.59559596e-01 -1.10401702e+00 -9.99441922e-01 -4.00978297e-01 7.17496634e-01 2.23428845e-01 -3.66494000e-01 -6.60707653e-01 -1.07984647e-01 4.34062421e-01 6.52958751e-01 -7.01902688e-01 -2.45722473e-01 -9.82616097e-02 -8.08179379e-01 3.68991882e-01 5.37764847e-01 2.05783546e-01 -9.68022466e-01 -2.73656815e-01 5.09129047e-01 7.17806816e-01 -6.44519866e-01 2.00836957e-01 1.05092394e+00 -7.59722829e-01 -1.05858421e+00 -4.92476493e-01 -5.12333274e-01 4.50023264e-01 -5.30739605e-01 8.46295118e-01 -3.83555633e-03 -5.09452581e-01 1.15956508e-01 4.31486927e-02 -7.65921235e-01 -4.21840191e-01 6.21666349e-02 1.02237411e-01 6.02126122e-02 4.63915348e-01 -5.53196013e-01 -8.57375443e-01 -2.59141833e-01 -8.64903629e-01 -3.51520628e-01 5.83255470e-01 6.03229582e-01 9.36088502e-01 6.38588816e-02 7.24562824e-01 -7.35305548e-01 8.30208480e-01 -6.22278988e-01 -5.94831705e-01 5.57942748e-01 -7.85119772e-01 3.74085844e-01 6.44759953e-01 -3.98176640e-01 -5.96327722e-01 1.23397537e-01 -2.24356521e-02 -1.27993643e-01 -1.26971211e-02 7.18838453e-01 -5.95332205e-01 -4.99559313e-01 4.97331917e-01 3.20460886e-01 -1.25502780e-01 -2.97480464e-01 1.27900898e-01 3.96227866e-01 4.60873306e-01 -8.94554675e-01 4.53438699e-01 4.62855324e-02 5.12209594e-01 -7.34184325e-01 -1.12014942e-01 -4.41351444e-01 -5.65477192e-01 -7.93424398e-02 8.00213516e-01 -9.80782509e-01 -1.27695453e+00 1.41902417e-01 -8.80866587e-01 -2.68639386e-01 4.71861596e-04 2.21630543e-01 -1.80890843e-01 -1.06946364e-01 -1.75086170e-01 -7.57951438e-01 -7.99325049e-01 -1.38710558e+00 9.73725438e-01 4.74963158e-01 1.60713252e-02 -1.25181687e+00 -1.62372105e-02 9.33604315e-03 5.48896074e-01 5.48106313e-01 1.33791280e+00 -1.05455136e+00 -7.34404147e-01 -3.82378787e-01 -2.10933656e-01 2.84010917e-01 1.68927610e-01 -2.96055257e-01 -1.07561636e+00 -4.42347229e-01 -4.16272670e-01 -2.18557626e-01 7.90822625e-01 3.04066569e-01 9.47145402e-01 2.54787594e-01 -5.96005201e-01 4.57643002e-01 2.03650951e+00 6.27738953e-01 7.93028235e-01 2.78828472e-01 8.47314596e-01 3.64709347e-02 2.73477584e-01 3.82212341e-01 1.08804792e-01 2.71687835e-01 4.57255602e-01 -5.20570725e-02 2.94201057e-02 -2.45440915e-01 2.37048462e-01 2.30477959e-01 -1.62265256e-01 -6.92827523e-01 -7.12533116e-01 1.72635153e-01 -1.41769278e+00 -3.95648867e-01 -2.79662311e-01 2.28823280e+00 6.08157635e-01 1.47504076e-01 1.42488614e-01 6.91274479e-02 3.41783762e-01 -5.91612041e-01 -9.76160109e-01 -7.55999982e-01 -2.16013223e-01 8.48010540e-01 8.55423927e-01 4.10361290e-01 -7.76177704e-01 6.70049787e-01 5.92785358e+00 8.54268312e-01 -1.46809125e+00 -3.73687536e-01 5.00940979e-01 1.27538338e-01 -5.34487605e-01 8.69548693e-02 -1.16440845e+00 2.25111693e-01 1.23427033e+00 -2.91749597e-01 4.84475464e-01 4.03954446e-01 1.55711994e-01 -3.26491177e-01 -1.58804083e+00 9.06541944e-01 -1.50420383e-01 -1.81936812e+00 4.03516859e-01 2.01894134e-01 6.22752964e-01 -1.84839875e-01 1.02009006e-01 1.72741711e-01 -3.42093199e-01 -1.32396853e+00 6.54770911e-01 8.24137211e-01 9.75490987e-01 -8.16425741e-01 5.81286252e-01 -1.32411286e-01 -1.31234014e+00 -2.79177099e-01 -2.08066389e-01 5.44536635e-02 -2.80356497e-01 8.56132135e-02 -1.03078508e+00 8.57958615e-01 2.24303126e-01 6.78785741e-01 -6.56781137e-01 1.19608223e+00 4.92626339e-01 2.17607930e-01 -2.76590377e-01 -5.97137094e-01 4.52543646e-01 -6.06627762e-01 2.97243185e-02 1.26028109e+00 3.61097574e-01 -6.54770508e-02 -9.34186578e-02 1.30546725e+00 -2.99736142e-01 3.79531413e-01 -6.00014389e-01 -5.25168777e-01 3.16962391e-01 1.21476340e+00 -7.05649972e-01 -3.64814758e-01 3.63719016e-02 4.56465662e-01 9.23283026e-02 4.47205901e-01 -5.54574013e-01 -2.91505367e-01 3.80538404e-01 2.19346359e-01 5.61477542e-01 9.98587087e-02 -1.56920016e-01 -4.33558345e-01 -3.34958017e-01 -7.19518483e-01 -6.75670356e-02 -7.14904785e-01 -1.17627788e+00 4.38291997e-01 1.30685866e-01 -8.56312513e-01 2.84036845e-01 -1.14994335e+00 -5.41655779e-01 1.32639468e+00 -1.63082325e+00 -1.03161836e+00 -2.46332020e-01 3.81625831e-01 1.05419330e-01 -3.07417542e-01 1.05747235e+00 5.11193991e-01 -4.19743448e-01 4.47665095e-01 5.96316755e-01 -4.85831410e-01 4.84383881e-01 -1.35804284e+00 -2.25545332e-01 -4.60132919e-02 -3.12926024e-01 7.68569529e-01 5.98393083e-01 -9.08492327e-01 -1.98525953e+00 -9.78024781e-01 6.53541982e-01 -3.37904066e-01 6.36425138e-01 -5.62006354e-01 -8.47262561e-01 -2.67211888e-02 2.59091079e-01 -2.54939497e-01 8.52430224e-01 -3.82908136e-01 3.46974917e-02 -3.46714497e-01 -1.12911355e+00 2.30892390e-01 6.30648851e-01 -6.18100464e-01 -2.35076174e-02 5.22218347e-01 3.74255538e-01 -4.23936397e-01 -1.21273541e+00 3.48898798e-01 5.94687223e-01 -6.36653841e-01 8.85122895e-01 -7.76663423e-01 1.71715200e-01 -4.43623066e-01 -3.48257154e-01 -1.03012013e+00 4.66489382e-02 -4.47324604e-01 -8.76570418e-02 9.12572205e-01 6.67866886e-01 -3.72501403e-01 6.39443219e-01 8.24089050e-01 -2.58827269e-01 -9.82580781e-01 -7.71113157e-01 -5.62662303e-01 2.54980743e-01 -1.37532413e-01 8.94619465e-01 4.17594552e-01 -2.51731783e-01 5.02857029e-01 1.10059619e-01 1.33711115e-01 3.74741137e-01 -6.47960305e-02 3.95522445e-01 -1.28693783e+00 1.26361817e-01 -3.11528891e-01 -5.45560122e-01 -3.72409821e-01 1.20354891e-01 -1.29300654e+00 -2.12005049e-01 -1.59744978e+00 1.23907141e-01 -4.86400962e-01 -7.26595819e-01 1.80941775e-01 2.68572688e-01 -9.86430272e-02 -7.15927109e-02 -3.74195874e-01 -5.67397535e-01 3.76179129e-01 1.05809093e+00 -5.22410870e-01 -4.48634088e-01 -2.81907886e-01 -7.67372191e-01 -4.17166390e-02 5.21457195e-01 -3.13709676e-01 -4.95531410e-01 1.85342461e-01 4.24729615e-01 1.13410093e-01 2.66762078e-01 -1.18441617e+00 2.51683444e-01 9.76597443e-02 7.76495457e-01 -6.43066287e-01 2.66984195e-01 -8.19821119e-01 6.44130886e-01 5.07136345e-01 -2.67854035e-01 -6.91886395e-02 6.54366493e-01 6.77767158e-01 2.93641686e-02 -2.99679250e-01 3.36157739e-01 3.38892974e-02 -7.04418302e-01 4.73772675e-01 -8.21655467e-02 -6.61628664e-01 8.82949948e-01 -5.44842124e-01 -1.93360518e-03 -4.25950140e-02 -8.36993992e-01 1.98323473e-01 1.37557670e-01 9.84872878e-02 6.01876676e-01 -1.17102432e+00 -3.17234427e-01 2.36276492e-01 1.50784537e-01 -1.25177830e-01 2.25436568e-01 6.40203118e-01 -7.08189487e-01 6.94222450e-01 -2.60527074e-01 -6.00034952e-01 -1.07772899e+00 6.79006577e-01 7.89672732e-01 -2.46913239e-01 -1.00323103e-01 6.17396176e-01 1.08050615e-01 -1.69288129e-01 2.27867365e-01 -5.20755529e-01 -2.90837705e-01 1.51300594e-01 1.54993385e-01 2.48255715e-01 5.52705884e-01 -5.42829037e-01 -4.49017763e-01 5.70661247e-01 1.56696253e-02 4.26707685e-01 1.88732874e+00 3.23560148e-01 -2.29839996e-01 2.89425403e-01 1.37289321e+00 -4.39930588e-01 -1.09342146e+00 2.58664310e-01 1.60360798e-01 1.96990356e-01 1.01313204e-01 -1.16270506e+00 -7.39641428e-01 7.48318672e-01 1.28269458e+00 -2.60632455e-01 9.52524424e-01 -3.70643020e-01 3.57998967e-01 7.85813034e-01 4.38619666e-02 -1.10054159e+00 -1.44743681e-01 1.70371845e-01 8.68058562e-01 -1.02061772e+00 3.60993743e-01 -8.22540522e-02 -2.41008162e-01 1.50029480e+00 4.00801927e-01 -1.30530894e-01 6.12205029e-01 1.77953124e-01 -4.95041877e-01 -6.68448448e-01 -4.36028808e-01 -4.43370640e-02 4.34312195e-01 6.46970689e-01 5.00447035e-01 2.10147560e-01 -4.50500697e-01 7.31834352e-01 2.29354426e-01 1.85549155e-01 4.93522733e-02 8.95902514e-01 -2.37956017e-01 -1.49289560e+00 -1.18848599e-01 6.22319758e-01 -2.35827416e-02 -2.72781223e-01 -4.37883854e-01 8.38957965e-01 6.98824406e-01 5.73623300e-01 -1.31438166e-01 -1.78347528e-01 4.17787790e-01 2.30768859e-01 7.89188325e-01 -3.72535259e-01 -7.88144708e-01 1.69128925e-01 1.79255739e-01 -6.63789436e-02 -4.45518225e-01 -3.48836601e-01 -1.50374508e+00 -7.98595995e-02 -5.93093395e-01 3.39609563e-01 1.17691386e+00 1.10051286e+00 3.35707366e-01 7.09164381e-01 3.23517710e-01 -1.22215307e+00 -1.46189809e-01 -5.46582699e-01 -8.41728806e-01 3.78103644e-01 3.30478996e-01 -8.51304114e-01 5.71282357e-02 -1.67630181e-01]
[5.118278980255127, 5.577910900115967]
8680fd58-34c4-4dd8-a05b-8775fcf4804a
bidirectional-generative-framework-for-cross
2305.09509
null
https://arxiv.org/abs/2305.09509v1
https://arxiv.org/pdf/2305.09509v1.pdf
Bidirectional Generative Framework for Cross-domain Aspect-based Sentiment Analysis
Cross-domain aspect-based sentiment analysis (ABSA) aims to perform various fine-grained sentiment analysis tasks on a target domain by transferring knowledge from a source domain. Since labeled data only exists in the source domain, a model is expected to bridge the domain gap for tackling cross-domain ABSA. Though domain adaptation methods have proven to be effective, most of them are based on a discriminative model, which needs to be specifically designed for different ABSA tasks. To offer a more general solution, we propose a unified bidirectional generative framework to tackle various cross-domain ABSA tasks. Specifically, our framework trains a generative model in both text-to-label and label-to-text directions. The former transforms each task into a unified format to learn domain-agnostic features, and the latter generates natural sentences from noisy labels for data augmentation, with which a more accurate model can be trained. To investigate the effectiveness and generality of our framework, we conduct extensive experiments on four cross-domain ABSA tasks and present new state-of-the-art results on all tasks. Our data and code are publicly available at \url{https://github.com/DAMO-NLP-SG/BGCA}.
['Lidong Bing', 'Sinno Jialin Pan', 'Wenxuan Zhang', 'Yue Deng']
2023-05-16
null
null
null
null
['aspect-based-sentiment-analysis']
['natural-language-processing']
[ 1.69116467e-01 -2.35748291e-01 -7.95159638e-02 -7.99593210e-01 -1.27888763e+00 -7.34582365e-01 6.21614337e-01 -1.65068373e-01 -1.10577092e-01 7.03923702e-01 1.65148169e-01 -6.82951137e-02 1.31552666e-01 -8.39600444e-01 -5.62865794e-01 -7.81655610e-01 6.20154977e-01 5.86898446e-01 -1.10937946e-01 -4.76819426e-01 -1.15273811e-01 -1.04674615e-01 -9.75591063e-01 5.13743460e-01 9.29758489e-01 1.06520939e+00 1.20197251e-01 1.93505749e-01 -2.89694399e-01 4.62397844e-01 -6.62332356e-01 -8.07432294e-01 9.86146256e-02 -5.26703596e-01 -8.60918760e-01 2.21459582e-01 -2.03192066e-02 1.17402516e-01 -1.44269527e-03 1.07988298e+00 5.45159280e-01 -3.47160101e-02 7.74355412e-01 -1.29341757e+00 -8.41954708e-01 3.78821433e-01 -6.88294291e-01 -2.25425899e-01 1.98320433e-01 6.05304129e-02 1.16438162e+00 -1.03523588e+00 5.85565269e-01 1.23600662e+00 5.39196968e-01 6.99328482e-01 -1.16893625e+00 -9.51152623e-01 5.48576176e-01 -1.40984610e-01 -1.09604800e+00 -2.63837278e-01 1.13952184e+00 -4.30526525e-01 4.89637285e-01 -9.18948427e-02 3.53616655e-01 1.59977555e+00 -1.84338957e-01 1.09018993e+00 1.38363695e+00 -2.99726635e-01 1.25484556e-01 2.58342683e-01 1.65016264e-01 3.56106728e-01 3.45063694e-02 -3.26613307e-01 -6.01489961e-01 -1.81150272e-01 3.15314204e-01 -1.18887313e-01 -2.29955316e-01 -4.14371938e-01 -1.07670820e+00 1.16592395e+00 2.34761849e-01 3.64629239e-01 -6.14125878e-02 -3.80985469e-01 7.13440299e-01 3.28427166e-01 9.84974444e-01 3.73067230e-01 -9.07499790e-01 -1.00124642e-01 -6.30214274e-01 2.77664244e-01 8.21623445e-01 1.00031722e+00 8.68340611e-01 -3.91481929e-02 -8.09792355e-02 1.27006423e+00 4.02157485e-01 6.33215606e-01 6.03138983e-01 -3.49365532e-01 6.86321020e-01 8.16120982e-01 -5.98830655e-02 -8.79351616e-01 -3.51417899e-01 -4.90889609e-01 -8.51773500e-01 -8.91290233e-02 5.16489148e-01 -3.04940939e-01 -7.94211686e-01 1.99765730e+00 4.30260897e-01 -6.84529692e-02 2.75053769e-01 8.75867367e-01 7.41352141e-01 8.49983573e-01 1.14114530e-01 1.43865064e-01 1.51780486e+00 -1.12965894e+00 -5.88464916e-01 -6.35993004e-01 9.07595277e-01 -8.87944281e-01 1.48275685e+00 3.51752758e-01 -6.86142087e-01 -5.74838817e-01 -1.01172698e+00 -2.39397869e-01 -6.18711591e-01 3.67911994e-01 2.27056846e-01 4.94215608e-01 -7.04413116e-01 3.59338224e-02 -5.72508574e-01 -2.79114723e-01 5.12977719e-01 3.97889540e-02 -4.01004821e-01 -4.48192656e-01 -1.48304355e+00 6.26806796e-01 3.51671249e-01 3.30989808e-02 -9.19121027e-01 -5.21556318e-01 -1.12965524e+00 -1.62394732e-01 2.73365408e-01 -8.41866553e-01 1.28901958e+00 -1.09489429e+00 -1.39064860e+00 1.23196125e+00 -2.47995973e-01 -2.24365398e-01 3.22077066e-01 -3.14049959e-01 -5.70810854e-01 -2.15450019e-01 5.15995681e-01 3.96210730e-01 9.29510057e-01 -1.39327157e+00 -5.51613688e-01 -7.10698664e-01 2.17353433e-01 1.02785289e-01 -6.29945993e-01 7.94457570e-02 -4.91247863e-01 -9.41015661e-01 -3.24344009e-01 -1.08787453e+00 -8.80579725e-02 -3.66834342e-01 -4.80261892e-01 -3.64879757e-01 8.65959346e-01 -6.12481356e-01 1.08448660e+00 -2.34886742e+00 1.55180961e-01 -2.01663107e-01 -1.23686660e-02 3.68095338e-01 -4.00921553e-01 4.14727807e-01 -1.43620893e-01 -8.79011974e-02 -4.62091923e-01 -7.06284523e-01 1.61426425e-01 2.36227065e-02 -4.31278735e-01 2.32980952e-01 4.32117820e-01 8.07243943e-01 -8.11225951e-01 -3.30853820e-01 -4.10494097e-02 5.46972930e-01 -4.01594698e-01 4.31259513e-01 -4.02993023e-01 6.32054865e-01 -8.31123054e-01 7.30290830e-01 9.02394056e-01 -4.14645463e-01 1.07340433e-01 -1.60721272e-01 2.32278541e-01 4.54024166e-01 -9.39315796e-01 1.98470402e+00 -8.70983720e-01 2.16839328e-01 1.55565128e-01 -1.28715551e+00 1.19818604e+00 2.45855868e-01 2.80216664e-01 -7.06105411e-01 3.31004441e-01 3.18278641e-01 -2.88729131e-01 -2.94713080e-01 3.38758737e-01 -5.80493033e-01 -6.86629474e-01 5.27614713e-01 2.97343612e-01 -2.10438296e-01 2.71277815e-01 1.42628267e-01 7.20186114e-01 2.17878655e-01 3.24095547e-01 -2.88955063e-01 7.43025541e-01 1.50232002e-01 7.53351092e-01 3.27858925e-01 -1.17880143e-01 7.37842321e-01 5.34048975e-01 -3.55968207e-01 -8.93661976e-01 -8.65854084e-01 -1.85245469e-01 1.38496101e+00 6.95012137e-02 -4.02888596e-01 -7.47354388e-01 -1.24131298e+00 -1.27120316e-01 7.11610436e-01 -7.44317532e-01 -2.44699433e-01 -2.17547074e-01 -9.49401140e-01 3.92611951e-01 4.86942500e-01 5.90559542e-01 -1.03137493e+00 2.27220505e-01 1.57316968e-01 -4.18092877e-01 -1.31920731e+00 -5.76256454e-01 1.91003487e-01 -6.31261051e-01 -9.23762023e-01 -7.77190685e-01 -9.86889362e-01 5.17399549e-01 2.49795109e-01 1.35334623e+00 -4.39242572e-01 1.69319451e-01 1.24740884e-01 -7.21976936e-01 -5.47031224e-01 -5.06282270e-01 4.56949711e-01 -1.09947793e-01 2.48970032e-01 7.85584748e-01 -4.93934512e-01 -4.75910008e-01 4.70343620e-01 -9.63216424e-01 2.23867986e-02 5.16034245e-01 1.00501478e+00 7.02671826e-01 -8.77108350e-02 9.35281396e-01 -1.36510706e+00 8.45130920e-01 -6.76869273e-01 -5.04255891e-01 8.34598020e-02 -3.83551300e-01 -1.11332849e-01 9.58567560e-01 -1.89709619e-01 -1.29509974e+00 5.86946458e-02 -4.34769422e-01 -3.03892970e-01 -4.07077223e-01 6.78589225e-01 -7.80191958e-01 4.33119953e-01 4.45666790e-01 3.72690976e-01 -1.98085427e-01 -6.66201472e-01 5.21372378e-01 8.60741615e-01 1.99859381e-01 -8.08593035e-01 7.08305836e-01 4.95442182e-01 -5.33470333e-01 -3.36478502e-01 -1.52487421e+00 -6.20527923e-01 -5.84679127e-01 1.03265077e-01 8.91720653e-01 -1.30961645e+00 2.41968571e-03 6.79559171e-01 -1.06702840e+00 -3.30421507e-01 -1.90550119e-01 9.33983698e-02 -4.61880565e-01 7.68792704e-02 -4.61572111e-01 -3.58724385e-01 -4.18094903e-01 -1.22638226e+00 1.39180672e+00 2.09330201e-01 -1.79238871e-01 -1.29899275e+00 4.54468012e-01 6.94745183e-01 1.15195319e-01 1.50850536e-02 8.14770162e-01 -1.04094863e+00 -5.97311147e-02 -1.82389870e-01 -3.12990248e-01 8.10359597e-01 3.73485416e-01 -3.52645755e-01 -1.26838052e+00 -4.45854574e-01 2.22386241e-01 -7.20938861e-01 7.78698266e-01 8.64309445e-02 1.12324846e+00 -1.11589894e-01 -2.59259552e-01 5.09115517e-01 1.33302367e+00 -1.56283490e-02 2.53062010e-01 4.73622859e-01 7.23704040e-01 6.07000947e-01 9.94488657e-01 5.22047162e-01 6.05563760e-01 6.12840354e-01 2.67091841e-01 -1.88704446e-01 -1.05039380e-01 -3.77343595e-01 3.62432957e-01 1.02931249e+00 4.42468315e-01 -4.97655213e-01 -8.71077657e-01 9.45658386e-01 -1.67541027e+00 -5.12980878e-01 2.43344326e-02 1.78044105e+00 1.12754357e+00 8.52214396e-02 1.73793644e-01 -1.26729375e-02 6.25415444e-01 4.43036407e-01 -6.21635020e-01 -3.54849964e-01 -2.04766393e-01 8.49369243e-02 -7.85566941e-02 1.62730142e-01 -1.40363729e+00 1.04285407e+00 4.85806036e+00 1.02527332e+00 -1.03146291e+00 4.31866974e-01 6.97675169e-01 2.79797968e-02 -4.38535869e-01 -9.22049284e-02 -9.41244662e-01 6.50181472e-01 7.48254836e-01 -2.28252530e-01 -1.07167363e-01 1.23423719e+00 -2.62543000e-02 3.68661582e-01 -9.34741378e-01 8.27427208e-01 1.96294356e-02 -9.40096974e-01 1.49436712e-01 1.09310346e-02 9.78017211e-01 7.81313330e-02 2.00058848e-01 6.69043958e-01 4.91791397e-01 -6.49387896e-01 4.49801177e-01 6.03355356e-02 8.07781339e-01 -8.39504063e-01 8.74560118e-01 2.81135499e-01 -1.02077115e+00 2.06296816e-01 -3.26310873e-01 8.39795172e-02 2.51018494e-01 9.98148263e-01 -5.94163656e-01 8.63956273e-01 7.15632498e-01 1.08889675e+00 -4.76960659e-01 4.30709809e-01 -3.72979939e-01 5.53998947e-01 2.02312637e-02 1.04360841e-01 4.18190658e-01 -3.78843963e-01 3.38774204e-01 1.39783847e+00 2.37498343e-01 -2.31892794e-01 1.52334765e-01 7.99465001e-01 -3.92140299e-01 2.97240436e-01 -6.96474612e-01 -1.23126633e-01 2.87141919e-01 1.48237467e+00 -3.83378386e-01 -2.45124295e-01 -8.85239363e-01 9.97460544e-01 4.71750140e-01 3.27971578e-01 -8.26401472e-01 -3.63423645e-01 1.03435314e+00 3.25334165e-03 2.99276620e-01 -5.58593720e-02 -3.88806701e-01 -1.53299975e+00 1.35205045e-01 -1.23448551e+00 5.49251914e-01 -6.32398963e-01 -2.03331375e+00 8.06355774e-01 -2.67832637e-01 -1.46140027e+00 -2.68723607e-01 -7.50008047e-01 -4.08582181e-01 1.02983403e+00 -1.71985650e+00 -1.50668466e+00 -2.73378819e-01 8.43748212e-01 7.11876273e-01 -2.61134237e-01 8.94838095e-01 5.42619944e-01 -6.00988567e-01 6.71536326e-01 2.64643103e-01 3.81261677e-01 1.22399938e+00 -1.17480075e+00 4.32311058e-01 8.22434187e-01 1.85462777e-02 4.28257674e-01 5.04460990e-01 -4.69672650e-01 -1.09549773e+00 -1.38067043e+00 7.93597460e-01 -6.41771793e-01 9.38298702e-01 -7.04252958e-01 -1.05604708e+00 8.13422203e-01 2.18402475e-01 8.68617650e-03 1.03628540e+00 3.97307903e-01 -5.68119466e-01 -1.78650990e-01 -7.92099476e-01 3.42085540e-01 7.82845616e-01 -6.84679627e-01 -6.19184017e-01 3.18302542e-01 6.71203196e-01 -3.18227947e-01 -7.98899174e-01 4.22863156e-01 1.97812602e-01 -8.04823935e-01 7.28217721e-01 -5.78997672e-01 7.02087522e-01 -2.99107105e-01 -1.94533795e-01 -1.70760286e+00 -2.85686497e-02 -1.64087519e-01 2.95511454e-01 1.70933676e+00 6.36881888e-01 -7.58109152e-01 5.95821023e-01 3.13770026e-01 -1.83893457e-01 -7.59719968e-01 -6.69208169e-01 -7.78245628e-01 4.86649841e-01 -5.64119637e-01 6.95058405e-01 1.25141156e+00 -1.50569022e-01 7.05737710e-01 -3.89367044e-01 -2.22664233e-03 4.11244690e-01 6.80929601e-01 9.29000854e-01 -1.07991052e+00 -1.40700787e-01 -2.86488801e-01 -7.64542865e-03 -1.12922430e+00 5.07856131e-01 -9.99770105e-01 9.48524103e-03 -1.54405153e+00 3.04513901e-01 -5.06728053e-01 -3.18245739e-01 5.43010950e-01 -3.45683992e-01 2.98479825e-01 1.11364260e-01 9.03235376e-02 -7.51419544e-01 9.68585014e-01 1.43225598e+00 -2.17981592e-01 1.34907672e-02 1.79489240e-01 -1.16199458e+00 7.46013999e-01 9.26812828e-01 -6.95470989e-01 -4.82749701e-01 -6.10621929e-01 3.16919029e-01 -2.12571517e-01 1.03110097e-01 -5.15043378e-01 -1.53135970e-01 1.50352987e-02 5.25881499e-02 -4.05746281e-01 3.96123081e-01 -6.54119790e-01 -3.77218664e-01 -9.50839520e-02 -2.27084041e-01 -1.24181964e-01 2.94782221e-01 5.75059116e-01 -8.32759321e-01 -9.20631662e-02 8.71066451e-01 1.48745542e-02 -6.50831997e-01 3.87654424e-01 4.62869322e-03 5.88293552e-01 8.86064768e-01 2.96696126e-01 -3.16293597e-01 -3.23681176e-01 -7.12979913e-01 2.74766803e-01 5.38416803e-01 6.57114685e-01 3.04289758e-01 -1.44194782e+00 -9.16796088e-01 1.70543313e-01 6.31947637e-01 2.75151014e-01 4.59360093e-01 5.39814413e-01 3.11340075e-02 4.48343366e-01 -4.66725491e-02 -4.52355206e-01 -9.89449024e-01 5.95074713e-01 1.93809494e-01 -6.85936570e-01 -1.76093340e-01 9.59417105e-01 8.70528460e-01 -8.88313830e-01 -2.65160054e-01 2.08820328e-02 -1.62994668e-01 2.44324654e-01 4.83159035e-01 -1.35325894e-01 1.63755432e-01 -7.30007410e-01 -3.62643152e-01 5.89609087e-01 -3.69096935e-01 1.15393095e-01 1.34515905e+00 -3.52266461e-01 4.38594259e-02 4.51455474e-01 1.47764897e+00 3.31905037e-02 -1.26628840e+00 -5.92477262e-01 -2.61952907e-01 -3.43509793e-01 -9.14555937e-02 -1.02056813e+00 -1.17230308e+00 1.04088104e+00 1.66218042e-01 1.93375543e-01 1.45565665e+00 2.88495362e-01 8.70727658e-01 -4.63223122e-02 2.02440202e-01 -1.06803548e+00 1.47756740e-01 6.34154916e-01 9.52971339e-01 -1.57655597e+00 -2.56370723e-01 -4.16688770e-01 -1.13577282e+00 8.51621985e-01 7.65860915e-01 4.84690256e-03 7.14087665e-01 2.61598974e-01 3.77694070e-01 -1.56273380e-01 -5.30896664e-01 -1.68483421e-01 2.21259445e-01 5.75464725e-01 5.13545930e-01 1.09969907e-01 -2.47534633e-01 1.36234891e+00 -2.18615159e-01 -1.69157758e-02 1.59617752e-01 7.97218740e-01 1.04426645e-01 -1.56040418e+00 -1.11404851e-01 1.31656975e-01 -4.84721452e-01 -7.24040344e-02 -3.78359407e-01 9.15713787e-01 2.37637497e-02 9.77501571e-01 -3.06454897e-01 -2.95814455e-01 5.48429370e-01 2.51832217e-01 4.62594032e-02 -7.88734615e-01 -4.06407028e-01 1.62957355e-01 2.00470299e-01 -3.74952495e-01 -5.94832778e-01 -7.90298879e-01 -8.79216611e-01 -9.40515250e-02 -1.24485783e-01 1.35490060e-01 6.19146466e-01 1.02006364e+00 5.24365783e-01 5.48899949e-01 7.89825320e-01 -4.24098253e-01 -3.33600730e-01 -1.12044442e+00 -7.66579926e-01 7.03673601e-01 1.95837602e-01 -5.58012605e-01 -3.09500992e-01 1.27024502e-01]
[11.409918785095215, 6.688283443450928]
c89320be-12f3-4377-96c4-8c26ca0b17da
applade-adjustable-plug-and-play-audio
2202.08028
null
https://arxiv.org/abs/2202.08028v1
https://arxiv.org/pdf/2202.08028v1.pdf
APPLADE: Adjustable Plug-and-play Audio Declipper Combining DNN with Sparse Optimization
In this paper, we propose an audio declipping method that takes advantages of both sparse optimization and deep learning. Since sparsity-based audio declipping methods have been developed upon constrained optimization, they are adjustable and well-studied in theory. However, they always uniformly promote sparsity and ignore the individual properties of a signal. Deep neural network (DNN)-based methods can learn the properties of target signals and use them for audio declipping. Still, they cannot perform well if the training data have mismatches and/or constraints in the time domain are not imposed. In the proposed method, we use a DNN in an optimization algorithm. It is inspired by an idea called plug-and-play (PnP) and enables us to promote sparsity based on the learned information of data, considering constraints in the time domain. Our experiments confirmed that the proposed method is stable and robust to mismatches between training and test data.
['Yasuhiro Oikawa', 'Masahiro Yasuda', 'Kohei Yatabe', 'Tomoro Tanaka']
2022-02-16
null
null
null
null
['audio-declipping']
['audio']
[ 1.70234248e-01 -2.61424780e-01 -4.06709731e-01 -2.09704831e-01 -3.48402977e-01 -1.63481340e-01 1.83260784e-01 -2.15682402e-01 -2.50984550e-01 6.28667653e-01 3.86760324e-01 1.35867625e-01 -3.72011930e-01 -5.62796414e-01 -6.23879611e-01 -8.12322497e-01 4.71422449e-02 9.07612741e-02 -4.41389084e-02 -1.56839028e-01 4.66882512e-02 2.67460614e-01 -1.67365491e+00 1.20070711e-01 8.18417251e-01 1.13082230e+00 2.18331248e-01 2.70738661e-01 -2.81894729e-02 6.58674240e-01 -5.78791142e-01 5.68278842e-02 4.08926427e-01 -4.57522631e-01 -5.02954572e-02 1.16270222e-01 2.01859713e-01 -9.54818130e-02 -6.54495299e-01 1.09708846e+00 8.19797516e-01 1.64636716e-01 2.35609084e-01 -1.22689331e+00 -3.42748076e-01 8.06033432e-01 -3.75740051e-01 1.34094283e-01 3.58628362e-01 -5.21135107e-02 8.97429407e-01 -9.35171902e-01 3.07558328e-01 8.56263995e-01 9.33679998e-01 2.97995657e-01 -1.01464176e+00 -8.99804354e-01 2.68186688e-01 3.82211685e-01 -1.42413199e+00 -6.28036916e-01 1.38708997e+00 -2.12608874e-01 4.52723145e-01 3.53464931e-01 9.91642475e-01 1.09407127e+00 -1.00810239e-02 9.62114573e-01 6.93052769e-01 -4.35685843e-01 3.20448846e-01 2.04827487e-02 -2.80946791e-01 3.12790334e-01 -1.46227807e-01 3.75371367e-01 -9.01977122e-01 -8.02105591e-02 6.16526365e-01 5.22120595e-02 -6.26741230e-01 -2.79622257e-01 -1.23263466e+00 7.94894755e-01 2.21199036e-01 4.34052259e-01 -3.31719875e-01 -1.21248603e-01 4.74900573e-01 3.83876175e-01 2.46353850e-01 4.94673938e-01 -2.81389832e-01 -1.71187803e-01 -1.27701974e+00 2.20973253e-01 7.21675336e-01 7.93079615e-01 5.09415150e-01 8.20479751e-01 -1.13360234e-01 9.60352063e-01 1.84670284e-01 3.42585683e-01 9.81607318e-01 -8.33116353e-01 4.67633128e-01 1.75290704e-01 -5.97708151e-02 -1.42797196e+00 -5.77522516e-01 -9.21701491e-01 -1.08396256e+00 -3.60228558e-04 2.91065812e-01 -3.46511930e-01 -6.90119982e-01 1.84349239e+00 2.99074769e-01 7.54160941e-01 3.38919200e-02 9.94140387e-01 7.63227165e-01 6.93660438e-01 -3.15374911e-01 -5.48751473e-01 7.94128060e-01 -7.55608499e-01 -1.06459653e+00 -9.85901728e-02 2.47549146e-01 -7.58002222e-01 1.09058678e+00 8.16623688e-01 -1.03530550e+00 -7.01698184e-01 -1.28069985e+00 2.85243094e-01 3.09669450e-02 1.55388460e-01 5.49919426e-01 5.71123719e-01 -8.00743282e-01 5.99976659e-01 -7.23840475e-01 7.31069446e-02 -7.12671652e-02 4.63138133e-01 -2.18660757e-01 2.33337656e-01 -1.45359659e+00 3.99049997e-01 4.18718606e-01 4.81540084e-01 -1.01693046e+00 -6.50976121e-01 -8.00484598e-01 2.83814788e-01 5.24868369e-01 -4.19136494e-01 1.06342387e+00 -1.12680924e+00 -1.98308003e+00 3.65845621e-01 1.17411770e-01 -5.38217604e-01 3.30312699e-01 -3.84778082e-01 -6.85302019e-01 1.55250221e-01 -2.43488908e-01 1.38510033e-01 1.47078991e+00 -7.95521498e-01 -5.25412321e-01 3.79739180e-02 -3.50950137e-02 1.67090312e-01 -6.23452783e-01 -3.32236290e-01 -3.44071090e-01 -1.07251191e+00 5.60329795e-01 -6.80707574e-01 -1.69294342e-01 -8.38437825e-02 -5.92399120e-01 2.37647474e-01 1.08264124e+00 -5.08133769e-01 1.53098083e+00 -2.51633668e+00 1.39128536e-01 4.05147403e-01 1.38568491e-01 4.11173642e-01 -2.22312436e-01 4.65033531e-01 -2.36421451e-01 -2.39020914e-01 -1.35052860e-01 -3.60765278e-01 -1.24619640e-02 1.57270178e-01 -3.16402674e-01 5.64376771e-01 -8.44758283e-03 3.59489322e-01 -7.35288024e-01 -5.02030551e-01 2.20388293e-01 4.54683214e-01 -9.48925853e-01 4.15745825e-01 -1.99858770e-01 6.87509060e-01 -3.23493510e-01 5.92954516e-01 6.59850478e-01 1.70088664e-01 2.71769643e-01 -4.38078254e-01 -2.30089143e-01 2.42219031e-01 -1.47357571e+00 1.65328193e+00 -5.48171699e-01 6.11285090e-01 4.30942833e-01 -1.56194901e+00 1.13687348e+00 6.38044834e-01 7.25924134e-01 -5.72086394e-01 1.28356650e-01 3.28625202e-01 -7.36403838e-03 -5.92192650e-01 2.55879611e-01 -1.87960729e-01 3.29051137e-01 1.87813520e-01 1.95963219e-01 -2.95847267e-01 7.55273551e-02 -2.56047159e-01 7.07705379e-01 -9.89008546e-02 2.02690572e-01 -1.27500683e-01 6.55405104e-01 -6.22433662e-01 1.08860278e+00 6.92398906e-01 6.33105487e-02 7.84379482e-01 5.44210374e-01 -3.68173867e-01 -9.11229551e-01 -6.42436981e-01 -2.57323742e-01 1.03012896e+00 8.60896185e-02 -5.05317748e-01 -4.30583119e-01 -1.96828440e-01 -1.05940223e-01 3.30922872e-01 -3.20102006e-01 -3.36644471e-01 -6.90962315e-01 -6.01123273e-01 4.92846072e-01 3.27728719e-01 4.61393863e-01 -7.87812114e-01 -2.58300632e-01 5.70245266e-01 -1.87439084e-01 -1.11467636e+00 -6.25259995e-01 2.72701651e-01 -9.84469175e-01 -8.69670987e-01 -7.34770238e-01 -9.58044291e-01 3.61361295e-01 3.96006256e-02 7.25708365e-01 -2.78310440e-02 2.39036292e-01 1.86815977e-01 -4.02565718e-01 -3.98756206e-01 -1.05851784e-01 1.88907564e-01 2.88541853e-01 4.98429328e-01 -4.54932749e-02 -1.35231781e+00 -3.51619363e-01 4.62983251e-01 -9.14111495e-01 -1.46159649e-01 6.52005315e-01 1.03506887e+00 6.78694844e-01 3.05798829e-01 7.08979785e-01 -6.87626719e-01 7.23764479e-01 -4.88561690e-01 -7.41681397e-01 -3.15122232e-02 -4.90785390e-01 2.90734116e-02 9.58603382e-01 -8.48478734e-01 -6.82150781e-01 1.43166602e-01 -3.79079044e-01 -8.61634195e-01 2.02909604e-01 9.60860491e-01 -4.28620577e-01 -1.55287415e-01 4.46105063e-01 4.72517133e-01 -5.24240658e-02 -6.79470241e-01 6.89653829e-02 5.52077889e-01 5.87335050e-01 -6.16707325e-01 7.03664064e-01 4.07486618e-01 -6.45557046e-02 -9.57749486e-01 -8.27103078e-01 -2.20100775e-01 -2.69464761e-01 -2.24631727e-01 3.65850389e-01 -8.23981643e-01 -6.81614220e-01 6.57041669e-01 -8.88522327e-01 -1.11280650e-01 -3.50543380e-01 9.68157947e-01 -4.43035811e-01 4.99219090e-01 -2.46903121e-01 -7.23985493e-01 -1.51996791e-01 -9.47194338e-01 6.38566375e-01 2.10865721e-01 4.65792380e-02 -8.44108939e-01 1.54407835e-02 -1.17312089e-01 6.19303882e-01 1.85629562e-01 6.53086305e-01 -6.41120732e-01 -4.12985235e-01 -3.55231255e-01 2.85088718e-01 5.14574885e-01 1.92155749e-01 5.44911139e-02 -8.73613000e-01 -3.06784064e-01 6.66971803e-01 -2.24632218e-01 6.51781201e-01 6.85266614e-01 1.41968036e+00 -6.91672444e-01 4.47088704e-02 1.08124685e+00 1.25298846e+00 5.74728614e-03 6.12388372e-01 2.42213562e-01 5.81759095e-01 4.04171079e-01 4.35778648e-01 9.25606072e-01 -8.74599144e-02 7.47236907e-01 7.01335013e-01 -2.02993751e-02 1.05802029e-01 -3.33038300e-01 4.24538702e-01 1.22515047e+00 -3.48465852e-02 -1.12764135e-01 -5.35500526e-01 5.16069472e-01 -1.84746850e+00 -9.91307199e-01 1.83207884e-01 2.16507435e+00 1.08978581e+00 3.93333972e-01 6.13826476e-02 6.94248438e-01 9.05313551e-01 4.62840319e-01 -5.89255750e-01 -9.93160978e-02 -2.58814365e-01 3.23655158e-01 2.09797189e-01 4.73614514e-01 -9.12908256e-01 4.76867497e-01 6.32942104e+00 9.92653489e-01 -1.65719986e+00 2.05885302e-02 2.84164175e-02 -2.87122130e-01 -3.65355045e-01 -1.86170012e-01 -6.77115381e-01 6.72672391e-01 5.91785669e-01 -1.59943715e-01 4.37551171e-01 8.62636447e-01 4.59222913e-01 2.92319536e-01 -1.12410331e+00 1.15756798e+00 -1.09968774e-01 -1.22148144e+00 -2.44419262e-01 -4.77549404e-01 6.37091458e-01 -2.47404143e-01 3.40770662e-01 2.99740314e-01 -4.28259939e-01 -1.02975583e+00 9.21099186e-01 5.01263738e-01 5.44272900e-01 -6.03999138e-01 7.36491442e-01 5.08687139e-01 -1.21194434e+00 -2.76491046e-01 -3.55743498e-01 -2.62428641e-01 1.58575907e-01 1.02518630e+00 -6.17551088e-01 4.98982608e-01 5.28120518e-01 1.02146304e+00 2.48726718e-02 1.28619385e+00 -5.36140621e-01 9.26912367e-01 -5.31568050e-01 -2.22467985e-02 1.60993740e-01 -2.82103539e-01 8.88170242e-01 9.85152125e-01 4.32858855e-01 -1.09300509e-01 3.17310691e-01 7.13959813e-01 1.01666942e-01 1.00132287e-01 -4.68342811e-01 -5.67085929e-02 6.19534135e-01 8.48430097e-01 -1.54234990e-01 1.85636766e-02 -3.78638446e-01 2.92353123e-01 -9.24138427e-02 5.28421700e-01 -8.55894506e-01 -5.54160357e-01 5.59551716e-01 1.44842818e-01 4.90144342e-01 -3.36705565e-01 -1.60647392e-01 -1.35431516e+00 1.87889919e-01 -1.16023397e+00 2.97598362e-01 -5.06604135e-01 -1.19849288e+00 5.04370928e-01 -1.65493265e-01 -1.68246210e+00 -2.60283828e-01 -1.88460618e-01 -7.34634459e-01 4.69509155e-01 -1.58027840e+00 -8.23803067e-01 -1.97328597e-01 9.92383957e-01 4.35693890e-01 -1.91760838e-01 5.90457737e-01 6.63323104e-01 -5.07269561e-01 6.41437829e-01 2.33926684e-01 2.03380641e-02 5.36171436e-01 -8.11782777e-01 -3.58755082e-01 8.37854326e-01 3.82076949e-01 5.70591927e-01 9.37339664e-01 -2.77242720e-01 -1.32787406e+00 -7.89909422e-01 5.95409453e-01 4.06458020e-01 6.38449728e-01 -4.07631367e-01 -9.67411458e-01 3.91062558e-01 1.54189691e-01 4.08216529e-02 7.06810892e-01 1.79389998e-01 -1.37087792e-01 -5.58433831e-01 -8.65910232e-01 3.75929952e-01 7.87383556e-01 -6.44281089e-01 -6.39196336e-01 3.74783814e-01 7.52489567e-01 -7.31376052e-01 -6.16406441e-01 4.84549433e-01 6.03667974e-01 -1.14263880e+00 9.50290024e-01 -4.89831805e-01 1.45043239e-01 -3.44723046e-01 -2.85589814e-01 -1.27745819e+00 -2.37286419e-01 -1.02752578e+00 -3.84309828e-01 1.07883668e+00 3.00647289e-01 -6.31266177e-01 8.59032393e-01 8.74188617e-02 -4.70248252e-01 -7.34392464e-01 -1.05923975e+00 -1.01854575e+00 -3.48481804e-01 -6.51415825e-01 7.98277020e-01 1.05269241e+00 1.89513013e-01 4.94006425e-02 -9.49840724e-01 4.64223385e-01 4.13766891e-01 1.06438115e-01 5.45059562e-01 -1.02755177e+00 -6.03156507e-01 -2.68506050e-01 -3.85366082e-01 -1.16469550e+00 1.77407861e-01 -5.75253427e-01 2.22267769e-02 -9.15397584e-01 -4.40944403e-01 -5.71363866e-01 -5.55077136e-01 3.91726881e-01 5.05614914e-02 6.57437444e-02 2.54265487e-01 3.17669809e-01 -2.49336287e-01 9.01744425e-01 1.14160228e+00 -3.27867627e-01 -5.49933195e-01 4.61076647e-01 -5.23127139e-01 7.72734940e-01 9.18020725e-01 -5.84089756e-01 -5.57635903e-01 -4.73383933e-01 2.90574759e-01 1.17465325e-01 2.55557802e-02 -1.32074654e+00 3.07426780e-01 -1.72838077e-01 -5.70319518e-02 -5.06586909e-01 5.90094745e-01 -1.02944505e+00 2.22414598e-01 3.74150962e-01 -3.68018329e-01 -1.80965319e-01 2.05833018e-01 5.25562942e-01 -7.49883890e-01 -3.37437302e-01 8.21473718e-01 1.23957731e-01 -4.32848960e-01 3.87218028e-01 -3.37025404e-01 1.25324696e-01 5.99204183e-01 -1.89673796e-01 3.26267421e-01 -8.46279502e-01 -8.50917280e-01 1.47224814e-01 -3.70358303e-02 8.78683627e-02 7.19093621e-01 -1.54097998e+00 -6.36039138e-01 5.25216699e-01 -2.69162685e-01 3.59587371e-02 1.45069212e-01 1.02256441e+00 -1.69741824e-01 3.47350448e-01 -2.33761311e-01 -6.94626570e-01 -9.56256270e-01 5.53173780e-01 2.33121917e-01 -1.74697340e-01 -5.79064071e-01 8.40997636e-01 1.15057170e-01 -3.39462906e-01 7.18041897e-01 -6.06331408e-01 -2.68382728e-01 1.16769008e-01 4.04928178e-01 1.31719694e-01 1.49788365e-01 -2.60283649e-01 -1.75517187e-01 6.65525258e-01 2.86628544e-01 -1.28416613e-01 1.52141416e+00 1.35374325e-03 5.71677648e-02 4.13938701e-01 1.18352556e+00 5.07582307e-01 -1.11696863e+00 -3.91503900e-01 -2.63314247e-01 -5.60811102e-01 1.46087527e-01 -2.10664332e-01 -1.48478842e+00 8.34377170e-01 3.08430105e-01 5.01395166e-01 1.47950935e+00 -5.12238443e-01 9.88830566e-01 3.10325176e-01 1.28319129e-01 -1.27968466e+00 2.90087342e-01 4.59844857e-01 8.72530818e-01 -8.22149336e-01 3.56209539e-02 -3.42794567e-01 -2.73709983e-01 1.31431878e+00 4.84264225e-01 -2.18489975e-01 8.76685977e-01 3.38989347e-01 1.90416933e-03 1.58100113e-01 -5.80281436e-01 6.23866729e-02 1.87284172e-01 8.21857929e-01 1.62825376e-01 -3.15823764e-01 -3.51114482e-01 8.84396434e-01 -3.31645250e-01 2.02475592e-01 4.11941290e-01 7.20858335e-01 -4.81673896e-01 -1.00510836e+00 -5.46612561e-01 2.80596167e-01 -4.02610779e-01 -1.50752172e-01 9.41095129e-02 6.96246743e-01 2.22225443e-01 8.05057824e-01 -2.55202204e-01 -6.25251472e-01 3.35867614e-01 -1.65284932e-01 2.30249181e-01 -5.24414182e-01 -4.42809492e-01 2.81590730e-01 -6.63167611e-02 -6.47355914e-01 -5.41179478e-01 -5.31023920e-01 -9.67127264e-01 -1.57895699e-01 -7.37089813e-01 4.50619221e-01 5.47155023e-01 8.98726344e-01 3.15312743e-01 5.16821802e-01 9.25888777e-01 -9.02855098e-01 -7.31965899e-01 -7.61561692e-01 -9.58475292e-01 1.42071992e-02 6.41419172e-01 -7.12366879e-01 -7.06666172e-01 -3.69375683e-02]
[15.41474723815918, 5.530331611633301]
f24ef454-23c4-4353-a239-77834edc74d7
winogavil-gamified-association-benchmark-to
2207.12576
null
https://arxiv.org/abs/2207.12576v2
https://arxiv.org/pdf/2207.12576v2.pdf
WinoGAViL: Gamified Association Benchmark to Challenge Vision-and-Language Models
While vision-and-language models perform well on tasks such as visual question answering, they struggle when it comes to basic human commonsense reasoning skills. In this work, we introduce WinoGAViL: an online game of vision-and-language associations (e.g., between werewolves and a full moon), used as a dynamic evaluation benchmark. Inspired by the popular card game Codenames, a spymaster gives a textual cue related to several visual candidates, and another player tries to identify them. Human players are rewarded for creating associations that are challenging for a rival AI model but still solvable by other human players. We use the game to collect 3.5K instances, finding that they are intuitive for humans (>90% Jaccard index) but challenging for state-of-the-art AI models, where the best model (ViLT) achieves a score of 52%, succeeding mostly where the cue is visually salient. Our analysis as well as the feedback we collect from players indicate that the collected associations require diverse reasoning skills, including general knowledge, common sense, abstraction, and more. We release the dataset, the code and the interactive game, allowing future data collection that can be used to develop models with better association abilities.
['Roy Schwartz', 'Gabriel Stanovsky', 'Mohit Bansal', 'Yuval Elovici', 'Ron Yosef', 'Nitzan Bitton Guetta', 'Yonatan Bitton']
2022-07-25
null
null
null
null
['visual-reasoning', 'general-knowledge', 'visual-reasoning', 'multimodal-association']
['computer-vision', 'miscellaneous', 'reasoning', 'time-series']
[-3.08838665e-01 1.77344412e-01 6.25441596e-02 1.66762710e-01 -3.57703209e-01 -9.31413412e-01 6.12249374e-01 3.03017706e-01 -5.28685093e-01 4.65638995e-01 7.38263205e-02 -4.22683030e-01 -6.76942170e-02 -5.40773034e-01 -6.84967041e-01 -1.62041515e-01 -3.23654599e-02 8.57490182e-01 3.63163978e-01 -6.42238259e-01 4.40248400e-01 -1.80186909e-02 -1.81247437e+00 6.14557266e-01 8.27094913e-01 7.71874666e-01 3.66110295e-01 6.90798879e-01 -1.55279726e-01 1.38721776e+00 -5.85621953e-01 -1.06875551e+00 3.31645697e-01 -4.67248768e-01 -8.69581997e-01 -4.69365269e-01 6.89171910e-01 -1.63226336e-01 -1.60568178e-01 9.71988797e-01 3.25800627e-01 2.02225998e-01 6.77321136e-01 -1.53504300e+00 -1.22184300e+00 8.93193364e-01 -6.30222321e-01 3.25950831e-01 7.41534472e-01 8.14531088e-01 1.50221968e+00 -1.08755231e+00 8.61928642e-01 1.28346097e+00 4.68677402e-01 6.24291956e-01 -1.08746290e+00 -7.97107875e-01 6.09615780e-02 8.32657635e-01 -1.14563882e+00 -1.68753527e-02 5.55066943e-01 -6.94807827e-01 1.10044396e+00 3.15644741e-01 1.17053652e+00 9.59448099e-01 -3.22650880e-01 8.80417049e-01 1.23428893e+00 -4.21597183e-01 2.56524414e-01 7.89722651e-02 2.58217286e-02 8.05616856e-01 2.94464916e-01 2.11546898e-01 -9.58564818e-01 4.46897857e-02 7.05011129e-01 -3.24486673e-01 9.21092033e-02 -5.49686432e-01 -1.40194392e+00 7.98119187e-01 8.02043557e-01 1.94054797e-01 -5.99172652e-01 2.63486505e-01 5.62740341e-02 1.27791896e-01 -3.06564957e-01 1.13832843e+00 4.69248779e-02 -5.03710747e-01 -4.78793621e-01 7.00813174e-01 7.14081883e-01 7.86946714e-01 6.00456953e-01 -1.30870953e-01 -3.87963921e-01 7.91743159e-01 1.25290781e-01 4.92618561e-01 2.02957243e-01 -1.19435942e+00 2.74206787e-01 8.10873687e-01 7.34079108e-02 -1.32624960e+00 -4.62279975e-01 -3.26962262e-01 -3.41452032e-01 7.71668792e-01 9.36194539e-01 3.63003239e-02 -6.23780966e-01 1.78612947e+00 6.00681305e-02 -6.96733743e-02 -7.64491688e-03 1.19032097e+00 1.34559643e+00 3.71536821e-01 3.87905508e-01 4.03282911e-01 1.75979149e+00 -1.07668877e+00 -3.10966760e-01 -9.47679460e-01 4.45780098e-01 -5.10144770e-01 1.65419900e+00 5.99026799e-01 -1.30756688e+00 -4.49342817e-01 -8.52500379e-01 -3.47504020e-01 -5.30739725e-01 -1.33113533e-01 1.12883961e+00 2.22413361e-01 -9.62207258e-01 1.41723543e-01 -1.93193197e-01 -5.22705138e-01 5.22054732e-01 -5.84164588e-03 -2.99364388e-01 -1.46373957e-01 -1.26161778e+00 1.32317400e+00 2.47673258e-01 -1.39010787e-01 -8.41222048e-01 -6.27342284e-01 -7.64024913e-01 -5.38558653e-03 5.29751360e-01 -7.73003519e-01 1.16059232e+00 -9.83729005e-01 -9.36756432e-01 1.43283236e+00 3.48562330e-01 -5.62682152e-01 6.40413046e-01 -1.75864413e-01 -1.31385187e-02 1.65031612e-01 3.19909871e-01 1.01078892e+00 4.82168525e-01 -1.33602166e+00 -5.81134439e-01 -1.22283563e-01 8.43446493e-01 3.85567635e-01 -3.94630432e-02 1.44421682e-01 -5.65075338e-01 -5.33308208e-01 -2.83136278e-01 -9.72097993e-01 2.27280278e-02 2.58963674e-01 -3.93516511e-01 -2.73391753e-01 9.45057347e-02 -6.23321772e-01 9.71568882e-01 -1.99262810e+00 3.76209021e-01 7.43010268e-02 5.91746986e-01 -2.82949004e-02 -1.46586373e-01 3.93208772e-01 -7.54458979e-02 1.14606127e-01 1.12315416e-01 -3.38211991e-02 2.87161916e-01 -7.90015515e-03 -1.32680163e-01 -1.43120989e-01 7.61573091e-02 1.44347382e+00 -1.21445322e+00 -6.50895298e-01 4.86343578e-02 -4.48946655e-03 -6.29257441e-01 7.04171509e-03 -2.93734223e-01 3.03027537e-02 9.27455872e-02 6.59723401e-01 2.72557825e-01 -4.67046946e-01 -6.72022253e-02 -8.98669567e-03 1.13416918e-01 5.86815923e-02 -8.18136752e-01 1.52454638e+00 -1.45507246e-01 9.21543539e-01 -2.73482382e-01 -3.58833224e-01 8.01775396e-01 -3.80106717e-01 -1.46245986e-01 -8.98404956e-01 -1.06136367e-01 -1.72568381e-01 5.93009174e-01 -6.69080377e-01 6.96985960e-01 -1.02024443e-01 -1.44204721e-01 3.65165234e-01 -2.06653103e-01 -5.72330236e-01 5.41880846e-01 6.97593987e-01 1.03514862e+00 9.84107256e-02 3.90821099e-01 -6.51538223e-02 1.42381536e-02 5.77613771e-01 1.41972795e-01 1.15228772e+00 -3.14948708e-01 3.78226429e-01 8.83219540e-01 -5.11957407e-01 -1.05017018e+00 -1.16372991e+00 6.18163705e-01 1.50903976e+00 4.46526319e-01 -5.95974982e-01 -5.04975855e-01 -3.34877670e-01 1.66180041e-02 1.08818245e+00 -9.40725505e-01 -2.36488178e-01 -2.01339871e-01 -1.83616087e-01 5.21797180e-01 6.80211961e-01 3.57276231e-01 -1.56233239e+00 -1.03083837e+00 -2.00172201e-01 -3.01062465e-01 -9.78510261e-01 -6.51142150e-02 -3.55566368e-02 -8.94415006e-02 -1.23592293e+00 -5.18863797e-01 -7.46874988e-01 3.27470422e-01 2.59345621e-01 1.75920451e+00 5.13110816e-01 -4.57443833e-01 6.13057196e-01 -4.05768156e-01 -7.30884016e-01 -2.30696023e-01 -4.27321494e-01 -2.04334274e-01 -5.31677186e-01 6.30684793e-01 -2.80188113e-01 -5.79484522e-01 1.32756293e-01 -4.84703988e-01 5.40996969e-01 6.07827723e-01 8.06339145e-01 3.33945423e-01 -3.72383475e-01 7.34881237e-02 -4.34770405e-01 9.02962804e-01 -5.01500249e-01 -2.80009806e-01 2.65053004e-01 -2.00628102e-01 -2.25218505e-01 3.13459933e-01 -5.83099246e-01 -5.62597156e-01 -1.44364655e-01 4.65307862e-01 -4.41657215e-01 1.89030226e-02 5.22934854e-01 3.28146189e-01 -8.87899771e-02 1.32464921e+00 1.05165847e-01 -8.86595249e-02 8.04626048e-02 7.36347020e-01 5.90631515e-02 8.29174101e-01 -8.35775793e-01 9.25052941e-01 2.54878312e-01 -1.42609179e-01 -6.28048599e-01 -8.15108597e-01 -2.01906845e-01 -3.30378026e-01 -5.37680209e-01 1.05738521e+00 -9.13144827e-01 -1.41596794e+00 2.11643934e-01 -1.30582523e+00 -6.51963472e-01 -3.35124969e-01 2.96476781e-01 -5.20307243e-01 5.61039262e-02 -3.82618308e-01 -8.16536844e-01 -1.65939573e-02 -8.43239009e-01 5.35460591e-01 5.53105772e-01 -6.51920795e-01 -6.27209485e-01 2.42145499e-03 7.57938921e-01 3.88719022e-01 1.13951363e-01 1.07215452e+00 -5.78490674e-01 -5.72044730e-01 1.26260761e-02 -5.80449343e-01 -2.47377023e-01 -4.78614002e-01 6.29112497e-02 -7.18853235e-01 2.58279890e-01 -7.32451677e-01 -9.34147596e-01 9.68419909e-01 1.66863263e-01 1.15202785e+00 3.52130160e-02 -1.69310465e-01 1.57056093e-01 9.82023060e-01 1.89113602e-01 7.16929138e-01 7.45689213e-01 8.12755764e-01 7.23346531e-01 5.71116269e-01 3.97354126e-01 9.56691027e-01 6.90725386e-01 7.86887527e-01 -1.30639896e-01 -1.52902946e-01 -3.46798062e-01 1.16739184e-01 -1.82326641e-02 -5.52579165e-01 -6.00700304e-02 -1.45490098e+00 6.36584818e-01 -1.98203015e+00 -1.30929887e+00 -1.33099988e-01 1.98912930e+00 8.39486182e-01 3.62582147e-01 5.76328278e-01 -1.89026505e-01 4.89984840e-01 -1.29782911e-02 -5.95615149e-01 -5.21865606e-01 -3.49171102e-01 2.71221220e-01 6.64304346e-02 5.41822374e-01 -9.04965997e-01 1.44272900e+00 6.63031149e+00 7.75102079e-01 -6.52825654e-01 -3.10224652e-01 5.91357708e-01 -2.02643156e-01 -4.53351617e-01 2.01327205e-01 -2.83972770e-01 2.08313599e-01 2.92903543e-01 -2.32604265e-01 8.14058542e-01 8.84085774e-01 -1.88440904e-01 -4.23807174e-01 -1.02643847e+00 1.33143425e+00 3.35163146e-01 -1.36821544e+00 1.09190039e-01 -1.87671646e-01 2.24051535e-01 -2.63070166e-01 2.39570886e-01 6.61628783e-01 7.57186353e-01 -1.70566893e+00 9.89288926e-01 6.48108363e-01 4.88309830e-01 -4.85179424e-01 3.29443067e-01 1.94389105e-01 -9.38258410e-01 -2.03724906e-01 -3.46127927e-01 -7.94051528e-01 -3.00639272e-01 -6.02979772e-02 -9.14101303e-01 3.71550210e-02 9.33931589e-01 5.36502540e-01 -1.11983502e+00 1.18006146e+00 -5.30619800e-01 1.76968887e-01 -1.94245204e-01 -6.64032280e-01 1.33897543e-01 7.00049698e-02 4.89765525e-01 9.42456305e-01 5.36833964e-02 2.54713833e-01 1.90775797e-01 1.32388222e+00 1.30956948e-01 1.85322449e-01 -5.50700009e-01 -2.18652308e-01 6.16652250e-01 1.22608769e+00 -6.44165218e-01 -3.02620173e-01 -2.88305670e-01 7.78609574e-01 7.36479640e-01 2.77827114e-01 -9.66093004e-01 -2.19808370e-01 6.71061099e-01 2.26743281e-01 7.31468201e-02 -2.22181797e-01 -6.19713306e-01 -8.88025880e-01 -1.22495227e-01 -1.12877333e+00 5.06546676e-01 -1.62850916e+00 -1.49757469e+00 4.95515168e-01 -1.27648830e-01 -1.03076100e+00 -2.09966287e-01 -8.35075974e-01 -7.68709302e-01 6.38127685e-01 -9.88955021e-01 -1.32833099e+00 -8.06694269e-01 5.95610142e-01 2.35893220e-01 -2.64739275e-01 6.95847213e-01 -3.94246727e-01 -1.86667800e-01 4.41861212e-01 -7.14486241e-01 3.01447779e-01 7.48856246e-01 -1.53034878e+00 5.27101338e-01 6.61609232e-01 5.42693973e-01 5.22423387e-01 1.01390362e+00 -5.99387169e-01 -1.26146376e+00 -2.14826256e-01 5.72870433e-01 -8.07505310e-01 9.95377421e-01 -2.97076523e-01 -6.75643504e-01 5.10313034e-01 4.32127982e-01 -6.52752891e-02 7.45921314e-01 3.75809431e-01 -7.90394485e-01 3.17314088e-01 -7.83747613e-01 1.15280426e+00 1.29592299e+00 -5.60337186e-01 -1.06516492e+00 3.02413583e-01 4.65863824e-01 -5.30766249e-01 -2.78184593e-01 -2.34589800e-01 8.01159859e-01 -1.19211221e+00 1.28048062e+00 -1.00839996e+00 1.00803792e+00 -4.00796026e-01 -5.42617440e-02 -1.36925507e+00 -6.45432413e-01 -4.50628161e-01 6.60835207e-02 8.22912097e-01 6.31216526e-01 -1.22475766e-01 7.50824451e-01 9.72328603e-01 3.26180398e-01 -5.13472140e-01 -5.46914816e-01 -6.17114365e-01 7.65273720e-02 -7.49270260e-01 2.27287918e-01 1.10687661e+00 4.98760819e-01 4.19484615e-01 -3.18578035e-01 -1.17986001e-01 5.59695661e-01 1.76266566e-01 1.04874182e+00 -1.31510234e+00 -6.59018934e-01 -1.03200662e+00 -4.53202963e-01 -6.91176891e-01 -1.04945935e-02 -8.62432599e-01 -8.77158940e-02 -1.75913680e+00 4.44645435e-01 -2.91178435e-01 -7.70606101e-02 8.43863606e-01 -4.07283306e-01 5.72903335e-01 8.15424621e-01 8.02774131e-02 -8.62017453e-01 1.21391742e-02 1.35881758e+00 -3.38767052e-01 -1.70429289e-01 -6.91618741e-01 -1.19574893e+00 9.09594595e-01 6.02398336e-01 2.93409731e-03 -2.61059284e-01 -4.38177288e-01 9.81095433e-01 -2.68197864e-01 1.04525626e+00 -1.09371054e+00 3.78711849e-01 -4.60397989e-01 5.56423545e-01 -1.94651976e-01 7.53182590e-01 -5.33496976e-01 -9.24429744e-02 4.16563094e-01 -4.32489187e-01 2.25442886e-01 4.45780426e-01 2.35893682e-01 7.56404772e-02 -8.19055736e-02 4.80688542e-01 -4.11521435e-01 -1.23769367e+00 -1.05548829e-01 -2.23709553e-01 5.26663125e-01 1.14874923e+00 -4.28819895e-01 -8.25219512e-01 -9.54544246e-01 -7.54408360e-01 4.29779232e-01 6.67065799e-01 5.08767545e-01 7.13201523e-01 -1.27718472e+00 -9.60419655e-01 -3.42151225e-01 6.92673802e-01 -3.04275393e-01 2.88544655e-01 5.92366338e-01 -7.24411845e-01 -1.12473600e-01 -6.06884897e-01 -3.58803689e-01 -1.20392084e+00 7.08817124e-01 2.13696212e-01 -5.90542518e-02 -5.86959422e-01 1.35161471e+00 4.36389744e-01 -6.22059181e-02 2.60458030e-02 -4.29488197e-02 -5.30506432e-01 1.47755325e-01 7.05287457e-01 2.03220285e-02 -5.74827850e-01 -4.80401427e-01 -6.22070253e-01 5.87213278e-01 7.11867809e-02 -1.92364708e-01 1.09461725e+00 2.26938292e-01 -1.66480348e-01 4.49991107e-01 1.41706169e-01 1.15149409e-01 -1.01968765e+00 -1.03550091e-01 -1.15223773e-01 -5.72239518e-01 -4.42394227e-01 -1.27584934e+00 -7.48617113e-01 8.33574891e-01 2.70916820e-01 3.09527993e-01 6.79483235e-01 4.30521339e-01 9.29095596e-02 5.77269256e-01 3.15847307e-01 -9.27266419e-01 5.84423244e-01 7.02583611e-01 1.24106050e+00 -1.39450693e+00 -3.61054093e-02 -1.08328901e-01 -1.35001051e+00 9.18774843e-01 1.20495903e+00 -1.40436009e-01 7.79506341e-02 6.12992756e-02 9.81868505e-02 -4.76791084e-01 -1.07581544e+00 -6.01082861e-01 4.25355643e-01 9.79250550e-01 3.76764923e-01 2.95186490e-01 -3.81786413e-02 7.26337016e-01 -8.64366055e-01 -3.48450065e-01 5.79731345e-01 4.42905933e-01 -4.03582335e-01 -4.28372204e-01 -4.67959970e-01 4.01444912e-01 7.20545426e-02 -5.74449003e-01 -9.64460135e-01 8.89134109e-01 2.32437804e-01 9.33360696e-01 2.45014414e-01 -5.37112057e-01 3.35555017e-01 -1.68323666e-01 5.61773300e-01 -5.00004530e-01 -6.87248826e-01 -5.72055042e-01 3.34822685e-01 -5.81145406e-01 -1.91493645e-01 -5.39848447e-01 -1.32148933e+00 -4.68436122e-01 1.13663279e-01 -1.53986558e-01 2.82169104e-01 8.07149291e-01 2.07389459e-01 3.97822678e-01 -3.46518546e-01 -7.46041358e-01 1.77051991e-01 -8.23884368e-01 -2.91331619e-01 7.47462988e-01 -1.66121304e-01 -9.47683990e-01 -2.22221106e-01 -1.57190934e-01]
[10.74134349822998, 1.9822757244110107]
88797494-0dc3-4003-90d5-9f1b8b9bda9a
query2doc-query-expansion-with-large-language
2303.07678
null
https://arxiv.org/abs/2303.07678v1
https://arxiv.org/pdf/2303.07678v1.pdf
Query2doc: Query Expansion with Large Language Models
This paper introduces a simple yet effective query expansion approach, denoted as query2doc, to improve both sparse and dense retrieval systems. The proposed method first generates pseudo-documents by few-shot prompting large language models (LLMs), and then expands the query with generated pseudo-documents. LLMs are trained on web-scale text corpora and are adept at knowledge memorization. The pseudo-documents from LLMs often contain highly relevant information that can aid in query disambiguation and guide the retrievers. Experimental results demonstrate that query2doc boosts the performance of BM25 by 3% to 15% on ad-hoc IR datasets, such as MS-MARCO and TREC DL, without any model fine-tuning. Furthermore, our method also benefits state-of-the-art dense retrievers in terms of both in-domain and out-of-domain results.
['Furu Wei', 'Nan Yang', 'Liang Wang']
2023-03-14
null
null
null
null
['memorization']
['natural-language-processing']
[-1.61446646e-01 -1.44585773e-01 -5.28267443e-01 -5.15226722e-02 -1.69721806e+00 -5.92105746e-01 1.14944983e+00 4.35477585e-01 -8.56985927e-01 7.95272231e-01 5.96633375e-01 1.22047193e-01 -3.40278178e-01 -7.18109727e-01 -5.98638952e-01 -2.06426129e-01 -8.26191902e-02 1.17557180e+00 6.75872147e-01 -7.56594300e-01 3.49758834e-01 8.22201371e-02 -1.26984346e+00 6.54779077e-01 1.06346834e+00 7.80794084e-01 5.58902621e-01 4.45172936e-01 -5.29603541e-01 4.85997826e-01 -5.65112770e-01 -2.59721279e-01 1.08549548e-02 1.75773893e-02 -1.01696241e+00 -4.42246497e-01 3.13547969e-01 -3.43785793e-01 -6.17032945e-01 7.79527962e-01 8.20719063e-01 5.55284441e-01 6.92776561e-01 -2.18143106e-01 -1.05103695e+00 9.14154291e-01 -4.66493547e-01 4.20684606e-01 6.24536991e-01 -3.38556856e-01 1.16820693e+00 -1.46834838e+00 9.39308703e-01 1.52429330e+00 -1.21635966e-01 3.65674943e-01 -1.04619396e+00 -6.49338782e-01 -9.48956758e-02 1.41353980e-01 -1.97087443e+00 -5.16810238e-01 3.63230258e-01 6.19270690e-02 1.42497039e+00 2.33760670e-01 2.16263875e-01 1.00060940e+00 -2.26245314e-01 1.11585546e+00 4.53374803e-01 -8.48005354e-01 3.42225254e-01 2.45914608e-01 4.40037608e-01 2.29326621e-01 3.00542772e-01 -8.16427693e-02 -6.79556906e-01 -6.36961937e-01 5.56821764e-01 7.93142319e-02 -2.03333184e-01 5.97314052e-02 -9.70651686e-01 9.58054066e-01 5.09246469e-01 6.24748230e-01 -7.85223007e-01 -1.51883453e-01 2.07432613e-01 2.14280859e-01 6.22212291e-01 1.01619923e+00 -1.78412184e-01 1.74862981e-01 -1.06996894e+00 6.39481962e-01 6.99645400e-01 1.23540246e+00 9.59370136e-01 -6.13903403e-01 -7.74861991e-01 1.34757531e+00 2.09509432e-01 1.00565541e+00 9.70464408e-01 -4.94785190e-01 6.48669302e-01 5.27373731e-01 4.27763343e-01 -8.05953145e-01 -7.50864809e-03 -5.72928667e-01 -5.37598073e-01 -1.00113022e+00 -5.11067331e-01 1.69641733e-01 -1.28252673e+00 1.40750909e+00 1.01839468e-01 -1.05466925e-01 2.69132793e-01 8.68305206e-01 8.96436155e-01 9.80316818e-01 3.04306716e-01 -2.32560277e-01 1.42183590e+00 -1.06014395e+00 -6.58725739e-01 -6.90250039e-01 7.11623728e-01 -9.99232531e-01 1.19229484e+00 -8.43554661e-02 -1.04931509e+00 -4.35532033e-01 -6.74357772e-01 -2.48694852e-01 -6.07723355e-01 4.63644527e-02 5.94058633e-01 5.25386855e-02 -1.02736306e+00 1.44045654e-04 -5.53028345e-01 -6.34922028e-01 1.01852037e-01 1.26806730e-02 -3.79663482e-02 -6.93593502e-01 -1.81121457e+00 7.69905210e-01 7.56149888e-01 -5.39567053e-01 -1.08412266e+00 -8.34826589e-01 -5.72727919e-01 4.14014071e-01 5.28304279e-01 -6.34887278e-01 1.45900381e+00 -2.69585215e-02 -8.98175001e-01 7.09123373e-01 -4.89477128e-01 -6.72456682e-01 -1.46699965e-01 -6.60232842e-01 -6.88045621e-01 3.65560681e-01 3.93760204e-01 1.01931024e+00 5.93261778e-01 -1.10732305e+00 -6.10725760e-01 -2.55514860e-01 3.88132967e-02 5.82768381e-01 -4.69336778e-01 1.29078805e-01 -1.39562881e+00 -6.61708355e-01 3.98822129e-02 -7.75747299e-01 -3.04672927e-01 -8.24388206e-01 -3.93238753e-01 -7.95295656e-01 5.08691192e-01 -3.19375783e-01 1.81040943e+00 -1.87059987e+00 -2.11935580e-01 4.05949622e-01 4.35368195e-02 6.99135542e-01 -6.56278431e-01 8.67477834e-01 5.48070967e-01 1.39459983e-01 3.29362512e-01 -2.18284100e-01 1.50031686e-01 -5.43048084e-02 -9.41343188e-01 -2.99392372e-01 -2.47560114e-01 1.27761757e+00 -1.08695447e+00 -7.93933570e-01 -1.65933564e-01 4.93192345e-01 -3.15124393e-01 2.02891991e-01 -6.44678175e-01 -1.75073028e-01 -1.02800834e+00 7.18282104e-01 3.93080771e-01 -5.46390414e-01 -3.64528000e-02 1.45294785e-01 3.80312502e-01 5.60233176e-01 -6.16197944e-01 2.24886441e+00 -4.42058414e-01 2.20644698e-01 -4.13403183e-01 -4.99431878e-01 8.03523719e-01 2.23961756e-01 3.22877795e-01 -1.40347004e+00 -3.82234484e-01 3.41898352e-01 -6.99787140e-01 -3.43204200e-01 1.35054493e+00 2.98548222e-01 -2.32505098e-01 6.56679928e-01 1.09722257e-01 -9.28859413e-02 7.44900763e-01 1.07389212e+00 1.11278105e+00 -4.19554412e-01 1.65246427e-01 -5.50551452e-02 2.89433509e-01 2.93488741e-01 -4.19962453e-03 1.42642295e+00 5.61020792e-01 2.06457362e-01 -3.42041224e-01 1.21300861e-01 -7.78988659e-01 -1.00318408e+00 -5.41547388e-02 1.70858026e+00 2.43126124e-01 -7.85615385e-01 -2.75083303e-01 -5.01564324e-01 3.48238796e-01 8.72379422e-01 -3.12291443e-01 -4.75872368e-01 -3.63259763e-01 -5.37551939e-01 5.81234574e-01 3.68281484e-01 2.80914843e-01 -1.00229931e+00 8.13252330e-02 4.42202240e-01 -3.83931547e-01 -1.05354464e+00 -7.00113237e-01 -1.29386634e-01 -7.97640204e-01 -6.39766037e-01 -1.29231203e+00 -7.74486125e-01 5.22279203e-01 8.52975488e-01 1.54219568e+00 -4.55760844e-02 -3.50109667e-01 5.44968069e-01 -7.50946462e-01 -3.25015843e-01 -9.27930623e-02 6.15404069e-01 7.15039372e-02 -4.95999008e-01 1.01976478e+00 -2.16763243e-01 -8.25250268e-01 2.70337641e-01 -1.33831692e+00 -4.22497749e-01 9.45953846e-01 7.39755630e-01 8.13989103e-01 -2.09906682e-01 8.02345216e-01 -9.24001455e-01 1.39461637e+00 -6.02409720e-01 -5.05889833e-01 9.32599664e-01 -1.21609080e+00 3.50606680e-01 -4.92582992e-02 -5.26347220e-01 -1.24329925e+00 -3.52854580e-01 3.26214463e-01 -2.84038275e-01 3.64875823e-01 1.09906662e+00 6.15992367e-01 1.14765197e-01 1.27315390e+00 5.28229713e-01 -6.45673037e-01 -8.73583734e-01 6.82049572e-01 9.39194679e-01 3.48102093e-01 -7.09175646e-01 6.49743855e-01 2.19028994e-01 -6.00806713e-01 -6.98981047e-01 -1.10589099e+00 -1.40297663e+00 -2.87165970e-01 2.22472280e-01 3.22854519e-01 -1.41055477e+00 2.76929792e-02 -1.69233561e-01 -1.07821703e+00 4.65182215e-02 -1.65482968e-01 4.80535775e-01 1.65623240e-02 2.33859465e-01 -7.47038186e-01 -7.14559972e-01 -1.07037485e+00 -7.25645483e-01 1.55890024e+00 3.88709694e-01 -7.36384541e-02 -7.84885287e-01 4.75441277e-01 2.42737278e-01 7.54061878e-01 -8.95307779e-01 9.04787004e-01 -1.13179803e+00 -7.33946562e-01 -6.66139424e-01 -2.89055854e-01 -1.76463991e-01 -1.41474560e-01 -8.09364974e-01 -8.76611531e-01 -6.07555687e-01 -7.13269830e-01 -9.83283043e-01 1.32746637e+00 1.35126382e-01 7.72494674e-01 -2.93624371e-01 -8.62432003e-01 -6.06369153e-02 1.35193968e+00 1.14617839e-01 7.59832621e-01 2.18041390e-01 1.57908082e-01 2.92052597e-01 1.02796924e+00 4.64516908e-01 2.47159675e-01 8.93125594e-01 -2.96407282e-01 7.52098113e-02 -1.87321201e-01 -6.10952020e-01 8.12161937e-02 6.65764630e-01 2.52587497e-01 -3.54188442e-01 -8.94361973e-01 7.70485163e-01 -1.73398387e+00 -8.05382490e-01 6.46312892e-01 2.16147709e+00 1.42669713e+00 -6.53095320e-02 -2.96288341e-01 -6.51835680e-01 5.29870450e-01 2.26423025e-01 -5.24947107e-01 3.04129630e-01 -2.29732424e-01 6.18422210e-01 3.06479037e-01 7.33006239e-01 -7.90778339e-01 1.65329230e+00 6.09292316e+00 1.42003381e+00 -7.64098465e-01 -1.06989823e-01 2.13403016e-01 -4.54549879e-01 -4.86314476e-01 5.30360304e-02 -1.32040644e+00 8.23080987e-02 8.79511952e-01 -9.42930102e-01 4.53084022e-01 9.89885390e-01 -2.36523494e-01 -2.27888182e-01 -8.75775754e-01 9.03583527e-01 3.35179538e-01 -1.34898913e+00 7.24676549e-01 -1.42269388e-01 8.31375718e-01 4.47547108e-01 -4.74923998e-02 1.16559196e+00 5.30868590e-01 -7.66603053e-01 8.46057683e-02 6.31365716e-01 9.12956715e-01 -5.34966290e-01 6.34850144e-01 4.05555755e-01 -1.05196118e+00 1.28503993e-01 -9.53018606e-01 6.68097436e-01 1.20850809e-01 5.30690074e-01 -1.36071098e+00 4.73859996e-01 4.68810529e-01 3.61837149e-01 -8.50385606e-01 1.11333001e+00 -8.77140015e-02 4.42578554e-01 -3.89020294e-01 -3.52022290e-01 5.37712097e-01 3.15041840e-01 3.89089257e-01 1.39922667e+00 3.20065469e-01 3.38363826e-01 3.36635590e-01 7.10093975e-01 -3.90988886e-01 4.46836561e-01 -3.69753122e-01 -5.34554303e-01 1.06752837e+00 1.10861683e+00 -1.52359098e-01 -9.37494755e-01 -3.41985486e-02 9.11970794e-01 2.78756082e-01 9.65710402e-01 -1.82628617e-01 -7.51351893e-01 1.69287860e-01 -1.35222552e-02 1.82447270e-01 1.05562747e-01 4.39827442e-01 -1.29142761e+00 3.65125388e-02 -8.31048608e-01 7.80022383e-01 -9.16308343e-01 -1.20784414e+00 7.60552347e-01 2.75915831e-01 -1.01465976e+00 -9.19001400e-01 8.51130784e-02 7.27812722e-02 1.12917876e+00 -1.69578302e+00 -9.69340444e-01 -5.91589585e-02 5.88897228e-01 6.47300243e-01 -3.90638828e-01 1.16447294e+00 5.49391747e-01 5.16556129e-02 5.59020936e-01 5.30052245e-01 6.54122457e-02 1.10012865e+00 -8.93080890e-01 3.53958756e-01 4.96333420e-01 6.14615679e-01 1.29001987e+00 4.25803930e-01 -8.77298594e-01 -1.43242991e+00 -1.05698359e+00 1.26744568e+00 -3.69979143e-01 5.59415698e-01 -1.86809734e-01 -1.00507641e+00 3.94047529e-01 1.78089708e-01 -2.58893102e-01 6.20544076e-01 5.96263289e-01 -5.55191398e-01 -2.08050981e-01 -7.19990075e-01 4.87249464e-01 7.28435695e-01 -1.07398999e+00 -1.02102649e+00 8.13749552e-01 1.14470756e+00 -3.29480618e-01 -6.03237033e-01 3.17977816e-01 3.43616903e-01 -1.06037259e-01 1.55060959e+00 -9.17062342e-01 -3.74123119e-02 1.88035831e-01 -3.01104099e-01 -1.36680865e+00 -4.61311728e-01 -4.17662531e-01 -4.81755465e-01 1.03872001e+00 6.39245391e-01 -2.25833446e-01 5.48480451e-01 6.97022140e-01 1.97074115e-02 -5.39194703e-01 -5.23496509e-01 -8.00062597e-01 1.87842757e-03 -2.78291196e-01 6.04338944e-01 7.00675726e-01 2.83236682e-01 8.34048212e-01 -6.57990798e-02 -1.04316734e-01 2.79940665e-01 3.04688394e-01 6.14386976e-01 -1.13605058e+00 -1.09655194e-01 -2.09615991e-01 1.90144956e-01 -1.72946656e+00 9.50148609e-03 -1.09596109e+00 3.43239792e-02 -1.58708870e+00 5.59375167e-01 -5.28534770e-01 -6.21718943e-01 4.13534224e-01 -4.82028186e-01 -2.48941220e-02 -1.83073878e-01 7.00988710e-01 -1.47565639e+00 7.22629786e-01 1.08037210e+00 -4.51938689e-01 -4.61597085e-01 -2.80815631e-01 -8.32495391e-01 6.68286160e-02 1.98975623e-01 -7.16323853e-01 -7.31215656e-01 -7.42332518e-01 2.80257344e-01 1.62229314e-01 -7.75841475e-02 -5.49796164e-01 7.69548476e-01 -5.46964398e-03 2.81825632e-01 -8.62210155e-01 4.68963712e-01 -4.48839247e-01 -4.46206182e-01 1.36137381e-01 -1.01961386e+00 -4.58360501e-02 1.09346561e-01 8.80499005e-01 -5.54069400e-01 -3.05778980e-01 2.13174507e-01 -3.76465976e-01 -9.60802674e-01 3.98046046e-01 -5.27503490e-02 5.26330769e-01 2.85170853e-01 6.56756341e-01 -6.05784714e-01 -6.62261486e-01 -3.67211103e-01 6.43567026e-01 1.16263013e-02 6.06924951e-01 7.66653478e-01 -1.56517589e+00 -8.27698410e-01 -8.88570473e-02 9.07781959e-01 -2.13766117e-02 2.20845729e-01 2.66828895e-01 1.48481429e-02 1.58539581e+00 6.18926227e-01 -4.45738435e-01 -9.47876453e-01 5.90592265e-01 -2.57356673e-01 -8.51144552e-01 -3.84575993e-01 1.10147417e+00 7.49380589e-02 -1.51248202e-01 5.00519037e-01 5.77156097e-02 -3.08958918e-01 1.77200064e-01 1.28723145e+00 -9.32167098e-02 2.50046611e-01 -1.52755901e-01 -2.03693658e-01 2.45209768e-01 -9.18590069e-01 -5.58719635e-01 1.14105701e+00 -3.20354909e-01 -9.49224159e-02 -5.32243475e-02 1.25600028e+00 -1.04746126e-01 -3.01060408e-01 -1.29858446e+00 4.65386242e-01 -4.37054038e-01 3.85066330e-01 -1.23970163e+00 -4.87466872e-01 4.87231344e-01 4.78056252e-01 -2.92826705e-02 1.11030364e+00 4.83302295e-01 1.14617097e+00 1.38923752e+00 7.46544123e-01 -1.24379766e+00 3.40054750e-01 8.12252581e-01 1.00161242e+00 -1.24937570e+00 -3.68359387e-02 9.79059115e-02 -5.58712721e-01 5.74946344e-01 4.90194410e-01 2.26443991e-01 4.56251800e-01 -3.19613427e-01 6.76842183e-02 -4.84561145e-01 -1.06251836e+00 -5.46609223e-01 1.07358110e+00 2.24959567e-01 4.77474242e-01 -1.76100761e-01 -4.84757811e-01 5.76828301e-01 1.25587523e-01 1.61825061e-01 -4.11223948e-01 1.01278722e+00 -1.02873373e+00 -1.07073045e+00 -1.87258095e-01 4.81587291e-01 -3.43729943e-01 -8.01008880e-01 -5.70014656e-01 5.40031374e-01 -8.36731136e-01 9.72535193e-01 -1.20730795e-01 -2.99125135e-01 1.10540651e-01 3.65408659e-01 1.74174517e-01 -9.68467057e-01 -1.86005861e-01 4.85662103e-01 2.11253271e-01 -5.35854042e-01 -1.01522014e-01 5.09680472e-02 -1.16667986e+00 6.76515028e-02 -6.12683475e-01 9.72465873e-01 4.56917405e-01 7.86952555e-01 8.45770419e-01 7.51127973e-02 4.56114024e-01 -3.02624226e-01 -9.47408855e-01 -1.69969523e+00 -5.89129508e-01 4.62988406e-01 -5.07901013e-02 -4.84906912e-01 -5.00927903e-02 -3.05696845e-01]
[11.518173217773438, 7.665882110595703]
f3c3b3b8-0290-4517-951e-40d145bb5164
dynamic-character-graph-via-online-face
2007.14913
null
https://arxiv.org/abs/2007.14913v1
https://arxiv.org/pdf/2007.14913v1.pdf
Dynamic Character Graph via Online Face Clustering for Movie Analysis
An effective approach to automated movie content analysis involves building a network (graph) of its characters. Existing work usually builds a static character graph to summarize the content using metadata, scripts or manual annotations. We propose an unsupervised approach to building a dynamic character graph that captures the temporal evolution of character interaction. We refer to this as the character interaction graph(CIG). Our approach has two components:(i) an online face clustering algorithm that discovers the characters in the video stream as they appear, and (ii) simultaneous creation of a CIG using the temporal dynamics of the resulting clusters. We demonstrate the usefulness of the CIG for two movie analysis tasks: narrative structure (acts) segmentation, and major character retrieval. Our evaluation on full-length movies containing more than 5000 face tracks shows that the proposed approach achieves superior performance for both the tasks.
['Prakhar Kulshreshtha', 'Tanaya Guha']
2020-07-29
null
null
null
null
['face-clustering']
['computer-vision']
[ 8.95754546e-02 -1.91516742e-01 -1.40600428e-01 -3.26166064e-01 -3.92846107e-01 -1.06777132e+00 8.89606416e-01 3.53306532e-01 -4.46665147e-03 1.02887705e-01 4.73275095e-01 1.82195693e-01 -9.05183479e-02 -6.08934999e-01 -2.93841422e-01 -4.93337035e-01 -3.02342236e-01 3.67394209e-01 5.82364082e-01 1.95410520e-01 5.27079821e-01 5.22537768e-01 -1.44919324e+00 5.05905330e-01 3.69819045e-01 9.18002665e-01 -6.03086464e-02 9.50798869e-01 -4.17530149e-01 1.42402267e+00 -5.82310379e-01 -8.51118982e-01 -1.10561503e-02 -8.29923391e-01 -9.20717299e-01 7.47215509e-01 3.55334967e-01 -8.51243511e-02 -4.51894969e-01 1.01348662e+00 -1.13376707e-01 2.57892638e-01 7.61234760e-01 -1.34028196e+00 -2.68924743e-01 9.15777206e-01 -5.07027686e-01 3.94567817e-01 7.41795421e-01 -3.21878105e-01 9.86227393e-01 -6.12115145e-01 1.18450189e+00 1.07020402e+00 7.31628001e-01 2.81036675e-01 -9.89340484e-01 -2.05244631e-01 1.47856250e-01 1.40834123e-01 -1.36684644e+00 -6.08014584e-01 9.08145130e-01 -9.12399650e-01 6.31334066e-01 1.56566396e-01 8.05170238e-01 7.84117043e-01 -2.05556706e-01 6.91035271e-01 6.92804873e-01 -4.35980409e-01 1.53384805e-01 4.52105962e-02 6.13406181e-01 8.65115881e-01 -3.07914883e-01 -7.89471507e-01 -8.00157249e-01 -4.55922067e-01 7.33598173e-01 -3.70148420e-01 6.58382624e-02 -1.12681687e-02 -6.73073113e-01 5.73214352e-01 -4.92429405e-01 2.49912053e-01 -3.75558913e-01 1.64946720e-01 7.40332901e-01 2.60735273e-01 5.26277244e-01 1.11075982e-01 2.83083200e-01 -6.22061491e-01 -1.13469422e+00 1.63087755e-01 1.10370982e+00 1.09685075e+00 4.38864142e-01 -1.54520065e-01 -1.26173317e-01 8.82232368e-01 1.28008544e-01 -3.40882957e-01 1.78826392e-01 -1.18406451e+00 1.89861655e-01 5.83040774e-01 -9.21330079e-02 -1.41821420e+00 1.45651465e-02 2.40130261e-01 -2.71341383e-01 -3.25958401e-01 3.58983755e-01 -1.55410469e-01 -5.25807738e-01 1.63077283e+00 4.35451180e-01 5.03630221e-01 -4.35129225e-01 2.74631083e-01 9.32633996e-01 6.09715700e-01 -5.58060743e-02 -5.83513737e-01 1.28077900e+00 -8.30243528e-01 -1.04835045e+00 4.94908541e-01 1.64052144e-01 -6.39926791e-01 5.52445531e-01 4.67179149e-01 -1.35262346e+00 -3.77084345e-01 -7.59333551e-01 2.88905472e-01 2.05069464e-02 1.26922071e-01 6.72048032e-01 6.55863881e-01 -1.21736538e+00 8.69907856e-01 -7.60861576e-01 -5.83885729e-01 4.15047199e-01 2.69937456e-01 -3.94375622e-01 2.60656118e-01 -5.10545075e-01 1.00703537e-02 2.18593687e-01 -3.56595576e-01 -9.62552607e-01 -3.23087722e-01 -6.30090952e-01 4.12925072e-02 4.50412989e-01 -3.74903977e-02 1.06305707e+00 -1.44899690e+00 -1.60251093e+00 1.05717599e+00 -2.50540107e-01 -1.69258595e-01 2.58514374e-01 -1.87416583e-01 -3.85672003e-01 8.14245939e-01 -1.89098567e-01 2.10617587e-01 1.06173909e+00 -1.32747924e+00 -7.92049885e-01 -1.89711243e-01 -2.29902416e-02 2.18040600e-01 -7.88340330e-01 7.13624835e-01 -1.40186465e+00 -8.62918437e-01 -1.58354605e-03 -9.17301774e-01 2.12304547e-01 -3.75129282e-01 -4.08510804e-01 -5.11093020e-01 8.00525546e-01 -8.93714786e-01 2.02334642e+00 -2.37403560e+00 4.06476378e-01 3.96341264e-01 4.63854522e-01 -2.46327609e-01 1.48357555e-01 8.62502694e-01 3.29102203e-02 1.47271931e-01 2.46842336e-02 -6.62510037e-01 -3.30755949e-01 -3.41455415e-02 -1.17229462e-01 5.29627740e-01 -2.99985379e-01 4.77140397e-01 -7.81737804e-01 -9.30071115e-01 -2.45812535e-01 1.77793235e-01 -4.87623245e-01 2.74648666e-01 -2.91682243e-01 1.46160305e-01 -2.37370700e-01 6.50595605e-01 1.85059920e-01 -2.04403937e-01 8.19580615e-01 -4.84388061e-02 -2.61836112e-01 -6.05490059e-02 -1.25937092e+00 1.42997324e+00 5.65427423e-01 1.07775593e+00 2.06260815e-01 -7.22957850e-01 7.50649869e-01 5.15717924e-01 1.05614018e+00 1.50248408e-01 2.71597922e-01 -4.28666592e-01 -2.33196393e-01 -6.87614322e-01 5.80401063e-01 4.39989060e-01 -1.20816603e-01 7.33891845e-01 4.36315030e-01 3.74230593e-01 7.31183648e-01 8.54445696e-01 1.39515710e+00 2.14710906e-02 9.17443186e-02 -2.45218113e-01 5.75484335e-01 1.75660655e-01 5.48429370e-01 5.71178913e-01 -1.95850372e-01 4.44207013e-01 1.16463971e+00 -2.58517236e-01 -1.01515090e+00 -9.06214118e-01 1.31218642e-01 1.15478611e+00 -3.76007855e-02 -1.26868939e+00 -1.37557840e+00 -5.85281730e-01 -2.44033188e-01 1.38455525e-01 -6.64019883e-01 3.08943659e-01 -6.94219053e-01 -4.59817767e-01 5.50818443e-01 2.54042000e-01 2.42599100e-01 -1.14392769e+00 -8.99248049e-02 1.12364829e-01 -2.38534629e-01 -1.22814381e+00 -6.65158451e-01 -5.27821541e-01 -7.31616914e-01 -1.20242703e+00 -6.81148618e-02 -9.31337237e-01 7.50640512e-01 1.74944237e-01 1.05712128e+00 2.79521883e-01 -2.35183835e-01 9.73796725e-01 -7.25843608e-01 1.77943021e-01 -5.50460517e-01 -2.21533164e-01 1.07061960e-01 5.87832272e-01 2.29718953e-01 -7.16371953e-01 -2.24268615e-01 2.59183854e-01 -8.28684926e-01 -1.78641737e-01 -1.23096868e-01 2.47767285e-01 4.56228375e-01 4.82563257e-01 2.52721995e-01 -1.34424114e+00 8.59393418e-01 -7.59582222e-01 -4.00742799e-01 3.39624494e-01 -4.21977490e-01 -5.30095160e-01 4.82484609e-01 -4.81677324e-01 -1.18424487e+00 4.57985193e-01 2.77364403e-01 -5.94921649e-01 -1.27717763e-01 5.32376349e-01 5.37999421e-02 8.23417529e-02 3.56399775e-01 2.20403180e-01 -5.82242571e-02 -6.61876738e-01 3.17013949e-01 6.79403245e-01 9.46520209e-01 -6.15547061e-01 6.44469321e-01 6.67319596e-01 -2.11570427e-01 -1.10250092e+00 -4.52955902e-01 -7.62401104e-01 -1.03421664e+00 -1.05206096e+00 1.20928538e+00 -7.46837199e-01 -1.00317252e+00 6.17884040e-01 -8.62808585e-01 -1.31248057e-01 -1.24237814e-03 1.47507116e-01 -5.62331855e-01 9.02876377e-01 -1.17957401e+00 -9.00903344e-01 -1.08896427e-01 -5.57116807e-01 5.56370318e-01 2.68042624e-01 -5.98691761e-01 -9.18053508e-01 4.05555099e-01 3.86926711e-01 -3.62596333e-01 5.05260706e-01 9.31491971e-01 -5.69995999e-01 -3.44499230e-01 -4.38547283e-01 1.62098229e-01 -5.43085486e-02 2.27530733e-01 9.60682750e-01 -6.41980529e-01 -1.11492440e-01 -1.45761356e-01 -9.00153890e-02 5.28209448e-01 4.13928717e-01 1.17633855e+00 -2.88880080e-01 -3.93911153e-01 5.30276597e-01 1.25767243e+00 5.70144415e-01 7.16217577e-01 -1.70075707e-02 8.89459789e-01 9.12237704e-01 4.04551208e-01 8.42941642e-01 2.63589263e-01 6.63147509e-01 2.08572727e-02 5.05890906e-01 -5.61993159e-02 -3.34184051e-01 5.49643397e-01 1.29059899e+00 -4.98023272e-01 -5.40904760e-01 -8.38135839e-01 5.65006733e-01 -2.18647885e+00 -1.40958285e+00 -3.98560971e-01 1.88121665e+00 6.41034424e-01 1.84858009e-01 7.33270168e-01 1.28941134e-01 1.00269639e+00 9.16409791e-02 -1.48115590e-01 -4.69234526e-01 3.70099247e-02 -1.62714958e-01 -7.78764263e-02 1.97411254e-01 -1.24100590e+00 1.10278809e+00 7.30451250e+00 8.45106781e-01 -4.95548427e-01 5.46863116e-02 5.27057767e-01 -7.38914236e-02 5.26402593e-02 9.74370316e-02 -6.68654144e-01 5.71173370e-01 8.52107346e-01 -1.70315057e-01 4.16667134e-01 8.53383064e-01 1.47305503e-01 -3.32345277e-01 -9.88248765e-01 1.07089901e+00 4.87746656e-01 -1.52524304e+00 3.60409431e-02 1.64828617e-02 6.74425304e-01 -5.54394782e-01 -3.29689920e-01 -2.70869523e-01 4.68442500e-01 -7.36008883e-01 9.19688344e-01 6.69674337e-01 8.66664231e-01 -8.60396624e-01 1.31490737e-01 1.34066880e-01 -1.66437864e+00 -8.63889828e-02 1.04586385e-01 1.91333100e-01 3.56282502e-01 1.00469328e-01 -4.71113950e-01 2.59636074e-01 6.81990921e-01 1.11536443e+00 -7.37833381e-01 8.96575391e-01 -3.09319533e-02 8.54548573e-01 8.02909676e-03 7.71471485e-02 -8.45571421e-03 -7.28968740e-01 7.11251020e-01 1.49967504e+00 -1.25802353e-01 4.43909764e-01 1.80465966e-01 3.88904989e-01 -1.10238254e-01 3.09976667e-01 -4.46993560e-01 -6.71072423e-01 5.71304023e-01 1.57126498e+00 -1.46469665e+00 -4.12836194e-01 -5.73544562e-01 1.15641212e+00 3.86906981e-01 3.86086367e-02 -7.69119084e-01 -1.21358007e-01 6.23266220e-01 2.87177175e-01 3.48224878e-01 -5.30181050e-01 1.53524652e-01 -1.00729680e+00 -2.57334888e-01 -8.45975697e-01 8.63345087e-01 -6.39240563e-01 -1.25559390e+00 8.07805836e-01 1.79856732e-01 -1.09990895e+00 -2.40046024e-01 -1.21367805e-01 -8.92833054e-01 8.58679861e-02 -3.69119316e-01 -9.36207294e-01 -3.79964411e-01 9.54145432e-01 8.32080960e-01 -3.51056546e-01 5.83119094e-01 4.25153613e-01 -9.79643703e-01 5.30736983e-01 -8.96650925e-03 5.68877995e-01 3.77956063e-01 -1.18460870e+00 2.17945486e-01 9.78162348e-01 4.80191946e-01 4.77999121e-01 4.96870637e-01 -1.13648319e+00 -1.39323151e+00 -6.61309719e-01 7.08576500e-01 -6.55763328e-01 8.04449022e-01 -6.88287735e-01 -5.59068501e-01 7.99919963e-01 3.71912122e-01 -5.98446906e-01 1.00113857e+00 -7.53504783e-02 -2.23062590e-01 2.80982196e-01 -8.27539265e-01 5.17255068e-01 1.24320316e+00 -5.70460856e-01 -3.02558601e-01 4.37430471e-01 3.53386551e-01 5.94531111e-02 -8.92255187e-01 -2.63681263e-01 6.35127366e-01 -8.75467658e-01 6.12423778e-01 -7.81950653e-01 7.09881842e-01 -1.14636980e-01 -6.90970430e-03 -5.78866005e-01 -5.28619945e-01 -1.21636713e+00 -4.19670820e-01 1.83351922e+00 -7.10093044e-03 2.07038388e-01 9.12445605e-01 6.07882857e-01 4.52895686e-02 -3.94816190e-01 -4.54395622e-01 -4.82043624e-01 -6.34449124e-01 -3.69400352e-01 1.06937654e-01 1.25698113e+00 2.94487417e-01 3.50461185e-01 -4.90398258e-01 -9.61197466e-02 6.82625115e-01 -2.83060856e-02 7.02923715e-01 -1.35701275e+00 -3.48437279e-01 -4.66799110e-01 -4.98145998e-01 -7.24673569e-01 2.49380767e-01 -7.27723658e-01 -1.92091465e-01 -1.13764918e+00 6.77714288e-01 -1.51717961e-01 1.84746817e-01 3.15818638e-02 2.17087194e-01 1.49811327e-01 1.68767497e-01 6.86534941e-01 -9.59876835e-01 -1.48042440e-02 4.83689874e-01 3.65162045e-01 -3.09670776e-01 -1.15996622e-01 -2.59900302e-01 1.05615270e+00 4.49488997e-01 -5.63702285e-01 -4.32877034e-01 -1.60574466e-02 3.00797254e-01 2.47916237e-01 -2.39962459e-01 -8.91058683e-01 4.94859219e-01 -8.87085944e-02 1.48470461e-01 -6.75787330e-01 2.94570774e-01 -4.89573449e-01 6.29855454e-01 4.56912443e-02 -3.16241801e-01 3.79683197e-01 -1.15900844e-01 7.34715521e-01 -3.78331214e-01 -4.71536964e-01 6.18818939e-01 -2.96329141e-01 -6.76360786e-01 3.69580716e-01 -9.79997337e-01 -4.42179032e-02 1.19243455e+00 -4.61839259e-01 -8.18281844e-02 -7.74941206e-01 -1.05291581e+00 1.96819417e-02 5.60246885e-01 3.41153145e-01 4.70447302e-01 -1.36497712e+00 -4.40239489e-01 -2.03551084e-01 -2.62142688e-01 -7.06865191e-01 1.88474178e-01 5.78766346e-01 -8.69836509e-01 -8.65028128e-02 -1.60975173e-01 -3.72749269e-01 -2.07884979e+00 5.42027175e-01 -4.71005887e-02 -9.68447626e-02 -6.39859080e-01 1.01433253e+00 -9.81701016e-02 4.12453771e-01 4.28392649e-01 4.47114736e-01 -9.44289505e-01 7.75481641e-01 5.83478928e-01 6.22566283e-01 -4.70118076e-01 -1.08529305e+00 -1.45543754e-01 6.41065300e-01 2.55971737e-02 -3.56619298e-01 1.48731208e+00 -3.47554475e-01 -6.50106430e-01 6.39753103e-01 1.00633216e+00 2.48445630e-01 -1.22502697e+00 -1.79996833e-01 4.24327433e-01 -5.69250643e-01 -2.97754496e-01 4.29097749e-02 -1.09891200e+00 2.13864133e-01 -2.99966428e-02 7.15938330e-01 1.21678412e+00 1.98034957e-01 7.42249966e-01 1.26283720e-01 7.94940218e-02 -1.35368311e+00 5.12855291e-01 4.06702459e-01 4.56822306e-01 -6.29177034e-01 1.21331021e-01 -8.94721270e-01 -8.15873802e-01 1.35496414e+00 3.94179761e-01 -1.61592141e-01 9.22779202e-01 3.81740987e-01 -2.96998650e-01 -7.82025397e-01 -8.74203146e-01 -1.35710714e-02 2.87287623e-01 2.09587142e-01 2.38401532e-01 -1.45854786e-01 -3.71352881e-01 7.24590242e-01 5.92187559e-03 -3.21674794e-01 7.69032001e-01 1.10592651e+00 -3.60962451e-01 -1.10435843e+00 -1.22781798e-01 4.98987079e-01 -9.33920383e-01 1.26993448e-01 -1.19516671e+00 4.46372986e-01 1.45729510e-02 1.04305422e+00 4.51126099e-01 -5.96024632e-01 5.43748811e-02 3.27142149e-01 5.40590167e-01 -8.22040319e-01 -8.95091951e-01 4.57129091e-01 4.17663395e-01 -5.84856629e-01 -6.68333650e-01 -1.23040771e+00 -1.04495692e+00 -5.15558302e-01 -5.97238727e-02 9.42503661e-02 4.31709021e-01 6.43993258e-01 1.21040963e-01 1.97103232e-01 9.78420317e-01 -5.05561352e-01 4.29348230e-01 -7.44935691e-01 -7.76416123e-01 8.38750124e-01 -3.13497216e-01 -4.80274141e-01 -2.65365928e-01 8.76714170e-01]
[10.583479881286621, 0.6939753890037537]
3d8051bd-5891-4bfa-86bd-c103bbb1b50a
osvidcap-a-framework-for-the-simultaneous
null
null
https://ieeexplore.ieee.org/abstract/document/9552885
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9552885
OSVidCap: A Framework for the Simultaneous Recognition and Description of Concurrent Actions in Videos in an Open-Set Scenario
Automatically understanding and describing the visual content of videos in natural language is a challenging task in computer vision. Existing approaches are often designed to describe single events in a closed-set setting. However, in real-world scenarios, concurrent activities and previously unseen actions may appear in a video. This work presents the OSVidCap, a novel open-set video captioning framework that recognizes and describes, in natural language, concurrent known actions and deal with unknown ones. The OSVidCap is based on the encoder-decoder framework and uses a detection-and-tracking-object-based mechanism followed by a background blurring method to focus on specific targets in a video. Additionally, we employ the TI3D Network with the Extreme Value Machine (EVM), which learns representations and recognizes unknown actions. We evaluate the proposed approach on the benchmark ActivityNet Captions dataset. Also, an enhanced version of the LIRIS human activity dataset was proposed by providing descriptions for each action. We also provide spatial, temporal, and caption annotations for existing unlabeled actions in the dataset - considered unknown actions in our experiments. Experimental results showed our method’s effectiveness in recognizing and describing concurrent actions in natural language and the strong ability to deal with detected unknown activities. Based on these results, we believe that the proposed approach can be potentially helpful for many real-world applications, including human behavior analysis, safety monitoring, and surveillance.
['Heitor Silvério Lopes', 'André Eugênio Lazzaretti', 'Matheus Gutoski', 'Andrei De Souza Inácio']
2021-09-29
null
null
null
ieee-access-2021-9
['open-set-video-captioning']
['computer-vision']
[ 5.31748354e-01 -9.62441489e-02 -2.24001840e-01 -2.48547763e-01 -5.26674688e-01 -4.53606695e-01 8.57392848e-01 -2.32595325e-01 -3.01355869e-01 6.96969092e-01 4.52663243e-01 2.63584740e-02 2.37796292e-01 -3.08655709e-01 -1.00705099e+00 -7.13935196e-01 -3.26533139e-01 2.89356768e-01 6.07526302e-01 6.94689453e-02 -5.75292110e-02 3.75679791e-01 -1.62158334e+00 6.93525791e-01 1.15354955e-01 1.00472629e+00 3.48946184e-01 6.82724178e-01 9.32040066e-02 1.59284365e+00 -5.55559218e-01 -2.73075849e-01 2.61615276e-01 -5.05423605e-01 -5.63797772e-01 6.37838662e-01 5.70031881e-01 -5.82190812e-01 -6.90365314e-01 7.40035832e-01 1.09846629e-01 3.49203467e-01 5.28439403e-01 -1.73893070e+00 -5.98179221e-01 2.72004277e-01 -6.31434739e-01 5.17548442e-01 6.69603288e-01 4.80735868e-01 5.92347682e-01 -6.22102320e-01 5.08201480e-01 1.18104553e+00 2.98071623e-01 8.52285147e-01 -6.95797980e-01 -5.81364989e-01 5.03841817e-01 5.83703637e-01 -1.27546608e+00 -5.09313405e-01 6.34810507e-01 -5.82645297e-01 9.10661995e-01 1.36264071e-01 5.49132228e-01 1.60494149e+00 1.32706746e-01 1.07075608e+00 6.48580194e-01 -8.17448944e-02 1.86933547e-01 -5.00255171e-03 1.37450348e-03 6.21046722e-01 1.17739499e-01 1.83751076e-01 -4.70599502e-01 -1.92142185e-02 7.98603654e-01 3.36775661e-01 -4.20009702e-01 -5.27344286e-01 -1.57859111e+00 4.00434613e-01 2.13742420e-01 1.48112550e-01 -5.16480803e-01 4.68445182e-01 6.48806095e-01 -6.66012838e-02 3.60314667e-01 -5.53417504e-02 -3.40199202e-01 -2.35073313e-01 -6.96203768e-01 2.84294388e-03 5.96764743e-01 1.22157288e+00 4.51807797e-01 -3.83238718e-02 -7.46396720e-01 4.14970636e-01 9.52160805e-02 5.69764435e-01 3.51204783e-01 -9.54525828e-01 6.52625680e-01 3.67662162e-01 4.71016049e-01 -1.00783074e+00 -1.56497896e-01 -3.18364114e-01 -6.97276533e-01 -4.39094119e-02 1.76140636e-01 2.07914934e-02 -9.05263960e-01 1.78250563e+00 2.48146191e-01 9.61623371e-01 3.90525937e-01 1.13811719e+00 7.66646683e-01 9.47531044e-01 3.46629173e-01 -3.69646966e-01 1.36699307e+00 -1.16165757e+00 -1.00451589e+00 -4.50403631e-01 4.06188637e-01 -3.77252251e-01 7.19415188e-01 2.43500188e-01 -7.19428062e-01 -7.02305377e-01 -7.48365462e-01 1.58497185e-01 -1.38227135e-01 3.20215613e-01 3.28537971e-01 2.53891230e-01 -7.83421516e-01 -4.12383303e-02 -9.93358254e-01 -4.89982903e-01 5.21704257e-01 2.65660007e-02 -6.03223026e-01 -2.19916150e-01 -9.10844028e-01 7.47656941e-01 7.06182063e-01 1.74662873e-01 -1.65397406e+00 -1.34812251e-01 -1.23105145e+00 1.34242356e-01 8.96093905e-01 -5.11873066e-01 1.34923232e+00 -1.42254388e+00 -1.04595339e+00 5.93853056e-01 -1.61524430e-01 -8.31776559e-01 4.63104784e-01 -2.79539376e-01 -6.52263880e-01 3.57408255e-01 1.19633213e-01 6.85515046e-01 7.37852454e-01 -1.16355312e+00 -7.72248030e-01 -1.72189265e-01 3.32681388e-01 3.58379036e-01 -1.31346494e-01 1.44149348e-01 -8.00958693e-01 -6.10713661e-01 -4.80764031e-01 -8.66299272e-01 -5.04210964e-02 2.05200523e-01 -4.92777526e-02 -3.54598300e-03 1.13882899e+00 -7.88377106e-01 9.85939503e-01 -2.14585972e+00 5.38354144e-02 -3.22464913e-01 -2.85983104e-02 3.80363315e-01 -2.89051026e-01 3.06658179e-01 5.47341667e-02 -4.39805686e-01 -3.26369613e-01 -2.20042765e-01 -2.44789898e-01 3.66900355e-01 -2.86467999e-01 4.93515968e-01 3.30957800e-01 7.92672634e-01 -1.07843339e+00 -6.66229546e-01 4.59803611e-01 4.94894415e-01 -2.16790497e-01 4.71622050e-01 -6.28769338e-01 4.90948141e-01 -2.88625151e-01 6.14734590e-01 3.59137744e-01 -1.33874968e-01 5.55572771e-02 -1.45215988e-01 1.46138063e-02 -4.25282449e-01 -1.21807396e+00 1.81261969e+00 -3.42834353e-01 7.45003402e-01 -2.83022434e-01 -9.33136284e-01 5.44093549e-01 5.28272450e-01 6.23839915e-01 -5.06215990e-01 6.01961836e-02 -1.55658096e-01 -2.14639321e-01 -9.14990127e-01 2.75991470e-01 2.93500543e-01 -9.51989889e-02 2.20339432e-01 2.17235789e-01 4.75397289e-01 3.91487211e-01 2.53700882e-01 1.40201676e+00 4.83431816e-01 4.71661091e-01 3.59746903e-01 8.55401635e-01 1.13133766e-01 5.79495311e-01 6.81545556e-01 -5.34909964e-01 6.59026802e-01 3.02112520e-01 -5.92522264e-01 -8.79669309e-01 -1.05149174e+00 4.62061346e-01 1.10187113e+00 3.89070451e-01 -2.14159548e-01 -5.74341655e-01 -9.47436512e-01 -4.89897937e-01 7.00366497e-01 -5.63060880e-01 -1.89839929e-01 -4.72265482e-01 -3.64791512e-01 4.32012856e-01 7.55732417e-01 7.45274901e-01 -1.41666806e+00 -9.39046741e-01 1.92923531e-01 -5.58142304e-01 -1.66230989e+00 -8.66033256e-01 -1.61781326e-01 -3.74151111e-01 -1.44077325e+00 -8.32086742e-01 -9.74007010e-01 5.08398235e-01 5.17204881e-01 9.40867126e-01 -2.44619623e-01 -2.06988573e-01 8.07003379e-01 -5.18627763e-01 -2.82874018e-01 -4.63383257e-01 -5.99271238e-01 -3.87498215e-02 6.57886505e-01 4.84959394e-01 -2.74474360e-02 -4.87039715e-01 3.88882577e-01 -1.11372089e+00 2.58094996e-01 6.78858876e-01 5.59309125e-01 4.68890905e-01 -9.52113345e-02 3.76614660e-01 -4.17938858e-01 2.76482970e-01 -6.42499447e-01 -4.78885621e-01 5.31784654e-01 1.29056931e-01 4.18995321e-02 5.31624258e-01 -7.54123092e-01 -1.25986457e+00 6.52147114e-01 2.96888560e-01 -8.95479083e-01 -4.29393858e-01 7.60605037e-02 -3.03446621e-01 2.47982278e-01 4.70092624e-01 5.71561456e-01 -8.06534290e-02 -2.02114254e-01 3.28488380e-01 7.68194318e-01 9.03067887e-01 -2.36584976e-01 5.33104420e-01 6.39035642e-01 -1.64176509e-01 -7.11207092e-01 -8.86407256e-01 -8.61203313e-01 -4.03411120e-01 -6.01207376e-01 1.18050611e+00 -1.30520093e+00 -5.17946243e-01 4.57321286e-01 -1.42975390e+00 -1.37388706e-01 -7.02416748e-02 5.89768291e-01 -9.43530917e-01 5.93617141e-01 -3.87070984e-01 -9.39179003e-01 -2.21601129e-01 -1.06128478e+00 1.37967336e+00 1.02695376e-01 1.26317009e-01 -7.07802832e-01 7.98554625e-03 4.43813354e-01 8.55769888e-02 5.00813901e-01 2.83111393e-01 -6.82854176e-01 -6.61023676e-01 -4.95591126e-02 -1.61298379e-01 5.55913925e-01 1.45228446e-01 -2.83193886e-01 -7.98459768e-01 -1.29638225e-01 -1.24432020e-01 -3.11624229e-01 7.80071318e-01 2.56717533e-01 1.22994959e+00 -5.20231605e-01 -3.85876387e-01 1.79527655e-01 1.31247032e+00 4.36192155e-01 6.98883355e-01 6.44238666e-02 5.59739590e-01 4.30978358e-01 8.87834847e-01 6.42638803e-01 2.05464453e-01 8.67514074e-01 7.06101775e-01 -1.62313163e-01 -2.04366863e-01 -3.35223526e-01 8.21502566e-01 1.02467835e-01 -3.57778445e-02 -6.95998549e-01 -7.35681832e-01 7.60460734e-01 -2.24284673e+00 -1.44174242e+00 -2.45825592e-02 2.07255960e+00 3.46410930e-01 -6.41153753e-03 1.12007603e-01 -1.83686435e-01 1.07564867e+00 2.49072194e-01 -4.92257684e-01 -6.17544726e-02 -5.91823645e-02 -2.46025667e-01 5.13828814e-01 5.48417158e-02 -1.40175104e+00 7.89995015e-01 5.27424908e+00 4.78500724e-01 -7.63153195e-01 3.20321172e-01 3.86483967e-01 -7.40400702e-02 4.71973479e-01 -3.35074753e-01 -5.84804654e-01 5.80944717e-01 8.90243471e-01 3.74931023e-02 2.40337461e-01 8.58374238e-01 5.12862921e-01 -1.47189841e-01 -1.30887020e+00 1.25350416e+00 5.37976325e-01 -1.17979729e+00 2.21261382e-01 -1.96406722e-01 6.49768233e-01 -9.44021568e-02 -2.25060806e-01 4.93137151e-01 -1.52480062e-02 -7.22763777e-01 7.65136838e-01 6.60560310e-01 6.62581384e-01 -5.18924832e-01 8.58845234e-01 6.42479539e-01 -1.37042975e+00 -3.57050627e-01 -5.72133735e-02 -1.32240772e-01 4.08426285e-01 -9.21819061e-02 -8.17607522e-01 3.39278936e-01 6.09137475e-01 1.05798209e+00 -4.49699581e-01 1.09603226e+00 -1.95375130e-01 5.09455681e-01 -2.51744930e-02 -6.88565448e-02 4.45858210e-01 3.83099280e-02 5.71609259e-01 1.17843091e+00 2.46182755e-01 2.16355100e-01 4.34594333e-01 6.19108319e-01 1.68352038e-01 -2.16435656e-01 -8.65265131e-01 -3.42751630e-02 1.07276410e-01 8.98658872e-01 -5.46535194e-01 -5.34205735e-01 -8.04832637e-01 1.30887187e+00 -2.40212549e-02 4.02231306e-01 -1.48836231e+00 4.22248319e-02 6.03923023e-01 1.77875742e-01 4.32400852e-01 -1.48520008e-01 6.10018671e-01 -1.39043725e+00 2.19106674e-01 -8.24037969e-01 6.20857775e-01 -1.20303571e+00 -8.82396817e-01 6.14258111e-01 4.97140288e-01 -1.64144051e+00 -3.19367796e-01 -5.74994564e-01 -4.39569414e-01 1.51173621e-01 -1.23656654e+00 -1.25495446e+00 -5.80630422e-01 8.38037312e-01 1.21578300e+00 -1.57691583e-01 3.75579208e-01 3.20212811e-01 -5.30309379e-01 3.97111066e-02 -2.85175536e-02 2.44531989e-01 5.22429168e-01 -7.64598787e-01 1.87704846e-01 1.00204992e+00 4.65056360e-01 -1.23963863e-01 6.81589246e-01 -6.61336064e-01 -1.26387322e+00 -1.59256399e+00 5.74360609e-01 -4.12977695e-01 4.36287671e-01 -4.72299188e-01 -7.52811670e-01 1.10357523e+00 2.50608116e-01 3.31862152e-01 3.17219526e-01 -6.54796720e-01 -2.25657839e-02 -3.29713710e-02 -9.72386181e-01 4.40889359e-01 1.27627575e+00 -1.93587273e-01 -8.14239681e-01 5.77720106e-01 7.60934830e-01 -5.12113273e-01 -2.85840243e-01 3.93832386e-01 4.03122455e-01 -7.16488123e-01 9.44997728e-01 -7.89718032e-01 2.90591657e-01 -6.09129250e-01 -1.38907850e-01 -9.37638223e-01 -1.44911587e-01 -3.21365952e-01 -4.79868174e-01 1.01734006e+00 -3.55424583e-02 1.53386286e-02 6.71203196e-01 4.41188961e-01 -1.93060860e-01 -2.53670931e-01 -8.77935052e-01 -9.41191554e-01 -8.68572474e-01 -5.34624636e-01 2.97063828e-01 5.21174908e-01 -3.66155565e-01 1.52095810e-01 -9.91418183e-01 5.12536585e-01 5.62578797e-01 -2.20358461e-01 8.10731232e-01 -7.25641251e-01 -3.40475261e-01 2.51621604e-01 -9.44510102e-01 -1.06025028e+00 3.53824198e-01 -4.29617643e-01 2.76404589e-01 -1.43106830e+00 5.29823720e-01 3.21727455e-01 -3.87884915e-01 5.55853486e-01 1.40944898e-01 2.54257053e-01 3.08777034e-01 7.53407255e-02 -1.20853209e+00 6.38476729e-01 8.57674539e-01 -5.24723709e-01 -5.55853508e-02 1.05161086e-01 -1.21868305e-01 6.62445366e-01 6.18599832e-01 -4.22697604e-01 -5.93088686e-01 -4.56299990e-01 -4.94505495e-01 3.47608447e-01 8.22734952e-01 -1.43175316e+00 1.20134629e-01 -4.02439892e-01 2.34523222e-01 -6.20595157e-01 6.06566906e-01 -1.27013624e+00 3.74778509e-01 4.89713877e-01 -3.92121971e-01 -1.12705506e-01 1.88897967e-01 1.08029163e+00 -3.18604529e-01 6.12095483e-02 5.93445480e-01 -2.40337461e-01 -1.47451770e+00 4.49809521e-01 -4.25070375e-01 -1.37864277e-01 1.84162378e+00 -2.39493579e-01 -2.42784292e-01 -5.63477933e-01 -7.78784037e-01 3.95717680e-01 2.04362109e-01 8.40695739e-01 9.74609792e-01 -1.33709383e+00 -7.89058447e-01 4.66277674e-02 6.62030876e-01 -2.59954035e-01 4.18568522e-01 6.35613501e-01 -5.31898618e-01 4.19931442e-01 -4.00500625e-01 -7.16764033e-01 -1.44203782e+00 1.01347435e+00 3.62523347e-01 8.01067613e-03 -5.96064746e-01 3.42847168e-01 5.55518866e-01 1.60415336e-01 6.16061866e-01 -3.73876929e-01 -4.07660395e-01 -3.86924028e-01 7.87047923e-01 2.32513428e-01 -3.44850838e-01 -1.08268821e+00 -5.25633991e-01 2.90571928e-01 1.79208308e-01 -6.59740195e-02 1.04885292e+00 -2.26633370e-01 3.53687525e-01 3.73068184e-01 1.02707529e+00 -5.63675165e-01 -1.60210562e+00 -3.69383335e-01 -1.11532047e-01 -3.56379241e-01 -1.05617434e-01 -7.52442002e-01 -1.01214337e+00 7.10570872e-01 8.80831301e-01 -3.58771145e-01 1.26640809e+00 1.62397802e-01 6.31265283e-01 3.87075484e-01 4.49407637e-01 -8.40757251e-01 4.07243311e-01 2.00860903e-01 9.47714150e-01 -1.45135200e+00 -2.61761069e-01 -2.83201098e-01 -1.17288065e+00 1.06627440e+00 1.01556158e+00 2.71534026e-01 1.85074583e-01 1.22978315e-01 -1.37957320e-01 -3.43939401e-02 -1.01441658e+00 -3.86875063e-01 1.89529762e-01 8.44318330e-01 -3.45068648e-02 -9.08305719e-02 -8.28660205e-02 5.13425708e-01 8.09008777e-01 2.54112095e-01 7.68249512e-01 1.04526269e+00 -4.33718055e-01 -5.58510721e-01 -5.94066441e-01 1.54343322e-01 -2.52927125e-01 1.12530790e-01 -3.43999445e-01 7.14590907e-01 4.47755009e-01 1.10681951e+00 2.84452021e-01 -2.41266981e-01 2.27519363e-01 -6.44756714e-03 3.20637137e-01 -6.10888898e-01 -2.46959731e-01 -1.74564928e-01 6.96726292e-02 -7.36638367e-01 -8.46591532e-01 -6.42995358e-01 -1.13218296e+00 3.70241344e-01 -5.46149909e-02 4.13518697e-02 3.88171226e-01 8.59736443e-01 3.46283972e-01 4.72864032e-01 3.81530702e-01 -6.82147861e-01 -4.12226528e-01 -9.45196092e-01 -4.34622347e-01 7.20232368e-01 5.22786617e-01 -8.54836464e-01 -1.86560199e-01 6.46386743e-01]
[8.690948486328125, 0.6696100831031799]
af356f70-0286-4366-86a7-10f70271c9b6
adas-a-direct-adaptation-strategy-for-multi
2203.06811
null
https://arxiv.org/abs/2203.06811v1
https://arxiv.org/pdf/2203.06811v1.pdf
ADAS: A Direct Adaptation Strategy for Multi-Target Domain Adaptive Semantic Segmentation
In this paper, we present a direct adaptation strategy (ADAS), which aims to directly adapt a single model to multiple target domains in a semantic segmentation task without pretrained domain-specific models. To do so, we design a multi-target domain transfer network (MTDT-Net) that aligns visual attributes across domains by transferring the domain distinctive features through a new target adaptive denormalization (TAD) module. Moreover, we propose a bi-directional adaptive region selection (BARS) that reduces the attribute ambiguity among the class labels by adaptively selecting the regions with consistent feature statistics. We show that our single MTDT-Net can synthesize visually pleasing domain transferred images with complex driving datasets, and BARS effectively filters out the unnecessary region of training images for each target domain. With the collaboration of MTDT-Net and BARS, our ADAS achieves state-of-the-art performance for multi-target domain adaptation (MTDA). To the best of our knowledge, our method is the first MTDA method that directly adapts to multiple domains in semantic segmentation.
['Sunghoon Im', 'Minwoo Choi', 'Changjae Kim', 'Wonhyeok Choi', 'Seunghun Lee']
2022-03-14
null
http://openaccess.thecvf.com//content/CVPR2022/html/Lee_ADAS_A_Direct_Adaptation_Strategy_for_Multi-Target_Domain_Adaptive_Semantic_CVPR_2022_paper.html
http://openaccess.thecvf.com//content/CVPR2022/papers/Lee_ADAS_A_Direct_Adaptation_Strategy_for_Multi-Target_Domain_Adaptive_Semantic_CVPR_2022_paper.pdf
cvpr-2022-1
['multi-target-domain-adaptation']
['computer-vision']
[ 4.73562300e-01 8.02325532e-02 -9.28375274e-02 -6.56648695e-01 -9.10814047e-01 -6.63556337e-01 4.26871330e-01 -1.80088162e-01 -4.19587702e-01 5.09345114e-01 -1.60042301e-01 9.21704574e-04 3.56798284e-02 -7.61148691e-01 -9.19455886e-01 -5.71103990e-01 5.66718996e-01 9.10419524e-01 7.71592557e-01 -2.54177362e-01 3.89032923e-02 4.06500965e-01 -1.29216325e+00 4.06336635e-01 1.24628127e+00 1.08365655e+00 5.82941413e-01 2.89826661e-01 -3.07108313e-01 3.23839873e-01 -6.23861969e-01 -1.83506295e-01 3.18061173e-01 -5.59118986e-01 -8.27850223e-01 3.57177109e-01 6.71542346e-01 -2.84698248e-01 -7.58200213e-02 1.04835534e+00 4.71083492e-01 2.18361452e-01 1.07143557e+00 -1.40115941e+00 -9.55391467e-01 3.92288238e-01 -6.97258294e-01 9.47073393e-04 -2.20012948e-01 1.57032400e-01 6.59949481e-01 -1.02000225e+00 7.73106217e-01 1.39852548e+00 5.29297173e-01 8.31909597e-01 -1.43978631e+00 -7.69823372e-01 5.65649927e-01 2.48154625e-01 -1.22109103e+00 -1.63666934e-01 1.03955436e+00 -4.26359475e-01 5.26445687e-01 -1.74816132e-01 4.95563358e-01 1.31142545e+00 -7.42763504e-02 1.06874502e+00 1.30944848e+00 -3.69567633e-01 4.87607270e-01 9.21694487e-02 -1.21196173e-01 4.11095023e-01 5.60140014e-02 -1.63547590e-01 -4.52589959e-01 1.86750069e-01 9.88717079e-01 -3.65077406e-01 1.36415124e-01 -9.83243465e-01 -1.09696066e+00 7.88567305e-01 4.22255039e-01 1.99851334e-01 -2.90521801e-01 -1.89669803e-01 4.37258214e-01 2.88010031e-01 5.49114704e-01 2.92334080e-01 -7.72719324e-01 3.51103038e-01 -7.13986635e-01 1.52749375e-01 2.59848356e-01 1.24478006e+00 9.21206713e-01 1.80541188e-01 -3.15645874e-01 1.19336641e+00 1.29062966e-01 5.48030555e-01 5.43949664e-01 -1.10012007e+00 3.39590371e-01 6.84131145e-01 -7.08121136e-02 -4.75381792e-01 -2.61779934e-01 -4.20593321e-01 -6.62725687e-01 4.89193350e-01 5.33887327e-01 -9.63053480e-02 -1.45660806e+00 1.99254978e+00 5.85906684e-01 5.70406914e-02 2.37286702e-01 1.02499831e+00 6.87040865e-01 4.33653265e-01 3.96643668e-01 1.67539671e-01 1.21158421e+00 -1.16180980e+00 -4.54042912e-01 -7.38236904e-01 2.06670374e-01 -5.83703518e-01 1.37225485e+00 1.48863643e-01 -9.28255379e-01 -8.04236948e-01 -9.59236026e-01 -1.29924968e-01 -4.56954658e-01 1.32593870e-01 3.69155824e-01 3.22034746e-01 -9.33928728e-01 2.22641826e-01 -6.86934710e-01 -6.04338765e-01 8.11417162e-01 3.14263076e-01 -4.26357418e-01 -2.07618490e-01 -1.04927170e+00 8.39752078e-01 5.46930254e-01 -4.52088714e-01 -1.12045562e+00 -7.61454642e-01 -9.73769784e-01 -1.47495031e-01 4.50554818e-01 -9.12759960e-01 1.35444331e+00 -1.62486911e+00 -1.64320827e+00 1.11564755e+00 -1.74304605e-01 -3.81303400e-01 4.15415794e-01 -8.70908946e-02 -3.66593748e-01 1.93053737e-01 4.99677956e-01 1.16580808e+00 1.19473970e+00 -1.55765522e+00 -6.13059938e-01 -4.94870484e-01 -2.93004423e-01 3.45180869e-01 -3.79908204e-01 -1.56649619e-01 -5.67388475e-01 -1.02182460e+00 5.53195924e-02 -8.84999931e-01 -2.26803049e-01 2.71526963e-01 -2.46251360e-01 -2.22287506e-01 1.04956365e+00 -4.58504379e-01 7.09567130e-01 -2.27733755e+00 4.22579169e-01 7.13894218e-02 1.32645503e-01 4.12582844e-01 -5.29040158e-01 -6.39013350e-02 -9.36948322e-03 -2.34192342e-01 -7.72604346e-01 -3.12602013e-01 3.76861989e-02 5.11080682e-01 -1.38687328e-01 1.25659168e-01 5.25851309e-01 8.92219901e-01 -8.05598617e-01 -7.63060749e-01 2.63678461e-01 2.05413938e-01 -4.38875854e-01 3.13172728e-01 -5.82865894e-01 7.10078359e-01 -6.50067389e-01 6.37001991e-01 9.60342526e-01 -2.49509260e-01 1.20401166e-01 -2.01973960e-01 2.45541006e-01 -1.11167535e-01 -9.52135563e-01 1.97370231e+00 -2.51744986e-01 4.35519278e-01 1.51818559e-01 -1.16674280e+00 1.17548287e+00 -7.54285306e-02 3.50395620e-01 -9.75760877e-01 8.71983320e-02 3.52975130e-01 -1.52380019e-01 -1.26328185e-01 2.47220501e-01 -1.24123745e-01 -3.80995005e-01 1.87830120e-01 3.82417202e-01 -2.49263376e-01 -4.53281961e-02 4.96983994e-03 7.44797170e-01 3.65534097e-01 2.55718142e-01 -2.97206581e-01 4.36286777e-01 3.66876006e-01 8.64702404e-01 6.68690324e-01 -3.86411577e-01 8.70825768e-01 1.89338237e-01 -4.37721491e-01 -1.26923490e+00 -1.48789024e+00 -2.86254864e-02 1.49032831e+00 3.40289593e-01 2.73981094e-01 -1.04738057e+00 -1.05338144e+00 1.67428821e-01 7.48948693e-01 -6.43204629e-01 -3.05969834e-01 -5.39634764e-01 -4.24245238e-01 3.88967991e-01 7.48017192e-01 9.02242482e-01 -1.16779089e+00 -2.96834081e-01 1.71071976e-01 -2.22480744e-01 -1.16817153e+00 -7.55458295e-01 3.21776509e-01 -8.95467699e-01 -8.85219097e-01 -9.92944181e-01 -1.23657668e+00 8.52876604e-01 1.68931082e-01 1.06846452e+00 -5.84890962e-01 1.18674316e-01 2.65757501e-01 -3.45361739e-01 -4.37488347e-01 -5.86843848e-01 2.74047166e-01 -1.12548634e-01 1.70567185e-01 4.74246800e-01 -6.27863526e-01 -5.69376767e-01 6.93692148e-01 -8.63072813e-01 2.39068881e-01 7.94276834e-01 8.01442087e-01 1.05197382e+00 -2.40397915e-01 7.05660462e-01 -1.09872246e+00 4.76533711e-01 -3.71977448e-01 -5.86166680e-01 2.57693022e-01 -5.57011664e-01 9.27457139e-02 7.83867359e-01 -6.62801266e-01 -1.34869218e+00 4.64725584e-01 7.95757025e-02 -6.92604065e-01 -5.76624811e-01 -4.93627340e-02 -4.81262207e-01 -1.07281990e-01 8.38537574e-01 2.90578395e-01 -3.68202291e-02 -6.47621095e-01 6.09619260e-01 6.03062272e-01 8.22178006e-01 -7.64907837e-01 8.88949633e-01 4.97941881e-01 -1.94228426e-01 -4.35747802e-01 -9.45034385e-01 -3.34391862e-01 -1.03256631e+00 -1.35440707e-01 1.08726263e+00 -1.06618440e+00 6.04110211e-02 9.15911734e-01 -1.01236999e+00 -7.58486450e-01 -3.78870815e-01 1.08107746e-01 -8.08569252e-01 2.44383514e-01 -3.48632336e-01 -2.16703549e-01 -1.41660020e-01 -1.04797602e+00 1.20700610e+00 2.74275333e-01 -1.59057274e-01 -9.21624541e-01 -6.41167462e-02 3.92962575e-01 3.27907085e-01 2.71923691e-01 8.06620121e-01 -7.99947083e-01 -4.40680981e-01 4.43669558e-01 -4.84835893e-01 4.80203271e-01 3.10268819e-01 -4.41896945e-01 -9.59524870e-01 -3.04907501e-01 -2.08297342e-01 -4.11061376e-01 1.00860369e+00 6.45557761e-01 1.33340001e+00 -4.75634774e-03 -4.09251243e-01 8.49954247e-01 1.19916105e+00 4.67379838e-01 4.55626726e-01 6.92803800e-01 8.93316209e-01 5.50171196e-01 9.80194509e-01 1.80482328e-01 4.47861701e-01 7.75493205e-01 3.19077373e-01 -5.62407255e-01 -5.62764645e-01 -3.49809349e-01 2.77364284e-01 2.71714896e-01 3.05481821e-01 -1.55907407e-01 -7.91456819e-01 8.91264319e-01 -1.96662343e+00 -4.68960226e-01 1.31741002e-01 1.86024535e+00 8.69971514e-01 1.64847374e-01 3.32189262e-01 -3.82885605e-01 1.04948866e+00 -6.62972480e-02 -1.20827997e+00 -3.29602957e-01 -2.86132336e-01 2.04300895e-01 5.95489800e-01 2.64164627e-01 -1.39880872e+00 1.35796678e+00 6.23842907e+00 1.17198575e+00 -8.59362960e-01 2.60935098e-01 5.64125419e-01 3.09027433e-01 -2.42383718e-01 -2.29513496e-01 -6.30486012e-01 4.65839446e-01 4.79662806e-01 -1.05383523e-01 2.84752458e-01 1.25675237e+00 -5.63853420e-02 1.80182606e-01 -8.72562289e-01 6.82063043e-01 3.78868543e-02 -1.05297744e+00 3.74421299e-01 -5.99803664e-02 9.45310831e-01 -1.12223245e-01 2.42719725e-01 2.44429573e-01 6.17184579e-01 -7.73059726e-01 9.04989362e-01 1.00116052e-01 9.31019187e-01 -7.05945194e-01 3.59391659e-01 2.11163275e-02 -1.19652736e+00 -1.24850318e-01 -4.19353306e-01 3.71804535e-01 1.20353788e-01 3.76962066e-01 -8.07354152e-01 3.67786884e-01 8.02406430e-01 8.60560000e-01 -5.72467148e-01 8.28937113e-01 -2.66865432e-01 4.76182103e-01 -1.56674787e-01 4.76821542e-01 2.33654305e-01 -1.39465734e-01 6.42102897e-01 1.09168136e+00 2.55479366e-01 -1.29243940e-01 2.54144639e-01 1.00906610e+00 -4.51939106e-02 -1.34880677e-01 -5.50531566e-01 2.44618416e-01 7.18502402e-01 1.04989696e+00 -7.56622195e-01 -4.75958079e-01 -2.08866373e-01 1.44136548e+00 4.22786027e-01 4.37737912e-01 -7.93821037e-01 -2.49601915e-01 8.71189177e-01 1.09657109e-01 6.94665670e-01 -4.54036556e-02 -6.24039590e-01 -9.27231014e-01 -5.29128462e-02 -8.49911094e-01 7.01700866e-01 -9.45569038e-01 -1.74364233e+00 6.64065421e-01 2.34825134e-01 -1.42812765e+00 -2.94626765e-02 -6.58918202e-01 -2.89784670e-01 7.73230672e-01 -1.66335523e+00 -1.44912064e+00 -2.88880587e-01 9.45521295e-01 8.38712513e-01 -3.96676928e-01 6.01321578e-01 2.27145940e-01 -3.42792869e-01 7.17645824e-01 2.07431972e-01 1.36288732e-01 1.12598872e+00 -1.45492208e+00 7.65334666e-01 8.26952100e-01 -3.13393474e-01 1.86633006e-01 5.02672613e-01 -6.49516463e-01 -6.74891233e-01 -1.54713559e+00 2.74155498e-01 -3.31178635e-01 4.06304449e-01 -4.52951401e-01 -1.21115887e+00 7.69180417e-01 1.28839925e-01 -6.75591536e-06 3.81036103e-01 -1.85276106e-01 -5.49348712e-01 -3.29896659e-01 -1.29998219e+00 5.18416345e-01 1.17191970e+00 -3.20612639e-01 -7.17241645e-01 1.52997658e-01 9.04237449e-01 -5.63676775e-01 -7.70612240e-01 4.65638667e-01 2.36176819e-01 -7.93038547e-01 1.21059990e+00 -3.61207247e-01 2.59963512e-01 -5.50754666e-01 -9.20782462e-02 -1.63387489e+00 -5.34850061e-01 -1.79955781e-01 2.78505057e-01 1.35551190e+00 3.66855264e-01 -6.84202015e-01 7.05307424e-01 3.02960157e-01 -5.08244574e-01 -2.14715049e-01 -1.07521260e+00 -1.01534176e+00 3.73925507e-01 -1.29706204e-01 7.30362475e-01 9.79576528e-01 -6.70868874e-01 4.01218832e-01 -1.81084648e-01 2.57821739e-01 8.32170129e-01 2.44137660e-01 6.84260547e-01 -1.34960914e+00 -2.00365171e-01 -3.40023100e-01 -1.59517184e-01 -1.16390491e+00 2.72984475e-01 -7.56997287e-01 2.10506752e-01 -1.68202877e+00 1.37147844e-01 -5.64869344e-01 -3.40301096e-01 7.24907458e-01 -1.60861149e-01 2.04671159e-01 1.39207348e-01 1.15154840e-01 -7.46676505e-01 7.16081679e-01 1.73853040e+00 -3.16674113e-01 -3.00229847e-01 -1.80479437e-01 -9.47139800e-01 6.67222321e-01 8.93092930e-01 -6.26732647e-01 -6.48535967e-01 -5.95607221e-01 -5.09571671e-01 -3.79008740e-01 3.35401177e-01 -9.77823198e-01 4.94691497e-03 -4.37521994e-01 6.91515923e-01 -5.10323167e-01 2.74386168e-01 -7.95596898e-01 -5.39009534e-02 8.33299607e-02 -1.74179807e-01 -1.95014954e-01 5.53900778e-01 6.54198825e-01 -2.27721080e-01 1.26066759e-01 1.27231753e+00 -1.47382185e-01 -1.38435447e+00 2.52509683e-01 -3.88992310e-01 2.71012008e-01 1.24331009e+00 -4.97287333e-01 -3.69728804e-01 -8.67024902e-03 -6.78634346e-01 3.66474599e-01 7.75505960e-01 5.70409119e-01 6.61726952e-01 -1.44215894e+00 -6.04004860e-01 3.21875244e-01 4.14303660e-01 4.84021127e-01 4.03461695e-01 2.24023640e-01 -1.65594384e-01 -1.03227878e-02 -6.90887153e-01 -8.04334402e-01 -1.22022319e+00 6.82208478e-01 4.58245307e-01 -8.68417919e-02 -5.36013246e-01 9.10052240e-01 7.88206220e-01 -7.17187941e-01 -1.48009405e-01 -6.00828677e-02 -2.05823794e-01 -6.36461154e-02 1.76560253e-01 5.93102351e-02 -1.25686508e-02 -6.62055790e-01 -4.04371858e-01 8.70866239e-01 -3.06557328e-01 -4.95283678e-02 1.21548736e+00 -3.09162349e-01 1.65408939e-01 2.27786690e-01 9.13561046e-01 -4.58833516e-01 -1.95432293e+00 -3.67640316e-01 -2.38293290e-01 -4.25478786e-01 -1.60168752e-01 -1.10215449e+00 -1.14205623e+00 8.22068930e-01 6.90147758e-01 -3.80926788e-01 1.61396897e+00 2.90139377e-01 8.75479937e-01 4.50982042e-02 2.59638220e-01 -1.38085163e+00 4.85718608e-01 4.77259755e-01 7.92825937e-01 -1.21102905e+00 -4.04323637e-01 -5.00983179e-01 -1.21184444e+00 8.49441588e-01 1.22577906e+00 -9.10115167e-02 2.13501200e-01 -3.57528999e-02 3.51769686e-01 -3.70288603e-02 -3.46613824e-01 -4.44830388e-01 3.53343576e-01 1.29567599e+00 -1.89578012e-01 7.42464960e-02 6.74245581e-02 6.24866307e-01 1.32557169e-01 -1.20520055e-01 2.13604823e-01 6.77070200e-01 -5.62097847e-01 -1.35450125e+00 -5.14612317e-01 1.17542051e-01 4.62473780e-02 1.18734621e-01 -5.38889647e-01 8.54757607e-01 3.19746852e-01 7.25063801e-01 1.88498616e-01 -3.54647398e-01 5.94747901e-01 1.02386788e-01 4.23804969e-01 -6.21963322e-01 -2.45903566e-01 1.80931300e-01 -2.04030380e-01 -3.17976356e-01 -4.08120096e-01 -7.01007128e-01 -1.25957096e+00 1.22695990e-01 2.32708260e-01 -1.66454673e-01 3.57353836e-01 8.40577543e-01 6.01848185e-01 7.09193170e-01 4.39639777e-01 -7.46465087e-01 -1.80432230e-01 -8.04637194e-01 -5.88842332e-01 6.45798683e-01 2.96064407e-01 -9.88085270e-01 1.94354984e-03 2.43271589e-01]
[9.740579605102539, 1.3624237775802612]
705c1451-625c-46e1-9f3c-46d0250b8cec
node-centric-graph-learning-from-data-for
2011.02179
null
https://arxiv.org/abs/2011.02179v1
https://arxiv.org/pdf/2011.02179v1.pdf
Node-Centric Graph Learning from Data for Brain State Identification
Data-driven graph learning models a network by determining the strength of connections between its nodes. The data refers to a graph signal which associates a value with each graph node. Existing graph learning methods either use simplified models for the graph signal, or they are prohibitively expensive in terms of computational and memory requirements. This is particularly true when the number of nodes is high or there are temporal changes in the network. In order to consider richer models with a reasonable computational tractability, we introduce a graph learning method based on representation learning on graphs. Representation learning generates an embedding for each graph node, taking the information from neighbouring nodes into account. Our graph learning method further modifies the embeddings to compute the graph similarity matrix. In this work, graph learning is used to examine brain networks for brain state identification. We infer time-varying brain graphs from an extensive dataset of intracranial electroencephalographic (iEEG) signals from ten patients. We then apply the graphs as input to a classifier to distinguish seizure vs. non-seizure brain states. Using the binary classification metric of area under the receiver operating characteristic curve (AUC), this approach yields an average of 9.13 percent improvement when compared to two widely used brain network modeling methods.
['Stark C. Draper', 'Taufik A. Valiante', 'Roman Genov', 'David M. Groppe', 'Nafiseh Ghoroghchian']
2020-11-04
null
null
null
null
['graph-similarity']
['graphs']
[ 4.17997241e-01 4.85548854e-01 3.62765715e-02 -3.11488926e-01 -1.68409407e-01 -3.20589781e-01 6.08129680e-01 7.12178111e-01 -1.75181434e-01 4.65188473e-01 1.78518176e-01 -4.15819436e-01 -6.17723703e-01 -8.81082833e-01 -2.26676762e-01 -5.98568797e-01 -9.24883068e-01 3.20204824e-01 1.39157623e-01 -9.13342014e-02 1.98581070e-01 6.21737003e-01 -9.91118610e-01 -3.24810930e-02 7.14690268e-01 8.02631199e-01 -9.85047501e-03 7.13018596e-01 -2.36362126e-02 8.28233778e-01 -4.94687825e-01 -8.94805938e-02 1.75441857e-02 -6.17649615e-01 -6.37175083e-01 1.74174115e-01 -5.72217964e-02 2.22016156e-01 -6.87306881e-01 1.10841823e+00 4.76130515e-01 -5.42608090e-02 8.87982249e-01 -1.53249419e+00 -2.86765069e-01 8.47133279e-01 -3.25468868e-01 6.31050706e-01 3.55790824e-01 -2.37471804e-01 9.79136109e-01 -4.51831192e-01 5.72060883e-01 8.92208040e-01 5.93121290e-01 2.51357615e-01 -1.61250377e+00 -4.43090022e-01 1.64026156e-01 5.20048916e-01 -1.26312590e+00 -1.94159746e-01 1.16443920e+00 -7.61859059e-01 1.02097058e+00 8.17834139e-02 1.20691943e+00 8.95216882e-01 7.52037942e-01 6.28043562e-02 1.24445379e+00 -4.06149685e-01 4.86855328e-01 -2.82000512e-01 4.70156729e-01 7.87836790e-01 4.10856903e-01 5.32459468e-02 -4.48120832e-01 -3.97590399e-01 5.13166308e-01 1.45160183e-02 -3.64372790e-01 -6.36885166e-01 -1.05473554e+00 9.18032765e-01 6.14432573e-01 4.92052227e-01 -5.87593615e-01 1.02816097e-01 3.72043848e-01 6.44681692e-01 5.66961527e-01 3.76125097e-01 -2.24170536e-02 1.15780205e-01 -9.21043277e-01 -2.47286126e-01 1.01932216e+00 5.24152219e-01 6.96059823e-01 1.20155759e-01 2.30566055e-01 5.82957029e-01 4.31163341e-01 -8.77824351e-02 5.42194009e-01 -1.98040918e-01 1.77607268e-01 9.88054872e-01 -7.34242320e-01 -1.30111992e+00 -9.10079718e-01 -3.39099258e-01 -9.87811089e-01 6.62271604e-02 2.11354807e-01 -1.79302216e-01 -8.37522089e-01 1.52814341e+00 -1.00330837e-01 4.78998661e-01 -1.22120261e-01 4.95143801e-01 7.05896080e-01 2.24439248e-01 -8.99130926e-02 -3.56337637e-01 1.24463320e+00 -2.87522078e-01 -6.65094256e-01 -2.28999689e-01 7.29839146e-01 -1.13616824e-01 5.42344868e-01 2.96303093e-01 -6.45372748e-01 1.97101310e-02 -1.11478150e+00 6.10064149e-01 -5.09508133e-01 -4.79968250e-01 5.40630937e-01 5.19693255e-01 -1.44731283e+00 7.55794942e-01 -1.04455483e+00 -4.34318393e-01 3.73584062e-01 6.38899505e-01 -5.33440411e-01 -4.70252987e-03 -1.17632556e+00 8.77553999e-01 4.22860533e-01 -2.40008384e-02 -6.30991459e-01 -4.99811232e-01 -1.07992530e+00 9.08587947e-02 7.43405223e-02 -3.70409608e-01 4.34974223e-01 -8.10542762e-01 -1.08883321e+00 7.20062256e-01 1.91478148e-01 -6.86247885e-01 3.41417909e-01 6.94983363e-01 -8.18810523e-01 3.52200121e-01 -1.42281353e-01 1.73624337e-01 1.07422686e+00 -7.58294165e-01 9.14930776e-02 -5.27801394e-01 -1.08773030e-01 -9.30106714e-02 -3.67813230e-01 -2.17856586e-01 -6.91673905e-02 -7.10049093e-01 4.47252035e-01 -9.90282834e-01 -2.84902364e-01 -3.10819536e-01 -5.66479564e-01 -2.15347260e-01 7.30261683e-01 -5.75572848e-01 1.36088085e+00 -2.03235841e+00 2.46378243e-01 6.94243670e-01 8.46821368e-01 -1.61569998e-01 -1.52212843e-01 6.66884124e-01 -5.97560823e-01 -6.50309846e-02 -4.69124138e-01 1.36009216e-01 -3.34850490e-01 1.83873530e-02 3.88465822e-01 7.83097208e-01 1.36446610e-01 8.56125474e-01 -1.06437027e+00 -3.45110506e-01 2.29237318e-01 6.22285724e-01 -4.53771353e-01 1.00295879e-01 3.51383716e-01 3.35171252e-01 -2.99803764e-01 2.24509597e-01 1.85189068e-01 -4.55022991e-01 5.95345676e-01 -2.87349313e-01 3.90810907e-01 1.73178777e-01 -8.85334551e-01 1.51789498e+00 -2.08389640e-01 8.75495195e-01 -2.99902439e-01 -1.58898628e+00 1.17271876e+00 3.21211457e-01 8.45290899e-01 -4.27834868e-01 2.89813191e-01 4.03210670e-02 6.24643981e-01 -3.51204008e-01 -3.63865674e-01 -1.02110296e-01 5.75593486e-02 6.08344555e-01 2.01014310e-01 -2.04989165e-01 1.89606920e-01 4.05446142e-01 1.76291215e+00 -5.67597747e-01 6.42371178e-01 -6.13811553e-01 5.61861694e-01 -3.43422353e-01 2.02054799e-01 1.44336462e-01 -1.99480951e-01 2.12428972e-01 1.13337183e+00 -3.58735353e-01 -5.60830951e-01 -1.01249468e+00 -1.32496744e-01 6.12369001e-01 -1.61525160e-01 -6.50913417e-01 -8.59452367e-01 -5.52149415e-01 2.31775013e-03 4.77575868e-01 -8.38326991e-01 -7.09045410e-01 -4.38332051e-01 -8.55877995e-01 1.67771578e-01 2.90380448e-01 -2.25056782e-02 -1.10493314e+00 -4.57410723e-01 2.94736147e-01 2.28253856e-01 -8.38793218e-01 -3.69747996e-01 4.45455045e-01 -1.10368299e+00 -1.47697210e+00 -2.94677973e-01 -1.03214288e+00 1.06977153e+00 -2.29143575e-01 8.55491221e-01 1.96058482e-01 -4.74870086e-01 5.98353505e-01 -3.53067875e-01 -2.88653255e-01 -4.12266403e-01 1.84833028e-04 2.26581424e-01 3.81333143e-01 3.95198882e-01 -9.63791251e-01 -5.18531919e-01 -2.49693682e-03 -7.22601116e-01 -2.52092630e-01 4.88881499e-01 9.38937187e-01 4.72314298e-01 2.45821357e-01 7.92059958e-01 -9.16946292e-01 1.08956313e+00 -7.04733551e-01 -5.77730775e-01 5.40835522e-02 -9.53663886e-01 2.44845346e-01 6.88646913e-01 -4.22776967e-01 -1.92782864e-01 2.09002137e-01 3.60484302e-01 -4.01692331e-01 2.22233564e-01 8.70609820e-01 -1.02158748e-02 -2.27048412e-01 6.12909257e-01 2.66470194e-01 4.04979318e-01 -1.74941555e-01 2.99718320e-01 5.15466630e-01 2.96672016e-01 1.10420242e-01 5.92368662e-01 1.39757708e-01 3.27435404e-01 -1.09577143e+00 -1.15400217e-01 -3.15451145e-01 -9.80931520e-01 -4.18811917e-01 6.35930181e-01 -3.91655833e-01 -5.79808176e-01 1.64319888e-01 -7.24147558e-01 -3.51359397e-01 -1.16404094e-01 7.29245245e-01 -5.48474371e-01 3.69138628e-01 -5.05513012e-01 -6.14656925e-01 -3.26578677e-01 -9.21844721e-01 5.01303017e-01 -3.47335160e-01 -4.63521093e-01 -1.59552979e+00 2.90442675e-01 -2.49612808e-01 2.60688841e-01 6.84329748e-01 1.33872688e+00 -9.14975524e-01 -1.27314568e-01 -4.43128735e-01 -1.43502370e-01 1.02839373e-01 5.85686743e-01 -3.24242204e-01 -5.99984825e-01 -6.16749406e-01 6.80764318e-02 1.90969840e-01 5.61289430e-01 5.76316595e-01 1.04049337e+00 -2.28383958e-01 -4.24609065e-01 4.71521527e-01 1.31790996e+00 2.55167514e-01 3.90996277e-01 9.97813642e-02 7.73015022e-01 8.49225283e-01 -4.34883088e-02 3.65659237e-01 2.16313422e-01 4.19403285e-01 4.67692524e-01 1.24553151e-01 -1.38798997e-01 -8.96721631e-02 2.93659121e-01 1.09906983e+00 -4.13661711e-02 -1.39795825e-01 -1.29401255e+00 4.83219594e-01 -1.65353513e+00 -6.65548742e-01 -1.93770453e-01 2.24238634e+00 3.50695223e-01 2.69397080e-01 1.93082809e-01 4.97197926e-01 8.49694133e-01 2.37900317e-01 -5.84395885e-01 -2.57271528e-01 1.94676310e-01 1.98040038e-01 4.12172407e-01 5.28289318e-01 -7.05710471e-01 5.20776510e-01 6.49042416e+00 -5.06753800e-03 -1.28206146e+00 8.21796129e-04 4.45473909e-01 4.77646105e-02 -2.35375851e-01 -1.55763607e-02 1.88021928e-01 5.39394855e-01 1.36581385e+00 -6.17168725e-01 6.79850757e-01 3.34069729e-01 2.49750540e-01 1.98804155e-01 -1.30395746e+00 1.28260756e+00 3.04303467e-01 -1.15650582e+00 -3.35615613e-02 2.61967719e-01 2.15609208e-01 2.45947763e-01 -3.50917459e-01 -8.41998458e-02 4.64512855e-02 -1.18112922e+00 2.38312647e-01 7.68653750e-01 8.09468746e-01 -6.69176459e-01 5.71740806e-01 2.15181500e-01 -1.30534661e+00 -7.13836700e-02 -7.91733488e-02 -1.59654960e-01 5.94810881e-02 6.41379833e-01 -1.07307184e+00 3.11065048e-01 3.37001979e-01 1.07404363e+00 -7.13351250e-01 9.82562721e-01 -2.17577100e-01 7.27179289e-01 1.04123624e-02 -1.04510501e-01 5.02988473e-02 -3.53410363e-01 7.41933346e-01 1.02433372e+00 2.06203759e-01 1.04206325e-02 3.45755480e-02 7.45876551e-01 -6.70025498e-02 1.68050513e-01 -1.14172447e+00 -2.40540087e-01 3.72166425e-01 1.34844923e+00 -1.24475443e+00 -1.91777974e-01 -3.53909343e-01 9.34426844e-01 5.31365931e-01 2.29088545e-01 -2.90565521e-01 -6.33406758e-01 3.27415466e-01 4.23006773e-01 -1.06676355e-01 -3.20003003e-01 4.09087054e-02 -1.01700890e+00 -1.40072614e-01 -5.40719330e-01 4.22087073e-01 -3.21259230e-01 -1.45317197e+00 9.11813855e-01 5.73927015e-02 -1.23593867e+00 -4.98009980e-01 -6.44459009e-01 -8.49812686e-01 6.27212286e-01 -1.24914861e+00 -7.32582331e-01 -4.24525201e-01 8.15201044e-01 6.27426133e-02 -3.85482877e-01 9.14358079e-01 1.10233009e-01 -3.82958323e-01 2.29073659e-01 -2.59374857e-01 2.94434637e-01 2.06183732e-01 -1.33792961e+00 4.53709722e-01 7.24677563e-01 4.06180531e-01 4.73062605e-01 4.35909688e-01 -6.80514812e-01 -1.58276904e+00 -1.13930404e+00 9.29267585e-01 -3.26253623e-01 1.25245965e+00 -6.34644806e-01 -1.04237938e+00 7.47361124e-01 -2.21313424e-02 4.66225475e-01 7.29231179e-01 -3.42813134e-02 -1.35825917e-01 -4.98039722e-02 -1.07668543e+00 4.06314999e-01 1.01722777e+00 -7.44535506e-01 -6.71739340e-01 4.90801483e-01 2.76635766e-01 2.08447695e-01 -1.20803761e+00 1.24151282e-01 2.96637505e-01 -7.74428427e-01 6.09770536e-01 -4.96506661e-01 -1.39182195e-01 -4.31880588e-04 2.06322312e-01 -1.91014314e+00 -4.41547126e-01 -7.75685310e-01 -1.95358425e-01 7.54960179e-01 3.84152532e-01 -1.05671358e+00 7.67812252e-01 4.87059951e-01 1.06840476e-01 -8.15055966e-01 -9.50537086e-01 -8.49674702e-01 -9.95668992e-02 -5.02688646e-01 5.85875094e-01 1.12803578e+00 7.77235925e-01 5.04502475e-01 9.87407267e-02 4.64196354e-02 7.42584229e-01 -2.12663904e-01 1.40511245e-01 -1.58335865e+00 -2.57815067e-02 -5.34171164e-01 -1.31279492e+00 -7.81314149e-02 4.15725797e-01 -1.54054117e+00 -3.89716864e-01 -1.65659809e+00 4.98065315e-02 -4.38342482e-01 -7.67039180e-01 4.81973052e-01 2.17669606e-01 3.94450948e-02 -2.04283111e-02 5.95701709e-02 -1.80941135e-01 2.19306827e-01 8.60164106e-01 -2.50184029e-01 -4.02280807e-01 -5.71488403e-02 -5.00220001e-01 7.52484381e-01 8.99903119e-01 -4.85555112e-01 -8.34354103e-01 -3.16334032e-02 6.36934936e-02 3.18469495e-01 3.45737994e-01 -9.77277637e-01 3.76231790e-01 4.79354382e-01 1.75155416e-01 -9.69886184e-02 1.80205807e-01 -9.22074139e-01 2.56448418e-01 8.54252934e-01 -2.76833117e-01 1.87237486e-01 3.29723372e-03 8.03772986e-01 -2.97133476e-01 2.86472943e-02 6.55428112e-01 1.43826917e-01 -5.39394915e-01 5.90205193e-01 -5.62788069e-01 -1.57517001e-01 1.17485142e+00 -3.34497303e-01 8.04333538e-02 -5.26094675e-01 -1.18290281e+00 -3.38168181e-02 1.80037364e-01 3.65615904e-01 9.67165351e-01 -1.29394817e+00 -6.71372294e-01 5.52201092e-01 2.91004062e-01 -5.86938798e-01 -1.11242443e-01 1.23123777e+00 -4.43873852e-01 2.06158087e-01 -4.20325547e-01 -5.85245669e-01 -1.40024853e+00 3.78145754e-01 4.71763372e-01 -1.69017643e-01 -9.56334114e-01 5.57260454e-01 -1.67683035e-01 -2.01477334e-01 -8.32762662e-03 -4.81254846e-01 -5.75879574e-01 4.94573146e-01 2.78970748e-01 4.55239207e-01 2.68839538e-01 -7.28500545e-01 -6.34950697e-01 4.01966602e-01 7.45995194e-02 8.94875079e-02 1.47516191e+00 2.47800723e-01 -3.84163678e-01 4.98904705e-01 1.44666946e+00 -3.64540726e-01 -8.67279053e-01 -1.80476829e-01 3.28016073e-01 -1.60419270e-01 3.93816024e-01 -3.74787480e-01 -1.24470031e+00 7.59898245e-01 7.68968284e-01 6.75877988e-01 1.08794725e+00 1.42202660e-01 2.24256441e-01 2.68391907e-01 5.90933442e-01 -6.22707665e-01 -4.12872173e-02 1.65834397e-01 8.56693566e-01 -1.10522556e+00 1.16581224e-01 -3.13990414e-01 -2.82038987e-01 1.39959192e+00 7.49826431e-02 -5.31919122e-01 1.28445065e+00 2.85166383e-01 -2.01295108e-01 -8.76378059e-01 -5.66587985e-01 8.24835226e-02 4.93608773e-01 7.10146070e-01 3.81168932e-01 3.49210769e-01 -4.02456462e-01 2.56037265e-01 -4.10464227e-01 -1.42626897e-01 5.79285085e-01 7.21653044e-01 -2.56800890e-01 -1.01617718e+00 1.18420105e-02 1.15318847e+00 -1.42525777e-01 -2.00542256e-01 -5.55359244e-01 6.37863636e-01 -3.67338479e-01 1.08184659e+00 1.60556540e-01 -5.73531389e-01 3.76923680e-01 2.32961755e-02 5.06903887e-01 -8.47671807e-01 -2.24175796e-01 -2.39069611e-01 8.01654346e-03 -6.61443889e-01 -3.95618409e-01 -7.37927318e-01 -1.36869192e+00 -1.03479281e-01 -2.73742318e-01 6.89380094e-02 5.90813816e-01 7.04577684e-01 4.45145726e-01 7.76258707e-01 7.02781618e-01 -7.64083266e-01 5.65391146e-02 -8.97757411e-01 -1.07461941e+00 3.87410462e-01 3.47822815e-01 -7.77854383e-01 -5.08143485e-01 -1.16517141e-01]
[12.30441951751709, 3.437166452407837]
18717bb5-fbb5-49a5-8a1e-5433a46b1ff0
bloom-a-176b-parameter-open-access
2211.051
null
https://arxiv.org/abs/2211.05100v4
https://arxiv.org/pdf/2211.05100v4.pdf
BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
['Nikolaus Muellner', 'Nicholas Michio Broad', 'Nathan Dahlberg', 'Helena U. Vrabec', 'Gully Burns', 'Giyaseddin Bayrak', 'Gabriel Altay', 'Florian Fuhrimann', 'Alfredo Palasciano', 'Abhinav Ramesh Kashyap', 'Zach Nguyen', 'Yoyo Yang', 'Trieu Le', 'Tobi Oyebade', 'Ryan Hao', 'Rasmus Kromann', 'Ran An', 'Olanrewaju Samuel', 'Nour Fahmy', 'Nour Elkott', 'Nazneen Rajani', 'Nafis Abrar', 'Mykola Burynok', 'Muhammed Ghauri', 'Mike Qiu', 'Michael McKenna', 'Martha Akinlolu', 'Marissa Gerchick', 'Margot Mieskes', 'Maraim Elbadri', 'Mairon Samagaio', 'Livia Dutra', 'Jesse Passmore', 'Isar Nejadgholi', 'Irina Sedenko', 'Irene Solaiman', 'Indrani Bhattacharya', 'Hessie Jones', 'Habib Rezanejad', 'Frankline Ononiwu', 'Fatima Mirza', 'Ezinwanne Ozoani', 'Emi Baylor', 'Edward Tan', 'Duong A. Nguyen', 'Douwe Kiela', 'Davis David', 'David Lansky', 'Danish Contractor', 'Daniel McDuff', 'Maiko Takeuchi', 'Thanh Le', 'Shachar Mirkin', 'Omar Sanseviero', 'Tali Bers', 'Taewoon Kim', 'Davut Emre Taşar', 'Arun Raja', 'Zeerak Talat', 'Shamsuddeen Hassan Muhammad', 'Shamik Bose', 'BigScience Workshop', 'Chirag Jain', 'Chenxi Zhou', 'Caio Brito', 'Bo wang', 'Benjamin Beilharz', 'Ayush Singh', 'Antonio Miranda-Escalada', 'Anima Shukla', 'Alison Callahan', 'Sylvain Viguier', 'Sourav Roy', 'Silas Wang', 'Sarmad Shubber', 'Samira Alizadeh', 'Julio Bonis Sanz', 'Josh Seltzer', 'Carlos Muñoz Ferrandis', 'Bharat Saxena', 'Benjamin Ajibade', 'Bahareh Behroozi', 'Azadeh HajiHosseini', 'Aycha Tammour', 'Arezoo Abdollahi', 'Arash Aghagol', 'Antigona Unldreaj', 'Anthony Hevia', 'Ana Santos', 'Amy Faranak', 'Ammar Khan', 'Amir Feizpour', 'Amanda Pestana', 'Alice Rueda', 'Zdeněk Kasner', 'Zachary Bamberger', 'Yonatan Belinkov', 'Yada Pruksachatkun', 'Vladislav Mikhailov', 'Vitaly Protasov', 'Verena Rieser', 'Tomasz Limisiewicz', 'Tian Yun', 'Thomas Scialom', 'Tatiana Shavrina', 'Shani Pais', 'Sebastian Gehrmann', 'Ruochen Zhang', 'Rui Zhang', 'Oskar van der Wal', 'Omer Antverg', 'Oleg Serikov', 'Newton Cheng', 'Najoung Kim', 'Miruna Clinciu', 'Marine Carpuat', 'Liam Hazan', 'Ken Kawamura', 'Jungo Kasai', 'Jordan Clive', 'Jessica Zosa Forde', 'Jekaterina Novikova', 'Jan-Christoph Kalo', 'Hailey Schoelkopf', 'Genta Indra Winata', 'Eli Bogdanov', 'Ekaterina Voloshina', 'Ekaterina Taktasheva', 'Ehud Reiter', 'Deepak Tunuguntla', 'Dan Garrette', 'Charles Lovering', 'Aurélie Névéol', 'Arjun Subramonian', 'Anne-Laure Ligozat', 'Anastasia Cheveleva', 'Amanpreet Singh', 'Ahmed Baruwa', 'Tim Dettmers', 'Suraj Patil', 'Stéphane Requena', 'Shaden Smith', 'Sanchit Gandhi', 'Samyam Rajbhandari', 'Rémi Lacroix', 'Pierre François Lavallée', 'Pierre Cornette', 'Patrick von Platen', 'Nouamane Tazi', 'Nicolas Patry', 'Myriam Peyrounette', 'Mohammad Shoeybi', 'Minjia Zhang', 'Mayank Mishra', 'Max Ryabinin', 'Jeff Rasley', 'Jared Casper', 'Hatim Bourfoune', 'Deepak Narayanan', 'Conglong Li', 'Ofir Press', 'Jason Phang', 'Jaesung Tae', 'Hyung Won Chung', 'Adam Roberts', 'Hadar Tojarieh', 'Yallow Uri', 'Shaked Brody', 'Zhiqing Sun', 'Zheng-Xin Yong', 'Xiangru Tang', 'Vikas Raunak', 'Urmish Thakker', 'Trishala Neeraj', 'Thibault Fevry', 'Stephen H. Bach', 'Srulik Ben-David', 'Sheng Shen', 'Samuel Albanie', 'Ryan Teehan', 'Nihal Nayak', 'Matteo Manica', 'Maged S. Al-shaibani', 'M Saiful Bari', 'Lintang Sutawika', 'Leo Gao', 'Jos Rozen', 'Jason Alan Fries', 'Hendrik Strobelt', 'Harshit Pandey', 'Han Wang', 'Gunjan Chhablani', 'Eliza Szczechla', 'Debajyoti Datta', 'Arnaud Stiegler', 'Antoine Chaffin', 'Andrea Santilli', 'Abheesht Sharma', 'Wilson Y. Lee', 'Sabrina J. Mielke', 'Elizabeth Salesky', 'Chenglei Si', 'Benjamin Heinzerling', 'Zaid Alyafeai', 'Vrinda Prabhu', 'Violette Lepercq', 'Veronika Laippala', 'Vassilina Nikoulina', 'Valentin Danchev', 'Tristan Thrush', 'Timo Schick', 'Tiago Timponi Torrent', 'Sydney Zink', 'Suhas Pai', 'Stanislav Silberberg', 'Somaieh Nikpoor', 'Shayne Longpre', 'Sebastian Nagel', 'Sampo Pyysalo', 'Salomey Osei', 'Rui Ribeiro', 'Roberto Luis López', 'Rishi Bommasani', 'Rheza Harliman', 'Quentin Lhoest', 'Priscilla Amuok', 'Pierre Colombo', 'Peter Henderson', 'Paulo Villegas', 'Ona de Gibert', 'Omar Espejel', 'Olivier Nguyen', 'Nurulaqilla Khamis', 'Nora Kassner', 'Nishant Subramani', 'Mustafa Ghaleb', 'Mohammad A. Jauhar', 'Minh Chien Vu', 'Mike Tian-Jian Jiang', 'Mayank Singh', 'Maximin Coavoux', 'Max Huang', 'Mario Šaško', 'María Grandury', 'Maraim Masoud', 'Manuel Romero Muñoz', 'Manan Dey', 'Ludovic Tanguy', 'Loubna Ben allal', 'Long Phan', 'Leon Weber', 'Leandro von Werra', 'Kyle Lo', 'Kimbo Chen', 'Khalid Almubarak', 'Joydeep Bhattacharjee', 'Joseph Tobing', 'Jörg Frohberg', 'Jonathan Chang', 'Jian Zhu', 'Jesse Dodge', 'Jenny Chim', 'Javier de la Rosa', 'Itziar Gonzalez-Dios', 'Isaac Johnson', 'Idris Abdulmumin', 'Ian Yu', 'Hieu Tran', 'Hamza Benyamina', 'Hady Elsahar', 'Giada Pistilli', 'Germán Kruszewski', 'Gérard Dupont', 'Francesco De Toni', 'Eyal Bar Natan', 'Ethan Kim', 'Efrat Levkovizh', 'Eduardo González Ponferrada', 'Dragomir Radev', 'David Ifeoluwa Adelani', 'Daniel van Strien', 'Chris Emezue', 'Chenghao Mou', 'Natasha Seelam', 'Shanya Sharma', 'Colin Leong', 'Christopher Klamm', 'Ariel Kreisberg Nitzav', 'Adi Simhi', 'Aaron Gokaslan', 'Matthias Gallé', 'Christopher Akiki', 'Teven Le Scao', ':', 'Thomas Wolf', 'Younes Belkada', 'Mathilde Bras', 'Zifan Ye', 'Zhongli Xie', 'Zhe Tan', 'Yu Xu', 'Yingxin Xu', 'Yifan Xu', 'Yash Venkatraman', 'Yash Shailesh Bajaj', 'Yanis Labrak', 'Wojciech Kusa', 'Tomoya Kainuma', 'Théo Gigant', 'Tanmay Laud', 'Sushil Bharati', 'Stefan Schweter', 'Srishti Kumar', 'Sinee Sang-aroonsiri', 'Simon Ott', 'Sid Kiblawi', 'Shubhanshu Mishra', 'Shlok S Deshmukh', 'Samuele Garda', 'Samuel Cahyawijaya', 'Ruisi Su', 'Rosaline Su', 'Rodrigo Canalli', 'Robert Martin', 'Renata Eisenberg', 'Ramya Chandrasekhar', 'Patrick Haller', 'Pascale Fung', 'Myungsun Kang', 'Moritz Freidank', 'Minna Liu', 'Mina Mihaljcic', 'Michiel De Wolf', 'Michael Weinberg', 'Michael Cullan', 'Matthias Samwald', 'Mario Sänger', 'Marianna Nezhurina', 'Maria A Castillo', 'Marc Pàmies', 'Madeleine Hahn de Bykhovetz', 'Luisa Shinzato', 'Lu Liu', 'Lokesh Bulchandani', 'Karthik Rangasai Sivaraman', 'Jose David Posada', 'Jonas Golde', 'John Giorgi', 'Jihyun Kang', 'Ishani Dash', 'Imane Bello', 'Fabio Barth', 'Enrique Manjavacas', 'Dian Yu', 'Daniel Molano', 'Daniel León Periñán', 'Clémentine Fourrier', 'Chuxin Xu', 'Canwen Xu', 'Anna Rogers', 'Amit Alfassy', 'Alham Fikri Aji', 'Aitor Soroa', 'Colin Raffel', 'Margaret Mitchell', 'Julien Launay', 'Yacine Jernite', 'Hugo Laurençon', 'Victor Sanh', 'Pedro Ortiz Suarez', 'Samson Tan', 'Lucile Saulnier', 'Huu Nguyen', 'Iz Beltagy', 'Angelina McMillan-Major', 'Stas Bekman', 'Rachel Bawden', 'Olatunji Ruwase', 'Albert Villanova del Moral', 'Niklas Muennighoff', 'Benoît Sagot', 'Thomas Wang', 'Pawan Sasanka Ammanamanchi', 'Albert Webson', 'Stella Biderman', 'Alexander M. Rush', 'Jonathan Tow', 'François Yvon', 'Alexandra Sasha Luccioni', 'Roman Castagné', 'Daniel Hesslow', 'Suzana Ilić', 'Ellie Pavlick', 'Angela Fan']
2022-11-09
null
null
null
null
['multilingual-nlp']
['natural-language-processing']
[ 2.98066717e-02 1.32226884e-01 -6.24141753e-01 -2.88979977e-01 -1.08707190e+00 -6.57280803e-01 8.54784727e-01 -4.75242995e-02 -5.36374927e-01 5.33224523e-01 4.71827328e-01 -7.43008494e-01 4.12053972e-01 -4.08134162e-01 -9.00333762e-01 -1.11243263e-01 -1.82780907e-01 7.58250833e-01 3.74049067e-01 -4.45738643e-01 2.89619058e-01 1.38739139e-01 -1.16489983e+00 6.43485725e-01 7.86086082e-01 4.82093990e-01 5.76783419e-01 5.75167716e-01 -2.97833264e-01 1.13233709e+00 -1.54930830e-01 -5.53740442e-01 1.92563400e-01 1.30545840e-01 -1.01906097e+00 -4.94603515e-01 3.73170644e-01 -3.42770159e-01 -2.86606431e-01 6.93099916e-01 4.51497972e-01 1.47457151e-02 1.52686983e-01 -1.15401697e+00 -7.41099238e-01 1.32736456e+00 -3.83713096e-01 3.03900898e-01 4.51664925e-01 3.60806584e-01 1.29843366e+00 -1.02498102e+00 5.84847927e-01 1.30871356e+00 5.86658537e-01 4.15561318e-01 -1.32852519e+00 -9.81245577e-01 6.39800951e-02 -6.90570623e-02 -1.25104058e+00 -9.21822309e-01 4.72968638e-01 -4.06495303e-01 1.85192680e+00 -1.56307578e-01 3.10901374e-01 1.35181797e+00 3.87677610e-01 1.13125479e+00 1.06059992e+00 -6.46657526e-01 -3.07145119e-01 1.45099536e-01 9.84728485e-02 1.01422477e+00 1.27971157e-01 -5.48432069e-03 -7.65269876e-01 -3.19297910e-01 6.36883199e-01 -3.50393683e-01 -3.90639566e-02 -3.03526998e-01 -1.51811922e+00 7.60466337e-01 1.00795977e-01 5.56066096e-01 1.99947488e-02 3.17043126e-01 6.37481034e-01 7.32163250e-01 3.60201031e-01 7.25187063e-01 -7.68533528e-01 -5.57850778e-01 -6.70991361e-01 3.69243592e-01 9.21734512e-01 1.08376610e+00 5.70155203e-01 1.72754470e-02 1.56976342e-01 8.68247151e-01 2.99296111e-01 3.94115895e-01 8.62932622e-01 -1.00680864e+00 6.85273290e-01 5.50045490e-01 -8.49474818e-02 -5.54115832e-01 -5.48511803e-01 -4.28538740e-01 -3.78885180e-01 -2.09138960e-01 5.40749967e-01 1.24871120e-01 -5.22564113e-01 1.85589159e+00 -2.22571224e-01 -1.18998043e-01 -1.97390076e-02 2.55658835e-01 6.73523903e-01 6.82201803e-01 9.55147147e-02 2.03444839e-01 1.06168711e+00 -1.11476874e+00 -2.99671441e-01 -6.12190425e-01 1.16761923e+00 -8.26974213e-01 1.59974980e+00 7.53026605e-01 -1.15068042e+00 -3.13217282e-01 -8.77941310e-01 -5.00371933e-01 -3.79562169e-01 -1.86680749e-01 7.99659073e-01 5.30962527e-01 -1.19392610e+00 1.81153595e-01 -9.93776381e-01 -4.55006182e-01 2.24338472e-01 2.11514562e-01 -3.32952797e-01 -1.48351595e-01 -1.18182921e+00 1.18588018e+00 3.84355158e-01 -4.05832142e-01 -1.09582841e+00 -5.26348293e-01 -7.76356101e-01 -7.91917965e-02 3.80374193e-01 -5.19503534e-01 1.59865475e+00 -7.17035890e-01 -1.47406864e+00 1.17848504e+00 -1.10267706e-01 -6.62193358e-01 3.42482090e-01 -3.69304031e-01 -3.42507988e-01 -3.42764109e-01 1.13796107e-01 6.58111751e-01 4.70488399e-01 -7.81732321e-01 -6.75656319e-01 4.22874168e-02 2.18564078e-01 -2.58128550e-02 -6.23096168e-01 5.39246380e-01 -4.27587122e-01 -6.86509371e-01 -3.88702393e-01 -8.99762094e-01 -8.22109058e-02 -4.74173784e-01 -3.13022405e-01 -5.50510943e-01 4.14083302e-01 -7.27223635e-01 1.31707573e+00 -2.02876925e+00 9.95607674e-02 -2.15907156e-01 3.75152260e-01 2.51215398e-01 -6.51949108e-01 7.21145630e-01 9.69036445e-02 3.39552552e-01 2.56071836e-02 -4.17462021e-01 2.52296388e-01 -4.48517650e-02 -5.58366835e-01 2.52259821e-01 -1.06335431e-01 1.03303576e+00 -9.61072445e-01 -2.87234426e-01 -1.08651243e-01 1.10452980e-01 -7.12435961e-01 1.01686485e-01 -5.13674796e-01 1.64704591e-01 -3.11879039e-01 6.45172954e-01 1.16498232e-01 -5.42611241e-01 1.04645275e-01 2.24921539e-01 -1.44290641e-01 1.01439953e+00 -6.84841156e-01 2.14057565e+00 -8.85633528e-01 7.44254827e-01 1.08155437e-01 -7.12433100e-01 7.91809738e-01 4.11308587e-01 2.58570701e-01 -6.77078128e-01 -3.57644111e-02 4.70079571e-01 2.15708882e-01 -3.39603662e-01 5.86995244e-01 3.76032405e-02 -3.94044667e-01 8.46244514e-01 2.18739435e-01 -3.46679658e-01 3.89155477e-01 4.43036079e-01 1.35028422e+00 6.48519546e-02 4.63985682e-01 -3.99917275e-01 1.90345719e-01 1.20621718e-01 2.30769575e-01 9.31887805e-01 -1.10522524e-01 -4.13103141e-02 2.47358397e-01 -5.48601210e-01 -1.16452885e+00 -9.53100562e-01 -1.31369717e-02 1.77482665e+00 -4.46134299e-01 -8.78180921e-01 -4.72035229e-01 -3.40510279e-01 -3.08951270e-02 8.84234369e-01 -1.58585146e-01 -1.10205412e-01 -7.08447874e-01 -3.49306375e-01 1.02409613e+00 4.33703303e-01 4.54982042e-01 -1.12191188e+00 -5.61763406e-01 2.55752742e-01 -3.37344646e-01 -1.24163866e+00 -4.65766579e-01 3.54250610e-01 -6.85656071e-01 -7.73577452e-01 -4.33144033e-01 -1.02109826e+00 6.99417889e-02 2.19396666e-01 1.53705275e+00 1.30914897e-01 5.16094342e-02 2.40954205e-01 -2.20208615e-01 -3.57320905e-01 -8.35579216e-01 7.71614730e-01 1.59036309e-01 -6.56657279e-01 4.43187475e-01 -6.79553628e-01 3.10716867e-01 1.15899771e-01 -7.00082958e-01 4.18019176e-01 6.97420657e-01 7.05573976e-01 4.72939834e-02 -3.38252485e-01 5.35926819e-01 -1.02106810e+00 8.43929172e-01 -4.80576485e-01 -8.12550545e-01 2.26340860e-01 -7.01058984e-01 2.19532251e-01 7.18981326e-01 -3.29829395e-01 -9.25383568e-01 -1.81602016e-01 -1.99098423e-01 8.38799253e-02 4.07800265e-02 7.50745535e-01 9.04768184e-02 -1.27886474e-01 8.21936727e-01 3.64592314e-01 -2.94503957e-01 -5.13713121e-01 4.92776871e-01 6.21605814e-01 3.77104700e-01 -1.10690475e+00 7.71282494e-01 -2.14586049e-01 -5.74062765e-01 -7.28359878e-01 -7.40453899e-01 -2.41845503e-01 -3.15210998e-01 2.26200566e-01 4.57495570e-01 -1.29770780e+00 -5.75426817e-01 3.84023756e-01 -1.12213862e+00 -1.02737391e+00 1.33857384e-01 2.81182379e-01 -4.94699240e-01 2.38621116e-01 -9.16306317e-01 -4.25465941e-01 -2.38958597e-01 -1.33186030e+00 9.66261566e-01 -1.06701642e-01 -5.12511373e-01 -1.02662206e+00 2.51063287e-01 4.15921926e-01 6.86321020e-01 -4.72023308e-01 1.28128242e+00 -8.15566599e-01 -7.32083976e-01 1.46638267e-02 -7.69990906e-02 2.81533748e-01 -3.95661928e-02 -4.80811633e-02 -8.40793014e-01 -4.78931785e-01 -3.20770979e-01 -9.52236831e-01 8.34005713e-01 -5.31883463e-02 9.92327809e-01 -2.86223739e-01 -4.03937519e-01 5.93080044e-01 1.13605952e+00 -2.75687482e-02 2.82226741e-01 5.51637530e-01 6.26717150e-01 2.65817970e-01 1.18753336e-01 2.63033152e-01 8.40435207e-01 4.61236268e-01 1.24318413e-01 1.41319618e-01 -5.51282950e-02 -5.69129050e-01 8.29614460e-01 1.32227886e+00 9.78772044e-02 -1.82340086e-01 -1.44442284e+00 5.72561920e-01 -1.38920224e+00 -5.98689735e-01 3.82419601e-02 1.94568861e+00 1.25639606e+00 5.94271541e-01 1.38189673e-01 -4.92422223e-01 5.65386228e-02 3.09863716e-01 -5.32321334e-01 -6.13988578e-01 -2.72776842e-01 3.02990079e-01 5.30069470e-01 5.77807307e-01 -7.23658741e-01 1.45785606e+00 7.55479383e+00 8.64946425e-01 -1.19584787e+00 3.19013208e-01 3.92724305e-01 -8.09147879e-02 -5.59671879e-01 1.38987392e-01 -8.61054480e-01 1.71018988e-01 1.34430933e+00 -7.13407159e-01 8.68060589e-01 8.09065998e-01 -7.22619286e-03 -3.55056934e-02 -1.34753895e+00 8.02812099e-01 -1.02329127e-01 -1.34451699e+00 -2.97707655e-02 -1.53141677e-01 6.70780420e-01 9.56907153e-01 2.18116224e-01 7.83681154e-01 1.01164711e+00 -1.16840398e+00 8.08447480e-01 1.92475021e-01 8.28150749e-01 -3.45614851e-01 1.49124950e-01 8.65521967e-01 -1.05663157e+00 -2.15892345e-01 -1.93706572e-01 -4.19429660e-01 -8.06393847e-02 2.97126353e-01 -8.95065725e-01 -5.17043471e-02 7.50874937e-01 6.92597806e-01 -6.83392227e-01 6.21145070e-01 -2.76803970e-01 8.85653377e-01 -3.60604197e-01 -1.05112813e-01 1.22937210e-01 3.43535453e-01 4.86907184e-01 1.45991266e+00 -9.84488651e-02 -2.82177508e-01 4.20049220e-01 9.03150678e-01 -3.63046259e-01 5.47499992e-02 -8.46498609e-01 -5.38616478e-01 5.70924044e-01 1.12848449e+00 -3.32204521e-01 -3.61700743e-01 -7.64246583e-01 5.77816248e-01 6.06597066e-01 2.74783611e-01 -7.03832507e-01 -2.79723048e-01 5.68759084e-01 1.39942303e-01 -1.68415874e-01 -6.93560362e-01 -1.81504577e-01 -1.45969868e+00 -2.00578406e-01 -1.55502236e+00 2.27543414e-01 -7.68454194e-01 -1.09346616e+00 6.54852092e-01 1.33269385e-01 -6.32319510e-01 -5.40690899e-01 -7.26915181e-01 -2.39975408e-01 8.04873645e-01 -1.41729808e+00 -1.20072997e+00 1.64996654e-01 3.73409390e-01 7.25368917e-01 -5.63914120e-01 1.00128937e+00 5.14520049e-01 -4.22522515e-01 7.81565309e-01 6.52349293e-02 1.88452184e-01 1.00790298e+00 -9.38361287e-01 1.03276551e+00 8.53784978e-01 3.43460053e-01 1.06623554e+00 6.52785003e-01 -4.54147935e-01 -1.55867624e+00 -8.08476985e-01 1.40835583e+00 -7.41446912e-01 1.15140271e+00 -7.47542799e-01 -7.29685366e-01 1.46509969e+00 4.73662823e-01 -3.84876370e-01 5.30901015e-01 3.00279707e-01 -6.42282963e-01 3.81325334e-02 -6.06427729e-01 5.75458825e-01 1.13708603e+00 -8.95415068e-01 -7.53154278e-01 4.78413403e-01 9.66427624e-01 -4.65345025e-01 -7.94169486e-01 2.20827326e-01 5.77349544e-01 -8.10038030e-01 7.17312753e-01 -6.84440553e-01 6.07519925e-01 1.49093404e-01 -4.24808860e-01 -1.28239846e+00 -3.81664544e-01 -9.28114116e-01 2.63820235e-02 1.09329021e+00 7.28475332e-01 -9.04227734e-01 3.82799208e-01 5.25899470e-01 -3.71589780e-01 -5.97291172e-01 -6.99377179e-01 -8.19508135e-01 5.24996340e-01 -8.41283798e-01 4.96545643e-01 1.02108932e+00 3.29428941e-01 6.51235640e-01 -2.49123722e-01 -3.77123863e-01 2.24625245e-01 1.04756178e-02 1.01531303e+00 -9.43831861e-01 -5.15182853e-01 -7.03012407e-01 2.84502119e-01 -1.38127112e+00 5.23255348e-01 -1.34708190e+00 -2.16552466e-02 -1.34182870e+00 3.51411343e-01 -7.51055837e-01 -1.20056815e-01 9.32058990e-01 1.90418482e-01 3.75292301e-02 1.22946255e-01 2.95176119e-01 -6.80900097e-01 3.22606266e-01 9.21018124e-01 -2.79700071e-01 -5.43819070e-02 -1.64194912e-01 -1.01508272e+00 9.29031968e-01 6.79295480e-01 -4.66791302e-01 -2.80857861e-01 -1.09164143e+00 7.25478888e-01 -1.56539410e-01 -6.12642951e-02 -8.94041121e-01 2.34748647e-01 -1.74883559e-01 -1.81141749e-01 -2.12407440e-01 1.87376097e-01 -4.32772964e-01 -1.08298562e-01 4.05527800e-01 -7.97406077e-01 5.33691823e-01 3.79815906e-01 2.15820060e-03 -8.96826088e-02 3.55938822e-02 5.92151821e-01 -3.52936804e-01 -9.43394005e-01 1.03323102e-01 -5.57678223e-01 3.18442076e-01 5.83296180e-01 2.91921377e-01 -5.22968590e-01 -3.98939967e-01 -1.59154683e-01 2.66596735e-01 6.11731231e-01 6.44640148e-01 2.70573974e-01 -1.06525445e+00 -7.98354089e-01 1.56768993e-01 3.06524485e-01 -1.99593186e-01 -3.61380309e-01 8.87395263e-01 -4.35980886e-01 7.84694850e-01 -4.70552184e-02 -2.87200958e-01 -9.15933609e-01 4.08984482e-01 2.18068764e-01 -6.21345401e-01 -6.45932436e-01 1.03080678e+00 1.94913939e-01 -7.89339364e-01 2.85929799e-01 -7.92326868e-01 1.52479753e-01 -4.86914366e-01 4.83596474e-01 2.30169460e-01 -1.39175607e-02 -4.51097578e-01 -3.61923635e-01 9.72324982e-02 -2.69015938e-01 -2.05481440e-01 1.37722909e+00 4.39633690e-02 -3.44309360e-01 8.01934719e-01 1.08464932e+00 3.14099133e-01 -8.02178264e-01 -6.28649890e-01 2.21293792e-01 -9.04087052e-02 -4.58259918e-02 -8.83539915e-01 -6.57852411e-01 8.69105756e-01 1.22018360e-01 -2.76817419e-02 9.80741203e-01 8.91647041e-02 1.14187610e+00 8.40992093e-01 7.69303620e-01 -9.64959443e-01 1.45848334e-01 1.15442133e+00 6.20484829e-01 -1.16368151e+00 -3.29835504e-01 7.28475824e-02 -4.01707709e-01 9.13497269e-01 5.45178711e-01 1.10726627e-02 5.18026829e-01 7.13842154e-01 -2.83771064e-02 9.60745066e-02 -1.33820760e+00 2.23743081e-01 3.01836133e-02 4.54527020e-01 9.43187177e-01 1.23102814e-01 -1.00776099e-01 7.78684497e-01 -4.37949449e-01 1.69653296e-01 4.60353076e-01 8.97522569e-01 -5.47056973e-01 -1.40266430e+00 -4.03637290e-02 4.64577019e-01 -4.70717281e-01 -6.66898072e-01 -2.37412572e-01 7.18001902e-01 -2.02562913e-01 8.15092802e-01 -2.47080028e-01 -4.81620967e-01 1.06430076e-01 2.33691439e-01 5.83127141e-01 -8.93349051e-01 -7.34141529e-01 -1.95227638e-01 3.98072213e-01 -6.01060808e-01 -1.78835616e-02 -4.55792814e-01 -1.19417214e+00 -5.95448613e-01 -6.47131726e-02 -9.11011919e-02 4.83463734e-01 1.03091204e+00 3.36387515e-01 2.35225320e-01 2.36243919e-01 -5.96296191e-01 -8.33942711e-01 -1.08061564e+00 -3.24161112e-01 -3.73968668e-02 2.85267144e-01 -4.50620592e-01 -1.31134078e-01 1.32237673e-01]
[10.632351875305176, 8.347243309020996]
43ce812a-fd4c-4afe-864b-60377cb85487
self-supervised-learning-for-organs-at-risk
2305.02491
null
https://arxiv.org/abs/2305.02491v1
https://arxiv.org/pdf/2305.02491v1.pdf
Self-Supervised Learning for Organs At Risk and Tumor Segmentation with Uncertainty Quantification
In this study, our goal is to show the impact of self-supervised pre-training of transformers for organ at risk (OAR) and tumor segmentation as compared to costly fully-supervised learning. The proposed algorithm is called Monte Carlo Transformer based U-Net (MC-Swin-U). Unlike many other available models, our approach presents uncertainty quantification with Monte Carlo dropout strategy while generating its voxel-wise prediction. We test and validate the proposed model on both public and one private datasets and evaluate the gross tumor volume (GTV) as well as nearby risky organs' boundaries. We show that self-supervised pre-training approach improves the segmentation scores significantly while providing additional benefits for avoiding large-scale annotation costs.
['Ulas Bagci', 'Damla Turgut', 'Mohamed Abazeed', 'Bulent Aydogan', 'Patrick Kelly', 'Justin Rineer', 'Curtis Lisle', 'Debesh Jha', 'Ilkin Isler']
2023-05-04
null
null
null
null
['tumor-segmentation']
['computer-vision']
[-3.77167873e-02 7.74886072e-01 -5.67363203e-01 -3.90659809e-01 -1.60254264e+00 -4.82267946e-01 4.89331007e-01 5.46374083e-01 -2.92196363e-01 1.20401835e+00 4.47744250e-01 -6.37893021e-01 -2.90057026e-02 -9.40222263e-01 -9.63721454e-01 -5.65261304e-01 -1.37669519e-01 6.99744403e-01 3.77337903e-01 4.64451700e-01 -3.54803145e-01 2.05443978e-01 -3.51460606e-01 9.58039016e-02 1.34719002e+00 1.12381959e+00 -1.71357334e-01 3.98407221e-01 2.83299237e-01 8.53497922e-01 -1.41325846e-01 -6.73990130e-01 3.38288218e-01 -1.81817561e-01 -9.47828829e-01 -1.36113986e-01 2.45671436e-01 -3.51775587e-01 -1.34434119e-01 9.45136011e-01 5.13058245e-01 -2.31088966e-01 9.56657588e-01 -1.01078892e+00 -2.82603968e-02 1.20545924e+00 -4.39933091e-01 2.19660863e-01 -2.33639419e-01 4.65215355e-01 8.18029225e-01 -1.90432444e-01 6.49816096e-01 5.33007264e-01 1.25703466e+00 3.77319068e-01 -1.17015898e+00 -5.74582279e-01 -3.12876254e-01 -4.73978579e-01 -1.36020648e+00 7.28113800e-02 3.05884808e-01 -5.58357477e-01 8.87611628e-01 1.20271154e-01 6.33078933e-01 1.01011693e+00 7.11105525e-01 7.77211428e-01 1.05669844e+00 -1.97581440e-01 3.72186661e-01 3.73867124e-01 9.29471254e-02 8.97819579e-01 4.88705486e-01 3.92898500e-01 8.42662826e-02 -2.04125792e-01 7.75083065e-01 -1.33049667e-01 1.43174510e-02 -4.02293950e-01 -1.09419298e+00 7.10295916e-01 8.90603006e-01 1.68159798e-01 -3.33241284e-01 7.85285354e-01 6.45593822e-01 -2.83115894e-01 7.93854296e-01 -7.46824071e-02 -3.48136425e-01 9.22442228e-02 -1.26971686e+00 -2.01885298e-01 4.21917677e-01 9.79553044e-01 1.87310800e-01 -4.53594625e-02 -8.01931500e-01 2.89153844e-01 4.74617273e-01 1.80018753e-01 5.55451870e-01 -4.58441854e-01 2.18556404e-01 3.93360227e-01 -4.38487865e-02 2.15068996e-01 -4.58718896e-01 -9.90962446e-01 -9.24531281e-01 1.65454313e-01 7.33767748e-01 -6.30788267e-01 -1.43982720e+00 1.48839891e+00 3.87526393e-01 3.51122528e-01 -8.72488394e-02 4.76172209e-01 8.58016014e-01 1.21014886e-01 5.29398263e-01 1.50285631e-01 1.32892680e+00 -9.87846732e-01 -4.08279836e-01 1.01202451e-01 1.11708844e+00 -4.12765801e-01 7.92175591e-01 5.11295982e-02 -1.15945065e+00 1.70480847e-01 -5.91572583e-01 2.49705046e-01 -1.01895921e-01 3.19870710e-01 9.71130788e-01 1.37685394e+00 -1.02069259e+00 7.17934549e-01 -1.15963554e+00 -2.27903664e-01 1.26080441e+00 4.02496755e-01 6.28022011e-03 2.54381835e-01 -9.31390047e-01 1.08200192e+00 2.61672676e-01 -4.01204050e-01 -1.95181072e+00 -1.33399093e+00 -7.81919181e-01 1.74453914e-01 4.85783339e-01 -7.37609267e-01 1.41887426e+00 -5.12511909e-01 -1.31556356e+00 7.44089544e-01 2.33029559e-01 -1.17522097e+00 1.28334963e+00 2.35495403e-01 2.63908952e-01 -1.47179708e-01 7.31309131e-02 8.20141137e-01 2.71502435e-01 -1.03146195e+00 -3.90785694e-01 -2.84954488e-01 -2.82804847e-01 1.48476690e-01 2.38832980e-02 -3.68049264e-01 -1.30181730e-01 -6.95941746e-01 -2.26562649e-01 -6.60533905e-01 -7.09511697e-01 7.21647739e-02 -7.37302840e-01 1.49176151e-01 1.91298172e-01 -7.74524927e-01 7.42193222e-01 -1.66157413e+00 -6.06517136e-01 6.17298424e-01 2.16641083e-01 -1.89527556e-01 4.51145411e-01 -3.37501377e-01 -4.49352004e-02 3.25604111e-01 -5.12178183e-01 -3.83600324e-01 -1.82210013e-01 2.36296251e-01 3.29168081e-01 6.67209148e-01 -4.09507230e-02 1.32576537e+00 -9.17116523e-01 -1.11371255e+00 2.65592396e-01 3.71737003e-01 -7.17582881e-01 -2.30891168e-01 -3.21592093e-01 7.14288950e-01 -3.84723544e-01 9.71010089e-01 6.81175888e-01 -2.35866025e-01 1.24148168e-01 -1.58657402e-01 2.53276169e-01 3.30967486e-01 -6.39076412e-01 1.53247297e+00 -5.93086302e-01 5.97059019e-02 -2.82804251e-01 -6.33251369e-01 4.13278222e-01 4.22260195e-01 6.64278805e-01 -5.57358921e-01 5.31533718e-01 9.19632912e-02 3.94760072e-02 1.13786295e-01 -1.47467246e-02 -5.41370630e-01 -4.17730957e-02 1.03696562e-01 3.20120484e-01 -1.04169808e-01 -3.11426789e-01 3.34431887e-01 1.18617451e+00 2.31323838e-01 4.70686674e-01 -6.37489438e-01 1.33200929e-01 2.56093532e-01 5.74294269e-01 7.63881683e-01 -5.59259713e-01 5.59248865e-01 7.90287018e-01 1.70975298e-01 -8.68091166e-01 -1.50244176e+00 -6.15690708e-01 5.24280369e-01 -2.13520467e-01 -1.57958474e-02 -1.01083124e+00 -1.33847880e+00 2.66294479e-01 9.77834582e-01 -9.47374940e-01 6.06856979e-02 -1.81625217e-01 -1.12581229e+00 9.04372036e-01 8.99077117e-01 3.57587010e-01 -5.97705662e-01 -4.37052310e-01 9.13680270e-02 5.05097099e-02 -9.73220110e-01 -3.89128745e-01 5.70881426e-01 -1.49977231e+00 -9.56630707e-01 -1.07825947e+00 -2.39078566e-01 1.01811111e+00 -6.78144455e-01 1.26245558e+00 -3.69509906e-01 -5.47135592e-01 3.01932782e-01 -6.42322004e-02 -5.66638470e-01 -5.45979440e-01 1.27514556e-01 -4.39754993e-01 -4.07654315e-01 -2.02254578e-01 -3.15718532e-01 -6.55745745e-01 2.47653916e-01 -5.78046501e-01 -1.35365516e-01 6.98595226e-01 8.49427104e-01 9.94979322e-01 3.94076444e-02 2.97750622e-01 -1.30583990e+00 2.75326937e-01 -5.31584322e-01 -8.75463963e-01 4.43705857e-01 -8.22297573e-01 -4.81495745e-02 3.06502879e-01 -5.33384085e-02 -1.25420702e+00 3.16127956e-01 -2.08654761e-01 -2.47552991e-01 -5.51577993e-02 3.25781584e-01 1.33527458e-01 -3.94467622e-01 8.31062138e-01 -8.74001086e-02 -2.06139728e-01 -1.66031435e-01 2.58743376e-01 9.78772044e-02 2.42715433e-01 -6.10567868e-01 6.07485533e-01 6.19046450e-01 2.03209952e-01 -1.08915858e-01 -8.35286796e-01 -1.39682204e-01 -5.72770953e-01 -3.07560295e-01 8.17582011e-01 -9.77922082e-01 -5.58378041e-01 1.93090037e-01 -5.63768804e-01 -6.05578840e-01 -1.03376472e+00 6.80292070e-01 -4.96002346e-01 1.67994842e-01 -7.43063629e-01 -8.88357341e-01 -6.73096180e-01 -1.29029703e+00 9.18725669e-01 1.37036875e-01 1.90284787e-04 -1.25231874e+00 1.03686601e-01 3.73712242e-01 6.47110581e-01 5.37809312e-01 5.36884665e-01 -6.96074605e-01 -8.40332508e-01 -2.07710862e-01 -2.81737864e-01 2.19813392e-01 -1.48001254e-01 -2.15255484e-01 -1.09088767e+00 -1.49361908e-01 -3.53037745e-01 -4.09785330e-01 9.49540317e-01 1.21511126e+00 1.27969241e+00 -2.64621843e-02 -7.03370810e-01 6.78413987e-01 1.69694853e+00 -1.71610624e-01 7.35489309e-01 7.83921182e-02 5.07039964e-01 1.09878875e-01 5.32746196e-01 4.92532998e-01 1.57680064e-01 3.32386233e-02 8.06179762e-01 -2.74747849e-01 -2.14314729e-01 -4.10182893e-01 -9.87167656e-02 -5.91533538e-03 -3.38754021e-02 -1.32559225e-01 -1.35388386e+00 8.10410440e-01 -1.48628187e+00 -4.06309724e-01 -1.48468614e-01 2.27488732e+00 8.33265960e-01 5.25742292e-01 7.15701208e-02 -2.87288696e-01 5.67727923e-01 -2.55121022e-01 -5.51977277e-01 -8.48309547e-02 2.97257155e-01 4.41730171e-01 1.32617831e+00 5.91988802e-01 -1.10958898e+00 7.78973818e-01 7.18830872e+00 1.14640820e+00 -7.01207995e-01 6.87929749e-01 1.60096622e+00 -1.85746744e-01 -3.48118782e-01 1.35412648e-01 -7.79782891e-01 2.75147319e-01 1.06176388e+00 -1.77031979e-01 -2.18543276e-01 1.02957118e+00 1.52354360e-01 -6.05499208e-01 -1.12815416e+00 3.97811949e-01 -3.12319189e-01 -1.61055350e+00 -1.92623958e-01 1.81875557e-01 8.80685389e-01 3.91504556e-01 6.95374161e-02 2.93122649e-01 9.49398339e-01 -1.19105208e+00 4.93303984e-01 3.32682282e-01 1.10564125e+00 -7.12061644e-01 1.09127700e+00 1.99441299e-01 -9.20410156e-01 2.51114994e-01 -2.26583540e-01 5.53579628e-01 1.87601835e-01 1.11412203e+00 -1.45258498e+00 6.94943190e-01 5.24295330e-01 2.66829133e-01 -5.78473926e-01 1.41905272e+00 1.03380403e-03 1.12846637e+00 -6.74366117e-01 1.24620311e-01 4.00220186e-01 1.10774890e-01 2.44433656e-01 1.19194317e+00 3.31316113e-01 -1.61749542e-01 -2.56681442e-01 1.13312435e+00 -3.25944871e-01 8.79364908e-02 -1.92703113e-01 1.92760542e-01 1.32520199e-01 1.36126351e+00 -1.08201337e+00 -5.45225918e-01 8.17248318e-03 6.33005023e-01 -4.58247550e-02 -3.08024704e-01 -1.38467085e+00 2.33323604e-01 -1.92766652e-01 3.81078541e-01 1.54054016e-01 4.80480075e-01 -8.58463764e-01 -8.97006273e-01 -4.38820153e-01 -1.30204096e-01 7.51163244e-01 -4.56894636e-01 -1.28481698e+00 3.13366830e-01 3.44398394e-02 -1.28605747e+00 1.22724257e-01 -3.01646680e-01 -9.61144924e-01 8.04616272e-01 -1.62163520e+00 -1.51620007e+00 -3.10199052e-01 3.97957832e-01 1.39995813e-01 1.48242503e-01 5.61497569e-01 3.55592519e-01 -4.34425354e-01 1.06935716e+00 1.61378399e-01 2.74258375e-01 5.12497246e-01 -1.52142537e+00 -6.76112901e-03 5.41832983e-01 -3.76199365e-01 -1.53169157e-02 3.83607030e-01 -1.15811205e+00 -7.47289121e-01 -1.45503533e+00 4.60566819e-01 -4.42591965e-01 6.12077951e-01 -2.55176008e-01 -2.33852878e-01 9.71789122e-01 1.78416222e-01 4.38403547e-01 7.13303864e-01 -1.24118157e-01 2.01127499e-01 -5.34349866e-02 -1.96794450e+00 2.12350339e-01 8.11091423e-01 -1.49853539e-03 -2.23429203e-01 6.57160640e-01 5.66683233e-01 -7.79227078e-01 -1.28997529e+00 6.52469099e-01 2.00244665e-01 -8.61136079e-01 9.08767581e-01 -3.28200787e-01 4.86530691e-01 1.70811787e-01 1.21481009e-01 -1.24987650e+00 -3.74942981e-02 -3.85998249e-01 1.66526794e-01 1.18650532e+00 7.99375296e-01 -5.52930832e-01 1.53110397e+00 6.34507477e-01 -2.79909015e-01 -9.09086049e-01 -1.18655980e+00 -7.29108512e-01 6.11561775e-01 -4.87548143e-01 3.91670883e-01 8.96205127e-01 -1.16825156e-01 -3.57603490e-01 -1.95173044e-02 2.69498944e-01 1.21286845e+00 -4.28808749e-01 2.13104039e-01 -8.52165818e-01 -4.16120529e-01 -2.53655255e-01 -4.47246939e-01 -2.14516371e-01 -2.30536476e-01 -1.17748666e+00 -1.24004468e-01 -1.56246090e+00 5.26228309e-01 -6.02334857e-01 -3.59316766e-01 6.40159309e-01 9.85640734e-02 2.65502512e-01 -3.11067134e-01 -1.45243794e-01 -3.55240434e-01 5.35093546e-01 1.32058942e+00 -2.20177248e-01 1.73202425e-01 1.44329622e-01 -3.35143745e-01 8.22929263e-01 6.87470257e-01 -7.39823103e-01 -2.86893427e-01 1.38152391e-01 -3.02242666e-01 4.87768263e-01 5.78503430e-01 -1.18769491e+00 1.57880392e-02 6.05105460e-02 7.01799333e-01 -9.39913154e-01 -2.39388704e-01 -8.46658587e-01 7.53673837e-02 9.21248138e-01 -3.10257405e-01 -5.22102535e-01 3.44899803e-01 5.29327095e-01 1.05562545e-01 -4.02342439e-01 1.09034359e+00 -4.56853449e-01 9.27598104e-02 3.71601075e-01 -3.09077501e-01 1.78742081e-01 1.63801885e+00 -1.21406905e-01 -1.09543055e-01 -1.93654478e-01 -1.14595830e+00 5.32691360e-01 2.14110747e-01 -6.42925560e-01 2.01377288e-01 -1.00879693e+00 -6.15570605e-01 -2.97445565e-01 1.08522639e-01 2.98135966e-01 5.26526511e-01 1.12340283e+00 -7.63704538e-01 5.16338408e-01 -5.78907020e-02 -6.75851345e-01 -9.49195623e-01 2.00329885e-01 1.00117457e+00 -1.05619550e+00 -7.72319674e-01 1.14777935e+00 1.53535262e-01 -6.93120658e-01 4.41760063e-01 -8.11654806e-01 2.12191358e-01 -4.04825211e-01 -2.35004872e-01 3.38632882e-01 1.17229879e-01 -8.20469633e-02 -2.90929914e-01 -1.46109805e-01 -5.14104925e-02 -1.50404543e-01 1.16878307e+00 1.43239290e-01 2.16514781e-01 5.90706989e-02 8.95561993e-01 -1.27764687e-01 -1.36699140e+00 -1.11316644e-01 -8.50712880e-02 -1.62883371e-01 5.84218740e-01 -1.45949841e+00 -1.36402428e+00 7.01350212e-01 1.04364300e+00 -4.64617103e-01 8.53102207e-01 1.17945924e-01 7.33208537e-01 -1.18480034e-01 4.17378008e-01 -9.29749370e-01 -2.93359965e-01 -1.05832731e-02 1.13806121e-01 -1.33744550e+00 2.13929713e-01 -7.93061554e-01 -8.91916931e-01 4.31531787e-01 6.48255765e-01 -3.86750847e-01 9.56016600e-01 8.02414954e-01 -8.99130628e-02 -1.08109362e-01 -4.83868808e-01 -2.41099715e-01 2.12793484e-01 6.16398215e-01 5.04740179e-01 3.78125340e-01 -1.08172990e-01 7.15389967e-01 -9.64140370e-02 4.67975318e-01 4.45157886e-01 8.52346718e-01 -4.37312424e-02 -8.65704894e-01 -2.86757141e-01 1.07568467e+00 -8.61243784e-01 -2.78059781e-01 -1.33321047e-01 7.87612498e-01 1.43529382e-02 4.55655344e-02 -1.58150658e-01 3.67603339e-02 -3.32500152e-02 7.67344190e-03 6.63491905e-01 -4.23671722e-01 -1.07900012e+00 2.72528857e-01 1.97335795e-01 -5.08375823e-01 -3.90887409e-02 -6.04803085e-01 -1.39002049e+00 2.65691783e-02 -6.33203745e-01 4.28409688e-02 6.69710875e-01 7.75127769e-01 -9.47352722e-02 1.08543122e+00 3.37807804e-01 -3.56744647e-01 -8.07244480e-01 -8.75916898e-01 -6.84909105e-01 2.32708324e-02 -7.10094869e-02 -7.00920820e-01 -2.73822069e-01 -2.37403944e-01]
[14.671676635742188, -2.3034050464630127]
46fbaa29-ab08-4516-a65b-82caebe7724f
interacting-hand-object-pose-estimation-via
2211.08805
null
https://arxiv.org/abs/2211.08805v1
https://arxiv.org/pdf/2211.08805v1.pdf
Interacting Hand-Object Pose Estimation via Dense Mutual Attention
3D hand-object pose estimation is the key to the success of many computer vision applications. The main focus of this task is to effectively model the interaction between the hand and an object. To this end, existing works either rely on interaction constraints in a computationally-expensive iterative optimization, or consider only a sparse correlation between sampled hand and object keypoints. In contrast, we propose a novel dense mutual attention mechanism that is able to model fine-grained dependencies between the hand and the object. Specifically, we first construct the hand and object graphs according to their mesh structures. For each hand node, we aggregate features from every object node by the learned attention and vice versa for each object node. Thanks to such dense mutual attention, our method is able to produce physically plausible poses with high quality and real-time inference speed. Extensive quantitative and qualitative experiments on large benchmark datasets show that our method outperforms state-of-the-art methods. The code is available at https://github.com/rongakowang/DenseMutualAttention.git.
['Hongdong Li', 'Wei Mao', 'Rong Wang']
2022-11-16
null
null
null
null
['hand-object-pose']
['computer-vision']
[-2.92480677e-01 1.00083221e-02 -9.70880315e-02 -2.40544267e-02 -4.94943082e-01 -4.07539010e-01 5.59315503e-01 -1.47326529e-01 -1.20145805e-01 4.62534726e-01 6.31235391e-02 1.81730330e-01 -3.49800646e-01 -7.18213737e-01 -9.30103898e-01 -6.77778542e-01 1.99471921e-01 1.05803359e+00 2.93693811e-01 6.53131083e-02 2.24293023e-01 7.46576250e-01 -1.50810349e+00 2.18892526e-02 9.07031596e-01 9.06779230e-01 6.30204022e-01 5.93684852e-01 1.33628562e-01 5.70719838e-01 -5.86422533e-02 -2.21555531e-01 2.06149772e-01 -9.44270194e-02 -9.79034305e-01 1.95404902e-01 5.03131151e-01 -4.40975875e-01 -6.29373252e-01 9.14020956e-01 5.07356882e-01 1.65105134e-01 6.83068931e-01 -1.05209494e+00 -5.67336261e-01 4.29441273e-01 -7.95539916e-01 -1.87641233e-01 3.63526553e-01 3.76350582e-01 1.35438502e+00 -9.96651173e-01 8.06473434e-01 1.26393306e+00 1.95119932e-01 3.71636093e-01 -1.35354829e+00 -5.86006045e-01 4.64740217e-01 4.67509359e-01 -1.48990047e+00 -2.33219057e-01 1.11493444e+00 -5.53636372e-01 7.00647175e-01 2.88842738e-01 9.50250924e-01 1.05773067e+00 1.86629176e-01 9.59801614e-01 7.75405407e-01 -3.92880976e-01 -2.20251409e-03 -1.74779609e-01 9.54803377e-02 8.53505015e-01 7.41304904e-02 1.54819321e-02 -5.16160429e-01 -5.46509549e-02 1.19875705e+00 2.08211258e-01 -3.70765150e-01 -5.98174393e-01 -1.28968716e+00 6.01421297e-01 9.31947052e-01 2.45004401e-01 -5.89094043e-01 4.45140272e-01 -1.61145523e-01 -2.83470541e-01 4.44735795e-01 1.99262485e-01 -2.83639103e-01 1.27078384e-01 -5.14846742e-01 6.31746769e-01 7.19536364e-01 8.08913827e-01 6.81133628e-01 -4.10891742e-01 -2.22602844e-01 4.73134369e-01 6.55459881e-01 5.04264653e-01 -2.43317857e-01 -9.38318133e-01 2.88282365e-01 5.56730747e-01 2.34729603e-01 -1.12559688e+00 -2.96825677e-01 -4.45487380e-01 -6.11268640e-01 5.11792660e-01 5.92501700e-01 2.27482527e-01 -1.01838458e+00 1.47082198e+00 6.24774456e-01 2.47926652e-01 -6.98121905e-01 1.15667629e+00 6.30065560e-01 3.31313223e-01 -4.60794531e-02 1.19103439e-01 1.26648521e+00 -1.11026549e+00 -6.23122334e-01 -2.76516587e-01 1.87780224e-02 -7.64012814e-01 1.14315212e+00 3.43594581e-01 -1.28672493e+00 -6.26685143e-01 -6.05963349e-01 -2.73014486e-01 -9.10464395e-03 2.05658786e-02 6.32406771e-01 -1.05620408e-02 -4.97866839e-01 7.07073629e-01 -1.19584525e+00 -1.24793835e-01 6.16234958e-01 4.29788768e-01 -3.34288508e-01 -1.75664127e-01 -5.50471544e-01 8.44484925e-01 8.96474421e-02 4.19726193e-01 -6.90811396e-01 -6.39094889e-01 -7.35773087e-01 -7.46403709e-02 6.22565091e-01 -9.23290312e-01 1.12076294e+00 -7.01411068e-01 -1.50520313e+00 7.20246196e-01 -1.62655100e-01 -1.31229702e-02 7.71633685e-01 -6.30851984e-01 5.72068930e-01 8.93008783e-02 -1.28121525e-01 6.58577263e-01 8.32656384e-01 -1.65223050e+00 -2.43843257e-01 -7.05847740e-01 1.72278002e-01 2.72893935e-01 -1.25096897e-02 -3.28909874e-01 -8.73555779e-01 -6.03493333e-01 1.98908523e-01 -9.67141688e-01 -2.01011494e-01 3.03263634e-01 -6.68568432e-01 -5.68757296e-01 9.08359826e-01 -7.40984499e-01 8.17976296e-01 -1.87468445e+00 8.84366393e-01 2.57266819e-01 5.58776498e-01 7.20914751e-02 -2.56756302e-02 1.89171255e-01 3.29434752e-01 -1.26921818e-01 -4.54333462e-02 -6.40991330e-01 4.97173592e-02 1.93401664e-01 -7.99144059e-02 6.74593270e-01 1.21073715e-01 1.28036177e+00 -8.79207432e-01 -6.26240790e-01 5.95064700e-01 8.95906568e-01 -8.43239486e-01 4.35452729e-01 -7.10467041e-01 8.63054097e-01 -7.20442474e-01 6.63453400e-01 4.58287776e-01 -5.17682314e-01 1.23439908e-01 -5.29189408e-01 2.78255455e-02 1.95057347e-01 -1.18420386e+00 1.90521717e+00 -5.05919516e-01 2.12948427e-01 1.49988323e-01 -7.03945100e-01 4.49918181e-01 2.05622807e-01 4.35831875e-01 -3.90390962e-01 4.66368586e-01 1.07363924e-01 2.07236297e-02 -3.50486934e-01 -5.00519201e-02 1.16965979e-01 4.51896131e-01 4.06190783e-01 -7.41119031e-03 -2.10912868e-01 -8.60336348e-02 7.26404041e-03 7.29704499e-01 4.03630465e-01 1.87669739e-01 -1.66702896e-01 3.25889200e-01 -2.82154232e-01 2.51169175e-01 4.83245105e-01 2.81278074e-01 6.55035555e-01 2.82846630e-01 -3.61530572e-01 -9.83626425e-01 -1.15981412e+00 -2.28022840e-02 8.10527861e-01 2.61589259e-01 -2.36868173e-01 -6.93755150e-01 -5.52289486e-01 2.98119277e-01 3.89904946e-01 -9.06831801e-01 1.62660718e-01 -6.05196714e-01 1.14446692e-03 -3.11138004e-01 7.89549649e-01 1.75229192e-01 -1.34754539e+00 -7.88409948e-01 1.96345016e-01 -1.98397741e-01 -8.56451154e-01 -5.21040857e-01 -2.60756761e-01 -6.82935297e-01 -1.17782378e+00 -7.91651309e-01 -5.87259591e-01 6.98399365e-01 1.60301127e-03 1.10928643e+00 3.82813722e-01 -7.36893594e-01 4.41168100e-01 -3.13064933e-01 -1.14282511e-01 4.44607176e-02 2.57395744e-01 -5.23023531e-02 1.18355304e-01 -1.58804625e-01 -8.83152366e-01 -7.41940141e-01 3.28409553e-01 -5.86886883e-01 2.72346199e-01 6.96469784e-01 7.73883343e-01 7.81547666e-01 -2.25538909e-01 1.46992421e-02 -4.39017445e-01 5.87695949e-02 -1.83968663e-01 -6.74391985e-01 2.11723745e-01 -1.93309262e-02 1.90005451e-01 1.78283662e-01 -5.16619802e-01 -9.72876549e-01 5.77710986e-01 -1.53182536e-01 -7.86432981e-01 -1.53385386e-01 2.55996764e-01 -4.35328692e-01 -9.79141891e-02 2.21908852e-01 5.30706085e-02 -7.45850615e-03 -8.37435365e-01 4.51157928e-01 3.41933250e-01 3.34192365e-01 -8.00688505e-01 7.62691200e-01 7.46052921e-01 4.68917079e-02 -8.96500945e-01 -8.33304882e-01 -1.55695707e-01 -9.91588831e-01 -4.38800544e-01 1.07026541e+00 -3.38413090e-01 -1.11862051e+00 5.30098855e-01 -1.37526226e+00 -7.28015482e-01 -1.73567384e-01 4.73376662e-01 -6.70375586e-01 2.08074927e-01 -4.79095578e-01 -9.57259178e-01 -2.54135728e-01 -1.32103288e+00 1.40387714e+00 -5.60113378e-02 -2.17501953e-01 -8.84159684e-01 -2.76266690e-02 4.84040827e-01 -3.69814187e-02 2.19035178e-01 7.47972071e-01 -9.03642401e-02 -1.06524730e+00 -9.91201699e-02 -3.79205942e-01 2.27784980e-02 2.06579909e-01 1.85524166e-01 -7.61771202e-01 -1.91455081e-01 -3.02973717e-01 -3.10982972e-01 7.64530003e-01 6.31668568e-01 1.30227506e+00 -2.98835993e-01 -5.53923309e-01 4.90700781e-01 1.20975447e+00 -2.73180723e-01 5.16441643e-01 -6.22425936e-02 1.16437554e+00 6.61540270e-01 5.01921892e-01 4.67337340e-01 3.79523396e-01 1.01316404e+00 7.71563888e-01 5.10513186e-02 -2.33195096e-01 -2.50986278e-01 -1.29390702e-01 4.41802382e-01 -5.69085240e-01 -2.41304904e-01 -1.02486837e+00 4.21083897e-01 -1.98925507e+00 -7.12185085e-01 -2.14917570e-01 2.22633910e+00 6.36602521e-01 1.07473172e-01 1.18046291e-01 1.03067718e-01 4.12048548e-01 9.41468403e-02 -6.43617332e-01 5.40777087e-01 4.73035395e-01 2.63274223e-01 5.63377924e-02 8.95207226e-01 -8.72982502e-01 1.06385124e+00 4.79332638e+00 6.15033686e-01 -9.09419119e-01 6.43331558e-02 2.92504638e-01 -2.84351915e-01 -2.14199752e-01 -1.35356337e-01 -6.86578631e-01 2.55442768e-01 1.37051931e-02 1.70178980e-01 5.78554213e-01 6.06718004e-01 4.95020375e-02 -6.87446073e-02 -1.39548242e+00 8.00639927e-01 -9.75942910e-02 -1.28205478e+00 8.13177899e-02 3.92107934e-01 5.65023661e-01 -1.04344301e-01 1.73301734e-02 -2.50724375e-01 1.69259384e-01 -1.05907893e+00 9.91122007e-01 8.59747052e-01 4.60413128e-01 -6.75538898e-01 4.33627278e-01 3.81818593e-01 -1.47721827e+00 1.25657335e-01 7.34369010e-02 -1.52252793e-01 2.56016165e-01 5.26778519e-01 -3.67992729e-01 5.13872862e-01 8.93247545e-01 6.48906946e-01 -2.72620827e-01 8.89079630e-01 -3.88854712e-01 2.61156499e-01 -5.21333516e-01 9.24630687e-02 -1.76600236e-02 -1.18817821e-01 7.56206214e-01 7.62256980e-01 -4.79660034e-02 1.86983287e-01 4.74824637e-01 1.19611073e+00 3.67862917e-02 -2.45743580e-02 -2.50269681e-01 3.78219038e-02 3.07889402e-01 1.12599897e+00 -8.38176727e-01 -2.45078802e-01 -1.70031190e-01 1.16989553e+00 6.88310862e-01 2.63730556e-01 -8.85967374e-01 -2.55974159e-02 6.95077300e-01 4.67326611e-01 4.29284990e-01 -5.53046465e-01 -3.76422912e-01 -9.91890132e-01 4.33931589e-01 -5.10625243e-01 2.11555529e-02 -7.92950928e-01 -1.30209744e+00 4.91770506e-01 -1.14320517e-01 -7.88097858e-01 1.27353370e-01 -6.49420559e-01 -3.53434443e-01 8.90047252e-01 -1.14656413e+00 -1.49828172e+00 -6.95324361e-01 7.01058447e-01 5.89360476e-01 5.05199015e-01 5.83685219e-01 8.17921534e-02 -3.76501411e-01 1.60418630e-01 -3.29843879e-01 2.28404373e-01 3.80500764e-01 -1.20415175e+00 3.63195211e-01 3.33998382e-01 3.84555340e-01 6.06344283e-01 6.41774476e-01 -8.32946062e-01 -1.67179942e+00 -7.70614982e-01 5.49453437e-01 -6.30969882e-01 6.03044271e-01 -4.67370570e-01 -9.52699959e-01 8.18155110e-01 3.63163091e-02 3.87801021e-01 -7.05511123e-02 1.51811689e-01 -3.62920970e-01 8.34333450e-02 -7.72013903e-01 5.91214001e-01 1.34013808e+00 -3.08875233e-01 -5.46630263e-01 5.82196355e-01 4.84655619e-01 -6.85968816e-01 -7.24954665e-01 3.68899763e-01 9.23299551e-01 -8.84371698e-01 1.15804088e+00 -4.49008197e-01 5.38685501e-01 -2.33264193e-01 3.07211112e-02 -1.02736306e+00 -4.34119433e-01 -3.48171711e-01 -5.59359252e-01 8.88775408e-01 5.95173240e-02 -4.94697690e-01 8.01683903e-01 5.68280458e-01 1.50027916e-01 -1.06476474e+00 -8.71087551e-01 -7.21096635e-01 5.56670576e-02 -3.57570350e-01 3.47449303e-01 4.92569178e-01 -2.43637741e-01 2.88742810e-01 -2.99564809e-01 4.09088552e-01 1.03117537e+00 4.22684878e-01 7.98000276e-01 -1.50012040e+00 -6.66314781e-01 -6.71141207e-01 -2.64934033e-01 -1.29006696e+00 2.86911070e-01 -7.00368106e-01 1.98732108e-01 -1.74203968e+00 4.79148537e-01 -5.78075945e-01 -4.65581892e-03 5.01405597e-01 -2.59142011e-01 3.36024165e-01 3.09868485e-01 1.74529016e-01 -3.27927619e-01 6.23247206e-01 1.62933850e+00 -3.08475774e-02 -3.09927523e-01 -2.75299922e-02 -2.07670763e-01 8.25792313e-01 6.03344798e-01 -2.75926411e-01 -1.52866412e-02 -5.74408948e-01 -1.40967704e-02 5.01054637e-02 1.01703179e+00 -8.12458038e-01 1.86005741e-01 -3.47353220e-01 2.19372958e-01 -7.18371809e-01 5.89382112e-01 -1.00263011e+00 2.30547413e-01 5.52916825e-01 -1.56581685e-01 -3.42158079e-01 -6.03373274e-02 5.56435764e-01 2.67911166e-01 6.39888644e-02 8.18176985e-01 -1.99101761e-01 -2.79262871e-01 7.50970244e-01 2.25639001e-01 -1.75440207e-01 1.07828224e+00 1.12034060e-01 2.38396019e-01 -2.28443652e-01 -8.59474778e-01 2.15001598e-01 6.11043632e-01 4.76575434e-01 5.91428101e-01 -1.24317336e+00 -7.62461364e-01 1.59074336e-01 -9.61235762e-02 5.77004611e-01 3.29969436e-01 1.00055945e+00 -2.72736996e-01 2.77120262e-01 -1.43642053e-01 -9.01697874e-01 -1.49295199e+00 4.51424599e-01 3.82149279e-01 -1.03602506e-01 -8.70854616e-01 1.00672889e+00 4.98346537e-01 -2.94178516e-01 3.94098014e-01 -3.27231914e-01 1.55576468e-01 -1.17882699e-01 4.10537899e-01 4.74090219e-01 -1.04516536e-01 -7.01712668e-01 -4.14884120e-01 9.94027555e-01 -1.26463547e-01 -1.58288196e-01 1.45303690e+00 2.01416120e-01 -1.73260704e-01 3.06593210e-01 1.05921757e+00 -2.48860642e-02 -1.63290191e+00 -2.92552024e-01 -3.65059286e-01 -8.10494184e-01 2.27445841e-01 -6.07966006e-01 -1.37607026e+00 9.53314960e-01 3.87523830e-01 -1.84133518e-02 7.37300932e-01 5.96737325e-01 5.61241925e-01 2.91069925e-01 5.20901203e-01 -6.43634975e-01 4.46372330e-01 2.23957777e-01 1.56590331e+00 -1.07752776e+00 1.21554680e-01 -7.00907409e-01 -2.58998752e-01 8.81350696e-01 6.76754653e-01 -4.20320809e-01 7.93641448e-01 1.95901781e-01 -2.97541708e-01 -3.42587203e-01 -3.89128238e-01 -3.03672910e-01 6.81839943e-01 3.28970701e-01 3.01465154e-01 7.34053329e-02 5.34516461e-02 3.83967221e-01 1.76752359e-02 5.64230327e-03 -3.11096847e-01 9.44756925e-01 -2.48763427e-01 -1.21773624e+00 -4.03256625e-01 3.71912003e-01 -4.08643708e-02 1.82404280e-01 -4.51303482e-01 7.50442028e-01 5.42710833e-02 4.95523185e-01 1.14725485e-01 -3.33886206e-01 3.92192572e-01 -1.00139052e-01 1.04121852e+00 -6.27769351e-01 -2.94318676e-01 3.66692543e-01 -4.31636333e-01 -9.04025018e-01 -3.12078893e-01 -8.29170763e-01 -1.24457312e+00 -2.91977555e-01 -4.21176434e-01 -2.59837419e-01 4.51997340e-01 9.94386137e-01 3.74488592e-01 6.14021063e-01 2.98223495e-01 -1.75149727e+00 -3.78595233e-01 -9.26520109e-01 -4.28222835e-01 3.93809319e-01 3.45762789e-01 -1.31264913e+00 -1.73641086e-01 1.82201868e-04]
[6.688773155212402, -1.0679092407226562]
305114c9-1a5f-4a06-95c9-8f4cd6920469
decentralised-approach-for-multi-agent-path
2106.05188
null
https://arxiv.org/abs/2106.05188v1
https://arxiv.org/pdf/2106.05188v1.pdf
Decentralised Approach for Multi Agent Path Finding
Multi Agent Path Finding (MAPF) requires identification of conflict free paths for agents which could be point-sized or with dimensions. In this paper, we propose an approach for MAPF for spatially-extended agents. These find application in real world problems like Convoy Movement Problem, Train Scheduling etc. Our proposed approach, Decentralised Multi Agent Path Finding (DeMAPF), handles MAPF as a sequence of pathplanning and allocation problems which are solved by two sets of agents Travellers and Routers respectively, over multiple iterations. The approach being decentralised allows an agent to solve the problem pertinent to itself, without being aware of other agents in the same set. This allows the agents to be executed on independent machines, thereby leading to scalability to handle large sized problems. We prove, by comparison with other distributed approaches, that the approach leads to a faster convergence to a conflict-free solution, which may be suboptimal, with lesser memory requirement.
['M. Narasimha Murty', 'Shyni Thomas']
2021-06-03
null
null
null
null
['multi-agent-path-finding']
['playing-games']
[-2.16830239e-01 2.26341560e-01 2.29149029e-01 8.49555358e-02 -2.94583946e-01 -8.75027657e-01 5.78361273e-01 6.12615764e-01 -7.89825201e-01 1.53334427e+00 -3.05864125e-01 -2.68852830e-01 -1.01859438e+00 -1.11524045e+00 -3.07959765e-01 -6.15597069e-01 -7.32186735e-01 1.49501526e+00 1.01899779e+00 -3.94150347e-01 4.61006969e-01 7.50546932e-01 -1.18908155e+00 -2.87259281e-01 6.65377438e-01 1.78982601e-01 4.87882882e-01 9.31688607e-01 -6.63861036e-02 7.96429157e-01 -6.44488275e-01 1.73703536e-01 3.86530399e-01 -2.21793294e-01 -1.39505017e+00 7.88443461e-02 -1.90627262e-01 -1.82711884e-01 2.18579754e-01 8.09198201e-01 1.56915963e-01 7.20789433e-01 7.25173891e-01 -1.87916219e+00 3.70934576e-01 4.82892036e-01 -8.09765100e-01 3.75067860e-01 4.99841690e-01 -1.38928756e-01 6.49524570e-01 -9.64236632e-02 8.68198097e-01 1.22764695e+00 3.94229800e-01 1.62138477e-01 -9.00503576e-01 -2.39037778e-02 3.56140137e-01 5.80197752e-01 -1.31304586e+00 1.45495161e-02 3.28298844e-02 -6.71701655e-02 1.32968843e+00 5.09781301e-01 5.37025750e-01 -6.63586184e-02 4.23784256e-01 1.08929776e-01 1.11852515e+00 -4.48899776e-01 6.06138647e-01 5.81091195e-02 7.92934522e-02 6.42729044e-01 4.51210022e-01 -1.16460823e-01 -9.28798318e-02 -3.93265724e-01 7.07212746e-01 -3.49024624e-01 -1.08894847e-01 -3.90723616e-01 -1.32385314e+00 9.40839767e-01 2.99679130e-01 2.55751401e-01 -9.51780617e-01 1.99223831e-01 2.69676387e-01 5.64679563e-01 -6.24430813e-02 4.49736387e-01 -4.16262060e-01 -1.31003037e-01 -3.01051050e-01 7.29678392e-01 1.15922964e+00 9.56002414e-01 1.03716576e+00 -3.70660156e-01 3.97731394e-01 4.62282777e-01 3.90883774e-01 2.65597016e-01 -8.87951478e-02 -9.48148191e-01 4.55108672e-01 5.73425353e-01 4.84336287e-01 -9.84200537e-01 -1.01725054e+00 2.71266490e-01 -5.89006901e-01 8.53567421e-01 6.29226983e-01 -3.49021345e-01 -4.27400142e-01 1.48419821e+00 1.02904510e+00 1.07648559e-01 3.62293690e-01 9.30767715e-01 2.16073707e-01 1.08359146e+00 -6.47901520e-02 -4.86395687e-01 1.56617916e+00 -1.41093314e+00 -4.28197235e-01 3.48795913e-02 6.59409106e-01 -7.77260721e-01 1.96002916e-01 4.53791291e-01 -1.14281762e+00 2.68847179e-02 -8.72726262e-01 4.87623125e-01 -6.12982452e-01 -6.52013719e-01 5.27079999e-01 4.23513502e-01 -1.47203791e+00 3.57756644e-01 -7.29986668e-01 -7.92253792e-01 -2.35619918e-01 8.21659386e-01 -4.28773075e-01 -3.85338664e-02 -9.00729179e-01 1.16674209e+00 7.61377037e-01 -3.01553309e-02 -9.10910785e-01 -4.55034375e-02 -3.12364310e-01 1.14032999e-04 8.98924530e-01 -7.75175571e-01 1.09290898e+00 -6.22670174e-01 -1.47466218e+00 1.14768587e-01 1.05803430e-01 -3.56539160e-01 5.27805388e-01 4.47009563e-01 -1.78879142e-01 1.45622909e-01 3.90966654e-01 3.80048364e-01 3.97759080e-01 -1.24605119e+00 -1.20508671e+00 -2.13553175e-01 4.07618672e-01 6.41730070e-01 2.93495089e-01 1.77198648e-01 -5.05035035e-02 1.67921022e-01 -1.64977789e-01 -1.14678323e+00 -1.00649834e+00 -4.79617387e-01 -3.05999845e-01 -4.60153967e-01 6.40289605e-01 -4.03455878e-03 8.03215325e-01 -1.50692332e+00 3.17260683e-01 8.83807957e-01 2.10738003e-01 -4.74379957e-02 -2.36864403e-01 1.22155797e+00 3.68687958e-01 -2.38446727e-01 6.01348765e-02 -1.13134189e-02 1.27431870e-01 5.53223193e-01 3.78162175e-01 6.64182484e-01 -3.06339622e-01 2.09757090e-01 -8.83205891e-01 -6.79490566e-01 7.14923441e-02 -4.05522548e-02 -3.98821980e-01 -2.31307700e-01 -3.17982942e-01 2.07689568e-01 -7.79212296e-01 1.76034287e-01 8.60019624e-01 2.59069111e-02 4.54088300e-01 6.11683309e-01 -7.67782509e-01 -1.37976885e-01 -1.89313173e+00 1.38658273e+00 -1.95898652e-01 3.82582098e-01 3.53081793e-01 -9.52864885e-01 7.25120366e-01 3.99910450e-01 7.51048505e-01 -4.67005521e-01 1.62220951e-02 3.24910372e-01 7.67590404e-02 -2.32862189e-01 7.54398346e-01 1.28904179e-01 -3.66377719e-02 1.04576826e+00 -4.53411222e-01 2.99129218e-01 7.34281957e-01 2.51596004e-01 1.50608158e+00 -2.26331353e-01 4.86500829e-01 -5.42409718e-01 8.98808062e-01 8.47106516e-01 4.41362113e-01 9.05762494e-01 -2.56883800e-01 -4.31132704e-01 3.87650579e-01 -7.19388068e-01 -7.65430748e-01 -9.05698061e-01 4.99496430e-01 8.64890099e-01 7.74717271e-01 -2.80350506e-01 -5.85948527e-01 -6.05368078e-01 -1.82981804e-01 1.80827200e-01 -1.49271861e-01 5.71912766e-01 -1.11328125e+00 -6.23910904e-01 2.86614057e-02 -2.66074032e-01 3.65569025e-01 -1.13502419e+00 -1.26764023e+00 9.24574077e-01 -3.26837413e-02 -8.71661186e-01 -2.13391945e-01 -2.51647104e-02 -5.26229918e-01 -1.34801018e+00 -4.68624741e-01 -8.21429253e-01 8.82388890e-01 5.02831042e-01 7.09068298e-01 2.99669385e-01 -1.33683085e-01 3.82016182e-01 -4.94429141e-01 -4.13963884e-01 -3.71446818e-01 3.08314651e-01 1.40042901e-01 -2.42174581e-01 6.02401756e-02 -6.01424098e-01 -6.01608932e-01 6.06694281e-01 -6.89525902e-01 -8.70498419e-02 4.57931876e-01 2.03388214e-01 4.55104023e-01 8.80536854e-01 8.39289844e-01 -8.22353840e-01 9.11771297e-01 -7.32537448e-01 -9.68754292e-01 3.37384313e-01 -6.25697672e-01 -1.54603094e-01 7.82927036e-01 -9.57640633e-02 -8.58308792e-01 6.76768199e-02 3.92199636e-01 4.06698853e-01 -3.96533936e-01 5.04177630e-01 2.00338438e-01 -4.63013858e-01 3.75936896e-01 -3.61565240e-02 2.36498073e-01 -1.85946643e-01 2.74804950e-01 1.37470961e-01 1.12897657e-01 -6.02063656e-01 6.10929489e-01 2.95600563e-01 6.10364616e-01 -5.96561491e-01 4.70185876e-01 -5.76447070e-01 -5.21656692e-01 -5.93159378e-01 6.07384622e-01 -3.19233388e-01 -1.10684764e+00 1.66945457e-01 -1.33338785e+00 -4.05343860e-01 1.41463116e-01 4.59595352e-01 -7.72387743e-01 2.07684815e-01 -3.79868627e-01 -8.05540144e-01 -2.11260039e-02 -9.85661328e-01 3.01681280e-01 4.22009617e-01 -2.94019729e-01 -1.18256354e+00 6.94450557e-01 7.75042102e-02 3.80274057e-01 4.58070189e-01 8.78356516e-01 -8.22863758e-01 -1.00503683e+00 8.66565481e-02 -4.91987057e-02 -9.29364920e-01 -1.86980870e-02 -2.16634229e-01 4.41369526e-02 -5.89355886e-01 -4.86732394e-01 2.40234330e-01 1.54375657e-02 2.94237047e-01 -1.58430293e-01 -5.77879488e-01 -9.63995457e-01 -3.01008075e-01 1.95460355e+00 7.51395524e-01 3.72052759e-01 1.01651216e+00 1.58574671e-01 9.75852668e-01 1.00433874e+00 6.17227852e-01 7.43173838e-01 7.58342445e-01 4.90419298e-01 -1.22283041e-01 2.82507807e-01 4.45624262e-01 4.10739742e-02 3.65125388e-01 -4.15341169e-01 -7.59801209e-01 -1.15595937e+00 8.17129612e-01 -2.44866347e+00 -8.82497549e-01 -5.20607889e-01 1.80985987e+00 1.10596158e-01 -1.15960680e-01 6.99050128e-01 7.87773728e-02 7.80697107e-01 -2.38387182e-01 -2.03098431e-01 -9.59445000e-01 3.22416186e-01 -2.10971594e-01 9.01939690e-01 9.53229845e-01 -6.21926486e-01 7.56494045e-01 5.56554174e+00 4.79439974e-01 -4.60274965e-01 4.14496213e-01 -4.55755852e-02 7.08410665e-02 -5.21729104e-02 4.21664834e-01 -4.54451680e-01 2.85444587e-01 1.02199829e+00 -3.60956103e-01 7.15788364e-01 3.34521413e-01 5.24070919e-01 -8.50318730e-01 -7.26794243e-01 3.95399898e-01 -3.51845175e-01 -1.23432958e+00 -3.34795594e-01 4.38414216e-01 7.85119057e-01 -3.25945430e-02 -6.18815243e-01 -1.93159893e-01 7.64965057e-01 -6.96716785e-01 5.19925416e-01 2.03635529e-01 -1.46550372e-01 -1.44258010e+00 7.09736049e-01 8.22213352e-01 -1.47329676e+00 -1.19435370e-01 -3.14974189e-01 -4.42358524e-01 7.00391591e-01 -7.69237578e-02 -1.14014375e+00 1.05067158e+00 4.99819368e-01 -2.16416553e-01 1.56846926e-01 1.36936951e+00 2.72506803e-01 -3.25476617e-01 -6.28191710e-01 -5.27045488e-01 8.04649532e-01 -5.55188417e-01 8.34333599e-01 8.22588265e-01 1.58654615e-01 3.93037945e-01 6.53882682e-01 4.11964029e-01 8.66108477e-01 3.24671656e-01 -6.70968115e-01 5.39899290e-01 5.49030483e-01 1.07304692e+00 -1.49175942e+00 -1.65780976e-01 -2.78290629e-01 7.34378517e-01 4.40718561e-01 3.82616192e-01 -6.66024625e-01 -6.47816479e-01 6.17062390e-01 7.08683729e-02 8.62042680e-02 -4.28573459e-01 3.56570154e-01 -1.96088210e-01 -3.38839918e-01 -6.75795019e-01 6.61258519e-01 -3.33889931e-01 -7.63283908e-01 9.71923590e-01 5.11451244e-01 -9.60035801e-01 -5.64196050e-01 -2.31260523e-01 -7.72129834e-01 7.36101627e-01 -1.66239798e+00 -8.33369434e-01 -1.60819665e-03 9.49130237e-01 4.99577135e-01 -3.25416058e-01 8.30376148e-01 2.89679855e-01 -4.61548239e-01 -1.03277475e-01 1.02994166e-01 -5.13786137e-01 9.42253843e-02 -1.13611698e+00 -1.31748334e-01 8.70567322e-01 -1.30464062e-01 1.99315265e-01 8.57688248e-01 -7.24608123e-01 -1.33963764e+00 -7.05951989e-01 7.93794870e-01 2.78207138e-02 5.91199577e-01 2.49552950e-01 -5.35734355e-01 6.65797412e-01 7.08530128e-01 -5.50772011e-01 3.56150836e-01 -1.12521730e-01 6.54439986e-01 6.10851161e-02 -1.27068746e+00 5.11004269e-01 6.18756115e-01 4.65146512e-01 -1.29924193e-01 5.00235736e-01 1.18137754e-01 -2.81201541e-01 -5.02519786e-01 -1.37058005e-01 1.26523539e-01 -8.20346355e-01 6.42814100e-01 -4.69660759e-01 -3.44098717e-01 -9.27227497e-01 3.12035620e-01 -1.69113553e+00 -5.19327402e-01 -9.01251137e-01 5.46263218e-01 9.87246692e-01 6.08056307e-01 -1.26340902e+00 8.83434951e-01 5.29673398e-01 -8.30645785e-02 -3.38655561e-01 -1.41295183e+00 -8.27992260e-01 -1.95186362e-01 7.51610696e-02 9.73002255e-01 8.83782864e-01 3.61839533e-01 2.35196710e-01 -2.50624299e-01 7.79873133e-01 7.45829165e-01 2.85556763e-01 1.04799700e+00 -1.25456035e+00 -2.39635989e-01 -3.84455800e-01 -2.60350972e-01 -6.93092167e-01 1.01518929e-01 -5.72094619e-01 1.73792079e-01 -2.07741094e+00 -2.38624930e-01 -1.08400166e+00 5.54594398e-02 5.71626902e-01 4.61632878e-01 -1.45876393e-01 3.44159454e-01 3.30137521e-01 -8.87746990e-01 -1.75487801e-01 1.18043697e+00 7.71191940e-02 -4.89772081e-01 1.66931555e-01 -5.39056957e-02 5.54772854e-01 1.06412888e+00 -8.72741222e-01 -7.73930550e-01 -3.94335598e-01 2.94049352e-01 6.79966152e-01 6.84143677e-02 -9.58429515e-01 8.99265110e-01 -8.45088542e-01 -4.64482874e-01 -6.67824805e-01 3.10733855e-01 -1.27045715e+00 8.76237214e-01 9.31979179e-01 1.35140881e-01 8.68808210e-01 1.15223683e-01 6.53146565e-01 -1.36928633e-01 -7.13857174e-01 3.78788799e-01 -5.78668654e-01 -9.64167893e-01 1.33884206e-01 -1.15051746e+00 -4.93627459e-01 1.89950693e+00 -4.52970147e-01 -6.08674109e-01 -3.39691728e-01 -5.84714711e-01 9.37779427e-01 2.99440295e-01 -1.61388412e-01 4.94544864e-01 -1.01875317e+00 -7.82172978e-01 -3.07378590e-01 -4.52085525e-01 1.03146434e-01 3.84070039e-01 8.81382167e-01 -1.25294471e+00 4.45883155e-01 -6.84730053e-01 -1.82898760e-01 -1.44798994e+00 7.24773645e-01 2.28024200e-01 -5.07615685e-01 -6.75517857e-01 4.09027606e-01 -3.27844769e-01 -1.77921355e-01 -4.81119119e-02 8.66550207e-02 -5.56459963e-01 8.38966146e-02 4.74775553e-01 9.27368641e-01 -3.45453173e-01 -5.90755761e-01 -6.85969055e-01 7.12378502e-01 -1.60703331e-01 -5.50118387e-01 1.29492104e+00 -4.90884453e-01 -5.21612465e-01 -2.36460939e-01 4.72405344e-01 -1.02117918e-01 -7.58888662e-01 -8.42347369e-02 2.92972118e-01 -5.32958329e-01 -2.22208261e-01 -6.63152695e-01 -8.06730926e-01 -1.69110492e-01 1.64949372e-01 7.69092262e-01 1.06592166e+00 -4.21963632e-02 5.58176219e-01 5.20958602e-01 9.40441906e-01 -1.08160245e+00 -2.58527100e-01 5.95341027e-01 4.71430451e-01 -8.53677452e-01 1.86461732e-01 -6.49877846e-01 -6.26149356e-01 1.23263133e+00 8.54249299e-01 -1.04541592e-01 3.62555057e-01 4.17411953e-01 2.30114907e-03 -4.72893268e-01 -9.82275784e-01 -3.56590241e-01 -5.78287184e-01 8.73585701e-01 -6.63322747e-01 1.99444965e-01 -7.67952144e-01 -1.91288188e-01 -1.31359294e-01 -1.75606370e-01 9.87851918e-01 1.28291643e+00 -8.69955301e-01 -1.42504394e+00 -7.55363226e-01 -2.17431970e-03 8.83386731e-02 4.63607073e-01 -1.91374138e-01 1.21018159e+00 2.46752605e-01 1.20178711e+00 3.70645195e-01 2.69326478e-01 4.26617175e-01 -4.74513143e-01 4.57561731e-01 -3.88070732e-01 -6.16216183e-01 -5.02346717e-02 6.62177622e-01 -3.09563965e-01 -5.74223101e-01 -7.32635915e-01 -1.75648081e+00 -7.48588383e-01 -1.81074202e-01 7.63140678e-01 5.44138730e-01 9.50707853e-01 1.09355606e-01 3.68845224e-01 7.14571655e-01 -6.60948932e-01 -3.16200405e-03 -4.56270933e-01 -7.09230125e-01 -3.54959100e-01 1.83900341e-01 -6.98035538e-01 1.00430168e-01 -5.60809851e-01]
[4.976676940917969, 1.7382606267929077]
c5025001-f985-4abf-a3f6-12cee205f04b
rerender-a-video-zero-shot-text-guided-video
2306.07954
null
https://arxiv.org/abs/2306.07954v1
https://arxiv.org/pdf/2306.07954v1.pdf
Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation
Large text-to-image diffusion models have exhibited impressive proficiency in generating high-quality images. However, when applying these models to video domain, ensuring temporal consistency across video frames remains a formidable challenge. This paper proposes a novel zero-shot text-guided video-to-video translation framework to adapt image models to videos. The framework includes two parts: key frame translation and full video translation. The first part uses an adapted diffusion model to generate key frames, with hierarchical cross-frame constraints applied to enforce coherence in shapes, textures and colors. The second part propagates the key frames to other frames with temporal-aware patch matching and frame blending. Our framework achieves global style and local texture temporal consistency at a low cost (without re-training or optimization). The adaptation is compatible with existing image diffusion techniques, allowing our framework to take advantage of them, such as customizing a specific subject with LoRA, and introducing extra spatial guidance with ControlNet. Extensive experimental results demonstrate the effectiveness of our proposed framework over existing methods in rendering high-quality and temporally-coherent videos.
['Chen Change Loy', 'Ziwei Liu', 'Yifan Zhou', 'Shuai Yang']
2023-06-13
null
null
null
null
['patch-matching']
['computer-vision']
[ 2.87077546e-01 -3.34871978e-01 -6.92327917e-02 -1.93515703e-01 -6.08644366e-01 -4.85690087e-01 6.49783731e-01 -5.18100679e-01 -1.89601824e-01 5.77648103e-01 1.28470510e-01 4.13210429e-02 8.01849589e-02 -6.69911146e-01 -9.20803845e-01 -6.61525548e-01 5.25645949e-02 3.90157215e-02 7.50545144e-01 -2.52224624e-01 2.33812898e-01 4.95867282e-01 -1.47110868e+00 5.45630455e-01 7.48908997e-01 9.51815605e-01 4.89755124e-01 8.62277806e-01 -1.71072572e-01 1.01782560e+00 -2.99243093e-01 -3.46923351e-01 5.45094848e-01 -6.78130567e-01 -7.00598300e-01 5.22189081e-01 8.94400418e-01 -6.90308869e-01 -3.58377069e-01 8.30799043e-01 4.98069316e-01 3.47215950e-01 2.87739247e-01 -1.28555048e+00 -8.97038460e-01 2.10487261e-01 -6.14444554e-01 2.13411316e-01 5.39320350e-01 3.78599972e-01 5.27784288e-01 -1.00069308e+00 1.02475643e+00 1.36398590e+00 5.28098583e-01 7.19319642e-01 -1.22447515e+00 -5.51938891e-01 3.54234397e-01 2.85280347e-01 -1.27966619e+00 -7.61866570e-01 7.92665660e-01 -5.08762002e-01 8.76753569e-01 2.28640884e-01 8.85397255e-01 9.49868381e-01 3.73164505e-01 5.90834558e-01 1.12437022e+00 -3.60981196e-01 1.76932260e-01 -1.43390074e-01 -5.70316195e-01 7.50425458e-01 -2.87777007e-01 1.99254647e-01 -7.81589806e-01 -1.15232412e-02 1.34308863e+00 -4.27501835e-03 -4.77190197e-01 -5.28214395e-01 -1.49642062e+00 4.07863200e-01 2.45891646e-01 2.36551493e-01 -4.19583261e-01 4.31227028e-01 2.17240527e-01 3.13186586e-01 4.95224208e-01 8.51981901e-03 -2.04779238e-01 1.30969277e-02 -1.27846098e+00 4.25096482e-01 4.19614553e-01 1.28089499e+00 8.52806509e-01 3.83610666e-01 -4.68680114e-01 8.71154666e-01 6.30198643e-02 5.66537678e-01 4.61347312e-01 -1.55431616e+00 3.30763310e-01 9.15571451e-02 2.75439113e-01 -1.22207284e+00 4.83986512e-02 6.30161026e-03 -7.69288361e-01 3.76586825e-01 1.12141564e-01 -1.86724234e-02 -9.42196250e-01 1.65005302e+00 6.28043294e-01 5.09125948e-01 -2.90292889e-01 1.08625877e+00 4.63758528e-01 7.97642112e-01 8.55055898e-02 -3.96805465e-01 1.09139645e+00 -1.37342048e+00 -8.14375043e-01 8.11575800e-02 7.62174502e-02 -1.15760314e+00 1.05799890e+00 2.34214127e-01 -1.67304921e+00 -8.27463925e-01 -8.38843524e-01 -3.09905797e-01 9.50725004e-02 -1.16593063e-01 4.56974238e-01 4.05907542e-01 -1.48013473e+00 5.92828929e-01 -7.82445669e-01 -3.70473623e-01 2.84547508e-01 3.32765192e-01 -2.32541606e-01 -1.01958603e-01 -9.30243671e-01 4.44454134e-01 2.91730791e-01 -6.44979347e-03 -9.92518961e-01 -8.32977116e-01 -7.45130181e-01 -1.90359429e-01 3.58675569e-01 -1.14710677e+00 1.10262561e+00 -1.53413570e+00 -2.08552957e+00 4.91707414e-01 -2.82278925e-01 -1.73302397e-01 8.32583606e-01 -1.31142393e-01 -2.46250466e-01 4.63907957e-01 1.27723992e-01 1.19191420e+00 1.43859506e+00 -1.20754147e+00 -8.63131762e-01 1.60929605e-01 1.45122036e-01 4.40344959e-01 -4.29796934e-01 1.63305938e-01 -1.05620074e+00 -1.23606563e+00 -9.17417780e-02 -8.12602103e-01 -1.24043524e-01 6.43572986e-01 9.69359651e-02 1.62148669e-01 1.16212475e+00 -7.59234846e-01 1.13266981e+00 -2.03525543e+00 4.61334437e-01 -4.16847616e-02 1.19735517e-01 1.47857785e-01 -4.36208010e-01 2.63986111e-01 6.18229434e-02 -2.71935314e-01 -1.97823137e-01 -3.89573961e-01 -3.17717075e-01 2.10184008e-01 -2.29192629e-01 2.72044748e-01 1.74398527e-01 8.39236856e-01 -9.08448517e-01 -6.70529246e-01 4.94219333e-01 7.52856612e-01 -9.37471986e-01 3.43449473e-01 -4.06691730e-01 6.97874308e-01 -3.48868757e-01 5.80227792e-01 7.85059452e-01 -1.24740601e-01 9.95393917e-02 -4.46253479e-01 -1.52542025e-01 -1.54222086e-01 -1.28910267e+00 2.04775214e+00 -4.37209815e-01 6.03267610e-01 2.61213273e-01 -5.85840285e-01 5.74282825e-01 2.71568894e-01 6.98671401e-01 -7.42707431e-01 -1.61082447e-02 4.68583144e-02 -3.97583276e-01 -6.35270178e-01 7.68056154e-01 1.38088092e-01 4.66481239e-01 3.57891589e-01 2.56195422e-02 -2.33569607e-01 4.87230122e-01 3.99671853e-01 5.95477223e-01 7.26299345e-01 -1.57612070e-01 -2.88213253e-01 7.37495244e-01 -6.85064718e-02 5.74169219e-01 4.40975338e-01 3.57375853e-02 9.57827926e-01 5.88426851e-02 -5.35161078e-01 -1.32600665e+00 -9.55452919e-01 3.36063951e-01 1.03591561e+00 3.82056922e-01 -4.44093525e-01 -9.31490958e-01 -3.27751368e-01 -3.96740884e-01 2.80303061e-01 -5.52318454e-01 1.75555900e-01 -8.36656630e-01 -3.14319015e-01 6.83386698e-02 4.53029037e-01 7.21554399e-01 -9.21746433e-01 -5.74646533e-01 3.87617260e-01 -4.49501872e-01 -1.25638986e+00 -1.15700507e+00 -5.10305285e-01 -9.01691616e-01 -8.23096216e-01 -1.17957783e+00 -1.01180828e+00 7.03240395e-01 6.79040670e-01 9.96231019e-01 3.74286234e-01 -3.36825222e-01 5.86124361e-01 -3.45669150e-01 4.15302843e-01 -4.96946394e-01 -2.27891624e-01 -1.16953447e-01 3.92672867e-01 -4.02484685e-01 -6.36810422e-01 -1.08620274e+00 5.78365147e-01 -1.32506919e+00 4.15214479e-01 2.52940774e-01 7.34073937e-01 6.86440110e-01 -2.11746708e-01 8.02558288e-02 -4.77339715e-01 5.02115846e-01 1.32410964e-02 -6.03609741e-01 3.27029079e-01 -3.61282557e-01 -2.54465461e-01 6.39113903e-01 -7.33069420e-01 -1.21888840e+00 7.79572204e-02 1.35285661e-01 -7.36905873e-01 5.43246269e-02 -8.28869566e-02 5.67267761e-02 -4.51129019e-01 3.81957740e-01 3.60101849e-01 -1.42056141e-02 -2.18516901e-01 6.28612936e-01 2.64514029e-01 6.79816008e-01 -8.72836590e-01 8.14170837e-01 6.04808211e-01 -2.83435673e-01 -7.60585189e-01 -3.01619291e-01 -1.47416070e-01 -7.78519213e-01 -4.39968318e-01 1.02021241e+00 -9.25351202e-01 -4.80043799e-01 5.98494649e-01 -1.19190252e+00 -7.32364178e-01 -3.32025766e-01 3.25151652e-01 -8.33631039e-01 6.66333437e-01 -8.34409833e-01 -1.82179227e-01 -3.15550774e-01 -1.38507664e+00 1.13223445e+00 5.51391654e-02 -7.49165416e-02 -1.05330443e+00 -1.45320809e-02 2.18609616e-01 7.57509947e-01 8.67233276e-02 6.34726763e-01 4.82533276e-01 -1.05772150e+00 3.71637970e-01 -2.21841797e-01 3.27859730e-01 2.29297817e-01 2.98176646e-01 -5.08208930e-01 -5.05162776e-01 -1.42107099e-01 -1.79925084e-01 6.24215126e-01 5.04262984e-01 1.13897586e+00 -3.39112222e-01 -1.39004275e-01 9.20319855e-01 1.36962092e+00 2.04662964e-01 7.40053236e-01 3.38092178e-01 8.09626937e-01 3.90195936e-01 5.28603971e-01 2.38790512e-01 3.96833569e-01 1.16665161e+00 1.05809765e-02 -3.01789373e-01 -7.68466353e-01 -1.57030553e-01 5.52310824e-01 8.89531493e-01 -3.05431515e-01 -1.70374170e-01 -4.38894928e-01 4.65535045e-01 -1.97858059e+00 -1.20401704e+00 1.18795224e-01 2.00589466e+00 8.35867703e-01 -2.87695110e-01 2.08613411e-01 -2.83597589e-01 6.89898431e-01 2.27477163e-01 -3.97470564e-01 -1.15157761e-01 -1.40197888e-01 5.43347048e-03 2.13426590e-01 7.68160462e-01 -8.04729640e-01 1.22664762e+00 6.44227982e+00 1.06129801e+00 -1.26362252e+00 3.99643362e-01 7.97015548e-01 -1.79885209e-01 -3.38092953e-01 5.52303158e-03 -3.50628614e-01 3.58380079e-01 3.34409237e-01 -7.86848217e-02 7.55474269e-01 4.78574753e-01 4.85271037e-01 4.51963507e-02 -8.90029848e-01 1.01632428e+00 2.82104552e-01 -1.69400132e+00 4.08826172e-01 -2.61368155e-01 1.18331790e+00 -3.69911641e-01 1.30731896e-01 -1.50519624e-01 1.68761298e-01 -6.39621317e-01 1.25061536e+00 5.66047132e-01 1.08794987e+00 -5.54413438e-01 5.09488508e-02 -8.73042569e-02 -1.40026355e+00 1.47133917e-01 -4.15660232e-01 1.76510379e-01 4.64307487e-01 1.83284625e-01 -1.86519518e-01 5.24640501e-01 8.90994072e-01 9.13867414e-01 -4.75967050e-01 8.70424449e-01 -4.72784080e-02 1.34038955e-01 -1.53048322e-01 3.62812459e-01 1.17312729e-01 -4.25699919e-01 5.25554419e-01 1.17011344e+00 5.43603361e-01 1.88375667e-01 3.82883459e-01 7.79589832e-01 9.22191516e-02 2.38222867e-01 -3.74080092e-01 3.46397549e-01 2.99316347e-01 1.29553413e+00 -8.69007289e-01 -6.74902320e-01 -5.00879824e-01 1.63820541e+00 9.07172933e-02 6.98575735e-01 -1.05396163e+00 -6.80703484e-03 5.36814332e-01 3.40703696e-01 4.89476115e-01 -4.28472310e-01 8.94715115e-02 -1.34358096e+00 3.63336317e-02 -1.05529368e+00 8.46257061e-02 -1.09137619e+00 -1.11334896e+00 8.54503453e-01 1.61966607e-01 -1.43195999e+00 -2.18108356e-01 -2.92768866e-01 -3.28084916e-01 6.26611054e-01 -1.46310699e+00 -1.41117632e+00 -4.81314272e-01 1.26127660e+00 1.00867951e+00 -1.12876624e-01 3.57777506e-01 4.81735080e-01 -3.05138499e-01 4.89007890e-01 -1.38557687e-01 -1.93888485e-01 9.32220876e-01 -8.42352569e-01 3.84676158e-01 1.05923474e+00 -7.89091438e-02 5.26290417e-01 4.98145849e-01 -7.15685666e-01 -1.51081681e+00 -1.23625827e+00 4.71583098e-01 -1.59998044e-01 4.66455519e-01 -2.64436483e-01 -7.79334307e-01 4.76762801e-01 7.46389449e-01 1.21684596e-01 1.67214513e-01 -6.43383086e-01 -1.83852494e-01 -2.71928132e-01 -1.01981676e+00 1.00071359e+00 1.25057399e+00 -3.73446196e-01 -7.51676187e-02 3.90026510e-01 7.37943053e-01 -7.33035147e-01 -7.92307377e-01 1.54245019e-01 5.22049427e-01 -1.16968274e+00 1.18505919e+00 -1.43369019e-01 5.59565306e-01 -6.74067736e-01 -1.35072187e-01 -1.09408331e+00 -6.52805924e-01 -1.22457159e+00 -6.05209954e-02 1.21917951e+00 -6.04467355e-02 -2.78481811e-01 5.52987158e-01 5.75990617e-01 -9.47185233e-02 -4.15197283e-01 -7.17236876e-01 -6.20332241e-01 -1.03217721e-01 -2.49133751e-01 4.90788221e-01 9.63537395e-01 -3.64552021e-01 -3.93549837e-02 -8.15532744e-01 1.73836067e-01 6.73847139e-01 1.04462400e-01 9.97749686e-01 -5.01079857e-01 -5.39403915e-01 -5.10812521e-01 -2.29888052e-01 -1.40627515e+00 -1.28433213e-01 -6.11557603e-01 5.06917760e-03 -1.36197519e+00 1.20334737e-01 -2.92847514e-01 6.33042818e-03 3.67328644e-01 -1.26887143e-01 6.54461086e-01 4.67854857e-01 3.60227734e-01 -5.66119015e-01 5.47166765e-01 1.63791084e+00 -1.33410528e-01 -2.73437589e-01 -4.75064009e-01 -2.35888138e-01 5.84440112e-01 6.00231946e-01 -3.32659066e-01 -6.94075167e-01 -7.72673428e-01 -1.10426657e-01 3.36860567e-01 4.49530870e-01 -1.03524053e+00 3.13008070e-01 -5.09996712e-01 4.27822500e-01 -2.42001027e-01 3.61133784e-01 -8.74806464e-01 5.61810017e-01 3.58435482e-01 -2.70926565e-01 4.06023681e-01 2.20361158e-01 6.04007661e-01 -2.38311917e-01 9.98486057e-02 9.44161832e-01 -7.70803690e-02 -9.02132630e-01 5.36834300e-01 -3.33259016e-01 -1.61321610e-01 1.23759604e+00 -4.84196216e-01 -1.07618175e-01 -5.48506260e-01 -6.69359684e-01 2.71575451e-02 9.05282199e-01 7.45820820e-01 8.55596781e-01 -1.46727848e+00 -7.18198538e-01 5.21135032e-01 -2.40969673e-01 -2.89857060e-01 5.68141341e-01 7.80841827e-01 -9.06478465e-01 8.30607489e-02 -4.22010899e-01 -8.42801154e-01 -1.33202720e+00 6.55974388e-01 3.66832703e-01 1.11627080e-01 -8.65722775e-01 7.35002160e-01 5.09945631e-01 1.40714059e-02 1.55412003e-01 -2.55266786e-01 3.51453602e-01 -3.76419485e-01 7.16964722e-01 2.13039070e-01 -1.76656529e-01 -7.19366252e-01 -1.01089627e-01 1.16547406e+00 -1.63411334e-01 -3.54859471e-01 1.15666807e+00 -5.15841007e-01 -1.39833003e-01 -3.48467715e-02 9.80593443e-01 5.50991073e-02 -1.90266144e+00 -1.61121368e-01 -5.60868740e-01 -9.39697444e-01 8.79119560e-02 -6.32997155e-01 -1.49052262e+00 6.59178853e-01 6.39352560e-01 -2.17531309e-01 1.32621825e+00 -5.45516014e-01 1.01865387e+00 -1.60745442e-01 5.21838605e-01 -1.06110048e+00 4.82614964e-01 2.93071717e-01 9.85126317e-01 -8.52970064e-01 -5.66902512e-04 -5.13552248e-01 -5.56724489e-01 1.22905111e+00 5.62069058e-01 -1.64334074e-01 4.03591841e-01 3.52251440e-01 2.00470924e-01 1.61352709e-01 -8.36225271e-01 1.58672199e-01 3.97062659e-01 7.63907552e-01 4.37080234e-01 -4.18504924e-01 -3.98407698e-01 -3.27247202e-01 2.80047685e-01 3.21580917e-01 4.83152986e-01 7.82588542e-01 -2.30135515e-01 -1.26029348e+00 -4.24803585e-01 -1.99986309e-01 -3.61140847e-01 -1.68398649e-01 9.37521383e-02 6.13627791e-01 1.50478050e-01 9.15860116e-01 4.65350486e-02 -7.25464076e-02 2.30389476e-01 -1.57670349e-01 7.38974929e-01 -2.21276194e-01 -5.20309329e-01 6.76879525e-01 -2.77056485e-01 -9.46929097e-01 -9.70509470e-01 -5.34064651e-01 -9.63994265e-01 -4.85243648e-01 3.67054380e-02 -1.86680406e-01 3.47323507e-01 5.17512918e-01 7.04094827e-01 6.11595273e-01 5.23066580e-01 -1.31776798e+00 4.08549272e-02 -4.94497925e-01 -2.57576197e-01 6.57378197e-01 2.68667430e-01 -4.57624376e-01 6.51837364e-02 8.00292909e-01]
[11.02837085723877, -0.8771497011184692]
c0daa635-5b41-470a-aab9-a69ccf88ee63
wind-turbine-blade-surface-damage-detection
2108.08636
null
https://arxiv.org/abs/2108.08636v2
https://arxiv.org/pdf/2108.08636v2.pdf
Wind Turbine Blade Surface Damage Detection based on Aerial Imagery and VGG16-RCNN Framework
In this manuscript, an image analytics based deep learning framework for wind turbine blade surface damage detection is proposed. Turbine blade(s) which carry approximately one-third of a turbine weight are susceptible to damage and can cause sudden malfunction of a grid-connected wind energy conversion system. The surface damage detection of wind turbine blade requires a large dataset so as to detect a type of damage at an early stage. Turbine blade images are captured via aerial imagery. Upon inspection, it is found that the image dataset was limited and hence image augmentation is applied to improve blade image dataset. The approach is modeled as a multi-class supervised learning problem and deep learning methods like Convolutional neural network (CNN), VGG16-RCNN and AlexNet are tested for determining the potential capability of turbine blade surface damage.
['Harsh S. Dhiman', 'Lagan Sharma', 'Juhi Patel']
2021-08-19
null
null
null
null
['image-augmentation']
['computer-vision']
[-3.16729635e-01 -1.93307057e-01 4.84044194e-01 4.37793016e-01 -4.85891700e-02 -9.03057337e-01 4.67643403e-02 -3.27620693e-02 1.66718096e-01 3.06380183e-01 1.34320538e-02 -3.47579777e-01 1.76667109e-01 -9.10891294e-01 -3.80080752e-02 -9.25526261e-01 -3.51501346e-01 -2.55248874e-01 -1.98155027e-02 -3.38683754e-01 1.91691756e-01 9.59026456e-01 -1.61721933e+00 2.42250755e-01 5.46992362e-01 8.95878553e-01 3.26476336e-01 1.10479271e+00 4.21823770e-01 2.50027716e-01 -1.10132289e+00 3.49825293e-01 7.78360248e-01 7.28788525e-02 -8.15476298e-01 3.46657306e-01 3.68052065e-01 -7.66885102e-01 9.62035805e-02 9.66192544e-01 8.77460837e-01 1.34700695e-02 7.85671175e-01 -9.78824854e-01 -4.46335018e-01 -2.91732818e-01 -5.19453347e-01 9.40533102e-01 -2.80070275e-01 5.42814374e-01 6.75143600e-01 -1.29402840e+00 1.45979419e-01 8.26369941e-01 7.69865513e-01 1.34956896e-01 -4.40518171e-01 -1.19587861e-01 -4.58798170e-01 9.33412388e-02 -1.10962808e+00 9.69968140e-02 8.25891674e-01 -8.10874462e-01 1.24187541e+00 -2.07735412e-02 5.67382514e-01 4.46437269e-01 6.82829618e-01 1.42027751e-01 8.04545641e-01 -2.23456159e-01 4.08051997e-01 -6.24204516e-01 -3.16799879e-01 7.66687274e-01 6.44721448e-01 4.19731468e-01 -1.46461189e-01 2.00748891e-01 8.28817368e-01 -1.43501088e-01 -1.14619859e-01 4.49922740e-01 -3.32332492e-01 6.76680207e-01 8.60492110e-01 1.78734884e-01 -6.03356123e-01 -1.82502717e-01 9.12303984e-01 4.08746600e-01 5.31410873e-01 6.63285315e-01 -8.04896235e-01 1.06694445e-01 -7.59858787e-01 -7.79393304e-05 2.74812788e-01 1.47259727e-01 3.13726544e-01 1.07140398e+00 2.86549360e-01 5.78159153e-01 2.37433299e-01 3.42493981e-01 4.86094117e-01 -4.19456422e-01 -5.93279600e-02 6.47489071e-01 1.47405222e-01 -9.90261018e-01 -4.17829633e-01 -3.23783696e-01 -1.03490376e+00 1.11163843e+00 -1.25435710e-01 -8.40684593e-01 -9.19494450e-01 4.64129508e-01 1.98866993e-01 2.66095698e-01 -7.22086057e-02 1.34557354e+00 8.68262410e-01 8.11707854e-01 1.07171409e-01 3.88318300e-02 1.51969576e+00 -7.54833162e-01 -5.94627559e-01 -1.03871725e-01 7.53296912e-01 -5.96388757e-01 9.18050289e-01 4.85928655e-01 -8.51839602e-01 -8.61421168e-01 -1.58536279e+00 1.11747198e-01 -7.53656149e-01 6.47978246e-01 4.73235995e-01 6.01062775e-01 -1.01142907e+00 5.54235697e-01 -6.63500428e-01 -2.02208579e-01 5.45444787e-01 2.34758660e-01 -2.69305319e-01 2.78887331e-01 -9.28003192e-01 9.67842460e-01 2.00615421e-01 4.96716380e-01 -1.52634859e+00 -7.47249365e-01 -6.96855307e-01 2.85875320e-01 -1.73097193e-01 -7.05499530e-01 1.12470174e+00 -5.89496493e-01 -1.24777448e+00 6.29091144e-01 4.61110473e-01 -3.30653369e-01 -7.88653567e-02 -3.74174744e-01 -4.50536519e-01 5.07571638e-01 -1.66902557e-01 1.81635603e-01 1.41612625e+00 -1.34645915e+00 -1.01627040e+00 -4.02710527e-01 9.86308008e-02 2.07602143e-01 -5.12562215e-01 6.99060783e-02 9.13795590e-01 -7.66860008e-01 -4.91330743e-01 -4.86012697e-01 -1.38811752e-01 -2.72103459e-01 -3.42470050e-01 -2.71566689e-01 1.59831405e+00 -9.70264375e-01 8.34455311e-01 -1.91718245e+00 -2.89134920e-01 -2.48410821e-01 1.42242834e-01 9.64241505e-01 -3.04620303e-02 7.70313323e-01 -3.18227679e-01 4.73021418e-01 -5.72565943e-02 1.03447340e-01 -5.43491602e-01 3.57105047e-01 -2.83843040e-01 5.69501817e-01 7.30281472e-01 3.47713321e-01 -7.30654657e-01 2.81110018e-01 4.73805547e-01 1.40622094e-01 -2.30403095e-02 4.94468063e-01 2.04882443e-01 1.13067627e-01 -2.25083709e-01 1.12097502e+00 8.10612619e-01 5.40149391e-01 -5.13354957e-01 -5.64143717e-01 -5.02528429e-01 -2.57042259e-01 -5.61507702e-01 9.82647181e-01 -7.01425314e-01 6.75494134e-01 4.32226002e-01 -9.78656530e-01 1.08847690e+00 7.38906801e-01 4.49622124e-01 7.89596736e-02 2.91479439e-01 8.19481388e-02 1.22419663e-01 -1.06129396e+00 4.92263734e-01 -3.35193664e-01 4.81882393e-01 -1.37960181e-01 1.98173220e-03 -2.40723506e-01 -1.51550159e-01 -4.35689092e-01 1.31406033e+00 -3.05029184e-01 -1.77112788e-01 -5.91102481e-01 4.32995886e-01 4.16063607e-01 6.04924798e-01 -4.07108031e-02 -2.89242297e-01 7.63434112e-01 1.84066251e-01 -9.71620142e-01 -1.30732274e+00 -7.30847478e-01 -4.42959294e-02 5.36507189e-01 -1.04946181e-01 3.58357318e-02 -9.21219230e-01 -6.23062015e-01 1.24913231e-01 2.14117974e-01 -3.36924136e-01 -2.86511213e-01 -2.68772185e-01 -8.67180705e-01 4.79548842e-01 9.85171497e-01 6.64050937e-01 -1.21859562e+00 -1.28932095e+00 -2.51178239e-02 6.12120867e-01 -7.29365230e-01 -9.18380916e-02 3.52827609e-01 -1.05784595e+00 -1.44302213e+00 -3.75276834e-01 -1.02027333e+00 1.00240088e+00 6.33893073e-01 9.89700198e-01 8.06400359e-01 -1.14083886e+00 2.25561783e-01 -6.60414219e-01 -7.28034258e-01 -1.00980967e-01 -1.17208749e-01 3.44072670e-01 -3.88996661e-01 -6.03702292e-02 -4.42320466e-01 -1.18159282e+00 -1.71730965e-01 -8.54000330e-01 -6.63004637e-01 5.51922858e-01 1.16651142e+00 -3.02198026e-02 9.66526568e-01 8.56010139e-01 -3.67065489e-01 9.84926403e-01 -6.81644022e-01 -5.23337185e-01 -4.76052403e-01 -6.40384793e-01 -7.96165586e-01 1.11571872e+00 1.30720869e-01 -9.94982660e-01 -5.09210974e-02 -1.26831606e-01 -6.70545757e-01 -5.04206717e-01 1.07117414e+00 3.60859074e-02 -1.57843605e-02 5.62142193e-01 -2.73172349e-01 1.00264467e-01 -7.89189219e-01 -3.01589724e-02 8.27812493e-01 7.12802529e-01 1.68780759e-01 1.08772647e+00 4.17353630e-01 1.68637723e-01 -1.44046736e+00 -3.32400441e-01 -7.30571866e-01 -1.09241974e+00 -5.63834846e-01 8.65881860e-01 -1.00523663e+00 -6.33649647e-01 8.53339612e-01 -1.06382823e+00 -3.25063884e-01 -3.22133631e-01 1.35059997e-01 2.69342482e-01 2.98120439e-01 -5.66661596e-01 -9.53922689e-01 -9.74004984e-01 -7.61548519e-01 1.16330278e+00 3.42997044e-01 3.53165329e-01 -1.24726975e+00 -1.84482679e-01 2.94332474e-01 2.53992677e-01 5.46777487e-01 9.47644293e-01 -1.26614079e-01 1.59042627e-01 -5.12451887e-01 3.84691358e-02 9.23828304e-01 7.63244748e-01 7.12119758e-01 -1.05352712e+00 -8.59815240e-01 1.91920429e-01 -2.99284220e-01 6.59052312e-01 5.62329352e-01 9.11686003e-01 -3.20570588e-01 1.46963492e-01 5.63923478e-01 1.76835430e+00 2.81181186e-01 5.35919368e-01 2.39577875e-01 7.22593725e-01 2.44863510e-01 6.10490203e-01 7.32841849e-01 -1.80579841e-01 6.35223240e-02 1.34956646e+00 -7.31586039e-01 -2.40865052e-01 2.48606861e-01 5.44091284e-01 8.55437219e-01 -3.18314999e-01 -3.37659210e-01 -8.87586415e-01 1.19263899e+00 -9.29255903e-01 -8.63468289e-01 -5.87796330e-01 1.87587631e+00 9.51277390e-02 -1.48885995e-01 -6.70101494e-02 5.83196461e-01 5.39810717e-01 1.74052447e-01 -4.45499748e-01 -9.77331638e-01 -1.22551695e-01 4.36456650e-01 5.99459171e-01 1.67791113e-01 -1.30512452e+00 6.60475552e-01 6.71445322e+00 2.65043646e-01 -1.36235750e+00 -6.62135482e-02 5.97050190e-01 3.12229544e-01 3.20221663e-01 -1.31090641e-01 -3.18514884e-01 4.42207336e-01 5.64239144e-01 -3.43874171e-02 5.66475615e-02 8.68307114e-01 6.78038538e-01 -2.83453286e-01 -1.69842854e-01 4.97491658e-01 -1.98625773e-01 -1.14778233e+00 -8.36124867e-02 2.35570461e-01 8.31370056e-01 1.84663445e-01 -2.31812328e-01 -3.27624381e-01 2.25356609e-01 -1.03229725e+00 6.33240938e-02 3.26777011e-01 7.43672550e-01 -7.20110655e-01 1.35103714e+00 2.20618635e-01 -1.52511930e+00 -5.04329145e-01 -8.89481366e-01 -7.41198063e-01 -6.11588806e-02 7.90458500e-01 -1.26190925e+00 7.64705300e-01 1.23832667e+00 7.39331305e-01 -6.10987425e-01 1.14337385e+00 -3.29303563e-01 1.19702864e+00 -1.50361791e-01 5.05065203e-01 3.34548026e-01 -1.44285679e-01 6.39174163e-01 7.28458524e-01 6.48627877e-01 1.02466151e-01 3.76566708e-01 5.40088952e-01 1.36493696e-02 -3.06251585e-01 -1.00416827e+00 1.27731457e-01 6.35964870e-01 2.04163194e+00 -6.78981125e-01 3.90554965e-02 -2.89983571e-01 7.09384859e-01 -2.59759396e-01 1.51411667e-01 -1.09485559e-01 -2.77259171e-01 1.12986147e+00 1.83378309e-01 5.17512798e-01 -6.54446900e-01 -6.70392334e-01 -3.28892529e-01 -2.19896317e-01 -2.63922334e-01 4.22682881e-01 -1.20732617e+00 -1.54808247e+00 3.76540422e-01 -5.00350595e-01 -1.38808036e+00 1.94083855e-01 -1.34839356e+00 -1.65262258e+00 1.09184873e+00 -1.55689800e+00 -1.30756497e+00 -5.51693738e-01 -4.36683595e-02 1.14994383e+00 -6.82052791e-01 8.33887160e-01 -1.31407291e-01 -9.79482412e-01 -2.23885566e-01 1.25379026e-01 2.51381963e-01 -3.72675136e-02 -1.81077325e+00 5.55447340e-01 1.21800613e+00 -4.58338410e-01 6.01883046e-02 6.50560021e-01 -9.56375897e-01 -1.76133800e+00 -1.51140130e+00 2.17849195e-01 -1.20583124e-01 5.46188891e-01 3.65191787e-01 -9.69072700e-01 3.21601816e-02 9.34779227e-01 5.02232373e-01 5.59754431e-01 -5.10338366e-01 4.74832833e-01 1.71727929e-02 -1.37828720e+00 1.62260979e-01 4.52240825e-01 -1.44464329e-01 -5.32145321e-01 4.58397061e-01 2.35636085e-02 -2.40917966e-01 -1.44208574e+00 5.08819103e-01 -3.74802649e-02 -6.38653874e-01 8.73056889e-01 -8.28978360e-01 6.74513936e-01 -6.89383805e-01 4.80886400e-01 -1.95418203e+00 -5.28151691e-01 -5.67925453e-01 -1.78201541e-01 1.32680619e+00 -1.91007927e-01 -2.39409789e-01 6.01024449e-01 -6.84626773e-02 -9.79523659e-01 -9.06359851e-01 -8.94910932e-01 -8.44412506e-01 3.89314502e-01 3.60040694e-01 4.56256688e-01 8.74267101e-01 -2.01286644e-01 1.56501368e-01 -1.93114430e-02 1.03258049e+00 1.65150568e-01 -2.66855538e-01 3.65848362e-01 -1.49907839e+00 8.20062518e-01 -2.26543710e-01 -5.14054894e-01 -3.40632588e-01 -1.40817165e-01 -4.48935270e-01 8.31428841e-02 -1.76601911e+00 -6.51120663e-01 6.67735934e-02 -1.90430835e-01 7.46112585e-01 -2.54497409e-01 2.94341087e-01 -2.16778085e-01 1.93459421e-01 6.32010877e-01 5.90058148e-01 1.38998163e+00 -3.31997305e-01 2.41977364e-01 3.64182182e-02 -2.53477514e-01 6.98485911e-01 1.20740259e+00 -6.78128749e-02 -3.28813046e-01 -5.63534558e-01 1.91920549e-01 -1.12864845e-01 6.71664119e-01 -1.03095686e+00 1.90275565e-01 3.81814241e-02 5.58220088e-01 -8.31937075e-01 -2.39956766e-01 -8.32827926e-01 -3.47421974e-01 8.19638729e-01 5.21623731e-01 6.39257610e-01 5.04221976e-01 9.14077684e-02 -4.46996629e-01 -5.56977332e-01 5.26640832e-01 -2.27173015e-01 -9.11940396e-01 2.42046401e-01 -1.04853272e+00 -4.61815029e-01 8.72463286e-01 -4.36297953e-01 -5.42950630e-01 2.60454863e-01 -2.35054865e-01 1.88218027e-01 2.87172318e-01 5.42899609e-01 9.18527484e-01 -1.01907802e+00 -8.41555774e-01 3.05703342e-01 -3.93713623e-01 3.16302210e-01 4.33906078e-01 5.04166424e-01 -1.22862053e+00 -9.61844400e-02 -6.70803964e-01 -2.76770741e-01 -1.21790421e+00 4.37957704e-01 5.81243217e-01 1.21843643e-01 -8.64148378e-01 8.23426783e-01 -2.65828222e-01 2.02354506e-01 -4.42794055e-01 -4.68400657e-01 -6.32196486e-01 1.19157344e-01 1.62039891e-01 8.44725311e-01 6.91128492e-01 -6.49027109e-01 -1.47298202e-01 4.27431613e-01 3.84212196e-01 7.24692047e-01 1.38189256e+00 -4.88758199e-02 -2.02510551e-01 1.38133587e-02 8.27182353e-01 -3.52658957e-01 -1.53338146e+00 7.61662006e-01 -1.91830531e-01 -5.11730373e-01 9.37231004e-01 -9.35480952e-01 -1.66834176e+00 1.18124545e+00 1.06142175e+00 7.70572305e-01 1.44601667e+00 -7.39185929e-01 9.26205873e-01 2.40723416e-01 3.06162778e-02 -1.23603845e+00 2.69775003e-01 4.83725995e-01 1.11271024e+00 -1.29131830e+00 1.38276145e-01 -3.23448896e-01 -4.08128142e-01 1.52981281e+00 9.61454988e-01 -4.64379966e-01 7.41281033e-01 6.62353635e-01 4.35423970e-01 -8.14743996e-01 -5.97466826e-01 -3.11290324e-01 -1.82983826e-03 1.02327228e+00 3.42771024e-01 8.23089257e-02 3.87508720e-02 3.25309366e-01 -1.73408864e-03 -2.48932853e-01 5.52072406e-01 1.00085640e+00 -7.04464197e-01 -6.27853036e-01 -5.33578634e-01 7.99236178e-01 -5.75314283e-01 -7.82003254e-02 -5.38854659e-01 4.43720043e-01 4.79530603e-01 1.17015004e+00 2.44863063e-01 -5.14460266e-01 3.39264303e-01 -1.59876838e-01 -1.61390528e-01 -8.08306932e-01 -1.11525166e+00 -4.06526864e-01 -9.35691223e-02 1.59835532e-01 -1.13177076e-01 -6.06839478e-01 -1.19445813e+00 6.03383267e-03 -6.77048862e-01 -9.02883857e-02 6.44014716e-01 9.74096060e-01 4.92756218e-01 1.00575149e+00 1.40091538e+00 -1.16685009e+00 -5.16973138e-01 -1.29114616e+00 -1.03923285e+00 2.59849221e-01 3.99057359e-01 -9.82207000e-01 -5.04210591e-01 6.89837635e-01]
[6.959629535675049, 2.190608501434326]
fc73558a-23c6-4051-b5c5-0f2353041b58
source-free-domain-adaptation-for-real-world
2207.06644
null
https://arxiv.org/abs/2207.06644v1
https://arxiv.org/pdf/2207.06644v1.pdf
Source-Free Domain Adaptation for Real-world Image Dehazing
Deep learning-based source dehazing methods trained on synthetic datasets have achieved remarkable performance but suffer from dramatic performance degradation on real hazy images due to domain shift. Although certain Domain Adaptation (DA) dehazing methods have been presented, they inevitably require access to the source dataset to reduce the gap between the source synthetic and target real domains. To address these issues, we present a novel Source-Free Unsupervised Domain Adaptation (SFUDA) image dehazing paradigm, in which only a well-trained source model and an unlabeled target real hazy dataset are available. Specifically, we devise the Domain Representation Normalization (DRN) module to make the representation of real hazy domain features match that of the synthetic domain to bridge the gaps. With our plug-and-play DRN module, unlabeled real hazy images can adapt existing well-trained source networks. Besides, the unsupervised losses are applied to guide the learning of the DRN module, which consists of frequency losses and physical prior losses. Frequency losses provide structure and style constraints, while the prior loss explores the inherent statistic property of haze-free images. Equipped with our DRN module and unsupervised loss, existing source dehazing models are able to dehaze unlabeled real hazy images. Extensive experiments on multiple baselines demonstrate the validity and superiority of our method visually and quantitatively.
['Feng Zhao', 'Man Zhou', 'Qi Zhu', 'Yajing Liu', 'Jie Huang', 'Hu Yu']
2022-07-14
null
null
null
null
['image-dehazing', 'source-free-domain-adaptation']
['computer-vision', 'computer-vision']
[ 3.81972998e-01 -1.90988332e-01 1.62293464e-01 -3.41967314e-01 -6.09924197e-01 -1.35425761e-01 5.41008174e-01 -3.61493349e-01 -2.43054375e-01 7.76947975e-01 8.43304768e-02 1.05836079e-01 1.33175969e-01 -1.04556262e+00 -8.54250371e-01 -1.19209898e+00 5.56968033e-01 5.51627912e-02 5.50438821e-01 -5.32002687e-01 2.45057438e-02 1.28037035e-01 -1.56187260e+00 1.13902181e-01 1.38562500e+00 1.06495106e+00 3.92288119e-01 4.25199598e-01 -1.22041121e-01 8.80431652e-01 -8.90035629e-01 -4.86111678e-02 5.35854578e-01 -5.53046584e-01 -1.80170611e-01 2.00696871e-01 3.88418347e-01 -6.09332860e-01 -6.15241647e-01 1.30887139e+00 5.61568201e-01 2.95228094e-01 9.18067932e-01 -1.37366891e+00 -1.12891030e+00 8.71139020e-02 -4.96459633e-01 1.67009458e-01 -2.39701554e-01 3.06403607e-01 3.26967984e-01 -1.10329008e+00 3.67476016e-01 9.48306441e-01 3.82792085e-01 6.53478742e-01 -9.63159144e-01 -1.06543303e+00 -4.91202772e-02 2.71816492e-01 -1.45836449e+00 -4.78219837e-01 1.17210710e+00 -4.36292917e-01 3.84079725e-01 -2.90394723e-01 2.55833417e-01 1.10472941e+00 4.66301339e-03 6.31088614e-01 8.96568298e-01 -4.72002238e-01 3.84463549e-01 4.34119731e-01 -3.84005934e-01 2.41907790e-01 2.25885987e-01 3.40956450e-01 -4.02949810e-01 2.94879913e-01 7.88864732e-01 1.63770258e-01 -3.25462490e-01 -5.96300602e-01 -8.60096455e-01 8.56885135e-01 5.49038470e-01 -7.80091528e-03 -2.15117157e-01 -1.39042944e-01 -3.52517888e-02 5.73985696e-01 7.14046597e-01 2.79883295e-01 -8.18587765e-02 6.43494964e-01 -1.05317509e+00 1.60646260e-01 3.56274009e-01 1.21172023e+00 1.27279985e+00 5.31576753e-01 -3.92962024e-02 1.10265648e+00 2.17885971e-01 9.54494596e-01 5.59729218e-01 -8.45961154e-01 3.77298445e-01 4.77201015e-01 1.38013273e-01 -8.30754161e-01 2.54674435e-01 -4.08598542e-01 -9.90522206e-01 6.31878316e-01 2.51423985e-01 7.52576962e-02 -1.23107457e+00 1.44091654e+00 3.70293409e-01 3.74829352e-01 3.75366002e-01 9.76879060e-01 7.28488505e-01 1.00495005e+00 -5.30205406e-02 -2.56137289e-02 8.52383912e-01 -9.55111444e-01 -7.60295331e-01 -3.10632259e-01 1.21874996e-01 -7.54858494e-01 1.21242404e+00 3.15969408e-01 -9.84090865e-01 -6.36002898e-01 -1.49952853e+00 -1.57744795e-01 -6.22728646e-01 -6.18368350e-02 -7.90735185e-02 6.14640117e-01 -9.01616454e-01 1.60910651e-01 -4.52270597e-01 -1.35008067e-01 5.64631283e-01 1.46837711e-01 -3.28378119e-02 -4.51122016e-01 -1.50102615e+00 7.14168131e-01 4.30235833e-01 -1.47293702e-01 -1.56894827e+00 -9.59318697e-01 -9.05604422e-01 -9.45628807e-02 2.45713174e-01 -5.95921636e-01 9.18809295e-01 -1.31256831e+00 -1.69566751e+00 8.27253044e-01 2.21966892e-01 -4.75846291e-01 3.31428379e-01 -2.05146596e-01 -9.05993998e-01 4.68405336e-01 1.13623202e-01 6.40060604e-01 1.62276840e+00 -1.56886494e+00 -5.88568747e-01 3.72948796e-02 -1.06111325e-01 2.32075617e-01 -5.17287910e-01 -2.30240762e-01 -1.54418990e-01 -1.12872648e+00 -2.56165981e-01 -3.98955941e-01 3.00208684e-02 3.36618096e-01 -9.00020003e-02 2.31831446e-01 1.14247489e+00 -7.60499120e-01 9.58526611e-01 -2.70325160e+00 -1.51904538e-01 8.78466219e-02 2.84745842e-01 5.67952573e-01 -2.82956839e-01 1.90801397e-01 -9.15009379e-02 -3.01408082e-01 -6.38277113e-01 -1.12701036e-01 -1.69758752e-01 1.74806476e-01 -6.42940104e-01 5.57031214e-01 5.71906507e-01 5.68910837e-01 -8.33718538e-01 -5.14814198e-01 3.36860478e-01 5.50028384e-01 -6.25973046e-01 6.06966376e-01 -4.28721964e-01 5.20626605e-01 -1.87970117e-01 5.68283379e-01 1.17506623e+00 -8.22886825e-02 -5.18644452e-01 3.87310982e-02 5.36276363e-02 1.72690734e-01 -9.71896350e-01 1.61168289e+00 -4.86200005e-01 4.33601618e-01 2.52074063e-01 -1.07423198e+00 1.08349109e+00 1.90569773e-01 5.26684709e-02 -8.62017632e-01 -1.92578770e-02 3.37467968e-01 -4.05768991e-01 -4.38248962e-01 3.36689353e-01 -5.51988721e-01 2.94499457e-01 1.26125097e-01 2.13014141e-01 -4.11131650e-01 -2.78753936e-01 1.56428829e-01 6.84162736e-01 -1.49694989e-02 1.67851876e-02 -1.62060827e-01 7.21349895e-01 1.31090060e-01 5.93351841e-01 4.92551982e-01 -2.73481637e-01 1.07881558e+00 -3.87572893e-03 -1.68841720e-01 -1.27560771e+00 -1.51423681e+00 -7.86835104e-02 9.90498841e-01 5.52103877e-01 2.20137551e-01 -7.52111852e-01 -5.24954021e-01 -2.94493586e-01 7.76779950e-01 -6.02380574e-01 -6.71324253e-01 -5.21668971e-01 -6.56708539e-01 4.61892784e-01 1.70369953e-01 1.13390303e+00 -7.70290017e-01 -1.30301639e-01 2.13555694e-01 -1.93696156e-01 -1.09302747e+00 -5.74175179e-01 -1.36287147e-02 -5.59099853e-01 -8.17139447e-01 -1.06161654e+00 -1.03422189e+00 5.38184106e-01 7.00582564e-01 8.96587431e-01 -4.48227040e-02 -2.30287835e-02 1.91105217e-01 -4.50515121e-01 -7.73948252e-01 -5.97751081e-01 -1.85386077e-01 1.37425112e-02 4.27840054e-01 4.12528783e-01 -1.01206005e+00 -9.03541088e-01 4.66016054e-01 -1.53047955e+00 -1.57992989e-01 4.97677207e-01 8.81375253e-01 3.71067137e-01 5.89307606e-01 5.22115648e-01 -6.06104970e-01 9.33684483e-02 -7.02032208e-01 -7.28833795e-01 4.96004941e-04 -7.51986265e-01 -1.08008794e-01 7.76862025e-01 -6.25735223e-01 -1.51593328e+00 -1.61361232e-01 3.67120877e-02 -8.74110162e-01 -2.52972782e-01 7.94080123e-02 -6.28519177e-01 -2.39257365e-01 9.99055505e-01 6.55976772e-01 2.48181686e-01 -2.88591772e-01 3.10563296e-01 6.93521202e-01 9.14405107e-01 -3.88859510e-01 1.64148772e+00 8.73360038e-01 -4.09177035e-01 -9.46384311e-01 -7.46724665e-01 -4.31225896e-01 -4.44102317e-01 2.81904228e-02 8.83686662e-01 -1.54865777e+00 2.31291473e-01 8.35434675e-01 -9.69516873e-01 -5.95509648e-01 -4.59309369e-01 3.50916088e-01 -3.36325675e-01 4.05401766e-01 -3.10894430e-01 -6.47575498e-01 1.15484558e-02 -8.18474829e-01 9.42414343e-01 2.11133733e-01 5.04400969e-01 -1.03248060e+00 -1.14408597e-01 2.01508582e-01 7.25657880e-01 1.16787001e-01 1.08456504e+00 -3.09259802e-01 -8.15399289e-01 2.11670190e-01 -3.64605695e-01 1.03076804e+00 2.99471051e-01 -2.77979702e-01 -1.14552462e+00 -3.29270929e-01 4.26322997e-01 -1.27857596e-01 1.07669091e+00 3.10092747e-01 9.88076448e-01 -3.55716854e-01 7.68842082e-03 1.01581621e+00 1.49303973e+00 1.84041873e-01 9.94442344e-01 5.64565659e-01 7.12613463e-01 6.49800241e-01 5.07603884e-01 2.39181861e-01 1.61883965e-01 4.41153169e-01 6.12280011e-01 -3.39609623e-01 -5.83409846e-01 -4.04758722e-01 6.05415821e-01 5.79293430e-01 3.23810458e-01 -4.01402622e-01 -6.10114455e-01 8.28715801e-01 -1.38771427e+00 -6.84957862e-01 2.45756939e-01 2.09188843e+00 9.89067435e-01 7.79092386e-02 -1.15027884e-03 8.14360306e-02 7.25292087e-01 3.65794182e-01 -6.99900448e-01 1.48763016e-01 -5.06645799e-01 1.73335597e-01 5.41814983e-01 4.03456718e-01 -1.18988574e+00 1.02264452e+00 5.66382217e+00 1.16347182e+00 -1.29805768e+00 2.29991421e-01 2.52200544e-01 -6.30181581e-02 -5.24859726e-01 -2.36066043e-01 -4.95848894e-01 7.32861757e-01 8.38457167e-01 -1.35984033e-01 5.61716318e-01 7.98762143e-01 1.24985553e-01 2.81122774e-02 -7.34660804e-01 1.07478011e+00 9.81441662e-02 -1.28095126e+00 3.38299900e-01 8.03168397e-03 9.66412127e-01 -3.79736349e-02 4.52412039e-01 2.94675261e-01 4.18781340e-01 -9.20160949e-01 7.53864110e-01 2.93689668e-01 1.10742092e+00 -6.41362548e-01 5.79676509e-01 3.66490155e-01 -9.03604388e-01 -7.24646300e-02 -8.25495541e-01 1.13689207e-01 -1.11420132e-01 8.99984479e-01 -6.93709373e-01 5.96434176e-01 9.45985675e-01 8.55605900e-01 -4.89468426e-01 7.70636082e-01 -4.12739098e-01 8.61636817e-01 -1.68317258e-01 6.68845952e-01 1.44759357e-01 -2.62380719e-01 5.29592454e-01 1.00252426e+00 3.83295268e-01 2.29268566e-01 -2.15992123e-01 1.14220393e+00 -8.46440345e-02 -2.25676015e-01 -7.34714091e-01 1.40399501e-01 4.59309459e-01 6.71850860e-01 -1.66101918e-01 -2.97011197e-01 -4.63761538e-01 1.08812106e+00 -1.04560666e-01 7.70200312e-01 -9.16157901e-01 -6.38311744e-01 1.00343406e+00 3.22270095e-01 4.54618335e-01 -1.78343326e-01 -3.20864618e-01 -1.32872617e+00 9.16742906e-03 -8.87714982e-01 2.35909402e-01 -9.96370971e-01 -1.66586185e+00 3.43318313e-01 6.71736225e-02 -1.61201155e+00 2.19962925e-01 -5.60396969e-01 -7.31860816e-01 1.06749678e+00 -2.28465366e+00 -1.09776306e+00 -7.54847467e-01 1.10627818e+00 6.06134236e-01 -4.26508635e-01 3.23099047e-01 5.22075713e-01 -4.72864836e-01 7.43081868e-01 5.28332710e-01 1.86103910e-01 1.20541239e+00 -1.01127160e+00 1.32033914e-01 1.15084136e+00 -3.16681027e-01 4.07580256e-01 7.90298760e-01 -4.45608407e-01 -8.80008280e-01 -1.57281494e+00 2.54228354e-01 -4.85578924e-01 4.76930380e-01 -4.08231020e-01 -1.42978382e+00 4.19653594e-01 1.58387467e-01 1.35004982e-01 4.91349041e-01 -8.59751821e-01 -6.83130383e-01 -4.50976193e-01 -1.14055276e+00 4.46972847e-01 8.18478286e-01 -6.48345888e-01 -7.48576760e-01 1.95025340e-01 1.11772001e+00 -2.59071112e-01 -5.01142502e-01 4.33578551e-01 4.86057922e-02 -1.07061279e+00 1.25967312e+00 -1.45500660e-01 7.13015616e-01 -7.36809433e-01 -1.72603235e-01 -1.46788347e+00 -2.60353446e-01 -5.38550079e-01 -5.19818952e-03 1.36831760e+00 1.12479538e-01 -6.73077345e-01 7.30889618e-01 1.08664304e-01 -3.25380206e-01 -3.80459540e-02 -6.89082026e-01 -1.10069799e+00 4.97105420e-01 -1.47883326e-01 9.00564611e-01 1.01058352e+00 -6.90662622e-01 -2.40908447e-03 -5.35111070e-01 6.57568872e-01 9.09007609e-01 -1.61156878e-01 7.78941929e-01 -9.36931491e-01 7.34980032e-03 -1.24674030e-01 -1.38749436e-01 -1.10517573e+00 1.57784253e-01 -6.42965972e-01 2.87302613e-01 -1.23848689e+00 -2.17346832e-01 -4.53573734e-01 -5.27629018e-01 1.75992459e-01 -1.64432794e-01 2.56094337e-01 -1.91293508e-02 6.70912564e-01 -2.69529223e-01 1.07795060e+00 1.31303167e+00 -6.12478197e-01 -1.93951890e-01 -2.30814219e-01 -7.08077133e-01 5.46145320e-01 7.61789441e-01 -7.22979665e-01 -7.63307095e-01 -6.46501720e-01 -6.31700009e-02 -4.20857608e-01 5.51371634e-01 -1.27324331e+00 2.92132974e-01 -3.90238672e-01 4.34659302e-01 -2.96466649e-01 2.48000309e-01 -8.50313485e-01 -1.01036675e-01 3.90471108e-02 -1.11997411e-01 -6.90342247e-01 6.24498911e-02 8.46535802e-01 -6.17036879e-01 9.01882574e-02 1.34920263e+00 -3.10894586e-02 -9.78532612e-01 3.66701990e-01 -2.80043483e-01 1.70719221e-01 8.92599344e-01 -5.33811033e-01 -4.48347121e-01 -4.34899032e-01 -1.84178367e-01 1.83315381e-01 8.22477221e-01 3.09838563e-01 8.88005793e-01 -1.23088479e+00 -8.36005270e-01 6.07742310e-01 4.85319644e-01 5.71623564e-01 3.68564367e-01 4.84211296e-01 -6.45925581e-01 -6.74720854e-02 -3.94702822e-01 -3.41812551e-01 -5.23014784e-01 1.00272977e+00 4.48805630e-01 2.46764243e-01 -7.11951256e-01 8.82358849e-01 1.07916892e+00 -3.94709527e-01 4.55030203e-02 -1.72838159e-02 -1.77384994e-03 -2.98428893e-01 7.02352643e-01 2.81774014e-01 4.79249135e-02 -3.54302883e-01 -1.46768317e-01 3.90042335e-01 6.12228923e-02 9.65229422e-03 1.22599554e+00 -4.20704782e-01 -7.38024041e-02 1.13286316e-01 1.09158540e+00 2.67086811e-02 -1.80744100e+00 -5.96667171e-01 -3.13234895e-01 -5.95218062e-01 4.13331343e-03 -6.56042397e-01 -1.06794286e+00 1.20997477e+00 7.29889154e-01 -8.68180394e-02 1.65553451e+00 -1.70628533e-01 1.12900138e+00 1.27039388e-01 2.19976634e-01 -1.03818643e+00 4.44403797e-01 4.55704510e-01 6.88321531e-01 -1.27643633e+00 -2.18882754e-01 -5.79616904e-01 -5.38110018e-01 7.19780624e-01 7.66811848e-01 -3.24859202e-01 8.40945542e-01 -9.39974487e-02 3.80657941e-01 -5.89310862e-02 -3.81794691e-01 -3.22512984e-02 1.03324957e-01 1.15523493e+00 -2.67017365e-01 -3.65812927e-01 2.61069059e-01 5.12275279e-01 -1.05684064e-01 -6.58382103e-02 7.01476157e-01 6.68681681e-01 -6.90836251e-01 -8.90373468e-01 -6.32273614e-01 -7.09603280e-02 -1.23595238e-01 -2.71245480e-01 -4.05064672e-02 7.35178530e-01 3.61267537e-01 1.05856490e+00 -1.06540017e-01 -3.47706169e-01 3.01920652e-01 -1.32951438e-02 1.57019898e-01 -7.79008567e-01 -6.48213923e-02 3.71634439e-02 -4.68231112e-01 -2.38443896e-01 -4.24157232e-01 -9.57130194e-02 -1.03013325e+00 -2.06467241e-01 -1.23992205e-01 1.72463611e-01 3.41154993e-01 8.10300171e-01 3.44686031e-01 4.84839648e-01 8.58468950e-01 -7.91731775e-01 -4.46764290e-01 -8.08622479e-01 -1.09397316e+00 5.07488012e-01 8.71297181e-01 -8.53211701e-01 -7.30827272e-01 5.63079476e-01]
[10.938694953918457, -3.1066362857818604]
3eda3762-97b4-4255-b264-7820e27d165f
spatiotemporal-representation-learning-on
null
null
https://openreview.net/forum?id=Jh9VxCkrEZn
https://openreview.net/pdf?id=Jh9VxCkrEZn
Spatiotemporal Representation Learning on Time Series with Dynamic Graph ODEs
Spatiotemporal representation learning on multivariate time series has received tremendous attention in forecasting traffic and energy data. Recent works either rely on complicated discrete neural architectures or graph priors, hindering their effectiveness and applications in the real world. In this paper, inspired by neural ordinary differential equations and graph structure learning, we propose a fully continuous model named Dynamic Graph ODE (DyG-ODE) to capture both long-range spatial and temporal dependencies to learn expressive representations on arbitrary multivariate time series data without being restricted by rigid preconditions (e.g., graph priors). For modeling the continuous dynamics of spatiotemporal clues, we design a simple yet powerful dynamic graph ODE by coupling the proposed spatial and temporal ODEs, which not only allows the model to obtain infinite spatial and temporal receptive fields but also reduces numerical errors and model complexity significantly. Our empirical evaluations demonstrate the superior effectiveness and efficiency of DyG-ODE on a number of benchmark datasets.
['Shirui Pan', 'Bin Yang', 'Yu Zheng', 'Yuan-Fang Li', 'Ming Jin']
2021-09-29
null
null
null
null
['graph-structure-learning']
['graphs']
[-1.53899819e-01 -2.51668483e-01 -1.32032380e-01 -7.33176023e-02 -4.90401611e-02 -4.52250123e-01 6.31483018e-01 -7.86981806e-02 -1.87616423e-01 5.79632938e-01 2.55927950e-01 -4.53072637e-01 -3.70486379e-01 -7.38989234e-01 -6.67329073e-01 -7.68409550e-01 -3.82122546e-01 -9.30502266e-02 3.28237653e-01 -1.91292256e-01 -1.16069712e-01 7.10243165e-01 -1.33783722e+00 -2.79131919e-01 1.03081810e+00 1.19249892e+00 2.12282047e-01 4.54935342e-01 7.02092424e-02 1.02395272e+00 -1.90053895e-01 -1.35115162e-01 2.42426097e-01 -3.07690173e-01 -1.17975928e-01 -1.41667873e-02 -3.13877314e-02 -6.24481626e-02 -1.21195841e+00 8.22861314e-01 4.79913235e-01 8.21682155e-01 6.60170376e-01 -1.35088861e+00 -1.05919170e+00 1.71478361e-01 -6.28820360e-01 4.44333583e-01 -7.62749016e-02 4.69874024e-01 8.67015421e-01 -5.05617559e-01 3.79698634e-01 9.83083606e-01 7.52267778e-01 3.58612567e-01 -1.26164389e+00 -6.64007246e-01 6.41559541e-01 4.96328354e-01 -1.43679261e+00 -2.47960821e-01 1.34541798e+00 -4.66333985e-01 1.00185633e+00 2.19146177e-01 7.76356637e-01 1.16894770e+00 2.97222316e-01 5.58303833e-01 8.98348153e-01 6.83182180e-02 3.78761262e-01 -5.13149381e-01 2.03351215e-01 8.04657400e-01 -9.92782414e-03 2.82628924e-01 -3.31774771e-01 -4.01054658e-02 1.03528917e+00 3.47217321e-01 -2.47596025e-01 -2.88676381e-01 -9.83358681e-01 7.45256424e-01 8.07143807e-01 3.21048915e-01 -5.92341959e-01 5.73127568e-01 3.05864781e-01 1.26368672e-01 5.32122493e-01 5.09507619e-02 2.19881814e-02 -1.07128099e-01 -6.31490648e-01 -1.85265634e-02 4.21589077e-01 9.14011836e-01 6.90898240e-01 4.08772886e-01 -3.65288407e-01 5.65195680e-01 1.46204215e-02 5.76740026e-01 2.22941920e-01 -7.07791805e-01 4.08661872e-01 7.55473852e-01 -5.96297812e-03 -1.44965231e+00 -5.77211618e-01 -4.70947564e-01 -1.44476497e+00 -9.53870118e-02 3.72518927e-01 -1.39399245e-01 -9.89829421e-01 2.01283360e+00 1.98947147e-01 9.97962832e-01 -2.92303205e-01 1.06683469e+00 6.95771098e-01 9.23584461e-01 1.45006672e-01 -3.16927075e-01 9.24498379e-01 -5.85587442e-01 -7.30193377e-01 -2.96040345e-03 5.70641279e-01 1.47043383e-02 1.15059471e+00 1.96093600e-02 -8.81541967e-01 -4.91917819e-01 -7.90843308e-01 -2.07655460e-01 -5.13938546e-01 -2.77441717e-03 8.43427479e-01 1.69442207e-01 -1.09820628e+00 4.93271440e-01 -1.20212030e+00 -7.28851408e-02 4.12693322e-01 3.58572215e-01 -5.82195595e-02 -1.30664362e-02 -1.29552460e+00 3.61394942e-01 6.37594759e-02 3.49537462e-01 -6.98237598e-01 -7.19558001e-01 -8.77449334e-01 3.08693916e-01 3.97713482e-01 -7.21302748e-01 6.03967488e-01 -4.53081667e-01 -1.66061115e+00 2.42973611e-01 -1.40178040e-01 -5.31795740e-01 5.30064762e-01 2.52427533e-02 -5.69902718e-01 2.01648176e-02 -2.44335771e-01 2.94220597e-01 9.33690965e-01 -7.79990256e-01 -9.68162864e-02 -2.32223019e-01 3.43664765e-01 3.17992531e-02 -5.30877113e-01 -4.56815660e-01 -4.74738300e-01 -1.02640331e+00 -3.47726159e-02 -9.30915952e-01 -5.27222097e-01 6.87061399e-02 -9.93045792e-02 -4.72229451e-01 9.18051541e-01 -6.45323575e-01 1.53798974e+00 -2.14008784e+00 2.56996155e-01 2.22890511e-01 5.73904037e-01 6.34645224e-02 -1.58632040e-01 3.39878619e-01 3.65716293e-02 -6.88390881e-02 -2.76254565e-01 -2.01810002e-01 1.98806435e-01 4.71951783e-01 -4.87152070e-01 5.42369783e-01 1.29613429e-01 1.19525325e+00 -9.88172233e-01 -2.75765300e-01 3.10465515e-01 8.19637835e-01 -6.45083427e-01 2.10946783e-01 -2.52808869e-01 7.38106072e-01 -7.88000405e-01 2.37986967e-01 4.96297300e-01 -5.81941187e-01 -1.06564060e-01 -2.24348083e-01 -1.06594034e-01 1.16031855e-01 -1.05769408e+00 1.70459378e+00 -5.58445692e-01 5.87511718e-01 -4.59004641e-02 -1.31747520e+00 7.98480034e-01 1.48150250e-01 7.51999915e-01 -1.21742451e+00 1.10634327e-01 -7.62846842e-02 -2.81517059e-01 -5.87501705e-01 2.72749424e-01 -1.03273448e-02 -6.38653338e-02 4.02529538e-01 -1.28293768e-01 2.38089159e-01 1.73638985e-01 1.63349032e-01 1.16268480e+00 1.32898077e-01 -7.90749043e-02 -3.87639552e-01 4.40876365e-01 -3.08754116e-01 7.14485943e-01 5.30422688e-01 1.92771573e-02 2.76180178e-01 6.59964204e-01 -5.81501245e-01 -7.31439471e-01 -9.76867318e-01 3.07307214e-01 1.03512561e+00 2.91344941e-01 -3.03026408e-01 -3.95999998e-01 -5.42549968e-01 -4.66943793e-02 5.55254877e-01 -6.34582877e-01 -3.69846433e-01 -8.94234955e-01 -5.87457061e-01 3.14752519e-01 7.33374655e-01 4.15618479e-01 -8.22936356e-01 -5.44175148e-01 2.37657309e-01 -1.17304087e-01 -1.10382283e+00 -7.47204661e-01 -2.02980228e-02 -7.73279965e-01 -7.83459127e-01 -7.39002109e-01 -5.02437711e-01 6.05909705e-01 2.99971819e-01 8.51965010e-01 1.87125225e-02 -2.45295510e-01 4.41582054e-01 -6.97478503e-02 9.27576870e-02 2.22059742e-01 1.51044559e-02 4.25997749e-02 4.74474430e-01 -9.80856940e-02 -1.16582859e+00 -8.32955003e-01 2.94275820e-01 -9.59146440e-01 2.50709176e-01 4.10828590e-01 7.56695747e-01 6.86029971e-01 4.83452044e-02 6.51219130e-01 -5.08241713e-01 6.66801155e-01 -6.23950839e-01 -8.09302092e-01 2.55845964e-01 -4.31172103e-01 1.86160296e-01 1.00709999e+00 -7.43503153e-01 -8.92218828e-01 -9.75347757e-02 3.78776491e-02 -1.04573882e+00 7.93329775e-02 7.49517024e-01 5.36118895e-02 -1.47967830e-01 5.14454961e-01 4.46048468e-01 -1.50848836e-01 -4.67388421e-01 4.68306661e-01 2.42243297e-02 5.45258999e-01 -7.34337807e-01 7.58949101e-01 5.27625978e-01 4.33972448e-01 -8.95718455e-01 -4.92646426e-01 -2.10574627e-01 -4.77024168e-01 -2.42624000e-01 8.90669048e-01 -7.54451334e-01 -9.70415950e-01 3.54167134e-01 -9.36097026e-01 -7.51383603e-01 -2.78664410e-01 6.33439898e-01 -5.09805322e-01 3.93654495e-01 -6.25032604e-01 -7.53832519e-01 7.01694563e-02 -7.55657554e-01 8.75220060e-01 1.72044799e-01 2.45094419e-01 -1.33412850e+00 2.37177256e-02 -2.81719506e-01 6.10874176e-01 7.38592207e-01 1.02338994e+00 -6.90807849e-02 -7.85719335e-01 -1.43861696e-01 -3.33647937e-01 -2.50286441e-02 2.87600383e-02 -2.78429568e-01 -6.85266614e-01 -2.15136588e-01 1.59806058e-01 9.56439599e-03 9.52771306e-01 5.81102669e-01 1.64080679e+00 -5.06931901e-01 -4.47964966e-01 9.96079147e-01 1.15543139e+00 1.24379791e-01 2.83015937e-01 -3.49283755e-01 1.02303767e+00 4.85134214e-01 5.75740151e-02 4.66684371e-01 5.17096996e-01 4.88763005e-01 4.30514187e-01 -1.29329830e-01 -6.97615817e-02 -3.90033215e-01 2.56100327e-01 1.04996622e+00 -5.00424564e-01 -4.85063553e-01 -9.16633904e-01 5.14037371e-01 -2.20455122e+00 -9.99972284e-01 -1.39045298e-01 2.00134110e+00 2.04452872e-01 -7.12801702e-03 2.30283961e-01 -1.69070348e-01 7.03528821e-01 5.47073245e-01 -1.02281654e+00 -1.76568814e-02 -1.41767919e-01 5.66380471e-02 4.16766822e-01 2.59586632e-01 -8.91365588e-01 6.66526079e-01 5.87861204e+00 7.57361174e-01 -1.39118719e+00 1.67546332e-01 6.26053512e-01 -1.33003056e-01 -5.65566301e-01 -1.74603194e-01 -2.66494751e-01 5.17806649e-01 8.91445696e-01 -3.57373714e-01 8.71032298e-01 5.29560328e-01 3.96668196e-01 4.06449467e-01 -9.42289472e-01 1.26376843e+00 -2.60036707e-01 -1.54709733e+00 2.87041888e-02 2.38093004e-01 7.50651896e-01 6.17061295e-02 1.97179720e-01 4.39441413e-01 3.24603260e-01 -1.07745337e+00 5.63721061e-01 7.60033846e-01 8.58833015e-01 -6.39314950e-01 1.55185208e-01 5.19986808e-01 -1.64988375e+00 -1.46620676e-01 -4.09889013e-01 -2.62159556e-01 3.30590338e-01 5.13942480e-01 -1.52579442e-01 6.56226754e-01 4.43473458e-01 1.19970071e+00 -5.38092136e-01 8.81072938e-01 1.41391912e-02 7.79305935e-01 -6.46885633e-01 -8.95369276e-02 4.58941638e-01 -5.40433228e-01 5.63924134e-01 1.11345434e+00 4.58820790e-01 4.46435720e-01 3.11979771e-01 1.06108332e+00 -5.69829904e-02 -1.21938728e-01 -8.79923880e-01 -2.64994115e-01 2.07212090e-01 1.07330191e+00 -7.51236975e-01 -1.59705088e-01 -6.57433987e-01 6.59327567e-01 5.87558270e-01 1.02946651e+00 -1.19876873e+00 -1.88124120e-01 6.07078075e-01 1.99343666e-01 2.75648624e-01 -7.10271299e-01 -1.82986453e-01 -1.37310052e+00 1.95658714e-01 -2.55646735e-01 6.10337555e-01 -5.18651903e-01 -1.44860935e+00 5.83741665e-01 1.39806077e-01 -1.27287686e+00 -2.22416684e-01 -5.68487942e-01 -8.55451107e-01 7.13077784e-01 -1.47101867e+00 -1.26064336e+00 -4.23980206e-01 1.14919603e+00 4.18258198e-02 1.22050405e-01 3.38122100e-01 3.76095384e-01 -7.87566125e-01 5.16230702e-01 -4.27197888e-02 6.77744299e-02 8.11326131e-02 -1.02817535e+00 5.14007390e-01 7.72648394e-01 1.66221216e-01 5.50957680e-01 4.61882144e-01 -4.79397982e-01 -1.73144925e+00 -1.31622243e+00 4.29378986e-01 -2.45144069e-01 9.84540880e-01 -6.14466727e-01 -1.05177557e+00 6.70492232e-01 -5.20478636e-02 5.65371633e-01 2.93900937e-01 -5.61106801e-02 -3.70015085e-01 -2.70366699e-01 -7.82617927e-01 8.25191855e-01 1.65085101e+00 -8.32286596e-01 -1.63504452e-01 3.40501726e-01 7.06395149e-01 -2.88194567e-01 -7.78887630e-01 4.73137528e-01 3.33631158e-01 -6.74812376e-01 9.23364699e-01 -6.97517991e-01 -7.90248439e-02 -3.53209347e-01 -2.18042210e-02 -1.14568698e+00 -6.14060640e-01 -1.00002909e+00 -7.05510676e-01 1.03747809e+00 -5.45972085e-04 -9.88443434e-01 5.02740622e-01 6.56802356e-01 -3.43707442e-01 -9.16039050e-01 -1.19146168e+00 -8.57044220e-01 3.50835621e-02 -6.91816986e-01 8.22880745e-01 1.05299115e+00 -2.45679244e-01 2.08825499e-01 -4.17315513e-01 2.02030778e-01 4.71521407e-01 2.60899931e-01 5.19706368e-01 -1.27887809e+00 -2.85291195e-01 -7.11298823e-01 -5.79452991e-01 -1.46056795e+00 4.00313020e-01 -9.74470615e-01 -1.99202165e-01 -1.41232157e+00 -1.89670384e-01 -4.79894072e-01 -6.87076330e-01 3.16220373e-01 -7.55594373e-02 -7.78153464e-02 1.48555590e-03 1.47809699e-01 -6.24460161e-01 1.01666784e+00 1.33742678e+00 -1.23205297e-01 -3.22098494e-01 -1.75469637e-01 -3.59981596e-01 5.11074185e-01 6.27017677e-01 -2.68978149e-01 -9.19247508e-01 -5.54909110e-01 2.83615410e-01 3.08087766e-01 6.21552706e-01 -1.06648433e+00 5.14700532e-01 -3.68471473e-01 1.80029899e-01 -3.73459578e-01 3.54293317e-01 -7.19385087e-01 3.04543644e-01 1.64933518e-01 -1.72308102e-01 3.76349628e-01 2.03458637e-01 1.11594069e+00 -1.41635105e-01 6.11467421e-01 5.24311543e-01 1.02801092e-01 -8.72118413e-01 9.27427948e-01 -1.56844720e-01 9.01569128e-02 1.12371457e+00 -1.83558494e-01 -3.10162634e-01 -5.23252189e-01 -9.50167954e-01 3.90757918e-01 3.30447525e-01 4.98782337e-01 4.94794935e-01 -1.63352346e+00 -3.19049805e-01 3.53709459e-01 1.34916697e-03 -7.14218989e-02 5.62821507e-01 1.15236831e+00 -2.90032387e-01 4.57358688e-01 -6.36513308e-02 -6.65703714e-01 -4.34679240e-01 9.21912611e-01 4.04320717e-01 -4.16463971e-01 -1.03049219e+00 5.12559652e-01 6.51005685e-01 -1.18315123e-01 2.72510827e-01 -7.73711562e-01 -1.59799665e-01 -2.14710414e-01 2.08228633e-01 4.48759675e-01 -2.98860729e-01 -6.28627717e-01 -2.81869709e-01 6.24266326e-01 5.04638731e-01 7.49797598e-02 1.43419647e+00 -1.05626658e-01 1.90951705e-01 5.37902474e-01 1.15596032e+00 -2.55590916e-01 -1.74078035e+00 -2.97226518e-01 -1.48477986e-01 -2.20009595e-01 1.95514515e-01 -2.24545941e-01 -1.32413650e+00 1.12869036e+00 4.61765736e-01 5.13061702e-01 1.27630162e+00 -1.30398825e-01 1.04727948e+00 5.07829964e-01 3.90310377e-01 -8.45295489e-01 1.82630584e-01 5.55315435e-01 9.88214910e-01 -8.75579357e-01 -3.07168186e-01 -2.83818811e-01 -5.12011766e-01 9.19291735e-01 5.26269317e-01 -5.21196604e-01 1.10954678e+00 1.23876827e-02 -4.72227156e-01 -3.07656884e-01 -8.18114758e-01 -3.26169908e-01 5.94179153e-01 5.78441203e-01 1.58902064e-01 5.41441627e-02 -1.27673477e-01 7.07858026e-01 1.78657487e-01 1.16163202e-01 -4.71937992e-02 5.87453425e-01 5.82364984e-02 -5.34164488e-01 2.01313034e-01 4.20816988e-01 -2.30011269e-01 1.64563581e-01 -6.92931786e-02 6.84552550e-01 -1.02184154e-01 7.96980560e-01 2.07790956e-01 -4.30482030e-01 3.56057525e-01 -1.26865745e-01 2.23085538e-01 -2.64693171e-01 -2.59784997e-01 8.93048644e-02 -2.38996208e-01 -7.70081699e-01 -2.60817051e-01 -4.09986109e-01 -1.25405157e+00 -4.67085481e-01 -5.10668121e-02 5.18766567e-02 2.67561227e-01 8.17424893e-01 8.56897116e-01 7.63790488e-01 6.00598574e-01 -9.59427118e-01 -2.53004342e-01 -7.68024206e-01 -4.84275639e-01 4.54916507e-01 6.25546575e-01 -9.60556924e-01 -2.61158228e-01 -8.18534940e-02]
[6.755388259887695, 2.7834079265594482]
0511fedf-050e-4fce-ada4-35cf2b787322
deep-bayesian-video-frame-interpolation
null
null
https://www.ecva.net/papers.php
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136750141.pdf
Deep Bayesian Video Frame Interpolation
Abstract. We present deep Bayesian video frame interpolation, a novel approach for upsampling a low frame-rate video temporally to its higher frame-rate counterpart. Our approach learns posterior distributions of optical flows and frames to be interpolated, which is optimized via learned gradient descent for fast convergence. Each learned step is a lightweight network manipulating gradients of the log-likelihood of estimated frames and flows. Such gradients, parameterized either explicitly or implicitly, model the fidelity of current estimations when matching real image and flow distributions to explain the input observations. With this approach we show new records on 8 of 10 benchmarks, using an architecture with half the parameters of the state-of-the-art model.
['Jimmy S. Ren', 'Xijun Chen', 'Dongqing Zou', 'Xujie Xiang', 'Yu Zhang', 'ZHIYANG YU']
2022-10-23
null
null
null
conference-2022-10
['video-frame-interpolation']
['computer-vision']
[-3.70182358e-02 -3.66990594e-03 -5.58121085e-01 -6.01034462e-01 -5.34631431e-01 -1.89276814e-01 6.57989740e-01 -5.44996202e-01 -5.06900668e-01 1.17153430e+00 5.28968990e-01 -2.06018344e-01 3.99848551e-01 -5.14440179e-01 -1.23071086e+00 -3.41043621e-01 -6.28767610e-01 2.85504818e-01 4.51192409e-01 2.06492007e-01 3.00277650e-01 4.76167232e-01 -1.50501978e+00 6.82931960e-01 2.24643365e-01 9.55324948e-01 1.44501096e-02 1.45832598e+00 -1.36844888e-01 1.62845027e+00 -4.62628543e-01 -4.37158406e-01 5.41689336e-01 -4.87511963e-01 -8.47661734e-01 7.76113346e-02 1.02714884e+00 -1.20148015e+00 -1.11035502e+00 7.53198802e-01 -1.42858088e-01 3.69933695e-01 3.89557660e-01 -1.21094263e+00 -5.31023920e-01 5.35070181e-01 -3.68813485e-01 7.56370723e-01 4.94129807e-01 5.49771190e-01 5.85634768e-01 -8.48498702e-01 9.50109899e-01 1.67778456e+00 5.75693369e-01 8.41328621e-01 -1.45264614e+00 -5.75016439e-01 2.97521651e-01 3.21233660e-01 -1.10490668e+00 -8.07887077e-01 3.29782516e-01 -5.86107254e-01 1.05177224e+00 -1.97336942e-01 9.07728076e-01 1.09674203e+00 2.31908619e-01 6.41138911e-01 4.02215630e-01 -1.43395722e-04 1.01801597e-01 -6.87384419e-03 -4.34923202e-01 8.16327214e-01 -2.07919441e-02 3.83858979e-01 -9.48673666e-01 -7.84898549e-02 1.40502286e+00 -1.54778838e-01 -5.00302196e-01 -1.27439842e-01 -1.28324854e+00 4.42109227e-01 4.64669019e-01 -3.64161760e-01 -3.65381241e-01 1.00606370e+00 3.74505818e-01 3.55119072e-02 6.66057587e-01 -7.91677460e-02 -5.34467697e-01 -4.09214288e-01 -1.20531225e+00 4.09088314e-01 8.57581556e-01 1.08578920e+00 1.10623217e+00 4.68294144e-01 -4.20777589e-01 6.77916259e-02 5.77301681e-01 3.35904390e-01 1.10201418e-01 -1.91765952e+00 3.62825185e-01 -1.84323221e-01 4.91575539e-01 -7.71004140e-01 2.50778049e-01 -8.67197961e-02 -5.01006067e-01 5.02192318e-01 7.75525749e-01 -2.78265566e-01 -8.42725217e-01 1.53882754e+00 1.20805323e-01 1.28353798e+00 -1.29124388e-01 9.57782924e-01 2.42715985e-01 9.68339145e-01 2.12654054e-01 -2.20291033e-01 7.97325015e-01 -1.07291472e+00 -5.87385297e-01 -7.54929855e-02 4.45806980e-02 -7.62156904e-01 6.34877324e-01 3.17156166e-01 -1.57195520e+00 -8.43188524e-01 -9.09512579e-01 -2.53201485e-01 2.62944400e-01 -1.32305413e-01 6.36574090e-01 4.61477131e-01 -1.52578866e+00 1.10171402e+00 -1.15040255e+00 2.61800289e-01 7.60428429e-01 2.37276226e-01 -2.02342600e-01 7.58281583e-03 -9.41090584e-01 6.04557335e-01 4.73400533e-01 8.92892852e-03 -1.43910742e+00 -1.33531618e+00 -8.55227172e-01 1.32930130e-01 -1.99813187e-01 -9.65848386e-01 1.31939650e+00 -1.22058880e+00 -1.84856057e+00 6.29549742e-01 -7.40221977e-01 -1.05422509e+00 9.16399539e-01 -5.35754323e-01 -7.19002634e-02 4.96251285e-01 -1.77329987e-01 1.32156336e+00 1.21513617e+00 -1.08385825e+00 -1.02147841e+00 3.54720443e-01 2.89015949e-01 -6.24176227e-02 1.43124819e-01 -1.57300428e-01 -4.71760035e-01 -5.01679301e-01 -4.61116582e-01 -6.47653043e-01 -1.89945251e-01 7.90909708e-01 1.31672025e-01 6.56459704e-02 9.18929815e-01 -7.39890158e-01 9.45838451e-01 -1.93068790e+00 -2.17896700e-02 -2.07250863e-01 1.47637755e-01 1.40793040e-01 -5.84246516e-02 -1.63142949e-01 -3.30436323e-03 7.10332841e-02 -3.53475772e-02 -6.96131825e-01 -2.82243669e-01 3.62143010e-01 -6.75220609e-01 6.10964715e-01 4.41334903e-01 7.13377655e-01 -1.27070701e+00 -4.65360940e-01 5.99178731e-01 1.02941716e+00 -9.31496561e-01 5.48628330e-01 -5.00435352e-01 7.88780451e-01 2.02121790e-02 -1.64670423e-02 7.37157047e-01 -2.46497408e-01 -1.14009092e-02 -4.18683082e-01 -9.18759108e-02 4.25909489e-01 -1.15432203e+00 1.94215560e+00 -4.12066579e-01 1.16543221e+00 -1.21351086e-01 -4.68851238e-01 5.21440744e-01 3.99028420e-01 4.64521527e-01 -1.56622142e-01 -1.81253389e-01 2.35735923e-02 -5.02937019e-01 -4.80159342e-01 6.33213878e-01 1.11505300e-01 8.59289110e-01 2.76383311e-01 3.00171077e-01 -5.87320812e-02 5.31770289e-01 3.26064438e-01 6.74739957e-01 9.74892259e-01 -1.62049755e-01 -1.96730271e-01 6.14208937e-01 -2.71344811e-01 5.97968459e-01 8.66332114e-01 -3.40249389e-01 7.76578069e-01 5.75751543e-01 -1.16753352e+00 -1.38957965e+00 -1.22964561e+00 2.29694173e-02 9.57111537e-01 -2.19849087e-02 -3.65477502e-01 -6.11930251e-01 -6.60809696e-01 -2.62754653e-02 5.76807499e-01 -5.47173917e-01 1.43547669e-01 -1.00924361e+00 -2.28803232e-01 5.45154572e-01 5.52594483e-01 4.91899371e-01 -8.67310822e-01 -7.50652909e-01 3.01409811e-01 -4.73136343e-02 -1.48524129e+00 -7.00802326e-01 -4.67125833e-01 -1.02095091e+00 -1.10914600e+00 -5.98703623e-01 -4.31298494e-01 5.04548371e-01 1.89452656e-02 1.65154922e+00 4.14090037e-01 -1.01079300e-01 1.59352511e-01 2.02301174e-01 1.38053373e-01 -6.32219315e-01 -3.21218848e-01 -1.31423086e-01 1.02980465e-01 1.16429873e-01 -5.64451993e-01 -9.95619714e-01 -1.51669374e-02 -9.08708215e-01 2.69569010e-01 -1.24342188e-01 6.49838805e-01 5.58839917e-01 -6.40162110e-01 -4.96343710e-02 -6.56264782e-01 9.16280970e-02 -4.57126230e-01 -9.33435082e-01 -3.68753262e-02 -1.03976078e-01 3.15968037e-01 6.58054769e-01 -3.47341329e-01 -1.32252228e+00 1.74685374e-01 -9.56875980e-02 -9.57120597e-01 -1.38312638e-01 -1.78312674e-01 6.29520714e-01 -8.42841193e-02 6.18698239e-01 7.75519619e-03 -1.33377507e-01 -6.64516538e-02 4.88529742e-01 1.43958375e-01 9.50342238e-01 -8.00462067e-01 4.77092505e-01 1.04514670e+00 1.95362642e-01 -3.83278519e-01 -9.50250804e-01 -4.17507887e-02 -5.30158281e-01 -4.60639209e-01 8.44857991e-01 -1.24523902e+00 -9.18563664e-01 3.58552873e-01 -1.65817833e+00 -6.65852785e-01 -6.35002553e-01 9.61485267e-01 -8.52944374e-01 1.27002060e-01 -9.61386144e-01 -7.19059289e-01 1.25631660e-01 -1.37022102e+00 1.01656306e+00 3.85381013e-01 -6.04599155e-02 -1.25752914e+00 1.25412345e-01 -1.45518690e-01 5.73236406e-01 1.68036669e-01 2.28608131e-01 1.00475460e-01 -1.24294972e+00 2.82349050e-01 -4.55488980e-01 4.61126059e-01 8.32350925e-02 6.80763006e-01 -1.12996066e+00 -3.12035382e-01 -1.99284762e-01 -1.69071332e-01 9.54340577e-01 7.99411058e-01 1.35055411e+00 -4.43196416e-01 -3.64121199e-02 1.25608742e+00 1.52297270e+00 -1.37307227e-01 8.70069802e-01 1.69853047e-01 7.28550673e-01 1.65255740e-01 2.60071397e-01 7.80255198e-01 4.15931076e-01 3.63448530e-01 5.45271575e-01 3.01671773e-01 -5.85770488e-01 -4.38444644e-01 5.74510992e-01 2.24265799e-01 -3.91934365e-01 -2.23261446e-01 -5.51041007e-01 5.26196659e-01 -1.80927110e+00 -1.29367268e+00 3.24083935e-03 2.09355259e+00 8.92455339e-01 3.56634498e-01 1.27642438e-01 -4.61742461e-01 7.68684268e-01 4.57715511e-01 -6.25397801e-01 -2.94493645e-01 3.67659666e-02 2.21965313e-01 7.20609307e-01 1.08549428e+00 -9.77022588e-01 1.01338494e+00 7.67915821e+00 4.29027915e-01 -1.01515162e+00 -6.10765740e-02 9.05391455e-01 -3.21479917e-01 -3.40994686e-01 3.36753845e-01 -9.44992423e-01 5.98723948e-01 1.36193252e+00 -1.37935862e-01 9.49248374e-01 4.19677466e-01 5.01212060e-01 -2.02672780e-01 -1.49461663e+00 8.82379353e-01 -1.76408008e-01 -2.21206379e+00 4.08656329e-01 -1.44512683e-01 9.84597981e-01 1.14933558e-01 1.05756917e-05 7.35417679e-02 5.29012859e-01 -8.57045412e-01 1.03676212e+00 8.78515899e-01 8.63415360e-01 -5.07068694e-01 3.12791914e-01 -1.54063582e-01 -1.11695111e+00 1.07430525e-01 -4.29768682e-01 -3.36713403e-01 6.92496300e-01 3.87569636e-01 -6.19017303e-01 -2.15721643e-03 9.05320346e-01 1.13473070e+00 -1.04024984e-01 1.01472974e+00 -3.11072856e-01 6.12375975e-01 -2.81824201e-01 5.43441534e-01 2.48392001e-01 -7.85073712e-02 5.51320672e-01 1.53066790e+00 2.12689474e-01 -1.99843496e-01 1.48023203e-01 1.01819491e+00 -3.41366231e-01 -5.97115815e-01 -3.18426073e-01 4.39771324e-01 4.34464335e-01 7.72880077e-01 -4.05988663e-01 -7.97213316e-01 -4.40271974e-01 7.20229745e-01 2.58147866e-01 6.60537422e-01 -9.45265591e-01 3.24980058e-02 1.22048080e+00 2.09652588e-01 3.73964190e-01 -3.88506144e-01 6.21319078e-02 -1.39870656e+00 -1.80938169e-01 -3.88719410e-01 2.03848094e-01 -1.01637471e+00 -9.90274489e-01 4.79182214e-01 1.62876025e-01 -1.07342649e+00 -7.80525804e-01 -5.17215014e-01 -4.86367106e-01 9.64634597e-01 -1.93128419e+00 -5.60819447e-01 -4.10198122e-01 6.00030541e-01 9.01828289e-01 -7.02562183e-02 4.30390537e-01 2.22058594e-01 -2.62504518e-01 2.03271657e-01 -1.40242368e-01 1.79295003e-01 8.06589007e-01 -1.14079034e+00 8.33257973e-01 1.04826534e+00 -1.34338380e-03 3.04811090e-01 9.24490571e-01 -4.86613244e-01 -1.09773111e+00 -1.09500885e+00 5.91984570e-01 -3.06891382e-01 7.12104321e-01 -5.79490466e-03 -8.52444887e-01 1.10366738e+00 4.34974343e-01 7.92683661e-01 -3.45497541e-02 -6.66768849e-01 -3.89729798e-01 -2.32831106e-01 -1.18732047e+00 5.20656168e-01 1.03285325e+00 -6.67207181e-01 -1.35749772e-01 2.86066145e-01 8.46659362e-01 -9.06883657e-01 -8.93266737e-01 -3.89420614e-02 7.94180572e-01 -1.48809385e+00 1.21091962e+00 -7.95680463e-01 6.90654695e-01 -4.36541885e-01 -8.62868577e-02 -1.10549986e+00 -1.29466623e-01 -1.11082399e+00 -8.45943987e-01 6.11778677e-01 5.02239726e-02 -3.00557375e-01 1.17648065e+00 7.80015349e-01 -3.87595706e-02 -4.43566263e-01 -8.35271657e-01 -4.53148872e-01 -8.83634165e-02 -3.54363024e-01 6.80308878e-01 5.33376515e-01 -4.55160767e-01 -3.87622863e-01 -6.80137217e-01 3.21632959e-02 8.85978103e-01 -4.75187093e-01 7.83072948e-01 -5.83191752e-01 -3.51486415e-01 -3.01591307e-01 -5.44131875e-01 -1.53476477e+00 5.78967869e-01 -4.03321534e-01 9.87595618e-02 -1.14965940e+00 -7.75510445e-02 2.07182392e-02 -9.24056470e-02 -8.25564563e-02 -1.49518862e-01 3.44585985e-01 4.03448731e-01 2.16455027e-01 -5.92812598e-01 3.25695992e-01 1.19432521e+00 -3.48379686e-02 -1.35128498e-01 -1.88565716e-01 -3.00254440e-03 8.71002853e-01 6.07003450e-01 -4.73103434e-01 -4.71711308e-01 -9.94304121e-01 6.52042329e-02 3.46541315e-01 6.51508152e-01 -1.15351665e+00 4.00976926e-01 -2.57856995e-01 6.76838994e-01 -4.07496929e-01 4.40587282e-01 -5.76243043e-01 2.61343569e-01 4.63514686e-01 -7.34745026e-01 3.00191611e-01 1.90825149e-01 6.87138855e-01 -2.13721693e-01 -8.19030553e-02 8.65381360e-01 -3.36637914e-01 -9.68505442e-01 6.89221144e-01 -3.56950194e-01 2.93759733e-01 6.66724741e-01 -2.13707730e-01 -2.55958796e-01 -7.10756838e-01 -7.17974901e-01 -2.52837446e-02 4.02164161e-01 4.14899617e-01 8.51712704e-01 -1.19549656e+00 -1.05803597e+00 3.27081501e-01 -5.59489906e-01 1.33735105e-01 -4.26902575e-03 4.06769812e-01 -1.19674838e+00 1.34251609e-01 -3.32944930e-01 -8.20942461e-01 -6.50095344e-01 3.64676476e-01 6.57746375e-01 -1.36122465e-01 -6.12834871e-01 9.65503871e-01 4.19702008e-02 3.41601253e-01 3.60531539e-01 -3.20009172e-01 1.69081494e-01 -5.38793981e-01 9.95383143e-01 6.10388577e-01 -3.58307600e-01 -6.50456667e-01 -1.44115090e-01 3.93532366e-01 7.76668042e-02 -2.80596524e-01 1.09297347e+00 -4.33917403e-01 -4.39258926e-02 3.28478605e-01 1.36731529e+00 -3.52350235e-01 -2.64797997e+00 -5.64001128e-02 -2.86574751e-01 -1.06869161e+00 1.47094071e-01 -1.72843054e-01 -1.35518301e+00 7.96758413e-01 4.56367791e-01 -2.68777966e-01 6.91181660e-01 -3.94090623e-01 8.26124191e-01 2.55025148e-01 3.29405755e-01 -6.88014328e-01 -9.93477330e-02 5.95803738e-01 4.91363645e-01 -1.13487673e+00 1.28537267e-01 -1.50344744e-01 -2.72040218e-01 1.57067311e+00 5.84483147e-01 -7.52855420e-01 7.63862133e-01 5.02337635e-01 -3.68531719e-02 4.20230389e-01 -1.16312504e+00 3.06650370e-01 7.38632008e-02 6.55533373e-01 6.10198975e-01 -3.76889914e-01 3.32441241e-01 -6.07930005e-01 1.76913023e-01 6.01389647e-01 8.07013392e-01 5.93468189e-01 -2.83065170e-01 -7.07494497e-01 -2.54083276e-01 2.21213087e-01 -6.52454436e-01 -1.02143966e-01 6.47152960e-01 6.04632735e-01 2.32462725e-03 6.50900960e-01 6.66676402e-01 1.39796332e-01 4.58886847e-03 -2.54866093e-01 8.29737067e-01 -1.41736001e-01 -4.53510880e-01 -1.68651015e-01 1.98614951e-02 -1.03846812e+00 -8.88250113e-01 -5.69253206e-01 -1.22932613e+00 -7.36406088e-01 3.10439050e-01 -7.32614100e-02 5.26636720e-01 8.36528957e-01 3.09477299e-01 4.68761683e-01 4.84074265e-01 -1.64232266e+00 -2.62822151e-01 -5.17008483e-01 -7.26939738e-02 5.86582839e-01 8.23610604e-01 -1.92815125e-01 -5.28853834e-01 8.56331170e-01]
[10.633267402648926, -1.300772786140442]
a93a6920-f90f-499e-879b-6ba6addb8fb3
you-can-mask-more-for-extremely-low-bitrate
2306.15561
null
https://arxiv.org/abs/2306.15561v1
https://arxiv.org/pdf/2306.15561v1.pdf
You Can Mask More For Extremely Low-Bitrate Image Compression
Learned image compression (LIC) methods have experienced significant progress during recent years. However, these methods are primarily dedicated to optimizing the rate-distortion (R-D) performance at medium and high bitrates (> 0.1 bits per pixel (bpp)), while research on extremely low bitrates is limited. Besides, existing methods fail to explicitly explore the image structure and texture components crucial for image compression, treating them equally alongside uninformative components in networks. This can cause severe perceptual quality degradation, especially under low-bitrate scenarios. In this work, inspired by the success of pre-trained masked autoencoders (MAE) in many downstream tasks, we propose to rethink its mask sampling strategy from structure and texture perspectives for high redundancy reduction and discriminative feature representation, further unleashing the potential of LIC methods. Therefore, we present a dual-adaptive masking approach (DA-Mask) that samples visible patches based on the structure and texture distributions of original images. We combine DA-Mask and pre-trained MAE in masked image modeling (MIM) as an initial compressor that abstracts informative semantic context and texture representations. Such a pipeline can well cooperate with LIC networks to achieve further secondary compression while preserving promising reconstruction quality. Consequently, we propose a simple yet effective masked compression model (MCM), the first framework that unifies MIM and LIC end-to-end for extremely low-bitrate image compression. Extensive experiments have demonstrated that our approach outperforms recent state-of-the-art methods in R-D performance, visual quality, and downstream applications, at very low bitrates. Our code is available at https://github.com/lianqi1008/MCM.git.
['Yao Zhao', 'Weisi Lin', 'Meng Wang', 'Chunjie Zhang', 'Runmin Cong', 'Huihui Bai', 'Jiaxin Han', 'Feng Li', 'Anqi Li']
2023-06-27
null
null
null
null
['image-compression']
['computer-vision']
[ 6.13313973e-01 3.11014932e-02 -3.87761503e-01 -7.89542273e-02 -6.89755380e-01 -1.60607472e-01 5.86587667e-01 -1.73512354e-01 -1.87236890e-01 4.77815509e-01 4.06149417e-01 -1.78568721e-01 -2.99391858e-02 -8.45596254e-01 -7.72782207e-01 -8.78385842e-01 -3.79322991e-02 -8.44351724e-02 1.59895316e-01 -8.16273093e-02 1.88076600e-01 4.51960385e-01 -1.87080908e+00 7.91827977e-01 7.21042395e-01 1.11297345e+00 7.20764160e-01 7.42662072e-01 1.14439093e-01 6.79105639e-01 -3.69438648e-01 -5.39252341e-01 4.05306399e-01 -6.45684123e-01 -4.02490973e-01 2.32227236e-01 2.50309974e-01 -5.77922523e-01 -5.76759875e-01 1.02852476e+00 5.38579702e-01 -2.54922509e-01 4.40482289e-01 -6.37658119e-01 -6.06624961e-01 5.37699521e-01 -5.49065769e-01 -6.58706799e-02 -5.24226017e-02 4.58643496e-01 8.28838944e-01 -9.18024659e-01 4.88784879e-01 1.04278553e+00 4.32837874e-01 5.28982818e-01 -1.33966219e+00 -4.00801152e-01 -4.26913574e-02 4.64583069e-01 -1.37141323e+00 -6.92372739e-01 7.65285194e-01 -4.97280955e-02 7.58340359e-01 4.86136407e-01 6.14375651e-01 1.09550798e+00 2.35883728e-01 6.75962508e-01 1.06366897e+00 -4.56220925e-01 2.64660120e-01 -4.79259603e-02 -7.22437501e-01 4.02170628e-01 1.38862669e-01 3.02146524e-01 -7.52359211e-01 3.59499365e-01 8.13253582e-01 -7.73376897e-02 -4.78226811e-01 -1.60375834e-01 -1.08608210e+00 6.10740602e-01 4.81505424e-01 4.72499728e-01 -4.15225565e-01 2.45743051e-01 1.12300418e-01 3.11749220e-01 5.82615793e-01 1.41994938e-01 -2.81445563e-01 5.08841919e-03 -1.24985361e+00 1.98697835e-01 4.01025176e-01 7.20109820e-01 7.41591275e-01 1.10118613e-01 -5.00144303e-01 1.08329594e+00 2.16926530e-01 2.59705096e-01 4.76169318e-01 -1.08969676e+00 3.67855489e-01 2.53759146e-01 -1.02148257e-01 -1.02032793e+00 -7.86644814e-04 -8.10258389e-01 -1.20799839e+00 3.51848066e-01 -5.11711426e-02 4.09981400e-01 -9.72887933e-01 1.46330726e+00 7.61896297e-02 1.06218010e-01 -4.99910153e-02 1.13112843e+00 6.58115089e-01 8.00518453e-01 -8.29511806e-02 -2.86013305e-01 1.35083604e+00 -9.76053953e-01 -7.39046931e-01 -2.32871398e-01 2.03938186e-01 -8.98398399e-01 1.14670348e+00 7.03661799e-01 -1.58960330e+00 -8.47411096e-01 -1.23163784e+00 -2.84228116e-01 -1.28401751e-02 3.04138005e-01 3.78460407e-01 7.68916309e-01 -1.17779076e+00 9.28871453e-01 -7.61198342e-01 1.90611094e-01 7.76205540e-01 3.19583476e-01 3.65371481e-02 -4.90818292e-01 -9.31989193e-01 6.50263429e-01 1.96594521e-01 1.32006153e-01 -1.20014095e+00 -5.74772239e-01 -5.87341607e-01 2.11869836e-01 3.56545001e-01 -7.71192610e-01 9.18378413e-01 -9.55491364e-01 -1.66692603e+00 7.94237435e-01 -1.91522077e-01 -7.04339087e-01 5.08084238e-01 -1.79514304e-01 -2.71507472e-01 4.22587126e-01 -3.24521780e-01 9.66087997e-01 1.30895209e+00 -1.45087647e+00 -3.97553474e-01 -1.89417109e-01 -2.92486191e-01 1.01544462e-01 -4.96741027e-01 -1.62935138e-01 -6.93590641e-01 -1.07229698e+00 1.04019910e-01 -4.97950166e-01 -1.46949157e-01 1.93168208e-01 -1.45554885e-01 3.24112445e-01 7.37016976e-01 -8.29883873e-01 1.32916260e+00 -2.35457039e+00 3.62854719e-01 -1.62866652e-01 1.97959945e-01 6.13439560e-01 -2.75109529e-01 3.04420650e-01 1.00694904e-02 9.09774005e-02 -6.06370151e-01 -7.70614386e-01 -1.50220409e-01 1.68617710e-01 -4.58520740e-01 4.02655631e-01 3.45568299e-01 1.07948852e+00 -4.98232424e-01 -2.48996794e-01 4.88922328e-01 8.44464719e-01 -7.62447834e-01 3.99971426e-01 -3.83707315e-01 5.24184048e-01 4.60392050e-03 7.62376130e-01 9.85376298e-01 -1.55235186e-01 1.74924761e-01 -5.08485138e-01 -9.92790833e-02 2.24179015e-01 -8.01092029e-01 1.83809447e+00 -6.67589426e-01 5.99071562e-01 2.34315604e-01 -1.07795131e+00 8.91388297e-01 2.01977462e-01 4.66331452e-01 -1.04943419e+00 6.05539456e-02 4.29725856e-01 -1.67347938e-01 -4.38758165e-01 4.33326304e-01 -2.61738986e-01 4.54745412e-01 1.37304207e-02 3.29268649e-02 -1.43770903e-01 -5.34898601e-02 -3.89645584e-02 8.83722067e-01 2.89633989e-01 1.22584336e-01 1.10578880e-01 5.76313436e-01 -4.53510910e-01 2.28054002e-01 4.75190669e-01 1.15222000e-02 1.17336607e+00 3.19067836e-01 -2.24003151e-01 -1.42925227e+00 -9.99426246e-01 -3.72710317e-01 8.46096814e-01 2.09486976e-01 -6.63027108e-01 -8.12575877e-01 -1.59162492e-01 -3.97003651e-01 5.55363894e-01 -3.12873572e-01 -3.01341385e-01 -6.31159961e-01 -7.61780620e-01 4.42196250e-01 4.77657318e-02 8.34565341e-01 -9.87736225e-01 -7.37138629e-01 2.40701810e-01 -3.34339112e-01 -1.18563211e+00 -1.82471693e-01 1.17652319e-01 -9.02202308e-01 -5.23851812e-01 -9.46024895e-01 -4.52403903e-01 3.83720487e-01 3.11423242e-01 1.03579938e+00 2.50975817e-01 -4.03812289e-01 -3.04604918e-02 -5.59119284e-01 -7.80854793e-03 -5.51180601e-01 -1.77366078e-01 -4.45724308e-01 3.34101021e-01 -1.36840284e-01 -1.00522137e+00 -1.18579447e+00 4.71044570e-01 -1.32419002e+00 5.47248125e-01 9.86159861e-01 7.27431476e-01 7.64482737e-01 1.53686106e-01 2.78289080e-01 -4.64903325e-01 2.46096164e-01 -3.77084732e-01 -3.71945649e-01 -1.84071995e-03 -7.13399112e-01 -6.27935529e-02 7.80391753e-01 -3.48459035e-01 -9.15261984e-01 -7.89455250e-02 -4.92787421e-01 -5.82204282e-01 -1.84628785e-01 2.97988266e-01 -3.52735043e-01 -4.13378179e-02 6.18759751e-01 6.82288468e-01 6.72777593e-02 -7.20919967e-01 3.34683329e-01 7.25467980e-01 6.80752695e-01 -2.61941075e-01 6.56229019e-01 7.23468006e-01 1.29468545e-01 -6.73363686e-01 -5.07005513e-01 -1.27341092e-01 -2.82451212e-01 -1.06487654e-01 7.21080244e-01 -1.19324589e+00 -4.80372608e-01 4.03425157e-01 -8.82348239e-01 -4.66762960e-01 -4.08144891e-01 2.94232100e-01 -7.66901255e-01 5.77511311e-01 -5.18094301e-01 -6.61836267e-01 -3.04350227e-01 -1.32394171e+00 1.11986601e+00 -1.87648237e-01 1.95471093e-01 -4.18249726e-01 -3.52363288e-01 5.28638601e-01 9.26989079e-01 3.73982303e-02 8.48026872e-01 1.19377464e-01 -1.00806248e+00 1.08893357e-01 -4.39020157e-01 6.60629511e-01 -1.23461396e-01 -4.27607119e-01 -1.29255986e+00 -3.64790112e-01 3.93669248e-01 -2.47011155e-01 1.35705686e+00 5.90980828e-01 1.75618386e+00 -5.85439086e-01 7.66762719e-02 1.09628522e+00 1.52972305e+00 -1.02545932e-01 1.22509098e+00 2.03233138e-01 5.51055193e-01 6.10866189e-01 3.15536320e-01 5.44193447e-01 3.95887233e-02 9.91524816e-01 7.11013138e-01 -1.86278149e-01 -9.13852453e-01 -3.38428885e-01 5.13178706e-01 6.37984693e-01 -1.89020932e-01 -5.07781029e-01 -4.09453034e-01 4.19779867e-01 -1.56708920e+00 -8.14107120e-01 1.26569927e-01 2.20342994e+00 1.01404476e+00 1.04951166e-01 -5.39237186e-02 3.27552468e-01 4.97453362e-01 5.11842608e-01 -4.40098137e-01 -2.34215081e-01 -4.83120143e-01 4.43706185e-01 5.12599468e-01 4.22863841e-01 -8.58886123e-01 6.15739644e-01 5.05454922e+00 1.42527294e+00 -1.18424356e+00 3.72832984e-01 1.16843843e+00 -2.93206632e-01 -5.34954548e-01 4.98357415e-02 -5.61085641e-01 6.97154045e-01 1.21876740e+00 2.97078967e-01 8.90963435e-01 6.20557010e-01 2.32373074e-01 -6.64804727e-02 -8.85190666e-01 1.16588175e+00 7.48257339e-02 -1.66329122e+00 2.50608981e-01 2.27321818e-01 6.67024314e-01 -7.65729928e-03 4.92965788e-01 -1.78595465e-02 -3.52170706e-01 -1.36510360e+00 8.87511015e-01 3.22693884e-01 1.26406133e+00 -5.91762602e-01 4.91090238e-01 3.19020480e-01 -9.64616597e-01 -2.26414174e-01 -6.84057713e-01 2.13125259e-01 1.90202206e-01 9.27324593e-01 -3.99224907e-01 6.51243329e-01 7.19167531e-01 8.21346879e-01 -4.59107339e-01 9.09805536e-01 -1.31924912e-01 5.55555999e-01 -1.46219164e-01 4.81256634e-01 -2.72975815e-03 3.65442447e-02 5.34634113e-01 1.22644508e+00 4.57660615e-01 1.09356463e-01 -3.22910190e-01 1.11331975e+00 -1.46585092e-01 -5.50378673e-02 -2.89669275e-01 1.63195074e-01 1.00615688e-01 9.95003819e-01 -5.95481336e-01 -2.61647493e-01 -2.81053394e-01 1.19094121e+00 -8.08336884e-02 2.29668170e-01 -7.27788806e-01 7.16904998e-02 5.25731206e-01 4.59545672e-01 7.80748904e-01 -1.95012391e-01 -5.12965918e-01 -1.16489661e+00 2.30638474e-01 -1.11791527e+00 -4.58553433e-03 -6.91324770e-01 -9.18635428e-01 5.24512768e-01 -8.85484889e-02 -1.63175714e+00 6.45157024e-02 -4.71913427e-01 -2.49195397e-01 7.95057237e-01 -1.98814678e+00 -1.07693458e+00 -3.29809606e-01 5.14241934e-01 8.96195710e-01 -3.02920286e-02 6.08440101e-01 5.60410082e-01 -3.81365389e-01 5.68413734e-01 9.08248201e-02 -4.38666135e-01 4.54731047e-01 -6.58450902e-01 3.46580356e-01 9.68042195e-01 1.32796645e-01 3.18710506e-01 5.93861938e-01 -4.80943441e-01 -1.58081937e+00 -1.18854308e+00 5.55743754e-01 1.14739597e-01 1.44498259e-01 -4.26168263e-01 -9.31706429e-01 2.56618578e-02 2.51274586e-01 1.41278759e-01 3.48241419e-01 -5.62310755e-01 -3.40482563e-01 -2.90621161e-01 -1.13908827e+00 6.62512004e-01 1.13156557e+00 -3.80015612e-01 1.42736271e-01 2.79876322e-01 8.61739874e-01 -2.15739712e-01 -6.74254417e-01 7.15538263e-01 3.87043118e-01 -1.57439363e+00 1.26697075e+00 2.10989460e-01 1.05112672e+00 -3.56270730e-01 -5.50445139e-01 -9.21452880e-01 -2.53306478e-01 -7.75892556e-01 -5.17433107e-01 9.39187169e-01 1.13603666e-01 -2.81528443e-01 6.99888289e-01 7.08021149e-02 -3.18315625e-01 -1.10162830e+00 -1.05977881e+00 -6.45919740e-01 -2.07997963e-01 -6.27323925e-01 5.77512562e-01 4.51672435e-01 -3.88616890e-01 -1.03152394e-01 -8.16093802e-01 -1.74045432e-02 6.42595291e-01 3.95449139e-02 5.77406168e-01 -5.51666856e-01 -7.46723711e-01 -6.77889526e-01 -3.28759998e-01 -1.43376625e+00 -2.98972696e-01 -8.33994627e-01 -3.17333899e-02 -1.25947881e+00 1.19050510e-01 -3.78802896e-01 -1.99966326e-01 2.67509431e-01 -1.67827494e-03 6.97960556e-01 3.03327471e-01 5.67280412e-01 -2.93088078e-01 8.73908758e-01 1.41307914e+00 -3.49119976e-02 5.06072119e-02 -1.59806967e-01 -6.24037325e-01 3.66436332e-01 6.91835940e-01 -3.61637592e-01 -3.65770787e-01 -6.03215158e-01 5.63091272e-03 5.54620326e-02 6.59253061e-01 -1.15499747e+00 7.30575696e-02 -3.63155990e-03 5.22494376e-01 -3.99162561e-01 5.35669744e-01 -7.53879368e-01 3.76843840e-01 5.16292751e-01 -3.07302922e-01 -4.23905581e-01 1.32280225e-02 5.22355199e-01 -4.09442335e-01 -1.25482649e-01 9.83757317e-01 -1.82231858e-01 -4.08481061e-01 2.34686315e-01 -5.36718331e-02 -4.53902185e-01 7.55529821e-01 -5.03621340e-01 -3.17774057e-01 -3.72203767e-01 -5.31431675e-01 -4.28862929e-01 5.98200262e-01 2.32016787e-01 9.76321161e-01 -1.06833375e+00 -9.49878514e-01 5.56126833e-01 -1.41611323e-01 4.54020686e-02 6.44675791e-01 8.44111025e-01 -6.53423011e-01 2.78222948e-01 -2.85716742e-01 -6.00804567e-01 -9.94483650e-01 6.58548772e-01 1.45034954e-01 -2.28594482e-01 -8.45137298e-01 7.62775362e-01 3.07688028e-01 2.68352240e-01 3.37666154e-01 -1.02338001e-01 2.78906655e-02 -3.44460517e-01 6.86724842e-01 1.83134660e-01 2.17485756e-01 -4.98465896e-01 1.02807179e-01 6.40951395e-01 5.95275946e-02 -2.25629639e-02 1.58988667e+00 -2.96119332e-01 -1.16078384e-01 -1.90957058e-02 1.29398966e+00 4.24697362e-02 -1.55870509e+00 -1.28895000e-01 -4.71795827e-01 -1.00275850e+00 3.22151572e-01 -6.88289165e-01 -1.32494473e+00 1.02013624e+00 8.98559570e-01 4.67131138e-02 1.73500514e+00 5.40058427e-02 9.95008826e-01 -2.20801860e-01 2.67555833e-01 -6.86208546e-01 2.97264814e-01 -1.46893233e-01 1.16341245e+00 -9.35149491e-01 2.20759735e-01 -4.86471087e-01 -4.89705086e-01 1.04550648e+00 1.79270938e-01 -1.66357160e-02 4.38778758e-01 2.48472795e-01 -2.45934382e-01 1.57526147e-03 -8.28655064e-01 -7.31257722e-02 3.43009382e-01 5.83668828e-01 3.45818847e-01 1.31703597e-02 -3.72685701e-01 3.52811515e-01 -1.55889690e-01 -2.90466342e-02 3.05948317e-01 6.06767774e-01 -4.77744281e-01 -1.26139283e+00 -3.88652533e-01 1.97857067e-01 -5.81637442e-01 -3.11227173e-01 1.01465851e-01 2.22903594e-01 4.89751071e-01 8.68326724e-01 -7.43694752e-02 -6.18224740e-01 1.26073584e-02 -3.33203077e-01 4.27365959e-01 -3.60482663e-01 -4.44451004e-01 4.31110054e-01 -1.62549257e-01 -7.86594689e-01 -4.82875794e-01 -2.51957804e-01 -6.38245165e-01 -3.81332070e-01 -4.98117432e-02 -3.90167654e-01 8.04839909e-01 5.74869394e-01 6.10370219e-01 5.18761992e-01 7.73948133e-01 -1.14808750e+00 -3.69817823e-01 -7.87124693e-01 -3.09466571e-01 3.66342545e-01 5.12430727e-01 -3.32296193e-01 -3.77306968e-01 2.52908856e-01]
[11.31421184539795, -1.6715164184570312]
7de23d99-a3fb-48e1-8991-9d5a9cbdc196
visually-aware-audio-captioning-with-adaptive
2210.16428
null
https://arxiv.org/abs/2210.16428v3
https://arxiv.org/pdf/2210.16428v3.pdf
Visually-Aware Audio Captioning With Adaptive Audio-Visual Attention
Audio captioning aims to generate text descriptions of audio clips. In the real world, many objects produce similar sounds. How to accurately recognize ambiguous sounds is a major challenge for audio captioning. In this work, inspired by inherent human multimodal perception, we propose visually-aware audio captioning, which makes use of visual information to help the description of ambiguous sounding objects. Specifically, we introduce an off-the-shelf visual encoder to extract video features and incorporate the visual features into an audio captioning system. Furthermore, to better exploit complementary audio-visual contexts, we propose an audio-visual attention mechanism that adaptively integrates audio and visual context and removes the redundant information in the latent space. Experimental results on AudioCaps, the largest audio captioning dataset, show that our proposed method achieves state-of-the-art results on machine translation metrics.
['Wenwu Wang', 'Volkan Kılıç', 'Mark D. Plumbley', 'Lilian H. Tang', 'Yu Zhang', 'Tom Ko', 'Shengchen Li', 'Jianyuan Sun', 'Qiuqiang Kong', 'Haohe Liu', 'Xinhao Mei', 'Qiushi Huang', 'Xubo Liu']
2022-10-28
null
null
null
null
['audio-captioning']
['audio']
[ 5.14021814e-01 -2.14870319e-01 2.37792265e-02 -6.55644909e-02 -1.19754505e+00 -6.90628648e-01 3.82807702e-01 1.90592781e-02 -4.88983542e-02 5.32672644e-01 7.39418566e-01 1.19764367e-02 4.55249429e-01 -2.25968778e-01 -9.65309083e-01 -4.11818951e-01 1.88536435e-01 1.47136718e-01 -1.98996463e-03 -4.67317142e-02 1.49067104e-01 -5.06060570e-02 -1.86495066e+00 9.88069236e-01 4.51563030e-01 1.18002415e+00 5.44734299e-01 1.02002728e+00 -2.71421373e-01 7.05882668e-01 -5.12951732e-01 -2.39713222e-01 -1.15388744e-01 -6.98252439e-01 -5.31038463e-01 1.54837295e-01 7.22022772e-01 -3.24511200e-01 -3.71676028e-01 9.59144175e-01 6.48785949e-01 3.71718891e-02 5.18635988e-01 -1.57180703e+00 -1.09429109e+00 7.92510986e-01 -2.83495218e-01 3.10181975e-01 8.26656282e-01 3.16151708e-01 1.32107651e+00 -1.26430058e+00 3.71202290e-01 1.26534522e+00 1.66649491e-01 6.39069140e-01 -1.10531390e+00 -8.01519513e-01 2.44894356e-01 6.85135841e-01 -1.54907393e+00 -7.31735051e-01 1.15463531e+00 -5.43707848e-01 5.19678593e-01 5.15653610e-01 7.53732562e-01 1.44061112e+00 -2.73700207e-01 9.61083770e-01 5.72119951e-01 -5.14679313e-01 1.97186291e-01 6.36694729e-02 -4.41872507e-01 2.06801683e-01 -1.93392843e-01 -1.15384221e-01 -9.90649939e-01 -1.18729666e-01 5.72447658e-01 -1.98798001e-01 -6.21827483e-01 -3.27255696e-01 -1.45869052e+00 5.90316832e-01 1.55793160e-01 2.01104760e-01 -3.38790208e-01 5.36783218e-01 3.93154442e-01 -6.66532218e-02 5.49893379e-02 3.00153106e-01 1.09975941e-01 -5.09341717e-01 -7.71421790e-01 -3.40852118e-03 1.97817981e-01 1.01482522e+00 3.16167384e-01 1.26536235e-01 -6.58302367e-01 8.44411969e-01 4.65360582e-01 7.15691626e-01 6.13768160e-01 -9.46318448e-01 8.74264598e-01 1.92187428e-01 2.51364976e-01 -9.39420640e-01 3.94876376e-02 -2.73405015e-01 -4.56156522e-01 -3.16284895e-01 -9.84477773e-02 7.68555254e-02 -8.39103758e-01 1.70326388e+00 7.74084777e-02 5.43966711e-01 6.33541169e-03 1.39762163e+00 1.15151834e+00 9.71738636e-01 9.48587880e-02 -2.37494648e-01 1.50482023e+00 -1.07724082e+00 -9.72107768e-01 -3.19438070e-01 -7.00640231e-02 -9.82528687e-01 1.49932241e+00 1.53539941e-01 -1.12714088e+00 -8.52645159e-01 -1.03612065e+00 -5.11605218e-02 6.25819117e-02 1.62276596e-01 2.93787599e-01 2.36057281e-01 -7.64393508e-01 -2.71972585e-02 -6.41604245e-01 -5.53712733e-02 2.77592421e-01 6.86345203e-03 -2.06299618e-01 1.03272773e-01 -1.28809536e+00 1.92670584e-01 4.05129761e-01 8.82433578e-02 -1.31291938e+00 -4.47751820e-01 -1.01038575e+00 2.79900283e-01 3.49680960e-01 -6.72528923e-01 1.53909993e+00 -1.34044278e+00 -1.52445447e+00 3.52554828e-01 -3.47500265e-01 -1.53365493e-01 2.03219250e-01 -2.49668986e-01 -5.16871333e-01 7.57959962e-01 -1.49253821e-02 1.13136089e+00 1.13218760e+00 -1.53108811e+00 -3.61509591e-01 8.16119313e-02 -2.45724376e-02 5.17305374e-01 -6.48538470e-01 1.51695311e-01 -6.32183075e-01 -8.68656814e-01 -8.50062743e-02 -8.46767485e-01 2.59511828e-01 1.16372630e-01 -3.77445608e-01 9.19004828e-02 7.13174522e-01 -7.23988831e-01 1.18772972e+00 -2.45708513e+00 2.50892669e-01 -1.76593587e-01 -3.60006955e-03 3.85477245e-02 -5.01801491e-01 4.14043695e-01 3.24567519e-02 -2.32848264e-02 -1.04345180e-01 -4.22026306e-01 1.89863995e-01 -7.38887638e-02 -6.64463401e-01 1.10030267e-02 4.18364435e-01 9.16273892e-01 -1.08918703e+00 -8.56750429e-01 4.58559878e-02 8.52365196e-01 -5.74861884e-01 3.98750991e-01 -3.49525750e-01 4.37300354e-01 -3.06810796e-01 7.38552332e-01 3.91816050e-01 -2.34928682e-01 -1.37425855e-01 -9.25724134e-02 4.85767983e-02 2.60942400e-01 -1.05415881e+00 2.01512194e+00 -4.01409179e-01 1.05384791e+00 1.37631064e-02 -5.73325157e-01 8.06976676e-01 7.40130067e-01 1.87543347e-01 -6.48254454e-01 6.34469241e-02 4.12048101e-02 -2.65158415e-01 -7.33744919e-01 5.54812074e-01 1.09521016e-01 -2.56398749e-02 1.58691540e-01 6.21296056e-02 -3.86976590e-03 -2.02665254e-02 1.36918813e-01 7.99944818e-01 1.08860619e-01 9.95299965e-02 5.54903746e-01 5.67127526e-01 -2.23913938e-01 3.07818174e-01 4.90226239e-01 -3.23921770e-01 1.24180675e+00 2.43417978e-01 -1.00092568e-01 -9.16559815e-01 -1.28831136e+00 2.47608095e-01 1.51413989e+00 2.54304141e-01 -5.67902923e-01 -7.26080418e-01 -3.93941730e-01 -3.59196901e-01 5.33188641e-01 -5.19144356e-01 -1.00875728e-01 -3.35846454e-01 -1.30728900e-01 4.71510679e-01 6.50708318e-01 1.18194513e-01 -1.23088074e+00 -5.15111208e-01 2.77845293e-01 -8.90578687e-01 -1.38237810e+00 -9.46220040e-01 -4.38434809e-01 -2.66184270e-01 -5.88046134e-01 -9.86191034e-01 -1.03042257e+00 3.37089002e-01 5.00935435e-01 9.64594066e-01 -2.23460063e-01 -2.66928971e-01 6.58033550e-01 -6.21718228e-01 -4.16915983e-01 -4.61038858e-01 -1.74584806e-01 -4.39688610e-03 4.44006771e-01 1.57204852e-01 -5.94294488e-01 -6.40638590e-01 2.44775832e-01 -8.34644854e-01 4.32479471e-01 6.45241737e-01 6.77671552e-01 8.43142152e-01 -6.47890270e-01 6.62372053e-01 1.16736338e-01 5.95362902e-01 -4.06195313e-01 -2.08445638e-01 2.12552488e-01 1.35586455e-01 -1.77974522e-01 7.35094070e-01 -9.75935698e-01 -8.09331715e-01 4.15464163e-01 2.40838021e-01 -9.61628973e-01 -2.27623314e-01 3.70333046e-01 -3.22278410e-01 2.11951271e-01 4.24206883e-01 4.76361513e-01 -3.93644780e-01 -5.87927341e-01 5.61220229e-01 1.18187857e+00 9.65514362e-01 -3.37501317e-01 6.41377032e-01 4.06486094e-01 -2.40552068e-01 -8.09222460e-01 -6.06542766e-01 -4.77408260e-01 -2.71247178e-01 -5.16573846e-01 1.03386092e+00 -1.24607575e+00 -6.63966775e-01 -9.52040404e-02 -1.45164371e+00 7.32726380e-02 -7.26901740e-02 6.28019035e-01 -8.85167062e-01 3.55823308e-01 -3.25276375e-01 -9.36042547e-01 -3.22270989e-01 -1.27396941e+00 1.44705832e+00 1.94090098e-01 -2.44508848e-01 -1.63954943e-01 2.83956885e-01 5.57500601e-01 1.58667475e-01 -4.48515303e-02 5.35264671e-01 -5.87878942e-01 -7.48089552e-01 1.69941768e-01 -2.91871428e-01 6.37053102e-02 -7.89384916e-02 -1.50229916e-01 -1.38257897e+00 -1.11797430e-01 -4.27091956e-01 -3.86965215e-01 7.76455402e-01 1.67172343e-01 1.32015908e+00 -4.34597820e-01 -8.59616399e-02 4.31246519e-01 1.02253532e+00 3.16168010e-01 5.59123337e-01 7.19733536e-02 8.61822248e-01 5.28193891e-01 6.43004775e-01 6.04237914e-01 3.35378140e-01 1.10784650e+00 6.50683224e-01 7.41467923e-02 -4.34557199e-01 -7.39700854e-01 6.99798167e-01 1.06427300e+00 2.67049700e-01 -2.95576096e-01 -7.25076199e-01 7.14476466e-01 -1.80317330e+00 -9.99298632e-01 2.88566470e-01 1.83219910e+00 9.14136887e-01 -7.10779354e-02 6.68582246e-02 2.43262768e-01 1.03977728e+00 1.27627421e-02 -2.73984283e-01 -3.54814261e-01 -5.32133803e-02 -7.41684064e-02 -1.58136621e-01 3.45546991e-01 -1.15245831e+00 7.14886963e-01 5.96589231e+00 7.36968815e-01 -1.16792679e+00 8.36230516e-02 1.54796615e-01 -4.73318130e-01 -4.91349071e-01 -2.56398767e-01 -3.75225365e-01 6.52916372e-01 1.00024450e+00 -9.95552763e-02 6.01520300e-01 6.45708859e-01 4.54124421e-01 3.89563143e-01 -1.30194473e+00 1.37173772e+00 5.17801881e-01 -1.20468092e+00 4.40881193e-01 -2.76885122e-01 4.54121143e-01 -3.15825850e-01 3.78281981e-01 1.06833182e-01 -3.75316113e-01 -9.91748273e-01 1.24110079e+00 5.14299273e-01 9.05756891e-01 -7.21582830e-01 4.44115371e-01 -1.81283519e-01 -1.46263075e+00 -7.99224898e-02 -1.55666783e-01 -7.67924488e-02 3.52554828e-01 2.64274399e-03 -1.09247804e+00 2.31130198e-01 8.27562332e-01 4.98756289e-01 -6.54900610e-01 1.44048369e+00 -1.91798523e-01 7.44459927e-01 1.29145046e-03 -8.29194859e-02 -3.77090531e-03 4.08611596e-01 8.54664505e-01 1.40292633e+00 5.77087402e-01 -1.39981747e-01 8.85137618e-02 7.85482883e-01 -2.22018033e-01 3.59044075e-01 -5.04828870e-01 -4.96809453e-01 6.99000597e-01 9.62614655e-01 -4.18192446e-01 -1.69162542e-01 -5.01636028e-01 1.07292700e+00 -1.05201058e-01 3.47575277e-01 -1.08531392e+00 -5.82101226e-01 6.51238501e-01 -1.26425430e-01 6.08105898e-01 -9.34737325e-02 9.46903527e-02 -1.09161091e+00 3.57369393e-01 -8.49333882e-01 1.74309209e-01 -1.50649405e+00 -9.87697124e-01 7.15615511e-01 -1.25393495e-01 -1.77478373e+00 -3.53612751e-01 -3.94596308e-01 -3.64904046e-01 4.53825951e-01 -1.36100805e+00 -1.27630687e+00 -4.32545096e-01 5.03511608e-01 8.83459628e-01 -9.12125409e-02 7.37439513e-01 3.52607161e-01 -1.54108137e-01 7.23264515e-01 -5.52280284e-02 2.45954379e-01 9.74944353e-01 -8.28756869e-01 3.23146701e-01 6.99270725e-01 7.52118587e-01 2.09458366e-01 9.53531086e-01 -4.00400996e-01 -1.40109968e+00 -1.12139344e+00 7.97568500e-01 -1.88628033e-01 7.30831206e-01 -6.58782423e-01 -9.47623074e-01 5.14682889e-01 4.02009696e-01 3.62685248e-02 1.01510394e+00 -5.10049105e-01 -5.46068788e-01 -5.62015548e-03 -5.56763470e-01 6.88684881e-01 1.02280259e+00 -9.65150058e-01 -9.13714290e-01 9.75335985e-02 1.24640512e+00 -3.03386778e-01 -3.10232133e-01 5.43242022e-02 7.23673105e-01 -4.36334550e-01 1.13832939e+00 -5.84778666e-01 6.16243362e-01 -6.03363872e-01 -4.15328711e-01 -1.23258030e+00 -1.41020104e-01 -8.77577901e-01 -2.13564664e-01 1.48273373e+00 3.50269616e-01 1.54217452e-01 4.31978881e-01 -7.58925900e-02 -3.47679108e-01 -1.41840413e-01 -1.05766678e+00 -7.59006977e-01 -4.98163670e-01 -5.84960997e-01 6.25286043e-01 7.37138569e-01 3.29755664e-01 4.42099184e-01 -7.43212759e-01 2.59171396e-01 3.98376971e-01 2.68886387e-01 6.08628333e-01 -1.07687759e+00 -5.18039763e-01 -2.15296000e-01 -6.21732533e-01 -1.00728500e+00 1.94367275e-01 -7.73773730e-01 4.44886655e-01 -1.44433951e+00 3.99635404e-01 3.71970952e-01 -4.45401579e-01 4.58243728e-01 -1.39700830e-01 7.94555664e-01 5.90440631e-01 1.88008621e-01 -1.01070666e+00 8.70245576e-01 1.34615469e+00 -5.01303494e-01 -3.61208797e-01 -4.21469659e-01 -8.16186965e-01 4.22469616e-01 5.19952476e-01 -4.27459210e-01 -3.72833848e-01 -5.73804557e-01 2.83255160e-01 3.22957397e-01 5.64439356e-01 -1.14996612e+00 1.24368027e-01 -3.01747173e-01 3.21319163e-01 -7.32083082e-01 9.01514351e-01 -7.57481337e-01 4.70046364e-02 1.81148984e-02 -7.76194036e-01 5.51020317e-02 3.86239558e-01 7.70150781e-01 -5.31867743e-01 -8.75338912e-02 3.50943446e-01 1.49385750e-01 -4.90527242e-01 5.03227673e-02 -6.44652724e-01 1.78417966e-01 7.90580809e-01 8.09228793e-02 -3.73522907e-01 -7.72887349e-01 -8.07068706e-01 1.04035601e-01 2.78601259e-01 8.49973440e-01 9.50071812e-01 -1.94489694e+00 -8.46496761e-01 -1.78162232e-02 6.09873891e-01 -4.28471208e-01 3.38345528e-01 3.59586984e-01 -1.80865943e-01 5.04392326e-01 -3.16443592e-01 -7.69869506e-01 -1.44744432e+00 7.05422461e-01 -9.67216268e-02 5.25456190e-01 -4.73935843e-01 7.79661357e-01 4.05752599e-01 4.98652905e-01 5.03173649e-01 -2.98189580e-01 -4.51836139e-01 1.05306022e-01 9.67644155e-01 2.76388954e-02 -1.92474753e-01 -9.46241558e-01 -3.54789644e-01 5.57148337e-01 2.24018872e-01 -6.74398005e-01 9.43695128e-01 -4.84672040e-01 3.25186580e-01 7.25114286e-01 1.22381973e+00 7.63865262e-02 -1.26376903e+00 -1.45912439e-01 -3.83733422e-01 -5.56171775e-01 8.00444707e-02 -8.09004366e-01 -7.58931518e-01 1.38051283e+00 7.10584223e-01 1.42414436e-01 1.19320273e+00 1.48358256e-01 8.36996675e-01 2.66031921e-01 -1.12335281e-02 -8.75356436e-01 5.67132175e-01 2.71314859e-01 1.28384531e+00 -1.12091136e+00 -5.36391675e-01 -3.71563613e-01 -9.48003590e-01 1.03382254e+00 6.26444757e-01 4.15891230e-01 2.41252258e-02 -2.73905098e-02 2.52517194e-01 2.91486800e-01 -9.11115825e-01 -2.70116627e-01 6.40117824e-01 7.68933773e-01 2.71322310e-01 8.54558125e-03 1.33914024e-01 1.08250713e+00 -2.99455494e-01 -8.80825073e-02 6.02963984e-01 6.91117167e-01 -5.41556239e-01 -7.32477427e-01 -7.01511085e-01 -2.51736641e-01 -4.27645564e-01 -3.30465943e-01 -7.60362864e-01 1.74937874e-01 -6.30910620e-02 1.13522506e+00 2.83653796e-01 -4.91442263e-01 1.75161108e-01 3.36202979e-01 4.26737756e-01 -4.30049092e-01 -2.64768153e-01 4.29148555e-01 -1.34516820e-01 -4.57619816e-01 -3.38530898e-01 -4.75669086e-01 -1.31711781e+00 5.20774484e-01 -7.34563544e-02 3.19870025e-01 7.73964286e-01 6.71163261e-01 6.01338923e-01 6.37552023e-01 5.56924701e-01 -1.15201163e+00 -2.33477652e-01 -9.85235810e-01 -1.71545073e-01 4.99487460e-01 6.73419356e-01 -6.95278406e-01 -5.04772246e-01 4.16308403e-01]
[15.193921089172363, 4.909128665924072]
a7443b8a-f758-4080-93f5-95d3cf1b9f98
lifting-2d-human-pose-to-3d-with-domain
2111.11969
null
https://arxiv.org/abs/2111.11969v1
https://arxiv.org/pdf/2111.11969v1.pdf
Lifting 2D Human Pose to 3D with Domain Adapted 3D Body Concept
Lifting the 2D human pose to the 3D pose is an important yet challenging task. Existing 3D pose estimation suffers from 1) the inherent ambiguity between the 2D and 3D data, and 2) the lack of well labeled 2D-3D pose pairs in the wild. Human beings are able to imagine the human 3D pose from a 2D image or a set of 2D body key-points with the least ambiguity, which should be attributed to the prior knowledge of the human body that we have acquired in our mind. Inspired by this, we propose a new framework that leverages the labeled 3D human poses to learn a 3D concept of the human body to reduce the ambiguity. To have consensus on the body concept from 2D pose, our key insight is to treat the 2D human pose and the 3D human pose as two different domains. By adapting the two domains, the body knowledge learned from 3D poses is applied to 2D poses and guides the 2D pose encoder to generate informative 3D "imagination" as embedding in pose lifting. Benefiting from the domain adaptation perspective, the proposed framework unifies the supervised and semi-supervised 3D pose estimation in a principled framework. Extensive experiments demonstrate that the proposed approach can achieve state-of-the-art performance on standard benchmarks. More importantly, it is validated that the explicitly learned 3D body concept effectively alleviates the 2D-3D ambiguity in 2D pose lifting, improves the generalization, and enables the network to exploit the abundant unlabeled 2D data.
['Yunhui Liu', 'Ziwei Liu', 'Qiang Nie']
2021-11-23
null
null
null
null
['3d-pose-estimation']
['computer-vision']
[ 1.74649451e-02 3.98681343e-01 -4.55724657e-01 -2.76474506e-01 -3.77898335e-01 -5.53384662e-01 4.23633635e-01 -4.76787746e-01 -2.63681948e-01 4.53831702e-01 6.10227406e-01 2.44957358e-01 -5.27540110e-02 -5.50853908e-01 -7.78670609e-01 -5.07935703e-01 4.76252548e-02 6.99775696e-01 -2.22239375e-01 -4.57976371e-01 -2.66168803e-01 4.15317506e-01 -1.41368496e+00 -3.35850984e-01 6.46153390e-01 1.14398038e+00 -9.55087021e-02 8.02410319e-02 1.59995273e-01 6.71578497e-02 -4.79759634e-01 -2.78547138e-01 8.14084351e-01 -3.63800347e-01 -4.88220930e-01 4.84185666e-01 5.43888807e-01 -4.94167060e-01 -3.88532460e-01 9.84587371e-01 5.94890416e-01 -1.56441014e-02 6.46974742e-01 -1.13372135e+00 -5.21196008e-01 -3.06640323e-02 -7.45487034e-01 -3.33430409e-01 8.51737916e-01 1.72001570e-01 8.77207994e-01 -9.19455647e-01 7.66138494e-01 1.50023556e+00 6.92025900e-01 7.21951067e-01 -1.15840542e+00 -5.68648338e-01 2.27771237e-01 -3.12642515e-01 -1.44714236e+00 5.63275330e-02 1.30270052e+00 -6.61734402e-01 2.73953527e-01 -1.91850308e-02 1.30251348e+00 1.43812096e+00 1.41827434e-01 9.09125447e-01 1.19596624e+00 -3.94200176e-01 -2.87372191e-02 -2.19496340e-01 -2.03254491e-01 7.66959131e-01 4.19893324e-01 2.79808819e-01 -6.47610426e-01 1.44703284e-01 1.11710346e+00 1.91666797e-01 -2.27929652e-01 -1.07348871e+00 -1.27754140e+00 6.69730306e-01 6.29593194e-01 -2.04582617e-01 -4.43153560e-01 -9.40502286e-02 3.51590812e-01 -5.66233136e-02 5.03201902e-01 3.42765242e-01 -5.32023609e-01 1.28251314e-01 -4.41507876e-01 4.72749352e-01 6.64982438e-01 1.05101871e+00 7.02015162e-01 -9.03125033e-02 4.15528417e-02 4.98872668e-01 6.02530599e-01 9.28948164e-01 2.98839062e-01 -7.56711185e-01 6.54733539e-01 1.03520870e+00 1.20968059e-01 -1.00376189e+00 -4.51927960e-01 -5.35971224e-01 -7.82558441e-01 1.03583150e-01 4.15387481e-01 -1.01034613e-02 -1.01062799e+00 2.02041578e+00 7.32665598e-01 -3.62979084e-01 -8.26837346e-02 1.41433430e+00 7.03848660e-01 1.41861022e-01 -1.63455740e-01 1.00010768e-01 1.49768794e+00 -7.43703544e-01 -5.61609209e-01 -6.30106509e-01 1.82426482e-01 -3.07640642e-01 1.02375484e+00 1.64796799e-01 -8.68504286e-01 -8.40302646e-01 -1.23870194e+00 -1.92416281e-01 -2.20414981e-01 2.13447928e-01 5.49836338e-01 6.29816949e-01 -3.24516118e-01 3.21591973e-01 -7.94036210e-01 -4.48865652e-01 2.16402158e-01 4.93881077e-01 -8.13051701e-01 1.70071349e-02 -1.43283355e+00 1.08638740e+00 5.49018502e-01 3.75504017e-01 -7.84300625e-01 -5.02804458e-01 -1.29228067e+00 -4.32304621e-01 6.77956223e-01 -1.09400332e+00 8.49203348e-01 -5.14027655e-01 -1.45586300e+00 1.38124645e+00 1.13545954e-01 -2.85613954e-01 8.58376741e-01 -8.63241792e-01 5.05748950e-02 2.95477569e-01 1.74497694e-01 6.81336522e-01 1.07052755e+00 -1.32645166e+00 -4.25560512e-02 -1.05015683e+00 7.19095021e-02 6.87261462e-01 -1.59138948e-01 -8.74615192e-01 -5.88228643e-01 -8.45693231e-01 6.07654750e-01 -1.17460907e+00 1.93901006e-02 2.85173416e-01 -4.86805767e-01 -3.97200659e-02 5.09028912e-01 -7.18446076e-01 7.01195955e-01 -1.94046307e+00 7.20198035e-01 1.92009553e-01 2.67997235e-01 1.57933548e-01 1.43795460e-01 2.57899433e-01 -3.36051285e-02 -1.77529961e-01 -2.36017890e-02 -3.41357619e-01 2.62138426e-01 4.73846734e-01 -1.43251166e-01 6.99790061e-01 3.03774118e-01 1.08944798e+00 -1.11724639e+00 -6.08492076e-01 4.20834988e-01 5.31738162e-01 -5.45164347e-01 4.91281271e-01 3.48715559e-02 9.87308443e-01 -7.48406410e-01 5.88683128e-01 6.30494595e-01 -2.07486570e-01 1.91361174e-01 -7.17507839e-01 4.67212111e-01 1.91066712e-01 -1.14484394e+00 2.33544493e+00 -1.20733798e-01 -1.93304092e-01 -1.26308739e-01 -9.76185560e-01 1.09997225e+00 4.13925320e-01 6.94434941e-01 -5.73938906e-01 2.01242656e-01 2.18227148e-01 -2.52936900e-01 -5.24939179e-01 -7.41177350e-02 -5.47620714e-01 -4.12018776e-01 1.71279207e-01 4.15153116e-01 -4.58299369e-01 -2.11945966e-01 -2.44204208e-01 5.29813826e-01 8.78745973e-01 7.04001486e-01 -1.14742450e-01 5.31166136e-01 -2.53370404e-01 7.00910568e-01 2.50011474e-01 -3.46977532e-01 4.99255091e-01 2.83683360e-01 -6.34547293e-01 -9.86164093e-01 -1.64392245e+00 1.72456041e-01 6.29684091e-01 4.37224180e-01 -2.32784063e-01 -6.93626046e-01 -9.61663961e-01 3.95666361e-01 8.36251080e-02 -8.93109024e-01 -3.55240613e-01 -7.01644361e-01 -2.14034364e-01 4.17518079e-01 6.13718808e-01 6.20330215e-01 -4.93596166e-01 -8.01504672e-01 -2.08094135e-01 -3.26788038e-01 -1.23431504e+00 -5.91813207e-01 1.35607809e-01 -9.77632046e-01 -1.11583018e+00 -9.11164463e-01 -6.21848106e-01 7.66437173e-01 7.60333659e-03 9.87545669e-01 -3.23770940e-01 -9.07437578e-02 6.05393589e-01 -4.19631660e-01 -4.44906741e-01 -1.08460806e-01 -7.24106729e-02 5.98962665e-01 -4.44146581e-02 4.32866693e-01 -7.29589760e-01 -6.50624275e-01 4.66875196e-01 -4.52932984e-01 2.37388879e-01 7.84325004e-01 9.47911859e-01 7.44469702e-01 -2.07687810e-01 3.85636061e-01 -5.46580017e-01 1.88449308e-01 -1.48391649e-01 -9.71072838e-02 3.87252085e-02 -3.90239030e-01 1.78547353e-01 2.98169225e-01 -5.34198046e-01 -1.00820374e+00 4.50739294e-01 -7.86663666e-02 -6.75687373e-01 -3.30443770e-01 2.26689950e-01 -5.19726634e-01 9.49138999e-02 6.32072985e-01 1.52781427e-01 4.60471958e-01 -7.81281829e-01 4.86021668e-01 1.97841257e-01 6.50361657e-01 -9.65717256e-01 1.21161509e+00 7.22351015e-01 3.75991076e-01 -4.22838986e-01 -1.23275828e+00 -4.86722022e-01 -1.27332675e+00 -2.98451573e-01 1.00363910e+00 -1.25202298e+00 -7.33263493e-01 2.99887538e-01 -9.61633623e-01 1.25850171e-01 -4.20570910e-01 5.71897566e-01 -8.67777705e-01 6.34319425e-01 -3.57875317e-01 -7.52238989e-01 -4.30158079e-01 -1.12733924e+00 1.66552460e+00 -5.05011529e-02 -5.02517879e-01 -7.67199457e-01 -4.16232273e-02 4.96279776e-01 -3.41861904e-01 7.96725929e-01 6.78574681e-01 -4.64779347e-01 -1.26845255e-01 -4.81868863e-01 1.38889939e-01 5.11682451e-01 2.56647259e-01 -8.38401556e-01 -7.11422861e-01 -4.29832458e-01 2.96237767e-01 -6.67774618e-01 2.90059149e-01 2.39936426e-01 5.85325599e-01 -1.04809023e-01 -1.02263160e-01 6.29418075e-01 1.00426638e+00 -3.68131876e-01 2.05567986e-01 7.29536638e-02 8.66718888e-01 9.51310813e-01 7.68232644e-01 4.80838716e-01 4.68476981e-01 8.62821639e-01 5.20460725e-01 2.03879308e-02 -1.34591311e-01 -9.70635593e-01 2.30024427e-01 8.27752292e-01 -3.31375659e-01 3.68862331e-01 -8.44865322e-01 2.09270597e-01 -1.69572091e+00 -5.27557850e-01 3.60650986e-01 2.30219316e+00 8.93764079e-01 2.14253798e-01 2.12406829e-01 2.21996471e-01 5.88695943e-01 2.07507297e-01 -8.20651054e-01 3.93376440e-01 1.10457316e-01 4.71049324e-02 2.58801162e-01 1.41570777e-01 -1.06459844e+00 6.85988069e-01 5.38487387e+00 4.32100207e-01 -1.05475664e+00 -1.82947919e-01 7.62196332e-02 -1.06118448e-01 1.32595040e-02 -1.92438111e-01 -8.51023138e-01 3.24759573e-01 6.97015449e-02 5.71153685e-02 1.64127320e-01 8.84387016e-01 5.01946695e-02 3.14501107e-01 -1.64017200e+00 1.26011705e+00 3.05178642e-01 -5.83027363e-01 3.83275956e-01 2.78306007e-01 5.36344707e-01 -4.87913400e-01 4.78113405e-02 3.26581836e-01 -2.37533331e-01 -9.19602871e-01 1.05351484e+00 4.32072520e-01 9.66538846e-01 -4.91198927e-01 5.64757049e-01 7.53163099e-01 -1.28842008e+00 5.76247796e-02 -2.13913992e-02 -2.63282388e-01 2.40131453e-01 3.75114292e-01 -6.77438498e-01 8.11573148e-01 6.07586443e-01 8.22084904e-01 -3.14526170e-01 4.49120253e-01 -6.44208848e-01 1.18648792e-02 -4.01932240e-01 2.42608622e-01 -3.31143588e-02 -2.32457265e-01 6.95119917e-01 6.26095951e-01 2.24355802e-01 6.50467277e-02 5.29937387e-01 8.95548701e-01 2.57383585e-02 -1.43150426e-02 -7.45193243e-01 1.73143789e-01 2.79946953e-01 1.00130665e+00 -3.91841710e-01 -9.27443206e-02 -8.41531828e-02 1.07860470e+00 1.01054519e-01 2.71433979e-01 -7.45083570e-01 5.22274431e-03 5.80639243e-01 1.48040310e-01 1.51732579e-01 -3.84841979e-01 -1.42452046e-01 -1.38252461e+00 3.44902217e-01 -8.85645270e-01 2.91266590e-01 -7.69189417e-01 -1.39981151e+00 2.23517537e-01 4.13965821e-01 -1.56084180e+00 -4.72700387e-01 -9.26136434e-01 4.54898924e-02 8.32854629e-01 -1.17672372e+00 -1.36044908e+00 -4.13123071e-01 5.75531960e-01 3.51831138e-01 1.96358442e-01 7.55124569e-01 1.51177540e-01 -3.99794430e-02 5.87919712e-01 -7.04909682e-01 4.61126089e-01 8.32266152e-01 -1.24120021e+00 3.64021212e-01 4.18637544e-01 1.58963382e-01 8.34878802e-01 5.89605391e-01 -6.82686269e-01 -1.84138942e+00 -6.43716276e-01 6.02998912e-01 -8.47953200e-01 1.83250040e-01 -6.33468807e-01 -4.25519347e-01 6.72204792e-01 -5.34670055e-01 1.43506423e-01 6.74228668e-01 1.04519680e-01 -5.56106806e-01 -9.55807343e-02 -1.13592064e+00 5.61634064e-01 1.57365286e+00 -5.50266385e-01 -1.23094201e+00 2.30079368e-01 7.13465154e-01 -7.59977818e-01 -1.16786873e+00 7.45492041e-01 9.10164893e-01 -6.52191639e-01 1.42349601e+00 -6.91309690e-01 4.11322147e-01 -3.54890555e-01 -3.72976065e-01 -1.16776431e+00 -4.45689000e-02 -3.56642574e-01 -5.09516537e-01 6.54824972e-01 -1.80091903e-01 -4.47510153e-01 1.03933764e+00 3.00482005e-01 8.59156922e-02 -8.77134144e-01 -1.11713850e+00 -8.70522738e-01 8.04855302e-02 -1.72468439e-01 5.76931059e-01 7.18439639e-01 -1.44621968e-01 5.55442810e-01 -7.19192088e-01 2.78200507e-01 9.16654110e-01 3.68870080e-01 1.22238696e+00 -1.57486284e+00 -3.58365655e-01 -7.79203931e-03 -7.94891357e-01 -1.79103947e+00 2.29937762e-01 -7.43918061e-01 4.86478321e-02 -1.14271462e+00 1.93345740e-01 1.20858848e-01 -3.19328494e-02 3.69442254e-01 -1.33104697e-01 2.88562119e-01 3.43540639e-01 2.48639539e-01 -3.30958903e-01 8.49188268e-01 1.79279864e+00 -6.30948171e-02 -2.82784794e-02 -1.34540632e-01 -5.79293668e-01 9.81369197e-01 2.40681916e-01 -2.27445140e-01 -5.53343356e-01 -4.00165528e-01 2.27279618e-01 8.13772678e-02 6.99914992e-01 -9.20410275e-01 -1.28381327e-01 2.49466510e-03 7.40638793e-01 -6.79005325e-01 7.04945207e-01 -9.78664756e-01 -3.62461247e-02 5.35415947e-01 -1.22779340e-01 -3.05464149e-01 -1.62448972e-01 9.04244483e-01 -1.16922520e-01 1.80503055e-01 6.04989409e-01 -5.14206529e-01 -6.83611929e-01 4.78062958e-01 4.46244091e-01 3.80095631e-01 9.28331673e-01 -6.09085917e-01 2.78164446e-01 -3.83745760e-01 -8.98081839e-01 2.25645766e-01 6.78201735e-01 5.81381261e-01 5.74647844e-01 -1.67805374e+00 -4.78302240e-01 5.87964058e-01 3.41559947e-01 4.11827505e-01 2.38223761e-01 9.06986237e-01 -2.68430203e-01 3.32863092e-01 -4.68227565e-01 -9.84094560e-01 -9.30242598e-01 5.81767440e-01 3.39558065e-01 -2.49602139e-01 -7.22166836e-01 5.93753576e-01 4.51920033e-01 -8.93234730e-01 3.13992560e-01 -2.22126409e-01 9.96343568e-02 -6.11771867e-02 7.90087059e-02 1.98203206e-01 -2.52414286e-01 -1.11219966e+00 -4.32790548e-01 1.20469022e+00 2.13409469e-01 -2.74331383e-02 1.13114464e+00 -2.02513590e-01 3.46369863e-01 4.67980355e-01 1.38803661e+00 -2.74835601e-02 -1.51556718e+00 -4.31051731e-01 -3.44044209e-01 -5.56591213e-01 -4.88630950e-01 -6.38712525e-01 -8.34753811e-01 1.06429148e+00 4.83047783e-01 -3.98248672e-01 1.01212895e+00 1.14259616e-01 8.46885741e-01 4.02115643e-01 7.19890177e-01 -1.08850670e+00 4.37388003e-01 3.69432479e-01 1.04164982e+00 -1.36144912e+00 2.93254167e-01 -6.13103986e-01 -6.11707687e-01 9.97551203e-01 6.67680502e-01 -2.50069737e-01 5.77924192e-01 -2.13780046e-01 9.82586667e-02 -3.43125790e-01 -4.25600037e-02 -1.58786565e-01 8.94709766e-01 7.61951745e-01 2.91134417e-01 1.72983259e-01 -2.53327370e-01 7.70691693e-01 -2.82990187e-01 -1.72102824e-03 -3.23797226e-01 9.46838200e-01 -1.39164433e-01 -1.03488719e+00 -5.35239637e-01 -5.34435622e-02 -1.18603207e-01 4.94611353e-01 -5.45504689e-01 1.12024486e+00 4.68158066e-01 3.80608767e-01 -2.73369938e-01 -5.08970737e-01 7.13208258e-01 3.28306437e-01 8.94235849e-01 -8.04467857e-01 -4.22380306e-02 1.87419921e-01 -2.50660151e-01 -6.89444780e-01 -5.84025264e-01 -2.59137005e-01 -1.19523621e+00 1.60940260e-01 -1.45623386e-01 -6.53879568e-02 4.06708241e-01 9.36174095e-01 3.33604068e-01 6.81296960e-02 2.80568451e-01 -1.37320137e+00 -1.08717489e+00 -8.15173447e-01 -7.11197495e-01 1.09283185e+00 3.20134997e-01 -1.34640336e+00 -2.93716490e-01 7.33613372e-02]
[7.001377582550049, -1.0002002716064453]
9daf56d0-e4cc-477e-aa1f-101659cb16e4
one-shot-high-fidelity-talking-head-synthesis
2304.05097
null
https://arxiv.org/abs/2304.05097v1
https://arxiv.org/pdf/2304.05097v1.pdf
One-Shot High-Fidelity Talking-Head Synthesis with Deformable Neural Radiance Field
Talking head generation aims to generate faces that maintain the identity information of the source image and imitate the motion of the driving image. Most pioneering methods rely primarily on 2D representations and thus will inevitably suffer from face distortion when large head rotations are encountered. Recent works instead employ explicit 3D structural representations or implicit neural rendering to improve performance under large pose changes. Nevertheless, the fidelity of identity and expression is not so desirable, especially for novel-view synthesis. In this paper, we propose HiDe-NeRF, which achieves high-fidelity and free-view talking-head synthesis. Drawing on the recently proposed Deformable Neural Radiance Fields, HiDe-NeRF represents the 3D dynamic scene into a canonical appearance field and an implicit deformation field, where the former comprises the canonical source face and the latter models the driving pose and expression. In particular, we improve fidelity from two aspects: (i) to enhance identity expressiveness, we design a generalized appearance module that leverages multi-scale volume features to preserve face shape and details; (ii) to improve expression preciseness, we propose a lightweight deformation module that explicitly decouples the pose and expression to enable precise expression modeling. Extensive experiments demonstrate that our proposed approach can generate better results than previous works. Project page: https://www.waytron.net/hidenerf/
['Xuelong Li', 'Liefeng Bo', 'Zhongjian Wang', 'Bang Zhang', 'Mulin Chen', 'Zhigang Wang', 'Bin Zhao', 'Dong Wang', 'Longhao Zhang', 'Weichuang Li']
2023-04-11
null
http://openaccess.thecvf.com//content/CVPR2023/html/Li_One-Shot_High-Fidelity_Talking-Head_Synthesis_With_Deformable_Neural_Radiance_Field_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Li_One-Shot_High-Fidelity_Talking-Head_Synthesis_With_Deformable_Neural_Radiance_Field_CVPR_2023_paper.pdf
cvpr-2023-1
['talking-head-generation', 'neural-rendering']
['computer-vision', 'computer-vision']
[-1.65890772e-02 2.54077226e-01 1.21823981e-01 -7.58049786e-01 -4.24678892e-01 -4.83581930e-01 6.29511535e-01 -7.24405706e-01 1.85186133e-01 4.98879701e-01 5.94856679e-01 3.42442185e-01 2.42343456e-01 -5.67577899e-01 -7.06917822e-01 -7.82948494e-01 4.40909803e-01 1.36211589e-01 -3.85540396e-01 -4.12562042e-01 -2.38307729e-01 6.95377946e-01 -1.65216517e+00 3.71236242e-02 7.48599291e-01 1.09565842e+00 -1.88454509e-01 3.67130518e-01 1.31652474e-01 7.42401183e-01 -4.28758591e-01 -6.65773153e-01 3.64792943e-01 -5.03792286e-01 -4.97372895e-01 4.09429669e-01 7.42284775e-01 -5.38523257e-01 -5.38867593e-01 9.53978598e-01 8.25938284e-01 2.65793025e-01 4.49049175e-01 -1.35359335e+00 -7.79571593e-01 -2.72637606e-02 -7.07058728e-01 -3.90167207e-01 6.54833555e-01 3.15017074e-01 5.31532407e-01 -9.24685180e-01 8.14918756e-01 1.49280822e+00 6.69761598e-01 9.21823025e-01 -1.29266334e+00 -8.77085567e-01 3.83842498e-01 -1.38107156e-02 -1.56968963e+00 -9.92162943e-01 1.13561594e+00 -2.83680588e-01 4.54870164e-01 2.98858434e-01 6.96249902e-01 1.32839799e+00 3.01960148e-02 5.96695960e-01 1.07767558e+00 -5.28894253e-02 -7.12306518e-03 7.59437075e-03 -3.32919002e-01 7.70330906e-01 -2.67631292e-01 -1.90331880e-03 -5.57000637e-01 -9.03184712e-02 9.26982522e-01 -1.17576040e-01 -7.14148343e-01 -5.65318048e-01 -9.03273523e-01 7.25850284e-01 3.69083673e-01 6.35187551e-02 -2.91001767e-01 9.83039662e-02 1.76329985e-01 -2.68346351e-02 4.96228397e-01 2.24374570e-02 4.69940566e-02 4.41934774e-03 -9.26482677e-01 5.81452489e-01 5.86522043e-01 9.04339731e-01 7.96580791e-01 3.03884834e-01 -1.96052164e-01 9.64866638e-01 3.81181747e-01 5.56901455e-01 3.59856784e-01 -1.18917310e+00 1.74863875e-01 4.67713594e-01 -8.06118473e-02 -1.25986743e+00 -3.64026248e-01 -3.18251222e-01 -8.46632481e-01 2.39873499e-01 8.84620994e-02 -1.06263526e-01 -9.04805779e-01 2.19390416e+00 6.91329062e-01 1.36286736e-01 -1.76922455e-01 1.11814940e+00 9.83954012e-01 5.80005646e-01 -9.01450813e-02 -2.68188596e-01 1.30712175e+00 -7.70741940e-01 -1.08156097e+00 -1.57337308e-01 3.34330738e-01 -6.50317609e-01 8.71691644e-01 -9.84268356e-03 -1.42302680e+00 -4.35234636e-01 -9.76461887e-01 -3.50880653e-01 7.73737058e-02 5.98555505e-02 5.09729505e-01 5.95453203e-01 -1.32515073e+00 2.71505773e-01 -5.39199948e-01 -6.40976802e-02 3.38701576e-01 4.91535872e-01 -6.55907571e-01 7.88250789e-02 -1.13914323e+00 7.57731378e-01 -2.88832098e-01 2.16425762e-01 -5.71510553e-01 -7.62618482e-01 -1.13648653e+00 -5.28913029e-02 6.01525158e-02 -1.02020741e+00 1.17765915e+00 -1.20727205e+00 -1.98564863e+00 1.06164706e+00 -3.78804475e-01 6.68753982e-02 7.54260004e-01 -3.19777466e-02 -3.27124596e-01 1.29763350e-01 -1.56764090e-01 7.77091742e-01 1.00187767e+00 -1.49638438e+00 5.25808558e-02 -7.37161636e-01 1.05287805e-01 4.78186429e-01 -3.06363881e-01 -1.08568110e-01 -6.57150030e-01 -9.11492050e-01 2.42046323e-02 -1.10253835e+00 1.78030014e-01 4.18072999e-01 -2.92265445e-01 1.68889701e-01 1.00673723e+00 -7.59943902e-01 9.37405229e-01 -2.18687344e+00 3.38314891e-01 8.46918449e-02 3.72047514e-01 7.66932294e-02 -1.88266989e-02 2.75517558e-03 -3.12597901e-01 -1.31513000e-01 -1.91251025e-01 -8.10391724e-01 8.90329331e-02 1.78193316e-01 -2.49225110e-01 7.26456404e-01 1.30357236e-01 1.03628826e+00 -5.41554928e-01 -3.96187484e-01 1.04220800e-01 1.12006128e+00 -9.10011828e-01 3.53185803e-01 6.22735173e-02 8.64078224e-01 -3.71010512e-01 4.59071428e-01 1.08756161e+00 -1.06676817e-02 1.40856311e-01 -5.78390002e-01 7.42764249e-02 5.15780486e-02 -1.15301096e+00 1.80646718e+00 -6.24483705e-01 3.36319566e-01 7.09912002e-01 -5.88969767e-01 9.27575290e-01 4.23367739e-01 5.64466536e-01 -7.08475232e-01 3.14504772e-01 -6.76772892e-02 -3.82886320e-01 -3.52715582e-01 4.21874940e-01 -5.20428896e-01 1.34582641e-02 1.52155653e-01 3.98538560e-02 -3.73367369e-01 -3.32689881e-01 3.83063592e-02 5.80823421e-01 5.00581264e-01 -6.41024932e-02 -1.41793892e-01 6.38686359e-01 -8.05885494e-01 7.76084244e-01 -8.76870528e-02 -1.72128454e-01 9.52881098e-01 4.03591394e-01 -2.86683291e-01 -8.86610508e-01 -1.11166894e+00 -9.75791290e-02 8.94436777e-01 1.76359683e-01 -3.42399836e-01 -1.08397019e+00 -3.95704329e-01 -9.66339111e-02 6.08070850e-01 -7.33088911e-01 -2.63021559e-01 -7.82185555e-01 -5.06923199e-01 5.57587326e-01 4.28978115e-01 4.97265190e-01 -7.26330638e-01 -2.77460665e-01 -1.53965279e-01 -4.47335958e-01 -1.22930539e+00 -1.02762651e+00 -5.59100926e-01 -4.16449606e-01 -6.31232023e-01 -8.86819959e-01 -6.03844464e-01 8.23615849e-01 5.72647564e-02 7.28137672e-01 -6.30732030e-02 -1.64634734e-01 3.86867762e-01 1.26871523e-02 -7.91852996e-02 -3.44983548e-01 -4.19773310e-01 3.45139682e-01 5.84774256e-01 -1.86632052e-01 -1.00715613e+00 -7.37137735e-01 2.55763561e-01 -8.21214080e-01 3.10197085e-01 1.78520173e-01 7.32914329e-01 4.06150371e-01 -4.46195930e-01 3.46624732e-01 -6.03961349e-01 3.43662381e-01 -1.14946172e-01 -3.47366780e-01 4.92984615e-02 -2.30892316e-01 3.09836864e-02 5.92077136e-01 -4.52553838e-01 -1.51470971e+00 1.64059520e-01 -3.56782585e-01 -8.30481946e-01 5.00742607e-02 -2.05501512e-01 -7.31126010e-01 -2.19333380e-01 3.39533746e-01 3.13729048e-01 2.80742526e-01 -4.17995781e-01 4.65605915e-01 4.78881955e-01 7.09284604e-01 -7.28656411e-01 8.70098650e-01 7.46817946e-01 -6.44894615e-02 -7.75759280e-01 -4.37306345e-01 5.21356016e-02 -5.77946782e-01 -3.79100025e-01 7.75757194e-01 -1.12282789e+00 -1.01899636e+00 6.04363739e-01 -1.20111346e+00 -1.84122145e-01 -1.13049939e-01 2.44369283e-01 -7.03816533e-01 3.22840810e-01 -5.51365018e-01 -7.23177910e-01 -4.48284984e-01 -1.29142451e+00 1.49071598e+00 2.68811911e-01 -1.95487872e-01 -8.13356876e-01 2.15561246e-03 5.32470703e-01 4.39264625e-01 6.55261576e-01 5.77004611e-01 2.80120522e-01 -4.14261937e-01 6.68547302e-02 -2.94751879e-02 2.28757128e-01 1.23079382e-01 -3.67761813e-02 -1.23759985e+00 -3.58118683e-01 2.28993222e-01 -2.94411987e-01 4.35867906e-01 2.02957138e-01 1.04004741e+00 -5.44775665e-01 -1.08957216e-01 1.14656723e+00 9.89902020e-01 5.08102961e-02 6.84372485e-01 -2.09550992e-01 9.88591254e-01 9.72840786e-01 1.23320244e-01 5.96054196e-01 6.57517850e-01 1.19855154e+00 1.96458459e-01 -1.67001247e-01 -3.65462512e-01 -5.07615805e-01 5.65792322e-01 8.99379969e-01 -1.48099408e-01 6.82787895e-02 -4.90981162e-01 3.43794554e-01 -1.62277949e+00 -9.56553042e-01 3.68902534e-01 2.03305197e+00 8.65713596e-01 -3.39934289e-01 8.77369046e-02 -1.61517233e-01 6.61442339e-01 3.00460368e-01 -6.17102265e-01 -3.92177761e-01 -2.49754712e-01 1.50701880e-01 -2.39825738e-03 5.75402737e-01 -7.29819059e-01 7.16388047e-01 5.25132895e+00 5.94968915e-01 -1.48835158e+00 2.10510865e-01 6.73262000e-01 -4.09264356e-01 -6.03219211e-01 -2.37708926e-01 -7.53287315e-01 2.83850908e-01 5.54353178e-01 -2.55835474e-01 3.10545802e-01 8.11464190e-01 4.12002802e-01 4.17900085e-01 -9.51124430e-01 1.22305584e+00 3.98623228e-01 -1.07546329e+00 2.12284952e-01 1.76521614e-01 6.01323187e-01 -5.22933841e-01 2.99046576e-01 1.72115400e-01 -1.57591790e-01 -1.12393260e+00 1.09713638e+00 6.23380661e-01 1.11606717e+00 -8.73651564e-01 1.96028292e-01 7.39058480e-02 -1.22674668e+00 2.21406877e-01 6.53366596e-02 1.04780816e-01 3.87172967e-01 2.70988882e-01 -4.13340181e-01 5.00759661e-01 5.65307975e-01 5.95274508e-01 -2.73640960e-01 4.02105957e-01 -1.10222138e-01 6.84428513e-02 -2.42749915e-01 4.17578578e-01 -1.50082847e-02 -2.67126411e-01 7.40877330e-01 1.03973877e+00 2.19763786e-01 2.31679186e-01 3.76943573e-02 1.08560109e+00 -2.90759057e-01 2.29027972e-01 -6.54733062e-01 3.34306508e-01 2.25389093e-01 1.29366517e+00 -2.04449877e-01 -2.96152383e-02 -3.15174818e-01 1.18957698e+00 2.87745744e-01 4.13034320e-01 -1.04843032e+00 -4.04542983e-02 1.24299395e+00 4.60379034e-01 2.47902751e-01 -7.88546205e-02 -8.45852867e-02 -1.48907673e+00 2.61345625e-01 -8.72553349e-01 -1.69504046e-01 -8.79375100e-01 -8.81987154e-01 7.22113311e-01 -3.68525200e-02 -9.57116961e-01 -3.68939281e-01 -2.94620752e-01 -5.49912870e-01 9.25874710e-01 -1.20904672e+00 -1.75074100e+00 -6.51620209e-01 8.13891590e-01 3.69353056e-01 2.46226400e-01 7.98590302e-01 4.24810648e-01 -6.65282071e-01 1.09304941e+00 -2.86389858e-01 5.50838076e-02 8.20590615e-01 -7.32163250e-01 3.88641417e-01 4.64670241e-01 -1.75407872e-01 7.59652615e-01 5.94802320e-01 -3.87716860e-01 -1.60088909e+00 -1.07287955e+00 5.46259463e-01 -3.10505688e-01 1.88587129e-01 -7.14908540e-01 -8.77104580e-01 7.40753949e-01 -1.03454432e-02 2.47670680e-01 5.29202998e-01 -3.07398617e-01 -5.70878327e-01 -2.68558770e-01 -1.35439873e+00 7.49566019e-01 1.30952120e+00 -6.29329324e-01 -2.63969243e-01 -3.31895985e-02 5.83228707e-01 -6.55385792e-01 -9.44136918e-01 5.83424985e-01 8.22080612e-01 -1.06179702e+00 9.17738199e-01 -1.69421270e-01 2.81165421e-01 -3.63225996e-01 -1.88011393e-01 -1.18095505e+00 -2.59328961e-01 -1.03145528e+00 -1.79277897e-01 1.41514361e+00 -4.41768542e-02 -5.45021594e-01 7.74823189e-01 8.25252712e-01 -4.70641665e-02 -8.45186949e-01 -1.01547825e+00 -4.90103215e-01 4.86077480e-02 -1.67976603e-01 8.66833508e-01 1.02472305e+00 -1.91955000e-01 3.94992232e-01 -6.35135114e-01 -6.00910522e-02 5.45902371e-01 1.33305550e-01 9.31961417e-01 -8.15411270e-01 -2.09645361e-01 -3.43157560e-01 -5.26364744e-01 -1.15119684e+00 5.96648216e-01 -7.64247894e-01 -6.17085397e-02 -1.05763221e+00 8.08984786e-02 -1.87523246e-01 3.20034862e-01 4.18783098e-01 -6.26973156e-03 4.90723878e-01 3.17779273e-01 6.79432824e-02 -1.26291111e-01 1.04306316e+00 1.52471411e+00 1.11964576e-01 -1.20705687e-01 -1.97137967e-01 -7.49522269e-01 8.49181473e-01 5.20728588e-01 4.01963778e-02 -5.54126263e-01 -4.78557527e-01 -1.88350111e-01 1.26183182e-01 4.67790276e-01 -6.95950091e-01 -6.60808757e-03 -3.81308533e-02 5.44257104e-01 -1.48682803e-01 8.55601013e-01 -5.85031092e-01 5.89464307e-01 9.48765576e-02 -5.52782863e-02 1.00093633e-01 1.36707470e-01 3.63822997e-01 -1.28256097e-01 3.89098734e-01 1.16830456e+00 3.09848543e-02 -4.22112525e-01 5.62510312e-01 5.34114800e-02 -4.77397032e-02 9.25719857e-01 -1.95515513e-01 1.07022524e-01 -9.10057127e-01 -6.49219751e-01 9.54334810e-03 9.84947681e-01 6.51382208e-01 6.81713641e-01 -1.60845685e+00 -7.63148725e-01 4.81031090e-01 9.64402631e-02 5.36667816e-02 6.13110840e-01 8.95749986e-01 -4.37241048e-01 6.24055564e-02 -1.95227459e-01 -4.54701155e-01 -1.26158857e+00 3.51752669e-01 5.68285942e-01 7.11178482e-02 -7.02218354e-01 8.39132786e-01 9.03902709e-01 -5.92072129e-01 9.51334909e-02 1.27105236e-01 -7.54018947e-02 -4.80005424e-03 6.61938787e-01 9.77059603e-02 -5.28347492e-02 -1.53156853e+00 -4.78090227e-01 9.47199881e-01 -5.33380499e-03 -8.21346119e-02 1.28802872e+00 -2.99620956e-01 -8.42551365e-02 5.57430983e-02 1.55377674e+00 2.69924819e-01 -1.51988447e+00 2.04539392e-03 -6.68737054e-01 -5.86482346e-01 1.03541084e-01 -4.54213202e-01 -1.43485546e+00 7.49979019e-01 5.50571382e-01 -6.10387027e-01 1.36031210e+00 -1.49815843e-01 9.93080616e-01 -1.80276021e-01 3.53616476e-01 -8.05098057e-01 -5.50976582e-03 2.08167195e-01 1.31352031e+00 -8.36292744e-01 -1.28318667e-01 -6.17868960e-01 -7.19301522e-01 9.55497503e-01 6.96043015e-01 1.28554836e-01 5.52557290e-01 4.08160448e-01 1.03226021e-01 -1.03228867e-01 -4.87802744e-01 1.99141949e-01 3.84001821e-01 6.45586193e-01 5.00188768e-01 9.40964499e-04 8.57681409e-03 6.25560403e-01 -4.98259038e-01 -2.60471441e-02 2.34345704e-01 6.59862697e-01 1.87228188e-01 -1.01284182e+00 -5.54325759e-01 -9.03241560e-02 -3.48308057e-01 1.85933754e-01 -4.72715050e-01 5.26014626e-01 2.65536577e-01 6.56003296e-01 7.84429759e-02 -4.17885542e-01 6.25445783e-01 9.09264758e-02 7.18805969e-01 -2.76517481e-01 -4.55521524e-01 1.99583560e-01 5.20637026e-03 -8.21935892e-01 -3.28688353e-01 -5.69578409e-01 -1.23371601e+00 -6.95186794e-01 -1.21082366e-01 -1.17320612e-01 6.48019433e-01 5.54999292e-01 6.31903708e-01 3.23729545e-01 8.33801031e-01 -1.28513253e+00 -4.06507730e-01 -7.42327750e-01 -5.35554767e-01 7.87753403e-01 4.22389448e-01 -9.36951518e-01 -3.36654335e-01 1.80514187e-01]
[12.8928861618042, -0.3339753746986389]
dd575ad3-ec39-461e-a4cc-170ea266fafc
rhythm-controllable-attention-with-high
2306.02593
null
https://arxiv.org/abs/2306.02593v1
https://arxiv.org/pdf/2306.02593v1.pdf
Rhythm-controllable Attention with High Robustness for Long Sentence Speech Synthesis
Regressive Text-to-Speech (TTS) system utilizes attention mechanism to generate alignment between text and acoustic feature sequence. Alignment determines synthesis robustness (e.g, the occurence of skipping, repeating, and collapse) and rhythm via duration control. However, current attention algorithms used in speech synthesis cannot control rhythm using external duration information to generate natural speech while ensuring robustness. In this study, we propose Rhythm-controllable Attention (RC-Attention) based on Tracotron2, which improves robustness and naturalness simultaneously. Proposed attention adopts a trainable scalar learned from four kinds of information to achieve rhythm control, which makes rhythm control more robust and natural, even when synthesized sentences are extremely longer than training corpus. We use word errors counting and AB preference test to measure robustness of proposed method and naturalness of synthesized speech, respectively. Results shows that RC-Attention has the lowest word error rate of nearly 0.6%, compared with 11.8% for baseline system. Moreover, nearly 60% subjects prefer to the speech synthesized with RC-Attention to that with Forward Attention, because the former has more natural rhythm.
['Binghuai Lin', 'Jiaen Liang', 'Jianqing Sun', 'Ya Li', 'Qi Luo', 'Jinlong Xue', 'Yukang Jia', 'Yayue Deng', 'Dengfeng Ke']
2023-06-05
null
null
null
null
['speech-synthesis']
['speech']
[ 1.68283656e-01 2.01143082e-02 1.32871866e-01 -5.27812019e-02 -7.25494146e-01 -4.57526863e-01 4.20588911e-01 -3.62800866e-01 -2.41613105e-01 6.41693294e-01 7.25889146e-01 -3.14192802e-01 2.43347332e-01 -4.45869982e-01 -3.64859104e-01 -8.07482123e-01 4.93925601e-01 -1.12585418e-01 1.99832007e-01 -4.75008935e-01 3.92549008e-01 1.80666164e-01 -1.33040798e+00 7.19110519e-02 8.09871197e-01 5.30566931e-01 6.39030516e-01 1.07692289e+00 7.16745332e-02 4.03941035e-01 -1.10216057e+00 7.80952349e-02 1.82252936e-02 -7.72519052e-01 -3.67144793e-01 -1.90339446e-01 1.70406178e-01 -1.82304010e-01 -3.51370662e-01 8.47855747e-01 1.00253069e+00 4.47303295e-01 6.46319747e-01 -9.34001267e-01 -1.37086785e+00 8.94229710e-01 -2.52831846e-01 5.38721681e-01 3.95798475e-01 4.90048796e-01 8.92138183e-01 -6.95632756e-01 1.48875251e-01 1.35247505e+00 2.94115514e-01 9.44140673e-01 -9.82949615e-01 -6.59224153e-01 2.14426011e-01 -5.20878285e-02 -1.22963595e+00 -9.19811904e-01 6.40732050e-01 -2.06701279e-01 1.27082205e+00 6.75363064e-01 3.54986012e-01 1.20290196e+00 4.22665566e-01 3.50690186e-01 9.09512043e-01 -5.80120802e-01 -1.36235533e-02 7.60773942e-02 -1.54866233e-01 7.24280253e-02 -1.62922084e-01 2.35167891e-01 -5.48990607e-01 3.61829668e-01 6.30842149e-01 -6.22150004e-01 -5.15518904e-01 6.64748073e-01 -1.41392219e+00 4.78802979e-01 7.68723786e-02 4.71519023e-01 -2.65179157e-01 9.52297747e-02 3.81198674e-01 4.33921069e-01 7.98779801e-02 5.37945390e-01 -4.81984049e-01 -3.91445220e-01 -5.28045118e-01 3.54861915e-02 2.27326304e-01 1.02413678e+00 -2.39250604e-02 9.95888293e-01 -7.63100863e-01 1.01474738e+00 3.16278845e-01 1.00939274e+00 1.16369414e+00 -5.81081569e-01 6.70326173e-01 -1.54117849e-02 8.47388506e-02 -8.42416406e-01 -2.49398753e-01 -4.10924196e-01 -6.50646269e-01 -8.01660269e-02 -3.59853432e-02 -3.09989542e-01 -9.98675168e-01 2.01244116e+00 -4.26403023e-02 -2.20158339e-01 3.13980043e-01 9.27939951e-01 8.35663259e-01 1.15094531e+00 -4.75968309e-02 -6.81656420e-01 1.30597079e+00 -9.00321960e-01 -1.31276309e+00 -1.82325915e-01 1.09079510e-01 -1.18041277e+00 1.69175136e+00 3.37659389e-01 -1.01713157e+00 -9.04293120e-01 -1.19925034e+00 4.41468991e-02 4.07521017e-02 1.65097877e-01 -7.53677189e-02 8.05595815e-01 -9.08053100e-01 2.62876451e-01 -4.00245398e-01 -1.93090811e-01 -3.66801620e-01 2.82030821e-01 -1.00139715e-01 7.44014919e-01 -1.49917054e+00 7.81890213e-01 2.54815459e-01 -6.42529726e-02 -6.67101145e-01 -4.28761452e-01 -6.53684676e-01 7.35266507e-02 1.23618931e-01 -3.25945139e-01 1.40190649e+00 -8.48040223e-01 -2.26936269e+00 1.91516608e-01 -6.24382086e-02 -2.19593719e-01 2.39896968e-01 -4.83631998e-01 -8.55565012e-01 -9.15773660e-02 -1.51620045e-01 7.02819169e-01 1.09093952e+00 -7.82741129e-01 -3.79134536e-01 2.16920406e-01 -3.89541000e-01 4.45238173e-01 -3.77171904e-01 1.08303756e-01 -2.10229307e-01 -1.11606586e+00 -6.82912841e-02 -1.09411192e+00 1.50711849e-01 -6.69934750e-01 -5.58677673e-01 -3.53744388e-01 7.98259020e-01 -8.69725525e-01 1.80560386e+00 -2.10927320e+00 1.17905535e-01 -1.60305306e-01 -3.32751364e-01 4.83537078e-01 -2.95412987e-01 4.34134841e-01 -1.20124966e-01 3.47752362e-01 -1.81679726e-01 -3.86150517e-02 -9.60727185e-02 -1.95459038e-01 -4.92271096e-01 1.40125617e-01 3.10619265e-01 5.63424289e-01 -5.68866253e-01 -3.15644443e-01 1.58339992e-01 4.42602396e-01 -6.17985129e-01 3.85812193e-01 -1.59766048e-01 6.88223600e-01 -1.19833067e-01 3.42540115e-01 2.81888455e-01 4.46497679e-01 -1.56846434e-01 -7.03260303e-02 -4.38933879e-01 5.90455592e-01 -1.05628562e+00 1.14011705e+00 -8.80922675e-01 8.67245197e-01 -3.82027060e-01 -3.72680932e-01 1.27943671e+00 8.27546895e-01 -1.79629609e-01 -1.00610197e+00 2.16172665e-01 2.78827138e-02 6.04153395e-01 -7.81833410e-01 6.28799677e-01 1.04835533e-01 -2.81993654e-02 4.47204083e-01 -3.48841846e-01 -4.06164557e-01 1.89238153e-02 -8.43588784e-02 7.36218750e-01 1.46099761e-01 2.46111587e-01 -2.21610114e-01 6.36614740e-01 -7.41210461e-01 5.36274612e-01 5.66990912e-01 -1.54373467e-01 8.83195400e-01 2.96458662e-01 -5.33203930e-02 -1.19306171e+00 -9.48431611e-01 1.01549745e-01 1.20564032e+00 -1.78244695e-01 -2.17052341e-01 -9.03088272e-01 -1.62616923e-01 -4.55229700e-01 1.11026192e+00 -4.16550696e-01 -3.53413641e-01 -8.44138384e-01 -3.20125312e-01 5.92256606e-01 4.22139496e-01 2.38230944e-01 -1.68740559e+00 -3.98373455e-01 2.73570031e-01 -5.22222996e-01 -9.56242204e-01 -1.29069436e+00 -9.66750383e-02 -4.63119239e-01 -3.50005865e-01 -7.26593137e-01 -7.01586425e-01 3.07780653e-01 1.11647189e-01 6.83323264e-01 2.36704219e-02 3.92147228e-02 -2.30712250e-01 -5.10132909e-01 -3.85237038e-01 -6.35780871e-01 2.10204065e-01 4.13564980e-01 7.27231130e-02 -8.04172307e-02 -5.03142834e-01 -5.23999393e-01 3.45114231e-01 -6.63969219e-01 8.13977942e-02 5.12465119e-01 6.20634854e-01 2.28150994e-01 -2.99573869e-01 1.13593900e+00 -2.51500785e-01 1.14378572e+00 -1.83090910e-01 -4.41382021e-01 1.30305141e-01 -5.99705398e-01 2.07078874e-01 9.60136831e-01 -8.57841611e-01 -9.72947776e-01 -2.82650590e-01 -2.70525992e-01 -2.36433342e-01 6.20127097e-02 7.03071281e-02 -3.20046067e-01 4.66256201e-01 7.32177496e-01 4.19801742e-01 -1.60037056e-01 -7.92111605e-02 3.01369190e-01 1.20376217e+00 5.00204504e-01 -3.64574373e-01 6.50838077e-01 -3.56382668e-01 -5.15858769e-01 -1.13949156e+00 -2.92992920e-01 8.49306211e-02 -1.33499101e-01 -1.97993800e-01 9.47474539e-01 -7.17738092e-01 -7.79729068e-01 3.14521551e-01 -1.29256678e+00 -3.50210696e-01 3.58746760e-02 7.69223034e-01 -6.43237531e-01 1.72737911e-01 -5.50146759e-01 -1.15208566e+00 -6.74573243e-01 -1.28688371e+00 9.87241507e-01 2.41839975e-01 -5.60306907e-01 -4.49837893e-01 2.57063024e-02 1.60388514e-01 6.86669946e-01 -1.03550928e-03 7.28997886e-01 -1.65952548e-01 -2.61785299e-01 9.96866822e-02 1.72860011e-01 5.05107880e-01 4.38058019e-01 3.45651805e-01 -1.06606269e+00 -1.31275713e-01 -6.72674105e-02 1.57350264e-02 4.55995113e-01 4.75031614e-01 8.66641998e-01 -6.53477490e-01 2.69935936e-01 2.49694690e-01 8.14843535e-01 9.21815693e-01 9.84450877e-01 6.73109442e-02 5.14916718e-01 5.52186131e-01 4.83722687e-01 3.39641333e-01 8.84840935e-02 8.89137924e-01 -8.77563804e-02 1.80046454e-01 -5.74187577e-01 -2.39410907e-01 7.33901978e-01 1.63331461e+00 -1.21225035e-02 -7.19777584e-01 -5.72047174e-01 4.48081851e-01 -1.39465785e+00 -1.00411415e+00 -8.59067142e-02 2.32929921e+00 1.17697144e+00 4.53443050e-01 6.91824332e-02 4.36618805e-01 1.02833140e+00 1.04735531e-01 -3.37439418e-01 -9.26441550e-01 -1.42774001e-01 1.07416138e-01 1.39432997e-01 8.72067273e-01 -5.95105469e-01 1.09235334e+00 6.17924833e+00 9.14902151e-01 -1.49394834e+00 -7.87845924e-02 4.61645991e-01 -2.03999788e-01 -5.87294757e-01 -2.98646390e-01 -7.38021970e-01 7.46270716e-01 1.32796657e+00 -2.58483022e-01 5.97508729e-01 4.30210054e-01 8.96729708e-01 3.25216055e-01 -7.99526811e-01 8.56336474e-01 -9.70002450e-03 -8.64701807e-01 2.20059291e-01 -2.72910208e-01 6.39805436e-01 -4.43095624e-01 4.39705491e-01 3.13512683e-01 -1.49986401e-01 -1.13010633e+00 9.92539465e-01 5.17110407e-01 1.02721488e+00 -8.04005325e-01 4.12671387e-01 9.56140235e-02 -1.15531695e+00 2.45325528e-02 -1.71248183e-01 4.12796438e-02 1.11135229e-01 2.25800470e-01 -9.40309227e-01 2.09258199e-01 3.13689023e-01 5.11991866e-02 -1.19893201e-01 4.89815503e-01 -3.60651821e-01 9.42903578e-01 -9.49319527e-02 -3.95599365e-01 2.10201461e-02 1.02170780e-01 7.65879333e-01 1.35797679e+00 5.33030450e-01 5.09909764e-02 -2.78682262e-01 4.87083912e-01 1.27399862e-01 3.64458203e-01 -5.37542582e-01 -3.36873502e-01 8.86760354e-01 7.98793614e-01 -3.78114671e-01 -9.78648216e-02 -1.03374682e-01 7.82209694e-01 -5.10836579e-02 4.49365646e-01 -1.05930841e+00 -9.05205011e-01 4.65882123e-01 -1.11148775e-01 1.37023613e-01 -3.24754000e-01 -2.41441131e-01 -6.60295844e-01 -6.09227829e-02 -1.06881249e+00 -2.47786611e-01 -1.18057680e+00 -8.16125154e-01 1.19758749e+00 -1.65555179e-01 -1.33867395e+00 -3.95102382e-01 -1.38287380e-01 -7.96001613e-01 1.07091475e+00 -9.81874168e-01 -7.71323085e-01 -1.67157669e-02 2.82912612e-01 1.22295678e+00 -3.82973045e-01 6.67261600e-01 2.55022407e-01 -8.02753448e-01 1.08947742e+00 -3.50640982e-01 -2.16104805e-01 7.88288593e-01 -1.10130477e+00 7.42948234e-01 1.04264963e+00 7.04361126e-02 7.74459481e-01 9.60019708e-01 -6.14281416e-01 -1.09220493e+00 -9.27895546e-01 1.09582973e+00 -2.87271142e-01 2.94696212e-01 -3.10952961e-01 -7.18222558e-01 3.10946077e-01 5.98595083e-01 -4.11057979e-01 3.84914726e-01 -3.11685264e-01 -1.96080774e-01 -2.74019718e-01 -7.99227893e-01 1.17511976e+00 8.35135102e-01 -3.84246081e-01 -6.74814582e-01 6.26179017e-03 1.45854914e+00 -3.87130767e-01 -5.71421444e-01 2.74663955e-01 6.77233875e-01 -7.41662025e-01 5.18640876e-01 -3.02041501e-01 2.92209417e-01 -5.24705529e-01 -3.34042341e-01 -1.49570644e+00 -4.53152716e-01 -1.23144937e+00 2.03434959e-01 1.44885945e+00 7.19178021e-01 -5.00617325e-01 4.69785668e-02 4.89451401e-02 -6.45299494e-01 -3.02941769e-01 -6.34181261e-01 -9.09095347e-01 1.66004850e-03 -3.54982287e-01 6.91240668e-01 7.13647544e-01 -1.11819342e-01 5.64370275e-01 -7.04407454e-01 2.62243390e-01 -1.38457730e-01 -4.39427286e-01 6.26519978e-01 -5.26083112e-01 -2.80700624e-01 -4.91976619e-01 -9.86214448e-03 -8.18919539e-01 -8.43370110e-02 -4.85246956e-01 5.30530453e-01 -1.12151206e+00 -3.75064254e-01 -7.77993500e-02 -2.02945426e-01 2.57147789e-01 -4.10292983e-01 9.26677883e-02 4.03004438e-01 -6.51838705e-02 -4.95027155e-02 9.87112284e-01 1.48827875e+00 -2.89541576e-03 -7.21019566e-01 4.46796976e-02 -4.96034622e-01 3.10394228e-01 1.16542923e+00 -3.41918170e-01 -7.28313625e-01 -4.98797774e-01 -1.35891780e-01 3.53086799e-01 -3.82206470e-01 -1.08391666e+00 6.79051727e-02 -4.00841892e-01 1.20654739e-01 -3.17613959e-01 2.58294344e-01 -3.38567913e-01 3.56793664e-02 5.25800467e-01 -6.29382312e-01 5.47175586e-01 3.81005138e-01 3.01403612e-01 -1.48460697e-02 -1.35185644e-01 7.61223018e-01 1.21918261e-01 -1.59301579e-01 2.76519847e-03 -6.75187886e-01 1.97077870e-01 6.90770447e-01 -2.07071349e-01 -1.53095350e-01 -5.70447743e-01 -6.05976701e-01 -1.75532192e-01 -2.64892846e-01 8.83218467e-01 6.26297355e-01 -1.49427080e+00 -1.01400578e+00 3.44098598e-01 1.25617921e-01 -4.16355938e-01 3.11589062e-01 4.08253282e-01 -4.79059547e-01 5.94474673e-01 -2.54314244e-02 -4.41247970e-01 -1.24193203e+00 3.60229433e-01 1.70696631e-01 3.39264780e-01 -5.11627018e-01 7.41359353e-01 1.67652354e-01 -1.84618130e-01 4.50392008e-01 -5.84601641e-01 -3.85476291e-01 -2.45998904e-01 6.00432932e-01 3.01956683e-01 5.56835346e-02 -4.46432382e-01 -3.13252777e-01 7.20629632e-01 2.91142128e-02 -5.65726161e-01 6.73253000e-01 -4.11963642e-01 2.94804454e-01 5.83427012e-01 7.27236271e-01 6.34746909e-01 -1.23930275e+00 2.38745689e-01 -1.96012855e-01 -2.33017161e-01 1.41693335e-02 -8.93333316e-01 -8.52015197e-01 7.78775156e-01 5.73510528e-01 3.74311805e-01 9.82167304e-01 -5.04548669e-01 9.08168972e-01 1.55950010e-01 -2.25638777e-01 -1.21034718e+00 5.05551338e-01 6.84216440e-01 1.59949958e+00 -9.72218513e-01 -4.63065863e-01 3.99595052e-02 -1.01692128e+00 1.11597753e+00 9.67116237e-01 9.83475074e-02 3.29534799e-01 2.42804021e-01 2.44605690e-01 4.75182354e-01 -1.03359413e+00 -8.43414292e-02 2.84523398e-01 7.33339131e-01 7.22034454e-01 1.12033509e-01 -3.90175343e-01 3.46535355e-01 -8.64404321e-01 -4.57151085e-01 6.29012644e-01 2.99043953e-01 -7.18052924e-01 -8.04922402e-01 -5.72771430e-01 5.88154830e-02 -5.50531447e-01 -4.40703243e-01 -2.38338903e-01 5.36202371e-01 7.73826241e-02 1.45699728e+00 2.26649508e-01 -6.65581882e-01 4.40691084e-01 -3.24406661e-02 1.89371109e-01 -5.52567422e-01 -5.90130746e-01 4.59432632e-01 5.82612725e-03 -5.00479676e-02 -8.30275007e-03 -4.92885113e-01 -1.28730154e+00 -1.57122567e-01 -4.30097520e-01 2.44159639e-01 6.63074374e-01 8.18998098e-01 1.58409402e-01 1.13201618e+00 9.48680341e-01 -3.63712639e-01 -5.29003561e-01 -1.47562397e+00 -1.74458817e-01 1.36540279e-01 6.56838894e-01 -3.24924439e-01 -5.21450996e-01 1.06346078e-01]
[14.95374584197998, 6.629697799682617]
dce898a0-f44f-4fa4-9446-d98ffb774f8a
three-branches-detecting-actions-with-richer
1908.04519
null
https://arxiv.org/abs/1908.04519v1
https://arxiv.org/pdf/1908.04519v1.pdf
Three Branches: Detecting Actions With Richer Features
We present our three branch solutions for International Challenge on Activity Recognition at CVPR2019. This model seeks to fuse richer information of global video clip, short human attention and long-term human activity into a unified model. We have participated in two tasks: Task A, the Kinetics challenge and Task B, spatio-temporal action localization challenge. For Kinetics, we achieve 21.59% error rate. For the AVA challenge, our final model obtains 32.49% mAP on the test sets, which outperforms all submissions to the AVA challenge at CVPR 2018 for more than 10% mAP. As the future work, we will introduce human activity knowledge, which is a new dataset including key information of human activity.
['Jiajun Tang', 'Cewu Lu', 'Jin Xia']
2019-08-13
null
null
null
null
['spatio-temporal-action-localization']
['computer-vision']
[ 9.49022099e-02 -3.17192852e-01 -4.37354267e-01 1.53375477e-01 -9.87789452e-01 -5.15205562e-01 7.40569353e-01 -3.29118371e-01 -7.52979100e-01 7.13555872e-01 8.68978620e-01 4.27817583e-01 2.46328026e-01 -1.05744578e-01 -6.87708020e-01 -6.59689307e-01 -4.45994020e-01 -4.22928818e-02 4.08775628e-01 1.11565232e-01 9.26276147e-02 2.30574787e-01 -1.23850131e+00 7.68380821e-01 4.27046657e-01 1.19076657e+00 -6.16669804e-02 9.51285005e-01 5.65768480e-01 1.51305342e+00 -7.70154655e-01 9.54340585e-03 1.78111687e-01 -5.20078599e-01 -1.08775818e+00 -2.41509184e-01 6.29524469e-01 -9.53290910e-02 -9.96486545e-01 5.60550630e-01 5.58486879e-01 4.94675100e-01 5.66655397e-01 -1.47793567e+00 -4.68719780e-01 4.46248531e-01 -5.72773516e-01 1.22161329e+00 9.11881208e-01 6.39974773e-01 8.75804484e-01 -8.54433656e-01 7.89131582e-01 7.26674318e-01 7.28891075e-01 5.69746733e-01 -6.44765854e-01 -4.04814571e-01 3.42667460e-01 8.41008008e-01 -1.52103674e+00 -4.95330721e-01 3.70713413e-01 -6.88157678e-01 1.60106575e+00 2.60373056e-01 1.02669680e+00 1.95287383e+00 7.58667216e-02 1.57909715e+00 6.90572023e-01 1.59684226e-01 4.10923548e-02 -5.21420717e-01 5.33768535e-02 5.10703444e-01 -2.16093913e-01 -2.29006141e-01 -1.18751216e+00 1.08847663e-01 7.07243562e-01 -1.91733122e-01 -4.56340760e-01 5.04812747e-02 -1.68889701e+00 3.17784011e-01 3.10734034e-01 4.06455159e-01 -6.17583573e-01 4.01775181e-01 5.57631910e-01 -3.85403149e-02 5.56850612e-01 5.82065582e-01 -5.05615532e-01 -1.18409848e+00 -7.62331784e-01 3.59865457e-01 7.33224094e-01 8.10666561e-01 -1.29161999e-02 -6.73217326e-02 -1.01813889e+00 7.14134812e-01 1.55624449e-01 5.43390930e-01 6.23646557e-01 -1.29973733e+00 7.80471623e-01 3.23913872e-01 2.60664523e-01 -8.73793602e-01 -3.40766221e-01 -2.65685618e-01 -7.15832710e-01 -4.01967943e-01 4.97871339e-01 -1.18297152e-01 -8.01527500e-01 1.70348203e+00 -5.78448409e-03 9.91521537e-01 -8.68611876e-03 8.76986563e-01 8.06307614e-01 8.38947713e-01 3.46069276e-01 -3.33458245e-01 1.36766708e+00 -1.82480276e+00 -8.03041577e-01 -2.71406114e-01 7.52385139e-01 -7.05345869e-02 9.66479838e-01 5.54419637e-01 -1.23186362e+00 -6.87279761e-01 -1.06714523e+00 1.81462523e-02 -3.03516746e-01 2.14842752e-01 5.68586349e-01 1.03595316e-01 -1.01909804e+00 4.38126445e-01 -1.17091000e+00 -6.31450295e-01 8.12248409e-01 -1.35868311e-01 -5.56752026e-01 3.21166873e-01 -1.16803241e+00 8.35568964e-01 1.33681759e-01 1.18963800e-01 -1.38692987e+00 -9.55314994e-01 -8.34393919e-01 -1.22326687e-01 4.76291358e-01 -5.30584812e-01 1.35383284e+00 -5.95567584e-01 -1.29106498e+00 1.02526224e+00 -3.37365896e-01 -9.38254237e-01 9.02278781e-01 -8.08189213e-01 -5.57675183e-01 2.08840176e-01 2.05690354e-01 4.62261289e-01 1.99411303e-01 -2.38666669e-01 -7.88478315e-01 -2.26864696e-01 -6.65996298e-02 3.66483927e-01 -9.08153951e-02 2.36398295e-01 -9.16457415e-01 -7.29692042e-01 -5.33528566e-01 -9.57110345e-01 2.57738531e-02 -3.67322385e-01 1.34714603e-01 -6.55592322e-01 7.14789152e-01 -9.24161136e-01 1.47921205e+00 -2.00839996e+00 3.55675995e-01 -2.47792482e-01 3.13333124e-01 4.28437710e-01 -2.50210166e-01 3.51499647e-01 2.67785583e-02 3.04614031e-03 8.72763395e-02 -3.61698955e-01 -4.19005454e-02 -6.05940856e-02 -2.56989568e-01 5.77383339e-01 1.30046885e-02 1.49346185e+00 -1.08430517e+00 -4.02940691e-01 1.11667529e-01 3.38081568e-01 -1.92684636e-01 2.49680713e-01 -2.77266074e-02 7.27557182e-01 -3.06845427e-01 6.32906795e-01 1.65106580e-01 -5.88868320e-01 -1.30754769e-01 -1.87327653e-01 -1.44758904e-02 1.98897645e-01 -7.59217978e-01 2.30745435e+00 3.03512234e-02 9.51370955e-01 -4.35266912e-01 -8.55239332e-01 2.26232260e-01 4.69634593e-01 1.20567071e+00 -9.82225478e-01 -4.84566092e-02 -4.37785149e-01 -2.86399454e-01 -7.86845386e-01 2.60633051e-01 8.29996407e-01 -2.06501395e-01 4.29789215e-01 4.54510272e-01 7.13250220e-01 5.94519436e-01 3.83864254e-01 1.79569125e+00 5.67431629e-01 4.83173132e-01 -9.14110802e-03 6.15078032e-01 -1.81844279e-01 6.49350524e-01 1.07268500e+00 -1.07079899e+00 8.19941521e-01 5.35630584e-01 -6.12288892e-01 -6.81970477e-01 -1.08121681e+00 3.93829614e-01 1.30525529e+00 1.07713923e-01 -8.31450224e-01 -7.75119364e-01 -1.02222443e+00 -5.08439362e-01 6.84537366e-02 -1.09093797e+00 -6.41381592e-02 -9.24021840e-01 -7.72780418e-01 1.10430789e+00 1.06379104e+00 1.05994010e+00 -1.42988026e+00 -4.99566019e-01 -7.14766383e-02 -8.71138990e-01 -1.56665432e+00 -8.75520349e-01 -3.14172238e-01 -4.45725948e-01 -1.41636026e+00 -9.22738194e-01 -4.49059874e-01 -2.25120589e-01 1.77644596e-01 1.09134090e+00 -3.45778435e-01 -4.27632123e-01 7.72226572e-01 -4.96156186e-01 -2.33249098e-01 3.24094445e-01 1.78252727e-01 5.98950945e-02 1.93491414e-01 5.88380694e-01 -4.86950815e-01 -8.48611891e-01 4.75833863e-01 -4.81940657e-02 4.11632508e-02 4.22463238e-01 3.37034911e-01 6.99814558e-01 -5.86799145e-01 2.92642444e-01 -3.94245803e-01 3.79672915e-01 -7.28230953e-01 -1.12914637e-01 3.82228881e-01 -1.56453341e-01 -2.55858690e-01 -3.84763852e-02 -5.69494963e-01 -1.08377326e+00 1.43741131e-01 -1.31271839e-01 -5.11238575e-01 -2.29533583e-01 4.10928071e-01 -1.92746714e-01 1.87803432e-01 9.73055363e-01 5.37500083e-01 -4.79286492e-01 -4.79806095e-01 1.39244720e-01 2.70690709e-01 1.03599763e+00 -3.01987797e-01 1.31740138e-01 4.58714396e-01 -3.08177829e-01 -7.89589822e-01 -1.14126837e+00 -1.04005790e+00 -8.37279737e-01 -5.60350060e-01 1.42440546e+00 -1.42544842e+00 -7.45358229e-01 9.50608432e-01 -1.18179822e+00 -7.81723619e-01 -2.40000144e-01 5.20057619e-01 -8.81775081e-01 3.01127553e-01 -5.87182164e-01 -6.49295747e-01 -3.21383715e-01 -6.02431834e-01 9.89645422e-01 1.83732972e-01 -5.34338892e-01 -8.90811443e-01 6.87295735e-01 9.94888425e-01 2.22929358e-01 4.64884818e-01 -4.54337358e-01 -7.55296767e-01 -4.70594138e-01 -2.94288278e-01 1.24348151e-02 2.27745861e-01 -2.00766072e-01 -2.44631842e-01 -1.00855935e+00 -1.21494606e-01 -2.91901797e-01 -5.69771528e-01 1.12843645e+00 4.11410779e-01 1.35855806e+00 -1.57837331e-01 -4.99331713e-01 6.24924958e-01 6.40260994e-01 2.03997582e-01 1.10873616e+00 1.87127694e-01 8.25682998e-01 -2.15762779e-02 8.60217631e-01 5.30472457e-01 4.24204588e-01 1.05586600e+00 5.64006492e-02 3.00875813e-01 -3.80929977e-01 -3.77312213e-01 6.99600816e-01 7.00493515e-01 -1.03162360e+00 -4.89294440e-01 -1.14713478e+00 7.31014609e-01 -2.48876071e+00 -1.65493345e+00 -2.43779182e-01 1.66989326e+00 5.07169425e-01 -1.44532099e-01 6.30340874e-01 -2.60368496e-01 2.36004993e-01 7.31769979e-01 -3.93979192e-01 2.89581716e-01 -3.09540838e-01 -8.96351337e-02 4.47275549e-01 2.32094511e-01 -1.76293576e+00 9.85829890e-01 7.36569357e+00 9.80354369e-01 -5.56848407e-01 6.04612291e-01 8.89615789e-02 -5.84914327e-01 6.28915787e-01 -3.61759275e-01 -7.02719748e-01 7.37552047e-01 1.26446140e+00 -2.09310979e-01 3.58985096e-01 7.11145222e-01 4.30994868e-01 -3.31550598e-01 -1.06350625e+00 1.40889275e+00 5.45453250e-01 -1.38432527e+00 -2.14574561e-01 5.64686246e-02 9.53072190e-01 5.79578996e-01 -2.70420939e-01 7.26228952e-01 2.23128960e-01 -1.29105878e+00 5.52077651e-01 9.66857612e-01 3.67426723e-01 -3.51890862e-01 7.67842412e-01 4.42372888e-01 -1.52461195e+00 -6.37779608e-02 1.22253209e-01 -2.38131776e-01 4.98158246e-01 -1.88338459e-01 -9.44892764e-02 3.06638956e-01 1.11167943e+00 1.56670499e+00 -9.20209825e-01 1.21272409e+00 -3.70838046e-01 7.75502026e-01 -6.46396540e-04 7.78328478e-02 2.89120734e-01 3.07576090e-01 5.07115364e-01 1.50798416e+00 5.43994531e-02 1.69134215e-01 3.24748397e-01 2.96221465e-01 -2.51769543e-01 -2.36213267e-01 -4.89807755e-01 -3.96732002e-01 1.09909885e-01 1.03068697e+00 -2.87754238e-01 -5.35098255e-01 -3.78474921e-01 1.32998204e+00 5.30534267e-01 5.69200993e-01 -1.43120158e+00 -1.20890448e-02 7.66109943e-01 -4.08599377e-02 5.75143211e-02 -2.01112613e-01 1.01055264e-01 -1.54286695e+00 1.30920663e-01 -8.45443010e-01 7.57624388e-01 -9.80552614e-01 -9.85903502e-01 2.90931404e-01 1.40787840e-01 -1.06113207e+00 -2.36992404e-01 -3.69121432e-01 -6.42542422e-01 5.19069135e-01 -7.38904178e-01 -1.26753557e+00 -7.01577723e-01 8.59214127e-01 8.10289562e-01 -3.95901859e-01 5.44758737e-01 5.70218325e-01 -7.16549754e-01 6.12637162e-01 -4.11199570e-01 4.89054531e-01 7.68403471e-01 -1.12150395e+00 6.97076380e-01 9.94788766e-01 5.60396969e-01 1.56247675e-01 4.43282247e-01 -6.12180948e-01 -1.13241017e+00 -1.13321507e+00 9.68959272e-01 -1.31298947e+00 7.98110247e-01 -4.04120624e-01 -7.27223814e-01 1.15865970e+00 3.51101160e-01 3.12706113e-01 6.53798640e-01 9.96299684e-02 -1.92505613e-01 2.89263517e-01 -5.02919018e-01 4.09467041e-01 1.84402800e+00 -6.48246169e-01 -5.59555531e-01 4.12762910e-01 5.17558396e-01 -3.85061353e-01 -1.10956144e+00 5.21829069e-01 8.49619269e-01 -5.84675908e-01 1.06293404e+00 -1.10657072e+00 2.93500572e-01 -3.68911177e-01 -4.49149944e-02 -1.02881861e+00 -5.60005069e-01 -6.81419551e-01 -1.07222939e+00 6.48225665e-01 2.53194779e-01 2.87214341e-03 9.48930502e-01 1.78736985e-01 -2.33637020e-01 -6.45302415e-01 -9.76507783e-01 -1.02905560e+00 -3.35569680e-01 -6.24837041e-01 -6.78039864e-02 8.08623552e-01 1.46454066e-01 3.60594600e-01 -9.98111725e-01 -1.30908042e-01 2.14224353e-01 -4.74235684e-01 1.11309922e+00 -7.65131652e-01 -3.93297255e-01 -4.83533591e-01 -7.03207314e-01 -1.35343218e+00 8.92689377e-02 -6.26629949e-01 2.09961366e-03 -1.53158379e+00 7.16027260e-01 6.61581039e-01 -7.04799831e-01 6.42575920e-01 -2.02182624e-02 6.80907369e-01 1.98616460e-01 2.00548425e-01 -1.68881989e+00 5.46964824e-01 9.88747835e-01 -3.67787212e-01 -1.58402845e-01 -1.33077994e-01 -4.78739321e-01 6.65530980e-01 6.60273671e-01 -2.02183113e-01 -4.09719914e-01 -3.93827885e-01 3.30870263e-02 -1.33486792e-01 5.63582897e-01 -1.42935252e+00 4.51457024e-01 -4.68881816e-01 4.61486727e-01 -6.50262773e-01 5.08923054e-01 -1.61644861e-01 6.21472895e-02 2.93470621e-01 -4.35558617e-01 -1.34122968e-01 1.14688084e-01 9.02701259e-01 -3.34221870e-01 4.92940098e-01 5.00543594e-01 -7.36591369e-02 -1.18572307e+00 7.33334184e-01 -6.15023017e-01 5.44498205e-01 1.37569177e+00 -1.86446577e-01 -6.07403100e-01 -4.27237093e-01 -1.28904414e+00 4.95588690e-01 -9.39146578e-02 9.51048017e-01 3.08256954e-01 -1.58129632e+00 -8.71747911e-01 -3.14452797e-01 5.16281188e-01 -6.52239203e-01 7.63296247e-01 1.46617746e+00 -4.48612332e-01 6.86954319e-01 -3.47927183e-01 -5.99169791e-01 -1.41243589e+00 3.95719737e-01 4.45709527e-01 -5.70864677e-01 -5.95201373e-01 8.68824542e-01 2.66930480e-02 2.46974215e-01 4.45594519e-01 -2.02680826e-02 -5.44046938e-01 1.13106698e-01 1.15632308e+00 8.12261879e-01 -1.91997245e-01 -8.52106988e-01 -7.01862454e-01 3.13103914e-01 1.77701086e-01 -1.20275572e-01 1.22530258e+00 -4.04020697e-02 4.26986277e-01 5.64662993e-01 1.12724090e+00 -1.98993206e-01 -1.65527737e+00 -1.27080724e-01 8.94420743e-02 -5.17576456e-01 -2.82393694e-01 -1.10237694e+00 -8.83874059e-01 9.18055236e-01 6.54463589e-01 -1.34363323e-01 8.36411953e-01 3.13349873e-01 7.95399487e-01 4.37095076e-01 2.00683579e-01 -1.41107559e+00 6.08234942e-01 7.86938071e-01 1.29595280e+00 -1.25586116e+00 -8.49740133e-02 8.29126537e-02 -9.97905314e-01 4.24770176e-01 1.02000320e+00 -1.28638700e-01 4.48646128e-01 4.30434160e-02 -1.21798329e-01 -2.91453928e-01 -1.05882359e+00 -3.98346096e-01 6.81021452e-01 7.39953816e-01 2.08275735e-01 -6.55973032e-02 -2.92438567e-01 9.36781466e-01 2.70501435e-01 2.49946132e-01 1.77046895e-01 8.39069664e-01 -2.22946346e-01 -3.75940293e-01 2.75464296e-01 1.97598979e-01 -5.52275658e-01 2.81568825e-01 -6.53731048e-01 6.49854720e-01 1.07959345e-01 7.92982161e-01 8.72713402e-02 -4.75539237e-01 5.58240414e-01 2.36058220e-01 6.14412963e-01 -3.21174204e-01 -4.76071119e-01 -2.40398616e-01 3.87389064e-01 -1.57431078e+00 -7.45880187e-01 -9.26670492e-01 -9.19671893e-01 -3.27049971e-01 4.60727870e-01 -5.62390685e-03 2.20995173e-01 1.03158903e+00 5.98775387e-01 7.15063214e-01 -1.83222778e-02 -8.48560154e-01 1.79488640e-02 -1.33209312e+00 -3.93411696e-01 5.15979528e-01 3.27944383e-02 -7.03980327e-01 -3.03197473e-01 3.35736156e-01]
[8.321216583251953, 0.4723582863807678]
4762f01a-a16c-467f-85a1-920f67917965
learning-disentangling-and-fusing-networks
1712.04646
null
http://arxiv.org/abs/1712.04646v1
http://arxiv.org/pdf/1712.04646v1.pdf
Learning Disentangling and Fusing Networks for Face Completion Under Structured Occlusions
Face completion aims to generate semantically new pixels for missing facial components. It is a challenging generative task due to large variations of face appearance. This paper studies generative face completion under structured occlusions. We treat the face completion and corruption as disentangling and fusing processes of clean faces and occlusions, and propose a jointly disentangling and fusing Generative Adversarial Network (DF-GAN). First, three domains are constructed, corresponding to the distributions of occluded faces, clean faces and structured occlusions. The disentangling and fusing processes are formulated as the transformations between the three domains. Then the disentangling and fusing networks are built to learn the transformations from unpaired data, where the encoder-decoder structure is adopted and allows DF-GAN to simulate structure occlusions by modifying the latent representations. Finally, the disentangling and fusing processes are unified into a dual learning framework along with an adversarial strategy. The proposed method is evaluated on Meshface verification problem. Experimental results on four Meshface databases demonstrate the effectiveness of our proposed method for the face completion under structured occlusions.
['Ran He', 'Yibo Hu', 'Zhihang Li']
2017-12-13
null
null
null
null
['facial-inpainting']
['computer-vision']
[ 3.69703323e-01 2.44099304e-01 3.79986018e-01 -4.89633113e-01 -7.84489036e-01 -5.30314922e-01 7.80125022e-01 -8.84134710e-01 1.94723368e-01 7.51125813e-01 2.99016148e-01 1.63671657e-01 1.21504582e-01 -8.14268947e-01 -1.00827241e+00 -1.17672503e+00 3.66476834e-01 4.29196060e-01 -6.94555581e-01 2.79951058e-02 -4.06620920e-01 4.61177707e-01 -1.48575628e+00 2.36531645e-01 9.91385937e-01 6.70372427e-01 -1.66117370e-01 5.32712877e-01 -1.15036294e-02 6.17711544e-01 -6.72460198e-01 -6.16818249e-01 4.56557572e-01 -4.63378161e-01 -2.52596557e-01 5.26138544e-01 5.98215461e-01 -5.91676235e-01 -6.09335184e-01 1.20521700e+00 4.49225187e-01 -9.95839015e-02 7.59003580e-01 -1.60896409e+00 -1.11872768e+00 2.69520879e-01 -7.39949405e-01 -4.17574018e-01 3.40211630e-01 2.60134667e-01 6.69083655e-01 -1.05913067e+00 5.00204384e-01 1.85445583e+00 2.96137959e-01 8.86898696e-01 -1.23193574e+00 -1.12804723e+00 2.61162251e-01 -1.92986637e-01 -1.47234225e+00 -7.18012631e-01 9.76803482e-01 -6.09341025e-01 1.09329380e-01 1.97208911e-01 4.00754303e-01 1.26701963e+00 2.75255125e-02 7.18197405e-01 1.07513559e+00 -1.19792126e-01 6.29776791e-02 -8.58784770e-04 -3.36830407e-01 8.03975582e-01 3.28097165e-01 2.48055339e-01 -1.74385473e-01 -2.26174071e-01 1.06976116e+00 2.64006495e-01 -3.90233755e-01 -2.79799461e-01 -8.02640259e-01 7.91768551e-01 2.28640839e-01 -2.90126204e-01 -3.74169528e-01 4.46390696e-02 3.10871936e-02 2.93745816e-01 5.35374582e-01 -2.44397327e-01 1.31585393e-02 6.37658060e-01 -7.89792240e-01 4.56083119e-01 6.56420112e-01 1.38168752e+00 7.99681425e-01 5.16119063e-01 -4.08956409e-01 9.17497516e-01 6.44162118e-01 8.97528529e-01 5.90033978e-02 -8.69462550e-01 6.15599334e-01 3.81588042e-01 -3.48994657e-02 -8.89777243e-01 2.79282629e-01 -4.66922402e-01 -1.14519310e+00 5.10743678e-01 1.10756271e-01 -4.36920822e-01 -1.25156987e+00 2.18929648e+00 5.02955616e-01 4.78838801e-01 1.81767181e-01 6.54220641e-01 1.03089833e+00 7.08682895e-01 -5.05257808e-02 -2.63959020e-01 1.38738751e+00 -8.97358716e-01 -1.15147352e+00 -7.71075860e-02 -1.35122672e-01 -7.43138611e-01 6.20639682e-01 2.60576427e-01 -1.26923215e+00 -7.31282830e-01 -1.11782384e+00 -2.34133258e-01 1.49863213e-01 3.49177122e-01 3.76062214e-01 5.54209352e-01 -8.68670166e-01 1.83532834e-01 -8.06980312e-01 2.99102783e-01 9.09247756e-01 5.65836132e-01 -8.20603549e-01 -4.03301626e-01 -1.00190258e+00 4.82839555e-01 -5.68818450e-02 4.95973408e-01 -1.46975756e+00 -7.58885682e-01 -1.12355173e+00 9.79986861e-02 2.38258690e-01 -9.99568284e-01 8.21295679e-01 -1.10259616e+00 -1.48454523e+00 9.43387210e-01 -2.35917270e-01 1.05409540e-01 6.81387544e-01 -1.12840220e-01 -3.75407100e-01 -2.84456462e-01 1.09624222e-01 4.72228616e-01 1.40663755e+00 -1.61892509e+00 -2.76815176e-01 -5.68084717e-01 -2.03599080e-01 1.92726105e-01 -2.14184858e-02 -1.84812441e-01 -5.36731184e-01 -8.74750912e-01 -7.10043998e-04 -7.86830127e-01 6.89721853e-02 1.51163831e-01 -5.53370059e-01 1.64538696e-01 1.04955685e+00 -1.10253620e+00 8.80003095e-01 -2.26596141e+00 7.07395673e-01 1.46230400e-01 3.82091016e-01 1.39386013e-01 -5.90565622e-01 1.09611027e-01 -3.79229158e-01 -8.63614306e-02 -4.23587173e-01 -9.07596648e-01 4.44212742e-02 4.73997623e-01 -3.56666833e-01 5.81419408e-01 3.78448606e-01 8.79043698e-01 -6.73612475e-01 -2.54765302e-01 1.11927100e-01 9.64613795e-01 -5.89523733e-01 6.35994613e-01 -8.89262557e-02 8.46318483e-01 -3.80016387e-01 6.90798640e-01 1.32993567e+00 3.61036062e-01 3.11908592e-02 -2.96185642e-01 3.56645137e-01 -2.49746054e-01 -1.24114370e+00 1.70853543e+00 -3.57266277e-01 5.92765212e-02 4.54982758e-01 -8.01199555e-01 1.03038585e+00 5.16915619e-01 9.90009606e-02 -2.10731208e-01 2.75265336e-01 1.66470394e-01 -4.09208946e-02 -4.76166248e-01 -8.98876712e-02 -4.02709484e-01 9.25942808e-02 2.94219881e-01 4.49612945e-01 -2.18894988e-01 -1.56178653e-01 2.76748575e-02 7.24926353e-01 3.87452245e-01 -8.74127001e-02 -7.71326721e-02 7.70246685e-01 -8.92319083e-01 1.00225675e+00 9.50454101e-02 1.02076434e-01 7.52058268e-01 7.01142013e-01 -3.36029589e-01 -9.81599927e-01 -1.31704259e+00 1.13149926e-01 5.01601100e-01 -8.61879960e-02 -2.13788468e-02 -9.67251778e-01 -8.94923747e-01 1.11874603e-02 4.55958843e-01 -9.23617899e-01 -3.52641433e-01 -5.89790881e-01 -5.82664430e-01 4.78629321e-01 3.81602198e-01 7.01659501e-01 -9.28582191e-01 4.44282502e-01 -1.47002935e-01 -1.31840900e-01 -1.06684577e+00 -7.61706412e-01 -2.72270769e-01 -5.27661562e-01 -1.03997838e+00 -8.67558777e-01 -9.73320663e-01 1.05142725e+00 7.61364028e-02 8.28638375e-01 6.88701496e-02 -3.04580986e-01 5.94027676e-02 1.54659599e-01 -1.77753568e-01 -5.71845353e-01 -4.18550670e-01 3.46486084e-02 6.47020042e-01 -1.48344949e-01 -1.04231775e+00 -6.15175903e-01 2.09094271e-01 -1.08179295e+00 2.33980432e-01 5.05479455e-01 1.13401031e+00 6.03490114e-01 7.60360882e-02 4.80815023e-01 -1.08452320e+00 4.03432816e-01 -5.68938434e-01 -6.86755657e-01 3.18762392e-01 -1.89320922e-01 1.25643596e-01 5.30370772e-01 -4.66720462e-01 -1.48692679e+00 1.99202895e-01 -2.75728792e-01 -9.48800325e-01 -1.04429260e-01 -8.59957412e-02 -1.29699969e+00 -6.74891397e-02 1.77549720e-01 2.61867315e-01 1.18155077e-01 -3.79079819e-01 6.41911685e-01 3.98667932e-01 7.11451888e-01 -8.47488403e-01 1.30798888e+00 5.68203330e-01 6.86464906e-02 -4.81476754e-01 -5.14840484e-01 3.67359042e-01 -5.10224640e-01 -1.17967591e-01 1.04556072e+00 -1.14269304e+00 -5.43270826e-01 8.99194419e-01 -1.19042885e+00 1.59066558e-01 -3.47853869e-01 8.67828578e-02 -5.38502455e-01 3.44372123e-01 -5.24458706e-01 -6.79965913e-01 -2.27346942e-01 -1.52578723e+00 1.27401316e+00 3.18756908e-01 3.00925821e-01 -9.14154828e-01 -5.24235740e-02 4.44210529e-01 -1.96675286e-02 8.78495574e-01 7.51016557e-01 -2.79614389e-01 -7.32109189e-01 -2.18882263e-01 -8.19780082e-02 7.46287704e-01 5.92263877e-01 -2.25527212e-02 -1.14298236e+00 -4.82253134e-01 3.70867968e-01 -2.54296154e-01 7.00057983e-01 1.30669266e-01 1.16080296e+00 -6.13944590e-01 -2.22442299e-01 1.19050062e+00 1.18377531e+00 3.81681800e-01 8.08036268e-01 -4.81243074e-01 1.03754902e+00 6.62001491e-01 1.34914488e-01 3.42874795e-01 1.29052728e-01 4.55381721e-01 5.55390298e-01 -2.66596377e-01 -3.32662404e-01 -6.45233035e-01 2.31651500e-01 6.86347544e-01 -4.84714583e-02 -2.56601632e-01 -4.57920402e-01 2.34334618e-01 -1.57514203e+00 -9.29982364e-01 2.33791739e-01 2.01048994e+00 7.34419584e-01 -4.03510123e-01 -3.58053446e-01 6.70037046e-02 9.47784960e-01 3.02951485e-01 -7.16322541e-01 7.21853077e-02 -2.03422174e-01 4.85862195e-01 -3.30429785e-02 8.20452332e-01 -8.85332465e-01 7.52038777e-01 5.13565540e+00 8.88069034e-01 -8.13549280e-01 3.48530561e-01 7.17983842e-01 5.10632060e-02 -6.52948618e-01 3.02687157e-02 -7.33986974e-01 5.47320127e-01 1.42917499e-01 2.36558154e-01 6.37458265e-01 5.25112867e-01 -3.01468540e-02 5.00540078e-01 -1.19087565e+00 1.10430014e+00 3.91493291e-01 -1.03672075e+00 4.07541543e-01 1.58889830e-01 1.02021170e+00 -6.15126014e-01 3.84705216e-01 1.93348125e-01 5.53277552e-01 -1.28028440e+00 7.17287660e-01 6.90081358e-01 1.17155480e+00 -7.36166835e-01 4.03893173e-01 1.78438187e-01 -1.14357996e+00 4.66076061e-02 -5.92055954e-02 3.02575171e-01 3.21415007e-01 4.83363986e-01 -2.38695398e-01 8.57718289e-01 1.33801416e-01 7.50347376e-01 -1.62242249e-01 4.13292408e-01 -6.72266304e-01 2.24138960e-01 4.21826020e-02 8.19616795e-01 -3.76307517e-01 -5.96900463e-01 5.83091795e-01 6.42142892e-01 3.41803670e-01 1.62852332e-01 1.58127341e-02 1.21238816e+00 -5.09837568e-01 -3.52759659e-01 -6.16634846e-01 9.23550725e-02 4.75409955e-01 1.30320966e+00 -1.67860195e-01 -3.12511444e-01 -2.55662590e-01 1.30801475e+00 3.48423481e-01 7.07760453e-01 -1.07661796e+00 -1.73985735e-01 9.18331623e-01 -6.30020052e-02 3.27229165e-02 3.97043787e-02 -2.69691437e-01 -1.52845550e+00 1.85351253e-01 -1.01147938e+00 1.00374341e-01 -7.25087106e-01 -1.36569095e+00 7.74353027e-01 5.01502119e-02 -1.08689415e+00 9.55683086e-03 -3.63355070e-01 -9.36339736e-01 1.31765378e+00 -1.54082739e+00 -1.66575968e+00 -5.59038401e-01 8.19431365e-01 5.18308878e-01 -3.37176979e-01 6.70307577e-01 5.01221776e-01 -8.02520752e-01 8.42235804e-01 -7.73570761e-02 2.72031605e-01 5.31093478e-01 -9.28520322e-01 2.23062009e-01 9.65242267e-01 -1.06627144e-01 6.30540013e-01 4.31039184e-01 -6.71857059e-01 -1.43653393e+00 -1.42159235e+00 3.98559570e-01 -2.35123351e-01 4.17722166e-02 -8.91104519e-01 -9.25353467e-01 1.01542449e+00 4.04158950e-01 3.88954669e-01 5.34882307e-01 -3.46418083e-01 -7.17283964e-01 -2.99201310e-01 -1.36535227e+00 5.02249002e-01 1.19532108e+00 -6.29403889e-01 -4.45945978e-01 3.44451427e-01 8.17503393e-01 -5.08700013e-01 -6.14287794e-01 4.72674698e-01 5.95227897e-01 -6.16661847e-01 1.02147985e+00 -5.34563422e-01 6.51987791e-01 -5.31367838e-01 -2.02796474e-01 -1.27653420e+00 -2.44080573e-01 -8.75275075e-01 -1.01039894e-01 1.84761369e+00 4.85548042e-02 -7.26862371e-01 5.82262695e-01 3.72952044e-01 -1.16573282e-01 -5.63824594e-01 -9.26233470e-01 -5.78218162e-01 2.85585791e-01 1.53328627e-01 1.07427180e+00 8.56876910e-01 -8.18546116e-01 3.73098552e-01 -7.81452656e-01 3.24206650e-01 9.11789656e-01 -1.29504651e-01 9.16784763e-01 -9.63824332e-01 -4.03639674e-01 -9.66057461e-03 -9.56934392e-02 -8.36502731e-01 5.86926639e-01 -9.26709473e-01 5.11370189e-02 -1.24136329e+00 2.67986000e-01 -3.12491804e-01 1.22755617e-01 3.89647305e-01 -3.30165476e-01 1.22943260e-01 1.03502475e-01 6.38827682e-02 1.81279004e-01 1.15371716e+00 1.66471303e+00 -3.86851192e-01 4.53766547e-02 -1.26924828e-01 -7.72112131e-01 6.21294379e-01 3.25772315e-01 -2.71453589e-01 -7.76262760e-01 -6.97209299e-01 -1.53204471e-01 3.82383019e-01 4.37213033e-01 -8.28742206e-01 -9.96308923e-02 1.25177866e-02 5.75118005e-01 -2.52716422e-01 6.03064179e-01 -8.89037132e-01 6.62493944e-01 3.43559444e-01 -1.34476036e-01 -9.93261188e-02 9.29050967e-02 6.92516804e-01 -2.95484781e-01 2.23999754e-01 9.17036235e-01 5.91298973e-04 1.02183491e-01 8.24670732e-01 1.60967201e-01 4.98499610e-02 1.22827888e+00 -1.44500092e-01 -5.55419959e-02 -2.60974318e-01 -1.14906895e+00 1.57338023e-01 2.44683981e-01 5.23345530e-01 8.13121855e-01 -1.76494455e+00 -1.08842647e+00 1.03759885e+00 -2.42920622e-01 3.81919593e-01 6.57770276e-01 3.42525125e-01 -2.53003299e-01 -2.06702471e-01 -3.67358029e-01 -3.85265142e-01 -1.37635660e+00 6.42386436e-01 4.39159125e-01 -2.69293875e-01 -2.44454503e-01 1.01793277e+00 9.44028080e-01 -5.11038244e-01 1.84519619e-01 -9.65896100e-02 -1.09935746e-01 -9.14463773e-02 4.18892950e-01 2.04035729e-01 -1.82436988e-01 -8.32016349e-01 -5.37279248e-02 6.90452754e-01 -1.28719211e-01 -1.34994775e-01 1.23387015e+00 -9.36186612e-02 -3.66986245e-01 -1.06600672e-01 1.26836765e+00 1.51430815e-01 -1.60887241e+00 -1.01088904e-01 -9.11010742e-01 -6.51767135e-01 -3.24632883e-01 -4.10517633e-01 -1.56540418e+00 1.15580571e+00 5.28405666e-01 -4.34039593e-01 1.40126598e+00 -2.18005538e-01 6.54781699e-01 -4.88810420e-01 1.64442971e-01 -3.52479428e-01 7.12954924e-02 2.50205696e-01 1.32475090e+00 -9.42588389e-01 -2.79964507e-01 -8.23524714e-01 -3.30686957e-01 7.66967595e-01 8.62594366e-01 -4.65253919e-01 8.21968257e-01 4.85153854e-01 -3.26800019e-01 -1.14437468e-01 -6.82373166e-01 2.49664173e-01 2.96938449e-01 7.67163754e-01 7.66228214e-02 1.24616526e-01 -1.17541835e-01 9.09351170e-01 -8.82825926e-02 -2.18878444e-02 1.49622202e-01 5.50055504e-01 2.56576777e-01 -1.38713872e+00 -5.53531587e-01 1.10839896e-01 -3.51097673e-01 -1.48440683e-02 -1.71242297e-01 5.94202697e-01 8.10294151e-01 7.98262358e-01 8.69175885e-03 -4.23515707e-01 2.52339900e-01 1.52980257e-02 6.71692252e-01 -6.60887957e-01 -4.17514056e-01 1.32935509e-01 -2.61223733e-01 -3.77045959e-01 -1.73752561e-01 -6.49494648e-01 -8.81303906e-01 -2.34267682e-01 -3.31526995e-01 1.48967683e-01 2.51838744e-01 7.65469313e-01 4.02448565e-01 8.11477482e-01 9.57142770e-01 -7.35243142e-01 -5.37362456e-01 -8.91528070e-01 -6.93063080e-01 6.32354081e-01 5.59408009e-01 -7.99290419e-01 -4.30936784e-01 3.98876756e-01]
[12.855669975280762, 0.07993996143341064]
4cf25f2f-12aa-40fc-8c6a-65e092bf5b45
when-does-bottom-up-beat-top-down-in
2306.00833
null
https://arxiv.org/abs/2306.00833v1
https://arxiv.org/pdf/2306.00833v1.pdf
When Does Bottom-up Beat Top-down in Hierarchical Community Detection?
Hierarchical clustering of networks consists in finding a tree of communities, such that lower levels of the hierarchy reveal finer-grained community structures. There are two main classes of algorithms tackling this problem. Divisive ($\textit{top-down}$) algorithms recursively partition the nodes into two communities, until a stopping rule indicates that no further split is needed. In contrast, agglomerative ($\textit{bottom-up}$) algorithms first identify the smallest community structure and then repeatedly merge the communities using a $\textit{linkage}$ method. In this article, we establish theoretical guarantees for the recovery of the hierarchical tree and community structure of a Hierarchical Stochastic Block Model by a bottom-up algorithm. We also establish that this bottom-up algorithm attains the information-theoretic threshold for exact recovery at intermediate levels of the hierarchy. Notably, these recovery conditions are less restrictive compared to those existing for top-down algorithms. This shows that bottom-up algorithms extend the feasible region for achieving exact recovery at intermediate levels. Numerical experiments on both synthetic and real data sets confirm the superiority of bottom-up algorithms over top-down algorithms. We also observe that top-down algorithms can produce dendrograms with inversions. These findings contribute to a better understanding of hierarchical clustering techniques and their applications in network analysis.
['Patrick Thiran', 'Matthias Grossglauser', 'Daichi Kuroda', 'Maximilien Dreveton']
2023-06-01
null
null
null
null
['stochastic-block-model', 'community-detection']
['graphs', 'graphs']
[ 2.78614640e-01 2.60932803e-01 -6.87583238e-02 2.43063532e-02 -3.22872192e-01 -7.99230218e-01 1.19276129e-01 6.19507968e-01 -6.33689016e-02 4.55454350e-01 -8.93638507e-02 -4.49229211e-01 -7.58371949e-01 -1.23210418e+00 -4.78440225e-01 -9.47426260e-01 -7.43076026e-01 8.26889813e-01 5.35090923e-01 -4.08904813e-02 3.95433545e-01 3.70143116e-01 -1.44408941e+00 2.37611100e-01 1.00042975e+00 4.04194176e-01 8.21104273e-02 6.86919868e-01 -6.97776824e-02 3.76864165e-01 -1.74686313e-01 -2.03642800e-01 3.78294945e-01 -4.81044859e-01 -9.52397883e-01 3.80882949e-01 -2.48874575e-01 4.86534201e-02 -7.61658102e-02 1.30803895e+00 1.39781877e-01 -3.15147668e-01 6.90658033e-01 -1.45546043e+00 -1.99848101e-01 1.12331629e+00 -1.38438570e+00 1.38485685e-01 3.05826545e-01 -4.63568270e-01 1.26587069e+00 -6.57666922e-01 5.57605565e-01 1.14706790e+00 8.84277105e-01 -7.05012307e-02 -1.73630655e+00 -8.26466858e-01 1.50319085e-01 -1.75493196e-01 -1.87310398e+00 -1.54062048e-01 5.65027773e-01 -7.83264160e-01 3.24544251e-01 3.60868275e-01 6.85770571e-01 1.43404290e-01 -1.41444460e-01 3.93135786e-01 1.19743967e+00 -4.68388259e-01 3.71040612e-01 -1.54197276e-01 4.22226787e-01 6.70566380e-01 1.04237711e+00 -2.82795906e-01 -4.11985368e-01 -5.95466614e-01 7.92000353e-01 1.35486573e-02 -1.18743189e-01 -8.61888468e-01 -1.09670138e+00 9.11803961e-01 5.19365311e-01 5.11727810e-01 -3.81795108e-01 1.28839165e-01 2.20882073e-01 3.25423568e-01 3.17559808e-01 5.02383336e-02 6.87753186e-02 5.28108478e-01 -1.41713560e+00 -1.39355794e-01 7.26027727e-01 1.23877382e+00 1.03713787e+00 -4.17792946e-01 3.05322766e-01 4.93482590e-01 3.58686507e-01 1.51731774e-01 -2.60629207e-01 -1.13112068e+00 4.51091230e-01 7.78442860e-01 8.52887891e-03 -1.36551869e+00 -3.71465683e-01 -5.65842211e-01 -1.48777354e+00 -1.03215791e-01 6.22758567e-01 1.10259661e-02 -5.05004704e-01 1.68930805e+00 3.73253047e-01 -6.48021773e-02 -7.18538240e-02 4.18620974e-01 1.27056018e-01 5.59783995e-01 -3.30278695e-01 -7.34160602e-01 1.27573740e+00 -4.25128847e-01 -3.75587225e-01 2.51702726e-01 4.43294019e-01 -3.74421060e-01 4.82458949e-01 3.55620533e-01 -1.32952559e+00 -3.10847521e-01 -8.87826025e-01 6.46698534e-01 1.65256828e-01 -3.00709188e-01 4.37509775e-01 8.79459023e-01 -1.53063762e+00 6.08578086e-01 -9.04238224e-01 -5.62709332e-01 8.97356793e-02 4.65392262e-01 -2.27310017e-01 -1.17639080e-01 -7.60619640e-01 -3.29914875e-02 4.65476841e-01 3.18160504e-01 -6.68112397e-01 -4.20208901e-01 -5.03260911e-01 2.99928218e-01 4.78964806e-01 -6.84895039e-01 4.72815275e-01 -6.68403447e-01 -5.57135582e-01 8.33076596e-01 -3.44987452e-01 -4.55174983e-01 4.97967422e-01 6.42189085e-01 1.42218247e-01 6.15661621e-01 6.02093160e-01 3.08221459e-01 5.91598451e-01 -1.71695137e+00 -6.76143646e-01 -5.52928090e-01 -1.72766298e-01 3.49658504e-02 -4.19186056e-01 -5.17122746e-02 -4.67665374e-01 -3.01328242e-01 1.00055254e+00 -9.72982228e-01 -5.13861299e-01 -3.79147619e-01 -7.71010041e-01 -2.51733273e-01 2.42558658e-01 -2.35860586e-01 1.57591438e+00 -1.83868241e+00 2.52349615e-01 1.04293478e+00 8.86447728e-01 -4.68011975e-01 2.50645220e-01 1.06425154e+00 -1.39323890e-01 6.26078427e-01 -5.41041374e-01 -1.54824869e-03 -2.12443694e-01 9.06411633e-02 -4.07208689e-02 7.16388166e-01 -4.30017948e-01 1.61258534e-01 -7.97236979e-01 -7.45334208e-01 -1.71469852e-01 -6.40892684e-02 -8.71120989e-01 -4.18661147e-01 5.69692910e-01 2.60102123e-01 -3.60047698e-01 4.06125903e-01 8.57033312e-01 -7.20541298e-01 1.02157688e+00 1.60156384e-01 -3.48878205e-01 -1.30883843e-01 -1.64250016e+00 8.66563737e-01 2.05905169e-01 2.73360610e-01 7.50752330e-01 -1.28105581e+00 7.03953624e-01 2.84037471e-01 8.20919037e-01 8.01153481e-02 -6.49067760e-02 2.25822881e-01 2.22351328e-01 6.05277084e-02 3.13636541e-01 -4.28625524e-01 -1.87584370e-01 6.71478570e-01 -5.67866027e-01 1.21603236e-01 6.06793463e-01 7.45570838e-01 1.35315824e+00 -6.39703512e-01 2.97518998e-01 -8.03100884e-01 4.04149264e-01 1.13797732e-01 6.65585577e-01 1.11649895e+00 -2.69556135e-01 4.27365839e-01 8.87245595e-01 2.18710989e-01 -1.16241860e+00 -1.11269844e+00 -7.59901106e-02 9.19164479e-01 3.38898063e-01 -5.51315665e-01 -1.07210851e+00 -1.29739046e-01 8.92943218e-02 -4.83195111e-02 -8.05133283e-01 3.33238184e-01 -3.01243633e-01 -9.48480010e-01 4.25748140e-01 3.09280694e-01 3.55289996e-01 -5.03018439e-01 -3.58930737e-01 2.47975901e-01 -5.42651594e-01 -8.95295978e-01 -2.91670680e-01 1.19659342e-01 -1.30642736e+00 -1.22433841e+00 -5.60788751e-01 -9.74507987e-01 1.19336700e+00 7.66456544e-01 7.55231023e-01 6.02493584e-01 9.59968492e-02 1.86746240e-01 -3.91430527e-01 4.47634131e-01 -5.18320441e-01 1.86096817e-01 1.17163464e-01 2.01363992e-02 1.07654840e-01 -1.03074110e+00 -6.55052423e-01 4.27710980e-01 -7.83955097e-01 5.58899902e-02 4.57908243e-01 5.97858131e-01 4.83248860e-01 1.11763144e+00 3.69424373e-01 -7.57566690e-01 6.18327141e-01 -5.42110622e-01 -7.28586972e-01 7.36601055e-02 -6.89226985e-01 2.01210398e-02 4.86458331e-01 1.64256245e-01 -6.68487787e-01 1.22304589e-01 3.38722378e-01 -1.31926894e-01 1.36069059e-01 6.64782941e-01 -4.72314619e-02 3.42714489e-01 3.50577831e-01 2.02424452e-01 7.57108349e-03 -3.63433838e-01 1.81103513e-01 5.81185699e-01 3.54846299e-01 -7.39964247e-01 1.08598590e+00 1.05083239e+00 2.24365324e-01 -1.01872396e+00 -3.45552474e-01 -7.99633801e-01 -1.14546895e+00 -3.47180545e-01 5.08679330e-01 -7.45157003e-01 -1.07222581e+00 2.38467410e-01 -6.73677027e-01 -5.27826957e-02 1.01297602e-01 1.45601243e-01 -5.70466042e-01 8.43001068e-01 -8.11688483e-01 -1.13407636e+00 2.82552429e-02 -8.49650621e-01 6.30669832e-01 -2.59341896e-01 -2.08820120e-01 -8.46809208e-01 -7.81081021e-02 3.44467223e-01 -2.74508893e-01 3.66662979e-01 1.05390608e+00 -3.43757987e-01 -6.95128024e-01 6.72056824e-02 -3.89364123e-01 -2.66832620e-01 6.10084683e-02 2.42823482e-01 -3.11018944e-01 -7.63716459e-01 -2.07855821e-01 3.01159263e-01 8.60194087e-01 5.51690578e-01 7.11560071e-01 -5.65138578e-01 -8.27768981e-01 2.59263724e-01 1.57256222e+00 6.42199516e-02 4.33420420e-01 3.14038098e-01 5.22293746e-01 1.00549579e+00 1.58796981e-01 6.02667987e-01 4.59520817e-01 2.46619925e-01 3.26722026e-01 -3.36936861e-02 3.59014302e-01 -3.04236978e-01 -6.95163086e-02 1.22163832e+00 -1.28945887e-01 -7.56671578e-02 -1.22748733e+00 9.97388363e-01 -1.80102205e+00 -1.24711323e+00 -7.61134624e-01 2.46974635e+00 1.00930977e+00 2.81177729e-01 5.44950008e-01 7.02410877e-01 1.51258802e+00 -2.53727883e-01 -2.57517666e-01 -1.63951829e-01 1.23114223e-02 1.88045353e-02 4.78333712e-01 5.86037993e-01 -8.96422982e-01 5.76031685e-01 6.48732758e+00 7.04008758e-01 -3.07865560e-01 -6.22849353e-02 5.17989337e-01 2.67904162e-01 -4.34241980e-01 3.72680724e-01 -6.52178407e-01 2.53648967e-01 7.38027155e-01 -5.13802111e-01 2.65414268e-01 5.90746403e-01 4.48270172e-01 -2.42212445e-01 -8.94983709e-01 4.47171032e-01 -5.60659230e-01 -1.17040420e+00 -1.32745475e-01 7.00308025e-01 9.30163920e-01 -3.08297068e-01 -3.21126103e-01 -2.71625161e-01 1.01257873e+00 -7.18252659e-01 5.90276420e-01 -6.62185326e-02 7.05928445e-01 -1.04534447e+00 3.44250023e-01 6.57042980e-01 -1.80709505e+00 -2.51199275e-01 -2.56194949e-01 -2.14652225e-01 1.94860682e-01 9.79372859e-01 -6.68943703e-01 8.28846216e-01 9.32502806e-01 5.28171420e-01 -2.86828786e-01 9.52874303e-01 9.53719243e-02 6.37796104e-01 -5.37105978e-01 2.22766548e-01 1.53560191e-01 -6.16636932e-01 6.05137646e-01 1.10453522e+00 2.64194578e-01 2.59644806e-01 3.08865219e-01 6.93373621e-01 -9.42209065e-02 -5.22771245e-03 -4.86563832e-01 8.24154615e-02 8.79694641e-01 8.69415760e-01 -1.62428689e+00 -3.74162734e-01 4.89373244e-02 6.72400355e-01 2.08765432e-01 2.80046999e-01 -4.73879427e-01 -5.04936755e-01 2.62557417e-01 7.78766096e-01 4.98383373e-01 -4.82270867e-01 -5.20102680e-01 -9.10449266e-01 -2.43760511e-01 -7.51321197e-01 7.06740379e-01 -3.34486574e-01 -1.31010771e+00 2.13069484e-01 3.80668551e-01 -1.05344558e+00 6.03226572e-02 4.17376198e-02 -3.04455638e-01 5.33739388e-01 -8.21774900e-01 -5.12220681e-01 -1.43746093e-01 5.19363105e-01 8.83055702e-02 5.61653852e-01 3.37934434e-01 1.25543922e-01 -4.64541018e-01 1.67169645e-01 6.04792178e-01 3.40333998e-01 -3.77003625e-02 -1.30839884e+00 -5.77388182e-02 1.15361190e+00 -2.69003749e-01 1.15351558e+00 7.96782076e-01 -8.82701099e-01 -9.35069323e-01 -7.51971900e-01 9.22272265e-01 7.41572082e-02 9.41095650e-01 -4.47469652e-01 -7.71141112e-01 5.70940137e-01 2.88668036e-01 -5.99616706e-01 7.72102416e-01 2.97829241e-01 -3.34328085e-01 -7.14579299e-02 -1.17871416e+00 5.70617497e-01 1.23252356e+00 -2.35616222e-01 -2.35375613e-01 8.10559765e-02 3.40373635e-01 4.97030407e-01 -1.16537750e+00 4.52832520e-01 5.80333948e-01 -1.34121525e+00 9.46422100e-01 -9.76791978e-02 3.85367960e-01 -5.46249747e-01 -1.13867626e-01 -8.96161556e-01 -5.96264780e-01 -8.86502326e-01 3.57316196e-01 1.19920969e+00 2.67013490e-01 -6.62930191e-01 1.00285614e+00 1.96328722e-02 4.30324882e-01 -4.48823661e-01 -9.77606535e-01 -9.30195272e-01 4.69895273e-01 -3.87218110e-02 2.63604403e-01 1.17168236e+00 3.47318381e-01 3.53334188e-01 1.47301741e-02 3.93235207e-01 1.46800315e+00 4.45970118e-01 5.66788852e-01 -1.73434150e+00 -1.58469230e-01 -6.11460686e-01 -1.92175820e-01 -9.63355839e-01 -1.22664683e-01 -8.74157965e-01 -2.83976402e-02 -1.94476092e+00 8.84513021e-01 -9.26829815e-01 2.12974064e-02 2.83537745e-01 -3.16482559e-02 3.67748439e-01 3.64032164e-02 7.88005829e-01 -4.86364871e-01 7.69578889e-02 9.79213715e-01 1.03768036e-02 -3.64611834e-01 1.72296143e-03 -9.77227986e-01 7.43499637e-01 6.93088472e-01 -6.79318905e-01 -4.54742998e-01 1.15602463e-01 4.80642647e-01 4.83476311e-01 9.18427184e-02 -7.93555796e-01 5.64336956e-01 -7.03305081e-02 -6.96449727e-02 -1.06604052e+00 -5.15553653e-02 -6.88244820e-01 5.16801417e-01 9.05895412e-01 -2.98376918e-01 9.87601131e-02 -1.95983723e-01 9.26918805e-01 7.75174648e-02 -1.72680438e-01 8.72533023e-01 -1.04385354e-01 1.12181075e-01 -6.05008788e-02 -8.94558132e-01 3.54610831e-02 1.08320236e+00 -7.03093886e-01 -3.66162248e-02 -5.33338547e-01 -1.05498540e+00 5.10411441e-01 6.25815749e-01 -3.44214946e-01 2.85613298e-01 -9.84477639e-01 -9.51790392e-01 -8.71346667e-02 -1.17088914e-01 6.85101002e-02 6.21962361e-02 1.16465950e+00 -5.89580536e-01 3.37162614e-01 7.15093836e-02 -9.94092345e-01 -1.63610387e+00 7.68698335e-01 1.39036611e-01 -4.68394667e-01 -4.97481972e-01 6.42740548e-01 6.01879537e-01 -2.25898772e-01 -1.21566884e-01 -4.70421948e-02 8.01457614e-02 3.58060718e-01 1.07269339e-01 6.82242334e-01 -2.84558713e-01 -7.23233283e-01 -4.31338251e-01 6.63057685e-01 7.33126253e-02 -3.97198975e-01 1.30419242e+00 -7.10085034e-01 -8.02576959e-01 2.64646977e-01 8.63237977e-01 2.40248159e-01 -8.55385542e-01 1.11305146e-02 3.75868231e-01 -3.57423425e-01 -3.58759731e-01 4.95158248e-02 -9.24223721e-01 6.50548637e-01 -1.31341472e-01 1.18003225e+00 1.21475208e+00 2.38804802e-01 1.19404264e-01 1.89818695e-01 5.92225313e-01 -8.88513982e-01 5.59577206e-03 1.18582264e-01 3.93065751e-01 -4.23011869e-01 2.23355234e-01 -1.07796001e+00 -7.98266977e-02 7.39318311e-01 1.09277308e-01 -1.00748256e-01 7.93021321e-01 2.53426045e-01 -7.07588255e-01 -3.59750092e-01 -7.08113074e-01 -4.20991361e-01 -4.24922854e-01 5.63296616e-01 2.27504432e-01 1.68555260e-01 -4.80960548e-01 3.48361909e-01 -2.99777925e-01 -3.73697460e-01 8.77441168e-01 1.00571990e+00 -9.23003674e-01 -1.00795841e+00 -7.50695884e-01 3.37524772e-01 -2.69569784e-01 -1.86127394e-01 -5.75244248e-01 9.05580580e-01 -1.39988080e-01 1.52444708e+00 1.12054378e-01 -1.69022352e-01 2.80603170e-02 -2.87747860e-01 4.50791329e-01 -6.20191336e-01 -4.38887566e-01 6.69622719e-01 1.93410125e-02 -5.31119108e-02 -5.83737195e-01 -8.70230436e-01 -1.28527272e+00 -8.90071273e-01 -6.56338930e-01 7.81731963e-01 8.18025693e-02 4.04837787e-01 2.38540396e-01 2.97355920e-01 1.03786469e+00 -5.14024734e-01 -1.65458143e-01 -6.30737066e-01 -9.73472536e-01 2.33600056e-03 -2.43640076e-02 -4.94356155e-01 -7.31661975e-01 1.88684881e-01]
[6.936427593231201, 5.119372844696045]
6de12f31-1ed1-4481-adf4-5e3614389d39
virtual-sparse-convolution-for-multimodal-3d
2303.02314
null
https://arxiv.org/abs/2303.02314v1
https://arxiv.org/pdf/2303.02314v1.pdf
Virtual Sparse Convolution for Multimodal 3D Object Detection
Recently, virtual/pseudo-point-based 3D object detection that seamlessly fuses RGB images and LiDAR data by depth completion has gained great attention. However, virtual points generated from an image are very dense, introducing a huge amount of redundant computation during detection. Meanwhile, noises brought by inaccurate depth completion significantly degrade detection precision. This paper proposes a fast yet effective backbone, termed VirConvNet, based on a new operator VirConv (Virtual Sparse Convolution), for virtual-point-based 3D object detection. VirConv consists of two key designs: (1) StVD (Stochastic Voxel Discard) and (2) NRConv (Noise-Resistant Submanifold Convolution). StVD alleviates the computation problem by discarding large amounts of nearby redundant voxels. NRConv tackles the noise problem by encoding voxel features in both 2D image and 3D LiDAR space. By integrating VirConv, we first develop an efficient pipeline VirConv-L based on an early fusion design. Then, we build a high-precision pipeline VirConv-T based on a transformed refinement scheme. Finally, we develop a semi-supervised pipeline VirConv-S based on a pseudo-label framework. On the KITTI car 3D detection test leaderboard, our VirConv-L achieves 85% AP with a fast running speed of 56ms. Our VirConv-T and VirConv-S attains a high-precision of 86.3% and 87.2% AP, and currently rank 2nd and 1st, respectively. The code is available at https://github.com/hailanyi/VirConv.
['Cheng Wang', 'Xin Li', 'Shaoshuai Shi', 'Chenglu Wen', 'Hai Wu']
2023-03-04
null
http://openaccess.thecvf.com//content/CVPR2023/html/Wu_Virtual_Sparse_Convolution_for_Multimodal_3D_Object_Detection_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Wu_Virtual_Sparse_Convolution_for_Multimodal_3D_Object_Detection_CVPR_2023_paper.pdf
cvpr-2023-1
['depth-completion']
['computer-vision']
[-1.16604269e-01 -2.33970582e-01 2.80721337e-01 -4.86294366e-02 -1.15955174e+00 -3.82471085e-01 4.97737259e-01 4.94058318e-02 -4.92141247e-01 8.69467184e-02 -4.08047467e-01 -1.53618783e-01 1.98852405e-01 -9.52785373e-01 -7.76788533e-01 -5.40365756e-01 2.34855562e-01 6.75772727e-01 7.46073008e-01 5.42296446e-04 8.79468694e-02 8.21970820e-01 -1.84080589e+00 -7.80886114e-02 7.48457789e-01 1.20248401e+00 4.88155663e-01 4.23566341e-01 -2.96888381e-01 3.17242481e-02 -3.36712569e-01 -2.39952981e-01 5.01470208e-01 8.55617374e-02 -2.42820591e-01 -2.61587780e-02 5.74718475e-01 -4.22364771e-01 -1.77295163e-01 1.11393070e+00 5.17075419e-01 -7.03993291e-02 6.61993265e-01 -1.27368569e+00 -4.09571268e-02 1.44239858e-01 -1.02992392e+00 -2.50097752e-01 1.87632024e-01 3.20376754e-01 6.75340295e-01 -1.47221613e+00 5.24484098e-01 1.42518544e+00 8.97319317e-01 2.91698307e-01 -1.35497832e+00 -8.65869701e-01 -5.67094423e-02 3.03448597e-03 -1.89861619e+00 -6.18408546e-02 7.22075105e-01 -6.04091525e-01 8.40383410e-01 3.64350468e-01 7.70297289e-01 8.06147516e-01 5.22638299e-02 7.64127076e-01 9.94686782e-01 -6.89250901e-02 3.32982928e-01 -1.71419173e-01 1.27311975e-01 8.40787053e-01 4.58108127e-01 2.99390346e-01 -3.97287548e-01 -2.98992902e-01 8.55919302e-01 2.85371840e-01 -1.66551337e-01 -5.34767628e-01 -1.08905315e+00 8.24289918e-01 6.05705440e-01 -2.89101183e-01 -3.57608885e-01 1.74137518e-01 1.90134630e-01 -2.09122717e-01 4.52850074e-01 -4.12999354e-02 -2.76150048e-01 1.92551062e-01 -8.98802578e-01 2.69939333e-01 3.55361223e-01 1.06839204e+00 1.11362231e+00 -5.56969419e-02 -1.26132101e-01 6.48868442e-01 4.80573922e-01 1.14864910e+00 -9.95505154e-02 -1.14200246e+00 1.86742797e-01 8.23879302e-01 -2.60699242e-02 -6.71833992e-01 -4.98112917e-01 -4.40280437e-01 -8.45482051e-01 7.82502353e-01 7.67450929e-02 2.40001664e-01 -1.13737357e+00 1.16092074e+00 7.81999648e-01 3.03948522e-01 -1.55391112e-01 1.18654871e+00 9.75494742e-01 4.53942120e-01 -3.02340031e-01 -1.67008378e-02 1.40589440e+00 -6.40416265e-01 -1.75804093e-01 -6.98865429e-02 4.88342375e-01 -8.01880062e-01 9.19852138e-01 4.20896292e-01 -8.32820296e-01 -6.22233987e-01 -1.02963018e+00 -1.89266056e-01 -2.46457532e-02 2.02989951e-01 4.78428632e-01 3.78142267e-01 -8.70505929e-01 3.81637961e-01 -9.38076377e-01 -1.23785198e-01 5.95385790e-01 3.20089072e-01 -3.26675385e-01 -3.15662950e-01 -4.68377203e-01 5.16113818e-01 2.26521611e-01 6.07045256e-02 -9.30453002e-01 -7.37432182e-01 -9.65022445e-01 -3.09757918e-01 5.87267876e-01 -8.74541640e-01 1.15495348e+00 -3.89000438e-02 -1.13756776e+00 9.48374629e-01 -2.56865501e-01 -3.24587524e-01 7.16857612e-01 -3.42194259e-01 -3.61338742e-02 8.44208524e-02 3.58143479e-01 6.47196293e-01 8.21101844e-01 -1.37061322e+00 -6.97513700e-01 -6.33056462e-01 -5.14097512e-01 1.73657462e-01 1.98129728e-01 -3.53178978e-01 -1.07554317e+00 -3.20960671e-01 7.31975794e-01 -8.97915602e-01 -3.24027807e-01 3.23057860e-01 -3.85819048e-01 -3.58901858e-01 9.47077870e-01 -1.72544211e-01 5.88865101e-01 -2.36062312e+00 -3.48799601e-02 2.62547165e-01 7.22869456e-01 4.06476200e-01 -1.76140845e-01 4.68491837e-02 2.71183610e-01 -2.19637409e-01 -3.82568926e-01 -8.43518674e-01 -1.68744221e-01 3.08731556e-01 -2.33947441e-01 6.57839119e-01 1.58759326e-01 7.80234814e-01 -9.48139131e-01 -4.91368890e-01 7.09487677e-01 7.79531181e-01 -4.76564974e-01 1.02137960e-01 -1.39229864e-01 2.43627548e-01 -4.09735173e-01 1.04320800e+00 1.35510445e+00 -1.10497750e-01 -4.24196929e-01 -5.05399346e-01 -5.46258748e-01 4.75885570e-02 -1.40388107e+00 1.71785259e+00 -6.94582164e-02 2.75307685e-01 4.05026227e-01 -4.57752645e-01 1.11494160e+00 -1.86693102e-01 6.07719064e-01 -6.01333857e-01 3.89089137e-01 3.80625874e-01 -7.30880857e-01 -2.15674490e-02 6.06452823e-01 1.03302412e-01 5.35611212e-02 1.65783867e-01 -1.39825186e-02 -5.07493436e-01 -9.81241167e-02 3.83395046e-01 1.26549637e+00 3.49283427e-01 1.59787849e-01 3.82519257e-03 4.87207144e-01 1.98871955e-01 7.12475240e-01 7.31002033e-01 -1.36939108e-01 8.78925085e-01 1.23406567e-01 -4.71019596e-02 -7.17497349e-01 -1.49798667e+00 -3.75470370e-01 3.33603621e-01 5.85646927e-01 -5.97676456e-01 -5.32637775e-01 -5.34684718e-01 4.96982843e-01 5.49257278e-01 -3.18209827e-01 -4.17368934e-02 -3.78057212e-01 -4.44453090e-01 3.09909910e-01 3.91355366e-01 4.05192584e-01 -4.91213053e-01 -7.12641835e-01 4.15270068e-02 -3.99830304e-02 -1.13985717e+00 -2.73056686e-01 1.97000757e-01 -1.01403701e+00 -1.11328769e+00 -4.87737745e-01 -3.69785577e-01 5.28837860e-01 8.93231213e-01 8.22660685e-01 -1.39637087e-02 -4.78297740e-01 4.16538388e-01 -4.39377308e-01 -4.83969003e-01 -1.67900845e-02 -2.31923327e-01 3.29408705e-01 -1.16643965e-01 4.94055271e-01 -4.97974545e-01 -5.16406000e-01 4.90315199e-01 -5.09329140e-01 2.80862123e-01 6.16636753e-01 5.44236124e-01 1.29259443e+00 -3.10182840e-01 -3.17853868e-01 -3.72185618e-01 -1.63986102e-01 -3.09682935e-01 -1.12842941e+00 -3.27162057e-01 -5.41614473e-01 -6.97540417e-02 3.63073088e-02 -2.96343118e-01 -6.85391665e-01 5.93205452e-01 -4.39857244e-01 -1.19359982e+00 -4.51615633e-04 -1.11463224e-03 -1.23395346e-01 -2.80312270e-01 6.84705138e-01 1.84928343e-01 1.04966804e-01 -8.37706387e-01 3.80013555e-01 6.92360103e-01 7.66619503e-01 -3.15931082e-01 1.26626873e+00 9.11469579e-01 1.12423129e-01 -9.71773982e-01 -6.79650068e-01 -6.87854052e-01 -6.57420814e-01 -3.48039418e-01 8.15602660e-01 -1.32818496e+00 -8.39666784e-01 4.70034808e-01 -1.35804427e+00 -2.91403383e-01 -4.96530682e-01 6.07662022e-01 -2.17275113e-01 4.71163005e-01 -4.04692292e-01 -9.78635788e-01 -4.17506725e-01 -1.21653843e+00 1.58244669e+00 -4.58396832e-03 1.00653283e-01 -1.23558395e-01 -8.91938880e-02 4.03456539e-01 -1.25286534e-01 3.79648924e-01 1.30829111e-01 -6.77393898e-02 -1.04602170e+00 -2.25737244e-01 -6.32484555e-01 2.93339700e-01 -1.85777962e-01 -1.16761453e-01 -1.13435650e+00 -1.97077900e-01 1.84200611e-03 -4.05145958e-02 1.03829372e+00 2.24168435e-01 8.80162656e-01 4.00831580e-01 -5.20825446e-01 1.02187490e+00 1.45197546e+00 -1.11808710e-01 4.26717520e-01 1.60540622e-02 1.00716579e+00 2.50367701e-01 9.25975621e-01 4.85306591e-01 4.58465487e-01 8.20290864e-01 9.73325253e-01 -1.35289088e-01 -4.41495001e-01 -2.28651330e-01 3.96399945e-01 7.05707014e-01 -1.80399165e-01 2.17331111e-01 -1.00151443e+00 2.73925811e-01 -1.90524983e+00 -5.41501999e-01 -9.38573122e-01 2.29992366e+00 3.55374783e-01 3.12587678e-01 -1.07410559e-02 1.57248259e-01 5.24874806e-01 -7.02072233e-02 -6.99375451e-01 2.62292981e-01 -1.66964114e-01 2.08754137e-01 8.19661677e-01 5.79041660e-01 -1.05940604e+00 9.41897988e-01 4.52874899e+00 8.66434932e-01 -9.10840273e-01 4.44162518e-01 -2.50150729e-02 -1.44246340e-01 -1.55087709e-01 -2.71374900e-02 -1.19634855e+00 3.17397118e-01 3.30726236e-01 2.96955526e-01 9.64790508e-02 1.12477064e+00 3.74752544e-02 -2.79418766e-01 -7.69090116e-01 1.49224770e+00 8.35771412e-02 -1.37720025e+00 -6.34704605e-02 2.23662227e-01 3.93964618e-01 7.18962550e-01 -2.57819086e-01 1.94509670e-01 1.91630736e-01 -5.75821817e-01 1.09557950e+00 2.76933283e-01 9.81982112e-01 -6.68628454e-01 6.71273112e-01 4.80182648e-01 -1.64537239e+00 1.87571675e-01 -5.24537265e-01 3.99990790e-02 3.25196028e-01 1.13629866e+00 -5.69883227e-01 6.00530207e-01 9.28031266e-01 6.63410544e-01 -4.74630654e-01 1.14156246e+00 -4.16878819e-01 3.64240497e-01 -6.60496712e-01 2.36369103e-01 8.80451724e-02 -3.19255918e-01 8.82310331e-01 1.04784071e+00 4.47060704e-01 3.40424150e-01 4.68652189e-01 9.27215517e-01 1.19693667e-01 -1.25154197e-01 -5.22058547e-01 6.14810109e-01 5.66648901e-01 1.49297166e+00 -8.00082803e-01 -2.57659465e-01 -2.87960947e-01 1.09358776e+00 2.28313789e-01 6.23538531e-02 -9.04772401e-01 -2.61465073e-01 9.94432092e-01 2.70887792e-01 5.54836631e-01 -5.72586358e-01 -3.83946657e-01 -1.10034776e+00 -5.60008883e-02 -2.98611253e-01 1.14505164e-01 -8.60624194e-01 -1.00989962e+00 5.41183770e-01 -1.02568358e-01 -1.35936272e+00 2.46890247e-01 -6.96804106e-01 -3.11584681e-01 8.45817566e-01 -1.49790788e+00 -1.11762846e+00 -8.17191541e-01 6.42533898e-01 3.85959506e-01 1.46986768e-01 5.65959990e-01 4.20074672e-01 -5.25960386e-01 2.31178001e-01 -1.94322839e-01 -2.47525349e-02 4.98289436e-01 -9.98537958e-01 5.54457188e-01 7.98195779e-01 5.86501956e-02 2.54227787e-01 3.36075753e-01 -8.79447281e-01 -1.79916298e+00 -1.45610297e+00 5.33783197e-01 -5.71065485e-01 2.51295716e-01 -5.76621056e-01 -9.82533395e-01 3.79306674e-01 -5.74634492e-01 3.33302498e-01 1.76083013e-01 -2.35858306e-01 -4.95462805e-01 -2.50967622e-01 -1.21207166e+00 3.42319757e-01 1.40785146e+00 -4.97224212e-01 -3.40111166e-01 3.28478068e-01 9.85119998e-01 -7.76614487e-01 -5.52139223e-01 5.65834045e-01 3.50669056e-01 -1.11399126e+00 1.28931022e+00 3.37827712e-01 -1.82204977e-01 -9.19061780e-01 -4.84057128e-01 -6.69096291e-01 -4.15478349e-01 -4.46062684e-01 -3.86426508e-01 9.86322999e-01 -1.35346934e-01 -6.35580540e-01 8.28510404e-01 4.76421341e-02 -5.33189118e-01 -5.68965316e-01 -1.23966348e+00 -9.35399890e-01 -4.54883158e-01 -1.14964151e+00 4.73163605e-01 5.76428771e-01 -7.37620533e-01 3.93415809e-01 5.43082058e-02 5.24070680e-01 1.27441990e+00 2.75534362e-01 1.15747607e+00 -1.61188185e+00 -5.75627610e-02 -4.00884002e-01 -5.90346873e-01 -1.15645313e+00 -2.79131263e-01 -9.84561801e-01 7.79156238e-02 -1.51937997e+00 6.51976094e-02 -5.04465699e-01 -2.48750057e-02 5.40540695e-01 1.13225803e-01 7.71611810e-01 2.54995584e-01 3.42580736e-01 -4.48136955e-01 6.59650862e-01 9.94810581e-01 3.22030410e-02 -3.27390254e-01 -1.06559224e-01 -2.84784019e-01 9.78065014e-01 6.26308441e-01 -5.30544877e-01 -6.73006177e-02 -4.27194029e-01 -7.31610209e-02 -1.25733763e-01 8.32558155e-01 -1.19925725e+00 1.92826658e-01 3.87290679e-02 3.77538413e-01 -1.39847136e+00 8.40007484e-01 -6.58677757e-01 2.29618877e-01 6.35179758e-01 6.36664510e-01 -1.13092877e-01 2.12955222e-01 5.42090893e-01 8.61171931e-02 1.14629060e-01 9.35424447e-01 5.69410734e-02 -9.05473173e-01 5.78117549e-01 -1.08929239e-01 -2.13904306e-01 1.13012230e+00 -4.03158963e-01 -4.83285934e-02 1.49608001e-01 -3.56558800e-01 3.76926303e-01 6.08918667e-01 2.40213275e-01 1.08908534e+00 -1.46366787e+00 -7.00213850e-01 5.03965855e-01 3.13256741e-01 6.51186109e-01 3.21102917e-01 9.77009296e-01 -5.09089291e-01 3.49445269e-02 2.77421355e-01 -1.27001393e+00 -1.41027880e+00 3.39591116e-01 7.24880174e-02 1.45624161e-01 -1.07777250e+00 1.10879111e+00 3.25436324e-01 -5.30687213e-01 1.70855999e-01 -4.03065085e-01 2.56994098e-01 1.10078245e-01 5.81344545e-01 5.36305904e-01 1.42804161e-01 -8.03292513e-01 -6.29722238e-01 9.51248050e-01 1.23029716e-01 -7.79463053e-02 1.17208016e+00 8.28963369e-02 -2.63167871e-03 2.25219533e-01 1.08771276e+00 -4.48203310e-02 -1.45304310e+00 -3.33951205e-01 -2.82543421e-01 -5.89605749e-01 4.63619262e-01 -3.73619884e-01 -1.03629637e+00 8.90982926e-01 8.88443768e-01 -4.12779570e-01 9.53732014e-01 3.29978496e-01 8.52841616e-01 2.62343615e-01 7.26269901e-01 -7.40044594e-01 -1.01828538e-02 7.54234791e-01 8.42213750e-01 -1.27431715e+00 2.85154402e-01 -6.93977594e-01 -1.82936847e-01 8.30880225e-01 6.33973062e-01 -1.27601266e-01 5.83152294e-01 3.59414488e-01 7.64435679e-02 -4.33132946e-01 -1.74554899e-01 -6.06939316e-01 1.91815242e-01 6.60112560e-01 -2.59731114e-01 1.56527117e-01 1.17282784e-02 5.08350194e-01 -6.18437082e-02 -1.92385226e-01 1.54009625e-01 8.68673444e-01 -6.00968122e-01 -8.47005785e-01 -8.21182847e-01 3.93247008e-01 3.07852745e-01 7.57054165e-02 -1.21180795e-01 7.29530990e-01 5.53783119e-01 6.25612020e-01 3.07617396e-01 -8.56417596e-01 5.82944334e-01 -3.80662233e-01 3.74358833e-01 -7.78398395e-01 -1.84611276e-01 5.29144764e-01 -3.66184831e-01 -1.04114795e+00 -4.63533141e-02 -8.70611787e-01 -1.61527467e+00 -3.15670848e-01 -3.66643727e-01 -6.61400929e-02 9.41956818e-01 5.53554833e-01 5.18007517e-01 3.64680558e-01 4.89851058e-01 -1.38529265e+00 -5.09052217e-01 -6.22545183e-01 -6.10876858e-01 3.88577282e-02 2.89421946e-01 -1.00207102e+00 -3.73582393e-01 -4.57766145e-01]
[7.803004741668701, -2.687835454940796]